cciss: return -EFAULT if copy_from_user() fails
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
58
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
67
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
71
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
109 */
110 static struct board_type products[] = {
111 {0x40700E11, "Smart Array 5300", &SA5_access},
112 {0x40800E11, "Smart Array 5i", &SA5B_access},
113 {0x40820E11, "Smart Array 532", &SA5B_access},
114 {0x40830E11, "Smart Array 5312", &SA5B_access},
115 {0x409A0E11, "Smart Array 641", &SA5_access},
116 {0x409B0E11, "Smart Array 642", &SA5_access},
117 {0x409C0E11, "Smart Array 6400", &SA5_access},
118 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
119 {0x40910E11, "Smart Array 6i", &SA5_access},
120 {0x3225103C, "Smart Array P600", &SA5_access},
121 {0x3223103C, "Smart Array P800", &SA5_access},
122 {0x3234103C, "Smart Array P400", &SA5_access},
123 {0x3235103C, "Smart Array P400i", &SA5_access},
124 {0x3211103C, "Smart Array E200i", &SA5_access},
125 {0x3212103C, "Smart Array E200", &SA5_access},
126 {0x3213103C, "Smart Array E200i", &SA5_access},
127 {0x3214103C, "Smart Array E200i", &SA5_access},
128 {0x3215103C, "Smart Array E200i", &SA5_access},
129 {0x3237103C, "Smart Array E500", &SA5_access},
130 {0x323D103C, "Smart Array P700m", &SA5_access},
131 {0x3241103C, "Smart Array P212", &SA5_access},
132 {0x3243103C, "Smart Array P410", &SA5_access},
133 {0x3245103C, "Smart Array P410i", &SA5_access},
134 {0x3247103C, "Smart Array P411", &SA5_access},
135 {0x3249103C, "Smart Array P812", &SA5_access},
136 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
137 };
138
139 /* How long to wait (in milliseconds) for board to go into simple mode */
140 #define MAX_CONFIG_WAIT 30000
141 #define MAX_IOCTL_CONFIG_WAIT 1000
142
143 /*define how many times we will try a command because of bus resets */
144 #define MAX_CMD_RETRIES 3
145
146 #define MAX_CTLR 32
147
148 /* Originally cciss driver only supports 8 major numbers */
149 #define MAX_CTLR_ORIG 8
150
151 static ctlr_info_t *hba[MAX_CTLR];
152
153 static void do_cciss_request(struct request_queue *q);
154 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
155 static int cciss_open(struct inode *inode, struct file *filep);
156 static int cciss_release(struct inode *inode, struct file *filep);
157 static int cciss_ioctl(struct inode *inode, struct file *filep,
158 unsigned int cmd, unsigned long arg);
159 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
160
161 static int cciss_revalidate(struct gendisk *disk);
162 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
163 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
164 int clear_all);
165
166 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
167 sector_t *total_size, unsigned int *block_size);
168 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
169 sector_t *total_size, unsigned int *block_size);
170 static void cciss_geometry_inquiry(int ctlr, int logvol,
171 int withirq, sector_t total_size,
172 unsigned int block_size, InquiryData_struct *inq_buff,
173 drive_info_struct *drv);
174 static void cciss_getgeometry(int cntl_num);
175 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
176 __u32);
177 static void start_io(ctlr_info_t *h);
178 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
179 unsigned int use_unit_num, unsigned int log_unit,
180 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
181 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
182 unsigned int use_unit_num, unsigned int log_unit,
183 __u8 page_code, int cmd_type);
184
185 static void fail_all_cmds(unsigned long ctlr);
186
187 #ifdef CONFIG_PROC_FS
188 static void cciss_procinit(int i);
189 #else
190 static void cciss_procinit(int i)
191 {
192 }
193 #endif /* CONFIG_PROC_FS */
194
195 #ifdef CONFIG_COMPAT
196 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
197 #endif
198
199 static struct block_device_operations cciss_fops = {
200 .owner = THIS_MODULE,
201 .open = cciss_open,
202 .release = cciss_release,
203 .ioctl = cciss_ioctl,
204 .getgeo = cciss_getgeo,
205 #ifdef CONFIG_COMPAT
206 .compat_ioctl = cciss_compat_ioctl,
207 #endif
208 .revalidate_disk = cciss_revalidate,
209 };
210
211 /*
212 * Enqueuing and dequeuing functions for cmdlists.
213 */
214 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
215 {
216 if (*Qptr == NULL) {
217 *Qptr = c;
218 c->next = c->prev = c;
219 } else {
220 c->prev = (*Qptr)->prev;
221 c->next = (*Qptr);
222 (*Qptr)->prev->next = c;
223 (*Qptr)->prev = c;
224 }
225 }
226
227 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
228 CommandList_struct *c)
229 {
230 if (c && c->next != c) {
231 if (*Qptr == c)
232 *Qptr = c->next;
233 c->prev->next = c->next;
234 c->next->prev = c->prev;
235 } else {
236 *Qptr = NULL;
237 }
238 return c;
239 }
240
241 #include "cciss_scsi.c" /* For SCSI tape support */
242
243 #define RAID_UNKNOWN 6
244
245 #ifdef CONFIG_PROC_FS
246
247 /*
248 * Report information about this controller.
249 */
250 #define ENG_GIG 1000000000
251 #define ENG_GIG_FACTOR (ENG_GIG/512)
252 #define ENGAGE_SCSI "engage scsi"
253 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
254 "UNKNOWN"
255 };
256
257 static struct proc_dir_entry *proc_cciss;
258
259 static void cciss_seq_show_header(struct seq_file *seq)
260 {
261 ctlr_info_t *h = seq->private;
262
263 seq_printf(seq, "%s: HP %s Controller\n"
264 "Board ID: 0x%08lx\n"
265 "Firmware Version: %c%c%c%c\n"
266 "IRQ: %d\n"
267 "Logical drives: %d\n"
268 "Current Q depth: %d\n"
269 "Current # commands on controller: %d\n"
270 "Max Q depth since init: %d\n"
271 "Max # commands on controller since init: %d\n"
272 "Max SG entries since init: %d\n",
273 h->devname,
274 h->product_name,
275 (unsigned long)h->board_id,
276 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
277 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
278 h->num_luns,
279 h->Qdepth, h->commands_outstanding,
280 h->maxQsinceinit, h->max_outstanding, h->maxSG);
281
282 #ifdef CONFIG_CISS_SCSI_TAPE
283 cciss_seq_tape_report(seq, h->ctlr);
284 #endif /* CONFIG_CISS_SCSI_TAPE */
285 }
286
287 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
288 {
289 ctlr_info_t *h = seq->private;
290 unsigned ctlr = h->ctlr;
291 unsigned long flags;
292
293 /* prevent displaying bogus info during configuration
294 * or deconfiguration of a logical volume
295 */
296 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
297 if (h->busy_configuring) {
298 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
299 return ERR_PTR(-EBUSY);
300 }
301 h->busy_configuring = 1;
302 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
303
304 if (*pos == 0)
305 cciss_seq_show_header(seq);
306
307 return pos;
308 }
309
310 static int cciss_seq_show(struct seq_file *seq, void *v)
311 {
312 sector_t vol_sz, vol_sz_frac;
313 ctlr_info_t *h = seq->private;
314 unsigned ctlr = h->ctlr;
315 loff_t *pos = v;
316 drive_info_struct *drv = &h->drv[*pos];
317
318 if (*pos > h->highest_lun)
319 return 0;
320
321 if (drv->heads == 0)
322 return 0;
323
324 vol_sz = drv->nr_blocks;
325 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
326 vol_sz_frac *= 100;
327 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
328
329 if (drv->raid_level > 5)
330 drv->raid_level = RAID_UNKNOWN;
331 seq_printf(seq, "cciss/c%dd%d:"
332 "\t%4u.%02uGB\tRAID %s\n",
333 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
334 raid_label[drv->raid_level]);
335 return 0;
336 }
337
338 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
339 {
340 ctlr_info_t *h = seq->private;
341
342 if (*pos > h->highest_lun)
343 return NULL;
344 *pos += 1;
345
346 return pos;
347 }
348
349 static void cciss_seq_stop(struct seq_file *seq, void *v)
350 {
351 ctlr_info_t *h = seq->private;
352
353 /* Only reset h->busy_configuring if we succeeded in setting
354 * it during cciss_seq_start. */
355 if (v == ERR_PTR(-EBUSY))
356 return;
357
358 h->busy_configuring = 0;
359 }
360
361 static struct seq_operations cciss_seq_ops = {
362 .start = cciss_seq_start,
363 .show = cciss_seq_show,
364 .next = cciss_seq_next,
365 .stop = cciss_seq_stop,
366 };
367
368 static int cciss_seq_open(struct inode *inode, struct file *file)
369 {
370 int ret = seq_open(file, &cciss_seq_ops);
371 struct seq_file *seq = file->private_data;
372
373 if (!ret)
374 seq->private = PDE(inode)->data;
375
376 return ret;
377 }
378
379 static ssize_t
380 cciss_proc_write(struct file *file, const char __user *buf,
381 size_t length, loff_t *ppos)
382 {
383 int err;
384 char *buffer;
385
386 #ifndef CONFIG_CISS_SCSI_TAPE
387 return -EINVAL;
388 #endif
389
390 if (!buf || length > PAGE_SIZE - 1)
391 return -EINVAL;
392
393 buffer = (char *)__get_free_page(GFP_KERNEL);
394 if (!buffer)
395 return -ENOMEM;
396
397 err = -EFAULT;
398 if (copy_from_user(buffer, buf, length))
399 goto out;
400 buffer[length] = '\0';
401
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
404 struct seq_file *seq = file->private_data;
405 ctlr_info_t *h = seq->private;
406 int rc;
407
408 rc = cciss_engage_scsi(h->ctlr);
409 if (rc != 0)
410 err = -rc;
411 else
412 err = length;
413 } else
414 #endif /* CONFIG_CISS_SCSI_TAPE */
415 err = -EINVAL;
416 /* might be nice to have "disengage" too, but it's not
417 safely possible. (only 1 module use count, lock issues.) */
418
419 out:
420 free_page((unsigned long)buffer);
421 return err;
422 }
423
424 static struct file_operations cciss_proc_fops = {
425 .owner = THIS_MODULE,
426 .open = cciss_seq_open,
427 .read = seq_read,
428 .llseek = seq_lseek,
429 .release = seq_release,
430 .write = cciss_proc_write,
431 };
432
433 static void __devinit cciss_procinit(int i)
434 {
435 struct proc_dir_entry *pde;
436
437 if (proc_cciss == NULL)
438 proc_cciss = proc_mkdir("driver/cciss", NULL);
439 if (!proc_cciss)
440 return;
441 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
442 S_IROTH, proc_cciss,
443 &cciss_proc_fops, hba[i]);
444 }
445 #endif /* CONFIG_PROC_FS */
446
447 /*
448 * For operations that cannot sleep, a command block is allocated at init,
449 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
450 * which ones are free or in use. For operations that can wait for kmalloc
451 * to possible sleep, this routine can be called with get_from_pool set to 0.
452 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
453 */
454 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
455 {
456 CommandList_struct *c;
457 int i;
458 u64bit temp64;
459 dma_addr_t cmd_dma_handle, err_dma_handle;
460
461 if (!get_from_pool) {
462 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
463 sizeof(CommandList_struct), &cmd_dma_handle);
464 if (c == NULL)
465 return NULL;
466 memset(c, 0, sizeof(CommandList_struct));
467
468 c->cmdindex = -1;
469
470 c->err_info = (ErrorInfo_struct *)
471 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
472 &err_dma_handle);
473
474 if (c->err_info == NULL) {
475 pci_free_consistent(h->pdev,
476 sizeof(CommandList_struct), c, cmd_dma_handle);
477 return NULL;
478 }
479 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
480 } else { /* get it out of the controllers pool */
481
482 do {
483 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
484 if (i == h->nr_cmds)
485 return NULL;
486 } while (test_and_set_bit
487 (i & (BITS_PER_LONG - 1),
488 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
489 #ifdef CCISS_DEBUG
490 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
491 #endif
492 c = h->cmd_pool + i;
493 memset(c, 0, sizeof(CommandList_struct));
494 cmd_dma_handle = h->cmd_pool_dhandle
495 + i * sizeof(CommandList_struct);
496 c->err_info = h->errinfo_pool + i;
497 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
498 err_dma_handle = h->errinfo_pool_dhandle
499 + i * sizeof(ErrorInfo_struct);
500 h->nr_allocs++;
501
502 c->cmdindex = i;
503 }
504
505 c->busaddr = (__u32) cmd_dma_handle;
506 temp64.val = (__u64) err_dma_handle;
507 c->ErrDesc.Addr.lower = temp64.val32.lower;
508 c->ErrDesc.Addr.upper = temp64.val32.upper;
509 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
510
511 c->ctlr = h->ctlr;
512 return c;
513 }
514
515 /*
516 * Frees a command block that was previously allocated with cmd_alloc().
517 */
518 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
519 {
520 int i;
521 u64bit temp64;
522
523 if (!got_from_pool) {
524 temp64.val32.lower = c->ErrDesc.Addr.lower;
525 temp64.val32.upper = c->ErrDesc.Addr.upper;
526 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
527 c->err_info, (dma_addr_t) temp64.val);
528 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
529 c, (dma_addr_t) c->busaddr);
530 } else {
531 i = c - h->cmd_pool;
532 clear_bit(i & (BITS_PER_LONG - 1),
533 h->cmd_pool_bits + (i / BITS_PER_LONG));
534 h->nr_frees++;
535 }
536 }
537
538 static inline ctlr_info_t *get_host(struct gendisk *disk)
539 {
540 return disk->queue->queuedata;
541 }
542
543 static inline drive_info_struct *get_drv(struct gendisk *disk)
544 {
545 return disk->private_data;
546 }
547
548 /*
549 * Open. Make sure the device is really there.
550 */
551 static int cciss_open(struct inode *inode, struct file *filep)
552 {
553 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
554 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
555
556 #ifdef CCISS_DEBUG
557 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
558 #endif /* CCISS_DEBUG */
559
560 if (host->busy_initializing || drv->busy_configuring)
561 return -EBUSY;
562 /*
563 * Root is allowed to open raw volume zero even if it's not configured
564 * so array config can still work. Root is also allowed to open any
565 * volume that has a LUN ID, so it can issue IOCTL to reread the
566 * disk information. I don't think I really like this
567 * but I'm already using way to many device nodes to claim another one
568 * for "raw controller".
569 */
570 if (drv->heads == 0) {
571 if (iminor(inode) != 0) { /* not node 0? */
572 /* if not node 0 make sure it is a partition = 0 */
573 if (iminor(inode) & 0x0f) {
574 return -ENXIO;
575 /* if it is, make sure we have a LUN ID */
576 } else if (drv->LunID == 0) {
577 return -ENXIO;
578 }
579 }
580 if (!capable(CAP_SYS_ADMIN))
581 return -EPERM;
582 }
583 drv->usage_count++;
584 host->usage_count++;
585 return 0;
586 }
587
588 /*
589 * Close. Sync first.
590 */
591 static int cciss_release(struct inode *inode, struct file *filep)
592 {
593 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
594 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
595
596 #ifdef CCISS_DEBUG
597 printk(KERN_DEBUG "cciss_release %s\n",
598 inode->i_bdev->bd_disk->disk_name);
599 #endif /* CCISS_DEBUG */
600
601 drv->usage_count--;
602 host->usage_count--;
603 return 0;
604 }
605
606 #ifdef CONFIG_COMPAT
607
608 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
609 {
610 int ret;
611 lock_kernel();
612 ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
613 unlock_kernel();
614 return ret;
615 }
616
617 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
618 unsigned long arg);
619 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
620 unsigned long arg);
621
622 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
623 {
624 switch (cmd) {
625 case CCISS_GETPCIINFO:
626 case CCISS_GETINTINFO:
627 case CCISS_SETINTINFO:
628 case CCISS_GETNODENAME:
629 case CCISS_SETNODENAME:
630 case CCISS_GETHEARTBEAT:
631 case CCISS_GETBUSTYPES:
632 case CCISS_GETFIRMVER:
633 case CCISS_GETDRIVVER:
634 case CCISS_REVALIDVOLS:
635 case CCISS_DEREGDISK:
636 case CCISS_REGNEWDISK:
637 case CCISS_REGNEWD:
638 case CCISS_RESCANDISK:
639 case CCISS_GETLUNINFO:
640 return do_ioctl(f, cmd, arg);
641
642 case CCISS_PASSTHRU32:
643 return cciss_ioctl32_passthru(f, cmd, arg);
644 case CCISS_BIG_PASSTHRU32:
645 return cciss_ioctl32_big_passthru(f, cmd, arg);
646
647 default:
648 return -ENOIOCTLCMD;
649 }
650 }
651
652 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
653 unsigned long arg)
654 {
655 IOCTL32_Command_struct __user *arg32 =
656 (IOCTL32_Command_struct __user *) arg;
657 IOCTL_Command_struct arg64;
658 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
659 int err;
660 u32 cp;
661
662 err = 0;
663 err |=
664 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
665 sizeof(arg64.LUN_info));
666 err |=
667 copy_from_user(&arg64.Request, &arg32->Request,
668 sizeof(arg64.Request));
669 err |=
670 copy_from_user(&arg64.error_info, &arg32->error_info,
671 sizeof(arg64.error_info));
672 err |= get_user(arg64.buf_size, &arg32->buf_size);
673 err |= get_user(cp, &arg32->buf);
674 arg64.buf = compat_ptr(cp);
675 err |= copy_to_user(p, &arg64, sizeof(arg64));
676
677 if (err)
678 return -EFAULT;
679
680 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
681 if (err)
682 return err;
683 err |=
684 copy_in_user(&arg32->error_info, &p->error_info,
685 sizeof(arg32->error_info));
686 if (err)
687 return -EFAULT;
688 return err;
689 }
690
691 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
692 unsigned long arg)
693 {
694 BIG_IOCTL32_Command_struct __user *arg32 =
695 (BIG_IOCTL32_Command_struct __user *) arg;
696 BIG_IOCTL_Command_struct arg64;
697 BIG_IOCTL_Command_struct __user *p =
698 compat_alloc_user_space(sizeof(arg64));
699 int err;
700 u32 cp;
701
702 err = 0;
703 err |=
704 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
705 sizeof(arg64.LUN_info));
706 err |=
707 copy_from_user(&arg64.Request, &arg32->Request,
708 sizeof(arg64.Request));
709 err |=
710 copy_from_user(&arg64.error_info, &arg32->error_info,
711 sizeof(arg64.error_info));
712 err |= get_user(arg64.buf_size, &arg32->buf_size);
713 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
714 err |= get_user(cp, &arg32->buf);
715 arg64.buf = compat_ptr(cp);
716 err |= copy_to_user(p, &arg64, sizeof(arg64));
717
718 if (err)
719 return -EFAULT;
720
721 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
722 if (err)
723 return err;
724 err |=
725 copy_in_user(&arg32->error_info, &p->error_info,
726 sizeof(arg32->error_info));
727 if (err)
728 return -EFAULT;
729 return err;
730 }
731 #endif
732
733 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
734 {
735 drive_info_struct *drv = get_drv(bdev->bd_disk);
736
737 if (!drv->cylinders)
738 return -ENXIO;
739
740 geo->heads = drv->heads;
741 geo->sectors = drv->sectors;
742 geo->cylinders = drv->cylinders;
743 return 0;
744 }
745
746 /*
747 * ioctl
748 */
749 static int cciss_ioctl(struct inode *inode, struct file *filep,
750 unsigned int cmd, unsigned long arg)
751 {
752 struct block_device *bdev = inode->i_bdev;
753 struct gendisk *disk = bdev->bd_disk;
754 ctlr_info_t *host = get_host(disk);
755 drive_info_struct *drv = get_drv(disk);
756 int ctlr = host->ctlr;
757 void __user *argp = (void __user *)arg;
758
759 #ifdef CCISS_DEBUG
760 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
761 #endif /* CCISS_DEBUG */
762
763 switch (cmd) {
764 case CCISS_GETPCIINFO:
765 {
766 cciss_pci_info_struct pciinfo;
767
768 if (!arg)
769 return -EINVAL;
770 pciinfo.domain = pci_domain_nr(host->pdev->bus);
771 pciinfo.bus = host->pdev->bus->number;
772 pciinfo.dev_fn = host->pdev->devfn;
773 pciinfo.board_id = host->board_id;
774 if (copy_to_user
775 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
776 return -EFAULT;
777 return 0;
778 }
779 case CCISS_GETINTINFO:
780 {
781 cciss_coalint_struct intinfo;
782 if (!arg)
783 return -EINVAL;
784 intinfo.delay =
785 readl(&host->cfgtable->HostWrite.CoalIntDelay);
786 intinfo.count =
787 readl(&host->cfgtable->HostWrite.CoalIntCount);
788 if (copy_to_user
789 (argp, &intinfo, sizeof(cciss_coalint_struct)))
790 return -EFAULT;
791 return 0;
792 }
793 case CCISS_SETINTINFO:
794 {
795 cciss_coalint_struct intinfo;
796 unsigned long flags;
797 int i;
798
799 if (!arg)
800 return -EINVAL;
801 if (!capable(CAP_SYS_ADMIN))
802 return -EPERM;
803 if (copy_from_user
804 (&intinfo, argp, sizeof(cciss_coalint_struct)))
805 return -EFAULT;
806 if ((intinfo.delay == 0) && (intinfo.count == 0))
807 {
808 // printk("cciss_ioctl: delay and count cannot be 0\n");
809 return -EINVAL;
810 }
811 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
812 /* Update the field, and then ring the doorbell */
813 writel(intinfo.delay,
814 &(host->cfgtable->HostWrite.CoalIntDelay));
815 writel(intinfo.count,
816 &(host->cfgtable->HostWrite.CoalIntCount));
817 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
818
819 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
820 if (!(readl(host->vaddr + SA5_DOORBELL)
821 & CFGTBL_ChangeReq))
822 break;
823 /* delay and try again */
824 udelay(1000);
825 }
826 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
827 if (i >= MAX_IOCTL_CONFIG_WAIT)
828 return -EAGAIN;
829 return 0;
830 }
831 case CCISS_GETNODENAME:
832 {
833 NodeName_type NodeName;
834 int i;
835
836 if (!arg)
837 return -EINVAL;
838 for (i = 0; i < 16; i++)
839 NodeName[i] =
840 readb(&host->cfgtable->ServerName[i]);
841 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
842 return -EFAULT;
843 return 0;
844 }
845 case CCISS_SETNODENAME:
846 {
847 NodeName_type NodeName;
848 unsigned long flags;
849 int i;
850
851 if (!arg)
852 return -EINVAL;
853 if (!capable(CAP_SYS_ADMIN))
854 return -EPERM;
855
856 if (copy_from_user
857 (NodeName, argp, sizeof(NodeName_type)))
858 return -EFAULT;
859
860 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
861
862 /* Update the field, and then ring the doorbell */
863 for (i = 0; i < 16; i++)
864 writeb(NodeName[i],
865 &host->cfgtable->ServerName[i]);
866
867 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
868
869 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
870 if (!(readl(host->vaddr + SA5_DOORBELL)
871 & CFGTBL_ChangeReq))
872 break;
873 /* delay and try again */
874 udelay(1000);
875 }
876 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
877 if (i >= MAX_IOCTL_CONFIG_WAIT)
878 return -EAGAIN;
879 return 0;
880 }
881
882 case CCISS_GETHEARTBEAT:
883 {
884 Heartbeat_type heartbeat;
885
886 if (!arg)
887 return -EINVAL;
888 heartbeat = readl(&host->cfgtable->HeartBeat);
889 if (copy_to_user
890 (argp, &heartbeat, sizeof(Heartbeat_type)))
891 return -EFAULT;
892 return 0;
893 }
894 case CCISS_GETBUSTYPES:
895 {
896 BusTypes_type BusTypes;
897
898 if (!arg)
899 return -EINVAL;
900 BusTypes = readl(&host->cfgtable->BusTypes);
901 if (copy_to_user
902 (argp, &BusTypes, sizeof(BusTypes_type)))
903 return -EFAULT;
904 return 0;
905 }
906 case CCISS_GETFIRMVER:
907 {
908 FirmwareVer_type firmware;
909
910 if (!arg)
911 return -EINVAL;
912 memcpy(firmware, host->firm_ver, 4);
913
914 if (copy_to_user
915 (argp, firmware, sizeof(FirmwareVer_type)))
916 return -EFAULT;
917 return 0;
918 }
919 case CCISS_GETDRIVVER:
920 {
921 DriverVer_type DriverVer = DRIVER_VERSION;
922
923 if (!arg)
924 return -EINVAL;
925
926 if (copy_to_user
927 (argp, &DriverVer, sizeof(DriverVer_type)))
928 return -EFAULT;
929 return 0;
930 }
931
932 case CCISS_REVALIDVOLS:
933 return rebuild_lun_table(host, NULL);
934
935 case CCISS_GETLUNINFO:{
936 LogvolInfo_struct luninfo;
937
938 luninfo.LunID = drv->LunID;
939 luninfo.num_opens = drv->usage_count;
940 luninfo.num_parts = 0;
941 if (copy_to_user(argp, &luninfo,
942 sizeof(LogvolInfo_struct)))
943 return -EFAULT;
944 return 0;
945 }
946 case CCISS_DEREGDISK:
947 return rebuild_lun_table(host, disk);
948
949 case CCISS_REGNEWD:
950 return rebuild_lun_table(host, NULL);
951
952 case CCISS_PASSTHRU:
953 {
954 IOCTL_Command_struct iocommand;
955 CommandList_struct *c;
956 char *buff = NULL;
957 u64bit temp64;
958 unsigned long flags;
959 DECLARE_COMPLETION_ONSTACK(wait);
960
961 if (!arg)
962 return -EINVAL;
963
964 if (!capable(CAP_SYS_RAWIO))
965 return -EPERM;
966
967 if (copy_from_user
968 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
969 return -EFAULT;
970 if ((iocommand.buf_size < 1) &&
971 (iocommand.Request.Type.Direction != XFER_NONE)) {
972 return -EINVAL;
973 }
974 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
975 /* Check kmalloc limits */
976 if (iocommand.buf_size > 128000)
977 return -EINVAL;
978 #endif
979 if (iocommand.buf_size > 0) {
980 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
981 if (buff == NULL)
982 return -EFAULT;
983 }
984 if (iocommand.Request.Type.Direction == XFER_WRITE) {
985 /* Copy the data into the buffer we created */
986 if (copy_from_user
987 (buff, iocommand.buf, iocommand.buf_size)) {
988 kfree(buff);
989 return -EFAULT;
990 }
991 } else {
992 memset(buff, 0, iocommand.buf_size);
993 }
994 if ((c = cmd_alloc(host, 0)) == NULL) {
995 kfree(buff);
996 return -ENOMEM;
997 }
998 // Fill in the command type
999 c->cmd_type = CMD_IOCTL_PEND;
1000 // Fill in Command Header
1001 c->Header.ReplyQueue = 0; // unused in simple mode
1002 if (iocommand.buf_size > 0) // buffer to fill
1003 {
1004 c->Header.SGList = 1;
1005 c->Header.SGTotal = 1;
1006 } else // no buffers to fill
1007 {
1008 c->Header.SGList = 0;
1009 c->Header.SGTotal = 0;
1010 }
1011 c->Header.LUN = iocommand.LUN_info;
1012 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1013
1014 // Fill in Request block
1015 c->Request = iocommand.Request;
1016
1017 // Fill in the scatter gather information
1018 if (iocommand.buf_size > 0) {
1019 temp64.val = pci_map_single(host->pdev, buff,
1020 iocommand.buf_size,
1021 PCI_DMA_BIDIRECTIONAL);
1022 c->SG[0].Addr.lower = temp64.val32.lower;
1023 c->SG[0].Addr.upper = temp64.val32.upper;
1024 c->SG[0].Len = iocommand.buf_size;
1025 c->SG[0].Ext = 0; // we are not chaining
1026 }
1027 c->waiting = &wait;
1028
1029 /* Put the request on the tail of the request queue */
1030 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1031 addQ(&host->reqQ, c);
1032 host->Qdepth++;
1033 start_io(host);
1034 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1035
1036 wait_for_completion(&wait);
1037
1038 /* unlock the buffers from DMA */
1039 temp64.val32.lower = c->SG[0].Addr.lower;
1040 temp64.val32.upper = c->SG[0].Addr.upper;
1041 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1042 iocommand.buf_size,
1043 PCI_DMA_BIDIRECTIONAL);
1044
1045 /* Copy the error information out */
1046 iocommand.error_info = *(c->err_info);
1047 if (copy_to_user
1048 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1049 kfree(buff);
1050 cmd_free(host, c, 0);
1051 return -EFAULT;
1052 }
1053
1054 if (iocommand.Request.Type.Direction == XFER_READ) {
1055 /* Copy the data out of the buffer we created */
1056 if (copy_to_user
1057 (iocommand.buf, buff, iocommand.buf_size)) {
1058 kfree(buff);
1059 cmd_free(host, c, 0);
1060 return -EFAULT;
1061 }
1062 }
1063 kfree(buff);
1064 cmd_free(host, c, 0);
1065 return 0;
1066 }
1067 case CCISS_BIG_PASSTHRU:{
1068 BIG_IOCTL_Command_struct *ioc;
1069 CommandList_struct *c;
1070 unsigned char **buff = NULL;
1071 int *buff_size = NULL;
1072 u64bit temp64;
1073 unsigned long flags;
1074 BYTE sg_used = 0;
1075 int status = 0;
1076 int i;
1077 DECLARE_COMPLETION_ONSTACK(wait);
1078 __u32 left;
1079 __u32 sz;
1080 BYTE __user *data_ptr;
1081
1082 if (!arg)
1083 return -EINVAL;
1084 if (!capable(CAP_SYS_RAWIO))
1085 return -EPERM;
1086 ioc = (BIG_IOCTL_Command_struct *)
1087 kmalloc(sizeof(*ioc), GFP_KERNEL);
1088 if (!ioc) {
1089 status = -ENOMEM;
1090 goto cleanup1;
1091 }
1092 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1093 status = -EFAULT;
1094 goto cleanup1;
1095 }
1096 if ((ioc->buf_size < 1) &&
1097 (ioc->Request.Type.Direction != XFER_NONE)) {
1098 status = -EINVAL;
1099 goto cleanup1;
1100 }
1101 /* Check kmalloc limits using all SGs */
1102 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1103 status = -EINVAL;
1104 goto cleanup1;
1105 }
1106 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1107 status = -EINVAL;
1108 goto cleanup1;
1109 }
1110 buff =
1111 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1112 if (!buff) {
1113 status = -ENOMEM;
1114 goto cleanup1;
1115 }
1116 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1117 GFP_KERNEL);
1118 if (!buff_size) {
1119 status = -ENOMEM;
1120 goto cleanup1;
1121 }
1122 left = ioc->buf_size;
1123 data_ptr = ioc->buf;
1124 while (left) {
1125 sz = (left >
1126 ioc->malloc_size) ? ioc->
1127 malloc_size : left;
1128 buff_size[sg_used] = sz;
1129 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1130 if (buff[sg_used] == NULL) {
1131 status = -ENOMEM;
1132 goto cleanup1;
1133 }
1134 if (ioc->Request.Type.Direction == XFER_WRITE) {
1135 if (copy_from_user
1136 (buff[sg_used], data_ptr, sz)) {
1137 status = -EFAULT;
1138 goto cleanup1;
1139 }
1140 } else {
1141 memset(buff[sg_used], 0, sz);
1142 }
1143 left -= sz;
1144 data_ptr += sz;
1145 sg_used++;
1146 }
1147 if ((c = cmd_alloc(host, 0)) == NULL) {
1148 status = -ENOMEM;
1149 goto cleanup1;
1150 }
1151 c->cmd_type = CMD_IOCTL_PEND;
1152 c->Header.ReplyQueue = 0;
1153
1154 if (ioc->buf_size > 0) {
1155 c->Header.SGList = sg_used;
1156 c->Header.SGTotal = sg_used;
1157 } else {
1158 c->Header.SGList = 0;
1159 c->Header.SGTotal = 0;
1160 }
1161 c->Header.LUN = ioc->LUN_info;
1162 c->Header.Tag.lower = c->busaddr;
1163
1164 c->Request = ioc->Request;
1165 if (ioc->buf_size > 0) {
1166 int i;
1167 for (i = 0; i < sg_used; i++) {
1168 temp64.val =
1169 pci_map_single(host->pdev, buff[i],
1170 buff_size[i],
1171 PCI_DMA_BIDIRECTIONAL);
1172 c->SG[i].Addr.lower =
1173 temp64.val32.lower;
1174 c->SG[i].Addr.upper =
1175 temp64.val32.upper;
1176 c->SG[i].Len = buff_size[i];
1177 c->SG[i].Ext = 0; /* we are not chaining */
1178 }
1179 }
1180 c->waiting = &wait;
1181 /* Put the request on the tail of the request queue */
1182 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1183 addQ(&host->reqQ, c);
1184 host->Qdepth++;
1185 start_io(host);
1186 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1187 wait_for_completion(&wait);
1188 /* unlock the buffers from DMA */
1189 for (i = 0; i < sg_used; i++) {
1190 temp64.val32.lower = c->SG[i].Addr.lower;
1191 temp64.val32.upper = c->SG[i].Addr.upper;
1192 pci_unmap_single(host->pdev,
1193 (dma_addr_t) temp64.val, buff_size[i],
1194 PCI_DMA_BIDIRECTIONAL);
1195 }
1196 /* Copy the error information out */
1197 ioc->error_info = *(c->err_info);
1198 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1199 cmd_free(host, c, 0);
1200 status = -EFAULT;
1201 goto cleanup1;
1202 }
1203 if (ioc->Request.Type.Direction == XFER_READ) {
1204 /* Copy the data out of the buffer we created */
1205 BYTE __user *ptr = ioc->buf;
1206 for (i = 0; i < sg_used; i++) {
1207 if (copy_to_user
1208 (ptr, buff[i], buff_size[i])) {
1209 cmd_free(host, c, 0);
1210 status = -EFAULT;
1211 goto cleanup1;
1212 }
1213 ptr += buff_size[i];
1214 }
1215 }
1216 cmd_free(host, c, 0);
1217 status = 0;
1218 cleanup1:
1219 if (buff) {
1220 for (i = 0; i < sg_used; i++)
1221 kfree(buff[i]);
1222 kfree(buff);
1223 }
1224 kfree(buff_size);
1225 kfree(ioc);
1226 return status;
1227 }
1228
1229 /* scsi_cmd_ioctl handles these, below, though some are not */
1230 /* very meaningful for cciss. SG_IO is the main one people want. */
1231
1232 case SG_GET_VERSION_NUM:
1233 case SG_SET_TIMEOUT:
1234 case SG_GET_TIMEOUT:
1235 case SG_GET_RESERVED_SIZE:
1236 case SG_SET_RESERVED_SIZE:
1237 case SG_EMULATED_HOST:
1238 case SG_IO:
1239 case SCSI_IOCTL_SEND_COMMAND:
1240 return scsi_cmd_ioctl(filep, disk->queue, disk, cmd, argp);
1241
1242 /* scsi_cmd_ioctl would normally handle these, below, but */
1243 /* they aren't a good fit for cciss, as CD-ROMs are */
1244 /* not supported, and we don't have any bus/target/lun */
1245 /* which we present to the kernel. */
1246
1247 case CDROM_SEND_PACKET:
1248 case CDROMCLOSETRAY:
1249 case CDROMEJECT:
1250 case SCSI_IOCTL_GET_IDLUN:
1251 case SCSI_IOCTL_GET_BUS_NUMBER:
1252 default:
1253 return -ENOTTY;
1254 }
1255 }
1256
1257 static void cciss_check_queues(ctlr_info_t *h)
1258 {
1259 int start_queue = h->next_to_run;
1260 int i;
1261
1262 /* check to see if we have maxed out the number of commands that can
1263 * be placed on the queue. If so then exit. We do this check here
1264 * in case the interrupt we serviced was from an ioctl and did not
1265 * free any new commands.
1266 */
1267 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1268 return;
1269
1270 /* We have room on the queue for more commands. Now we need to queue
1271 * them up. We will also keep track of the next queue to run so
1272 * that every queue gets a chance to be started first.
1273 */
1274 for (i = 0; i < h->highest_lun + 1; i++) {
1275 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1276 /* make sure the disk has been added and the drive is real
1277 * because this can be called from the middle of init_one.
1278 */
1279 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1280 continue;
1281 blk_start_queue(h->gendisk[curr_queue]->queue);
1282
1283 /* check to see if we have maxed out the number of commands
1284 * that can be placed on the queue.
1285 */
1286 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1287 if (curr_queue == start_queue) {
1288 h->next_to_run =
1289 (start_queue + 1) % (h->highest_lun + 1);
1290 break;
1291 } else {
1292 h->next_to_run = curr_queue;
1293 break;
1294 }
1295 }
1296 }
1297 }
1298
1299 static void cciss_softirq_done(struct request *rq)
1300 {
1301 CommandList_struct *cmd = rq->completion_data;
1302 ctlr_info_t *h = hba[cmd->ctlr];
1303 unsigned long flags;
1304 u64bit temp64;
1305 int i, ddir;
1306
1307 if (cmd->Request.Type.Direction == XFER_READ)
1308 ddir = PCI_DMA_FROMDEVICE;
1309 else
1310 ddir = PCI_DMA_TODEVICE;
1311
1312 /* command did not need to be retried */
1313 /* unmap the DMA mapping for all the scatter gather elements */
1314 for (i = 0; i < cmd->Header.SGList; i++) {
1315 temp64.val32.lower = cmd->SG[i].Addr.lower;
1316 temp64.val32.upper = cmd->SG[i].Addr.upper;
1317 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1318 }
1319
1320 #ifdef CCISS_DEBUG
1321 printk("Done with %p\n", rq);
1322 #endif /* CCISS_DEBUG */
1323
1324 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1325 BUG();
1326
1327 spin_lock_irqsave(&h->lock, flags);
1328 cmd_free(h, cmd, 1);
1329 cciss_check_queues(h);
1330 spin_unlock_irqrestore(&h->lock, flags);
1331 }
1332
1333 /* This function will check the usage_count of the drive to be updated/added.
1334 * If the usage_count is zero then the drive information will be updated and
1335 * the disk will be re-registered with the kernel. If not then it will be
1336 * left alone for the next reboot. The exception to this is disk 0 which
1337 * will always be left registered with the kernel since it is also the
1338 * controller node. Any changes to disk 0 will show up on the next
1339 * reboot.
1340 */
1341 static void cciss_update_drive_info(int ctlr, int drv_index)
1342 {
1343 ctlr_info_t *h = hba[ctlr];
1344 struct gendisk *disk;
1345 InquiryData_struct *inq_buff = NULL;
1346 unsigned int block_size;
1347 sector_t total_size;
1348 unsigned long flags = 0;
1349 int ret = 0;
1350
1351 /* if the disk already exists then deregister it before proceeding */
1352 if (h->drv[drv_index].raid_level != -1) {
1353 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1354 h->drv[drv_index].busy_configuring = 1;
1355 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1356
1357 /* deregister_disk sets h->drv[drv_index].queue = NULL */
1358 /* which keeps the interrupt handler from starting */
1359 /* the queue. */
1360 ret = deregister_disk(h->gendisk[drv_index],
1361 &h->drv[drv_index], 0);
1362 h->drv[drv_index].busy_configuring = 0;
1363 }
1364
1365 /* If the disk is in use return */
1366 if (ret)
1367 return;
1368
1369 /* Get information about the disk and modify the driver structure */
1370 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1371 if (inq_buff == NULL)
1372 goto mem_msg;
1373
1374 /* testing to see if 16-byte CDBs are already being used */
1375 if (h->cciss_read == CCISS_READ_16) {
1376 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1377 &total_size, &block_size);
1378 goto geo_inq;
1379 }
1380
1381 cciss_read_capacity(ctlr, drv_index, 1,
1382 &total_size, &block_size);
1383
1384 /* if read_capacity returns all F's this volume is >2TB in size */
1385 /* so we switch to 16-byte CDB's for all read/write ops */
1386 if (total_size == 0xFFFFFFFFULL) {
1387 cciss_read_capacity_16(ctlr, drv_index, 1,
1388 &total_size, &block_size);
1389 h->cciss_read = CCISS_READ_16;
1390 h->cciss_write = CCISS_WRITE_16;
1391 } else {
1392 h->cciss_read = CCISS_READ_10;
1393 h->cciss_write = CCISS_WRITE_10;
1394 }
1395 geo_inq:
1396 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1397 inq_buff, &h->drv[drv_index]);
1398
1399 ++h->num_luns;
1400 disk = h->gendisk[drv_index];
1401 set_capacity(disk, h->drv[drv_index].nr_blocks);
1402
1403 /* if it's the controller it's already added */
1404 if (drv_index) {
1405 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1406 sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1407 disk->major = h->major;
1408 disk->first_minor = drv_index << NWD_SHIFT;
1409 disk->fops = &cciss_fops;
1410 disk->private_data = &h->drv[drv_index];
1411
1412 /* Set up queue information */
1413 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1414
1415 /* This is a hardware imposed limit. */
1416 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1417
1418 /* This is a limit in the driver and could be eliminated. */
1419 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1420
1421 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1422
1423 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1424
1425 disk->queue->queuedata = hba[ctlr];
1426
1427 blk_queue_hardsect_size(disk->queue,
1428 hba[ctlr]->drv[drv_index].block_size);
1429
1430 /* Make sure all queue data is written out before */
1431 /* setting h->drv[drv_index].queue, as setting this */
1432 /* allows the interrupt handler to start the queue */
1433 wmb();
1434 h->drv[drv_index].queue = disk->queue;
1435 add_disk(disk);
1436 }
1437
1438 freeret:
1439 kfree(inq_buff);
1440 return;
1441 mem_msg:
1442 printk(KERN_ERR "cciss: out of memory\n");
1443 goto freeret;
1444 }
1445
1446 /* This function will find the first index of the controllers drive array
1447 * that has a -1 for the raid_level and will return that index. This is
1448 * where new drives will be added. If the index to be returned is greater
1449 * than the highest_lun index for the controller then highest_lun is set
1450 * to this new index. If there are no available indexes then -1 is returned.
1451 */
1452 static int cciss_find_free_drive_index(int ctlr)
1453 {
1454 int i;
1455
1456 for (i = 0; i < CISS_MAX_LUN; i++) {
1457 if (hba[ctlr]->drv[i].raid_level == -1) {
1458 if (i > hba[ctlr]->highest_lun)
1459 hba[ctlr]->highest_lun = i;
1460 return i;
1461 }
1462 }
1463 return -1;
1464 }
1465
1466 /* This function will add and remove logical drives from the Logical
1467 * drive array of the controller and maintain persistency of ordering
1468 * so that mount points are preserved until the next reboot. This allows
1469 * for the removal of logical drives in the middle of the drive array
1470 * without a re-ordering of those drives.
1471 * INPUT
1472 * h = The controller to perform the operations on
1473 * del_disk = The disk to remove if specified. If the value given
1474 * is NULL then no disk is removed.
1475 */
1476 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1477 {
1478 int ctlr = h->ctlr;
1479 int num_luns;
1480 ReportLunData_struct *ld_buff = NULL;
1481 drive_info_struct *drv = NULL;
1482 int return_code;
1483 int listlength = 0;
1484 int i;
1485 int drv_found;
1486 int drv_index = 0;
1487 __u32 lunid = 0;
1488 unsigned long flags;
1489
1490 /* Set busy_configuring flag for this operation */
1491 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1492 if (h->busy_configuring) {
1493 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1494 return -EBUSY;
1495 }
1496 h->busy_configuring = 1;
1497
1498 /* if del_disk is NULL then we are being called to add a new disk
1499 * and update the logical drive table. If it is not NULL then
1500 * we will check if the disk is in use or not.
1501 */
1502 if (del_disk != NULL) {
1503 drv = get_drv(del_disk);
1504 drv->busy_configuring = 1;
1505 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1506 return_code = deregister_disk(del_disk, drv, 1);
1507 drv->busy_configuring = 0;
1508 h->busy_configuring = 0;
1509 return return_code;
1510 } else {
1511 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1512 if (!capable(CAP_SYS_RAWIO))
1513 return -EPERM;
1514
1515 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1516 if (ld_buff == NULL)
1517 goto mem_msg;
1518
1519 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1520 sizeof(ReportLunData_struct), 0,
1521 0, 0, TYPE_CMD);
1522
1523 if (return_code == IO_OK) {
1524 listlength =
1525 be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1526 } else { /* reading number of logical volumes failed */
1527 printk(KERN_WARNING "cciss: report logical volume"
1528 " command failed\n");
1529 listlength = 0;
1530 goto freeret;
1531 }
1532
1533 num_luns = listlength / 8; /* 8 bytes per entry */
1534 if (num_luns > CISS_MAX_LUN) {
1535 num_luns = CISS_MAX_LUN;
1536 printk(KERN_WARNING "cciss: more luns configured"
1537 " on controller than can be handled by"
1538 " this driver.\n");
1539 }
1540
1541 /* Compare controller drive array to drivers drive array.
1542 * Check for updates in the drive information and any new drives
1543 * on the controller.
1544 */
1545 for (i = 0; i < num_luns; i++) {
1546 int j;
1547
1548 drv_found = 0;
1549
1550 lunid = (0xff &
1551 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1552 lunid |= (0xff &
1553 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1554 lunid |= (0xff &
1555 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1556 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1557
1558 /* Find if the LUN is already in the drive array
1559 * of the controller. If so then update its info
1560 * if not is use. If it does not exist then find
1561 * the first free index and add it.
1562 */
1563 for (j = 0; j <= h->highest_lun; j++) {
1564 if (h->drv[j].LunID == lunid) {
1565 drv_index = j;
1566 drv_found = 1;
1567 }
1568 }
1569
1570 /* check if the drive was found already in the array */
1571 if (!drv_found) {
1572 drv_index = cciss_find_free_drive_index(ctlr);
1573 if (drv_index == -1)
1574 goto freeret;
1575
1576 /*Check if the gendisk needs to be allocated */
1577 if (!h->gendisk[drv_index]){
1578 h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1579 if (!h->gendisk[drv_index]){
1580 printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1581 goto mem_msg;
1582 }
1583 }
1584 }
1585 h->drv[drv_index].LunID = lunid;
1586 cciss_update_drive_info(ctlr, drv_index);
1587 } /* end for */
1588 } /* end else */
1589
1590 freeret:
1591 kfree(ld_buff);
1592 h->busy_configuring = 0;
1593 /* We return -1 here to tell the ACU that we have registered/updated
1594 * all of the drives that we can and to keep it from calling us
1595 * additional times.
1596 */
1597 return -1;
1598 mem_msg:
1599 printk(KERN_ERR "cciss: out of memory\n");
1600 goto freeret;
1601 }
1602
1603 /* This function will deregister the disk and it's queue from the
1604 * kernel. It must be called with the controller lock held and the
1605 * drv structures busy_configuring flag set. It's parameters are:
1606 *
1607 * disk = This is the disk to be deregistered
1608 * drv = This is the drive_info_struct associated with the disk to be
1609 * deregistered. It contains information about the disk used
1610 * by the driver.
1611 * clear_all = This flag determines whether or not the disk information
1612 * is going to be completely cleared out and the highest_lun
1613 * reset. Sometimes we want to clear out information about
1614 * the disk in preparation for re-adding it. In this case
1615 * the highest_lun should be left unchanged and the LunID
1616 * should not be cleared.
1617 */
1618 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1619 int clear_all)
1620 {
1621 int i;
1622 ctlr_info_t *h = get_host(disk);
1623
1624 if (!capable(CAP_SYS_RAWIO))
1625 return -EPERM;
1626
1627 /* make sure logical volume is NOT is use */
1628 if (clear_all || (h->gendisk[0] == disk)) {
1629 if (drv->usage_count > 1)
1630 return -EBUSY;
1631 } else if (drv->usage_count > 0)
1632 return -EBUSY;
1633
1634 /* invalidate the devices and deregister the disk. If it is disk
1635 * zero do not deregister it but just zero out it's values. This
1636 * allows us to delete disk zero but keep the controller registered.
1637 */
1638 if (h->gendisk[0] != disk) {
1639 struct request_queue *q = disk->queue;
1640 if (disk->flags & GENHD_FL_UP)
1641 del_gendisk(disk);
1642 if (q) {
1643 blk_cleanup_queue(q);
1644 /* Set drv->queue to NULL so that we do not try
1645 * to call blk_start_queue on this queue in the
1646 * interrupt handler
1647 */
1648 drv->queue = NULL;
1649 }
1650 /* If clear_all is set then we are deleting the logical
1651 * drive, not just refreshing its info. For drives
1652 * other than disk 0 we will call put_disk. We do not
1653 * do this for disk 0 as we need it to be able to
1654 * configure the controller.
1655 */
1656 if (clear_all){
1657 /* This isn't pretty, but we need to find the
1658 * disk in our array and NULL our the pointer.
1659 * This is so that we will call alloc_disk if
1660 * this index is used again later.
1661 */
1662 for (i=0; i < CISS_MAX_LUN; i++){
1663 if(h->gendisk[i] == disk){
1664 h->gendisk[i] = NULL;
1665 break;
1666 }
1667 }
1668 put_disk(disk);
1669 }
1670 } else {
1671 set_capacity(disk, 0);
1672 }
1673
1674 --h->num_luns;
1675 /* zero out the disk size info */
1676 drv->nr_blocks = 0;
1677 drv->block_size = 0;
1678 drv->heads = 0;
1679 drv->sectors = 0;
1680 drv->cylinders = 0;
1681 drv->raid_level = -1; /* This can be used as a flag variable to
1682 * indicate that this element of the drive
1683 * array is free.
1684 */
1685
1686 if (clear_all) {
1687 /* check to see if it was the last disk */
1688 if (drv == h->drv + h->highest_lun) {
1689 /* if so, find the new hightest lun */
1690 int i, newhighest = -1;
1691 for (i = 0; i < h->highest_lun; i++) {
1692 /* if the disk has size > 0, it is available */
1693 if (h->drv[i].heads)
1694 newhighest = i;
1695 }
1696 h->highest_lun = newhighest;
1697 }
1698
1699 drv->LunID = 0;
1700 }
1701 return 0;
1702 }
1703
1704 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1705 1: address logical volume log_unit,
1706 2: periph device address is scsi3addr */
1707 unsigned int log_unit, __u8 page_code,
1708 unsigned char *scsi3addr, int cmd_type)
1709 {
1710 ctlr_info_t *h = hba[ctlr];
1711 u64bit buff_dma_handle;
1712 int status = IO_OK;
1713
1714 c->cmd_type = CMD_IOCTL_PEND;
1715 c->Header.ReplyQueue = 0;
1716 if (buff != NULL) {
1717 c->Header.SGList = 1;
1718 c->Header.SGTotal = 1;
1719 } else {
1720 c->Header.SGList = 0;
1721 c->Header.SGTotal = 0;
1722 }
1723 c->Header.Tag.lower = c->busaddr;
1724
1725 c->Request.Type.Type = cmd_type;
1726 if (cmd_type == TYPE_CMD) {
1727 switch (cmd) {
1728 case CISS_INQUIRY:
1729 /* If the logical unit number is 0 then, this is going
1730 to controller so It's a physical command
1731 mode = 0 target = 0. So we have nothing to write.
1732 otherwise, if use_unit_num == 1,
1733 mode = 1(volume set addressing) target = LUNID
1734 otherwise, if use_unit_num == 2,
1735 mode = 0(periph dev addr) target = scsi3addr */
1736 if (use_unit_num == 1) {
1737 c->Header.LUN.LogDev.VolId =
1738 h->drv[log_unit].LunID;
1739 c->Header.LUN.LogDev.Mode = 1;
1740 } else if (use_unit_num == 2) {
1741 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1742 8);
1743 c->Header.LUN.LogDev.Mode = 0;
1744 }
1745 /* are we trying to read a vital product page */
1746 if (page_code != 0) {
1747 c->Request.CDB[1] = 0x01;
1748 c->Request.CDB[2] = page_code;
1749 }
1750 c->Request.CDBLen = 6;
1751 c->Request.Type.Attribute = ATTR_SIMPLE;
1752 c->Request.Type.Direction = XFER_READ;
1753 c->Request.Timeout = 0;
1754 c->Request.CDB[0] = CISS_INQUIRY;
1755 c->Request.CDB[4] = size & 0xFF;
1756 break;
1757 case CISS_REPORT_LOG:
1758 case CISS_REPORT_PHYS:
1759 /* Talking to controller so It's a physical command
1760 mode = 00 target = 0. Nothing to write.
1761 */
1762 c->Request.CDBLen = 12;
1763 c->Request.Type.Attribute = ATTR_SIMPLE;
1764 c->Request.Type.Direction = XFER_READ;
1765 c->Request.Timeout = 0;
1766 c->Request.CDB[0] = cmd;
1767 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1768 c->Request.CDB[7] = (size >> 16) & 0xFF;
1769 c->Request.CDB[8] = (size >> 8) & 0xFF;
1770 c->Request.CDB[9] = size & 0xFF;
1771 break;
1772
1773 case CCISS_READ_CAPACITY:
1774 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1775 c->Header.LUN.LogDev.Mode = 1;
1776 c->Request.CDBLen = 10;
1777 c->Request.Type.Attribute = ATTR_SIMPLE;
1778 c->Request.Type.Direction = XFER_READ;
1779 c->Request.Timeout = 0;
1780 c->Request.CDB[0] = cmd;
1781 break;
1782 case CCISS_READ_CAPACITY_16:
1783 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1784 c->Header.LUN.LogDev.Mode = 1;
1785 c->Request.CDBLen = 16;
1786 c->Request.Type.Attribute = ATTR_SIMPLE;
1787 c->Request.Type.Direction = XFER_READ;
1788 c->Request.Timeout = 0;
1789 c->Request.CDB[0] = cmd;
1790 c->Request.CDB[1] = 0x10;
1791 c->Request.CDB[10] = (size >> 24) & 0xFF;
1792 c->Request.CDB[11] = (size >> 16) & 0xFF;
1793 c->Request.CDB[12] = (size >> 8) & 0xFF;
1794 c->Request.CDB[13] = size & 0xFF;
1795 c->Request.Timeout = 0;
1796 c->Request.CDB[0] = cmd;
1797 break;
1798 case CCISS_CACHE_FLUSH:
1799 c->Request.CDBLen = 12;
1800 c->Request.Type.Attribute = ATTR_SIMPLE;
1801 c->Request.Type.Direction = XFER_WRITE;
1802 c->Request.Timeout = 0;
1803 c->Request.CDB[0] = BMIC_WRITE;
1804 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1805 break;
1806 default:
1807 printk(KERN_WARNING
1808 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1809 return IO_ERROR;
1810 }
1811 } else if (cmd_type == TYPE_MSG) {
1812 switch (cmd) {
1813 case 0: /* ABORT message */
1814 c->Request.CDBLen = 12;
1815 c->Request.Type.Attribute = ATTR_SIMPLE;
1816 c->Request.Type.Direction = XFER_WRITE;
1817 c->Request.Timeout = 0;
1818 c->Request.CDB[0] = cmd; /* abort */
1819 c->Request.CDB[1] = 0; /* abort a command */
1820 /* buff contains the tag of the command to abort */
1821 memcpy(&c->Request.CDB[4], buff, 8);
1822 break;
1823 case 1: /* RESET message */
1824 c->Request.CDBLen = 12;
1825 c->Request.Type.Attribute = ATTR_SIMPLE;
1826 c->Request.Type.Direction = XFER_WRITE;
1827 c->Request.Timeout = 0;
1828 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1829 c->Request.CDB[0] = cmd; /* reset */
1830 c->Request.CDB[1] = 0x04; /* reset a LUN */
1831 break;
1832 case 3: /* No-Op message */
1833 c->Request.CDBLen = 1;
1834 c->Request.Type.Attribute = ATTR_SIMPLE;
1835 c->Request.Type.Direction = XFER_WRITE;
1836 c->Request.Timeout = 0;
1837 c->Request.CDB[0] = cmd;
1838 break;
1839 default:
1840 printk(KERN_WARNING
1841 "cciss%d: unknown message type %d\n", ctlr, cmd);
1842 return IO_ERROR;
1843 }
1844 } else {
1845 printk(KERN_WARNING
1846 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1847 return IO_ERROR;
1848 }
1849 /* Fill in the scatter gather information */
1850 if (size > 0) {
1851 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1852 buff, size,
1853 PCI_DMA_BIDIRECTIONAL);
1854 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1855 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1856 c->SG[0].Len = size;
1857 c->SG[0].Ext = 0; /* we are not chaining */
1858 }
1859 return status;
1860 }
1861
1862 static int sendcmd_withirq(__u8 cmd,
1863 int ctlr,
1864 void *buff,
1865 size_t size,
1866 unsigned int use_unit_num,
1867 unsigned int log_unit, __u8 page_code, int cmd_type)
1868 {
1869 ctlr_info_t *h = hba[ctlr];
1870 CommandList_struct *c;
1871 u64bit buff_dma_handle;
1872 unsigned long flags;
1873 int return_status;
1874 DECLARE_COMPLETION_ONSTACK(wait);
1875
1876 if ((c = cmd_alloc(h, 0)) == NULL)
1877 return -ENOMEM;
1878 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1879 log_unit, page_code, NULL, cmd_type);
1880 if (return_status != IO_OK) {
1881 cmd_free(h, c, 0);
1882 return return_status;
1883 }
1884 resend_cmd2:
1885 c->waiting = &wait;
1886
1887 /* Put the request on the tail of the queue and send it */
1888 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1889 addQ(&h->reqQ, c);
1890 h->Qdepth++;
1891 start_io(h);
1892 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1893
1894 wait_for_completion(&wait);
1895
1896 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1897 switch (c->err_info->CommandStatus) {
1898 case CMD_TARGET_STATUS:
1899 printk(KERN_WARNING "cciss: cmd %p has "
1900 " completed with errors\n", c);
1901 if (c->err_info->ScsiStatus) {
1902 printk(KERN_WARNING "cciss: cmd %p "
1903 "has SCSI Status = %x\n",
1904 c, c->err_info->ScsiStatus);
1905 }
1906
1907 break;
1908 case CMD_DATA_UNDERRUN:
1909 case CMD_DATA_OVERRUN:
1910 /* expected for inquire and report lun commands */
1911 break;
1912 case CMD_INVALID:
1913 printk(KERN_WARNING "cciss: Cmd %p is "
1914 "reported invalid\n", c);
1915 return_status = IO_ERROR;
1916 break;
1917 case CMD_PROTOCOL_ERR:
1918 printk(KERN_WARNING "cciss: cmd %p has "
1919 "protocol error \n", c);
1920 return_status = IO_ERROR;
1921 break;
1922 case CMD_HARDWARE_ERR:
1923 printk(KERN_WARNING "cciss: cmd %p had "
1924 " hardware error\n", c);
1925 return_status = IO_ERROR;
1926 break;
1927 case CMD_CONNECTION_LOST:
1928 printk(KERN_WARNING "cciss: cmd %p had "
1929 "connection lost\n", c);
1930 return_status = IO_ERROR;
1931 break;
1932 case CMD_ABORTED:
1933 printk(KERN_WARNING "cciss: cmd %p was "
1934 "aborted\n", c);
1935 return_status = IO_ERROR;
1936 break;
1937 case CMD_ABORT_FAILED:
1938 printk(KERN_WARNING "cciss: cmd %p reports "
1939 "abort failed\n", c);
1940 return_status = IO_ERROR;
1941 break;
1942 case CMD_UNSOLICITED_ABORT:
1943 printk(KERN_WARNING
1944 "cciss%d: unsolicited abort %p\n", ctlr, c);
1945 if (c->retry_count < MAX_CMD_RETRIES) {
1946 printk(KERN_WARNING
1947 "cciss%d: retrying %p\n", ctlr, c);
1948 c->retry_count++;
1949 /* erase the old error information */
1950 memset(c->err_info, 0,
1951 sizeof(ErrorInfo_struct));
1952 return_status = IO_OK;
1953 INIT_COMPLETION(wait);
1954 goto resend_cmd2;
1955 }
1956 return_status = IO_ERROR;
1957 break;
1958 default:
1959 printk(KERN_WARNING "cciss: cmd %p returned "
1960 "unknown status %x\n", c,
1961 c->err_info->CommandStatus);
1962 return_status = IO_ERROR;
1963 }
1964 }
1965 /* unlock the buffers from DMA */
1966 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1967 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1968 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1969 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1970 cmd_free(h, c, 0);
1971 return return_status;
1972 }
1973
1974 static void cciss_geometry_inquiry(int ctlr, int logvol,
1975 int withirq, sector_t total_size,
1976 unsigned int block_size,
1977 InquiryData_struct *inq_buff,
1978 drive_info_struct *drv)
1979 {
1980 int return_code;
1981 unsigned long t;
1982
1983 memset(inq_buff, 0, sizeof(InquiryData_struct));
1984 if (withirq)
1985 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1986 inq_buff, sizeof(*inq_buff), 1,
1987 logvol, 0xC1, TYPE_CMD);
1988 else
1989 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1990 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1991 TYPE_CMD);
1992 if (return_code == IO_OK) {
1993 if (inq_buff->data_byte[8] == 0xFF) {
1994 printk(KERN_WARNING
1995 "cciss: reading geometry failed, volume "
1996 "does not support reading geometry\n");
1997 drv->heads = 255;
1998 drv->sectors = 32; // Sectors per track
1999 drv->cylinders = total_size + 1;
2000 drv->raid_level = RAID_UNKNOWN;
2001 } else {
2002 drv->heads = inq_buff->data_byte[6];
2003 drv->sectors = inq_buff->data_byte[7];
2004 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2005 drv->cylinders += inq_buff->data_byte[5];
2006 drv->raid_level = inq_buff->data_byte[8];
2007 }
2008 drv->block_size = block_size;
2009 drv->nr_blocks = total_size + 1;
2010 t = drv->heads * drv->sectors;
2011 if (t > 1) {
2012 sector_t real_size = total_size + 1;
2013 unsigned long rem = sector_div(real_size, t);
2014 if (rem)
2015 real_size++;
2016 drv->cylinders = real_size;
2017 }
2018 } else { /* Get geometry failed */
2019 printk(KERN_WARNING "cciss: reading geometry failed\n");
2020 }
2021 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2022 drv->heads, drv->sectors, drv->cylinders);
2023 }
2024
2025 static void
2026 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2027 unsigned int *block_size)
2028 {
2029 ReadCapdata_struct *buf;
2030 int return_code;
2031
2032 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2033 if (!buf) {
2034 printk(KERN_WARNING "cciss: out of memory\n");
2035 return;
2036 }
2037
2038 if (withirq)
2039 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2040 ctlr, buf, sizeof(ReadCapdata_struct),
2041 1, logvol, 0, TYPE_CMD);
2042 else
2043 return_code = sendcmd(CCISS_READ_CAPACITY,
2044 ctlr, buf, sizeof(ReadCapdata_struct),
2045 1, logvol, 0, NULL, TYPE_CMD);
2046 if (return_code == IO_OK) {
2047 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2048 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2049 } else { /* read capacity command failed */
2050 printk(KERN_WARNING "cciss: read capacity failed\n");
2051 *total_size = 0;
2052 *block_size = BLOCK_SIZE;
2053 }
2054 if (*total_size != 0)
2055 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2056 (unsigned long long)*total_size+1, *block_size);
2057 kfree(buf);
2058 }
2059
2060 static void
2061 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2062 {
2063 ReadCapdata_struct_16 *buf;
2064 int return_code;
2065
2066 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2067 if (!buf) {
2068 printk(KERN_WARNING "cciss: out of memory\n");
2069 return;
2070 }
2071
2072 if (withirq) {
2073 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2074 ctlr, buf, sizeof(ReadCapdata_struct_16),
2075 1, logvol, 0, TYPE_CMD);
2076 }
2077 else {
2078 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2079 ctlr, buf, sizeof(ReadCapdata_struct_16),
2080 1, logvol, 0, NULL, TYPE_CMD);
2081 }
2082 if (return_code == IO_OK) {
2083 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2084 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2085 } else { /* read capacity command failed */
2086 printk(KERN_WARNING "cciss: read capacity failed\n");
2087 *total_size = 0;
2088 *block_size = BLOCK_SIZE;
2089 }
2090 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2091 (unsigned long long)*total_size+1, *block_size);
2092 kfree(buf);
2093 }
2094
2095 static int cciss_revalidate(struct gendisk *disk)
2096 {
2097 ctlr_info_t *h = get_host(disk);
2098 drive_info_struct *drv = get_drv(disk);
2099 int logvol;
2100 int FOUND = 0;
2101 unsigned int block_size;
2102 sector_t total_size;
2103 InquiryData_struct *inq_buff = NULL;
2104
2105 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2106 if (h->drv[logvol].LunID == drv->LunID) {
2107 FOUND = 1;
2108 break;
2109 }
2110 }
2111
2112 if (!FOUND)
2113 return 1;
2114
2115 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2116 if (inq_buff == NULL) {
2117 printk(KERN_WARNING "cciss: out of memory\n");
2118 return 1;
2119 }
2120 if (h->cciss_read == CCISS_READ_10) {
2121 cciss_read_capacity(h->ctlr, logvol, 1,
2122 &total_size, &block_size);
2123 } else {
2124 cciss_read_capacity_16(h->ctlr, logvol, 1,
2125 &total_size, &block_size);
2126 }
2127 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2128 inq_buff, drv);
2129
2130 blk_queue_hardsect_size(drv->queue, drv->block_size);
2131 set_capacity(disk, drv->nr_blocks);
2132
2133 kfree(inq_buff);
2134 return 0;
2135 }
2136
2137 /*
2138 * Wait polling for a command to complete.
2139 * The memory mapped FIFO is polled for the completion.
2140 * Used only at init time, interrupts from the HBA are disabled.
2141 */
2142 static unsigned long pollcomplete(int ctlr)
2143 {
2144 unsigned long done;
2145 int i;
2146
2147 /* Wait (up to 20 seconds) for a command to complete */
2148
2149 for (i = 20 * HZ; i > 0; i--) {
2150 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2151 if (done == FIFO_EMPTY)
2152 schedule_timeout_uninterruptible(1);
2153 else
2154 return done;
2155 }
2156 /* Invalid address to tell caller we ran out of time */
2157 return 1;
2158 }
2159
2160 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2161 {
2162 /* We get in here if sendcmd() is polling for completions
2163 and gets some command back that it wasn't expecting --
2164 something other than that which it just sent down.
2165 Ordinarily, that shouldn't happen, but it can happen when
2166 the scsi tape stuff gets into error handling mode, and
2167 starts using sendcmd() to try to abort commands and
2168 reset tape drives. In that case, sendcmd may pick up
2169 completions of commands that were sent to logical drives
2170 through the block i/o system, or cciss ioctls completing, etc.
2171 In that case, we need to save those completions for later
2172 processing by the interrupt handler.
2173 */
2174
2175 #ifdef CONFIG_CISS_SCSI_TAPE
2176 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2177
2178 /* If it's not the scsi tape stuff doing error handling, (abort */
2179 /* or reset) then we don't expect anything weird. */
2180 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2181 #endif
2182 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2183 "Invalid command list address returned! (%lx)\n",
2184 ctlr, complete);
2185 /* not much we can do. */
2186 #ifdef CONFIG_CISS_SCSI_TAPE
2187 return 1;
2188 }
2189
2190 /* We've sent down an abort or reset, but something else
2191 has completed */
2192 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2193 /* Uh oh. No room to save it for later... */
2194 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2195 "reject list overflow, command lost!\n", ctlr);
2196 return 1;
2197 }
2198 /* Save it for later */
2199 srl->complete[srl->ncompletions] = complete;
2200 srl->ncompletions++;
2201 #endif
2202 return 0;
2203 }
2204
2205 /*
2206 * Send a command to the controller, and wait for it to complete.
2207 * Only used at init time.
2208 */
2209 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2210 1: address logical volume log_unit,
2211 2: periph device address is scsi3addr */
2212 unsigned int log_unit,
2213 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2214 {
2215 CommandList_struct *c;
2216 int i;
2217 unsigned long complete;
2218 ctlr_info_t *info_p = hba[ctlr];
2219 u64bit buff_dma_handle;
2220 int status, done = 0;
2221
2222 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2223 printk(KERN_WARNING "cciss: unable to get memory");
2224 return IO_ERROR;
2225 }
2226 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2227 log_unit, page_code, scsi3addr, cmd_type);
2228 if (status != IO_OK) {
2229 cmd_free(info_p, c, 1);
2230 return status;
2231 }
2232 resend_cmd1:
2233 /*
2234 * Disable interrupt
2235 */
2236 #ifdef CCISS_DEBUG
2237 printk(KERN_DEBUG "cciss: turning intr off\n");
2238 #endif /* CCISS_DEBUG */
2239 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2240
2241 /* Make sure there is room in the command FIFO */
2242 /* Actually it should be completely empty at this time */
2243 /* unless we are in here doing error handling for the scsi */
2244 /* tape side of the driver. */
2245 for (i = 200000; i > 0; i--) {
2246 /* if fifo isn't full go */
2247 if (!(info_p->access.fifo_full(info_p))) {
2248
2249 break;
2250 }
2251 udelay(10);
2252 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2253 " waiting!\n", ctlr);
2254 }
2255 /*
2256 * Send the cmd
2257 */
2258 info_p->access.submit_command(info_p, c);
2259 done = 0;
2260 do {
2261 complete = pollcomplete(ctlr);
2262
2263 #ifdef CCISS_DEBUG
2264 printk(KERN_DEBUG "cciss: command completed\n");
2265 #endif /* CCISS_DEBUG */
2266
2267 if (complete == 1) {
2268 printk(KERN_WARNING
2269 "cciss cciss%d: SendCmd Timeout out, "
2270 "No command list address returned!\n", ctlr);
2271 status = IO_ERROR;
2272 done = 1;
2273 break;
2274 }
2275
2276 /* This will need to change for direct lookup completions */
2277 if ((complete & CISS_ERROR_BIT)
2278 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2279 /* if data overrun or underun on Report command
2280 ignore it
2281 */
2282 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2283 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2284 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2285 ((c->err_info->CommandStatus ==
2286 CMD_DATA_OVERRUN) ||
2287 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2288 )) {
2289 complete = c->busaddr;
2290 } else {
2291 if (c->err_info->CommandStatus ==
2292 CMD_UNSOLICITED_ABORT) {
2293 printk(KERN_WARNING "cciss%d: "
2294 "unsolicited abort %p\n",
2295 ctlr, c);
2296 if (c->retry_count < MAX_CMD_RETRIES) {
2297 printk(KERN_WARNING
2298 "cciss%d: retrying %p\n",
2299 ctlr, c);
2300 c->retry_count++;
2301 /* erase the old error */
2302 /* information */
2303 memset(c->err_info, 0,
2304 sizeof
2305 (ErrorInfo_struct));
2306 goto resend_cmd1;
2307 } else {
2308 printk(KERN_WARNING
2309 "cciss%d: retried %p too "
2310 "many times\n", ctlr, c);
2311 status = IO_ERROR;
2312 goto cleanup1;
2313 }
2314 } else if (c->err_info->CommandStatus ==
2315 CMD_UNABORTABLE) {
2316 printk(KERN_WARNING
2317 "cciss%d: command could not be aborted.\n",
2318 ctlr);
2319 status = IO_ERROR;
2320 goto cleanup1;
2321 }
2322 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2323 " Error %x \n", ctlr,
2324 c->err_info->CommandStatus);
2325 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2326 " offensive info\n"
2327 " size %x\n num %x value %x\n",
2328 ctlr,
2329 c->err_info->MoreErrInfo.Invalid_Cmd.
2330 offense_size,
2331 c->err_info->MoreErrInfo.Invalid_Cmd.
2332 offense_num,
2333 c->err_info->MoreErrInfo.Invalid_Cmd.
2334 offense_value);
2335 status = IO_ERROR;
2336 goto cleanup1;
2337 }
2338 }
2339 /* This will need changing for direct lookup completions */
2340 if (complete != c->busaddr) {
2341 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2342 BUG(); /* we are pretty much hosed if we get here. */
2343 }
2344 continue;
2345 } else
2346 done = 1;
2347 } while (!done);
2348
2349 cleanup1:
2350 /* unlock the data buffer from DMA */
2351 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2352 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2353 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2354 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2355 #ifdef CONFIG_CISS_SCSI_TAPE
2356 /* if we saved some commands for later, process them now. */
2357 if (info_p->scsi_rejects.ncompletions > 0)
2358 do_cciss_intr(0, info_p);
2359 #endif
2360 cmd_free(info_p, c, 1);
2361 return status;
2362 }
2363
2364 /*
2365 * Map (physical) PCI mem into (virtual) kernel space
2366 */
2367 static void __iomem *remap_pci_mem(ulong base, ulong size)
2368 {
2369 ulong page_base = ((ulong) base) & PAGE_MASK;
2370 ulong page_offs = ((ulong) base) - page_base;
2371 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2372
2373 return page_remapped ? (page_remapped + page_offs) : NULL;
2374 }
2375
2376 /*
2377 * Takes jobs of the Q and sends them to the hardware, then puts it on
2378 * the Q to wait for completion.
2379 */
2380 static void start_io(ctlr_info_t *h)
2381 {
2382 CommandList_struct *c;
2383
2384 while ((c = h->reqQ) != NULL) {
2385 /* can't do anything if fifo is full */
2386 if ((h->access.fifo_full(h))) {
2387 printk(KERN_WARNING "cciss: fifo full\n");
2388 break;
2389 }
2390
2391 /* Get the first entry from the Request Q */
2392 removeQ(&(h->reqQ), c);
2393 h->Qdepth--;
2394
2395 /* Tell the controller execute command */
2396 h->access.submit_command(h, c);
2397
2398 /* Put job onto the completed Q */
2399 addQ(&(h->cmpQ), c);
2400 }
2401 }
2402
2403 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2404 /* Zeros out the error record and then resends the command back */
2405 /* to the controller */
2406 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2407 {
2408 /* erase the old error information */
2409 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2410
2411 /* add it to software queue and then send it to the controller */
2412 addQ(&(h->reqQ), c);
2413 h->Qdepth++;
2414 if (h->Qdepth > h->maxQsinceinit)
2415 h->maxQsinceinit = h->Qdepth;
2416
2417 start_io(h);
2418 }
2419
2420 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2421 unsigned int msg_byte, unsigned int host_byte,
2422 unsigned int driver_byte)
2423 {
2424 /* inverse of macros in scsi.h */
2425 return (scsi_status_byte & 0xff) |
2426 ((msg_byte & 0xff) << 8) |
2427 ((host_byte & 0xff) << 16) |
2428 ((driver_byte & 0xff) << 24);
2429 }
2430
2431 static inline int evaluate_target_status(CommandList_struct *cmd)
2432 {
2433 unsigned char sense_key;
2434 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2435 int error_value;
2436
2437 /* If we get in here, it means we got "target status", that is, scsi status */
2438 status_byte = cmd->err_info->ScsiStatus;
2439 driver_byte = DRIVER_OK;
2440 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2441
2442 if (blk_pc_request(cmd->rq))
2443 host_byte = DID_PASSTHROUGH;
2444 else
2445 host_byte = DID_OK;
2446
2447 error_value = make_status_bytes(status_byte, msg_byte,
2448 host_byte, driver_byte);
2449
2450 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2451 if (!blk_pc_request(cmd->rq))
2452 printk(KERN_WARNING "cciss: cmd %p "
2453 "has SCSI Status 0x%x\n",
2454 cmd, cmd->err_info->ScsiStatus);
2455 return error_value;
2456 }
2457
2458 /* check the sense key */
2459 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2460 /* no status or recovered error */
2461 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2462 error_value = 0;
2463
2464 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2465 if (error_value != 0)
2466 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2467 " sense key = 0x%x\n", cmd, sense_key);
2468 return error_value;
2469 }
2470
2471 /* SG_IO or similar, copy sense data back */
2472 if (cmd->rq->sense) {
2473 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2474 cmd->rq->sense_len = cmd->err_info->SenseLen;
2475 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2476 cmd->rq->sense_len);
2477 } else
2478 cmd->rq->sense_len = 0;
2479
2480 return error_value;
2481 }
2482
2483 /* checks the status of the job and calls complete buffers to mark all
2484 * buffers for the completed job. Note that this function does not need
2485 * to hold the hba/queue lock.
2486 */
2487 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2488 int timeout)
2489 {
2490 int retry_cmd = 0;
2491 struct request *rq = cmd->rq;
2492
2493 rq->errors = 0;
2494
2495 if (timeout)
2496 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2497
2498 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2499 goto after_error_processing;
2500
2501 switch (cmd->err_info->CommandStatus) {
2502 case CMD_TARGET_STATUS:
2503 rq->errors = evaluate_target_status(cmd);
2504 break;
2505 case CMD_DATA_UNDERRUN:
2506 if (blk_fs_request(cmd->rq)) {
2507 printk(KERN_WARNING "cciss: cmd %p has"
2508 " completed with data underrun "
2509 "reported\n", cmd);
2510 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2511 }
2512 break;
2513 case CMD_DATA_OVERRUN:
2514 if (blk_fs_request(cmd->rq))
2515 printk(KERN_WARNING "cciss: cmd %p has"
2516 " completed with data overrun "
2517 "reported\n", cmd);
2518 break;
2519 case CMD_INVALID:
2520 printk(KERN_WARNING "cciss: cmd %p is "
2521 "reported invalid\n", cmd);
2522 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2523 cmd->err_info->CommandStatus, DRIVER_OK,
2524 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2525 break;
2526 case CMD_PROTOCOL_ERR:
2527 printk(KERN_WARNING "cciss: cmd %p has "
2528 "protocol error \n", cmd);
2529 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2530 cmd->err_info->CommandStatus, DRIVER_OK,
2531 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2532 break;
2533 case CMD_HARDWARE_ERR:
2534 printk(KERN_WARNING "cciss: cmd %p had "
2535 " hardware error\n", cmd);
2536 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2537 cmd->err_info->CommandStatus, DRIVER_OK,
2538 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2539 break;
2540 case CMD_CONNECTION_LOST:
2541 printk(KERN_WARNING "cciss: cmd %p had "
2542 "connection lost\n", cmd);
2543 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2544 cmd->err_info->CommandStatus, DRIVER_OK,
2545 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2546 break;
2547 case CMD_ABORTED:
2548 printk(KERN_WARNING "cciss: cmd %p was "
2549 "aborted\n", cmd);
2550 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2551 cmd->err_info->CommandStatus, DRIVER_OK,
2552 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2553 break;
2554 case CMD_ABORT_FAILED:
2555 printk(KERN_WARNING "cciss: cmd %p reports "
2556 "abort failed\n", cmd);
2557 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2558 cmd->err_info->CommandStatus, DRIVER_OK,
2559 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2560 break;
2561 case CMD_UNSOLICITED_ABORT:
2562 printk(KERN_WARNING "cciss%d: unsolicited "
2563 "abort %p\n", h->ctlr, cmd);
2564 if (cmd->retry_count < MAX_CMD_RETRIES) {
2565 retry_cmd = 1;
2566 printk(KERN_WARNING
2567 "cciss%d: retrying %p\n", h->ctlr, cmd);
2568 cmd->retry_count++;
2569 } else
2570 printk(KERN_WARNING
2571 "cciss%d: %p retried too "
2572 "many times\n", h->ctlr, cmd);
2573 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2574 cmd->err_info->CommandStatus, DRIVER_OK,
2575 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2576 break;
2577 case CMD_TIMEOUT:
2578 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2579 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2580 cmd->err_info->CommandStatus, DRIVER_OK,
2581 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2582 break;
2583 default:
2584 printk(KERN_WARNING "cciss: cmd %p returned "
2585 "unknown status %x\n", cmd,
2586 cmd->err_info->CommandStatus);
2587 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2588 cmd->err_info->CommandStatus, DRIVER_OK,
2589 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2590 }
2591
2592 after_error_processing:
2593
2594 /* We need to return this command */
2595 if (retry_cmd) {
2596 resend_cciss_cmd(h, cmd);
2597 return;
2598 }
2599 cmd->rq->completion_data = cmd;
2600 blk_complete_request(cmd->rq);
2601 }
2602
2603 /*
2604 * Get a request and submit it to the controller.
2605 */
2606 static void do_cciss_request(struct request_queue *q)
2607 {
2608 ctlr_info_t *h = q->queuedata;
2609 CommandList_struct *c;
2610 sector_t start_blk;
2611 int seg;
2612 struct request *creq;
2613 u64bit temp64;
2614 struct scatterlist tmp_sg[MAXSGENTRIES];
2615 drive_info_struct *drv;
2616 int i, dir;
2617
2618 /* We call start_io here in case there is a command waiting on the
2619 * queue that has not been sent.
2620 */
2621 if (blk_queue_plugged(q))
2622 goto startio;
2623
2624 queue:
2625 creq = elv_next_request(q);
2626 if (!creq)
2627 goto startio;
2628
2629 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2630
2631 if ((c = cmd_alloc(h, 1)) == NULL)
2632 goto full;
2633
2634 blkdev_dequeue_request(creq);
2635
2636 spin_unlock_irq(q->queue_lock);
2637
2638 c->cmd_type = CMD_RWREQ;
2639 c->rq = creq;
2640
2641 /* fill in the request */
2642 drv = creq->rq_disk->private_data;
2643 c->Header.ReplyQueue = 0; // unused in simple mode
2644 /* got command from pool, so use the command block index instead */
2645 /* for direct lookups. */
2646 /* The first 2 bits are reserved for controller error reporting. */
2647 c->Header.Tag.lower = (c->cmdindex << 3);
2648 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2649 c->Header.LUN.LogDev.VolId = drv->LunID;
2650 c->Header.LUN.LogDev.Mode = 1;
2651 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2652 c->Request.Type.Type = TYPE_CMD; // It is a command.
2653 c->Request.Type.Attribute = ATTR_SIMPLE;
2654 c->Request.Type.Direction =
2655 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2656 c->Request.Timeout = 0; // Don't time out
2657 c->Request.CDB[0] =
2658 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2659 start_blk = creq->sector;
2660 #ifdef CCISS_DEBUG
2661 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2662 (int)creq->nr_sectors);
2663 #endif /* CCISS_DEBUG */
2664
2665 sg_init_table(tmp_sg, MAXSGENTRIES);
2666 seg = blk_rq_map_sg(q, creq, tmp_sg);
2667
2668 /* get the DMA records for the setup */
2669 if (c->Request.Type.Direction == XFER_READ)
2670 dir = PCI_DMA_FROMDEVICE;
2671 else
2672 dir = PCI_DMA_TODEVICE;
2673
2674 for (i = 0; i < seg; i++) {
2675 c->SG[i].Len = tmp_sg[i].length;
2676 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2677 tmp_sg[i].offset,
2678 tmp_sg[i].length, dir);
2679 c->SG[i].Addr.lower = temp64.val32.lower;
2680 c->SG[i].Addr.upper = temp64.val32.upper;
2681 c->SG[i].Ext = 0; // we are not chaining
2682 }
2683 /* track how many SG entries we are using */
2684 if (seg > h->maxSG)
2685 h->maxSG = seg;
2686
2687 #ifdef CCISS_DEBUG
2688 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2689 creq->nr_sectors, seg);
2690 #endif /* CCISS_DEBUG */
2691
2692 c->Header.SGList = c->Header.SGTotal = seg;
2693 if (likely(blk_fs_request(creq))) {
2694 if(h->cciss_read == CCISS_READ_10) {
2695 c->Request.CDB[1] = 0;
2696 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2697 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2698 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2699 c->Request.CDB[5] = start_blk & 0xff;
2700 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2701 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2702 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2703 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2704 } else {
2705 u32 upper32 = upper_32_bits(start_blk);
2706
2707 c->Request.CDBLen = 16;
2708 c->Request.CDB[1]= 0;
2709 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2710 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2711 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2712 c->Request.CDB[5]= upper32 & 0xff;
2713 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2714 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2715 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2716 c->Request.CDB[9]= start_blk & 0xff;
2717 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2718 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2719 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2720 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2721 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2722 }
2723 } else if (blk_pc_request(creq)) {
2724 c->Request.CDBLen = creq->cmd_len;
2725 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2726 } else {
2727 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2728 BUG();
2729 }
2730
2731 spin_lock_irq(q->queue_lock);
2732
2733 addQ(&(h->reqQ), c);
2734 h->Qdepth++;
2735 if (h->Qdepth > h->maxQsinceinit)
2736 h->maxQsinceinit = h->Qdepth;
2737
2738 goto queue;
2739 full:
2740 blk_stop_queue(q);
2741 startio:
2742 /* We will already have the driver lock here so not need
2743 * to lock it.
2744 */
2745 start_io(h);
2746 }
2747
2748 static inline unsigned long get_next_completion(ctlr_info_t *h)
2749 {
2750 #ifdef CONFIG_CISS_SCSI_TAPE
2751 /* Any rejects from sendcmd() lying around? Process them first */
2752 if (h->scsi_rejects.ncompletions == 0)
2753 return h->access.command_completed(h);
2754 else {
2755 struct sendcmd_reject_list *srl;
2756 int n;
2757 srl = &h->scsi_rejects;
2758 n = --srl->ncompletions;
2759 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2760 printk("p");
2761 return srl->complete[n];
2762 }
2763 #else
2764 return h->access.command_completed(h);
2765 #endif
2766 }
2767
2768 static inline int interrupt_pending(ctlr_info_t *h)
2769 {
2770 #ifdef CONFIG_CISS_SCSI_TAPE
2771 return (h->access.intr_pending(h)
2772 || (h->scsi_rejects.ncompletions > 0));
2773 #else
2774 return h->access.intr_pending(h);
2775 #endif
2776 }
2777
2778 static inline long interrupt_not_for_us(ctlr_info_t *h)
2779 {
2780 #ifdef CONFIG_CISS_SCSI_TAPE
2781 return (((h->access.intr_pending(h) == 0) ||
2782 (h->interrupts_enabled == 0))
2783 && (h->scsi_rejects.ncompletions == 0));
2784 #else
2785 return (((h->access.intr_pending(h) == 0) ||
2786 (h->interrupts_enabled == 0)));
2787 #endif
2788 }
2789
2790 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2791 {
2792 ctlr_info_t *h = dev_id;
2793 CommandList_struct *c;
2794 unsigned long flags;
2795 __u32 a, a1, a2;
2796
2797 if (interrupt_not_for_us(h))
2798 return IRQ_NONE;
2799 /*
2800 * If there are completed commands in the completion queue,
2801 * we had better do something about it.
2802 */
2803 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2804 while (interrupt_pending(h)) {
2805 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2806 a1 = a;
2807 if ((a & 0x04)) {
2808 a2 = (a >> 3);
2809 if (a2 >= h->nr_cmds) {
2810 printk(KERN_WARNING
2811 "cciss: controller cciss%d failed, stopping.\n",
2812 h->ctlr);
2813 fail_all_cmds(h->ctlr);
2814 return IRQ_HANDLED;
2815 }
2816
2817 c = h->cmd_pool + a2;
2818 a = c->busaddr;
2819
2820 } else {
2821 a &= ~3;
2822 if ((c = h->cmpQ) == NULL) {
2823 printk(KERN_WARNING
2824 "cciss: Completion of %08x ignored\n",
2825 a1);
2826 continue;
2827 }
2828 while (c->busaddr != a) {
2829 c = c->next;
2830 if (c == h->cmpQ)
2831 break;
2832 }
2833 }
2834 /*
2835 * If we've found the command, take it off the
2836 * completion Q and free it
2837 */
2838 if (c->busaddr == a) {
2839 removeQ(&h->cmpQ, c);
2840 if (c->cmd_type == CMD_RWREQ) {
2841 complete_command(h, c, 0);
2842 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2843 complete(c->waiting);
2844 }
2845 # ifdef CONFIG_CISS_SCSI_TAPE
2846 else if (c->cmd_type == CMD_SCSI)
2847 complete_scsi_command(c, 0, a1);
2848 # endif
2849 continue;
2850 }
2851 }
2852 }
2853
2854 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2855 return IRQ_HANDLED;
2856 }
2857
2858 /*
2859 * We cannot read the structure directly, for portability we must use
2860 * the io functions.
2861 * This is for debug only.
2862 */
2863 #ifdef CCISS_DEBUG
2864 static void print_cfg_table(CfgTable_struct *tb)
2865 {
2866 int i;
2867 char temp_name[17];
2868
2869 printk("Controller Configuration information\n");
2870 printk("------------------------------------\n");
2871 for (i = 0; i < 4; i++)
2872 temp_name[i] = readb(&(tb->Signature[i]));
2873 temp_name[4] = '\0';
2874 printk(" Signature = %s\n", temp_name);
2875 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2876 printk(" Transport methods supported = 0x%x\n",
2877 readl(&(tb->TransportSupport)));
2878 printk(" Transport methods active = 0x%x\n",
2879 readl(&(tb->TransportActive)));
2880 printk(" Requested transport Method = 0x%x\n",
2881 readl(&(tb->HostWrite.TransportRequest)));
2882 printk(" Coalesce Interrupt Delay = 0x%x\n",
2883 readl(&(tb->HostWrite.CoalIntDelay)));
2884 printk(" Coalesce Interrupt Count = 0x%x\n",
2885 readl(&(tb->HostWrite.CoalIntCount)));
2886 printk(" Max outstanding commands = 0x%d\n",
2887 readl(&(tb->CmdsOutMax)));
2888 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2889 for (i = 0; i < 16; i++)
2890 temp_name[i] = readb(&(tb->ServerName[i]));
2891 temp_name[16] = '\0';
2892 printk(" Server Name = %s\n", temp_name);
2893 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2894 }
2895 #endif /* CCISS_DEBUG */
2896
2897 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2898 {
2899 int i, offset, mem_type, bar_type;
2900 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2901 return 0;
2902 offset = 0;
2903 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2904 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2905 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2906 offset += 4;
2907 else {
2908 mem_type = pci_resource_flags(pdev, i) &
2909 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2910 switch (mem_type) {
2911 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2912 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2913 offset += 4; /* 32 bit */
2914 break;
2915 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2916 offset += 8;
2917 break;
2918 default: /* reserved in PCI 2.2 */
2919 printk(KERN_WARNING
2920 "Base address is invalid\n");
2921 return -1;
2922 break;
2923 }
2924 }
2925 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2926 return i + 1;
2927 }
2928 return -1;
2929 }
2930
2931 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2932 * controllers that are capable. If not, we use IO-APIC mode.
2933 */
2934
2935 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2936 struct pci_dev *pdev, __u32 board_id)
2937 {
2938 #ifdef CONFIG_PCI_MSI
2939 int err;
2940 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2941 {0, 2}, {0, 3}
2942 };
2943
2944 /* Some boards advertise MSI but don't really support it */
2945 if ((board_id == 0x40700E11) ||
2946 (board_id == 0x40800E11) ||
2947 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2948 goto default_int_mode;
2949
2950 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2951 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2952 if (!err) {
2953 c->intr[0] = cciss_msix_entries[0].vector;
2954 c->intr[1] = cciss_msix_entries[1].vector;
2955 c->intr[2] = cciss_msix_entries[2].vector;
2956 c->intr[3] = cciss_msix_entries[3].vector;
2957 c->msix_vector = 1;
2958 return;
2959 }
2960 if (err > 0) {
2961 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2962 "available\n", err);
2963 goto default_int_mode;
2964 } else {
2965 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2966 err);
2967 goto default_int_mode;
2968 }
2969 }
2970 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2971 if (!pci_enable_msi(pdev)) {
2972 c->msi_vector = 1;
2973 } else {
2974 printk(KERN_WARNING "cciss: MSI init failed\n");
2975 }
2976 }
2977 default_int_mode:
2978 #endif /* CONFIG_PCI_MSI */
2979 /* if we get here we're going to use the default interrupt mode */
2980 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2981 return;
2982 }
2983
2984 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2985 {
2986 ushort subsystem_vendor_id, subsystem_device_id, command;
2987 __u32 board_id, scratchpad = 0;
2988 __u64 cfg_offset;
2989 __u32 cfg_base_addr;
2990 __u64 cfg_base_addr_index;
2991 int i, err;
2992
2993 /* check to see if controller has been disabled */
2994 /* BEFORE trying to enable it */
2995 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2996 if (!(command & 0x02)) {
2997 printk(KERN_WARNING
2998 "cciss: controller appears to be disabled\n");
2999 return -ENODEV;
3000 }
3001
3002 err = pci_enable_device(pdev);
3003 if (err) {
3004 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3005 return err;
3006 }
3007
3008 err = pci_request_regions(pdev, "cciss");
3009 if (err) {
3010 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3011 "aborting\n");
3012 return err;
3013 }
3014
3015 subsystem_vendor_id = pdev->subsystem_vendor;
3016 subsystem_device_id = pdev->subsystem_device;
3017 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3018 subsystem_vendor_id);
3019
3020 #ifdef CCISS_DEBUG
3021 printk("command = %x\n", command);
3022 printk("irq = %x\n", pdev->irq);
3023 printk("board_id = %x\n", board_id);
3024 #endif /* CCISS_DEBUG */
3025
3026 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3027 * else we use the IO-APIC interrupt assigned to us by system ROM.
3028 */
3029 cciss_interrupt_mode(c, pdev, board_id);
3030
3031 /*
3032 * Memory base addr is first addr , the second points to the config
3033 * table
3034 */
3035
3036 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3037 #ifdef CCISS_DEBUG
3038 printk("address 0 = %x\n", c->paddr);
3039 #endif /* CCISS_DEBUG */
3040 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3041
3042 /* Wait for the board to become ready. (PCI hotplug needs this.)
3043 * We poll for up to 120 secs, once per 100ms. */
3044 for (i = 0; i < 1200; i++) {
3045 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3046 if (scratchpad == CCISS_FIRMWARE_READY)
3047 break;
3048 set_current_state(TASK_INTERRUPTIBLE);
3049 schedule_timeout(HZ / 10); /* wait 100ms */
3050 }
3051 if (scratchpad != CCISS_FIRMWARE_READY) {
3052 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3053 err = -ENODEV;
3054 goto err_out_free_res;
3055 }
3056
3057 /* get the address index number */
3058 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3059 cfg_base_addr &= (__u32) 0x0000ffff;
3060 #ifdef CCISS_DEBUG
3061 printk("cfg base address = %x\n", cfg_base_addr);
3062 #endif /* CCISS_DEBUG */
3063 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3064 #ifdef CCISS_DEBUG
3065 printk("cfg base address index = %x\n", cfg_base_addr_index);
3066 #endif /* CCISS_DEBUG */
3067 if (cfg_base_addr_index == -1) {
3068 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3069 err = -ENODEV;
3070 goto err_out_free_res;
3071 }
3072
3073 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3074 #ifdef CCISS_DEBUG
3075 printk("cfg offset = %x\n", cfg_offset);
3076 #endif /* CCISS_DEBUG */
3077 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3078 cfg_base_addr_index) +
3079 cfg_offset, sizeof(CfgTable_struct));
3080 c->board_id = board_id;
3081
3082 #ifdef CCISS_DEBUG
3083 print_cfg_table(c->cfgtable);
3084 #endif /* CCISS_DEBUG */
3085
3086 /* Some controllers support Zero Memory Raid (ZMR).
3087 * When configured in ZMR mode the number of supported
3088 * commands drops to 64. So instead of just setting an
3089 * arbitrary value we make the driver a little smarter.
3090 * We read the config table to tell us how many commands
3091 * are supported on the controller then subtract 4 to
3092 * leave a little room for ioctl calls.
3093 */
3094 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3095 for (i = 0; i < ARRAY_SIZE(products); i++) {
3096 if (board_id == products[i].board_id) {
3097 c->product_name = products[i].product_name;
3098 c->access = *(products[i].access);
3099 c->nr_cmds = c->max_commands - 4;
3100 break;
3101 }
3102 }
3103 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3104 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3105 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3106 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3107 printk("Does not appear to be a valid CISS config table\n");
3108 err = -ENODEV;
3109 goto err_out_free_res;
3110 }
3111 /* We didn't find the controller in our list. We know the
3112 * signature is valid. If it's an HP device let's try to
3113 * bind to the device and fire it up. Otherwise we bail.
3114 */
3115 if (i == ARRAY_SIZE(products)) {
3116 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3117 c->product_name = products[i-1].product_name;
3118 c->access = *(products[i-1].access);
3119 c->nr_cmds = c->max_commands - 4;
3120 printk(KERN_WARNING "cciss: This is an unknown "
3121 "Smart Array controller.\n"
3122 "cciss: Please update to the latest driver "
3123 "available from www.hp.com.\n");
3124 } else {
3125 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3126 " to access the Smart Array controller %08lx\n"
3127 , (unsigned long)board_id);
3128 err = -ENODEV;
3129 goto err_out_free_res;
3130 }
3131 }
3132 #ifdef CONFIG_X86
3133 {
3134 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3135 __u32 prefetch;
3136 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3137 prefetch |= 0x100;
3138 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3139 }
3140 #endif
3141
3142 /* Disabling DMA prefetch and refetch for the P600.
3143 * An ASIC bug may result in accesses to invalid memory addresses.
3144 * We've disabled prefetch for some time now. Testing with XEN
3145 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3146 */
3147 if(board_id == 0x3225103C) {
3148 __u32 dma_prefetch;
3149 __u32 dma_refetch;
3150 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3151 dma_prefetch |= 0x8000;
3152 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3153 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3154 dma_refetch |= 0x1;
3155 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3156 }
3157
3158 #ifdef CCISS_DEBUG
3159 printk("Trying to put board into Simple mode\n");
3160 #endif /* CCISS_DEBUG */
3161 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3162 /* Update the field, and then ring the doorbell */
3163 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3164 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3165
3166 /* under certain very rare conditions, this can take awhile.
3167 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3168 * as we enter this code.) */
3169 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3170 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3171 break;
3172 /* delay and try again */
3173 set_current_state(TASK_INTERRUPTIBLE);
3174 schedule_timeout(10);
3175 }
3176
3177 #ifdef CCISS_DEBUG
3178 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3179 readl(c->vaddr + SA5_DOORBELL));
3180 #endif /* CCISS_DEBUG */
3181 #ifdef CCISS_DEBUG
3182 print_cfg_table(c->cfgtable);
3183 #endif /* CCISS_DEBUG */
3184
3185 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3186 printk(KERN_WARNING "cciss: unable to get board into"
3187 " simple mode\n");
3188 err = -ENODEV;
3189 goto err_out_free_res;
3190 }
3191 return 0;
3192
3193 err_out_free_res:
3194 /*
3195 * Deliberately omit pci_disable_device(): it does something nasty to
3196 * Smart Array controllers that pci_enable_device does not undo
3197 */
3198 pci_release_regions(pdev);
3199 return err;
3200 }
3201
3202 /*
3203 * Gets information about the local volumes attached to the controller.
3204 */
3205 static void cciss_getgeometry(int cntl_num)
3206 {
3207 ReportLunData_struct *ld_buff;
3208 InquiryData_struct *inq_buff;
3209 int return_code;
3210 int i;
3211 int listlength = 0;
3212 __u32 lunid = 0;
3213 unsigned block_size;
3214 sector_t total_size;
3215
3216 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3217 if (ld_buff == NULL) {
3218 printk(KERN_ERR "cciss: out of memory\n");
3219 return;
3220 }
3221 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3222 if (inq_buff == NULL) {
3223 printk(KERN_ERR "cciss: out of memory\n");
3224 kfree(ld_buff);
3225 return;
3226 }
3227 /* Get the firmware version */
3228 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3229 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3230 TYPE_CMD);
3231 if (return_code == IO_OK) {
3232 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3233 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3234 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3235 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3236 } else { /* send command failed */
3237
3238 printk(KERN_WARNING "cciss: unable to determine firmware"
3239 " version of controller\n");
3240 }
3241 /* Get the number of logical volumes */
3242 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3243 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3244 TYPE_CMD);
3245
3246 if (return_code == IO_OK) {
3247 #ifdef CCISS_DEBUG
3248 printk("LUN Data\n--------------------------\n");
3249 #endif /* CCISS_DEBUG */
3250
3251 listlength |=
3252 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3253 listlength |=
3254 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3255 listlength |=
3256 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3257 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3258 } else { /* reading number of logical volumes failed */
3259
3260 printk(KERN_WARNING "cciss: report logical volume"
3261 " command failed\n");
3262 listlength = 0;
3263 }
3264 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3265 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3266 printk(KERN_ERR
3267 "ciss: only %d number of logical volumes supported\n",
3268 CISS_MAX_LUN);
3269 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3270 }
3271 #ifdef CCISS_DEBUG
3272 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3273 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3274 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3275 hba[cntl_num]->num_luns);
3276 #endif /* CCISS_DEBUG */
3277
3278 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3279 for (i = 0; i < CISS_MAX_LUN; i++) {
3280 if (i < hba[cntl_num]->num_luns) {
3281 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3282 << 24;
3283 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3284 << 16;
3285 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3286 << 8;
3287 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3288
3289 hba[cntl_num]->drv[i].LunID = lunid;
3290
3291 #ifdef CCISS_DEBUG
3292 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3293 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3294 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3295 hba[cntl_num]->drv[i].LunID);
3296 #endif /* CCISS_DEBUG */
3297
3298 /* testing to see if 16-byte CDBs are already being used */
3299 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3300 cciss_read_capacity_16(cntl_num, i, 0,
3301 &total_size, &block_size);
3302 goto geo_inq;
3303 }
3304 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3305
3306 /* If read_capacity returns all F's the logical is >2TB */
3307 /* so we switch to 16-byte CDBs for all read/write ops */
3308 if(total_size == 0xFFFFFFFFULL) {
3309 cciss_read_capacity_16(cntl_num, i, 0,
3310 &total_size, &block_size);
3311 hba[cntl_num]->cciss_read = CCISS_READ_16;
3312 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3313 } else {
3314 hba[cntl_num]->cciss_read = CCISS_READ_10;
3315 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3316 }
3317 geo_inq:
3318 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3319 block_size, inq_buff,
3320 &hba[cntl_num]->drv[i]);
3321 } else {
3322 /* initialize raid_level to indicate a free space */
3323 hba[cntl_num]->drv[i].raid_level = -1;
3324 }
3325 }
3326 kfree(ld_buff);
3327 kfree(inq_buff);
3328 }
3329
3330 /* Function to find the first free pointer into our hba[] array */
3331 /* Returns -1 if no free entries are left. */
3332 static int alloc_cciss_hba(void)
3333 {
3334 int i;
3335
3336 for (i = 0; i < MAX_CTLR; i++) {
3337 if (!hba[i]) {
3338 ctlr_info_t *p;
3339
3340 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3341 if (!p)
3342 goto Enomem;
3343 p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3344 if (!p->gendisk[0]) {
3345 kfree(p);
3346 goto Enomem;
3347 }
3348 hba[i] = p;
3349 return i;
3350 }
3351 }
3352 printk(KERN_WARNING "cciss: This driver supports a maximum"
3353 " of %d controllers.\n", MAX_CTLR);
3354 return -1;
3355 Enomem:
3356 printk(KERN_ERR "cciss: out of memory.\n");
3357 return -1;
3358 }
3359
3360 static void free_hba(int i)
3361 {
3362 ctlr_info_t *p = hba[i];
3363 int n;
3364
3365 hba[i] = NULL;
3366 for (n = 0; n < CISS_MAX_LUN; n++)
3367 put_disk(p->gendisk[n]);
3368 kfree(p);
3369 }
3370
3371 /*
3372 * This is it. Find all the controllers and register them. I really hate
3373 * stealing all these major device numbers.
3374 * returns the number of block devices registered.
3375 */
3376 static int __devinit cciss_init_one(struct pci_dev *pdev,
3377 const struct pci_device_id *ent)
3378 {
3379 int i;
3380 int j = 0;
3381 int rc;
3382 int dac;
3383
3384 i = alloc_cciss_hba();
3385 if (i < 0)
3386 return -1;
3387
3388 hba[i]->busy_initializing = 1;
3389
3390 if (cciss_pci_init(hba[i], pdev) != 0)
3391 goto clean1;
3392
3393 sprintf(hba[i]->devname, "cciss%d", i);
3394 hba[i]->ctlr = i;
3395 hba[i]->pdev = pdev;
3396
3397 /* configure PCI DMA stuff */
3398 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3399 dac = 1;
3400 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3401 dac = 0;
3402 else {
3403 printk(KERN_ERR "cciss: no suitable DMA available\n");
3404 goto clean1;
3405 }
3406
3407 /*
3408 * register with the major number, or get a dynamic major number
3409 * by passing 0 as argument. This is done for greater than
3410 * 8 controller support.
3411 */
3412 if (i < MAX_CTLR_ORIG)
3413 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3414 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3415 if (rc == -EBUSY || rc == -EINVAL) {
3416 printk(KERN_ERR
3417 "cciss: Unable to get major number %d for %s "
3418 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3419 goto clean1;
3420 } else {
3421 if (i >= MAX_CTLR_ORIG)
3422 hba[i]->major = rc;
3423 }
3424
3425 /* make sure the board interrupts are off */
3426 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3427 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3428 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3429 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3430 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3431 goto clean2;
3432 }
3433
3434 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3435 hba[i]->devname, pdev->device, pci_name(pdev),
3436 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3437
3438 hba[i]->cmd_pool_bits =
3439 kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3440 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3441 hba[i]->cmd_pool = (CommandList_struct *)
3442 pci_alloc_consistent(hba[i]->pdev,
3443 hba[i]->nr_cmds * sizeof(CommandList_struct),
3444 &(hba[i]->cmd_pool_dhandle));
3445 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3446 pci_alloc_consistent(hba[i]->pdev,
3447 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3448 &(hba[i]->errinfo_pool_dhandle));
3449 if ((hba[i]->cmd_pool_bits == NULL)
3450 || (hba[i]->cmd_pool == NULL)
3451 || (hba[i]->errinfo_pool == NULL)) {
3452 printk(KERN_ERR "cciss: out of memory");
3453 goto clean4;
3454 }
3455 #ifdef CONFIG_CISS_SCSI_TAPE
3456 hba[i]->scsi_rejects.complete =
3457 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3458 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3459 if (hba[i]->scsi_rejects.complete == NULL) {
3460 printk(KERN_ERR "cciss: out of memory");
3461 goto clean4;
3462 }
3463 #endif
3464 spin_lock_init(&hba[i]->lock);
3465
3466 /* Initialize the pdev driver private data.
3467 have it point to hba[i]. */
3468 pci_set_drvdata(pdev, hba[i]);
3469 /* command and error info recs zeroed out before
3470 they are used */
3471 memset(hba[i]->cmd_pool_bits, 0,
3472 ((hba[i]->nr_cmds + BITS_PER_LONG -
3473 1) / BITS_PER_LONG) * sizeof(unsigned long));
3474
3475 #ifdef CCISS_DEBUG
3476 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3477 #endif /* CCISS_DEBUG */
3478
3479 cciss_getgeometry(i);
3480
3481 cciss_scsi_setup(i);
3482
3483 /* Turn the interrupts on so we can service requests */
3484 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3485
3486 cciss_procinit(i);
3487
3488 hba[i]->cciss_max_sectors = 2048;
3489
3490 hba[i]->busy_initializing = 0;
3491
3492 do {
3493 drive_info_struct *drv = &(hba[i]->drv[j]);
3494 struct gendisk *disk = hba[i]->gendisk[j];
3495 struct request_queue *q;
3496
3497 /* Check if the disk was allocated already */
3498 if (!disk){
3499 hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3500 disk = hba[i]->gendisk[j];
3501 }
3502
3503 /* Check that the disk was able to be allocated */
3504 if (!disk) {
3505 printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3506 goto clean4;
3507 }
3508
3509 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3510 if (!q) {
3511 printk(KERN_ERR
3512 "cciss: unable to allocate queue for disk %d\n",
3513 j);
3514 goto clean4;
3515 }
3516 drv->queue = q;
3517
3518 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3519
3520 /* This is a hardware imposed limit. */
3521 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3522
3523 /* This is a limit in the driver and could be eliminated. */
3524 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3525
3526 blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3527
3528 blk_queue_softirq_done(q, cciss_softirq_done);
3529
3530 q->queuedata = hba[i];
3531 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3532 disk->major = hba[i]->major;
3533 disk->first_minor = j << NWD_SHIFT;
3534 disk->fops = &cciss_fops;
3535 disk->queue = q;
3536 disk->private_data = drv;
3537 disk->driverfs_dev = &pdev->dev;
3538 /* we must register the controller even if no disks exist */
3539 /* this is for the online array utilities */
3540 if (!drv->heads && j)
3541 continue;
3542 blk_queue_hardsect_size(q, drv->block_size);
3543 set_capacity(disk, drv->nr_blocks);
3544 j++;
3545 } while (j <= hba[i]->highest_lun);
3546
3547 /* Make sure all queue data is written out before */
3548 /* interrupt handler, triggered by add_disk, */
3549 /* is allowed to start them. */
3550 wmb();
3551
3552 for (j = 0; j <= hba[i]->highest_lun; j++)
3553 add_disk(hba[i]->gendisk[j]);
3554
3555 /* we must register the controller even if no disks exist */
3556 if (hba[i]->highest_lun == -1)
3557 add_disk(hba[i]->gendisk[0]);
3558
3559 return 1;
3560
3561 clean4:
3562 #ifdef CONFIG_CISS_SCSI_TAPE
3563 kfree(hba[i]->scsi_rejects.complete);
3564 #endif
3565 kfree(hba[i]->cmd_pool_bits);
3566 if (hba[i]->cmd_pool)
3567 pci_free_consistent(hba[i]->pdev,
3568 hba[i]->nr_cmds * sizeof(CommandList_struct),
3569 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3570 if (hba[i]->errinfo_pool)
3571 pci_free_consistent(hba[i]->pdev,
3572 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3573 hba[i]->errinfo_pool,
3574 hba[i]->errinfo_pool_dhandle);
3575 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3576 clean2:
3577 unregister_blkdev(hba[i]->major, hba[i]->devname);
3578 clean1:
3579 hba[i]->busy_initializing = 0;
3580 /* cleanup any queues that may have been initialized */
3581 for (j=0; j <= hba[i]->highest_lun; j++){
3582 drive_info_struct *drv = &(hba[i]->drv[j]);
3583 if (drv->queue)
3584 blk_cleanup_queue(drv->queue);
3585 }
3586 /*
3587 * Deliberately omit pci_disable_device(): it does something nasty to
3588 * Smart Array controllers that pci_enable_device does not undo
3589 */
3590 pci_release_regions(pdev);
3591 pci_set_drvdata(pdev, NULL);
3592 free_hba(i);
3593 return -1;
3594 }
3595
3596 static void cciss_shutdown(struct pci_dev *pdev)
3597 {
3598 ctlr_info_t *tmp_ptr;
3599 int i;
3600 char flush_buf[4];
3601 int return_code;
3602
3603 tmp_ptr = pci_get_drvdata(pdev);
3604 if (tmp_ptr == NULL)
3605 return;
3606 i = tmp_ptr->ctlr;
3607 if (hba[i] == NULL)
3608 return;
3609
3610 /* Turn board interrupts off and send the flush cache command */
3611 /* sendcmd will turn off interrupt, and send the flush...
3612 * To write all data in the battery backed cache to disks */
3613 memset(flush_buf, 0, 4);
3614 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3615 TYPE_CMD);
3616 if (return_code == IO_OK) {
3617 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3618 } else {
3619 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3620 }
3621 free_irq(hba[i]->intr[2], hba[i]);
3622 }
3623
3624 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3625 {
3626 ctlr_info_t *tmp_ptr;
3627 int i, j;
3628
3629 if (pci_get_drvdata(pdev) == NULL) {
3630 printk(KERN_ERR "cciss: Unable to remove device \n");
3631 return;
3632 }
3633 tmp_ptr = pci_get_drvdata(pdev);
3634 i = tmp_ptr->ctlr;
3635 if (hba[i] == NULL) {
3636 printk(KERN_ERR "cciss: device appears to "
3637 "already be removed \n");
3638 return;
3639 }
3640
3641 remove_proc_entry(hba[i]->devname, proc_cciss);
3642 unregister_blkdev(hba[i]->major, hba[i]->devname);
3643
3644 /* remove it from the disk list */
3645 for (j = 0; j < CISS_MAX_LUN; j++) {
3646 struct gendisk *disk = hba[i]->gendisk[j];
3647 if (disk) {
3648 struct request_queue *q = disk->queue;
3649
3650 if (disk->flags & GENHD_FL_UP)
3651 del_gendisk(disk);
3652 if (q)
3653 blk_cleanup_queue(q);
3654 }
3655 }
3656
3657 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3658
3659 cciss_shutdown(pdev);
3660
3661 #ifdef CONFIG_PCI_MSI
3662 if (hba[i]->msix_vector)
3663 pci_disable_msix(hba[i]->pdev);
3664 else if (hba[i]->msi_vector)
3665 pci_disable_msi(hba[i]->pdev);
3666 #endif /* CONFIG_PCI_MSI */
3667
3668 iounmap(hba[i]->vaddr);
3669
3670 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3671 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3672 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3673 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3674 kfree(hba[i]->cmd_pool_bits);
3675 #ifdef CONFIG_CISS_SCSI_TAPE
3676 kfree(hba[i]->scsi_rejects.complete);
3677 #endif
3678 /*
3679 * Deliberately omit pci_disable_device(): it does something nasty to
3680 * Smart Array controllers that pci_enable_device does not undo
3681 */
3682 pci_release_regions(pdev);
3683 pci_set_drvdata(pdev, NULL);
3684 free_hba(i);
3685 }
3686
3687 static struct pci_driver cciss_pci_driver = {
3688 .name = "cciss",
3689 .probe = cciss_init_one,
3690 .remove = __devexit_p(cciss_remove_one),
3691 .id_table = cciss_pci_device_id, /* id_table */
3692 .shutdown = cciss_shutdown,
3693 };
3694
3695 /*
3696 * This is it. Register the PCI driver information for the cards we control
3697 * the OS will call our registered routines when it finds one of our cards.
3698 */
3699 static int __init cciss_init(void)
3700 {
3701 printk(KERN_INFO DRIVER_NAME "\n");
3702
3703 /* Register for our PCI devices */
3704 return pci_register_driver(&cciss_pci_driver);
3705 }
3706
3707 static void __exit cciss_cleanup(void)
3708 {
3709 int i;
3710
3711 pci_unregister_driver(&cciss_pci_driver);
3712 /* double check that all controller entrys have been removed */
3713 for (i = 0; i < MAX_CTLR; i++) {
3714 if (hba[i] != NULL) {
3715 printk(KERN_WARNING "cciss: had to remove"
3716 " controller %d\n", i);
3717 cciss_remove_one(hba[i]->pdev);
3718 }
3719 }
3720 remove_proc_entry("driver/cciss", NULL);
3721 }
3722
3723 static void fail_all_cmds(unsigned long ctlr)
3724 {
3725 /* If we get here, the board is apparently dead. */
3726 ctlr_info_t *h = hba[ctlr];
3727 CommandList_struct *c;
3728 unsigned long flags;
3729
3730 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3731 h->alive = 0; /* the controller apparently died... */
3732
3733 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3734
3735 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3736
3737 /* move everything off the request queue onto the completed queue */
3738 while ((c = h->reqQ) != NULL) {
3739 removeQ(&(h->reqQ), c);
3740 h->Qdepth--;
3741 addQ(&(h->cmpQ), c);
3742 }
3743
3744 /* Now, fail everything on the completed queue with a HW error */
3745 while ((c = h->cmpQ) != NULL) {
3746 removeQ(&h->cmpQ, c);
3747 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3748 if (c->cmd_type == CMD_RWREQ) {
3749 complete_command(h, c, 0);
3750 } else if (c->cmd_type == CMD_IOCTL_PEND)
3751 complete(c->waiting);
3752 #ifdef CONFIG_CISS_SCSI_TAPE
3753 else if (c->cmd_type == CMD_SCSI)
3754 complete_scsi_command(c, 0, 0);
3755 #endif
3756 }
3757 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3758 return;
3759 }
3760
3761 module_init(cciss_init);
3762 module_exit(cciss_cleanup);