Pull ar-k0-usage into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / cciss.c
1 /*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 * Copyright 2000, 2005 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23 #include <linux/config.h> /* CONFIG_PROC_FS */
24 #include <linux/module.h>
25 #include <linux/interrupt.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48
49 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
50 #define DRIVER_NAME "HP CISS Driver (v 2.6.8)"
51 #define DRIVER_VERSION CCISS_DRIVER_VERSION(2,6,8)
52
53 /* Embedded module documentation macros - see modules.h */
54 MODULE_AUTHOR("Hewlett-Packard Company");
55 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 2.6.8");
56 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
57 " SA6i P600 P800 P400 P400i E200 E200i");
58 MODULE_LICENSE("GPL");
59
60 #include "cciss_cmd.h"
61 #include "cciss.h"
62 #include <linux/cciss_ioctl.h>
63
64 /* define the PCI info for the cards we can control */
65 static const struct pci_device_id cciss_pci_device_id[] = {
66 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,
67 0x0E11, 0x4070, 0, 0, 0},
68 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
69 0x0E11, 0x4080, 0, 0, 0},
70 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
71 0x0E11, 0x4082, 0, 0, 0},
72 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB,
73 0x0E11, 0x4083, 0, 0, 0},
74 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
75 0x0E11, 0x409A, 0, 0, 0},
76 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
77 0x0E11, 0x409B, 0, 0, 0},
78 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
79 0x0E11, 0x409C, 0, 0, 0},
80 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
81 0x0E11, 0x409D, 0, 0, 0},
82 { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC,
83 0x0E11, 0x4091, 0, 0, 0},
84 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA,
85 0x103C, 0x3225, 0, 0, 0},
86 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
87 0x103c, 0x3223, 0, 0, 0},
88 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
89 0x103c, 0x3234, 0, 0, 0},
90 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC,
91 0x103c, 0x3235, 0, 0, 0},
92 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
93 0x103c, 0x3211, 0, 0, 0},
94 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
95 0x103c, 0x3212, 0, 0, 0},
96 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
97 0x103c, 0x3213, 0, 0, 0},
98 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
99 0x103c, 0x3214, 0, 0, 0},
100 { PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD,
101 0x103c, 0x3215, 0, 0, 0},
102 {0,}
103 };
104 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
105
106 #define NR_PRODUCTS (sizeof(products)/sizeof(struct board_type))
107
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
111 */
112 static struct board_type products[] = {
113 { 0x40700E11, "Smart Array 5300", &SA5_access },
114 { 0x40800E11, "Smart Array 5i", &SA5B_access},
115 { 0x40820E11, "Smart Array 532", &SA5B_access},
116 { 0x40830E11, "Smart Array 5312", &SA5B_access},
117 { 0x409A0E11, "Smart Array 641", &SA5_access},
118 { 0x409B0E11, "Smart Array 642", &SA5_access},
119 { 0x409C0E11, "Smart Array 6400", &SA5_access},
120 { 0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 { 0x40910E11, "Smart Array 6i", &SA5_access},
122 { 0x3225103C, "Smart Array P600", &SA5_access},
123 { 0x3223103C, "Smart Array P800", &SA5_access},
124 { 0x3234103C, "Smart Array P400", &SA5_access},
125 { 0x3235103C, "Smart Array P400i", &SA5_access},
126 { 0x3211103C, "Smart Array E200i", &SA5_access},
127 { 0x3212103C, "Smart Array E200", &SA5_access},
128 { 0x3213103C, "Smart Array E200i", &SA5_access},
129 { 0x3214103C, "Smart Array E200i", &SA5_access},
130 { 0x3215103C, "Smart Array E200i", &SA5_access},
131 };
132
133 /* How long to wait (in millesconds) for board to go into simple mode */
134 #define MAX_CONFIG_WAIT 30000
135 #define MAX_IOCTL_CONFIG_WAIT 1000
136
137 /*define how many times we will try a command because of bus resets */
138 #define MAX_CMD_RETRIES 3
139
140 #define READ_AHEAD 1024
141 #define NR_CMDS 384 /* #commands that can be outstanding */
142 #define MAX_CTLR 32
143
144 /* Originally cciss driver only supports 8 major numbers */
145 #define MAX_CTLR_ORIG 8
146
147
148 static ctlr_info_t *hba[MAX_CTLR];
149
150 static void do_cciss_request(request_queue_t *q);
151 static int cciss_open(struct inode *inode, struct file *filep);
152 static int cciss_release(struct inode *inode, struct file *filep);
153 static int cciss_ioctl(struct inode *inode, struct file *filep,
154 unsigned int cmd, unsigned long arg);
155
156 static int revalidate_allvol(ctlr_info_t *host);
157 static int cciss_revalidate(struct gendisk *disk);
158 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
159 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv, int clear_all);
160
161 static void cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
162 int withirq, unsigned int *total_size, unsigned int *block_size);
163 static void cciss_geometry_inquiry(int ctlr, int logvol,
164 int withirq, unsigned int total_size,
165 unsigned int block_size, InquiryData_struct *inq_buff,
166 drive_info_struct *drv);
167 static void cciss_getgeometry(int cntl_num);
168
169 static void start_io( ctlr_info_t *h);
170 static int sendcmd( __u8 cmd, int ctlr, void *buff, size_t size,
171 unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
172 unsigned char *scsi3addr, int cmd_type);
173 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
174 unsigned int use_unit_num, unsigned int log_unit, __u8 page_code,
175 int cmd_type);
176
177 static void fail_all_cmds(unsigned long ctlr);
178
179 #ifdef CONFIG_PROC_FS
180 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
181 int length, int *eof, void *data);
182 static void cciss_procinit(int i);
183 #else
184 static void cciss_procinit(int i) {}
185 #endif /* CONFIG_PROC_FS */
186
187 #ifdef CONFIG_COMPAT
188 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
189 #endif
190
191 static struct block_device_operations cciss_fops = {
192 .owner = THIS_MODULE,
193 .open = cciss_open,
194 .release = cciss_release,
195 .ioctl = cciss_ioctl,
196 #ifdef CONFIG_COMPAT
197 .compat_ioctl = cciss_compat_ioctl,
198 #endif
199 .revalidate_disk= cciss_revalidate,
200 };
201
202 /*
203 * Enqueuing and dequeuing functions for cmdlists.
204 */
205 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
206 {
207 if (*Qptr == NULL) {
208 *Qptr = c;
209 c->next = c->prev = c;
210 } else {
211 c->prev = (*Qptr)->prev;
212 c->next = (*Qptr);
213 (*Qptr)->prev->next = c;
214 (*Qptr)->prev = c;
215 }
216 }
217
218 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
219 CommandList_struct *c)
220 {
221 if (c && c->next != c) {
222 if (*Qptr == c) *Qptr = c->next;
223 c->prev->next = c->next;
224 c->next->prev = c->prev;
225 } else {
226 *Qptr = NULL;
227 }
228 return c;
229 }
230
231 #include "cciss_scsi.c" /* For SCSI tape support */
232
233 #ifdef CONFIG_PROC_FS
234
235 /*
236 * Report information about this controller.
237 */
238 #define ENG_GIG 1000000000
239 #define ENG_GIG_FACTOR (ENG_GIG/512)
240 #define RAID_UNKNOWN 6
241 static const char *raid_label[] = {"0","4","1(1+0)","5","5+1","ADG",
242 "UNKNOWN"};
243
244 static struct proc_dir_entry *proc_cciss;
245
246 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
247 int length, int *eof, void *data)
248 {
249 off_t pos = 0;
250 off_t len = 0;
251 int size, i, ctlr;
252 ctlr_info_t *h = (ctlr_info_t*)data;
253 drive_info_struct *drv;
254 unsigned long flags;
255 sector_t vol_sz, vol_sz_frac;
256
257 ctlr = h->ctlr;
258
259 /* prevent displaying bogus info during configuration
260 * or deconfiguration of a logical volume
261 */
262 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
263 if (h->busy_configuring) {
264 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
265 return -EBUSY;
266 }
267 h->busy_configuring = 1;
268 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
269
270 size = sprintf(buffer, "%s: HP %s Controller\n"
271 "Board ID: 0x%08lx\n"
272 "Firmware Version: %c%c%c%c\n"
273 "IRQ: %d\n"
274 "Logical drives: %d\n"
275 "Current Q depth: %d\n"
276 "Current # commands on controller: %d\n"
277 "Max Q depth since init: %d\n"
278 "Max # commands on controller since init: %d\n"
279 "Max SG entries since init: %d\n\n",
280 h->devname,
281 h->product_name,
282 (unsigned long)h->board_id,
283 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3],
284 (unsigned int)h->intr,
285 h->num_luns,
286 h->Qdepth, h->commands_outstanding,
287 h->maxQsinceinit, h->max_outstanding, h->maxSG);
288
289 pos += size; len += size;
290 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
291 for(i=0; i<=h->highest_lun; i++) {
292
293 drv = &h->drv[i];
294 if (drv->heads == 0)
295 continue;
296
297 vol_sz = drv->nr_blocks;
298 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
299 vol_sz_frac *= 100;
300 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
301
302 if (drv->raid_level > 5)
303 drv->raid_level = RAID_UNKNOWN;
304 size = sprintf(buffer+len, "cciss/c%dd%d:"
305 "\t%4u.%02uGB\tRAID %s\n",
306 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
307 raid_label[drv->raid_level]);
308 pos += size; len += size;
309 }
310
311 *eof = 1;
312 *start = buffer+offset;
313 len -= offset;
314 if (len>length)
315 len = length;
316 h->busy_configuring = 0;
317 return len;
318 }
319
320 static int
321 cciss_proc_write(struct file *file, const char __user *buffer,
322 unsigned long count, void *data)
323 {
324 unsigned char cmd[80];
325 int len;
326 #ifdef CONFIG_CISS_SCSI_TAPE
327 ctlr_info_t *h = (ctlr_info_t *) data;
328 int rc;
329 #endif
330
331 if (count > sizeof(cmd)-1) return -EINVAL;
332 if (copy_from_user(cmd, buffer, count)) return -EFAULT;
333 cmd[count] = '\0';
334 len = strlen(cmd); // above 3 lines ensure safety
335 if (len && cmd[len-1] == '\n')
336 cmd[--len] = '\0';
337 # ifdef CONFIG_CISS_SCSI_TAPE
338 if (strcmp("engage scsi", cmd)==0) {
339 rc = cciss_engage_scsi(h->ctlr);
340 if (rc != 0) return -rc;
341 return count;
342 }
343 /* might be nice to have "disengage" too, but it's not
344 safely possible. (only 1 module use count, lock issues.) */
345 # endif
346 return -EINVAL;
347 }
348
349 /*
350 * Get us a file in /proc/cciss that says something about each controller.
351 * Create /proc/cciss if it doesn't exist yet.
352 */
353 static void __devinit cciss_procinit(int i)
354 {
355 struct proc_dir_entry *pde;
356
357 if (proc_cciss == NULL) {
358 proc_cciss = proc_mkdir("cciss", proc_root_driver);
359 if (!proc_cciss)
360 return;
361 }
362
363 pde = create_proc_read_entry(hba[i]->devname,
364 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
365 proc_cciss, cciss_proc_get_info, hba[i]);
366 pde->write_proc = cciss_proc_write;
367 }
368 #endif /* CONFIG_PROC_FS */
369
370 /*
371 * For operations that cannot sleep, a command block is allocated at init,
372 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
373 * which ones are free or in use. For operations that can wait for kmalloc
374 * to possible sleep, this routine can be called with get_from_pool set to 0.
375 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
376 */
377 static CommandList_struct * cmd_alloc(ctlr_info_t *h, int get_from_pool)
378 {
379 CommandList_struct *c;
380 int i;
381 u64bit temp64;
382 dma_addr_t cmd_dma_handle, err_dma_handle;
383
384 if (!get_from_pool)
385 {
386 c = (CommandList_struct *) pci_alloc_consistent(
387 h->pdev, sizeof(CommandList_struct), &cmd_dma_handle);
388 if(c==NULL)
389 return NULL;
390 memset(c, 0, sizeof(CommandList_struct));
391
392 c->cmdindex = -1;
393
394 c->err_info = (ErrorInfo_struct *)pci_alloc_consistent(
395 h->pdev, sizeof(ErrorInfo_struct),
396 &err_dma_handle);
397
398 if (c->err_info == NULL)
399 {
400 pci_free_consistent(h->pdev,
401 sizeof(CommandList_struct), c, cmd_dma_handle);
402 return NULL;
403 }
404 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
405 } else /* get it out of the controllers pool */
406 {
407 do {
408 i = find_first_zero_bit(h->cmd_pool_bits, NR_CMDS);
409 if (i == NR_CMDS)
410 return NULL;
411 } while(test_and_set_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits+(i/BITS_PER_LONG)) != 0);
412 #ifdef CCISS_DEBUG
413 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
414 #endif
415 c = h->cmd_pool + i;
416 memset(c, 0, sizeof(CommandList_struct));
417 cmd_dma_handle = h->cmd_pool_dhandle
418 + i*sizeof(CommandList_struct);
419 c->err_info = h->errinfo_pool + i;
420 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
421 err_dma_handle = h->errinfo_pool_dhandle
422 + i*sizeof(ErrorInfo_struct);
423 h->nr_allocs++;
424
425 c->cmdindex = i;
426 }
427
428 c->busaddr = (__u32) cmd_dma_handle;
429 temp64.val = (__u64) err_dma_handle;
430 c->ErrDesc.Addr.lower = temp64.val32.lower;
431 c->ErrDesc.Addr.upper = temp64.val32.upper;
432 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
433
434 c->ctlr = h->ctlr;
435 return c;
436
437
438 }
439
440 /*
441 * Frees a command block that was previously allocated with cmd_alloc().
442 */
443 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
444 {
445 int i;
446 u64bit temp64;
447
448 if( !got_from_pool)
449 {
450 temp64.val32.lower = c->ErrDesc.Addr.lower;
451 temp64.val32.upper = c->ErrDesc.Addr.upper;
452 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
453 c->err_info, (dma_addr_t) temp64.val);
454 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
455 c, (dma_addr_t) c->busaddr);
456 } else
457 {
458 i = c - h->cmd_pool;
459 clear_bit(i&(BITS_PER_LONG-1), h->cmd_pool_bits+(i/BITS_PER_LONG));
460 h->nr_frees++;
461 }
462 }
463
464 static inline ctlr_info_t *get_host(struct gendisk *disk)
465 {
466 return disk->queue->queuedata;
467 }
468
469 static inline drive_info_struct *get_drv(struct gendisk *disk)
470 {
471 return disk->private_data;
472 }
473
474 /*
475 * Open. Make sure the device is really there.
476 */
477 static int cciss_open(struct inode *inode, struct file *filep)
478 {
479 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
480 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
481
482 #ifdef CCISS_DEBUG
483 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
484 #endif /* CCISS_DEBUG */
485
486 if (host->busy_initializing || drv->busy_configuring)
487 return -EBUSY;
488 /*
489 * Root is allowed to open raw volume zero even if it's not configured
490 * so array config can still work. Root is also allowed to open any
491 * volume that has a LUN ID, so it can issue IOCTL to reread the
492 * disk information. I don't think I really like this
493 * but I'm already using way to many device nodes to claim another one
494 * for "raw controller".
495 */
496 if (drv->nr_blocks == 0) {
497 if (iminor(inode) != 0) { /* not node 0? */
498 /* if not node 0 make sure it is a partition = 0 */
499 if (iminor(inode) & 0x0f) {
500 return -ENXIO;
501 /* if it is, make sure we have a LUN ID */
502 } else if (drv->LunID == 0) {
503 return -ENXIO;
504 }
505 }
506 if (!capable(CAP_SYS_ADMIN))
507 return -EPERM;
508 }
509 drv->usage_count++;
510 host->usage_count++;
511 return 0;
512 }
513 /*
514 * Close. Sync first.
515 */
516 static int cciss_release(struct inode *inode, struct file *filep)
517 {
518 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
519 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
520
521 #ifdef CCISS_DEBUG
522 printk(KERN_DEBUG "cciss_release %s\n", inode->i_bdev->bd_disk->disk_name);
523 #endif /* CCISS_DEBUG */
524
525 drv->usage_count--;
526 host->usage_count--;
527 return 0;
528 }
529
530 #ifdef CONFIG_COMPAT
531
532 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
533 {
534 int ret;
535 lock_kernel();
536 ret = cciss_ioctl(f->f_dentry->d_inode, f, cmd, arg);
537 unlock_kernel();
538 return ret;
539 }
540
541 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg);
542 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd, unsigned long arg);
543
544 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
545 {
546 switch (cmd) {
547 case CCISS_GETPCIINFO:
548 case CCISS_GETINTINFO:
549 case CCISS_SETINTINFO:
550 case CCISS_GETNODENAME:
551 case CCISS_SETNODENAME:
552 case CCISS_GETHEARTBEAT:
553 case CCISS_GETBUSTYPES:
554 case CCISS_GETFIRMVER:
555 case CCISS_GETDRIVVER:
556 case CCISS_REVALIDVOLS:
557 case CCISS_DEREGDISK:
558 case CCISS_REGNEWDISK:
559 case CCISS_REGNEWD:
560 case CCISS_RESCANDISK:
561 case CCISS_GETLUNINFO:
562 return do_ioctl(f, cmd, arg);
563
564 case CCISS_PASSTHRU32:
565 return cciss_ioctl32_passthru(f, cmd, arg);
566 case CCISS_BIG_PASSTHRU32:
567 return cciss_ioctl32_big_passthru(f, cmd, arg);
568
569 default:
570 return -ENOIOCTLCMD;
571 }
572 }
573
574 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd, unsigned long arg)
575 {
576 IOCTL32_Command_struct __user *arg32 =
577 (IOCTL32_Command_struct __user *) arg;
578 IOCTL_Command_struct arg64;
579 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
580 int err;
581 u32 cp;
582
583 err = 0;
584 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
585 err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
586 err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
587 err |= get_user(arg64.buf_size, &arg32->buf_size);
588 err |= get_user(cp, &arg32->buf);
589 arg64.buf = compat_ptr(cp);
590 err |= copy_to_user(p, &arg64, sizeof(arg64));
591
592 if (err)
593 return -EFAULT;
594
595 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long) p);
596 if (err)
597 return err;
598 err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
599 if (err)
600 return -EFAULT;
601 return err;
602 }
603
604 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd, unsigned long arg)
605 {
606 BIG_IOCTL32_Command_struct __user *arg32 =
607 (BIG_IOCTL32_Command_struct __user *) arg;
608 BIG_IOCTL_Command_struct arg64;
609 BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
610 int err;
611 u32 cp;
612
613 err = 0;
614 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info));
615 err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request));
616 err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info));
617 err |= get_user(arg64.buf_size, &arg32->buf_size);
618 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
619 err |= get_user(cp, &arg32->buf);
620 arg64.buf = compat_ptr(cp);
621 err |= copy_to_user(p, &arg64, sizeof(arg64));
622
623 if (err)
624 return -EFAULT;
625
626 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long) p);
627 if (err)
628 return err;
629 err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info));
630 if (err)
631 return -EFAULT;
632 return err;
633 }
634 #endif
635 /*
636 * ioctl
637 */
638 static int cciss_ioctl(struct inode *inode, struct file *filep,
639 unsigned int cmd, unsigned long arg)
640 {
641 struct block_device *bdev = inode->i_bdev;
642 struct gendisk *disk = bdev->bd_disk;
643 ctlr_info_t *host = get_host(disk);
644 drive_info_struct *drv = get_drv(disk);
645 int ctlr = host->ctlr;
646 void __user *argp = (void __user *)arg;
647
648 #ifdef CCISS_DEBUG
649 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
650 #endif /* CCISS_DEBUG */
651
652 switch(cmd) {
653 case HDIO_GETGEO:
654 {
655 struct hd_geometry driver_geo;
656 if (drv->cylinders) {
657 driver_geo.heads = drv->heads;
658 driver_geo.sectors = drv->sectors;
659 driver_geo.cylinders = drv->cylinders;
660 } else
661 return -ENXIO;
662 driver_geo.start= get_start_sect(inode->i_bdev);
663 if (copy_to_user(argp, &driver_geo, sizeof(struct hd_geometry)))
664 return -EFAULT;
665 return(0);
666 }
667
668 case CCISS_GETPCIINFO:
669 {
670 cciss_pci_info_struct pciinfo;
671
672 if (!arg) return -EINVAL;
673 pciinfo.domain = pci_domain_nr(host->pdev->bus);
674 pciinfo.bus = host->pdev->bus->number;
675 pciinfo.dev_fn = host->pdev->devfn;
676 pciinfo.board_id = host->board_id;
677 if (copy_to_user(argp, &pciinfo, sizeof( cciss_pci_info_struct )))
678 return -EFAULT;
679 return(0);
680 }
681 case CCISS_GETINTINFO:
682 {
683 cciss_coalint_struct intinfo;
684 if (!arg) return -EINVAL;
685 intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay);
686 intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount);
687 if (copy_to_user(argp, &intinfo, sizeof( cciss_coalint_struct )))
688 return -EFAULT;
689 return(0);
690 }
691 case CCISS_SETINTINFO:
692 {
693 cciss_coalint_struct intinfo;
694 unsigned long flags;
695 int i;
696
697 if (!arg) return -EINVAL;
698 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
699 if (copy_from_user(&intinfo, argp, sizeof( cciss_coalint_struct)))
700 return -EFAULT;
701 if ( (intinfo.delay == 0 ) && (intinfo.count == 0))
702
703 {
704 // printk("cciss_ioctl: delay and count cannot be 0\n");
705 return( -EINVAL);
706 }
707 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
708 /* Update the field, and then ring the doorbell */
709 writel( intinfo.delay,
710 &(host->cfgtable->HostWrite.CoalIntDelay));
711 writel( intinfo.count,
712 &(host->cfgtable->HostWrite.CoalIntCount));
713 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
714
715 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
716 if (!(readl(host->vaddr + SA5_DOORBELL)
717 & CFGTBL_ChangeReq))
718 break;
719 /* delay and try again */
720 udelay(1000);
721 }
722 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
723 if (i >= MAX_IOCTL_CONFIG_WAIT)
724 return -EAGAIN;
725 return(0);
726 }
727 case CCISS_GETNODENAME:
728 {
729 NodeName_type NodeName;
730 int i;
731
732 if (!arg) return -EINVAL;
733 for(i=0;i<16;i++)
734 NodeName[i] = readb(&host->cfgtable->ServerName[i]);
735 if (copy_to_user(argp, NodeName, sizeof( NodeName_type)))
736 return -EFAULT;
737 return(0);
738 }
739 case CCISS_SETNODENAME:
740 {
741 NodeName_type NodeName;
742 unsigned long flags;
743 int i;
744
745 if (!arg) return -EINVAL;
746 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
747
748 if (copy_from_user(NodeName, argp, sizeof( NodeName_type)))
749 return -EFAULT;
750
751 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
752
753 /* Update the field, and then ring the doorbell */
754 for(i=0;i<16;i++)
755 writeb( NodeName[i], &host->cfgtable->ServerName[i]);
756
757 writel( CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
758
759 for(i=0;i<MAX_IOCTL_CONFIG_WAIT;i++) {
760 if (!(readl(host->vaddr + SA5_DOORBELL)
761 & CFGTBL_ChangeReq))
762 break;
763 /* delay and try again */
764 udelay(1000);
765 }
766 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
767 if (i >= MAX_IOCTL_CONFIG_WAIT)
768 return -EAGAIN;
769 return(0);
770 }
771
772 case CCISS_GETHEARTBEAT:
773 {
774 Heartbeat_type heartbeat;
775
776 if (!arg) return -EINVAL;
777 heartbeat = readl(&host->cfgtable->HeartBeat);
778 if (copy_to_user(argp, &heartbeat, sizeof( Heartbeat_type)))
779 return -EFAULT;
780 return(0);
781 }
782 case CCISS_GETBUSTYPES:
783 {
784 BusTypes_type BusTypes;
785
786 if (!arg) return -EINVAL;
787 BusTypes = readl(&host->cfgtable->BusTypes);
788 if (copy_to_user(argp, &BusTypes, sizeof( BusTypes_type) ))
789 return -EFAULT;
790 return(0);
791 }
792 case CCISS_GETFIRMVER:
793 {
794 FirmwareVer_type firmware;
795
796 if (!arg) return -EINVAL;
797 memcpy(firmware, host->firm_ver, 4);
798
799 if (copy_to_user(argp, firmware, sizeof( FirmwareVer_type)))
800 return -EFAULT;
801 return(0);
802 }
803 case CCISS_GETDRIVVER:
804 {
805 DriverVer_type DriverVer = DRIVER_VERSION;
806
807 if (!arg) return -EINVAL;
808
809 if (copy_to_user(argp, &DriverVer, sizeof( DriverVer_type) ))
810 return -EFAULT;
811 return(0);
812 }
813
814 case CCISS_REVALIDVOLS:
815 if (bdev != bdev->bd_contains || drv != host->drv)
816 return -ENXIO;
817 return revalidate_allvol(host);
818
819 case CCISS_GETLUNINFO: {
820 LogvolInfo_struct luninfo;
821
822 luninfo.LunID = drv->LunID;
823 luninfo.num_opens = drv->usage_count;
824 luninfo.num_parts = 0;
825 if (copy_to_user(argp, &luninfo,
826 sizeof(LogvolInfo_struct)))
827 return -EFAULT;
828 return(0);
829 }
830 case CCISS_DEREGDISK:
831 return rebuild_lun_table(host, disk);
832
833 case CCISS_REGNEWD:
834 return rebuild_lun_table(host, NULL);
835
836 case CCISS_PASSTHRU:
837 {
838 IOCTL_Command_struct iocommand;
839 CommandList_struct *c;
840 char *buff = NULL;
841 u64bit temp64;
842 unsigned long flags;
843 DECLARE_COMPLETION(wait);
844
845 if (!arg) return -EINVAL;
846
847 if (!capable(CAP_SYS_RAWIO)) return -EPERM;
848
849 if (copy_from_user(&iocommand, argp, sizeof( IOCTL_Command_struct) ))
850 return -EFAULT;
851 if((iocommand.buf_size < 1) &&
852 (iocommand.Request.Type.Direction != XFER_NONE))
853 {
854 return -EINVAL;
855 }
856 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
857 /* Check kmalloc limits */
858 if(iocommand.buf_size > 128000)
859 return -EINVAL;
860 #endif
861 if(iocommand.buf_size > 0)
862 {
863 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
864 if( buff == NULL)
865 return -EFAULT;
866 }
867 if (iocommand.Request.Type.Direction == XFER_WRITE)
868 {
869 /* Copy the data into the buffer we created */
870 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size))
871 {
872 kfree(buff);
873 return -EFAULT;
874 }
875 } else {
876 memset(buff, 0, iocommand.buf_size);
877 }
878 if ((c = cmd_alloc(host , 0)) == NULL)
879 {
880 kfree(buff);
881 return -ENOMEM;
882 }
883 // Fill in the command type
884 c->cmd_type = CMD_IOCTL_PEND;
885 // Fill in Command Header
886 c->Header.ReplyQueue = 0; // unused in simple mode
887 if( iocommand.buf_size > 0) // buffer to fill
888 {
889 c->Header.SGList = 1;
890 c->Header.SGTotal= 1;
891 } else // no buffers to fill
892 {
893 c->Header.SGList = 0;
894 c->Header.SGTotal= 0;
895 }
896 c->Header.LUN = iocommand.LUN_info;
897 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
898
899 // Fill in Request block
900 c->Request = iocommand.Request;
901
902 // Fill in the scatter gather information
903 if (iocommand.buf_size > 0 )
904 {
905 temp64.val = pci_map_single( host->pdev, buff,
906 iocommand.buf_size,
907 PCI_DMA_BIDIRECTIONAL);
908 c->SG[0].Addr.lower = temp64.val32.lower;
909 c->SG[0].Addr.upper = temp64.val32.upper;
910 c->SG[0].Len = iocommand.buf_size;
911 c->SG[0].Ext = 0; // we are not chaining
912 }
913 c->waiting = &wait;
914
915 /* Put the request on the tail of the request queue */
916 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
917 addQ(&host->reqQ, c);
918 host->Qdepth++;
919 start_io(host);
920 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
921
922 wait_for_completion(&wait);
923
924 /* unlock the buffers from DMA */
925 temp64.val32.lower = c->SG[0].Addr.lower;
926 temp64.val32.upper = c->SG[0].Addr.upper;
927 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
928 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
929
930 /* Copy the error information out */
931 iocommand.error_info = *(c->err_info);
932 if ( copy_to_user(argp, &iocommand, sizeof( IOCTL_Command_struct) ) )
933 {
934 kfree(buff);
935 cmd_free(host, c, 0);
936 return( -EFAULT);
937 }
938
939 if (iocommand.Request.Type.Direction == XFER_READ)
940 {
941 /* Copy the data out of the buffer we created */
942 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size))
943 {
944 kfree(buff);
945 cmd_free(host, c, 0);
946 return -EFAULT;
947 }
948 }
949 kfree(buff);
950 cmd_free(host, c, 0);
951 return(0);
952 }
953 case CCISS_BIG_PASSTHRU: {
954 BIG_IOCTL_Command_struct *ioc;
955 CommandList_struct *c;
956 unsigned char **buff = NULL;
957 int *buff_size = NULL;
958 u64bit temp64;
959 unsigned long flags;
960 BYTE sg_used = 0;
961 int status = 0;
962 int i;
963 DECLARE_COMPLETION(wait);
964 __u32 left;
965 __u32 sz;
966 BYTE __user *data_ptr;
967
968 if (!arg)
969 return -EINVAL;
970 if (!capable(CAP_SYS_RAWIO))
971 return -EPERM;
972 ioc = (BIG_IOCTL_Command_struct *)
973 kmalloc(sizeof(*ioc), GFP_KERNEL);
974 if (!ioc) {
975 status = -ENOMEM;
976 goto cleanup1;
977 }
978 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
979 status = -EFAULT;
980 goto cleanup1;
981 }
982 if ((ioc->buf_size < 1) &&
983 (ioc->Request.Type.Direction != XFER_NONE)) {
984 status = -EINVAL;
985 goto cleanup1;
986 }
987 /* Check kmalloc limits using all SGs */
988 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
989 status = -EINVAL;
990 goto cleanup1;
991 }
992 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
993 status = -EINVAL;
994 goto cleanup1;
995 }
996 buff = (unsigned char **) kmalloc(MAXSGENTRIES *
997 sizeof(char *), GFP_KERNEL);
998 if (!buff) {
999 status = -ENOMEM;
1000 goto cleanup1;
1001 }
1002 memset(buff, 0, MAXSGENTRIES);
1003 buff_size = (int *) kmalloc(MAXSGENTRIES * sizeof(int),
1004 GFP_KERNEL);
1005 if (!buff_size) {
1006 status = -ENOMEM;
1007 goto cleanup1;
1008 }
1009 left = ioc->buf_size;
1010 data_ptr = ioc->buf;
1011 while (left) {
1012 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1013 buff_size[sg_used] = sz;
1014 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1015 if (buff[sg_used] == NULL) {
1016 status = -ENOMEM;
1017 goto cleanup1;
1018 }
1019 if (ioc->Request.Type.Direction == XFER_WRITE &&
1020 copy_from_user(buff[sg_used], data_ptr, sz)) {
1021 status = -ENOMEM;
1022 goto cleanup1;
1023 } else {
1024 memset(buff[sg_used], 0, sz);
1025 }
1026 left -= sz;
1027 data_ptr += sz;
1028 sg_used++;
1029 }
1030 if ((c = cmd_alloc(host , 0)) == NULL) {
1031 status = -ENOMEM;
1032 goto cleanup1;
1033 }
1034 c->cmd_type = CMD_IOCTL_PEND;
1035 c->Header.ReplyQueue = 0;
1036
1037 if( ioc->buf_size > 0) {
1038 c->Header.SGList = sg_used;
1039 c->Header.SGTotal= sg_used;
1040 } else {
1041 c->Header.SGList = 0;
1042 c->Header.SGTotal= 0;
1043 }
1044 c->Header.LUN = ioc->LUN_info;
1045 c->Header.Tag.lower = c->busaddr;
1046
1047 c->Request = ioc->Request;
1048 if (ioc->buf_size > 0 ) {
1049 int i;
1050 for(i=0; i<sg_used; i++) {
1051 temp64.val = pci_map_single( host->pdev, buff[i],
1052 buff_size[i],
1053 PCI_DMA_BIDIRECTIONAL);
1054 c->SG[i].Addr.lower = temp64.val32.lower;
1055 c->SG[i].Addr.upper = temp64.val32.upper;
1056 c->SG[i].Len = buff_size[i];
1057 c->SG[i].Ext = 0; /* we are not chaining */
1058 }
1059 }
1060 c->waiting = &wait;
1061 /* Put the request on the tail of the request queue */
1062 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1063 addQ(&host->reqQ, c);
1064 host->Qdepth++;
1065 start_io(host);
1066 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1067 wait_for_completion(&wait);
1068 /* unlock the buffers from DMA */
1069 for(i=0; i<sg_used; i++) {
1070 temp64.val32.lower = c->SG[i].Addr.lower;
1071 temp64.val32.upper = c->SG[i].Addr.upper;
1072 pci_unmap_single( host->pdev, (dma_addr_t) temp64.val,
1073 buff_size[i], PCI_DMA_BIDIRECTIONAL);
1074 }
1075 /* Copy the error information out */
1076 ioc->error_info = *(c->err_info);
1077 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1078 cmd_free(host, c, 0);
1079 status = -EFAULT;
1080 goto cleanup1;
1081 }
1082 if (ioc->Request.Type.Direction == XFER_READ) {
1083 /* Copy the data out of the buffer we created */
1084 BYTE __user *ptr = ioc->buf;
1085 for(i=0; i< sg_used; i++) {
1086 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1087 cmd_free(host, c, 0);
1088 status = -EFAULT;
1089 goto cleanup1;
1090 }
1091 ptr += buff_size[i];
1092 }
1093 }
1094 cmd_free(host, c, 0);
1095 status = 0;
1096 cleanup1:
1097 if (buff) {
1098 for(i=0; i<sg_used; i++)
1099 if(buff[i] != NULL)
1100 kfree(buff[i]);
1101 kfree(buff);
1102 }
1103 if (buff_size)
1104 kfree(buff_size);
1105 if (ioc)
1106 kfree(ioc);
1107 return(status);
1108 }
1109 default:
1110 return -ENOTTY;
1111 }
1112
1113 }
1114
1115 /*
1116 * revalidate_allvol is for online array config utilities. After a
1117 * utility reconfigures the drives in the array, it can use this function
1118 * (through an ioctl) to make the driver zap any previous disk structs for
1119 * that controller and get new ones.
1120 *
1121 * Right now I'm using the getgeometry() function to do this, but this
1122 * function should probably be finer grained and allow you to revalidate one
1123 * particualar logical volume (instead of all of them on a particular
1124 * controller).
1125 */
1126 static int revalidate_allvol(ctlr_info_t *host)
1127 {
1128 int ctlr = host->ctlr, i;
1129 unsigned long flags;
1130
1131 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1132 if (host->usage_count > 1) {
1133 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1134 printk(KERN_WARNING "cciss: Device busy for volume"
1135 " revalidation (usage=%d)\n", host->usage_count);
1136 return -EBUSY;
1137 }
1138 host->usage_count++;
1139 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1140
1141 for(i=0; i< NWD; i++) {
1142 struct gendisk *disk = host->gendisk[i];
1143 if (disk->flags & GENHD_FL_UP)
1144 del_gendisk(disk);
1145 }
1146
1147 /*
1148 * Set the partition and block size structures for all volumes
1149 * on this controller to zero. We will reread all of this data
1150 */
1151 memset(host->drv, 0, sizeof(drive_info_struct)
1152 * CISS_MAX_LUN);
1153 /*
1154 * Tell the array controller not to give us any interrupts while
1155 * we check the new geometry. Then turn interrupts back on when
1156 * we're done.
1157 */
1158 host->access.set_intr_mask(host, CCISS_INTR_OFF);
1159 cciss_getgeometry(ctlr);
1160 host->access.set_intr_mask(host, CCISS_INTR_ON);
1161
1162 /* Loop through each real device */
1163 for (i = 0; i < NWD; i++) {
1164 struct gendisk *disk = host->gendisk[i];
1165 drive_info_struct *drv = &(host->drv[i]);
1166 /* we must register the controller even if no disks exist */
1167 /* this is for the online array utilities */
1168 if (!drv->heads && i)
1169 continue;
1170 blk_queue_hardsect_size(drv->queue, drv->block_size);
1171 set_capacity(disk, drv->nr_blocks);
1172 add_disk(disk);
1173 }
1174 host->usage_count--;
1175 return 0;
1176 }
1177
1178 /* This function will check the usage_count of the drive to be updated/added.
1179 * If the usage_count is zero then the drive information will be updated and
1180 * the disk will be re-registered with the kernel. If not then it will be
1181 * left alone for the next reboot. The exception to this is disk 0 which
1182 * will always be left registered with the kernel since it is also the
1183 * controller node. Any changes to disk 0 will show up on the next
1184 * reboot.
1185 */
1186 static void cciss_update_drive_info(int ctlr, int drv_index)
1187 {
1188 ctlr_info_t *h = hba[ctlr];
1189 struct gendisk *disk;
1190 ReadCapdata_struct *size_buff = NULL;
1191 InquiryData_struct *inq_buff = NULL;
1192 unsigned int block_size;
1193 unsigned int total_size;
1194 unsigned long flags = 0;
1195 int ret = 0;
1196
1197 /* if the disk already exists then deregister it before proceeding*/
1198 if (h->drv[drv_index].raid_level != -1){
1199 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1200 h->drv[drv_index].busy_configuring = 1;
1201 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1202 ret = deregister_disk(h->gendisk[drv_index],
1203 &h->drv[drv_index], 0);
1204 h->drv[drv_index].busy_configuring = 0;
1205 }
1206
1207 /* If the disk is in use return */
1208 if (ret)
1209 return;
1210
1211
1212 /* Get information about the disk and modify the driver sturcture */
1213 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1214 if (size_buff == NULL)
1215 goto mem_msg;
1216 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1217 if (inq_buff == NULL)
1218 goto mem_msg;
1219
1220 cciss_read_capacity(ctlr, drv_index, size_buff, 1,
1221 &total_size, &block_size);
1222 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1223 inq_buff, &h->drv[drv_index]);
1224
1225 ++h->num_luns;
1226 disk = h->gendisk[drv_index];
1227 set_capacity(disk, h->drv[drv_index].nr_blocks);
1228
1229
1230 /* if it's the controller it's already added */
1231 if (drv_index){
1232 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1233
1234 /* Set up queue information */
1235 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1236 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1237
1238 /* This is a hardware imposed limit. */
1239 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1240
1241 /* This is a limit in the driver and could be eliminated. */
1242 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1243
1244 blk_queue_max_sectors(disk->queue, 512);
1245
1246 disk->queue->queuedata = hba[ctlr];
1247
1248 blk_queue_hardsect_size(disk->queue,
1249 hba[ctlr]->drv[drv_index].block_size);
1250
1251 h->drv[drv_index].queue = disk->queue;
1252 add_disk(disk);
1253 }
1254
1255 freeret:
1256 kfree(size_buff);
1257 kfree(inq_buff);
1258 return;
1259 mem_msg:
1260 printk(KERN_ERR "cciss: out of memory\n");
1261 goto freeret;
1262 }
1263
1264 /* This function will find the first index of the controllers drive array
1265 * that has a -1 for the raid_level and will return that index. This is
1266 * where new drives will be added. If the index to be returned is greater
1267 * than the highest_lun index for the controller then highest_lun is set
1268 * to this new index. If there are no available indexes then -1 is returned.
1269 */
1270 static int cciss_find_free_drive_index(int ctlr)
1271 {
1272 int i;
1273
1274 for (i=0; i < CISS_MAX_LUN; i++){
1275 if (hba[ctlr]->drv[i].raid_level == -1){
1276 if (i > hba[ctlr]->highest_lun)
1277 hba[ctlr]->highest_lun = i;
1278 return i;
1279 }
1280 }
1281 return -1;
1282 }
1283
1284 /* This function will add and remove logical drives from the Logical
1285 * drive array of the controller and maintain persistancy of ordering
1286 * so that mount points are preserved until the next reboot. This allows
1287 * for the removal of logical drives in the middle of the drive array
1288 * without a re-ordering of those drives.
1289 * INPUT
1290 * h = The controller to perform the operations on
1291 * del_disk = The disk to remove if specified. If the value given
1292 * is NULL then no disk is removed.
1293 */
1294 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1295 {
1296 int ctlr = h->ctlr;
1297 int num_luns;
1298 ReportLunData_struct *ld_buff = NULL;
1299 drive_info_struct *drv = NULL;
1300 int return_code;
1301 int listlength = 0;
1302 int i;
1303 int drv_found;
1304 int drv_index = 0;
1305 __u32 lunid = 0;
1306 unsigned long flags;
1307
1308 /* Set busy_configuring flag for this operation */
1309 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1310 if (h->num_luns >= CISS_MAX_LUN){
1311 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1312 return -EINVAL;
1313 }
1314
1315 if (h->busy_configuring){
1316 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1317 return -EBUSY;
1318 }
1319 h->busy_configuring = 1;
1320
1321 /* if del_disk is NULL then we are being called to add a new disk
1322 * and update the logical drive table. If it is not NULL then
1323 * we will check if the disk is in use or not.
1324 */
1325 if (del_disk != NULL){
1326 drv = get_drv(del_disk);
1327 drv->busy_configuring = 1;
1328 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1329 return_code = deregister_disk(del_disk, drv, 1);
1330 drv->busy_configuring = 0;
1331 h->busy_configuring = 0;
1332 return return_code;
1333 } else {
1334 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1335 if (!capable(CAP_SYS_RAWIO))
1336 return -EPERM;
1337
1338 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1339 if (ld_buff == NULL)
1340 goto mem_msg;
1341
1342 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1343 sizeof(ReportLunData_struct), 0, 0, 0,
1344 TYPE_CMD);
1345
1346 if (return_code == IO_OK){
1347 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
1348 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
1349 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
1350 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
1351 } else{ /* reading number of logical volumes failed */
1352 printk(KERN_WARNING "cciss: report logical volume"
1353 " command failed\n");
1354 listlength = 0;
1355 goto freeret;
1356 }
1357
1358 num_luns = listlength / 8; /* 8 bytes per entry */
1359 if (num_luns > CISS_MAX_LUN){
1360 num_luns = CISS_MAX_LUN;
1361 printk(KERN_WARNING "cciss: more luns configured"
1362 " on controller than can be handled by"
1363 " this driver.\n");
1364 }
1365
1366 /* Compare controller drive array to drivers drive array.
1367 * Check for updates in the drive information and any new drives
1368 * on the controller.
1369 */
1370 for (i=0; i < num_luns; i++){
1371 int j;
1372
1373 drv_found = 0;
1374
1375 lunid = (0xff &
1376 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1377 lunid |= (0xff &
1378 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1379 lunid |= (0xff &
1380 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1381 lunid |= 0xff &
1382 (unsigned int)(ld_buff->LUN[i][0]);
1383
1384 /* Find if the LUN is already in the drive array
1385 * of the controller. If so then update its info
1386 * if not is use. If it does not exist then find
1387 * the first free index and add it.
1388 */
1389 for (j=0; j <= h->highest_lun; j++){
1390 if (h->drv[j].LunID == lunid){
1391 drv_index = j;
1392 drv_found = 1;
1393 }
1394 }
1395
1396 /* check if the drive was found already in the array */
1397 if (!drv_found){
1398 drv_index = cciss_find_free_drive_index(ctlr);
1399 if (drv_index == -1)
1400 goto freeret;
1401
1402 }
1403 h->drv[drv_index].LunID = lunid;
1404 cciss_update_drive_info(ctlr, drv_index);
1405 } /* end for */
1406 } /* end else */
1407
1408 freeret:
1409 kfree(ld_buff);
1410 h->busy_configuring = 0;
1411 /* We return -1 here to tell the ACU that we have registered/updated
1412 * all of the drives that we can and to keep it from calling us
1413 * additional times.
1414 */
1415 return -1;
1416 mem_msg:
1417 printk(KERN_ERR "cciss: out of memory\n");
1418 goto freeret;
1419 }
1420
1421 /* This function will deregister the disk and it's queue from the
1422 * kernel. It must be called with the controller lock held and the
1423 * drv structures busy_configuring flag set. It's parameters are:
1424 *
1425 * disk = This is the disk to be deregistered
1426 * drv = This is the drive_info_struct associated with the disk to be
1427 * deregistered. It contains information about the disk used
1428 * by the driver.
1429 * clear_all = This flag determines whether or not the disk information
1430 * is going to be completely cleared out and the highest_lun
1431 * reset. Sometimes we want to clear out information about
1432 * the disk in preperation for re-adding it. In this case
1433 * the highest_lun should be left unchanged and the LunID
1434 * should not be cleared.
1435 */
1436 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1437 int clear_all)
1438 {
1439 ctlr_info_t *h = get_host(disk);
1440
1441 if (!capable(CAP_SYS_RAWIO))
1442 return -EPERM;
1443
1444 /* make sure logical volume is NOT is use */
1445 if(clear_all || (h->gendisk[0] == disk)) {
1446 if (drv->usage_count > 1)
1447 return -EBUSY;
1448 }
1449 else
1450 if( drv->usage_count > 0 )
1451 return -EBUSY;
1452
1453 /* invalidate the devices and deregister the disk. If it is disk
1454 * zero do not deregister it but just zero out it's values. This
1455 * allows us to delete disk zero but keep the controller registered.
1456 */
1457 if (h->gendisk[0] != disk){
1458 if (disk->flags & GENHD_FL_UP){
1459 blk_cleanup_queue(disk->queue);
1460 del_gendisk(disk);
1461 drv->queue = NULL;
1462 }
1463 }
1464
1465 --h->num_luns;
1466 /* zero out the disk size info */
1467 drv->nr_blocks = 0;
1468 drv->block_size = 0;
1469 drv->heads = 0;
1470 drv->sectors = 0;
1471 drv->cylinders = 0;
1472 drv->raid_level = -1; /* This can be used as a flag variable to
1473 * indicate that this element of the drive
1474 * array is free.
1475 */
1476
1477 if (clear_all){
1478 /* check to see if it was the last disk */
1479 if (drv == h->drv + h->highest_lun) {
1480 /* if so, find the new hightest lun */
1481 int i, newhighest =-1;
1482 for(i=0; i<h->highest_lun; i++) {
1483 /* if the disk has size > 0, it is available */
1484 if (h->drv[i].heads)
1485 newhighest = i;
1486 }
1487 h->highest_lun = newhighest;
1488 }
1489
1490 drv->LunID = 0;
1491 }
1492 return(0);
1493 }
1494
1495 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
1496 size_t size,
1497 unsigned int use_unit_num, /* 0: address the controller,
1498 1: address logical volume log_unit,
1499 2: periph device address is scsi3addr */
1500 unsigned int log_unit, __u8 page_code, unsigned char *scsi3addr,
1501 int cmd_type)
1502 {
1503 ctlr_info_t *h= hba[ctlr];
1504 u64bit buff_dma_handle;
1505 int status = IO_OK;
1506
1507 c->cmd_type = CMD_IOCTL_PEND;
1508 c->Header.ReplyQueue = 0;
1509 if( buff != NULL) {
1510 c->Header.SGList = 1;
1511 c->Header.SGTotal= 1;
1512 } else {
1513 c->Header.SGList = 0;
1514 c->Header.SGTotal= 0;
1515 }
1516 c->Header.Tag.lower = c->busaddr;
1517
1518 c->Request.Type.Type = cmd_type;
1519 if (cmd_type == TYPE_CMD) {
1520 switch(cmd) {
1521 case CISS_INQUIRY:
1522 /* If the logical unit number is 0 then, this is going
1523 to controller so It's a physical command
1524 mode = 0 target = 0. So we have nothing to write.
1525 otherwise, if use_unit_num == 1,
1526 mode = 1(volume set addressing) target = LUNID
1527 otherwise, if use_unit_num == 2,
1528 mode = 0(periph dev addr) target = scsi3addr */
1529 if (use_unit_num == 1) {
1530 c->Header.LUN.LogDev.VolId=
1531 h->drv[log_unit].LunID;
1532 c->Header.LUN.LogDev.Mode = 1;
1533 } else if (use_unit_num == 2) {
1534 memcpy(c->Header.LUN.LunAddrBytes,scsi3addr,8);
1535 c->Header.LUN.LogDev.Mode = 0;
1536 }
1537 /* are we trying to read a vital product page */
1538 if(page_code != 0) {
1539 c->Request.CDB[1] = 0x01;
1540 c->Request.CDB[2] = page_code;
1541 }
1542 c->Request.CDBLen = 6;
1543 c->Request.Type.Attribute = ATTR_SIMPLE;
1544 c->Request.Type.Direction = XFER_READ;
1545 c->Request.Timeout = 0;
1546 c->Request.CDB[0] = CISS_INQUIRY;
1547 c->Request.CDB[4] = size & 0xFF;
1548 break;
1549 case CISS_REPORT_LOG:
1550 case CISS_REPORT_PHYS:
1551 /* Talking to controller so It's a physical command
1552 mode = 00 target = 0. Nothing to write.
1553 */
1554 c->Request.CDBLen = 12;
1555 c->Request.Type.Attribute = ATTR_SIMPLE;
1556 c->Request.Type.Direction = XFER_READ;
1557 c->Request.Timeout = 0;
1558 c->Request.CDB[0] = cmd;
1559 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1560 c->Request.CDB[7] = (size >> 16) & 0xFF;
1561 c->Request.CDB[8] = (size >> 8) & 0xFF;
1562 c->Request.CDB[9] = size & 0xFF;
1563 break;
1564
1565 case CCISS_READ_CAPACITY:
1566 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1567 c->Header.LUN.LogDev.Mode = 1;
1568 c->Request.CDBLen = 10;
1569 c->Request.Type.Attribute = ATTR_SIMPLE;
1570 c->Request.Type.Direction = XFER_READ;
1571 c->Request.Timeout = 0;
1572 c->Request.CDB[0] = cmd;
1573 break;
1574 case CCISS_CACHE_FLUSH:
1575 c->Request.CDBLen = 12;
1576 c->Request.Type.Attribute = ATTR_SIMPLE;
1577 c->Request.Type.Direction = XFER_WRITE;
1578 c->Request.Timeout = 0;
1579 c->Request.CDB[0] = BMIC_WRITE;
1580 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1581 break;
1582 default:
1583 printk(KERN_WARNING
1584 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1585 return(IO_ERROR);
1586 }
1587 } else if (cmd_type == TYPE_MSG) {
1588 switch (cmd) {
1589 case 3: /* No-Op message */
1590 c->Request.CDBLen = 1;
1591 c->Request.Type.Attribute = ATTR_SIMPLE;
1592 c->Request.Type.Direction = XFER_WRITE;
1593 c->Request.Timeout = 0;
1594 c->Request.CDB[0] = cmd;
1595 break;
1596 default:
1597 printk(KERN_WARNING
1598 "cciss%d: unknown message type %d\n",
1599 ctlr, cmd);
1600 return IO_ERROR;
1601 }
1602 } else {
1603 printk(KERN_WARNING
1604 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1605 return IO_ERROR;
1606 }
1607 /* Fill in the scatter gather information */
1608 if (size > 0) {
1609 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1610 buff, size, PCI_DMA_BIDIRECTIONAL);
1611 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1612 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1613 c->SG[0].Len = size;
1614 c->SG[0].Ext = 0; /* we are not chaining */
1615 }
1616 return status;
1617 }
1618 static int sendcmd_withirq(__u8 cmd,
1619 int ctlr,
1620 void *buff,
1621 size_t size,
1622 unsigned int use_unit_num,
1623 unsigned int log_unit,
1624 __u8 page_code,
1625 int cmd_type)
1626 {
1627 ctlr_info_t *h = hba[ctlr];
1628 CommandList_struct *c;
1629 u64bit buff_dma_handle;
1630 unsigned long flags;
1631 int return_status;
1632 DECLARE_COMPLETION(wait);
1633
1634 if ((c = cmd_alloc(h , 0)) == NULL)
1635 return -ENOMEM;
1636 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1637 log_unit, page_code, NULL, cmd_type);
1638 if (return_status != IO_OK) {
1639 cmd_free(h, c, 0);
1640 return return_status;
1641 }
1642 resend_cmd2:
1643 c->waiting = &wait;
1644
1645 /* Put the request on the tail of the queue and send it */
1646 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1647 addQ(&h->reqQ, c);
1648 h->Qdepth++;
1649 start_io(h);
1650 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1651
1652 wait_for_completion(&wait);
1653
1654 if(c->err_info->CommandStatus != 0)
1655 { /* an error has occurred */
1656 switch(c->err_info->CommandStatus)
1657 {
1658 case CMD_TARGET_STATUS:
1659 printk(KERN_WARNING "cciss: cmd %p has "
1660 " completed with errors\n", c);
1661 if( c->err_info->ScsiStatus)
1662 {
1663 printk(KERN_WARNING "cciss: cmd %p "
1664 "has SCSI Status = %x\n",
1665 c,
1666 c->err_info->ScsiStatus);
1667 }
1668
1669 break;
1670 case CMD_DATA_UNDERRUN:
1671 case CMD_DATA_OVERRUN:
1672 /* expected for inquire and report lun commands */
1673 break;
1674 case CMD_INVALID:
1675 printk(KERN_WARNING "cciss: Cmd %p is "
1676 "reported invalid\n", c);
1677 return_status = IO_ERROR;
1678 break;
1679 case CMD_PROTOCOL_ERR:
1680 printk(KERN_WARNING "cciss: cmd %p has "
1681 "protocol error \n", c);
1682 return_status = IO_ERROR;
1683 break;
1684 case CMD_HARDWARE_ERR:
1685 printk(KERN_WARNING "cciss: cmd %p had "
1686 " hardware error\n", c);
1687 return_status = IO_ERROR;
1688 break;
1689 case CMD_CONNECTION_LOST:
1690 printk(KERN_WARNING "cciss: cmd %p had "
1691 "connection lost\n", c);
1692 return_status = IO_ERROR;
1693 break;
1694 case CMD_ABORTED:
1695 printk(KERN_WARNING "cciss: cmd %p was "
1696 "aborted\n", c);
1697 return_status = IO_ERROR;
1698 break;
1699 case CMD_ABORT_FAILED:
1700 printk(KERN_WARNING "cciss: cmd %p reports "
1701 "abort failed\n", c);
1702 return_status = IO_ERROR;
1703 break;
1704 case CMD_UNSOLICITED_ABORT:
1705 printk(KERN_WARNING
1706 "cciss%d: unsolicited abort %p\n",
1707 ctlr, c);
1708 if (c->retry_count < MAX_CMD_RETRIES) {
1709 printk(KERN_WARNING
1710 "cciss%d: retrying %p\n",
1711 ctlr, c);
1712 c->retry_count++;
1713 /* erase the old error information */
1714 memset(c->err_info, 0,
1715 sizeof(ErrorInfo_struct));
1716 return_status = IO_OK;
1717 INIT_COMPLETION(wait);
1718 goto resend_cmd2;
1719 }
1720 return_status = IO_ERROR;
1721 break;
1722 default:
1723 printk(KERN_WARNING "cciss: cmd %p returned "
1724 "unknown status %x\n", c,
1725 c->err_info->CommandStatus);
1726 return_status = IO_ERROR;
1727 }
1728 }
1729 /* unlock the buffers from DMA */
1730 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1731 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1732 pci_unmap_single( h->pdev, (dma_addr_t) buff_dma_handle.val,
1733 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1734 cmd_free(h, c, 0);
1735 return(return_status);
1736
1737 }
1738 static void cciss_geometry_inquiry(int ctlr, int logvol,
1739 int withirq, unsigned int total_size,
1740 unsigned int block_size, InquiryData_struct *inq_buff,
1741 drive_info_struct *drv)
1742 {
1743 int return_code;
1744 memset(inq_buff, 0, sizeof(InquiryData_struct));
1745 if (withirq)
1746 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1747 inq_buff, sizeof(*inq_buff), 1, logvol ,0xC1, TYPE_CMD);
1748 else
1749 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1750 sizeof(*inq_buff), 1, logvol ,0xC1, NULL, TYPE_CMD);
1751 if (return_code == IO_OK) {
1752 if(inq_buff->data_byte[8] == 0xFF) {
1753 printk(KERN_WARNING
1754 "cciss: reading geometry failed, volume "
1755 "does not support reading geometry\n");
1756 drv->block_size = block_size;
1757 drv->nr_blocks = total_size;
1758 drv->heads = 255;
1759 drv->sectors = 32; // Sectors per track
1760 drv->cylinders = total_size / 255 / 32;
1761 } else {
1762 unsigned int t;
1763
1764 drv->block_size = block_size;
1765 drv->nr_blocks = total_size;
1766 drv->heads = inq_buff->data_byte[6];
1767 drv->sectors = inq_buff->data_byte[7];
1768 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1769 drv->cylinders += inq_buff->data_byte[5];
1770 drv->raid_level = inq_buff->data_byte[8];
1771 t = drv->heads * drv->sectors;
1772 if (t > 1) {
1773 drv->cylinders = total_size/t;
1774 }
1775 }
1776 } else { /* Get geometry failed */
1777 printk(KERN_WARNING "cciss: reading geometry failed\n");
1778 }
1779 printk(KERN_INFO " heads= %d, sectors= %d, cylinders= %d\n\n",
1780 drv->heads, drv->sectors, drv->cylinders);
1781 }
1782 static void
1783 cciss_read_capacity(int ctlr, int logvol, ReadCapdata_struct *buf,
1784 int withirq, unsigned int *total_size, unsigned int *block_size)
1785 {
1786 int return_code;
1787 memset(buf, 0, sizeof(*buf));
1788 if (withirq)
1789 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1790 ctlr, buf, sizeof(*buf), 1, logvol, 0, TYPE_CMD);
1791 else
1792 return_code = sendcmd(CCISS_READ_CAPACITY,
1793 ctlr, buf, sizeof(*buf), 1, logvol, 0, NULL, TYPE_CMD);
1794 if (return_code == IO_OK) {
1795 *total_size = be32_to_cpu(*((__be32 *) &buf->total_size[0]))+1;
1796 *block_size = be32_to_cpu(*((__be32 *) &buf->block_size[0]));
1797 } else { /* read capacity command failed */
1798 printk(KERN_WARNING "cciss: read capacity failed\n");
1799 *total_size = 0;
1800 *block_size = BLOCK_SIZE;
1801 }
1802 printk(KERN_INFO " blocks= %u block_size= %d\n",
1803 *total_size, *block_size);
1804 return;
1805 }
1806
1807 static int cciss_revalidate(struct gendisk *disk)
1808 {
1809 ctlr_info_t *h = get_host(disk);
1810 drive_info_struct *drv = get_drv(disk);
1811 int logvol;
1812 int FOUND=0;
1813 unsigned int block_size;
1814 unsigned int total_size;
1815 ReadCapdata_struct *size_buff = NULL;
1816 InquiryData_struct *inq_buff = NULL;
1817
1818 for(logvol=0; logvol < CISS_MAX_LUN; logvol++)
1819 {
1820 if(h->drv[logvol].LunID == drv->LunID) {
1821 FOUND=1;
1822 break;
1823 }
1824 }
1825
1826 if (!FOUND) return 1;
1827
1828 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
1829 if (size_buff == NULL)
1830 {
1831 printk(KERN_WARNING "cciss: out of memory\n");
1832 return 1;
1833 }
1834 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
1835 if (inq_buff == NULL)
1836 {
1837 printk(KERN_WARNING "cciss: out of memory\n");
1838 kfree(size_buff);
1839 return 1;
1840 }
1841
1842 cciss_read_capacity(h->ctlr, logvol, size_buff, 1, &total_size, &block_size);
1843 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv);
1844
1845 blk_queue_hardsect_size(drv->queue, drv->block_size);
1846 set_capacity(disk, drv->nr_blocks);
1847
1848 kfree(size_buff);
1849 kfree(inq_buff);
1850 return 0;
1851 }
1852
1853 /*
1854 * Wait polling for a command to complete.
1855 * The memory mapped FIFO is polled for the completion.
1856 * Used only at init time, interrupts from the HBA are disabled.
1857 */
1858 static unsigned long pollcomplete(int ctlr)
1859 {
1860 unsigned long done;
1861 int i;
1862
1863 /* Wait (up to 20 seconds) for a command to complete */
1864
1865 for (i = 20 * HZ; i > 0; i--) {
1866 done = hba[ctlr]->access.command_completed(hba[ctlr]);
1867 if (done == FIFO_EMPTY)
1868 schedule_timeout_uninterruptible(1);
1869 else
1870 return (done);
1871 }
1872 /* Invalid address to tell caller we ran out of time */
1873 return 1;
1874 }
1875 /*
1876 * Send a command to the controller, and wait for it to complete.
1877 * Only used at init time.
1878 */
1879 static int sendcmd(
1880 __u8 cmd,
1881 int ctlr,
1882 void *buff,
1883 size_t size,
1884 unsigned int use_unit_num, /* 0: address the controller,
1885 1: address logical volume log_unit,
1886 2: periph device address is scsi3addr */
1887 unsigned int log_unit,
1888 __u8 page_code,
1889 unsigned char *scsi3addr,
1890 int cmd_type)
1891 {
1892 CommandList_struct *c;
1893 int i;
1894 unsigned long complete;
1895 ctlr_info_t *info_p= hba[ctlr];
1896 u64bit buff_dma_handle;
1897 int status;
1898
1899 if ((c = cmd_alloc(info_p, 1)) == NULL) {
1900 printk(KERN_WARNING "cciss: unable to get memory");
1901 return(IO_ERROR);
1902 }
1903 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1904 log_unit, page_code, scsi3addr, cmd_type);
1905 if (status != IO_OK) {
1906 cmd_free(info_p, c, 1);
1907 return status;
1908 }
1909 resend_cmd1:
1910 /*
1911 * Disable interrupt
1912 */
1913 #ifdef CCISS_DEBUG
1914 printk(KERN_DEBUG "cciss: turning intr off\n");
1915 #endif /* CCISS_DEBUG */
1916 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
1917
1918 /* Make sure there is room in the command FIFO */
1919 /* Actually it should be completely empty at this time. */
1920 for (i = 200000; i > 0; i--)
1921 {
1922 /* if fifo isn't full go */
1923 if (!(info_p->access.fifo_full(info_p)))
1924 {
1925
1926 break;
1927 }
1928 udelay(10);
1929 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
1930 " waiting!\n", ctlr);
1931 }
1932 /*
1933 * Send the cmd
1934 */
1935 info_p->access.submit_command(info_p, c);
1936 complete = pollcomplete(ctlr);
1937
1938 #ifdef CCISS_DEBUG
1939 printk(KERN_DEBUG "cciss: command completed\n");
1940 #endif /* CCISS_DEBUG */
1941
1942 if (complete != 1) {
1943 if ( (complete & CISS_ERROR_BIT)
1944 && (complete & ~CISS_ERROR_BIT) == c->busaddr)
1945 {
1946 /* if data overrun or underun on Report command
1947 ignore it
1948 */
1949 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
1950 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
1951 (c->Request.CDB[0] == CISS_INQUIRY)) &&
1952 ((c->err_info->CommandStatus ==
1953 CMD_DATA_OVERRUN) ||
1954 (c->err_info->CommandStatus ==
1955 CMD_DATA_UNDERRUN)
1956 ))
1957 {
1958 complete = c->busaddr;
1959 } else {
1960 if (c->err_info->CommandStatus ==
1961 CMD_UNSOLICITED_ABORT) {
1962 printk(KERN_WARNING "cciss%d: "
1963 "unsolicited abort %p\n",
1964 ctlr, c);
1965 if (c->retry_count < MAX_CMD_RETRIES) {
1966 printk(KERN_WARNING
1967 "cciss%d: retrying %p\n",
1968 ctlr, c);
1969 c->retry_count++;
1970 /* erase the old error */
1971 /* information */
1972 memset(c->err_info, 0,
1973 sizeof(ErrorInfo_struct));
1974 goto resend_cmd1;
1975 } else {
1976 printk(KERN_WARNING
1977 "cciss%d: retried %p too "
1978 "many times\n", ctlr, c);
1979 status = IO_ERROR;
1980 goto cleanup1;
1981 }
1982 }
1983 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1984 " Error %x \n", ctlr,
1985 c->err_info->CommandStatus);
1986 printk(KERN_WARNING "ciss ciss%d: sendcmd"
1987 " offensive info\n"
1988 " size %x\n num %x value %x\n", ctlr,
1989 c->err_info->MoreErrInfo.Invalid_Cmd.offense_size,
1990 c->err_info->MoreErrInfo.Invalid_Cmd.offense_num,
1991 c->err_info->MoreErrInfo.Invalid_Cmd.offense_value);
1992 status = IO_ERROR;
1993 goto cleanup1;
1994 }
1995 }
1996 if (complete != c->busaddr) {
1997 printk( KERN_WARNING "cciss cciss%d: SendCmd "
1998 "Invalid command list address returned! (%lx)\n",
1999 ctlr, complete);
2000 status = IO_ERROR;
2001 goto cleanup1;
2002 }
2003 } else {
2004 printk( KERN_WARNING
2005 "cciss cciss%d: SendCmd Timeout out, "
2006 "No command list address returned!\n",
2007 ctlr);
2008 status = IO_ERROR;
2009 }
2010
2011 cleanup1:
2012 /* unlock the data buffer from DMA */
2013 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2014 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2015 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2016 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2017 cmd_free(info_p, c, 1);
2018 return (status);
2019 }
2020 /*
2021 * Map (physical) PCI mem into (virtual) kernel space
2022 */
2023 static void __iomem *remap_pci_mem(ulong base, ulong size)
2024 {
2025 ulong page_base = ((ulong) base) & PAGE_MASK;
2026 ulong page_offs = ((ulong) base) - page_base;
2027 void __iomem *page_remapped = ioremap(page_base, page_offs+size);
2028
2029 return page_remapped ? (page_remapped + page_offs) : NULL;
2030 }
2031
2032 /*
2033 * Takes jobs of the Q and sends them to the hardware, then puts it on
2034 * the Q to wait for completion.
2035 */
2036 static void start_io( ctlr_info_t *h)
2037 {
2038 CommandList_struct *c;
2039
2040 while(( c = h->reqQ) != NULL )
2041 {
2042 /* can't do anything if fifo is full */
2043 if ((h->access.fifo_full(h))) {
2044 printk(KERN_WARNING "cciss: fifo full\n");
2045 break;
2046 }
2047
2048 /* Get the frist entry from the Request Q */
2049 removeQ(&(h->reqQ), c);
2050 h->Qdepth--;
2051
2052 /* Tell the controller execute command */
2053 h->access.submit_command(h, c);
2054
2055 /* Put job onto the completed Q */
2056 addQ (&(h->cmpQ), c);
2057 }
2058 }
2059
2060 static inline void complete_buffers(struct bio *bio, int status)
2061 {
2062 while (bio) {
2063 struct bio *xbh = bio->bi_next;
2064 int nr_sectors = bio_sectors(bio);
2065
2066 bio->bi_next = NULL;
2067 blk_finished_io(len);
2068 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
2069 bio = xbh;
2070 }
2071
2072 }
2073 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2074 /* Zeros out the error record and then resends the command back */
2075 /* to the controller */
2076 static inline void resend_cciss_cmd( ctlr_info_t *h, CommandList_struct *c)
2077 {
2078 /* erase the old error information */
2079 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2080
2081 /* add it to software queue and then send it to the controller */
2082 addQ(&(h->reqQ),c);
2083 h->Qdepth++;
2084 if(h->Qdepth > h->maxQsinceinit)
2085 h->maxQsinceinit = h->Qdepth;
2086
2087 start_io(h);
2088 }
2089 /* checks the status of the job and calls complete buffers to mark all
2090 * buffers for the completed job.
2091 */
2092 static inline void complete_command( ctlr_info_t *h, CommandList_struct *cmd,
2093 int timeout)
2094 {
2095 int status = 1;
2096 int i;
2097 int retry_cmd = 0;
2098 u64bit temp64;
2099
2100 if (timeout)
2101 status = 0;
2102
2103 if(cmd->err_info->CommandStatus != 0)
2104 { /* an error has occurred */
2105 switch(cmd->err_info->CommandStatus)
2106 {
2107 unsigned char sense_key;
2108 case CMD_TARGET_STATUS:
2109 status = 0;
2110
2111 if( cmd->err_info->ScsiStatus == 0x02)
2112 {
2113 printk(KERN_WARNING "cciss: cmd %p "
2114 "has CHECK CONDITION "
2115 " byte 2 = 0x%x\n", cmd,
2116 cmd->err_info->SenseInfo[2]
2117 );
2118 /* check the sense key */
2119 sense_key = 0xf &
2120 cmd->err_info->SenseInfo[2];
2121 /* no status or recovered error */
2122 if((sense_key == 0x0) ||
2123 (sense_key == 0x1))
2124 {
2125 status = 1;
2126 }
2127 } else
2128 {
2129 printk(KERN_WARNING "cciss: cmd %p "
2130 "has SCSI Status 0x%x\n",
2131 cmd, cmd->err_info->ScsiStatus);
2132 }
2133 break;
2134 case CMD_DATA_UNDERRUN:
2135 printk(KERN_WARNING "cciss: cmd %p has"
2136 " completed with data underrun "
2137 "reported\n", cmd);
2138 break;
2139 case CMD_DATA_OVERRUN:
2140 printk(KERN_WARNING "cciss: cmd %p has"
2141 " completed with data overrun "
2142 "reported\n", cmd);
2143 break;
2144 case CMD_INVALID:
2145 printk(KERN_WARNING "cciss: cmd %p is "
2146 "reported invalid\n", cmd);
2147 status = 0;
2148 break;
2149 case CMD_PROTOCOL_ERR:
2150 printk(KERN_WARNING "cciss: cmd %p has "
2151 "protocol error \n", cmd);
2152 status = 0;
2153 break;
2154 case CMD_HARDWARE_ERR:
2155 printk(KERN_WARNING "cciss: cmd %p had "
2156 " hardware error\n", cmd);
2157 status = 0;
2158 break;
2159 case CMD_CONNECTION_LOST:
2160 printk(KERN_WARNING "cciss: cmd %p had "
2161 "connection lost\n", cmd);
2162 status=0;
2163 break;
2164 case CMD_ABORTED:
2165 printk(KERN_WARNING "cciss: cmd %p was "
2166 "aborted\n", cmd);
2167 status=0;
2168 break;
2169 case CMD_ABORT_FAILED:
2170 printk(KERN_WARNING "cciss: cmd %p reports "
2171 "abort failed\n", cmd);
2172 status=0;
2173 break;
2174 case CMD_UNSOLICITED_ABORT:
2175 printk(KERN_WARNING "cciss%d: unsolicited "
2176 "abort %p\n", h->ctlr, cmd);
2177 if (cmd->retry_count < MAX_CMD_RETRIES) {
2178 retry_cmd=1;
2179 printk(KERN_WARNING
2180 "cciss%d: retrying %p\n",
2181 h->ctlr, cmd);
2182 cmd->retry_count++;
2183 } else
2184 printk(KERN_WARNING
2185 "cciss%d: %p retried too "
2186 "many times\n", h->ctlr, cmd);
2187 status=0;
2188 break;
2189 case CMD_TIMEOUT:
2190 printk(KERN_WARNING "cciss: cmd %p timedout\n",
2191 cmd);
2192 status=0;
2193 break;
2194 default:
2195 printk(KERN_WARNING "cciss: cmd %p returned "
2196 "unknown status %x\n", cmd,
2197 cmd->err_info->CommandStatus);
2198 status=0;
2199 }
2200 }
2201 /* We need to return this command */
2202 if(retry_cmd) {
2203 resend_cciss_cmd(h,cmd);
2204 return;
2205 }
2206 /* command did not need to be retried */
2207 /* unmap the DMA mapping for all the scatter gather elements */
2208 for(i=0; i<cmd->Header.SGList; i++) {
2209 temp64.val32.lower = cmd->SG[i].Addr.lower;
2210 temp64.val32.upper = cmd->SG[i].Addr.upper;
2211 pci_unmap_page(hba[cmd->ctlr]->pdev,
2212 temp64.val, cmd->SG[i].Len,
2213 (cmd->Request.Type.Direction == XFER_READ) ?
2214 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
2215 }
2216 complete_buffers(cmd->rq->bio, status);
2217
2218 #ifdef CCISS_DEBUG
2219 printk("Done with %p\n", cmd->rq);
2220 #endif /* CCISS_DEBUG */
2221
2222 end_that_request_last(cmd->rq);
2223 cmd_free(h,cmd,1);
2224 }
2225
2226 /*
2227 * Get a request and submit it to the controller.
2228 */
2229 static void do_cciss_request(request_queue_t *q)
2230 {
2231 ctlr_info_t *h= q->queuedata;
2232 CommandList_struct *c;
2233 int start_blk, seg;
2234 struct request *creq;
2235 u64bit temp64;
2236 struct scatterlist tmp_sg[MAXSGENTRIES];
2237 drive_info_struct *drv;
2238 int i, dir;
2239
2240 /* We call start_io here in case there is a command waiting on the
2241 * queue that has not been sent.
2242 */
2243 if (blk_queue_plugged(q))
2244 goto startio;
2245
2246 queue:
2247 creq = elv_next_request(q);
2248 if (!creq)
2249 goto startio;
2250
2251 if (creq->nr_phys_segments > MAXSGENTRIES)
2252 BUG();
2253
2254 if (( c = cmd_alloc(h, 1)) == NULL)
2255 goto full;
2256
2257 blkdev_dequeue_request(creq);
2258
2259 spin_unlock_irq(q->queue_lock);
2260
2261 c->cmd_type = CMD_RWREQ;
2262 c->rq = creq;
2263
2264 /* fill in the request */
2265 drv = creq->rq_disk->private_data;
2266 c->Header.ReplyQueue = 0; // unused in simple mode
2267 /* got command from pool, so use the command block index instead */
2268 /* for direct lookups. */
2269 /* The first 2 bits are reserved for controller error reporting. */
2270 c->Header.Tag.lower = (c->cmdindex << 3);
2271 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2272 c->Header.LUN.LogDev.VolId= drv->LunID;
2273 c->Header.LUN.LogDev.Mode = 1;
2274 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2275 c->Request.Type.Type = TYPE_CMD; // It is a command.
2276 c->Request.Type.Attribute = ATTR_SIMPLE;
2277 c->Request.Type.Direction =
2278 (rq_data_dir(creq) == READ) ? XFER_READ: XFER_WRITE;
2279 c->Request.Timeout = 0; // Don't time out
2280 c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? CCISS_READ : CCISS_WRITE;
2281 start_blk = creq->sector;
2282 #ifdef CCISS_DEBUG
2283 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",(int) creq->sector,
2284 (int) creq->nr_sectors);
2285 #endif /* CCISS_DEBUG */
2286
2287 seg = blk_rq_map_sg(q, creq, tmp_sg);
2288
2289 /* get the DMA records for the setup */
2290 if (c->Request.Type.Direction == XFER_READ)
2291 dir = PCI_DMA_FROMDEVICE;
2292 else
2293 dir = PCI_DMA_TODEVICE;
2294
2295 for (i=0; i<seg; i++)
2296 {
2297 c->SG[i].Len = tmp_sg[i].length;
2298 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2299 tmp_sg[i].offset, tmp_sg[i].length,
2300 dir);
2301 c->SG[i].Addr.lower = temp64.val32.lower;
2302 c->SG[i].Addr.upper = temp64.val32.upper;
2303 c->SG[i].Ext = 0; // we are not chaining
2304 }
2305 /* track how many SG entries we are using */
2306 if( seg > h->maxSG)
2307 h->maxSG = seg;
2308
2309 #ifdef CCISS_DEBUG
2310 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n", creq->nr_sectors, seg);
2311 #endif /* CCISS_DEBUG */
2312
2313 c->Header.SGList = c->Header.SGTotal = seg;
2314 c->Request.CDB[1]= 0;
2315 c->Request.CDB[2]= (start_blk >> 24) & 0xff; //MSB
2316 c->Request.CDB[3]= (start_blk >> 16) & 0xff;
2317 c->Request.CDB[4]= (start_blk >> 8) & 0xff;
2318 c->Request.CDB[5]= start_blk & 0xff;
2319 c->Request.CDB[6]= 0; // (sect >> 24) & 0xff; MSB
2320 c->Request.CDB[7]= (creq->nr_sectors >> 8) & 0xff;
2321 c->Request.CDB[8]= creq->nr_sectors & 0xff;
2322 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2323
2324 spin_lock_irq(q->queue_lock);
2325
2326 addQ(&(h->reqQ),c);
2327 h->Qdepth++;
2328 if(h->Qdepth > h->maxQsinceinit)
2329 h->maxQsinceinit = h->Qdepth;
2330
2331 goto queue;
2332 full:
2333 blk_stop_queue(q);
2334 startio:
2335 /* We will already have the driver lock here so not need
2336 * to lock it.
2337 */
2338 start_io(h);
2339 }
2340
2341 static irqreturn_t do_cciss_intr(int irq, void *dev_id, struct pt_regs *regs)
2342 {
2343 ctlr_info_t *h = dev_id;
2344 CommandList_struct *c;
2345 unsigned long flags;
2346 __u32 a, a1, a2;
2347 int j;
2348 int start_queue = h->next_to_run;
2349
2350 /* Is this interrupt for us? */
2351 if (( h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))
2352 return IRQ_NONE;
2353
2354 /*
2355 * If there are completed commands in the completion queue,
2356 * we had better do something about it.
2357 */
2358 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2359 while( h->access.intr_pending(h))
2360 {
2361 while((a = h->access.command_completed(h)) != FIFO_EMPTY)
2362 {
2363 a1 = a;
2364 if ((a & 0x04)) {
2365 a2 = (a >> 3);
2366 if (a2 >= NR_CMDS) {
2367 printk(KERN_WARNING "cciss: controller cciss%d failed, stopping.\n", h->ctlr);
2368 fail_all_cmds(h->ctlr);
2369 return IRQ_HANDLED;
2370 }
2371
2372 c = h->cmd_pool + a2;
2373 a = c->busaddr;
2374
2375 } else {
2376 a &= ~3;
2377 if ((c = h->cmpQ) == NULL) {
2378 printk(KERN_WARNING "cciss: Completion of %08x ignored\n", a1);
2379 continue;
2380 }
2381 while(c->busaddr != a) {
2382 c = c->next;
2383 if (c == h->cmpQ)
2384 break;
2385 }
2386 }
2387 /*
2388 * If we've found the command, take it off the
2389 * completion Q and free it
2390 */
2391 if (c->busaddr == a) {
2392 removeQ(&h->cmpQ, c);
2393 if (c->cmd_type == CMD_RWREQ) {
2394 complete_command(h, c, 0);
2395 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2396 complete(c->waiting);
2397 }
2398 # ifdef CONFIG_CISS_SCSI_TAPE
2399 else if (c->cmd_type == CMD_SCSI)
2400 complete_scsi_command(c, 0, a1);
2401 # endif
2402 continue;
2403 }
2404 }
2405 }
2406
2407 /* check to see if we have maxed out the number of commands that can
2408 * be placed on the queue. If so then exit. We do this check here
2409 * in case the interrupt we serviced was from an ioctl and did not
2410 * free any new commands.
2411 */
2412 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2413 goto cleanup;
2414
2415 /* We have room on the queue for more commands. Now we need to queue
2416 * them up. We will also keep track of the next queue to run so
2417 * that every queue gets a chance to be started first.
2418 */
2419 for (j=0; j < h->highest_lun + 1; j++){
2420 int curr_queue = (start_queue + j) % (h->highest_lun + 1);
2421 /* make sure the disk has been added and the drive is real
2422 * because this can be called from the middle of init_one.
2423 */
2424 if(!(h->drv[curr_queue].queue) ||
2425 !(h->drv[curr_queue].heads))
2426 continue;
2427 blk_start_queue(h->gendisk[curr_queue]->queue);
2428
2429 /* check to see if we have maxed out the number of commands
2430 * that can be placed on the queue.
2431 */
2432 if ((find_first_zero_bit(h->cmd_pool_bits, NR_CMDS)) == NR_CMDS)
2433 {
2434 if (curr_queue == start_queue){
2435 h->next_to_run = (start_queue + 1) % (h->highest_lun + 1);
2436 goto cleanup;
2437 } else {
2438 h->next_to_run = curr_queue;
2439 goto cleanup;
2440 }
2441 } else {
2442 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
2443 }
2444 }
2445
2446 cleanup:
2447 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2448 return IRQ_HANDLED;
2449 }
2450 /*
2451 * We cannot read the structure directly, for portablity we must use
2452 * the io functions.
2453 * This is for debug only.
2454 */
2455 #ifdef CCISS_DEBUG
2456 static void print_cfg_table( CfgTable_struct *tb)
2457 {
2458 int i;
2459 char temp_name[17];
2460
2461 printk("Controller Configuration information\n");
2462 printk("------------------------------------\n");
2463 for(i=0;i<4;i++)
2464 temp_name[i] = readb(&(tb->Signature[i]));
2465 temp_name[4]='\0';
2466 printk(" Signature = %s\n", temp_name);
2467 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2468 printk(" Transport methods supported = 0x%x\n",
2469 readl(&(tb-> TransportSupport)));
2470 printk(" Transport methods active = 0x%x\n",
2471 readl(&(tb->TransportActive)));
2472 printk(" Requested transport Method = 0x%x\n",
2473 readl(&(tb->HostWrite.TransportRequest)));
2474 printk(" Coalese Interrupt Delay = 0x%x\n",
2475 readl(&(tb->HostWrite.CoalIntDelay)));
2476 printk(" Coalese Interrupt Count = 0x%x\n",
2477 readl(&(tb->HostWrite.CoalIntCount)));
2478 printk(" Max outstanding commands = 0x%d\n",
2479 readl(&(tb->CmdsOutMax)));
2480 printk(" Bus Types = 0x%x\n", readl(&(tb-> BusTypes)));
2481 for(i=0;i<16;i++)
2482 temp_name[i] = readb(&(tb->ServerName[i]));
2483 temp_name[16] = '\0';
2484 printk(" Server Name = %s\n", temp_name);
2485 printk(" Heartbeat Counter = 0x%x\n\n\n",
2486 readl(&(tb->HeartBeat)));
2487 }
2488 #endif /* CCISS_DEBUG */
2489
2490 static void release_io_mem(ctlr_info_t *c)
2491 {
2492 /* if IO mem was not protected do nothing */
2493 if( c->io_mem_addr == 0)
2494 return;
2495 release_region(c->io_mem_addr, c->io_mem_length);
2496 c->io_mem_addr = 0;
2497 c->io_mem_length = 0;
2498 }
2499
2500 static int find_PCI_BAR_index(struct pci_dev *pdev,
2501 unsigned long pci_bar_addr)
2502 {
2503 int i, offset, mem_type, bar_type;
2504 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2505 return 0;
2506 offset = 0;
2507 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2508 bar_type = pci_resource_flags(pdev, i) &
2509 PCI_BASE_ADDRESS_SPACE;
2510 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2511 offset += 4;
2512 else {
2513 mem_type = pci_resource_flags(pdev, i) &
2514 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2515 switch (mem_type) {
2516 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2517 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2518 offset += 4; /* 32 bit */
2519 break;
2520 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2521 offset += 8;
2522 break;
2523 default: /* reserved in PCI 2.2 */
2524 printk(KERN_WARNING "Base address is invalid\n");
2525 return -1;
2526 break;
2527 }
2528 }
2529 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2530 return i+1;
2531 }
2532 return -1;
2533 }
2534
2535 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2536 {
2537 ushort subsystem_vendor_id, subsystem_device_id, command;
2538 __u32 board_id, scratchpad = 0;
2539 __u64 cfg_offset;
2540 __u32 cfg_base_addr;
2541 __u64 cfg_base_addr_index;
2542 int i;
2543
2544 /* check to see if controller has been disabled */
2545 /* BEFORE trying to enable it */
2546 (void) pci_read_config_word(pdev, PCI_COMMAND,&command);
2547 if(!(command & 0x02))
2548 {
2549 printk(KERN_WARNING "cciss: controller appears to be disabled\n");
2550 return(-1);
2551 }
2552
2553 if (pci_enable_device(pdev))
2554 {
2555 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2556 return( -1);
2557 }
2558
2559 subsystem_vendor_id = pdev->subsystem_vendor;
2560 subsystem_device_id = pdev->subsystem_device;
2561 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2562 subsystem_vendor_id);
2563
2564 /* search for our IO range so we can protect it */
2565 for(i=0; i<DEVICE_COUNT_RESOURCE; i++)
2566 {
2567 /* is this an IO range */
2568 if( pci_resource_flags(pdev, i) & 0x01 ) {
2569 c->io_mem_addr = pci_resource_start(pdev, i);
2570 c->io_mem_length = pci_resource_end(pdev, i) -
2571 pci_resource_start(pdev, i) +1;
2572 #ifdef CCISS_DEBUG
2573 printk("IO value found base_addr[%d] %lx %lx\n", i,
2574 c->io_mem_addr, c->io_mem_length);
2575 #endif /* CCISS_DEBUG */
2576 /* register the IO range */
2577 if(!request_region( c->io_mem_addr,
2578 c->io_mem_length, "cciss"))
2579 {
2580 printk(KERN_WARNING "cciss I/O memory range already in use addr=%lx length=%ld\n",
2581 c->io_mem_addr, c->io_mem_length);
2582 c->io_mem_addr= 0;
2583 c->io_mem_length = 0;
2584 }
2585 break;
2586 }
2587 }
2588
2589 #ifdef CCISS_DEBUG
2590 printk("command = %x\n", command);
2591 printk("irq = %x\n", pdev->irq);
2592 printk("board_id = %x\n", board_id);
2593 #endif /* CCISS_DEBUG */
2594
2595 c->intr = pdev->irq;
2596
2597 /*
2598 * Memory base addr is first addr , the second points to the config
2599 * table
2600 */
2601
2602 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2603 #ifdef CCISS_DEBUG
2604 printk("address 0 = %x\n", c->paddr);
2605 #endif /* CCISS_DEBUG */
2606 c->vaddr = remap_pci_mem(c->paddr, 200);
2607
2608 /* Wait for the board to become ready. (PCI hotplug needs this.)
2609 * We poll for up to 120 secs, once per 100ms. */
2610 for (i=0; i < 1200; i++) {
2611 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2612 if (scratchpad == CCISS_FIRMWARE_READY)
2613 break;
2614 set_current_state(TASK_INTERRUPTIBLE);
2615 schedule_timeout(HZ / 10); /* wait 100ms */
2616 }
2617 if (scratchpad != CCISS_FIRMWARE_READY) {
2618 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2619 return -1;
2620 }
2621
2622 /* get the address index number */
2623 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2624 cfg_base_addr &= (__u32) 0x0000ffff;
2625 #ifdef CCISS_DEBUG
2626 printk("cfg base address = %x\n", cfg_base_addr);
2627 #endif /* CCISS_DEBUG */
2628 cfg_base_addr_index =
2629 find_PCI_BAR_index(pdev, cfg_base_addr);
2630 #ifdef CCISS_DEBUG
2631 printk("cfg base address index = %x\n", cfg_base_addr_index);
2632 #endif /* CCISS_DEBUG */
2633 if (cfg_base_addr_index == -1) {
2634 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2635 release_io_mem(c);
2636 return -1;
2637 }
2638
2639 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2640 #ifdef CCISS_DEBUG
2641 printk("cfg offset = %x\n", cfg_offset);
2642 #endif /* CCISS_DEBUG */
2643 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2644 cfg_base_addr_index) + cfg_offset,
2645 sizeof(CfgTable_struct));
2646 c->board_id = board_id;
2647
2648 #ifdef CCISS_DEBUG
2649 print_cfg_table(c->cfgtable);
2650 #endif /* CCISS_DEBUG */
2651
2652 for(i=0; i<NR_PRODUCTS; i++) {
2653 if (board_id == products[i].board_id) {
2654 c->product_name = products[i].product_name;
2655 c->access = *(products[i].access);
2656 break;
2657 }
2658 }
2659 if (i == NR_PRODUCTS) {
2660 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2661 " to access the Smart Array controller %08lx\n",
2662 (unsigned long)board_id);
2663 return -1;
2664 }
2665 if ( (readb(&c->cfgtable->Signature[0]) != 'C') ||
2666 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2667 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2668 (readb(&c->cfgtable->Signature[3]) != 'S') )
2669 {
2670 printk("Does not appear to be a valid CISS config table\n");
2671 return -1;
2672 }
2673
2674 #ifdef CONFIG_X86
2675 {
2676 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2677 __u32 prefetch;
2678 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2679 prefetch |= 0x100;
2680 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2681 }
2682 #endif
2683
2684 #ifdef CCISS_DEBUG
2685 printk("Trying to put board into Simple mode\n");
2686 #endif /* CCISS_DEBUG */
2687 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2688 /* Update the field, and then ring the doorbell */
2689 writel( CFGTBL_Trans_Simple,
2690 &(c->cfgtable->HostWrite.TransportRequest));
2691 writel( CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2692
2693 /* under certain very rare conditions, this can take awhile.
2694 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2695 * as we enter this code.) */
2696 for(i=0;i<MAX_CONFIG_WAIT;i++) {
2697 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2698 break;
2699 /* delay and try again */
2700 set_current_state(TASK_INTERRUPTIBLE);
2701 schedule_timeout(10);
2702 }
2703
2704 #ifdef CCISS_DEBUG
2705 printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL));
2706 #endif /* CCISS_DEBUG */
2707 #ifdef CCISS_DEBUG
2708 print_cfg_table(c->cfgtable);
2709 #endif /* CCISS_DEBUG */
2710
2711 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
2712 {
2713 printk(KERN_WARNING "cciss: unable to get board into"
2714 " simple mode\n");
2715 return -1;
2716 }
2717 return 0;
2718
2719 }
2720
2721 /*
2722 * Gets information about the local volumes attached to the controller.
2723 */
2724 static void cciss_getgeometry(int cntl_num)
2725 {
2726 ReportLunData_struct *ld_buff;
2727 ReadCapdata_struct *size_buff;
2728 InquiryData_struct *inq_buff;
2729 int return_code;
2730 int i;
2731 int listlength = 0;
2732 __u32 lunid = 0;
2733 int block_size;
2734 int total_size;
2735
2736 ld_buff = kmalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2737 if (ld_buff == NULL)
2738 {
2739 printk(KERN_ERR "cciss: out of memory\n");
2740 return;
2741 }
2742 memset(ld_buff, 0, sizeof(ReportLunData_struct));
2743 size_buff = kmalloc(sizeof( ReadCapdata_struct), GFP_KERNEL);
2744 if (size_buff == NULL)
2745 {
2746 printk(KERN_ERR "cciss: out of memory\n");
2747 kfree(ld_buff);
2748 return;
2749 }
2750 inq_buff = kmalloc(sizeof( InquiryData_struct), GFP_KERNEL);
2751 if (inq_buff == NULL)
2752 {
2753 printk(KERN_ERR "cciss: out of memory\n");
2754 kfree(ld_buff);
2755 kfree(size_buff);
2756 return;
2757 }
2758 /* Get the firmware version */
2759 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
2760 sizeof(InquiryData_struct), 0, 0 ,0, NULL, TYPE_CMD);
2761 if (return_code == IO_OK)
2762 {
2763 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
2764 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
2765 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
2766 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
2767 } else /* send command failed */
2768 {
2769 printk(KERN_WARNING "cciss: unable to determine firmware"
2770 " version of controller\n");
2771 }
2772 /* Get the number of logical volumes */
2773 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
2774 sizeof(ReportLunData_struct), 0, 0, 0, NULL, TYPE_CMD);
2775
2776 if( return_code == IO_OK)
2777 {
2778 #ifdef CCISS_DEBUG
2779 printk("LUN Data\n--------------------------\n");
2780 #endif /* CCISS_DEBUG */
2781
2782 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
2783 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
2784 listlength |= (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
2785 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
2786 } else /* reading number of logical volumes failed */
2787 {
2788 printk(KERN_WARNING "cciss: report logical volume"
2789 " command failed\n");
2790 listlength = 0;
2791 }
2792 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
2793 if (hba[cntl_num]->num_luns > CISS_MAX_LUN)
2794 {
2795 printk(KERN_ERR "ciss: only %d number of logical volumes supported\n",
2796 CISS_MAX_LUN);
2797 hba[cntl_num]->num_luns = CISS_MAX_LUN;
2798 }
2799 #ifdef CCISS_DEBUG
2800 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n", ld_buff->LUNListLength[0],
2801 ld_buff->LUNListLength[1], ld_buff->LUNListLength[2],
2802 ld_buff->LUNListLength[3], hba[cntl_num]->num_luns);
2803 #endif /* CCISS_DEBUG */
2804
2805 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns-1;
2806 // for(i=0; i< hba[cntl_num]->num_luns; i++)
2807 for(i=0; i < CISS_MAX_LUN; i++)
2808 {
2809 if (i < hba[cntl_num]->num_luns){
2810 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
2811 << 24;
2812 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
2813 << 16;
2814 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
2815 << 8;
2816 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
2817
2818 hba[cntl_num]->drv[i].LunID = lunid;
2819
2820
2821 #ifdef CCISS_DEBUG
2822 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
2823 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
2824 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
2825 hba[cntl_num]->drv[i].LunID);
2826 #endif /* CCISS_DEBUG */
2827 cciss_read_capacity(cntl_num, i, size_buff, 0,
2828 &total_size, &block_size);
2829 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
2830 block_size, inq_buff, &hba[cntl_num]->drv[i]);
2831 } else {
2832 /* initialize raid_level to indicate a free space */
2833 hba[cntl_num]->drv[i].raid_level = -1;
2834 }
2835 }
2836 kfree(ld_buff);
2837 kfree(size_buff);
2838 kfree(inq_buff);
2839 }
2840
2841 /* Function to find the first free pointer into our hba[] array */
2842 /* Returns -1 if no free entries are left. */
2843 static int alloc_cciss_hba(void)
2844 {
2845 struct gendisk *disk[NWD];
2846 int i, n;
2847 for (n = 0; n < NWD; n++) {
2848 disk[n] = alloc_disk(1 << NWD_SHIFT);
2849 if (!disk[n])
2850 goto out;
2851 }
2852
2853 for(i=0; i< MAX_CTLR; i++) {
2854 if (!hba[i]) {
2855 ctlr_info_t *p;
2856 p = kmalloc(sizeof(ctlr_info_t), GFP_KERNEL);
2857 if (!p)
2858 goto Enomem;
2859 memset(p, 0, sizeof(ctlr_info_t));
2860 for (n = 0; n < NWD; n++)
2861 p->gendisk[n] = disk[n];
2862 hba[i] = p;
2863 return i;
2864 }
2865 }
2866 printk(KERN_WARNING "cciss: This driver supports a maximum"
2867 " of %d controllers.\n", MAX_CTLR);
2868 goto out;
2869 Enomem:
2870 printk(KERN_ERR "cciss: out of memory.\n");
2871 out:
2872 while (n--)
2873 put_disk(disk[n]);
2874 return -1;
2875 }
2876
2877 static void free_hba(int i)
2878 {
2879 ctlr_info_t *p = hba[i];
2880 int n;
2881
2882 hba[i] = NULL;
2883 for (n = 0; n < NWD; n++)
2884 put_disk(p->gendisk[n]);
2885 kfree(p);
2886 }
2887
2888 /*
2889 * This is it. Find all the controllers and register them. I really hate
2890 * stealing all these major device numbers.
2891 * returns the number of block devices registered.
2892 */
2893 static int __devinit cciss_init_one(struct pci_dev *pdev,
2894 const struct pci_device_id *ent)
2895 {
2896 request_queue_t *q;
2897 int i;
2898 int j;
2899 int rc;
2900
2901 printk(KERN_DEBUG "cciss: Device 0x%x has been found at"
2902 " bus %d dev %d func %d\n",
2903 pdev->device, pdev->bus->number, PCI_SLOT(pdev->devfn),
2904 PCI_FUNC(pdev->devfn));
2905 i = alloc_cciss_hba();
2906 if(i < 0)
2907 return (-1);
2908
2909 hba[i]->busy_initializing = 1;
2910
2911 if (cciss_pci_init(hba[i], pdev) != 0)
2912 goto clean1;
2913
2914 sprintf(hba[i]->devname, "cciss%d", i);
2915 hba[i]->ctlr = i;
2916 hba[i]->pdev = pdev;
2917
2918 /* configure PCI DMA stuff */
2919 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
2920 printk("cciss: using DAC cycles\n");
2921 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
2922 printk("cciss: not using DAC cycles\n");
2923 else {
2924 printk("cciss: no suitable DMA available\n");
2925 goto clean1;
2926 }
2927
2928 /*
2929 * register with the major number, or get a dynamic major number
2930 * by passing 0 as argument. This is done for greater than
2931 * 8 controller support.
2932 */
2933 if (i < MAX_CTLR_ORIG)
2934 hba[i]->major = MAJOR_NR + i;
2935 rc = register_blkdev(hba[i]->major, hba[i]->devname);
2936 if(rc == -EBUSY || rc == -EINVAL) {
2937 printk(KERN_ERR
2938 "cciss: Unable to get major number %d for %s "
2939 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
2940 goto clean1;
2941 }
2942 else {
2943 if (i >= MAX_CTLR_ORIG)
2944 hba[i]->major = rc;
2945 }
2946
2947 /* make sure the board interrupts are off */
2948 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
2949 if( request_irq(hba[i]->intr, do_cciss_intr,
2950 SA_INTERRUPT | SA_SHIRQ | SA_SAMPLE_RANDOM,
2951 hba[i]->devname, hba[i])) {
2952 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
2953 hba[i]->intr, hba[i]->devname);
2954 goto clean2;
2955 }
2956 hba[i]->cmd_pool_bits = kmalloc(((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long), GFP_KERNEL);
2957 hba[i]->cmd_pool = (CommandList_struct *)pci_alloc_consistent(
2958 hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
2959 &(hba[i]->cmd_pool_dhandle));
2960 hba[i]->errinfo_pool = (ErrorInfo_struct *)pci_alloc_consistent(
2961 hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
2962 &(hba[i]->errinfo_pool_dhandle));
2963 if((hba[i]->cmd_pool_bits == NULL)
2964 || (hba[i]->cmd_pool == NULL)
2965 || (hba[i]->errinfo_pool == NULL)) {
2966 printk( KERN_ERR "cciss: out of memory");
2967 goto clean4;
2968 }
2969
2970 spin_lock_init(&hba[i]->lock);
2971
2972 /* Initialize the pdev driver private data.
2973 have it point to hba[i]. */
2974 pci_set_drvdata(pdev, hba[i]);
2975 /* command and error info recs zeroed out before
2976 they are used */
2977 memset(hba[i]->cmd_pool_bits, 0, ((NR_CMDS+BITS_PER_LONG-1)/BITS_PER_LONG)*sizeof(unsigned long));
2978
2979 #ifdef CCISS_DEBUG
2980 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n",i);
2981 #endif /* CCISS_DEBUG */
2982
2983 cciss_getgeometry(i);
2984
2985 cciss_scsi_setup(i);
2986
2987 /* Turn the interrupts on so we can service requests */
2988 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
2989
2990 cciss_procinit(i);
2991 hba[i]->busy_initializing = 0;
2992
2993 for(j=0; j < NWD; j++) { /* mfm */
2994 drive_info_struct *drv = &(hba[i]->drv[j]);
2995 struct gendisk *disk = hba[i]->gendisk[j];
2996
2997 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
2998 if (!q) {
2999 printk(KERN_ERR
3000 "cciss: unable to allocate queue for disk %d\n",
3001 j);
3002 break;
3003 }
3004 drv->queue = q;
3005
3006 q->backing_dev_info.ra_pages = READ_AHEAD;
3007 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3008
3009 /* This is a hardware imposed limit. */
3010 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3011
3012 /* This is a limit in the driver and could be eliminated. */
3013 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3014
3015 blk_queue_max_sectors(q, 512);
3016
3017 q->queuedata = hba[i];
3018 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3019 sprintf(disk->devfs_name, "cciss/host%d/target%d", i, j);
3020 disk->major = hba[i]->major;
3021 disk->first_minor = j << NWD_SHIFT;
3022 disk->fops = &cciss_fops;
3023 disk->queue = q;
3024 disk->private_data = drv;
3025 /* we must register the controller even if no disks exist */
3026 /* this is for the online array utilities */
3027 if(!drv->heads && j)
3028 continue;
3029 blk_queue_hardsect_size(q, drv->block_size);
3030 set_capacity(disk, drv->nr_blocks);
3031 add_disk(disk);
3032 }
3033
3034 return(1);
3035
3036 clean4:
3037 if(hba[i]->cmd_pool_bits)
3038 kfree(hba[i]->cmd_pool_bits);
3039 if(hba[i]->cmd_pool)
3040 pci_free_consistent(hba[i]->pdev,
3041 NR_CMDS * sizeof(CommandList_struct),
3042 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3043 if(hba[i]->errinfo_pool)
3044 pci_free_consistent(hba[i]->pdev,
3045 NR_CMDS * sizeof( ErrorInfo_struct),
3046 hba[i]->errinfo_pool,
3047 hba[i]->errinfo_pool_dhandle);
3048 free_irq(hba[i]->intr, hba[i]);
3049 clean2:
3050 unregister_blkdev(hba[i]->major, hba[i]->devname);
3051 clean1:
3052 release_io_mem(hba[i]);
3053 free_hba(i);
3054 hba[i]->busy_initializing = 0;
3055 return(-1);
3056 }
3057
3058 static void __devexit cciss_remove_one (struct pci_dev *pdev)
3059 {
3060 ctlr_info_t *tmp_ptr;
3061 int i, j;
3062 char flush_buf[4];
3063 int return_code;
3064
3065 if (pci_get_drvdata(pdev) == NULL)
3066 {
3067 printk( KERN_ERR "cciss: Unable to remove device \n");
3068 return;
3069 }
3070 tmp_ptr = pci_get_drvdata(pdev);
3071 i = tmp_ptr->ctlr;
3072 if (hba[i] == NULL)
3073 {
3074 printk(KERN_ERR "cciss: device appears to "
3075 "already be removed \n");
3076 return;
3077 }
3078 /* Turn board interrupts off and send the flush cache command */
3079 /* sendcmd will turn off interrupt, and send the flush...
3080 * To write all data in the battery backed cache to disks */
3081 memset(flush_buf, 0, 4);
3082 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3083 TYPE_CMD);
3084 if(return_code != IO_OK)
3085 {
3086 printk(KERN_WARNING "Error Flushing cache on controller %d\n",
3087 i);
3088 }
3089 free_irq(hba[i]->intr, hba[i]);
3090 pci_set_drvdata(pdev, NULL);
3091 iounmap(hba[i]->vaddr);
3092 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3093 unregister_blkdev(hba[i]->major, hba[i]->devname);
3094 remove_proc_entry(hba[i]->devname, proc_cciss);
3095
3096 /* remove it from the disk list */
3097 for (j = 0; j < NWD; j++) {
3098 struct gendisk *disk = hba[i]->gendisk[j];
3099 if (disk->flags & GENHD_FL_UP) {
3100 del_gendisk(disk);
3101 blk_cleanup_queue(disk->queue);
3102 }
3103 }
3104
3105 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof(CommandList_struct),
3106 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3107 pci_free_consistent(hba[i]->pdev, NR_CMDS * sizeof( ErrorInfo_struct),
3108 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3109 kfree(hba[i]->cmd_pool_bits);
3110 release_io_mem(hba[i]);
3111 free_hba(i);
3112 }
3113
3114 static struct pci_driver cciss_pci_driver = {
3115 .name = "cciss",
3116 .probe = cciss_init_one,
3117 .remove = __devexit_p(cciss_remove_one),
3118 .id_table = cciss_pci_device_id, /* id_table */
3119 };
3120
3121 /*
3122 * This is it. Register the PCI driver information for the cards we control
3123 * the OS will call our registered routines when it finds one of our cards.
3124 */
3125 static int __init cciss_init(void)
3126 {
3127 printk(KERN_INFO DRIVER_NAME "\n");
3128
3129 /* Register for our PCI devices */
3130 return pci_module_init(&cciss_pci_driver);
3131 }
3132
3133 static void __exit cciss_cleanup(void)
3134 {
3135 int i;
3136
3137 pci_unregister_driver(&cciss_pci_driver);
3138 /* double check that all controller entrys have been removed */
3139 for (i=0; i< MAX_CTLR; i++)
3140 {
3141 if (hba[i] != NULL)
3142 {
3143 printk(KERN_WARNING "cciss: had to remove"
3144 " controller %d\n", i);
3145 cciss_remove_one(hba[i]->pdev);
3146 }
3147 }
3148 remove_proc_entry("cciss", proc_root_driver);
3149 }
3150
3151 static void fail_all_cmds(unsigned long ctlr)
3152 {
3153 /* If we get here, the board is apparently dead. */
3154 ctlr_info_t *h = hba[ctlr];
3155 CommandList_struct *c;
3156 unsigned long flags;
3157
3158 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3159 h->alive = 0; /* the controller apparently died... */
3160
3161 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3162
3163 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3164
3165 /* move everything off the request queue onto the completed queue */
3166 while( (c = h->reqQ) != NULL ) {
3167 removeQ(&(h->reqQ), c);
3168 h->Qdepth--;
3169 addQ (&(h->cmpQ), c);
3170 }
3171
3172 /* Now, fail everything on the completed queue with a HW error */
3173 while( (c = h->cmpQ) != NULL ) {
3174 removeQ(&h->cmpQ, c);
3175 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3176 if (c->cmd_type == CMD_RWREQ) {
3177 complete_command(h, c, 0);
3178 } else if (c->cmd_type == CMD_IOCTL_PEND)
3179 complete(c->waiting);
3180 #ifdef CONFIG_CISS_SCSI_TAPE
3181 else if (c->cmd_type == CMD_SCSI)
3182 complete_scsi_command(c, 0, 0);
3183 #endif
3184 }
3185 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3186 return;
3187 }
3188
3189 module_init(cciss_init);
3190 module_exit(cciss_cleanup);