Merge tag 'stable/for-linus-3.10-rc0-tag-two' of git://git.kernel.org/pub/scm/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / base / memory.c
1 /*
2 * Memory subsystem support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37 return section_nr / sections_per_block;
38 }
39
40 static struct bus_type memory_subsys = {
41 .name = MEMORY_CLASS_NAME,
42 .dev_name = MEMORY_CLASS_NAME,
43 };
44
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49 return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55 blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73 static void memory_block_release(struct device *dev)
74 {
75 struct memory_block *mem = container_of(dev, struct memory_block, dev);
76
77 kfree(mem);
78 }
79
80 /*
81 * register_memory - Setup a sysfs device for a memory block
82 */
83 static
84 int register_memory(struct memory_block *memory)
85 {
86 int error;
87
88 memory->dev.bus = &memory_subsys;
89 memory->dev.id = memory->start_section_nr / sections_per_block;
90 memory->dev.release = memory_block_release;
91
92 error = device_register(&memory->dev);
93 return error;
94 }
95
96 unsigned long __weak memory_block_size_bytes(void)
97 {
98 return MIN_MEMORY_BLOCK_SIZE;
99 }
100
101 static unsigned long get_memory_block_size(void)
102 {
103 unsigned long block_sz;
104
105 block_sz = memory_block_size_bytes();
106
107 /* Validate blk_sz is a power of 2 and not less than section size */
108 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
109 WARN_ON(1);
110 block_sz = MIN_MEMORY_BLOCK_SIZE;
111 }
112
113 return block_sz;
114 }
115
116 /*
117 * use this as the physical section index that this memsection
118 * uses.
119 */
120
121 static ssize_t show_mem_start_phys_index(struct device *dev,
122 struct device_attribute *attr, char *buf)
123 {
124 struct memory_block *mem =
125 container_of(dev, struct memory_block, dev);
126 unsigned long phys_index;
127
128 phys_index = mem->start_section_nr / sections_per_block;
129 return sprintf(buf, "%08lx\n", phys_index);
130 }
131
132 static ssize_t show_mem_end_phys_index(struct device *dev,
133 struct device_attribute *attr, char *buf)
134 {
135 struct memory_block *mem =
136 container_of(dev, struct memory_block, dev);
137 unsigned long phys_index;
138
139 phys_index = mem->end_section_nr / sections_per_block;
140 return sprintf(buf, "%08lx\n", phys_index);
141 }
142
143 /*
144 * Show whether the section of memory is likely to be hot-removable
145 */
146 static ssize_t show_mem_removable(struct device *dev,
147 struct device_attribute *attr, char *buf)
148 {
149 unsigned long i, pfn;
150 int ret = 1;
151 struct memory_block *mem =
152 container_of(dev, struct memory_block, dev);
153
154 for (i = 0; i < sections_per_block; i++) {
155 pfn = section_nr_to_pfn(mem->start_section_nr + i);
156 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
157 }
158
159 return sprintf(buf, "%d\n", ret);
160 }
161
162 /*
163 * online, offline, going offline, etc.
164 */
165 static ssize_t show_mem_state(struct device *dev,
166 struct device_attribute *attr, char *buf)
167 {
168 struct memory_block *mem =
169 container_of(dev, struct memory_block, dev);
170 ssize_t len = 0;
171
172 /*
173 * We can probably put these states in a nice little array
174 * so that they're not open-coded
175 */
176 switch (mem->state) {
177 case MEM_ONLINE:
178 len = sprintf(buf, "online\n");
179 break;
180 case MEM_OFFLINE:
181 len = sprintf(buf, "offline\n");
182 break;
183 case MEM_GOING_OFFLINE:
184 len = sprintf(buf, "going-offline\n");
185 break;
186 default:
187 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
188 mem->state);
189 WARN_ON(1);
190 break;
191 }
192
193 return len;
194 }
195
196 int memory_notify(unsigned long val, void *v)
197 {
198 return blocking_notifier_call_chain(&memory_chain, val, v);
199 }
200
201 int memory_isolate_notify(unsigned long val, void *v)
202 {
203 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
204 }
205
206 /*
207 * The probe routines leave the pages reserved, just as the bootmem code does.
208 * Make sure they're still that way.
209 */
210 static bool pages_correctly_reserved(unsigned long start_pfn)
211 {
212 int i, j;
213 struct page *page;
214 unsigned long pfn = start_pfn;
215
216 /*
217 * memmap between sections is not contiguous except with
218 * SPARSEMEM_VMEMMAP. We lookup the page once per section
219 * and assume memmap is contiguous within each section
220 */
221 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
222 if (WARN_ON_ONCE(!pfn_valid(pfn)))
223 return false;
224 page = pfn_to_page(pfn);
225
226 for (j = 0; j < PAGES_PER_SECTION; j++) {
227 if (PageReserved(page + j))
228 continue;
229
230 printk(KERN_WARNING "section number %ld page number %d "
231 "not reserved, was it already online?\n",
232 pfn_to_section_nr(pfn), j);
233
234 return false;
235 }
236 }
237
238 return true;
239 }
240
241 /*
242 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
243 * OK to have direct references to sparsemem variables in here.
244 */
245 static int
246 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
247 {
248 unsigned long start_pfn;
249 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
250 struct page *first_page;
251 int ret;
252
253 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
254 start_pfn = page_to_pfn(first_page);
255
256 switch (action) {
257 case MEM_ONLINE:
258 if (!pages_correctly_reserved(start_pfn))
259 return -EBUSY;
260
261 ret = online_pages(start_pfn, nr_pages, online_type);
262 break;
263 case MEM_OFFLINE:
264 ret = offline_pages(start_pfn, nr_pages);
265 break;
266 default:
267 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
268 "%ld\n", __func__, phys_index, action, action);
269 ret = -EINVAL;
270 }
271
272 return ret;
273 }
274
275 static int __memory_block_change_state(struct memory_block *mem,
276 unsigned long to_state, unsigned long from_state_req,
277 int online_type)
278 {
279 int ret = 0;
280
281 if (mem->state != from_state_req) {
282 ret = -EINVAL;
283 goto out;
284 }
285
286 if (to_state == MEM_OFFLINE)
287 mem->state = MEM_GOING_OFFLINE;
288
289 ret = memory_block_action(mem->start_section_nr, to_state, online_type);
290
291 if (ret) {
292 mem->state = from_state_req;
293 goto out;
294 }
295
296 mem->state = to_state;
297 switch (mem->state) {
298 case MEM_OFFLINE:
299 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
300 break;
301 case MEM_ONLINE:
302 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
303 break;
304 default:
305 break;
306 }
307 out:
308 return ret;
309 }
310
311 static int memory_block_change_state(struct memory_block *mem,
312 unsigned long to_state, unsigned long from_state_req,
313 int online_type)
314 {
315 int ret;
316
317 mutex_lock(&mem->state_mutex);
318 ret = __memory_block_change_state(mem, to_state, from_state_req,
319 online_type);
320 mutex_unlock(&mem->state_mutex);
321
322 return ret;
323 }
324 static ssize_t
325 store_mem_state(struct device *dev,
326 struct device_attribute *attr, const char *buf, size_t count)
327 {
328 struct memory_block *mem;
329 int ret = -EINVAL;
330
331 mem = container_of(dev, struct memory_block, dev);
332
333 if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
334 ret = memory_block_change_state(mem, MEM_ONLINE,
335 MEM_OFFLINE, ONLINE_KERNEL);
336 else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
337 ret = memory_block_change_state(mem, MEM_ONLINE,
338 MEM_OFFLINE, ONLINE_MOVABLE);
339 else if (!strncmp(buf, "online", min_t(int, count, 6)))
340 ret = memory_block_change_state(mem, MEM_ONLINE,
341 MEM_OFFLINE, ONLINE_KEEP);
342 else if(!strncmp(buf, "offline", min_t(int, count, 7)))
343 ret = memory_block_change_state(mem, MEM_OFFLINE,
344 MEM_ONLINE, -1);
345
346 if (ret)
347 return ret;
348 return count;
349 }
350
351 /*
352 * phys_device is a bad name for this. What I really want
353 * is a way to differentiate between memory ranges that
354 * are part of physical devices that constitute
355 * a complete removable unit or fru.
356 * i.e. do these ranges belong to the same physical device,
357 * s.t. if I offline all of these sections I can then
358 * remove the physical device?
359 */
360 static ssize_t show_phys_device(struct device *dev,
361 struct device_attribute *attr, char *buf)
362 {
363 struct memory_block *mem =
364 container_of(dev, struct memory_block, dev);
365 return sprintf(buf, "%d\n", mem->phys_device);
366 }
367
368 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
369 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
370 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
371 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
372 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
373
374 #define mem_create_simple_file(mem, attr_name) \
375 device_create_file(&mem->dev, &dev_attr_##attr_name)
376 #define mem_remove_simple_file(mem, attr_name) \
377 device_remove_file(&mem->dev, &dev_attr_##attr_name)
378
379 /*
380 * Block size attribute stuff
381 */
382 static ssize_t
383 print_block_size(struct device *dev, struct device_attribute *attr,
384 char *buf)
385 {
386 return sprintf(buf, "%lx\n", get_memory_block_size());
387 }
388
389 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
390
391 static int block_size_init(void)
392 {
393 return device_create_file(memory_subsys.dev_root,
394 &dev_attr_block_size_bytes);
395 }
396
397 /*
398 * Some architectures will have custom drivers to do this, and
399 * will not need to do it from userspace. The fake hot-add code
400 * as well as ppc64 will do all of their discovery in userspace
401 * and will require this interface.
402 */
403 #ifdef CONFIG_ARCH_MEMORY_PROBE
404 static ssize_t
405 memory_probe_store(struct device *dev, struct device_attribute *attr,
406 const char *buf, size_t count)
407 {
408 u64 phys_addr;
409 int nid;
410 int i, ret;
411 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
412
413 phys_addr = simple_strtoull(buf, NULL, 0);
414
415 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
416 return -EINVAL;
417
418 for (i = 0; i < sections_per_block; i++) {
419 nid = memory_add_physaddr_to_nid(phys_addr);
420 ret = add_memory(nid, phys_addr,
421 PAGES_PER_SECTION << PAGE_SHIFT);
422 if (ret)
423 goto out;
424
425 phys_addr += MIN_MEMORY_BLOCK_SIZE;
426 }
427
428 ret = count;
429 out:
430 return ret;
431 }
432 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
433
434 static int memory_probe_init(void)
435 {
436 return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
437 }
438 #else
439 static inline int memory_probe_init(void)
440 {
441 return 0;
442 }
443 #endif
444
445 #ifdef CONFIG_MEMORY_FAILURE
446 /*
447 * Support for offlining pages of memory
448 */
449
450 /* Soft offline a page */
451 static ssize_t
452 store_soft_offline_page(struct device *dev,
453 struct device_attribute *attr,
454 const char *buf, size_t count)
455 {
456 int ret;
457 u64 pfn;
458 if (!capable(CAP_SYS_ADMIN))
459 return -EPERM;
460 if (strict_strtoull(buf, 0, &pfn) < 0)
461 return -EINVAL;
462 pfn >>= PAGE_SHIFT;
463 if (!pfn_valid(pfn))
464 return -ENXIO;
465 ret = soft_offline_page(pfn_to_page(pfn), 0);
466 return ret == 0 ? count : ret;
467 }
468
469 /* Forcibly offline a page, including killing processes. */
470 static ssize_t
471 store_hard_offline_page(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
474 {
475 int ret;
476 u64 pfn;
477 if (!capable(CAP_SYS_ADMIN))
478 return -EPERM;
479 if (strict_strtoull(buf, 0, &pfn) < 0)
480 return -EINVAL;
481 pfn >>= PAGE_SHIFT;
482 ret = memory_failure(pfn, 0, 0);
483 return ret ? ret : count;
484 }
485
486 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
487 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
488
489 static __init int memory_fail_init(void)
490 {
491 int err;
492
493 err = device_create_file(memory_subsys.dev_root,
494 &dev_attr_soft_offline_page);
495 if (!err)
496 err = device_create_file(memory_subsys.dev_root,
497 &dev_attr_hard_offline_page);
498 return err;
499 }
500 #else
501 static inline int memory_fail_init(void)
502 {
503 return 0;
504 }
505 #endif
506
507 /*
508 * Note that phys_device is optional. It is here to allow for
509 * differentiation between which *physical* devices each
510 * section belongs to...
511 */
512 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
513 {
514 return 0;
515 }
516
517 /*
518 * A reference for the returned object is held and the reference for the
519 * hinted object is released.
520 */
521 struct memory_block *find_memory_block_hinted(struct mem_section *section,
522 struct memory_block *hint)
523 {
524 int block_id = base_memory_block_id(__section_nr(section));
525 struct device *hintdev = hint ? &hint->dev : NULL;
526 struct device *dev;
527
528 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
529 if (hint)
530 put_device(&hint->dev);
531 if (!dev)
532 return NULL;
533 return container_of(dev, struct memory_block, dev);
534 }
535
536 /*
537 * For now, we have a linear search to go find the appropriate
538 * memory_block corresponding to a particular phys_index. If
539 * this gets to be a real problem, we can always use a radix
540 * tree or something here.
541 *
542 * This could be made generic for all device subsystems.
543 */
544 struct memory_block *find_memory_block(struct mem_section *section)
545 {
546 return find_memory_block_hinted(section, NULL);
547 }
548
549 static int init_memory_block(struct memory_block **memory,
550 struct mem_section *section, unsigned long state)
551 {
552 struct memory_block *mem;
553 unsigned long start_pfn;
554 int scn_nr;
555 int ret = 0;
556
557 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
558 if (!mem)
559 return -ENOMEM;
560
561 scn_nr = __section_nr(section);
562 mem->start_section_nr =
563 base_memory_block_id(scn_nr) * sections_per_block;
564 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
565 mem->state = state;
566 mem->section_count++;
567 mutex_init(&mem->state_mutex);
568 start_pfn = section_nr_to_pfn(mem->start_section_nr);
569 mem->phys_device = arch_get_memory_phys_device(start_pfn);
570
571 ret = register_memory(mem);
572 if (!ret)
573 ret = mem_create_simple_file(mem, phys_index);
574 if (!ret)
575 ret = mem_create_simple_file(mem, end_phys_index);
576 if (!ret)
577 ret = mem_create_simple_file(mem, state);
578 if (!ret)
579 ret = mem_create_simple_file(mem, phys_device);
580 if (!ret)
581 ret = mem_create_simple_file(mem, removable);
582
583 *memory = mem;
584 return ret;
585 }
586
587 static int add_memory_section(int nid, struct mem_section *section,
588 struct memory_block **mem_p,
589 unsigned long state, enum mem_add_context context)
590 {
591 struct memory_block *mem = NULL;
592 int scn_nr = __section_nr(section);
593 int ret = 0;
594
595 mutex_lock(&mem_sysfs_mutex);
596
597 if (context == BOOT) {
598 /* same memory block ? */
599 if (mem_p && *mem_p)
600 if (scn_nr >= (*mem_p)->start_section_nr &&
601 scn_nr <= (*mem_p)->end_section_nr) {
602 mem = *mem_p;
603 kobject_get(&mem->dev.kobj);
604 }
605 } else
606 mem = find_memory_block(section);
607
608 if (mem) {
609 mem->section_count++;
610 kobject_put(&mem->dev.kobj);
611 } else {
612 ret = init_memory_block(&mem, section, state);
613 /* store memory_block pointer for next loop */
614 if (!ret && context == BOOT)
615 if (mem_p)
616 *mem_p = mem;
617 }
618
619 if (!ret) {
620 if (context == HOTPLUG &&
621 mem->section_count == sections_per_block)
622 ret = register_mem_sect_under_node(mem, nid);
623 }
624
625 mutex_unlock(&mem_sysfs_mutex);
626 return ret;
627 }
628
629 /*
630 * need an interface for the VM to add new memory regions,
631 * but without onlining it.
632 */
633 int register_new_memory(int nid, struct mem_section *section)
634 {
635 return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
636 }
637
638 #ifdef CONFIG_MEMORY_HOTREMOVE
639 static void
640 unregister_memory(struct memory_block *memory)
641 {
642 BUG_ON(memory->dev.bus != &memory_subsys);
643
644 /* drop the ref. we got in remove_memory_block() */
645 kobject_put(&memory->dev.kobj);
646 device_unregister(&memory->dev);
647 }
648
649 static int remove_memory_block(unsigned long node_id,
650 struct mem_section *section, int phys_device)
651 {
652 struct memory_block *mem;
653
654 mutex_lock(&mem_sysfs_mutex);
655 mem = find_memory_block(section);
656 unregister_mem_sect_under_nodes(mem, __section_nr(section));
657
658 mem->section_count--;
659 if (mem->section_count == 0) {
660 mem_remove_simple_file(mem, phys_index);
661 mem_remove_simple_file(mem, end_phys_index);
662 mem_remove_simple_file(mem, state);
663 mem_remove_simple_file(mem, phys_device);
664 mem_remove_simple_file(mem, removable);
665 unregister_memory(mem);
666 } else
667 kobject_put(&mem->dev.kobj);
668
669 mutex_unlock(&mem_sysfs_mutex);
670 return 0;
671 }
672
673 int unregister_memory_section(struct mem_section *section)
674 {
675 if (!present_section(section))
676 return -EINVAL;
677
678 return remove_memory_block(0, section, 0);
679 }
680 #endif /* CONFIG_MEMORY_HOTREMOVE */
681
682 /*
683 * offline one memory block. If the memory block has been offlined, do nothing.
684 */
685 int offline_memory_block(struct memory_block *mem)
686 {
687 int ret = 0;
688
689 mutex_lock(&mem->state_mutex);
690 if (mem->state != MEM_OFFLINE)
691 ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
692 mutex_unlock(&mem->state_mutex);
693
694 return ret;
695 }
696
697 /* return true if the memory block is offlined, otherwise, return false */
698 bool is_memblock_offlined(struct memory_block *mem)
699 {
700 return mem->state == MEM_OFFLINE;
701 }
702
703 /*
704 * Initialize the sysfs support for memory devices...
705 */
706 int __init memory_dev_init(void)
707 {
708 unsigned int i;
709 int ret;
710 int err;
711 unsigned long block_sz;
712 struct memory_block *mem = NULL;
713
714 ret = subsys_system_register(&memory_subsys, NULL);
715 if (ret)
716 goto out;
717
718 block_sz = get_memory_block_size();
719 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
720
721 /*
722 * Create entries for memory sections that were found
723 * during boot and have been initialized
724 */
725 for (i = 0; i < NR_MEM_SECTIONS; i++) {
726 if (!present_section_nr(i))
727 continue;
728 /* don't need to reuse memory_block if only one per block */
729 err = add_memory_section(0, __nr_to_section(i),
730 (sections_per_block == 1) ? NULL : &mem,
731 MEM_ONLINE,
732 BOOT);
733 if (!ret)
734 ret = err;
735 }
736
737 err = memory_probe_init();
738 if (!ret)
739 ret = err;
740 err = memory_fail_init();
741 if (!ret)
742 ret = err;
743 err = block_size_init();
744 if (!ret)
745 ret = err;
746 out:
747 if (ret)
748 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
749 return ret;
750 }