Merge branches 'fixes' and 'mmci' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <linux/cpuidle.h>
32 #include "../base.h"
33 #include "power.h"
34
35 typedef int (*pm_callback_t)(struct device *);
36
37 /*
38 * The entries in the dpm_list list are in a depth first order, simply
39 * because children are guaranteed to be discovered after parents, and
40 * are inserted at the back of the list on discovery.
41 *
42 * Since device_pm_add() may be called with a device lock held,
43 * we must never try to acquire a device lock while holding
44 * dpm_list_mutex.
45 */
46
47 LIST_HEAD(dpm_list);
48 static LIST_HEAD(dpm_prepared_list);
49 static LIST_HEAD(dpm_suspended_list);
50 static LIST_HEAD(dpm_late_early_list);
51 static LIST_HEAD(dpm_noirq_list);
52
53 struct suspend_stats suspend_stats;
54 static DEFINE_MUTEX(dpm_list_mtx);
55 static pm_message_t pm_transition;
56
57 static int async_error;
58
59 /**
60 * device_pm_sleep_init - Initialize system suspend-related device fields.
61 * @dev: Device object being initialized.
62 */
63 void device_pm_sleep_init(struct device *dev)
64 {
65 dev->power.is_prepared = false;
66 dev->power.is_suspended = false;
67 init_completion(&dev->power.completion);
68 complete_all(&dev->power.completion);
69 dev->power.wakeup = NULL;
70 INIT_LIST_HEAD(&dev->power.entry);
71 }
72
73 /**
74 * device_pm_lock - Lock the list of active devices used by the PM core.
75 */
76 void device_pm_lock(void)
77 {
78 mutex_lock(&dpm_list_mtx);
79 }
80
81 /**
82 * device_pm_unlock - Unlock the list of active devices used by the PM core.
83 */
84 void device_pm_unlock(void)
85 {
86 mutex_unlock(&dpm_list_mtx);
87 }
88
89 /**
90 * device_pm_add - Add a device to the PM core's list of active devices.
91 * @dev: Device to add to the list.
92 */
93 void device_pm_add(struct device *dev)
94 {
95 pr_debug("PM: Adding info for %s:%s\n",
96 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
97 mutex_lock(&dpm_list_mtx);
98 if (dev->parent && dev->parent->power.is_prepared)
99 dev_warn(dev, "parent %s should not be sleeping\n",
100 dev_name(dev->parent));
101 list_add_tail(&dev->power.entry, &dpm_list);
102 dev_pm_qos_constraints_init(dev);
103 mutex_unlock(&dpm_list_mtx);
104 }
105
106 /**
107 * device_pm_remove - Remove a device from the PM core's list of active devices.
108 * @dev: Device to be removed from the list.
109 */
110 void device_pm_remove(struct device *dev)
111 {
112 pr_debug("PM: Removing info for %s:%s\n",
113 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
114 complete_all(&dev->power.completion);
115 mutex_lock(&dpm_list_mtx);
116 dev_pm_qos_constraints_destroy(dev);
117 list_del_init(&dev->power.entry);
118 mutex_unlock(&dpm_list_mtx);
119 device_wakeup_disable(dev);
120 pm_runtime_remove(dev);
121 }
122
123 /**
124 * device_pm_move_before - Move device in the PM core's list of active devices.
125 * @deva: Device to move in dpm_list.
126 * @devb: Device @deva should come before.
127 */
128 void device_pm_move_before(struct device *deva, struct device *devb)
129 {
130 pr_debug("PM: Moving %s:%s before %s:%s\n",
131 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
132 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
133 /* Delete deva from dpm_list and reinsert before devb. */
134 list_move_tail(&deva->power.entry, &devb->power.entry);
135 }
136
137 /**
138 * device_pm_move_after - Move device in the PM core's list of active devices.
139 * @deva: Device to move in dpm_list.
140 * @devb: Device @deva should come after.
141 */
142 void device_pm_move_after(struct device *deva, struct device *devb)
143 {
144 pr_debug("PM: Moving %s:%s after %s:%s\n",
145 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
146 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
147 /* Delete deva from dpm_list and reinsert after devb. */
148 list_move(&deva->power.entry, &devb->power.entry);
149 }
150
151 /**
152 * device_pm_move_last - Move device to end of the PM core's list of devices.
153 * @dev: Device to move in dpm_list.
154 */
155 void device_pm_move_last(struct device *dev)
156 {
157 pr_debug("PM: Moving %s:%s to end of list\n",
158 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
159 list_move_tail(&dev->power.entry, &dpm_list);
160 }
161
162 static ktime_t initcall_debug_start(struct device *dev)
163 {
164 ktime_t calltime = ktime_set(0, 0);
165
166 if (pm_print_times_enabled) {
167 pr_info("calling %s+ @ %i, parent: %s\n",
168 dev_name(dev), task_pid_nr(current),
169 dev->parent ? dev_name(dev->parent) : "none");
170 calltime = ktime_get();
171 }
172
173 return calltime;
174 }
175
176 static void initcall_debug_report(struct device *dev, ktime_t calltime,
177 int error)
178 {
179 ktime_t delta, rettime;
180
181 if (pm_print_times_enabled) {
182 rettime = ktime_get();
183 delta = ktime_sub(rettime, calltime);
184 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
185 error, (unsigned long long)ktime_to_ns(delta) >> 10);
186 }
187 }
188
189 /**
190 * dpm_wait - Wait for a PM operation to complete.
191 * @dev: Device to wait for.
192 * @async: If unset, wait only if the device's power.async_suspend flag is set.
193 */
194 static void dpm_wait(struct device *dev, bool async)
195 {
196 if (!dev)
197 return;
198
199 if (async || (pm_async_enabled && dev->power.async_suspend))
200 wait_for_completion(&dev->power.completion);
201 }
202
203 static int dpm_wait_fn(struct device *dev, void *async_ptr)
204 {
205 dpm_wait(dev, *((bool *)async_ptr));
206 return 0;
207 }
208
209 static void dpm_wait_for_children(struct device *dev, bool async)
210 {
211 device_for_each_child(dev, &async, dpm_wait_fn);
212 }
213
214 /**
215 * pm_op - Return the PM operation appropriate for given PM event.
216 * @ops: PM operations to choose from.
217 * @state: PM transition of the system being carried out.
218 */
219 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
220 {
221 switch (state.event) {
222 #ifdef CONFIG_SUSPEND
223 case PM_EVENT_SUSPEND:
224 return ops->suspend;
225 case PM_EVENT_RESUME:
226 return ops->resume;
227 #endif /* CONFIG_SUSPEND */
228 #ifdef CONFIG_HIBERNATE_CALLBACKS
229 case PM_EVENT_FREEZE:
230 case PM_EVENT_QUIESCE:
231 return ops->freeze;
232 case PM_EVENT_HIBERNATE:
233 return ops->poweroff;
234 case PM_EVENT_THAW:
235 case PM_EVENT_RECOVER:
236 return ops->thaw;
237 break;
238 case PM_EVENT_RESTORE:
239 return ops->restore;
240 #endif /* CONFIG_HIBERNATE_CALLBACKS */
241 }
242
243 return NULL;
244 }
245
246 /**
247 * pm_late_early_op - Return the PM operation appropriate for given PM event.
248 * @ops: PM operations to choose from.
249 * @state: PM transition of the system being carried out.
250 *
251 * Runtime PM is disabled for @dev while this function is being executed.
252 */
253 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
254 pm_message_t state)
255 {
256 switch (state.event) {
257 #ifdef CONFIG_SUSPEND
258 case PM_EVENT_SUSPEND:
259 return ops->suspend_late;
260 case PM_EVENT_RESUME:
261 return ops->resume_early;
262 #endif /* CONFIG_SUSPEND */
263 #ifdef CONFIG_HIBERNATE_CALLBACKS
264 case PM_EVENT_FREEZE:
265 case PM_EVENT_QUIESCE:
266 return ops->freeze_late;
267 case PM_EVENT_HIBERNATE:
268 return ops->poweroff_late;
269 case PM_EVENT_THAW:
270 case PM_EVENT_RECOVER:
271 return ops->thaw_early;
272 case PM_EVENT_RESTORE:
273 return ops->restore_early;
274 #endif /* CONFIG_HIBERNATE_CALLBACKS */
275 }
276
277 return NULL;
278 }
279
280 /**
281 * pm_noirq_op - Return the PM operation appropriate for given PM event.
282 * @ops: PM operations to choose from.
283 * @state: PM transition of the system being carried out.
284 *
285 * The driver of @dev will not receive interrupts while this function is being
286 * executed.
287 */
288 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
289 {
290 switch (state.event) {
291 #ifdef CONFIG_SUSPEND
292 case PM_EVENT_SUSPEND:
293 return ops->suspend_noirq;
294 case PM_EVENT_RESUME:
295 return ops->resume_noirq;
296 #endif /* CONFIG_SUSPEND */
297 #ifdef CONFIG_HIBERNATE_CALLBACKS
298 case PM_EVENT_FREEZE:
299 case PM_EVENT_QUIESCE:
300 return ops->freeze_noirq;
301 case PM_EVENT_HIBERNATE:
302 return ops->poweroff_noirq;
303 case PM_EVENT_THAW:
304 case PM_EVENT_RECOVER:
305 return ops->thaw_noirq;
306 case PM_EVENT_RESTORE:
307 return ops->restore_noirq;
308 #endif /* CONFIG_HIBERNATE_CALLBACKS */
309 }
310
311 return NULL;
312 }
313
314 static char *pm_verb(int event)
315 {
316 switch (event) {
317 case PM_EVENT_SUSPEND:
318 return "suspend";
319 case PM_EVENT_RESUME:
320 return "resume";
321 case PM_EVENT_FREEZE:
322 return "freeze";
323 case PM_EVENT_QUIESCE:
324 return "quiesce";
325 case PM_EVENT_HIBERNATE:
326 return "hibernate";
327 case PM_EVENT_THAW:
328 return "thaw";
329 case PM_EVENT_RESTORE:
330 return "restore";
331 case PM_EVENT_RECOVER:
332 return "recover";
333 default:
334 return "(unknown PM event)";
335 }
336 }
337
338 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
339 {
340 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
341 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
342 ", may wakeup" : "");
343 }
344
345 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
346 int error)
347 {
348 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
349 dev_name(dev), pm_verb(state.event), info, error);
350 }
351
352 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
353 {
354 ktime_t calltime;
355 u64 usecs64;
356 int usecs;
357
358 calltime = ktime_get();
359 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
360 do_div(usecs64, NSEC_PER_USEC);
361 usecs = usecs64;
362 if (usecs == 0)
363 usecs = 1;
364 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
365 info ?: "", info ? " " : "", pm_verb(state.event),
366 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
367 }
368
369 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
370 pm_message_t state, char *info)
371 {
372 ktime_t calltime;
373 int error;
374
375 if (!cb)
376 return 0;
377
378 calltime = initcall_debug_start(dev);
379
380 pm_dev_dbg(dev, state, info);
381 error = cb(dev);
382 suspend_report_result(cb, error);
383
384 initcall_debug_report(dev, calltime, error);
385
386 return error;
387 }
388
389 /*------------------------- Resume routines -------------------------*/
390
391 /**
392 * device_resume_noirq - Execute an "early resume" callback for given device.
393 * @dev: Device to handle.
394 * @state: PM transition of the system being carried out.
395 *
396 * The driver of @dev will not receive interrupts while this function is being
397 * executed.
398 */
399 static int device_resume_noirq(struct device *dev, pm_message_t state)
400 {
401 pm_callback_t callback = NULL;
402 char *info = NULL;
403 int error = 0;
404
405 TRACE_DEVICE(dev);
406 TRACE_RESUME(0);
407
408 if (dev->power.syscore)
409 goto Out;
410
411 if (dev->pm_domain) {
412 info = "noirq power domain ";
413 callback = pm_noirq_op(&dev->pm_domain->ops, state);
414 } else if (dev->type && dev->type->pm) {
415 info = "noirq type ";
416 callback = pm_noirq_op(dev->type->pm, state);
417 } else if (dev->class && dev->class->pm) {
418 info = "noirq class ";
419 callback = pm_noirq_op(dev->class->pm, state);
420 } else if (dev->bus && dev->bus->pm) {
421 info = "noirq bus ";
422 callback = pm_noirq_op(dev->bus->pm, state);
423 }
424
425 if (!callback && dev->driver && dev->driver->pm) {
426 info = "noirq driver ";
427 callback = pm_noirq_op(dev->driver->pm, state);
428 }
429
430 error = dpm_run_callback(callback, dev, state, info);
431
432 Out:
433 TRACE_RESUME(error);
434 return error;
435 }
436
437 /**
438 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
439 * @state: PM transition of the system being carried out.
440 *
441 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
442 * enable device drivers to receive interrupts.
443 */
444 static void dpm_resume_noirq(pm_message_t state)
445 {
446 ktime_t starttime = ktime_get();
447
448 mutex_lock(&dpm_list_mtx);
449 while (!list_empty(&dpm_noirq_list)) {
450 struct device *dev = to_device(dpm_noirq_list.next);
451 int error;
452
453 get_device(dev);
454 list_move_tail(&dev->power.entry, &dpm_late_early_list);
455 mutex_unlock(&dpm_list_mtx);
456
457 error = device_resume_noirq(dev, state);
458 if (error) {
459 suspend_stats.failed_resume_noirq++;
460 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
461 dpm_save_failed_dev(dev_name(dev));
462 pm_dev_err(dev, state, " noirq", error);
463 }
464
465 mutex_lock(&dpm_list_mtx);
466 put_device(dev);
467 }
468 mutex_unlock(&dpm_list_mtx);
469 dpm_show_time(starttime, state, "noirq");
470 resume_device_irqs();
471 cpuidle_resume();
472 }
473
474 /**
475 * device_resume_early - Execute an "early resume" callback for given device.
476 * @dev: Device to handle.
477 * @state: PM transition of the system being carried out.
478 *
479 * Runtime PM is disabled for @dev while this function is being executed.
480 */
481 static int device_resume_early(struct device *dev, pm_message_t state)
482 {
483 pm_callback_t callback = NULL;
484 char *info = NULL;
485 int error = 0;
486
487 TRACE_DEVICE(dev);
488 TRACE_RESUME(0);
489
490 if (dev->power.syscore)
491 goto Out;
492
493 if (dev->pm_domain) {
494 info = "early power domain ";
495 callback = pm_late_early_op(&dev->pm_domain->ops, state);
496 } else if (dev->type && dev->type->pm) {
497 info = "early type ";
498 callback = pm_late_early_op(dev->type->pm, state);
499 } else if (dev->class && dev->class->pm) {
500 info = "early class ";
501 callback = pm_late_early_op(dev->class->pm, state);
502 } else if (dev->bus && dev->bus->pm) {
503 info = "early bus ";
504 callback = pm_late_early_op(dev->bus->pm, state);
505 }
506
507 if (!callback && dev->driver && dev->driver->pm) {
508 info = "early driver ";
509 callback = pm_late_early_op(dev->driver->pm, state);
510 }
511
512 error = dpm_run_callback(callback, dev, state, info);
513
514 Out:
515 TRACE_RESUME(error);
516
517 pm_runtime_enable(dev);
518 return error;
519 }
520
521 /**
522 * dpm_resume_early - Execute "early resume" callbacks for all devices.
523 * @state: PM transition of the system being carried out.
524 */
525 static void dpm_resume_early(pm_message_t state)
526 {
527 ktime_t starttime = ktime_get();
528
529 mutex_lock(&dpm_list_mtx);
530 while (!list_empty(&dpm_late_early_list)) {
531 struct device *dev = to_device(dpm_late_early_list.next);
532 int error;
533
534 get_device(dev);
535 list_move_tail(&dev->power.entry, &dpm_suspended_list);
536 mutex_unlock(&dpm_list_mtx);
537
538 error = device_resume_early(dev, state);
539 if (error) {
540 suspend_stats.failed_resume_early++;
541 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
542 dpm_save_failed_dev(dev_name(dev));
543 pm_dev_err(dev, state, " early", error);
544 }
545
546 mutex_lock(&dpm_list_mtx);
547 put_device(dev);
548 }
549 mutex_unlock(&dpm_list_mtx);
550 dpm_show_time(starttime, state, "early");
551 }
552
553 /**
554 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
555 * @state: PM transition of the system being carried out.
556 */
557 void dpm_resume_start(pm_message_t state)
558 {
559 dpm_resume_noirq(state);
560 dpm_resume_early(state);
561 }
562 EXPORT_SYMBOL_GPL(dpm_resume_start);
563
564 /**
565 * device_resume - Execute "resume" callbacks for given device.
566 * @dev: Device to handle.
567 * @state: PM transition of the system being carried out.
568 * @async: If true, the device is being resumed asynchronously.
569 */
570 static int device_resume(struct device *dev, pm_message_t state, bool async)
571 {
572 pm_callback_t callback = NULL;
573 char *info = NULL;
574 int error = 0;
575
576 TRACE_DEVICE(dev);
577 TRACE_RESUME(0);
578
579 if (dev->power.syscore)
580 goto Complete;
581
582 dpm_wait(dev->parent, async);
583 device_lock(dev);
584
585 /*
586 * This is a fib. But we'll allow new children to be added below
587 * a resumed device, even if the device hasn't been completed yet.
588 */
589 dev->power.is_prepared = false;
590
591 if (!dev->power.is_suspended)
592 goto Unlock;
593
594 if (dev->pm_domain) {
595 info = "power domain ";
596 callback = pm_op(&dev->pm_domain->ops, state);
597 goto Driver;
598 }
599
600 if (dev->type && dev->type->pm) {
601 info = "type ";
602 callback = pm_op(dev->type->pm, state);
603 goto Driver;
604 }
605
606 if (dev->class) {
607 if (dev->class->pm) {
608 info = "class ";
609 callback = pm_op(dev->class->pm, state);
610 goto Driver;
611 } else if (dev->class->resume) {
612 info = "legacy class ";
613 callback = dev->class->resume;
614 goto End;
615 }
616 }
617
618 if (dev->bus) {
619 if (dev->bus->pm) {
620 info = "bus ";
621 callback = pm_op(dev->bus->pm, state);
622 } else if (dev->bus->resume) {
623 info = "legacy bus ";
624 callback = dev->bus->resume;
625 goto End;
626 }
627 }
628
629 Driver:
630 if (!callback && dev->driver && dev->driver->pm) {
631 info = "driver ";
632 callback = pm_op(dev->driver->pm, state);
633 }
634
635 End:
636 error = dpm_run_callback(callback, dev, state, info);
637 dev->power.is_suspended = false;
638
639 Unlock:
640 device_unlock(dev);
641
642 Complete:
643 complete_all(&dev->power.completion);
644
645 TRACE_RESUME(error);
646
647 return error;
648 }
649
650 static void async_resume(void *data, async_cookie_t cookie)
651 {
652 struct device *dev = (struct device *)data;
653 int error;
654
655 error = device_resume(dev, pm_transition, true);
656 if (error)
657 pm_dev_err(dev, pm_transition, " async", error);
658 put_device(dev);
659 }
660
661 static bool is_async(struct device *dev)
662 {
663 return dev->power.async_suspend && pm_async_enabled
664 && !pm_trace_is_enabled();
665 }
666
667 /**
668 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
669 * @state: PM transition of the system being carried out.
670 *
671 * Execute the appropriate "resume" callback for all devices whose status
672 * indicates that they are suspended.
673 */
674 void dpm_resume(pm_message_t state)
675 {
676 struct device *dev;
677 ktime_t starttime = ktime_get();
678
679 might_sleep();
680
681 mutex_lock(&dpm_list_mtx);
682 pm_transition = state;
683 async_error = 0;
684
685 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
686 INIT_COMPLETION(dev->power.completion);
687 if (is_async(dev)) {
688 get_device(dev);
689 async_schedule(async_resume, dev);
690 }
691 }
692
693 while (!list_empty(&dpm_suspended_list)) {
694 dev = to_device(dpm_suspended_list.next);
695 get_device(dev);
696 if (!is_async(dev)) {
697 int error;
698
699 mutex_unlock(&dpm_list_mtx);
700
701 error = device_resume(dev, state, false);
702 if (error) {
703 suspend_stats.failed_resume++;
704 dpm_save_failed_step(SUSPEND_RESUME);
705 dpm_save_failed_dev(dev_name(dev));
706 pm_dev_err(dev, state, "", error);
707 }
708
709 mutex_lock(&dpm_list_mtx);
710 }
711 if (!list_empty(&dev->power.entry))
712 list_move_tail(&dev->power.entry, &dpm_prepared_list);
713 put_device(dev);
714 }
715 mutex_unlock(&dpm_list_mtx);
716 async_synchronize_full();
717 dpm_show_time(starttime, state, NULL);
718 }
719
720 /**
721 * device_complete - Complete a PM transition for given device.
722 * @dev: Device to handle.
723 * @state: PM transition of the system being carried out.
724 */
725 static void device_complete(struct device *dev, pm_message_t state)
726 {
727 void (*callback)(struct device *) = NULL;
728 char *info = NULL;
729
730 if (dev->power.syscore)
731 return;
732
733 device_lock(dev);
734
735 if (dev->pm_domain) {
736 info = "completing power domain ";
737 callback = dev->pm_domain->ops.complete;
738 } else if (dev->type && dev->type->pm) {
739 info = "completing type ";
740 callback = dev->type->pm->complete;
741 } else if (dev->class && dev->class->pm) {
742 info = "completing class ";
743 callback = dev->class->pm->complete;
744 } else if (dev->bus && dev->bus->pm) {
745 info = "completing bus ";
746 callback = dev->bus->pm->complete;
747 }
748
749 if (!callback && dev->driver && dev->driver->pm) {
750 info = "completing driver ";
751 callback = dev->driver->pm->complete;
752 }
753
754 if (callback) {
755 pm_dev_dbg(dev, state, info);
756 callback(dev);
757 }
758
759 device_unlock(dev);
760
761 pm_runtime_put_sync(dev);
762 }
763
764 /**
765 * dpm_complete - Complete a PM transition for all non-sysdev devices.
766 * @state: PM transition of the system being carried out.
767 *
768 * Execute the ->complete() callbacks for all devices whose PM status is not
769 * DPM_ON (this allows new devices to be registered).
770 */
771 void dpm_complete(pm_message_t state)
772 {
773 struct list_head list;
774
775 might_sleep();
776
777 INIT_LIST_HEAD(&list);
778 mutex_lock(&dpm_list_mtx);
779 while (!list_empty(&dpm_prepared_list)) {
780 struct device *dev = to_device(dpm_prepared_list.prev);
781
782 get_device(dev);
783 dev->power.is_prepared = false;
784 list_move(&dev->power.entry, &list);
785 mutex_unlock(&dpm_list_mtx);
786
787 device_complete(dev, state);
788
789 mutex_lock(&dpm_list_mtx);
790 put_device(dev);
791 }
792 list_splice(&list, &dpm_list);
793 mutex_unlock(&dpm_list_mtx);
794 }
795
796 /**
797 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
798 * @state: PM transition of the system being carried out.
799 *
800 * Execute "resume" callbacks for all devices and complete the PM transition of
801 * the system.
802 */
803 void dpm_resume_end(pm_message_t state)
804 {
805 dpm_resume(state);
806 dpm_complete(state);
807 }
808 EXPORT_SYMBOL_GPL(dpm_resume_end);
809
810
811 /*------------------------- Suspend routines -------------------------*/
812
813 /**
814 * resume_event - Return a "resume" message for given "suspend" sleep state.
815 * @sleep_state: PM message representing a sleep state.
816 *
817 * Return a PM message representing the resume event corresponding to given
818 * sleep state.
819 */
820 static pm_message_t resume_event(pm_message_t sleep_state)
821 {
822 switch (sleep_state.event) {
823 case PM_EVENT_SUSPEND:
824 return PMSG_RESUME;
825 case PM_EVENT_FREEZE:
826 case PM_EVENT_QUIESCE:
827 return PMSG_RECOVER;
828 case PM_EVENT_HIBERNATE:
829 return PMSG_RESTORE;
830 }
831 return PMSG_ON;
832 }
833
834 /**
835 * device_suspend_noirq - Execute a "late suspend" callback for given device.
836 * @dev: Device to handle.
837 * @state: PM transition of the system being carried out.
838 *
839 * The driver of @dev will not receive interrupts while this function is being
840 * executed.
841 */
842 static int device_suspend_noirq(struct device *dev, pm_message_t state)
843 {
844 pm_callback_t callback = NULL;
845 char *info = NULL;
846
847 if (dev->power.syscore)
848 return 0;
849
850 if (dev->pm_domain) {
851 info = "noirq power domain ";
852 callback = pm_noirq_op(&dev->pm_domain->ops, state);
853 } else if (dev->type && dev->type->pm) {
854 info = "noirq type ";
855 callback = pm_noirq_op(dev->type->pm, state);
856 } else if (dev->class && dev->class->pm) {
857 info = "noirq class ";
858 callback = pm_noirq_op(dev->class->pm, state);
859 } else if (dev->bus && dev->bus->pm) {
860 info = "noirq bus ";
861 callback = pm_noirq_op(dev->bus->pm, state);
862 }
863
864 if (!callback && dev->driver && dev->driver->pm) {
865 info = "noirq driver ";
866 callback = pm_noirq_op(dev->driver->pm, state);
867 }
868
869 return dpm_run_callback(callback, dev, state, info);
870 }
871
872 /**
873 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
874 * @state: PM transition of the system being carried out.
875 *
876 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
877 * handlers for all non-sysdev devices.
878 */
879 static int dpm_suspend_noirq(pm_message_t state)
880 {
881 ktime_t starttime = ktime_get();
882 int error = 0;
883
884 cpuidle_pause();
885 suspend_device_irqs();
886 mutex_lock(&dpm_list_mtx);
887 while (!list_empty(&dpm_late_early_list)) {
888 struct device *dev = to_device(dpm_late_early_list.prev);
889
890 get_device(dev);
891 mutex_unlock(&dpm_list_mtx);
892
893 error = device_suspend_noirq(dev, state);
894
895 mutex_lock(&dpm_list_mtx);
896 if (error) {
897 pm_dev_err(dev, state, " noirq", error);
898 suspend_stats.failed_suspend_noirq++;
899 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
900 dpm_save_failed_dev(dev_name(dev));
901 put_device(dev);
902 break;
903 }
904 if (!list_empty(&dev->power.entry))
905 list_move(&dev->power.entry, &dpm_noirq_list);
906 put_device(dev);
907
908 if (pm_wakeup_pending()) {
909 error = -EBUSY;
910 break;
911 }
912 }
913 mutex_unlock(&dpm_list_mtx);
914 if (error)
915 dpm_resume_noirq(resume_event(state));
916 else
917 dpm_show_time(starttime, state, "noirq");
918 return error;
919 }
920
921 /**
922 * device_suspend_late - Execute a "late suspend" callback for given device.
923 * @dev: Device to handle.
924 * @state: PM transition of the system being carried out.
925 *
926 * Runtime PM is disabled for @dev while this function is being executed.
927 */
928 static int device_suspend_late(struct device *dev, pm_message_t state)
929 {
930 pm_callback_t callback = NULL;
931 char *info = NULL;
932
933 __pm_runtime_disable(dev, false);
934
935 if (dev->power.syscore)
936 return 0;
937
938 if (dev->pm_domain) {
939 info = "late power domain ";
940 callback = pm_late_early_op(&dev->pm_domain->ops, state);
941 } else if (dev->type && dev->type->pm) {
942 info = "late type ";
943 callback = pm_late_early_op(dev->type->pm, state);
944 } else if (dev->class && dev->class->pm) {
945 info = "late class ";
946 callback = pm_late_early_op(dev->class->pm, state);
947 } else if (dev->bus && dev->bus->pm) {
948 info = "late bus ";
949 callback = pm_late_early_op(dev->bus->pm, state);
950 }
951
952 if (!callback && dev->driver && dev->driver->pm) {
953 info = "late driver ";
954 callback = pm_late_early_op(dev->driver->pm, state);
955 }
956
957 return dpm_run_callback(callback, dev, state, info);
958 }
959
960 /**
961 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
962 * @state: PM transition of the system being carried out.
963 */
964 static int dpm_suspend_late(pm_message_t state)
965 {
966 ktime_t starttime = ktime_get();
967 int error = 0;
968
969 mutex_lock(&dpm_list_mtx);
970 while (!list_empty(&dpm_suspended_list)) {
971 struct device *dev = to_device(dpm_suspended_list.prev);
972
973 get_device(dev);
974 mutex_unlock(&dpm_list_mtx);
975
976 error = device_suspend_late(dev, state);
977
978 mutex_lock(&dpm_list_mtx);
979 if (error) {
980 pm_dev_err(dev, state, " late", error);
981 suspend_stats.failed_suspend_late++;
982 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
983 dpm_save_failed_dev(dev_name(dev));
984 put_device(dev);
985 break;
986 }
987 if (!list_empty(&dev->power.entry))
988 list_move(&dev->power.entry, &dpm_late_early_list);
989 put_device(dev);
990
991 if (pm_wakeup_pending()) {
992 error = -EBUSY;
993 break;
994 }
995 }
996 mutex_unlock(&dpm_list_mtx);
997 if (error)
998 dpm_resume_early(resume_event(state));
999 else
1000 dpm_show_time(starttime, state, "late");
1001
1002 return error;
1003 }
1004
1005 /**
1006 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1007 * @state: PM transition of the system being carried out.
1008 */
1009 int dpm_suspend_end(pm_message_t state)
1010 {
1011 int error = dpm_suspend_late(state);
1012 if (error)
1013 return error;
1014
1015 error = dpm_suspend_noirq(state);
1016 if (error) {
1017 dpm_resume_early(resume_event(state));
1018 return error;
1019 }
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1024
1025 /**
1026 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1027 * @dev: Device to suspend.
1028 * @state: PM transition of the system being carried out.
1029 * @cb: Suspend callback to execute.
1030 */
1031 static int legacy_suspend(struct device *dev, pm_message_t state,
1032 int (*cb)(struct device *dev, pm_message_t state))
1033 {
1034 int error;
1035 ktime_t calltime;
1036
1037 calltime = initcall_debug_start(dev);
1038
1039 error = cb(dev, state);
1040 suspend_report_result(cb, error);
1041
1042 initcall_debug_report(dev, calltime, error);
1043
1044 return error;
1045 }
1046
1047 /**
1048 * device_suspend - Execute "suspend" callbacks for given device.
1049 * @dev: Device to handle.
1050 * @state: PM transition of the system being carried out.
1051 * @async: If true, the device is being suspended asynchronously.
1052 */
1053 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1054 {
1055 pm_callback_t callback = NULL;
1056 char *info = NULL;
1057 int error = 0;
1058
1059 dpm_wait_for_children(dev, async);
1060
1061 if (async_error)
1062 goto Complete;
1063
1064 /*
1065 * If a device configured to wake up the system from sleep states
1066 * has been suspended at run time and there's a resume request pending
1067 * for it, this is equivalent to the device signaling wakeup, so the
1068 * system suspend operation should be aborted.
1069 */
1070 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1071 pm_wakeup_event(dev, 0);
1072
1073 if (pm_wakeup_pending()) {
1074 async_error = -EBUSY;
1075 goto Complete;
1076 }
1077
1078 if (dev->power.syscore)
1079 goto Complete;
1080
1081 device_lock(dev);
1082
1083 if (dev->pm_domain) {
1084 info = "power domain ";
1085 callback = pm_op(&dev->pm_domain->ops, state);
1086 goto Run;
1087 }
1088
1089 if (dev->type && dev->type->pm) {
1090 info = "type ";
1091 callback = pm_op(dev->type->pm, state);
1092 goto Run;
1093 }
1094
1095 if (dev->class) {
1096 if (dev->class->pm) {
1097 info = "class ";
1098 callback = pm_op(dev->class->pm, state);
1099 goto Run;
1100 } else if (dev->class->suspend) {
1101 pm_dev_dbg(dev, state, "legacy class ");
1102 error = legacy_suspend(dev, state, dev->class->suspend);
1103 goto End;
1104 }
1105 }
1106
1107 if (dev->bus) {
1108 if (dev->bus->pm) {
1109 info = "bus ";
1110 callback = pm_op(dev->bus->pm, state);
1111 } else if (dev->bus->suspend) {
1112 pm_dev_dbg(dev, state, "legacy bus ");
1113 error = legacy_suspend(dev, state, dev->bus->suspend);
1114 goto End;
1115 }
1116 }
1117
1118 Run:
1119 if (!callback && dev->driver && dev->driver->pm) {
1120 info = "driver ";
1121 callback = pm_op(dev->driver->pm, state);
1122 }
1123
1124 error = dpm_run_callback(callback, dev, state, info);
1125
1126 End:
1127 if (!error) {
1128 dev->power.is_suspended = true;
1129 if (dev->power.wakeup_path
1130 && dev->parent && !dev->parent->power.ignore_children)
1131 dev->parent->power.wakeup_path = true;
1132 }
1133
1134 device_unlock(dev);
1135
1136 Complete:
1137 complete_all(&dev->power.completion);
1138 if (error)
1139 async_error = error;
1140
1141 return error;
1142 }
1143
1144 static void async_suspend(void *data, async_cookie_t cookie)
1145 {
1146 struct device *dev = (struct device *)data;
1147 int error;
1148
1149 error = __device_suspend(dev, pm_transition, true);
1150 if (error) {
1151 dpm_save_failed_dev(dev_name(dev));
1152 pm_dev_err(dev, pm_transition, " async", error);
1153 }
1154
1155 put_device(dev);
1156 }
1157
1158 static int device_suspend(struct device *dev)
1159 {
1160 INIT_COMPLETION(dev->power.completion);
1161
1162 if (pm_async_enabled && dev->power.async_suspend) {
1163 get_device(dev);
1164 async_schedule(async_suspend, dev);
1165 return 0;
1166 }
1167
1168 return __device_suspend(dev, pm_transition, false);
1169 }
1170
1171 /**
1172 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1173 * @state: PM transition of the system being carried out.
1174 */
1175 int dpm_suspend(pm_message_t state)
1176 {
1177 ktime_t starttime = ktime_get();
1178 int error = 0;
1179
1180 might_sleep();
1181
1182 mutex_lock(&dpm_list_mtx);
1183 pm_transition = state;
1184 async_error = 0;
1185 while (!list_empty(&dpm_prepared_list)) {
1186 struct device *dev = to_device(dpm_prepared_list.prev);
1187
1188 get_device(dev);
1189 mutex_unlock(&dpm_list_mtx);
1190
1191 error = device_suspend(dev);
1192
1193 mutex_lock(&dpm_list_mtx);
1194 if (error) {
1195 pm_dev_err(dev, state, "", error);
1196 dpm_save_failed_dev(dev_name(dev));
1197 put_device(dev);
1198 break;
1199 }
1200 if (!list_empty(&dev->power.entry))
1201 list_move(&dev->power.entry, &dpm_suspended_list);
1202 put_device(dev);
1203 if (async_error)
1204 break;
1205 }
1206 mutex_unlock(&dpm_list_mtx);
1207 async_synchronize_full();
1208 if (!error)
1209 error = async_error;
1210 if (error) {
1211 suspend_stats.failed_suspend++;
1212 dpm_save_failed_step(SUSPEND_SUSPEND);
1213 } else
1214 dpm_show_time(starttime, state, NULL);
1215 return error;
1216 }
1217
1218 /**
1219 * device_prepare - Prepare a device for system power transition.
1220 * @dev: Device to handle.
1221 * @state: PM transition of the system being carried out.
1222 *
1223 * Execute the ->prepare() callback(s) for given device. No new children of the
1224 * device may be registered after this function has returned.
1225 */
1226 static int device_prepare(struct device *dev, pm_message_t state)
1227 {
1228 int (*callback)(struct device *) = NULL;
1229 char *info = NULL;
1230 int error = 0;
1231
1232 if (dev->power.syscore)
1233 return 0;
1234
1235 /*
1236 * If a device's parent goes into runtime suspend at the wrong time,
1237 * it won't be possible to resume the device. To prevent this we
1238 * block runtime suspend here, during the prepare phase, and allow
1239 * it again during the complete phase.
1240 */
1241 pm_runtime_get_noresume(dev);
1242
1243 device_lock(dev);
1244
1245 dev->power.wakeup_path = device_may_wakeup(dev);
1246
1247 if (dev->pm_domain) {
1248 info = "preparing power domain ";
1249 callback = dev->pm_domain->ops.prepare;
1250 } else if (dev->type && dev->type->pm) {
1251 info = "preparing type ";
1252 callback = dev->type->pm->prepare;
1253 } else if (dev->class && dev->class->pm) {
1254 info = "preparing class ";
1255 callback = dev->class->pm->prepare;
1256 } else if (dev->bus && dev->bus->pm) {
1257 info = "preparing bus ";
1258 callback = dev->bus->pm->prepare;
1259 }
1260
1261 if (!callback && dev->driver && dev->driver->pm) {
1262 info = "preparing driver ";
1263 callback = dev->driver->pm->prepare;
1264 }
1265
1266 if (callback) {
1267 error = callback(dev);
1268 suspend_report_result(callback, error);
1269 }
1270
1271 device_unlock(dev);
1272
1273 return error;
1274 }
1275
1276 /**
1277 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1278 * @state: PM transition of the system being carried out.
1279 *
1280 * Execute the ->prepare() callback(s) for all devices.
1281 */
1282 int dpm_prepare(pm_message_t state)
1283 {
1284 int error = 0;
1285
1286 might_sleep();
1287
1288 mutex_lock(&dpm_list_mtx);
1289 while (!list_empty(&dpm_list)) {
1290 struct device *dev = to_device(dpm_list.next);
1291
1292 get_device(dev);
1293 mutex_unlock(&dpm_list_mtx);
1294
1295 error = device_prepare(dev, state);
1296
1297 mutex_lock(&dpm_list_mtx);
1298 if (error) {
1299 if (error == -EAGAIN) {
1300 put_device(dev);
1301 error = 0;
1302 continue;
1303 }
1304 printk(KERN_INFO "PM: Device %s not prepared "
1305 "for power transition: code %d\n",
1306 dev_name(dev), error);
1307 put_device(dev);
1308 break;
1309 }
1310 dev->power.is_prepared = true;
1311 if (!list_empty(&dev->power.entry))
1312 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1313 put_device(dev);
1314 }
1315 mutex_unlock(&dpm_list_mtx);
1316 return error;
1317 }
1318
1319 /**
1320 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1321 * @state: PM transition of the system being carried out.
1322 *
1323 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1324 * callbacks for them.
1325 */
1326 int dpm_suspend_start(pm_message_t state)
1327 {
1328 int error;
1329
1330 error = dpm_prepare(state);
1331 if (error) {
1332 suspend_stats.failed_prepare++;
1333 dpm_save_failed_step(SUSPEND_PREPARE);
1334 } else
1335 error = dpm_suspend(state);
1336 return error;
1337 }
1338 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1339
1340 void __suspend_report_result(const char *function, void *fn, int ret)
1341 {
1342 if (ret)
1343 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1344 }
1345 EXPORT_SYMBOL_GPL(__suspend_report_result);
1346
1347 /**
1348 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1349 * @dev: Device to wait for.
1350 * @subordinate: Device that needs to wait for @dev.
1351 */
1352 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1353 {
1354 dpm_wait(dev, subordinate->power.async_suspend);
1355 return async_error;
1356 }
1357 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1358
1359 /**
1360 * dpm_for_each_dev - device iterator.
1361 * @data: data for the callback.
1362 * @fn: function to be called for each device.
1363 *
1364 * Iterate over devices in dpm_list, and call @fn for each device,
1365 * passing it @data.
1366 */
1367 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1368 {
1369 struct device *dev;
1370
1371 if (!fn)
1372 return;
1373
1374 device_pm_lock();
1375 list_for_each_entry(dev, &dpm_list, power.entry)
1376 fn(dev, data);
1377 device_pm_unlock();
1378 }
1379 EXPORT_SYMBOL_GPL(dpm_for_each_dev);