Pull context-bitmap into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 * Copyright 2000, 2005 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/config.h> /* CONFIG_PROC_FS */
24 #include <linux/module.h>
25 #include <linux/interrupt.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48
49 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
50 #define DRIVER_NAME "HP CISS Driver (v 2.6.8)"
51 #define DRIVER_VERSION CCISS_DRIVER_VERSION(2,6,8)
52
53 /* Embedded module documentation macros - see modules.h */
54 MODULE_AUTHOR("Hewlett-Packard Company");
55 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 2.6.8");
56 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
57 " SA6i P600 P800 P400 P400i E200 E200i");
58 MODULE_LICENSE("GPL");
59
60 #include "cciss_cmd.h"
61 #include "cciss.h"
62 #include <linux/cciss_ioctl.h>
63
64 /* define the PCI info for the cards we can control */
65 static const struct pci_device_id cciss_pci_device_id[] = {
66 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
67 0x0E11, 0x4070, 0, 0, 0},
68 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
69 0x0E11, 0x4080, 0, 0, 0},
70 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
71 0x0E11, 0x4082, 0, 0, 0},
72 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
73 0x0E11, 0x4083, 0, 0, 0},
74 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
75 0x0E11, 0x409A, 0, 0, 0},
76 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
77 0x0E11, 0x409B, 0, 0, 0},
78 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
79 0x0E11, 0x409C, 0, 0, 0},
80 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
81 0x0E11, 0x409D, 0, 0, 0},
82 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
83 0x0E11, 0x4091, 0, 0, 0},
84 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA,
85 0x103C, 0x3225, 0, 0, 0},
86 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
87 0x103c, 0x3223, 0, 0, 0},
88 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
89 0x103c, 0x3234, 0, 0, 0},
90 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
91 0x103c, 0x3235, 0, 0, 0},
92 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
93 0x103c, 0x3211, 0, 0, 0},
94 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
95 0x103c, 0x3212, 0, 0, 0},
96 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
97 0x103c, 0x3213, 0, 0, 0},
98 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
99 0x103c, 0x3214, 0, 0, 0},
100 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
101 0x103c, 0x3215, 0, 0, 0},
102 {0,}
103 };
104 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106 #define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
107
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
111 */
112 static struct board_type products[] = {
113 { 0x40700E11, "Smart Array 5300", &SA5_access },
114 { 0x40800E11, "Smart Array 5i", &SA5B_access},
115 { 0x40820E11, "Smart Array 532", &SA5B_access},
116 { 0x40830E11, "Smart Array 5312", &SA5B_access},
117 { 0x409A0E11, "Smart Array 641", &SA5_access},
118 { 0x409B0E11, "Smart Array 642", &SA5_access},
119 { 0x409C0E11, "Smart Array 6400", &SA5_access},
120 { 0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 { 0x40910E11, "Smart Array 6i", &SA5_access},
122 { 0x3225103C, "Smart Array P600", &SA5_access},
123 { 0x3223103C, "Smart Array P800", &SA5_access},
124 { 0x3234103C, "Smart Array P400", &SA5_access},
125 { 0x3235103C, "Smart Array P400i", &SA5_access},
126 { 0x3211103C, "Smart Array E200i", &SA5_access},
127 { 0x3212103C, "Smart Array E200", &SA5_access},
128 { 0x3213103C, "Smart Array E200i", &SA5_access},
129 { 0x3214103C, "Smart Array E200i", &SA5_access},
130 { 0x3215103C, "Smart Array E200i", &SA5_access},
131 };
132
133 /* How long to wait (in millesconds) for board to go into simple mode */
134 #define MAX_CONFIG_WAIT 30000
135 #define MAX_IOCTL_CONFIG_WAIT 1000
136
137 /*define how many times we will try a command because of bus resets */
138 #define MAX_CMD_RETRIES 3
139
140 #define READ_AHEAD 1024
141 #define NR_CMDS 384 /* #commands that can be outstanding */
142 #define MAX_CTLR 32
143
144 /* Originally cciss driver only supports 8 major numbers */
145 #define MAX_CTLR_ORIG 8
146
147
148 static ctlr_info_t *hba[MAX_CTLR];
149
150 static void do_cciss_request(request_queue_t *q);
151 static int cciss_open(struct inode *inode, struct file *filep);
152 static int cciss_release(struct inode *inode, struct file *filep);
153 static int cciss_ioctl(struct inode *inode, struct file *filep,
154 unsigned int cmd, unsigned long arg);
155
156 static int revalidate_allvol(ctlr_info_t *host);
157 static int cciss_revalidate(struct gendisk *disk);
158 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
159 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv, int clear_all);
160
161 static void cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
162 int withirq, unsigned int *total_size, unsigned int *block_size);
163 static void cciss_geometry_inquiry(int ctlr, int logvol,
164 int withirq, unsigned int total_size,
165 unsigned int block_size, InquiryData_struct *inq_buff,
166 drive_info_struct *drv);
167 static void cciss_getgeometry(int cntl_num);
168
169 static void start_io( ctlr_info_t *h);
170 static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size,
171 unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
172 unsigned char *scsi3addr, int cmd_type);
173 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
174 unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
175 int cmd_type);
176
177 static void fail_all_cmds(unsigned long ctlr);
178
179 #ifdef CONFIG_PROC_FS
180 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
181 int length, int *eof, void *data);
182 static void cciss_procinit(int i);
183 #else
184 static void cciss_procinit(int i) {}
185 #endif /* CONFIG_PROC_FS */
186
187 #ifdef CONFIG_COMPAT
188 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
189 #endif
190
191 static struct block_device_operations cciss_fops = {
192 .owner = THIS_MODULE,
193 .open = cciss_open,
194 .release = cciss_release,
195 .ioctl = cciss_ioctl,
196 #ifdef CONFIG_COMPAT
197 .compat_ioctl = cciss_compat_ioctl,
198 #endif
199 .revalidate_disk= cciss_revalidate,
200 };
201
202 /*
203 * Enqueuing and dequeuing functions for cmdlists.
204 */
205 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
206 {
207 if (*Qptr == NULL) {
208 *Qptr = c;
209 c->next = c->prev = c;
210 } else {
211 c->prev = (*Qptr)->prev;
212 c->next = (*Qptr);
213 (*Qptr)->prev->next = c;
214 (*Qptr)->prev = c;
215 }
216 }
217
218 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
219 CommandList_struct *c)
220 {
221 if (c && c->next != c) {
222 if (*Qptr == c) *Qptr = c->next;
223 c->prev->next = c->next;
224 c->next->prev = c->prev;
225 } else {
226 *Qptr = NULL;
227 }
228 return c;
229 }
230
231 #include "cciss_scsi.c" /* For SCSI tape support */
232
233 #ifdef CONFIG_PROC_FS
234
235 /*
236 * Report information about this controller.
237 */
238 #define ENG_GIG 1000000000
239 #define ENG_GIG_FACTOR (ENG_GIG/512)
240 #define RAID_UNKNOWN 6
241 static const char *raid_label[] = {"0","4","1(1+0)","5","5+1","ADG",
242 "UNKNOWN"};
243
244 static struct proc_dir_entry *proc_cciss;
245
246 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
247 int length, int *eof, void *data)
248 {
249 off_t pos = 0;
250 off_t len = 0;
251 int size, i, ctlr;
252 ctlr_info_t *h = (ctlr_info_t*)data;
253 drive_info_struct *drv;
254 unsigned long flags;
255 sector_t vol_sz, vol_sz_frac;
256
257 ctlr = h->ctlr;
258
259 /* prevent displaying bogus info during configuration
260 * or deconfiguration of a logical volume
261 */
262 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
263 if (h->busy_configuring) {
264 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
265 return -EBUSY;
266 }
267 h->busy_configuring = 1;
268 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
269
270 size = sprintf(buffer, "%s: HP %s Controller\n"
271 "Board ID: 0x%08lx\n"
272 "Firmware Version: %c%c%c%c\n"
273 "IRQ: %d\n"
274 "Logical drives: %d\n"
275 "Current Q depth: %d\n"
276 "Current # commands on controller: %d\n"
277 "Max Q depth since init: %d\n"
278 "Max # commands on controller since init: %d\n"
279 "Max SG entries since init: %d\n\n",
280 h->devname,
281 h->product_name,
282 (unsigned long)h->board_id,
283 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
284 (unsigned int)h->intr,
285 h->num_luns,
286 h->Qdepth, h->commands_outstanding,
287 h->maxQsinceinit, h->max_outstanding, h->maxSG);
288
289 pos += size; len += size;
290 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
291 for(i=0; i<=h->highest_lun; i++) {
292
293 drv = &h->drv[i];
294 if (drv->heads == 0)
295 continue;
296
297 vol_sz = drv->nr_blocks;
298 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
299 vol_sz_frac *= 100;
300 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
301
302 if (drv->raid_level > 5)
303 drv->raid_level = RAID_UNKNOWN;
304 size = sprintf(buffer+len, "cciss/c%dd%d:"
305 "\t%4u.%02uGB\tRAID %s\n",
306 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
307 raid_label[drv->raid_level]);
308 pos += size; len += size;
309 }
310
311 *eof = 1;
312 *start = buffer+offset;
313 len -= offset;
314 if (len>length)
315 len = length;
316 h->busy_configuring = 0;
317 return len;
318 }
319
320 static int
321 cciss_proc_write(struct file *file, const char __user *buffer,
322 unsigned long count, void *data)
323 {
324 unsigned char cmd[80];
325 int len;
326 #ifdef CONFIG_CISS_SCSI_TAPE
327 ctlr_info_t *h = (ctlr_info_t *) data;
328 int rc;
329 #endif
330
331 if (count > sizeof(cmd)-1) return -EINVAL;
332 if (copy_from_user(cmd, buffer, count)) return -EFAULT;
333 cmd[count] = '\0';
334 len = strlen(cmd); // above 3 lines ensure safety
335 if (len && cmd[len-1] == '\n')
336 cmd[--len] = '\0';
337 # ifdef CONFIG_CISS_SCSI_TAPE
338 if (strcmp("engage scsi", cmd)==0) {
339 rc = cciss_engage_scsi(h->ctlr);
340 if (rc != 0) return -rc;
341 return count;
342 }
343 /* might be nice to have "disengage" too, but it's not
344 safely possible. (only 1 module use count, lock issues.) */
345 # endif
346 return -EINVAL;
347 }
348
349 /*
350 * Get us a file in /proc/cciss that says something about each controller.
351 * Create /proc/cciss if it doesn't exist yet.
352 */
353 static void __devinit cciss_procinit(int i)
354 {
355 struct proc_dir_entry *pde;
356
357 if (proc_cciss == NULL) {
358 proc_cciss = proc_mkdir("cciss", proc_root_driver);
359 if (!proc_cciss)
360 return;
361 }
362
363 pde = create_proc_read_entry(hba[i]->devname,
364 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
365 proc_cciss, cciss_proc_get_info, hba[i]);
366 pde->write_proc = cciss_proc_write;
367 }
368 #endif /* CONFIG_PROC_FS */
369
370 /*
371 * For operations that cannot sleep, a command block is allocated at init,
372 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
373 * which ones are free or in use. For operations that can wait for kmalloc
374 * to possible sleep, this routine can be called with get_from_pool set to 0.
375 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
376 */
377 static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
378 {
379 CommandList_struct *c;
380 int i;
381 u64bit temp64;
382 dma_addr_t cmd_dma_handle, err_dma_handle;
383
384 if (!get_from_pool)
385 {
386 c = (CommandList_struct *) pci_alloc_consistent(
387 h->pdev, sizeof(CommandList_struct), &cmd_dma_handle);
388 if(c==NULL)
389 return NULL;
390 memset(c, 0, sizeof(CommandList_struct));
391
392 c->cmdindex = -1;
393
394 c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
395 h->pdev, sizeof(ErrorInfo_struct),
396 &err_dma_handle);
397
398 if (c->err_info == NULL)
399 {
400 pci_free_consistent(h->pdev,
401 sizeof(CommandList_struct), c, cmd_dma_handle);
402 return NULL;
403 }
404 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
405 } else /* get it out of the controllers pool */
406 {
407 do {
408 i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
409 if (i == NR_CMDS)
410 return NULL;
411 } while(test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0);
412 #ifdef CCISS_DEBUG
413 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
414 #endif
415 c = h->cmd_pool + i;
416 memset(c, 0, sizeof(CommandList_struct));
417 cmd_dma_handle = h->cmd_pool_dhandle
418 + i*sizeof(CommandList_struct);
419 c->err_info = h->errinfo_pool + i;
420 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
421 err_dma_handle = h->errinfo_pool_dhandle
422 + i*sizeof(ErrorInfo_struct);
423 h->nr_allocs++;
424
425 c->cmdindex = i;
426 }
427
428 c->busaddr = (__u32) cmd_dma_handle;
429 temp64.val = (__u64) err_dma_handle;
430 c->ErrDesc.Addr.lower = temp64.val32.lower;
431 c->ErrDesc.Addr.upper = temp64.val32.upper;
432 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
433
434 c->ctlr = h->ctlr;
435 return c;
436
437
438 }
439
440 /*
441 * Frees a command block that was previously allocated with cmd_alloc().
442 */
443 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
444 {
445 int i;
446 u64bit temp64;
447
448 if( !got_from_pool)
449 {
450 temp64.val32.lower = c->ErrDesc.Addr.lower;
451 temp64.val32.upper = c->ErrDesc.Addr.upper;
452 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
453 c->err_info, (dma_addr_t) temp64.val);
454 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
455 c, (dma_addr_t) c->busaddr);
456 } else
457 {
458 i = c - h->cmd_pool;
459 clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG));
460 h->nr_frees++;
461 }
462 }
463
464 static inline ctlr_info_t *get_host(struct gendisk *disk)
465 {
466 return disk->queue->queuedata;
467 }
468
469 static inline drive_info_struct *get_drv(struct gendisk *disk)
470 {
471 return disk->private_data;
472 }
473
474 /*
475 * Open. Make sure the device is really there.
476 */
477 static int cciss_open(struct inode *inode, struct file *filep)
478 {
479 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
480 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
481
482 #ifdef CCISS_DEBUG
483 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
484 #endif /* CCISS_DEBUG */
485
486 if (host->busy_initializing || drv->busy_configuring)
487 return -EBUSY;
488 /*
489 * Root is allowed to open raw volume zero even if it's not configured
490 * so array config can still work. Root is also allowed to open any
491 * volume that has a LUN ID, so it can issue IOCTL to reread the
492 * disk information. I don't think I really like this
493 * but I'm already using way to many device nodes to claim another one
494 * for "raw controller".
495 */
496 if (drv->nr_blocks == 0) {
497 if (iminor(inode) != 0) { /* not node 0? */
498 /* if not node 0 make sure it is a partition = 0 */
499 if (iminor(inode) & 0x0f) {
500 return -ENXIO;
501 /* if it is, make sure we have a LUN ID */
502 } else if (drv->LunID == 0) {
503 return -ENXIO;
504 }
505 }
506 if (!capable(CAP_SYS_ADMIN))
507 return -EPERM;
508 }
509 drv->usage_count++;
510 host->usage_count++;
511 return 0;
512 }
513 /*
514 * Close. Sync first.
515 */
516 static int cciss_release(struct inode *inode, struct file *filep)
517 {
518 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
519 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
520
521 #ifdef CCISS_DEBUG
522 printk(KERN_DEBUG "cciss_release %s\n", inode->i_bdev->bd_disk->disk_name);
523 #endif /* CCISS_DEBUG */
524
525 drv->usage_count--;
526 host->usage_count--;
527 return 0;
528 }
529
530 #ifdef CONFIG_COMPAT
531
532 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
533 {
534 int ret;
535 lock_kernel();
536 ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg);
537 unlock_kernel();
538 return ret;
539 }
540
541 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg);
542 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd, unsigned long arg);
543
544 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
545 {
546 switch (cmd) {
547 case CCISS_GETPCIINFO:
548 case CCISS_GETINTINFO:
549 case CCISS_SETINTINFO:
550 case CCISS_GETNODENAME:
551 case CCISS_SETNODENAME:
552 case CCISS_GETHEARTBEAT:
553 case CCISS_GETBUSTYPES:
554 case CCISS_GETFIRMVER:
555 case CCISS_GETDRIVVER:
556 case CCISS_REVALIDVOLS:
557 case CCISS_DEREGDISK:
558 case CCISS_REGNEWDISK:
559 case CCISS_REGNEWD:
560 case CCISS_RESCANDISK:
561 case CCISS_GETLUNINFO:
562 return do_ioctl(f, cmd, arg);
563
564 case CCISS_PASSTHRU32:
565 return cciss_ioctl32_passthru(f, cmd, arg);
566 case CCISS_BIG_PASSTHRU32:
567 return cciss_ioctl32_big_passthru(f, cmd, arg);
568
569 default:
570 return -ENOIOCTLCMD;
571 }
572 }
573
574 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg)
575 {
576 IOCTL32_Command_struct __user *arg32 =
577 (IOCTL32_Command_struct __user *) arg;
578 IOCTL_Command_struct arg64;
579 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
580 int err;
581 u32 cp;
582
583 err = 0;
584 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
585 err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
586 err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
587 err |= get_user(arg64.buf_size, &arg32->buf_size);
588 err |= get_user(cp, &arg32->buf);
589 arg64.buf = compat_ptr(cp);
590 err |= copy_to_user(p, &arg64, sizeof(arg64));
591
592 if (err)
593 return -EFAULT;
594
595 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long) p);
596 if (err)
597 return err;
598 err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
599 if (err)
600 return -EFAULT;
601 return err;
602 }
603
604 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd, unsigned long arg)
605 {
606 BIG_IOCTL32_Command_struct __user *arg32 =
607 (BIG_IOCTL32_Command_struct __user *) arg;
608 BIG_IOCTL_Command_struct arg64;
609 BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
610 int err;
611 u32 cp;
612
613 err = 0;
614 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
615 err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
616 err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
617 err |= get_user(arg64.buf_size, &arg32->buf_size);
618 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
619 err |= get_user(cp, &arg32->buf);
620 arg64.buf = compat_ptr(cp);
621 err |= copy_to_user(p, &arg64, sizeof(arg64));
622
623 if (err)
624 return -EFAULT;
625
626 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long) p);
627 if (err)
628 return err;
629 err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
630 if (err)
631 return -EFAULT;
632 return err;
633 }
634 #endif
635 /*
636 * ioctl
637 */
638 static int cciss_ioctl(struct inode *inode, struct file *filep,
639 unsigned int cmd, unsigned long arg)
640 {
641 struct block_device *bdev = inode->i_bdev;
642 struct gendisk *disk = bdev->bd_disk;
643 ctlr_info_t *host = get_host(disk);
644 drive_info_struct *drv = get_drv(disk);
645 int ctlr = host->ctlr;
646 void __user *argp = (void __user *)arg;
647
648 #ifdef CCISS_DEBUG
649 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
650 #endif /* CCISS_DEBUG */
651
652 switch(cmd) {
653 case HDIO_GETGEO:
654 {
655 struct hd_geometry driver_geo;
656 if (drv->cylinders) {
657 driver_geo.heads = drv->heads;
658 driver_geo.sectors = drv->sectors;
659 driver_geo.cylinders = drv->cylinders;
660 } else
661 return -ENXIO;
662 driver_geo.start= get_start_sect(inode->i_bdev);
663 if (copy_to_user(argp, &driver_geo, sizeof(struct hd_geometry)))
664 return -EFAULT;
665 return(0);
666 }
667
668 case CCISS_GETPCIINFO:
669 {
670 cciss_pci_info_struct pciinfo;
671
672 if (!arg) return -EINVAL;
673 pciinfo.domain = pci_domain_nr(host->pdev->bus);
674 pciinfo.bus = host->pdev->bus->number;
675 pciinfo.dev_fn = host->pdev->devfn;
676 pciinfo.board_id = host->board_id;
677 if (copy_to_user(argp, &pciinfo, sizeof( cciss_pci_info_struct )))
678 return -EFAULT;
679 return(0);
680 }
681 case CCISS_GETINTINFO:
682 {
683 cciss_coalint_struct intinfo;
684 if (!arg) return -EINVAL;
685 intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay);
686 intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount);
687 if (copy_to_user(argp, &intinfo, sizeof( cciss_coalint_struct )))
688 return -EFAULT;
689 return(0);
690 }
691 case CCISS_SETINTINFO:
692 {
693 cciss_coalint_struct intinfo;
694 unsigned long flags;
695 int i;
696
697 if (!arg) return -EINVAL;
698 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
699 if (copy_from_user(&intinfo, argp, sizeof( cciss_coalint_struct)))
700 return -EFAULT;
701 if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
702
703 {
704 // printk("cciss_ioctl: delay and count cannot be 0\n");
705 return( -EINVAL);
706 }
707 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
708 /* Update the field, and then ring the doorbell */
709 writel( intinfo.delay,
710 &(host->cfgtable->HostWrite.CoalIntDelay));
711 writel( intinfo.count,
712 &(host->cfgtable->HostWrite.CoalIntCount));
713 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
714
715 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
716 if (!(readl(host->vaddr + SA5_DOORBELL)
717 & CFGTBL_ChangeReq))
718 break;
719 /* delay and try again */
720 udelay(1000);
721 }
722 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
723 if (i >= MAX_IOCTL_CONFIG_WAIT)
724 return -EAGAIN;
725 return(0);
726 }
727 case CCISS_GETNODENAME:
728 {
729 NodeName_type NodeName;
730 int i;
731
732 if (!arg) return -EINVAL;
733 for(i=0;i<16;i++)
734 NodeName[i] = readb(&host->cfgtable->ServerName[i]);
735 if (copy_to_user(argp, NodeName, sizeof( NodeName_type)))
736 return -EFAULT;
737 return(0);
738 }
739 case CCISS_SETNODENAME:
740 {
741 NodeName_type NodeName;
742 unsigned long flags;
743 int i;
744
745 if (!arg) return -EINVAL;
746 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
747
748 if (copy_from_user(NodeName, argp, sizeof( NodeName_type)))
749 return -EFAULT;
750
751 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
752
753 /* Update the field, and then ring the doorbell */
754 for(i=0;i<16;i++)
755 writeb( NodeName[i], &host->cfgtable->ServerName[i]);
756
757 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
758
759 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
760 if (!(readl(host->vaddr + SA5_DOORBELL)
761 & CFGTBL_ChangeReq))
762 break;
763 /* delay and try again */
764 udelay(1000);
765 }
766 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
767 if (i >= MAX_IOCTL_CONFIG_WAIT)
768 return -EAGAIN;
769 return(0);
770 }
771
772 case CCISS_GETHEARTBEAT:
773 {
774 Heartbeat_type heartbeat;
775
776 if (!arg) return -EINVAL;
777 heartbeat = readl(&host->cfgtable->HeartBeat);
778 if (copy_to_user(argp, &heartbeat, sizeof( Heartbeat_type)))
779 return -EFAULT;
780 return(0);
781 }
782 case CCISS_GETBUSTYPES:
783 {
784 BusTypes_type BusTypes;
785
786 if (!arg) return -EINVAL;
787 BusTypes = readl(&host->cfgtable->BusTypes);
788 if (copy_to_user(argp, &BusTypes, sizeof( BusTypes_type) ))
789 return -EFAULT;
790 return(0);
791 }
792 case CCISS_GETFIRMVER:
793 {
794 FirmwareVer_type firmware;
795
796 if (!arg) return -EINVAL;
797 memcpy(firmware, host->firm_ver, 4);
798
799 if (copy_to_user(argp, firmware, sizeof( FirmwareVer_type)))
800 return -EFAULT;
801 return(0);
802 }
803 case CCISS_GETDRIVVER:
804 {
805 DriverVer_type DriverVer = DRIVER_VERSION;
806
807 if (!arg) return -EINVAL;
808
809 if (copy_to_user(argp, &DriverVer, sizeof( DriverVer_type) ))
810 return -EFAULT;
811 return(0);
812 }
813
814 case CCISS_REVALIDVOLS:
815 if (bdev != bdev->bd_contains || drv != host->drv)
816 return -ENXIO;
817 return revalidate_allvol(host);
818
819 case CCISS_GETLUNINFO: {
820 LogvolInfo_struct luninfo;
821
822 luninfo.LunID = drv->LunID;
823 luninfo.num_opens = drv->usage_count;
824 luninfo.num_parts = 0;
825 if (copy_to_user(argp, &luninfo,
826 sizeof(LogvolInfo_struct)))
827 return -EFAULT;
828 return(0);
829 }
830 case CCISS_DEREGDISK:
831 return rebuild_lun_table(host, disk);
832
833 case CCISS_REGNEWD:
834 return rebuild_lun_table(host, NULL);
835
836 case CCISS_PASSTHRU:
837 {
838 IOCTL_Command_struct iocommand;
839 CommandList_struct *c;
840 char *buff = NULL;
841 u64bit temp64;
842 unsigned long flags;
843 DECLARE_COMPLETION(wait);
844
845 if (!arg) return -EINVAL;
846
847 if (!capable(CAP_SYS_RAWIO)) return -EPERM;
848
849 if (copy_from_user(&iocommand, argp, sizeof( IOCTL_Command_struct) ))
850 return -EFAULT;
851 if((iocommand.buf_size < 1) &&
852 (iocommand.Request.Type.Direction != XFER_NONE))
853 {
854 return -EINVAL;
855 }
856 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
857 /* Check kmalloc limits */
858 if(iocommand.buf_size > 128000)
859 return -EINVAL;
860 #endif
861 if(iocommand.buf_size > 0)
862 {
863 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
864 if( buff == NULL)
865 return -EFAULT;
866 }
867 if (iocommand.Request.Type.Direction == XFER_WRITE)
868 {
869 /* Copy the data into the buffer we created */
870 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
871 {
872 kfree(buff);
873 return -EFAULT;
874 }
875 } else {
876 memset(buff, 0, iocommand.buf_size);
877 }
878 if ((c = cmd_alloc(host , 0)) == NULL)
879 {
880 kfree(buff);
881 return -ENOMEM;
882 }
883 // Fill in the command type
884 c->cmd_type = CMD_IOCTL_PEND;
885 // Fill in Command Header
886 c->Header.ReplyQueue = 0; // unused in simple mode
887 if( iocommand.buf_size > 0) // buffer to fill
888 {
889 c->Header.SGList = 1;
890 c->Header.SGTotal= 1;
891 } else // no buffers to fill
892 {
893 c->Header.SGList = 0;
894 c->Header.SGTotal= 0;
895 }
896 c->Header.LUN = iocommand.LUN_info;
897 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
898
899 // Fill in Request block
900 c->Request = iocommand.Request;
901
902 // Fill in the scatter gather information
903 if (iocommand.buf_size > 0 )
904 {
905 temp64.val = pci_map_single( host->pdev, buff,
906 iocommand.buf_size,
907 PCI_DMA_BIDIRECTIONAL);
908 c->SG[0].Addr.lower = temp64.val32.lower;
909 c->SG[0].Addr.upper = temp64.val32.upper;
910 c->SG[0].Len = iocommand.buf_size;
911 c->SG[0].Ext = 0; // we are not chaining
912 }
913 c->waiting = &wait;
914
915 /* Put the request on the tail of the request queue */
916 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
917 addQ(&host->reqQ, c);
918 host->Qdepth++;
919 start_io(host);
920 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
921
922 wait_for_completion(&wait);
923
924 /* unlock the buffers from DMA */
925 temp64.val32.lower = c->SG[0].Addr.lower;
926 temp64.val32.upper = c->SG[0].Addr.upper;
927 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
928 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
929
930 /* Copy the error information out */
931 iocommand.error_info = *(c->err_info);
932 if ( copy_to_user(argp, &iocommand, sizeof( IOCTL_Command_struct) ) )
933 {
934 kfree(buff);
935 cmd_free(host, c, 0);
936 return( -EFAULT);
937 }
938
939 if (iocommand.Request.Type.Direction == XFER_READ)
940 {
941 /* Copy the data out of the buffer we created */
942 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
943 {
944 kfree(buff);
945 cmd_free(host, c, 0);
946 return -EFAULT;
947 }
948 }
949 kfree(buff);
950 cmd_free(host, c, 0);
951 return(0);
952 }
953 case CCISS_BIG_PASSTHRU: {
954 BIG_IOCTL_Command_struct *ioc;
955 CommandList_struct *c;
956 unsigned char **buff = NULL;
957 int *buff_size = NULL;
958 u64bit temp64;
959 unsigned long flags;
960 BYTE sg_used = 0;
961 int status = 0;
962 int i;
963 DECLARE_COMPLETION(wait);
964 __u32 left;
965 __u32 sz;
966 BYTE __user *data_ptr;
967
968 if (!arg)
969 return -EINVAL;
970 if (!capable(CAP_SYS_RAWIO))
971 return -EPERM;
972 ioc = (BIG_IOCTL_Command_struct *)
973 kmalloc(sizeof(*ioc), GFP_KERNEL);
974 if (!ioc) {
975 status = -ENOMEM;
976 goto cleanup1;
977 }
978 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
979 status = -EFAULT;
980 goto cleanup1;
981 }
982 if ((ioc->buf_size < 1) &&
983 (ioc->Request.Type.Direction != XFER_NONE)) {
984 status = -EINVAL;
985 goto cleanup1;
986 }
987 /* Check kmalloc limits using all SGs */
988 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
989 status = -EINVAL;
990 goto cleanup1;
991 }
992 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
993 status = -EINVAL;
994 goto cleanup1;
995 }
996 buff = (unsigned char **) kmalloc(MAXSGENTRIES *
997 sizeof(char *), GFP_KERNEL);
998 if (!buff) {
999 status = -ENOMEM;
1000 goto cleanup1;
1001 }
1002 memset(buff, 0, MAXSGENTRIES);
1003 buff_size = (int *) kmalloc(MAXSGENTRIES * sizeof(int),
1004 GFP_KERNEL);
1005 if (!buff_size) {
1006 status = -ENOMEM;
1007 goto cleanup1;
1008 }
1009 left = ioc->buf_size;
1010 data_ptr = ioc->buf;
1011 while (left) {
1012 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1013 buff_size[sg_used] = sz;
1014 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1015 if (buff[sg_used] == NULL) {
1016 status = -ENOMEM;
1017 goto cleanup1;
1018 }
1019 if (ioc->Request.Type.Direction == XFER_WRITE &&
1020 copy_from_user(buff[sg_used], data_ptr, sz)) {
1021 status = -ENOMEM;
1022 goto cleanup1;
1023 } else {
1024 memset(buff[sg_used], 0, sz);
1025 }
1026 left -= sz;
1027 data_ptr += sz;
1028 sg_used++;
1029 }
1030 if ((c = cmd_alloc(host , 0)) == NULL) {
1031 status = -ENOMEM;
1032 goto cleanup1;
1033 }
1034 c->cmd_type = CMD_IOCTL_PEND;
1035 c->Header.ReplyQueue = 0;
1036
1037 if( ioc->buf_size > 0) {
1038 c->Header.SGList = sg_used;
1039 c->Header.SGTotal= sg_used;
1040 } else {
1041 c->Header.SGList = 0;
1042 c->Header.SGTotal= 0;
1043 }
1044 c->Header.LUN = ioc->LUN_info;
1045 c->Header.Tag.lower = c->busaddr;
1046
1047 c->Request = ioc->Request;
1048 if (ioc->buf_size > 0 ) {
1049 int i;
1050 for(i=0; i<sg_used; i++) {
1051 temp64.val = pci_map_single( host->pdev, buff[i],
1052 buff_size[i],
1053 PCI_DMA_BIDIRECTIONAL);
1054 c->SG[i].Addr.lower = temp64.val32.lower;
1055 c->SG[i].Addr.upper = temp64.val32.upper;
1056 c->SG[i].Len = buff_size[i];
1057 c->SG[i].Ext = 0; /* we are not chaining */
1058 }
1059 }
1060 c->waiting = &wait;
1061 /* Put the request on the tail of the request queue */
1062 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1063 addQ(&host->reqQ, c);
1064 host->Qdepth++;
1065 start_io(host);
1066 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1067 wait_for_completion(&wait);
1068 /* unlock the buffers from DMA */
1069 for(i=0; i<sg_used; i++) {
1070 temp64.val32.lower = c->SG[i].Addr.lower;
1071 temp64.val32.upper = c->SG[i].Addr.upper;
1072 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
1073 buff_size[i], PCI_DMA_BIDIRECTIONAL);
1074 }
1075 /* Copy the error information out */
1076 ioc->error_info = *(c->err_info);
1077 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1078 cmd_free(host, c, 0);
1079 status = -EFAULT;
1080 goto cleanup1;
1081 }
1082 if (ioc->Request.Type.Direction == XFER_READ) {
1083 /* Copy the data out of the buffer we created */
1084 BYTE __user *ptr = ioc->buf;
1085 for(i=0; i< sg_used; i++) {
1086 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1087 cmd_free(host, c, 0);
1088 status = -EFAULT;
1089 goto cleanup1;
1090 }
1091 ptr += buff_size[i];
1092 }
1093 }
1094 cmd_free(host, c, 0);
1095 status = 0;
1096 cleanup1:
1097 if (buff) {
1098 for(i=0; i<sg_used; i++)
1099 kfree(buff[i]);
1100 kfree(buff);
1101 }
1102 kfree(buff_size);
1103 kfree(ioc);
1104 return(status);
1105 }
1106 default:
1107 return -ENOTTY;
1108 }
1109
1110 }
1111
1112 /*
1113 * revalidate_allvol is for online array config utilities. After a
1114 * utility reconfigures the drives in the array, it can use this function
1115 * (through an ioctl) to make the driver zap any previous disk structs for
1116 * that controller and get new ones.
1117 *
1118 * Right now I'm using the getgeometry() function to do this, but this
1119 * function should probably be finer grained and allow you to revalidate one
1120 * particualar logical volume (instead of all of them on a particular
1121 * controller).
1122 */
1123 static int revalidate_allvol(ctlr_info_t *host)
1124 {
1125 int ctlr = host->ctlr, i;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1129 if (host->usage_count > 1) {
1130 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1131 printk(KERN_WARNING "cciss: Device busy for volume"
1132 " revalidation (usage=%d)\n", host->usage_count);
1133 return -EBUSY;
1134 }
1135 host->usage_count++;
1136 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1137
1138 for(i=0; i< NWD; i++) {
1139 struct gendisk *disk = host->gendisk[i];
1140 if (disk->flags & GENHD_FL_UP)
1141 del_gendisk(disk);
1142 }
1143
1144 /*
1145 * Set the partition and block size structures for all volumes
1146 * on this controller to zero. We will reread all of this data
1147 */
1148 memset(host->drv, 0, sizeof(drive_info_struct)
1149 * CISS_MAX_LUN);
1150 /*
1151 * Tell the array controller not to give us any interrupts while
1152 * we check the new geometry. Then turn interrupts back on when
1153 * we're done.
1154 */
1155 host->access.set_intr_mask(host, CCISS_INTR_OFF);
1156 cciss_getgeometry(ctlr);
1157 host->access.set_intr_mask(host, CCISS_INTR_ON);
1158
1159 /* Loop through each real device */
1160 for (i = 0; i < NWD; i++) {
1161 struct gendisk *disk = host->gendisk[i];
1162 drive_info_struct *drv = &(host->drv[i]);
1163 /* we must register the controller even if no disks exist */
1164 /* this is for the online array utilities */
1165 if (!drv->heads && i)
1166 continue;
1167 blk_queue_hardsect_size(drv->queue, drv->block_size);
1168 set_capacity(disk, drv->nr_blocks);
1169 add_disk(disk);
1170 }
1171 host->usage_count--;
1172 return 0;
1173 }
1174
1175 /* This function will check the usage_count of the drive to be updated/added.
1176 * If the usage_count is zero then the drive information will be updated and
1177 * the disk will be re-registered with the kernel. If not then it will be
1178 * left alone for the next reboot. The exception to this is disk 0 which
1179 * will always be left registered with the kernel since it is also the
1180 * controller node. Any changes to disk 0 will show up on the next
1181 * reboot.
1182 */
1183 static void cciss_update_drive_info(int ctlr, int drv_index)
1184 {
1185 ctlr_info_t *h = hba[ctlr];
1186 struct gendisk *disk;
1187 ReadCapdata_struct *size_buff = NULL;
1188 InquiryData_struct *inq_buff = NULL;
1189 unsigned int block_size;
1190 unsigned int total_size;
1191 unsigned long flags = 0;
1192 int ret = 0;
1193
1194 /* if the disk already exists then deregister it before proceeding*/
1195 if (h->drv[drv_index].raid_level != -1){
1196 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1197 h->drv[drv_index].busy_configuring = 1;
1198 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1199 ret = deregister_disk(h->gendisk[drv_index],
1200 &h->drv[drv_index], 0);
1201 h->drv[drv_index].busy_configuring = 0;
1202 }
1203
1204 /* If the disk is in use return */
1205 if (ret)
1206 return;
1207
1208
1209 /* Get information about the disk and modify the driver sturcture */
1210 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1211 if (size_buff == NULL)
1212 goto mem_msg;
1213 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1214 if (inq_buff == NULL)
1215 goto mem_msg;
1216
1217 cciss_read_capacity(ctlr, drv_index, size_buff, 1,
1218 &total_size, &block_size);
1219 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1220 inq_buff, &h->drv[drv_index]);
1221
1222 ++h->num_luns;
1223 disk = h->gendisk[drv_index];
1224 set_capacity(disk, h->drv[drv_index].nr_blocks);
1225
1226
1227 /* if it's the controller it's already added */
1228 if (drv_index){
1229 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1230
1231 /* Set up queue information */
1232 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1233 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1234
1235 /* This is a hardware imposed limit. */
1236 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1237
1238 /* This is a limit in the driver and could be eliminated. */
1239 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1240
1241 blk_queue_max_sectors(disk->queue, 512);
1242
1243 disk->queue->queuedata = hba[ctlr];
1244
1245 blk_queue_hardsect_size(disk->queue,
1246 hba[ctlr]->drv[drv_index].block_size);
1247
1248 h->drv[drv_index].queue = disk->queue;
1249 add_disk(disk);
1250 }
1251
1252 freeret:
1253 kfree(size_buff);
1254 kfree(inq_buff);
1255 return;
1256 mem_msg:
1257 printk(KERN_ERR "cciss: out of memory\n");
1258 goto freeret;
1259 }
1260
1261 /* This function will find the first index of the controllers drive array
1262 * that has a -1 for the raid_level and will return that index. This is
1263 * where new drives will be added. If the index to be returned is greater
1264 * than the highest_lun index for the controller then highest_lun is set
1265 * to this new index. If there are no available indexes then -1 is returned.
1266 */
1267 static int cciss_find_free_drive_index(int ctlr)
1268 {
1269 int i;
1270
1271 for (i=0; i < CISS_MAX_LUN; i++){
1272 if (hba[ctlr]->drv[i].raid_level == -1){
1273 if (i > hba[ctlr]->highest_lun)
1274 hba[ctlr]->highest_lun = i;
1275 return i;
1276 }
1277 }
1278 return -1;
1279 }
1280
1281 /* This function will add and remove logical drives from the Logical
1282 * drive array of the controller and maintain persistancy of ordering
1283 * so that mount points are preserved until the next reboot. This allows
1284 * for the removal of logical drives in the middle of the drive array
1285 * without a re-ordering of those drives.
1286 * INPUT
1287 * h = The controller to perform the operations on
1288 * del_disk = The disk to remove if specified. If the value given
1289 * is NULL then no disk is removed.
1290 */
1291 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1292 {
1293 int ctlr = h->ctlr;
1294 int num_luns;
1295 ReportLunData_struct *ld_buff = NULL;
1296 drive_info_struct *drv = NULL;
1297 int return_code;
1298 int listlength = 0;
1299 int i;
1300 int drv_found;
1301 int drv_index = 0;
1302 __u32 lunid = 0;
1303 unsigned long flags;
1304
1305 /* Set busy_configuring flag for this operation */
1306 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1307 if (h->num_luns >= CISS_MAX_LUN){
1308 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1309 return -EINVAL;
1310 }
1311
1312 if (h->busy_configuring){
1313 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1314 return -EBUSY;
1315 }
1316 h->busy_configuring = 1;
1317
1318 /* if del_disk is NULL then we are being called to add a new disk
1319 * and update the logical drive table. If it is not NULL then
1320 * we will check if the disk is in use or not.
1321 */
1322 if (del_disk != NULL){
1323 drv = get_drv(del_disk);
1324 drv->busy_configuring = 1;
1325 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1326 return_code = deregister_disk(del_disk, drv, 1);
1327 drv->busy_configuring = 0;
1328 h->busy_configuring = 0;
1329 return return_code;
1330 } else {
1331 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1332 if (!capable(CAP_SYS_RAWIO))
1333 return -EPERM;
1334
1335 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1336 if (ld_buff == NULL)
1337 goto mem_msg;
1338
1339 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1340 sizeof(ReportLunData_struct), 0, 0, 0,
1341 TYPE_CMD);
1342
1343 if (return_code == IO_OK){
1344 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
1345 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
1346 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
1347 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
1348 } else{ /* reading number of logical volumes failed */
1349 printk(KERN_WARNING "cciss: report logical volume"
1350 " command failed\n");
1351 listlength = 0;
1352 goto freeret;
1353 }
1354
1355 num_luns = listlength / 8; /* 8 bytes per entry */
1356 if (num_luns > CISS_MAX_LUN){
1357 num_luns = CISS_MAX_LUN;
1358 printk(KERN_WARNING "cciss: more luns configured"
1359 " on controller than can be handled by"
1360 " this driver.\n");
1361 }
1362
1363 /* Compare controller drive array to drivers drive array.
1364 * Check for updates in the drive information and any new drives
1365 * on the controller.
1366 */
1367 for (i=0; i < num_luns; i++){
1368 int j;
1369
1370 drv_found = 0;
1371
1372 lunid = (0xff &
1373 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1374 lunid |= (0xff &
1375 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1376 lunid |= (0xff &
1377 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1378 lunid |= 0xff &
1379 (unsigned int)(ld_buff->LUN[i][0]);
1380
1381 /* Find if the LUN is already in the drive array
1382 * of the controller. If so then update its info
1383 * if not is use. If it does not exist then find
1384 * the first free index and add it.
1385 */
1386 for (j=0; j <= h->highest_lun; j++){
1387 if (h->drv[j].LunID == lunid){
1388 drv_index = j;
1389 drv_found = 1;
1390 }
1391 }
1392
1393 /* check if the drive was found already in the array */
1394 if (!drv_found){
1395 drv_index = cciss_find_free_drive_index(ctlr);
1396 if (drv_index == -1)
1397 goto freeret;
1398
1399 }
1400 h->drv[drv_index].LunID = lunid;
1401 cciss_update_drive_info(ctlr, drv_index);
1402 } /* end for */
1403 } /* end else */
1404
1405 freeret:
1406 kfree(ld_buff);
1407 h->busy_configuring = 0;
1408 /* We return -1 here to tell the ACU that we have registered/updated
1409 * all of the drives that we can and to keep it from calling us
1410 * additional times.
1411 */
1412 return -1;
1413 mem_msg:
1414 printk(KERN_ERR "cciss: out of memory\n");
1415 goto freeret;
1416 }
1417
1418 /* This function will deregister the disk and it's queue from the
1419 * kernel. It must be called with the controller lock held and the
1420 * drv structures busy_configuring flag set. It's parameters are:
1421 *
1422 * disk = This is the disk to be deregistered
1423 * drv = This is the drive_info_struct associated with the disk to be
1424 * deregistered. It contains information about the disk used
1425 * by the driver.
1426 * clear_all = This flag determines whether or not the disk information
1427 * is going to be completely cleared out and the highest_lun
1428 * reset. Sometimes we want to clear out information about
1429 * the disk in preperation for re-adding it. In this case
1430 * the highest_lun should be left unchanged and the LunID
1431 * should not be cleared.
1432 */
1433 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1434 int clear_all)
1435 {
1436 ctlr_info_t *h = get_host(disk);
1437
1438 if (!capable(CAP_SYS_RAWIO))
1439 return -EPERM;
1440
1441 /* make sure logical volume is NOT is use */
1442 if(clear_all || (h->gendisk[0] == disk)) {
1443 if (drv->usage_count > 1)
1444 return -EBUSY;
1445 }
1446 else
1447 if( drv->usage_count > 0 )
1448 return -EBUSY;
1449
1450 /* invalidate the devices and deregister the disk. If it is disk
1451 * zero do not deregister it but just zero out it's values. This
1452 * allows us to delete disk zero but keep the controller registered.
1453 */
1454 if (h->gendisk[0] != disk){
1455 if (disk->flags & GENHD_FL_UP){
1456 blk_cleanup_queue(disk->queue);
1457 del_gendisk(disk);
1458 drv->queue = NULL;
1459 }
1460 }
1461
1462 --h->num_luns;
1463 /* zero out the disk size info */
1464 drv->nr_blocks = 0;
1465 drv->block_size = 0;
1466 drv->heads = 0;
1467 drv->sectors = 0;
1468 drv->cylinders = 0;
1469 drv->raid_level = -1; /* This can be used as a flag variable to
1470 * indicate that this element of the drive
1471 * array is free.
1472 */
1473
1474 if (clear_all){
1475 /* check to see if it was the last disk */
1476 if (drv == h->drv + h->highest_lun) {
1477 /* if so, find the new hightest lun */
1478 int i, newhighest =-1;
1479 for(i=0; i<h->highest_lun; i++) {
1480 /* if the disk has size > 0, it is available */
1481 if (h->drv[i].heads)
1482 newhighest = i;
1483 }
1484 h->highest_lun = newhighest;
1485 }
1486
1487 drv->LunID = 0;
1488 }
1489 return(0);
1490 }
1491
1492 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
1493 size_t size,
1494 unsigned int use_unit_num, /* 0: address the controller,
1495 1: address logical volume log_unit,
1496 2: periph device address is scsi3addr */
1497 unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr,
1498 int cmd_type)
1499 {
1500 ctlr_info_t *h= hba[ctlr];
1501 u64bit buff_dma_handle;
1502 int status = IO_OK;
1503
1504 c->cmd_type = CMD_IOCTL_PEND;
1505 c->Header.ReplyQueue = 0;
1506 if( buff != NULL) {
1507 c->Header.SGList = 1;
1508 c->Header.SGTotal= 1;
1509 } else {
1510 c->Header.SGList = 0;
1511 c->Header.SGTotal= 0;
1512 }
1513 c->Header.Tag.lower = c->busaddr;
1514
1515 c->Request.Type.Type = cmd_type;
1516 if (cmd_type == TYPE_CMD) {
1517 switch(cmd) {
1518 case CISS_INQUIRY:
1519 /* If the logical unit number is 0 then, this is going
1520 to controller so It's a physical command
1521 mode = 0 target = 0. So we have nothing to write.
1522 otherwise, if use_unit_num == 1,
1523 mode = 1(volume set addressing) target = LUNID
1524 otherwise, if use_unit_num == 2,
1525 mode = 0(periph dev addr) target = scsi3addr */
1526 if (use_unit_num == 1) {
1527 c->Header.LUN.LogDev.VolId=
1528 h->drv[log_unit].LunID;
1529 c->Header.LUN.LogDev.Mode = 1;
1530 } else if (use_unit_num == 2) {
1531 memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
1532 c->Header.LUN.LogDev.Mode = 0;
1533 }
1534 /* are we trying to read a vital product page */
1535 if(page_code != 0) {
1536 c->Request.CDB[1] = 0x01;
1537 c->Request.CDB[2] = page_code;
1538 }
1539 c->Request.CDBLen = 6;
1540 c->Request.Type.Attribute = ATTR_SIMPLE;
1541 c->Request.Type.Direction = XFER_READ;
1542 c->Request.Timeout = 0;
1543 c->Request.CDB[0] = CISS_INQUIRY;
1544 c->Request.CDB[4] = size & 0xFF;
1545 break;
1546 case CISS_REPORT_LOG:
1547 case CISS_REPORT_PHYS:
1548 /* Talking to controller so It's a physical command
1549 mode = 00 target = 0. Nothing to write.
1550 */
1551 c->Request.CDBLen = 12;
1552 c->Request.Type.Attribute = ATTR_SIMPLE;
1553 c->Request.Type.Direction = XFER_READ;
1554 c->Request.Timeout = 0;
1555 c->Request.CDB[0] = cmd;
1556 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1557 c->Request.CDB[7] = (size >> 16) & 0xFF;
1558 c->Request.CDB[8] = (size >> 8) & 0xFF;
1559 c->Request.CDB[9] = size & 0xFF;
1560 break;
1561
1562 case CCISS_READ_CAPACITY:
1563 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1564 c->Header.LUN.LogDev.Mode = 1;
1565 c->Request.CDBLen = 10;
1566 c->Request.Type.Attribute = ATTR_SIMPLE;
1567 c->Request.Type.Direction = XFER_READ;
1568 c->Request.Timeout = 0;
1569 c->Request.CDB[0] = cmd;
1570 break;
1571 case CCISS_CACHE_FLUSH:
1572 c->Request.CDBLen = 12;
1573 c->Request.Type.Attribute = ATTR_SIMPLE;
1574 c->Request.Type.Direction = XFER_WRITE;
1575 c->Request.Timeout = 0;
1576 c->Request.CDB[0] = BMIC_WRITE;
1577 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1578 break;
1579 default:
1580 printk(KERN_WARNING
1581 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1582 return(IO_ERROR);
1583 }
1584 } else if (cmd_type == TYPE_MSG) {
1585 switch (cmd) {
1586 case 3: /* No-Op message */
1587 c->Request.CDBLen = 1;
1588 c->Request.Type.Attribute = ATTR_SIMPLE;
1589 c->Request.Type.Direction = XFER_WRITE;
1590 c->Request.Timeout = 0;
1591 c->Request.CDB[0] = cmd;
1592 break;
1593 default:
1594 printk(KERN_WARNING
1595 "cciss%d: unknown message type %d\n",
1596 ctlr, cmd);
1597 return IO_ERROR;
1598 }
1599 } else {
1600 printk(KERN_WARNING
1601 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1602 return IO_ERROR;
1603 }
1604 /* Fill in the scatter gather information */
1605 if (size > 0) {
1606 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1607 buff, size, PCI_DMA_BIDIRECTIONAL);
1608 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1609 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1610 c->SG[0].Len = size;
1611 c->SG[0].Ext = 0; /* we are not chaining */
1612 }
1613 return status;
1614 }
1615 static int sendcmd_withirq(__u8 cmd,
1616 int ctlr,
1617 void *buff,
1618 size_t size,
1619 unsigned int use_unit_num,
1620 unsigned int log_unit,
1621 __u8 page_code,
1622 int cmd_type)
1623 {
1624 ctlr_info_t *h = hba[ctlr];
1625 CommandList_struct *c;
1626 u64bit buff_dma_handle;
1627 unsigned long flags;
1628 int return_status;
1629 DECLARE_COMPLETION(wait);
1630
1631 if ((c = cmd_alloc(h , 0)) == NULL)
1632 return -ENOMEM;
1633 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1634 log_unit, page_code, NULL, cmd_type);
1635 if (return_status != IO_OK) {
1636 cmd_free(h, c, 0);
1637 return return_status;
1638 }
1639 resend_cmd2:
1640 c->waiting = &wait;
1641
1642 /* Put the request on the tail of the queue and send it */
1643 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1644 addQ(&h->reqQ, c);
1645 h->Qdepth++;
1646 start_io(h);
1647 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1648
1649 wait_for_completion(&wait);
1650
1651 if(c->err_info->CommandStatus != 0)
1652 { /* an error has occurred */
1653 switch(c->err_info->CommandStatus)
1654 {
1655 case CMD_TARGET_STATUS:
1656 printk(KERN_WARNING "cciss: cmd %p has "
1657 " completed with errors\n", c);
1658 if( c->err_info->ScsiStatus)
1659 {
1660 printk(KERN_WARNING "cciss: cmd %p "
1661 "has SCSI Status = %x\n",
1662 c,
1663 c->err_info->ScsiStatus);
1664 }
1665
1666 break;
1667 case CMD_DATA_UNDERRUN:
1668 case CMD_DATA_OVERRUN:
1669 /* expected for inquire and report lun commands */
1670 break;
1671 case CMD_INVALID:
1672 printk(KERN_WARNING "cciss: Cmd %p is "
1673 "reported invalid\n", c);
1674 return_status = IO_ERROR;
1675 break;
1676 case CMD_PROTOCOL_ERR:
1677 printk(KERN_WARNING "cciss: cmd %p has "
1678 "protocol error \n", c);
1679 return_status = IO_ERROR;
1680 break;
1681 case CMD_HARDWARE_ERR:
1682 printk(KERN_WARNING "cciss: cmd %p had "
1683 " hardware error\n", c);
1684 return_status = IO_ERROR;
1685 break;
1686 case CMD_CONNECTION_LOST:
1687 printk(KERN_WARNING "cciss: cmd %p had "
1688 "connection lost\n", c);
1689 return_status = IO_ERROR;
1690 break;
1691 case CMD_ABORTED:
1692 printk(KERN_WARNING "cciss: cmd %p was "
1693 "aborted\n", c);
1694 return_status = IO_ERROR;
1695 break;
1696 case CMD_ABORT_FAILED:
1697 printk(KERN_WARNING "cciss: cmd %p reports "
1698 "abort failed\n", c);
1699 return_status = IO_ERROR;
1700 break;
1701 case CMD_UNSOLICITED_ABORT:
1702 printk(KERN_WARNING
1703 "cciss%d: unsolicited abort %p\n",
1704 ctlr, c);
1705 if (c->retry_count < MAX_CMD_RETRIES) {
1706 printk(KERN_WARNING
1707 "cciss%d: retrying %p\n",
1708 ctlr, c);
1709 c->retry_count++;
1710 /* erase the old error information */
1711 memset(c->err_info, 0,
1712 sizeof(ErrorInfo_struct));
1713 return_status = IO_OK;
1714 INIT_COMPLETION(wait);
1715 goto resend_cmd2;
1716 }
1717 return_status = IO_ERROR;
1718 break;
1719 default:
1720 printk(KERN_WARNING "cciss: cmd %p returned "
1721 "unknown status %x\n", c,
1722 c->err_info->CommandStatus);
1723 return_status = IO_ERROR;
1724 }
1725 }
1726 /* unlock the buffers from DMA */
1727 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1728 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1729 pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
1730 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1731 cmd_free(h, c, 0);
1732 return(return_status);
1733
1734 }
1735 static void cciss_geometry_inquiry(int ctlr, int logvol,
1736 int withirq, unsigned int total_size,
1737 unsigned int block_size, InquiryData_struct *inq_buff,
1738 drive_info_struct *drv)
1739 {
1740 int return_code;
1741 memset(inq_buff, 0, sizeof(InquiryData_struct));
1742 if (withirq)
1743 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1744 inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, TYPE_CMD);
1745 else
1746 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1747 sizeof(*inq_buff), 1, logvol ,0xC1, NULL, TYPE_CMD);
1748 if (return_code == IO_OK) {
1749 if(inq_buff->data_byte[8] == 0xFF) {
1750 printk(KERN_WARNING
1751 "cciss: reading geometry failed, volume "
1752 "does not support reading geometry\n");
1753 drv->block_size = block_size;
1754 drv->nr_blocks = total_size;
1755 drv->heads = 255;
1756 drv->sectors = 32; // Sectors per track
1757 drv->cylinders = total_size / 255 / 32;
1758 } else {
1759 unsigned int t;
1760
1761 drv->block_size = block_size;
1762 drv->nr_blocks = total_size;
1763 drv->heads = inq_buff->data_byte[6];
1764 drv->sectors = inq_buff->data_byte[7];
1765 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1766 drv->cylinders += inq_buff->data_byte[5];
1767 drv->raid_level = inq_buff->data_byte[8];
1768 t = drv->heads * drv->sectors;
1769 if (t > 1) {
1770 drv->cylinders = total_size/t;
1771 }
1772 }
1773 } else { /* Get geometry failed */
1774 printk(KERN_WARNING "cciss: reading geometry failed\n");
1775 }
1776 printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
1777 drv->heads, drv->sectors, drv->cylinders);
1778 }
1779 static void
1780 cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
1781 int withirq, unsigned int *total_size, unsigned int *block_size)
1782 {
1783 int return_code;
1784 memset(buf, 0, sizeof(*buf));
1785 if (withirq)
1786 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1787 ctlr, buf, sizeof(*buf), 1, logvol, 0, TYPE_CMD);
1788 else
1789 return_code = sendcmd(CCISS_READ_CAPACITY,
1790 ctlr, buf, sizeof(*buf), 1, logvol, 0, NULL, TYPE_CMD);
1791 if (return_code == IO_OK) {
1792 *total_size = be32_to_cpu(*((__be32 *) &buf->total_size[0]))+1;
1793 *block_size = be32_to_cpu(*((__be32 *) &buf->block_size[0]));
1794 } else { /* read capacity command failed */
1795 printk(KERN_WARNING "cciss: read capacity failed\n");
1796 *total_size = 0;
1797 *block_size = BLOCK_SIZE;
1798 }
1799 printk(KERN_INFO " blocks= %u block_size= %d\n",
1800 *total_size, *block_size);
1801 return;
1802 }
1803
1804 static int cciss_revalidate(struct gendisk *disk)
1805 {
1806 ctlr_info_t *h = get_host(disk);
1807 drive_info_struct *drv = get_drv(disk);
1808 int logvol;
1809 int FOUND=0;
1810 unsigned int block_size;
1811 unsigned int total_size;
1812 ReadCapdata_struct *size_buff = NULL;
1813 InquiryData_struct *inq_buff = NULL;
1814
1815 for(logvol=0; logvol < CISS_MAX_LUN; logvol++)
1816 {
1817 if(h->drv[logvol].LunID == drv->LunID) {
1818 FOUND=1;
1819 break;
1820 }
1821 }
1822
1823 if (!FOUND) return 1;
1824
1825 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1826 if (size_buff == NULL)
1827 {
1828 printk(KERN_WARNING "cciss: out of memory\n");
1829 return 1;
1830 }
1831 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1832 if (inq_buff == NULL)
1833 {
1834 printk(KERN_WARNING "cciss: out of memory\n");
1835 kfree(size_buff);
1836 return 1;
1837 }
1838
1839 cciss_read_capacity(h->ctlr, logvol, size_buff, 1, &total_size, &block_size);
1840 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv);
1841
1842 blk_queue_hardsect_size(drv->queue, drv->block_size);
1843 set_capacity(disk, drv->nr_blocks);
1844
1845 kfree(size_buff);
1846 kfree(inq_buff);
1847 return 0;
1848 }
1849
1850 /*
1851 * Wait polling for a command to complete.
1852 * The memory mapped FIFO is polled for the completion.
1853 * Used only at init time, interrupts from the HBA are disabled.
1854 */
1855 static unsigned long pollcomplete(int ctlr)
1856 {
1857 unsigned long done;
1858 int i;
1859
1860 /* Wait (up to 20 seconds) for a command to complete */
1861
1862 for (i = 20 * HZ; i > 0; i--) {
1863 done = hba[ctlr]->access.command_completed(hba[ctlr]);
1864 if (done == FIFO_EMPTY)
1865 schedule_timeout_uninterruptible(1);
1866 else
1867 return (done);
1868 }
1869 /* Invalid address to tell caller we ran out of time */
1870 return 1;
1871 }
1872 /*
1873 * Send a command to the controller, and wait for it to complete.
1874 * Only used at init time.
1875 */
1876 static int sendcmd(
1877 __u8 cmd,
1878 int ctlr,
1879 void *buff,
1880 size_t size,
1881 unsigned int use_unit_num, /* 0: address the controller,
1882 1: address logical volume log_unit,
1883 2: periph device address is scsi3addr */
1884 unsigned int log_unit,
1885 __u8 page_code,
1886 unsigned char *scsi3addr,
1887 int cmd_type)
1888 {
1889 CommandList_struct *c;
1890 int i;
1891 unsigned long complete;
1892 ctlr_info_t *info_p= hba[ctlr];
1893 u64bit buff_dma_handle;
1894 int status;
1895
1896 if ((c = cmd_alloc(info_p, 1)) == NULL) {
1897 printk(KERN_WARNING "cciss: unable to get memory");
1898 return(IO_ERROR);
1899 }
1900 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1901 log_unit, page_code, scsi3addr, cmd_type);
1902 if (status != IO_OK) {
1903 cmd_free(info_p, c, 1);
1904 return status;
1905 }
1906 resend_cmd1:
1907 /*
1908 * Disable interrupt
1909 */
1910 #ifdef CCISS_DEBUG
1911 printk(KERN_DEBUG "cciss: turning intr off\n");
1912 #endif /* CCISS_DEBUG */
1913 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
1914
1915 /* Make sure there is room in the command FIFO */
1916 /* Actually it should be completely empty at this time. */
1917 for (i = 200000; i > 0; i--)
1918 {
1919 /* if fifo isn't full go */
1920 if (!(info_p->access.fifo_full(info_p)))
1921 {
1922
1923 break;
1924 }
1925 udelay(10);
1926 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
1927 " waiting!\n", ctlr);
1928 }
1929 /*
1930 * Send the cmd
1931 */
1932 info_p->access.submit_command(info_p, c);
1933 complete = pollcomplete(ctlr);
1934
1935 #ifdef CCISS_DEBUG
1936 printk(KERN_DEBUG "cciss: command completed\n");
1937 #endif /* CCISS_DEBUG */
1938
1939 if (complete != 1) {
1940 if ( (complete & CISS_ERROR_BIT)
1941 && (complete & ~CISS_ERROR_BIT) == c->busaddr)
1942 {
1943 /* if data overrun or underun on Report command
1944 ignore it
1945 */
1946 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
1947 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
1948 (c->Request.CDB[0] == CISS_INQUIRY)) &&
1949 ((c->err_info->CommandStatus ==
1950 CMD_DATA_OVERRUN) ||
1951 (c->err_info->CommandStatus ==
1952 CMD_DATA_UNDERRUN)
1953 ))
1954 {
1955 complete = c->busaddr;
1956 } else {
1957 if (c->err_info->CommandStatus ==
1958 CMD_UNSOLICITED_ABORT) {
1959 printk(KERN_WARNING "cciss%d: "
1960 "unsolicited abort %p\n",
1961 ctlr, c);
1962 if (c->retry_count < MAX_CMD_RETRIES) {
1963 printk(KERN_WARNING
1964 "cciss%d: retrying %p\n",
1965 ctlr, c);
1966 c->retry_count++;
1967 /* erase the old error */
1968 /* information */
1969 memset(c->err_info, 0,
1970 sizeof(ErrorInfo_struct));
1971 goto resend_cmd1;
1972 } else {
1973 printk(KERN_WARNING
1974 "cciss%d: retried %p too "
1975 "many times\n", ctlr, c);
1976 status = IO_ERROR;
1977 goto cleanup1;
1978 }
1979 }
1980 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1981 " Error %x \n", ctlr,
1982 c->err_info->CommandStatus);
1983 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1984 " offensive info\n"
1985 " size %x\n num %x value %x\n", ctlr,
1986 c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
1987 c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
1988 c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
1989 status = IO_ERROR;
1990 goto cleanup1;
1991 }
1992 }
1993 if (complete != c->busaddr) {
1994 printk( KERN_WARNING "cciss cciss%d: SendCmd "
1995 "Invalid command list address returned! (%lx)\n",
1996 ctlr, complete);
1997 status = IO_ERROR;
1998 goto cleanup1;
1999 }
2000 } else {
2001 printk( KERN_WARNING
2002 "cciss cciss%d: SendCmd Timeout out, "
2003 "No command list address returned!\n",
2004 ctlr);
2005 status = IO_ERROR;
2006 }
2007
2008 cleanup1:
2009 /* unlock the data buffer from DMA */
2010 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2011 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2012 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2013 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2014 cmd_free(info_p, c, 1);
2015 return (status);
2016 }
2017 /*
2018 * Map (physical) PCI mem into (virtual) kernel space
2019 */
2020 static void __iomem *remap_pci_mem(ulong base, ulong size)
2021 {
2022 ulong page_base = ((ulong) base) & PAGE_MASK;
2023 ulong page_offs = ((ulong) base) - page_base;
2024 void __iomem *page_remapped = ioremap(page_base, page_offs+size);
2025
2026 return page_remapped ? (page_remapped + page_offs) : NULL;
2027 }
2028
2029 /*
2030 * Takes jobs of the Q and sends them to the hardware, then puts it on
2031 * the Q to wait for completion.
2032 */
2033 static void start_io( ctlr_info_t *h)
2034 {
2035 CommandList_struct *c;
2036
2037 while(( c = h->reqQ) != NULL )
2038 {
2039 /* can't do anything if fifo is full */
2040 if ((h->access.fifo_full(h))) {
2041 printk(KERN_WARNING "cciss: fifo full\n");
2042 break;
2043 }
2044
2045 /* Get the frist entry from the Request Q */
2046 removeQ(&(h->reqQ), c);
2047 h->Qdepth--;
2048
2049 /* Tell the controller execute command */
2050 h->access.submit_command(h, c);
2051
2052 /* Put job onto the completed Q */
2053 addQ (&(h->cmpQ), c);
2054 }
2055 }
2056
2057 static inline void complete_buffers(struct bio *bio, int status)
2058 {
2059 while (bio) {
2060 struct bio *xbh = bio->bi_next;
2061 int nr_sectors = bio_sectors(bio);
2062
2063 bio->bi_next = NULL;
2064 blk_finished_io(len);
2065 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
2066 bio = xbh;
2067 }
2068
2069 }
2070 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2071 /* Zeros out the error record and then resends the command back */
2072 /* to the controller */
2073 static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c)
2074 {
2075 /* erase the old error information */
2076 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2077
2078 /* add it to software queue and then send it to the controller */
2079 addQ(&(h->reqQ),c);
2080 h->Qdepth++;
2081 if(h->Qdepth > h->maxQsinceinit)
2082 h->maxQsinceinit = h->Qdepth;
2083
2084 start_io(h);
2085 }
2086 /* checks the status of the job and calls complete buffers to mark all
2087 * buffers for the completed job.
2088 */
2089 static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd,
2090 int timeout)
2091 {
2092 int status = 1;
2093 int i;
2094 int retry_cmd = 0;
2095 u64bit temp64;
2096
2097 if (timeout)
2098 status = 0;
2099
2100 if(cmd->err_info->CommandStatus != 0)
2101 { /* an error has occurred */
2102 switch(cmd->err_info->CommandStatus)
2103 {
2104 unsigned char sense_key;
2105 case CMD_TARGET_STATUS:
2106 status = 0;
2107
2108 if( cmd->err_info->ScsiStatus == 0x02)
2109 {
2110 printk(KERN_WARNING "cciss: cmd %p "
2111 "has CHECK CONDITION "
2112 " byte 2 = 0x%x\n", cmd,
2113 cmd->err_info->SenseInfo[2]
2114 );
2115 /* check the sense key */
2116 sense_key = 0xf &
2117 cmd->err_info->SenseInfo[2];
2118 /* no status or recovered error */
2119 if((sense_key == 0x0) ||
2120 (sense_key == 0x1))
2121 {
2122 status = 1;
2123 }
2124 } else
2125 {
2126 printk(KERN_WARNING "cciss: cmd %p "
2127 "has SCSI Status 0x%x\n",
2128 cmd, cmd->err_info->ScsiStatus);
2129 }
2130 break;
2131 case CMD_DATA_UNDERRUN:
2132 printk(KERN_WARNING "cciss: cmd %p has"
2133 " completed with data underrun "
2134 "reported\n", cmd);
2135 break;
2136 case CMD_DATA_OVERRUN:
2137 printk(KERN_WARNING "cciss: cmd %p has"
2138 " completed with data overrun "
2139 "reported\n", cmd);
2140 break;
2141 case CMD_INVALID:
2142 printk(KERN_WARNING "cciss: cmd %p is "
2143 "reported invalid\n", cmd);
2144 status = 0;
2145 break;
2146 case CMD_PROTOCOL_ERR:
2147 printk(KERN_WARNING "cciss: cmd %p has "
2148 "protocol error \n", cmd);
2149 status = 0;
2150 break;
2151 case CMD_HARDWARE_ERR:
2152 printk(KERN_WARNING "cciss: cmd %p had "
2153 " hardware error\n", cmd);
2154 status = 0;
2155 break;
2156 case CMD_CONNECTION_LOST:
2157 printk(KERN_WARNING "cciss: cmd %p had "
2158 "connection lost\n", cmd);
2159 status=0;
2160 break;
2161 case CMD_ABORTED:
2162 printk(KERN_WARNING "cciss: cmd %p was "
2163 "aborted\n", cmd);
2164 status=0;
2165 break;
2166 case CMD_ABORT_FAILED:
2167 printk(KERN_WARNING "cciss: cmd %p reports "
2168 "abort failed\n", cmd);
2169 status=0;
2170 break;
2171 case CMD_UNSOLICITED_ABORT:
2172 printk(KERN_WARNING "cciss%d: unsolicited "
2173 "abort %p\n", h->ctlr, cmd);
2174 if (cmd->retry_count < MAX_CMD_RETRIES) {
2175 retry_cmd=1;
2176 printk(KERN_WARNING
2177 "cciss%d: retrying %p\n",
2178 h->ctlr, cmd);
2179 cmd->retry_count++;
2180 } else
2181 printk(KERN_WARNING
2182 "cciss%d: %p retried too "
2183 "many times\n", h->ctlr, cmd);
2184 status=0;
2185 break;
2186 case CMD_TIMEOUT:
2187 printk(KERN_WARNING "cciss: cmd %p timedout\n",
2188 cmd);
2189 status=0;
2190 break;
2191 default:
2192 printk(KERN_WARNING "cciss: cmd %p returned "
2193 "unknown status %x\n", cmd,
2194 cmd->err_info->CommandStatus);
2195 status=0;
2196 }
2197 }
2198 /* We need to return this command */
2199 if(retry_cmd) {
2200 resend_cciss_cmd(h,cmd);
2201 return;
2202 }
2203 /* command did not need to be retried */
2204 /* unmap the DMA mapping for all the scatter gather elements */
2205 for(i=0; i<cmd->Header.SGList; i++) {
2206 temp64.val32.lower = cmd->SG[i].Addr.lower;
2207 temp64.val32.upper = cmd->SG[i].Addr.upper;
2208 pci_unmap_page(hba[cmd->ctlr]->pdev,
2209 temp64.val, cmd->SG[i].Len,
2210 (cmd->Request.Type.Direction == XFER_READ) ?
2211 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
2212 }
2213 complete_buffers(cmd->rq->bio, status);
2214
2215 #ifdef CCISS_DEBUG
2216 printk("Done with %p\n", cmd->rq);
2217 #endif /* CCISS_DEBUG */
2218
2219 end_that_request_last(cmd->rq);
2220 cmd_free(h,cmd,1);
2221 }
2222
2223 /*
2224 * Get a request and submit it to the controller.
2225 */
2226 static void do_cciss_request(request_queue_t *q)
2227 {
2228 ctlr_info_t *h= q->queuedata;
2229 CommandList_struct *c;
2230 int start_blk, seg;
2231 struct request *creq;
2232 u64bit temp64;
2233 struct scatterlist tmp_sg[MAXSGENTRIES];
2234 drive_info_struct *drv;
2235 int i, dir;
2236
2237 /* We call start_io here in case there is a command waiting on the
2238 * queue that has not been sent.
2239 */
2240 if (blk_queue_plugged(q))
2241 goto startio;
2242
2243 queue:
2244 creq = elv_next_request(q);
2245 if (!creq)
2246 goto startio;
2247
2248 if (creq->nr_phys_segments > MAXSGENTRIES)
2249 BUG();
2250
2251 if (( c = cmd_alloc(h, 1)) == NULL)
2252 goto full;
2253
2254 blkdev_dequeue_request(creq);
2255
2256 spin_unlock_irq(q->queue_lock);
2257
2258 c->cmd_type = CMD_RWREQ;
2259 c->rq = creq;
2260
2261 /* fill in the request */
2262 drv = creq->rq_disk->private_data;
2263 c->Header.ReplyQueue = 0; // unused in simple mode
2264 /* got command from pool, so use the command block index instead */
2265 /* for direct lookups. */
2266 /* The first 2 bits are reserved for controller error reporting. */
2267 c->Header.Tag.lower = (c->cmdindex << 3);
2268 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2269 c->Header.LUN.LogDev.VolId= drv->LunID;
2270 c->Header.LUN.LogDev.Mode = 1;
2271 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2272 c->Request.Type.Type = TYPE_CMD; // It is a command.
2273 c->Request.Type.Attribute = ATTR_SIMPLE;
2274 c->Request.Type.Direction =
2275 (rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE;
2276 c->Request.Timeout = 0; // Don't time out
2277 c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE;
2278 start_blk = creq->sector;
2279 #ifdef CCISS_DEBUG
2280 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
2281 (int) creq->nr_sectors);
2282 #endif /* CCISS_DEBUG */
2283
2284 seg = blk_rq_map_sg(q, creq, tmp_sg);
2285
2286 /* get the DMA records for the setup */
2287 if (c->Request.Type.Direction == XFER_READ)
2288 dir = PCI_DMA_FROMDEVICE;
2289 else
2290 dir = PCI_DMA_TODEVICE;
2291
2292 for (i=0; i<seg; i++)
2293 {
2294 c->SG[i].Len = tmp_sg[i].length;
2295 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2296 tmp_sg[i].offset, tmp_sg[i].length,
2297 dir);
2298 c->SG[i].Addr.lower = temp64.val32.lower;
2299 c->SG[i].Addr.upper = temp64.val32.upper;
2300 c->SG[i].Ext = 0; // we are not chaining
2301 }
2302 /* track how many SG entries we are using */
2303 if( seg > h->maxSG)
2304 h->maxSG = seg;
2305
2306 #ifdef CCISS_DEBUG
2307 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg);
2308 #endif /* CCISS_DEBUG */
2309
2310 c->Header.SGList = c->Header.SGTotal = seg;
2311 c->Request.CDB[1]= 0;
2312 c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB
2313 c->Request.CDB[3]= (start_blk >> 16) & 0xff;
2314 c->Request.CDB[4]= (start_blk >> 8) & 0xff;
2315 c->Request.CDB[5]= start_blk & 0xff;
2316 c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
2317 c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff;
2318 c->Request.CDB[8]= creq->nr_sectors & 0xff;
2319 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2320
2321 spin_lock_irq(q->queue_lock);
2322
2323 addQ(&(h->reqQ),c);
2324 h->Qdepth++;
2325 if(h->Qdepth > h->maxQsinceinit)
2326 h->maxQsinceinit = h->Qdepth;
2327
2328 goto queue;
2329 full:
2330 blk_stop_queue(q);
2331 startio:
2332 /* We will already have the driver lock here so not need
2333 * to lock it.
2334 */
2335 start_io(h);
2336 }
2337
2338 static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
2339 {
2340 ctlr_info_t *h = dev_id;
2341 CommandList_struct *c;
2342 unsigned long flags;
2343 __u32 a, a1, a2;
2344 int j;
2345 int start_queue = h->next_to_run;
2346
2347 /* Is this interrupt for us? */
2348 if (( h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))
2349 return IRQ_NONE;
2350
2351 /*
2352 * If there are completed commands in the completion queue,
2353 * we had better do something about it.
2354 */
2355 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2356 while( h->access.intr_pending(h))
2357 {
2358 while((a = h->access.command_completed(h)) != FIFO_EMPTY)
2359 {
2360 a1 = a;
2361 if ((a & 0x04)) {
2362 a2 = (a >> 3);
2363 if (a2 >= NR_CMDS) {
2364 printk(KERN_WARNING "cciss: controller cciss%d failed, stopping.\n", h->ctlr);
2365 fail_all_cmds(h->ctlr);
2366 return IRQ_HANDLED;
2367 }
2368
2369 c = h->cmd_pool + a2;
2370 a = c->busaddr;
2371
2372 } else {
2373 a &= ~3;
2374 if ((c = h->cmpQ) == NULL) {
2375 printk(KERN_WARNING "cciss: Completion of %08x ignored\n", a1);
2376 continue;
2377 }
2378 while(c->busaddr != a) {
2379 c = c->next;
2380 if (c == h->cmpQ)
2381 break;
2382 }
2383 }
2384 /*
2385 * If we've found the command, take it off the
2386 * completion Q and free it
2387 */
2388 if (c->busaddr == a) {
2389 removeQ(&h->cmpQ, c);
2390 if (c->cmd_type == CMD_RWREQ) {
2391 complete_command(h, c, 0);
2392 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2393 complete(c->waiting);
2394 }
2395 # ifdef CONFIG_CISS_SCSI_TAPE
2396 else if (c->cmd_type == CMD_SCSI)
2397 complete_scsi_command(c, 0, a1);
2398 # endif
2399 continue;
2400 }
2401 }
2402 }
2403
2404 /* check to see if we have maxed out the number of commands that can
2405 * be placed on the queue. If so then exit. We do this check here
2406 * in case the interrupt we serviced was from an ioctl and did not
2407 * free any new commands.
2408 */
2409 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2410 goto cleanup;
2411
2412 /* We have room on the queue for more commands. Now we need to queue
2413 * them up. We will also keep track of the next queue to run so
2414 * that every queue gets a chance to be started first.
2415 */
2416 for (j=0; j < h->highest_lun + 1; j++){
2417 int curr_queue = (start_queue + j) % (h->highest_lun + 1);
2418 /* make sure the disk has been added and the drive is real
2419 * because this can be called from the middle of init_one.
2420 */
2421 if(!(h->drv[curr_queue].queue) ||
2422 !(h->drv[curr_queue].heads))
2423 continue;
2424 blk_start_queue(h->gendisk[curr_queue]->queue);
2425
2426 /* check to see if we have maxed out the number of commands
2427 * that can be placed on the queue.
2428 */
2429 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2430 {
2431 if (curr_queue == start_queue){
2432 h->next_to_run = (start_queue + 1) % (h->highest_lun + 1);
2433 goto cleanup;
2434 } else {
2435 h->next_to_run = curr_queue;
2436 goto cleanup;
2437 }
2438 } else {
2439 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
2440 }
2441 }
2442
2443 cleanup:
2444 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2445 return IRQ_HANDLED;
2446 }
2447 /*
2448 * We cannot read the structure directly, for portablity we must use
2449 * the io functions.
2450 * This is for debug only.
2451 */
2452 #ifdef CCISS_DEBUG
2453 static void print_cfg_table( CfgTable_struct *tb)
2454 {
2455 int i;
2456 char temp_name[17];
2457
2458 printk("Controller Configuration information\n");
2459 printk("------------------------------------\n");
2460 for(i=0;i<4;i++)
2461 temp_name[i] = readb(&(tb->Signature[i]));
2462 temp_name[4]='\0';
2463 printk(" Signature = %s\n", temp_name);
2464 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2465 printk(" Transport methods supported = 0x%x\n",
2466 readl(&(tb-> TransportSupport)));
2467 printk(" Transport methods active = 0x%x\n",
2468 readl(&(tb->TransportActive)));
2469 printk(" Requested transport Method = 0x%x\n",
2470 readl(&(tb->HostWrite.TransportRequest)));
2471 printk(" Coalese Interrupt Delay = 0x%x\n",
2472 readl(&(tb->HostWrite.CoalIntDelay)));
2473 printk(" Coalese Interrupt Count = 0x%x\n",
2474 readl(&(tb->HostWrite.CoalIntCount)));
2475 printk(" Max outstanding commands = 0x%d\n",
2476 readl(&(tb->CmdsOutMax)));
2477 printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
2478 for(i=0;i<16;i++)
2479 temp_name[i] = readb(&(tb->ServerName[i]));
2480 temp_name[16] = '\0';
2481 printk(" Server Name = %s\n", temp_name);
2482 printk(" Heartbeat Counter = 0x%x\n\n\n",
2483 readl(&(tb->HeartBeat)));
2484 }
2485 #endif /* CCISS_DEBUG */
2486
2487 static void release_io_mem(ctlr_info_t *c)
2488 {
2489 /* if IO mem was not protected do nothing */
2490 if( c->io_mem_addr == 0)
2491 return;
2492 release_region(c->io_mem_addr, c->io_mem_length);
2493 c->io_mem_addr = 0;
2494 c->io_mem_length = 0;
2495 }
2496
2497 static int find_PCI_BAR_index(struct pci_dev *pdev,
2498 unsigned long pci_bar_addr)
2499 {
2500 int i, offset, mem_type, bar_type;
2501 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2502 return 0;
2503 offset = 0;
2504 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2505 bar_type = pci_resource_flags(pdev, i) &
2506 PCI_BASE_ADDRESS_SPACE;
2507 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2508 offset += 4;
2509 else {
2510 mem_type = pci_resource_flags(pdev, i) &
2511 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2512 switch (mem_type) {
2513 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2514 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2515 offset += 4; /* 32 bit */
2516 break;
2517 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2518 offset += 8;
2519 break;
2520 default: /* reserved in PCI 2.2 */
2521 printk(KERN_WARNING "Base address is invalid\n");
2522 return -1;
2523 break;
2524 }
2525 }
2526 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2527 return i+1;
2528 }
2529 return -1;
2530 }
2531
2532 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2533 {
2534 ushort subsystem_vendor_id, subsystem_device_id, command;
2535 __u32 board_id, scratchpad = 0;
2536 __u64 cfg_offset;
2537 __u32 cfg_base_addr;
2538 __u64 cfg_base_addr_index;
2539 int i;
2540
2541 /* check to see if controller has been disabled */
2542 /* BEFORE trying to enable it */
2543 (void) pci_read_config_word(pdev, PCI_COMMAND,&command);
2544 if(!(command & 0x02))
2545 {
2546 printk(KERN_WARNING "cciss: controller appears to be disabled\n");
2547 return(-1);
2548 }
2549
2550 if (pci_enable_device(pdev))
2551 {
2552 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2553 return( -1);
2554 }
2555
2556 subsystem_vendor_id = pdev->subsystem_vendor;
2557 subsystem_device_id = pdev->subsystem_device;
2558 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2559 subsystem_vendor_id);
2560
2561 /* search for our IO range so we can protect it */
2562 for(i=0; i<DEVICE_COUNT_RESOURCE; i++)
2563 {
2564 /* is this an IO range */
2565 if( pci_resource_flags(pdev, i) & 0x01 ) {
2566 c->io_mem_addr = pci_resource_start(pdev, i);
2567 c->io_mem_length = pci_resource_end(pdev, i) -
2568 pci_resource_start(pdev, i) +1;
2569 #ifdef CCISS_DEBUG
2570 printk("IO value found base_addr[%d] %lx %lx\n", i,
2571 c->io_mem_addr, c->io_mem_length);
2572 #endif /* CCISS_DEBUG */
2573 /* register the IO range */
2574 if(!request_region( c->io_mem_addr,
2575 c->io_mem_length, "cciss"))
2576 {
2577 printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n",
2578 c->io_mem_addr, c->io_mem_length);
2579 c->io_mem_addr= 0;
2580 c->io_mem_length = 0;
2581 }
2582 break;
2583 }
2584 }
2585
2586 #ifdef CCISS_DEBUG
2587 printk("command = %x\n", command);
2588 printk("irq = %x\n", pdev->irq);
2589 printk("board_id = %x\n", board_id);
2590 #endif /* CCISS_DEBUG */
2591
2592 c->intr = pdev->irq;
2593
2594 /*
2595 * Memory base addr is first addr , the second points to the config
2596 * table
2597 */
2598
2599 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2600 #ifdef CCISS_DEBUG
2601 printk("address 0 = %x\n", c->paddr);
2602 #endif /* CCISS_DEBUG */
2603 c->vaddr = remap_pci_mem(c->paddr, 200);
2604
2605 /* Wait for the board to become ready. (PCI hotplug needs this.)
2606 * We poll for up to 120 secs, once per 100ms. */
2607 for (i=0; i < 1200; i++) {
2608 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2609 if (scratchpad == CCISS_FIRMWARE_READY)
2610 break;
2611 set_current_state(TASK_INTERRUPTIBLE);
2612 schedule_timeout(HZ / 10); /* wait 100ms */
2613 }
2614 if (scratchpad != CCISS_FIRMWARE_READY) {
2615 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2616 return -1;
2617 }
2618
2619 /* get the address index number */
2620 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2621 cfg_base_addr &= (__u32) 0x0000ffff;
2622 #ifdef CCISS_DEBUG
2623 printk("cfg base address = %x\n", cfg_base_addr);
2624 #endif /* CCISS_DEBUG */
2625 cfg_base_addr_index =
2626 find_PCI_BAR_index(pdev, cfg_base_addr);
2627 #ifdef CCISS_DEBUG
2628 printk("cfg base address index = %x\n", cfg_base_addr_index);
2629 #endif /* CCISS_DEBUG */
2630 if (cfg_base_addr_index == -1) {
2631 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2632 release_io_mem(c);
2633 return -1;
2634 }
2635
2636 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2637 #ifdef CCISS_DEBUG
2638 printk("cfg offset = %x\n", cfg_offset);
2639 #endif /* CCISS_DEBUG */
2640 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2641 cfg_base_addr_index) + cfg_offset,
2642 sizeof(CfgTable_struct));
2643 c->board_id = board_id;
2644
2645 #ifdef CCISS_DEBUG
2646 print_cfg_table(c->cfgtable);
2647 #endif /* CCISS_DEBUG */
2648
2649 for(i=0; i<NR_PRODUCTS; i++) {
2650 if (board_id == products[i].board_id) {
2651 c->product_name = products[i].product_name;
2652 c->access = *(products[i].access);
2653 break;
2654 }
2655 }
2656 if (i == NR_PRODUCTS) {
2657 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2658 " to access the Smart Array controller %08lx\n",
2659 (unsigned long)board_id);
2660 return -1;
2661 }
2662 if ( (readb(&c->cfgtable->Signature[0]) != 'C') ||
2663 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2664 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2665 (readb(&c->cfgtable->Signature[3]) != 'S') )
2666 {
2667 printk("Does not appear to be a valid CISS config table\n");
2668 return -1;
2669 }
2670
2671 #ifdef CONFIG_X86
2672 {
2673 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2674 __u32 prefetch;
2675 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2676 prefetch |= 0x100;
2677 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2678 }
2679 #endif
2680
2681 #ifdef CCISS_DEBUG
2682 printk("Trying to put board into Simple mode\n");
2683 #endif /* CCISS_DEBUG */
2684 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2685 /* Update the field, and then ring the doorbell */
2686 writel( CFGTBL_Trans_Simple,
2687 &(c->cfgtable->HostWrite.TransportRequest));
2688 writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2689
2690 /* under certain very rare conditions, this can take awhile.
2691 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2692 * as we enter this code.) */
2693 for(i=0;i<MAX_CONFIG_WAIT;i++) {
2694 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2695 break;
2696 /* delay and try again */
2697 set_current_state(TASK_INTERRUPTIBLE);
2698 schedule_timeout(10);
2699 }
2700
2701 #ifdef CCISS_DEBUG
2702 printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
2703 #endif /* CCISS_DEBUG */
2704 #ifdef CCISS_DEBUG
2705 print_cfg_table(c->cfgtable);
2706 #endif /* CCISS_DEBUG */
2707
2708 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
2709 {
2710 printk(KERN_WARNING "cciss: unable to get board into"
2711 " simple mode\n");
2712 return -1;
2713 }
2714 return 0;
2715
2716 }
2717
2718 /*
2719 * Gets information about the local volumes attached to the controller.
2720 */
2721 static void cciss_getgeometry(int cntl_num)
2722 {
2723 ReportLunData_struct *ld_buff;
2724 ReadCapdata_struct *size_buff;
2725 InquiryData_struct *inq_buff;
2726 int return_code;
2727 int i;
2728 int listlength = 0;
2729 __u32 lunid = 0;
2730 int block_size;
2731 int total_size;
2732
2733 ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2734 if (ld_buff == NULL)
2735 {
2736 printk(KERN_ERR "cciss: out of memory\n");
2737 return;
2738 }
2739 memset(ld_buff, 0, sizeof(ReportLunData_struct));
2740 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
2741 if (size_buff == NULL)
2742 {
2743 printk(KERN_ERR "cciss: out of memory\n");
2744 kfree(ld_buff);
2745 return;
2746 }
2747 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
2748 if (inq_buff == NULL)
2749 {
2750 printk(KERN_ERR "cciss: out of memory\n");
2751 kfree(ld_buff);
2752 kfree(size_buff);
2753 return;
2754 }
2755 /* Get the firmware version */
2756 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
2757 sizeof(InquiryData_struct), 0, 0 ,0, NULL, TYPE_CMD);
2758 if (return_code == IO_OK)
2759 {
2760 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
2761 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
2762 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
2763 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
2764 } else /* send command failed */
2765 {
2766 printk(KERN_WARNING "cciss: unable to determine firmware"
2767 " version of controller\n");
2768 }
2769 /* Get the number of logical volumes */
2770 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
2771 sizeof(ReportLunData_struct), 0, 0, 0, NULL, TYPE_CMD);
2772
2773 if( return_code == IO_OK)
2774 {
2775 #ifdef CCISS_DEBUG
2776 printk("LUN Data\n--------------------------\n");
2777 #endif /* CCISS_DEBUG */
2778
2779 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
2780 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
2781 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
2782 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
2783 } else /* reading number of logical volumes failed */
2784 {
2785 printk(KERN_WARNING "cciss: report logical volume"
2786 " command failed\n");
2787 listlength = 0;
2788 }
2789 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
2790 if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
2791 {
2792 printk(KERN_ERR "ciss: only %d number of logical volumes supported\n",
2793 CISS_MAX_LUN);
2794 hba[cntl_num]->num_luns = CISS_MAX_LUN;
2795 }
2796 #ifdef CCISS_DEBUG
2797 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
2798 ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
2799 ld_buff->LUNListLength[3], hba[cntl_num]->num_luns);
2800 #endif /* CCISS_DEBUG */
2801
2802 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1;
2803 // for(i=0; i< hba[cntl_num]->num_luns; i++)
2804 for(i=0; i < CISS_MAX_LUN; i++)
2805 {
2806 if (i < hba[cntl_num]->num_luns){
2807 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
2808 << 24;
2809 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
2810 << 16;
2811 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
2812 << 8;
2813 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
2814
2815 hba[cntl_num]->drv[i].LunID = lunid;
2816
2817
2818 #ifdef CCISS_DEBUG
2819 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
2820 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
2821 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
2822 hba[cntl_num]->drv[i].LunID);
2823 #endif /* CCISS_DEBUG */
2824 cciss_read_capacity(cntl_num, i, size_buff, 0,
2825 &total_size, &block_size);
2826 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
2827 block_size, inq_buff, &hba[cntl_num]->drv[i]);
2828 } else {
2829 /* initialize raid_level to indicate a free space */
2830 hba[cntl_num]->drv[i].raid_level = -1;
2831 }
2832 }
2833 kfree(ld_buff);
2834 kfree(size_buff);
2835 kfree(inq_buff);
2836 }
2837
2838 /* Function to find the first free pointer into our hba[] array */
2839 /* Returns -1 if no free entries are left. */
2840 static int alloc_cciss_hba(void)
2841 {
2842 struct gendisk *disk[NWD];
2843 int i, n;
2844 for (n = 0; n < NWD; n++) {
2845 disk[n] = alloc_disk(1 << NWD_SHIFT);
2846 if (!disk[n])
2847 goto out;
2848 }
2849
2850 for(i=0; i< MAX_CTLR; i++) {
2851 if (!hba[i]) {
2852 ctlr_info_t *p;
2853 p = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
2854 if (!p)
2855 goto Enomem;
2856 memset(p, 0, sizeof(ctlr_info_t));
2857 for (n = 0; n < NWD; n++)
2858 p->gendisk[n] = disk[n];
2859 hba[i] = p;
2860 return i;
2861 }
2862 }
2863 printk(KERN_WARNING "cciss: This driver supports a maximum"
2864 " of %d controllers.\n", MAX_CTLR);
2865 goto out;
2866 Enomem:
2867 printk(KERN_ERR "cciss: out of memory.\n");
2868 out:
2869 while (n--)
2870 put_disk(disk[n]);
2871 return -1;
2872 }
2873
2874 static void free_hba(int i)
2875 {
2876 ctlr_info_t *p = hba[i];
2877 int n;
2878
2879 hba[i] = NULL;
2880 for (n = 0; n < NWD; n++)
2881 put_disk(p->gendisk[n]);
2882 kfree(p);
2883 }
2884
2885 /*
2886 * This is it. Find all the controllers and register them. I really hate
2887 * stealing all these major device numbers.
2888 * returns the number of block devices registered.
2889 */
2890 static int __devinit cciss_init_one(struct pci_dev *pdev,
2891 const struct pci_device_id *ent)
2892 {
2893 request_queue_t *q;
2894 int i;
2895 int j;
2896 int rc;
2897
2898 printk(KERN_DEBUG "cciss: Device 0x%x has been found at"
2899 " bus %d dev %d func %d\n",
2900 pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
2901 PCI_FUNC(pdev->devfn));
2902 i = alloc_cciss_hba();
2903 if(i < 0)
2904 return (-1);
2905
2906 hba[i]->busy_initializing = 1;
2907
2908 if (cciss_pci_init(hba[i], pdev) != 0)
2909 goto clean1;
2910
2911 sprintf(hba[i]->devname, "cciss%d", i);
2912 hba[i]->ctlr = i;
2913 hba[i]->pdev = pdev;
2914
2915 /* configure PCI DMA stuff */
2916 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
2917 printk("cciss: using DAC cycles\n");
2918 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
2919 printk("cciss: not using DAC cycles\n");
2920 else {
2921 printk("cciss: no suitable DMA available\n");
2922 goto clean1;
2923 }
2924
2925 /*
2926 * register with the major number, or get a dynamic major number
2927 * by passing 0 as argument. This is done for greater than
2928 * 8 controller support.
2929 */
2930 if (i < MAX_CTLR_ORIG)
2931 hba[i]->major = MAJOR_NR + i;
2932 rc = register_blkdev(hba[i]->major, hba[i]->devname);
2933 if(rc == -EBUSY || rc == -EINVAL) {
2934 printk(KERN_ERR
2935 "cciss: Unable to get major number %d for %s "
2936 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
2937 goto clean1;
2938 }
2939 else {
2940 if (i >= MAX_CTLR_ORIG)
2941 hba[i]->major = rc;
2942 }
2943
2944 /* make sure the board interrupts are off */
2945 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
2946 if( request_irq(hba[i]->intr, do_cciss_intr,
2947 SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM,
2948 hba[i]->devname, hba[i])) {
2949 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
2950 hba[i]->intr, hba[i]->devname);
2951 goto clean2;
2952 }
2953 hba[i]->cmd_pool_bits = kmalloc(((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long), GFP_KERNEL);
2954 hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent(
2955 hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
2956 &(hba[i]->cmd_pool_dhandle));
2957 hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent(
2958 hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
2959 &(hba[i]->errinfo_pool_dhandle));
2960 if((hba[i]->cmd_pool_bits == NULL)
2961 || (hba[i]->cmd_pool == NULL)
2962 || (hba[i]->errinfo_pool == NULL)) {
2963 printk( KERN_ERR "cciss: out of memory");
2964 goto clean4;
2965 }
2966
2967 spin_lock_init(&hba[i]->lock);
2968
2969 /* Initialize the pdev driver private data.
2970 have it point to hba[i]. */
2971 pci_set_drvdata(pdev, hba[i]);
2972 /* command and error info recs zeroed out before
2973 they are used */
2974 memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long));
2975
2976 #ifdef CCISS_DEBUG
2977 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
2978 #endif /* CCISS_DEBUG */
2979
2980 cciss_getgeometry(i);
2981
2982 cciss_scsi_setup(i);
2983
2984 /* Turn the interrupts on so we can service requests */
2985 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
2986
2987 cciss_procinit(i);
2988 hba[i]->busy_initializing = 0;
2989
2990 for(j=0; j < NWD; j++) { /* mfm */
2991 drive_info_struct *drv = &(hba[i]->drv[j]);
2992 struct gendisk *disk = hba[i]->gendisk[j];
2993
2994 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
2995 if (!q) {
2996 printk(KERN_ERR
2997 "cciss: unable to allocate queue for disk %d\n",
2998 j);
2999 break;
3000 }
3001 drv->queue = q;
3002
3003 q->backing_dev_info.ra_pages = READ_AHEAD;
3004 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3005
3006 /* This is a hardware imposed limit. */
3007 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3008
3009 /* This is a limit in the driver and could be eliminated. */
3010 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3011
3012 blk_queue_max_sectors(q, 512);
3013
3014 q->queuedata = hba[i];
3015 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3016 sprintf(disk->devfs_name, "cciss/host%d/target%d", i, j);
3017 disk->major = hba[i]->major;
3018 disk->first_minor = j << NWD_SHIFT;
3019 disk->fops = &cciss_fops;
3020 disk->queue = q;
3021 disk->private_data = drv;
3022 /* we must register the controller even if no disks exist */
3023 /* this is for the online array utilities */
3024 if(!drv->heads && j)
3025 continue;
3026 blk_queue_hardsect_size(q, drv->block_size);
3027 set_capacity(disk, drv->nr_blocks);
3028 add_disk(disk);
3029 }
3030
3031 return(1);
3032
3033 clean4:
3034 kfree(hba[i]->cmd_pool_bits);
3035 if(hba[i]->cmd_pool)
3036 pci_free_consistent(hba[i]->pdev,
3037 NR_CMDS * sizeof(CommandList_struct),
3038 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3039 if(hba[i]->errinfo_pool)
3040 pci_free_consistent(hba[i]->pdev,
3041 NR_CMDS * sizeof( ErrorInfo_struct),
3042 hba[i]->errinfo_pool,
3043 hba[i]->errinfo_pool_dhandle);
3044 free_irq(hba[i]->intr, hba[i]);
3045 clean2:
3046 unregister_blkdev(hba[i]->major, hba[i]->devname);
3047 clean1:
3048 release_io_mem(hba[i]);
3049 free_hba(i);
3050 hba[i]->busy_initializing = 0;
3051 return(-1);
3052 }
3053
3054 static void __devexit cciss_remove_one (struct pci_dev *pdev)
3055 {
3056 ctlr_info_t *tmp_ptr;
3057 int i, j;
3058 char flush_buf[4];
3059 int return_code;
3060
3061 if (pci_get_drvdata(pdev) == NULL)
3062 {
3063 printk( KERN_ERR "cciss: Unable to remove device \n");
3064 return;
3065 }
3066 tmp_ptr = pci_get_drvdata(pdev);
3067 i = tmp_ptr->ctlr;
3068 if (hba[i] == NULL)
3069 {
3070 printk(KERN_ERR "cciss: device appears to "
3071 "already be removed \n");
3072 return;
3073 }
3074 /* Turn board interrupts off and send the flush cache command */
3075 /* sendcmd will turn off interrupt, and send the flush...
3076 * To write all data in the battery backed cache to disks */
3077 memset(flush_buf, 0, 4);
3078 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3079 TYPE_CMD);
3080 if(return_code != IO_OK)
3081 {
3082 printk(KERN_WARNING "Error Flushing cache on controller %d\n",
3083 i);
3084 }
3085 free_irq(hba[i]->intr, hba[i]);
3086 pci_set_drvdata(pdev, NULL);
3087 iounmap(hba[i]->vaddr);
3088 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3089 unregister_blkdev(hba[i]->major, hba[i]->devname);
3090 remove_proc_entry(hba[i]->devname, proc_cciss);
3091
3092 /* remove it from the disk list */
3093 for (j = 0; j < NWD; j++) {
3094 struct gendisk *disk = hba[i]->gendisk[j];
3095 if (disk->flags & GENHD_FL_UP) {
3096 del_gendisk(disk);
3097 blk_cleanup_queue(disk->queue);
3098 }
3099 }
3100
3101 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
3102 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3103 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
3104 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3105 kfree(hba[i]->cmd_pool_bits);
3106 release_io_mem(hba[i]);
3107 free_hba(i);
3108 }
3109
3110 static struct pci_driver cciss_pci_driver = {
3111 .name = "cciss",
3112 .probe = cciss_init_one,
3113 .remove = __devexit_p(cciss_remove_one),
3114 .id_table = cciss_pci_device_id, /* id_table */
3115 };
3116
3117 /*
3118 * This is it. Register the PCI driver information for the cards we control
3119 * the OS will call our registered routines when it finds one of our cards.
3120 */
3121 static int __init cciss_init(void)
3122 {
3123 printk(KERN_INFO DRIVER_NAME "\n");
3124
3125 /* Register for our PCI devices */
3126 return pci_module_init(&cciss_pci_driver);
3127 }
3128
3129 static void __exit cciss_cleanup(void)
3130 {
3131 int i;
3132
3133 pci_unregister_driver(&cciss_pci_driver);
3134 /* double check that all controller entrys have been removed */
3135 for (i=0; i< MAX_CTLR; i++)
3136 {
3137 if (hba[i] != NULL)
3138 {
3139 printk(KERN_WARNING "cciss: had to remove"
3140 " controller %d\n", i);
3141 cciss_remove_one(hba[i]->pdev);
3142 }
3143 }
3144 remove_proc_entry("cciss", proc_root_driver);
3145 }
3146
3147 static void fail_all_cmds(unsigned long ctlr)
3148 {
3149 /* If we get here, the board is apparently dead. */
3150 ctlr_info_t *h = hba[ctlr];
3151 CommandList_struct *c;
3152 unsigned long flags;
3153
3154 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3155 h->alive = 0; /* the controller apparently died... */
3156
3157 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3158
3159 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3160
3161 /* move everything off the request queue onto the completed queue */
3162 while( (c = h->reqQ) != NULL ) {
3163 removeQ(&(h->reqQ), c);
3164 h->Qdepth--;
3165 addQ (&(h->cmpQ), c);
3166 }
3167
3168 /* Now, fail everything on the completed queue with a HW error */
3169 while( (c = h->cmpQ) != NULL ) {
3170 removeQ(&h->cmpQ, c);
3171 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3172 if (c->cmd_type == CMD_RWREQ) {
3173 complete_command(h, c, 0);
3174 } else if (c->cmd_type == CMD_IOCTL_PEND)
3175 complete(c->waiting);
3176 #ifdef CONFIG_CISS_SCSI_TAPE
3177 else if (c->cmd_type == CMD_SCSI)
3178 complete_scsi_command(c, 0, 0);
3179 #endif
3180 }
3181 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3182 return;
3183 }
3184
3185 module_init(cciss_init);
3186 module_exit(cciss_cleanup);