86abbff912ecc0687e1b4ac93701af8cfcded1b5
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / base / memory.c
1 /*
2 * Memory subsystem support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37 return section_nr / sections_per_block;
38 }
39
40 static struct bus_type memory_subsys = {
41 .name = MEMORY_CLASS_NAME,
42 .dev_name = MEMORY_CLASS_NAME,
43 };
44
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49 return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55 blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73 static void memory_block_release(struct device *dev)
74 {
75 struct memory_block *mem = container_of(dev, struct memory_block, dev);
76
77 kfree(mem);
78 }
79
80 /*
81 * register_memory - Setup a sysfs device for a memory block
82 */
83 static
84 int register_memory(struct memory_block *memory)
85 {
86 int error;
87
88 memory->dev.bus = &memory_subsys;
89 memory->dev.id = memory->start_section_nr / sections_per_block;
90 memory->dev.release = memory_block_release;
91
92 error = device_register(&memory->dev);
93 return error;
94 }
95
96 unsigned long __weak memory_block_size_bytes(void)
97 {
98 return MIN_MEMORY_BLOCK_SIZE;
99 }
100
101 static unsigned long get_memory_block_size(void)
102 {
103 unsigned long block_sz;
104
105 block_sz = memory_block_size_bytes();
106
107 /* Validate blk_sz is a power of 2 and not less than section size */
108 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
109 WARN_ON(1);
110 block_sz = MIN_MEMORY_BLOCK_SIZE;
111 }
112
113 return block_sz;
114 }
115
116 /*
117 * use this as the physical section index that this memsection
118 * uses.
119 */
120
121 static ssize_t show_mem_start_phys_index(struct device *dev,
122 struct device_attribute *attr, char *buf)
123 {
124 struct memory_block *mem =
125 container_of(dev, struct memory_block, dev);
126 unsigned long phys_index;
127
128 phys_index = mem->start_section_nr / sections_per_block;
129 return sprintf(buf, "%08lx\n", phys_index);
130 }
131
132 static ssize_t show_mem_end_phys_index(struct device *dev,
133 struct device_attribute *attr, char *buf)
134 {
135 struct memory_block *mem =
136 container_of(dev, struct memory_block, dev);
137 unsigned long phys_index;
138
139 phys_index = mem->end_section_nr / sections_per_block;
140 return sprintf(buf, "%08lx\n", phys_index);
141 }
142
143 /*
144 * Show whether the section of memory is likely to be hot-removable
145 */
146 static ssize_t show_mem_removable(struct device *dev,
147 struct device_attribute *attr, char *buf)
148 {
149 unsigned long i, pfn;
150 int ret = 1;
151 struct memory_block *mem =
152 container_of(dev, struct memory_block, dev);
153
154 for (i = 0; i < sections_per_block; i++) {
155 if (!present_section_nr(mem->start_section_nr + i))
156 continue;
157 pfn = section_nr_to_pfn(mem->start_section_nr + i);
158 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159 }
160
161 return sprintf(buf, "%d\n", ret);
162 }
163
164 /*
165 * online, offline, going offline, etc.
166 */
167 static ssize_t show_mem_state(struct device *dev,
168 struct device_attribute *attr, char *buf)
169 {
170 struct memory_block *mem =
171 container_of(dev, struct memory_block, dev);
172 ssize_t len = 0;
173
174 /*
175 * We can probably put these states in a nice little array
176 * so that they're not open-coded
177 */
178 switch (mem->state) {
179 case MEM_ONLINE:
180 len = sprintf(buf, "online\n");
181 break;
182 case MEM_OFFLINE:
183 len = sprintf(buf, "offline\n");
184 break;
185 case MEM_GOING_OFFLINE:
186 len = sprintf(buf, "going-offline\n");
187 break;
188 default:
189 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190 mem->state);
191 WARN_ON(1);
192 break;
193 }
194
195 return len;
196 }
197
198 int memory_notify(unsigned long val, void *v)
199 {
200 return blocking_notifier_call_chain(&memory_chain, val, v);
201 }
202
203 int memory_isolate_notify(unsigned long val, void *v)
204 {
205 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206 }
207
208 /*
209 * The probe routines leave the pages reserved, just as the bootmem code does.
210 * Make sure they're still that way.
211 */
212 static bool pages_correctly_reserved(unsigned long start_pfn)
213 {
214 int i, j;
215 struct page *page;
216 unsigned long pfn = start_pfn;
217
218 /*
219 * memmap between sections is not contiguous except with
220 * SPARSEMEM_VMEMMAP. We lookup the page once per section
221 * and assume memmap is contiguous within each section
222 */
223 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
224 if (WARN_ON_ONCE(!pfn_valid(pfn)))
225 return false;
226 page = pfn_to_page(pfn);
227
228 for (j = 0; j < PAGES_PER_SECTION; j++) {
229 if (PageReserved(page + j))
230 continue;
231
232 printk(KERN_WARNING "section number %ld page number %d "
233 "not reserved, was it already online?\n",
234 pfn_to_section_nr(pfn), j);
235
236 return false;
237 }
238 }
239
240 return true;
241 }
242
243 /*
244 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
245 * OK to have direct references to sparsemem variables in here.
246 */
247 static int
248 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
249 {
250 unsigned long start_pfn;
251 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
252 struct page *first_page;
253 int ret;
254
255 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
256 start_pfn = page_to_pfn(first_page);
257
258 switch (action) {
259 case MEM_ONLINE:
260 if (!pages_correctly_reserved(start_pfn))
261 return -EBUSY;
262
263 ret = online_pages(start_pfn, nr_pages, online_type);
264 break;
265 case MEM_OFFLINE:
266 ret = offline_pages(start_pfn, nr_pages);
267 break;
268 default:
269 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
270 "%ld\n", __func__, phys_index, action, action);
271 ret = -EINVAL;
272 }
273
274 return ret;
275 }
276
277 static int __memory_block_change_state(struct memory_block *mem,
278 unsigned long to_state, unsigned long from_state_req,
279 int online_type)
280 {
281 int ret = 0;
282
283 if (mem->state != from_state_req) {
284 ret = -EINVAL;
285 goto out;
286 }
287
288 if (to_state == MEM_OFFLINE)
289 mem->state = MEM_GOING_OFFLINE;
290
291 ret = memory_block_action(mem->start_section_nr, to_state, online_type);
292
293 if (ret) {
294 mem->state = from_state_req;
295 goto out;
296 }
297
298 mem->state = to_state;
299 switch (mem->state) {
300 case MEM_OFFLINE:
301 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
302 break;
303 case MEM_ONLINE:
304 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
305 break;
306 default:
307 break;
308 }
309 out:
310 return ret;
311 }
312
313 static int memory_block_change_state(struct memory_block *mem,
314 unsigned long to_state, unsigned long from_state_req,
315 int online_type)
316 {
317 int ret;
318
319 mutex_lock(&mem->state_mutex);
320 ret = __memory_block_change_state(mem, to_state, from_state_req,
321 online_type);
322 mutex_unlock(&mem->state_mutex);
323
324 return ret;
325 }
326 static ssize_t
327 store_mem_state(struct device *dev,
328 struct device_attribute *attr, const char *buf, size_t count)
329 {
330 struct memory_block *mem;
331 int ret = -EINVAL;
332
333 mem = container_of(dev, struct memory_block, dev);
334
335 if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
336 ret = memory_block_change_state(mem, MEM_ONLINE,
337 MEM_OFFLINE, ONLINE_KERNEL);
338 else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
339 ret = memory_block_change_state(mem, MEM_ONLINE,
340 MEM_OFFLINE, ONLINE_MOVABLE);
341 else if (!strncmp(buf, "online", min_t(int, count, 6)))
342 ret = memory_block_change_state(mem, MEM_ONLINE,
343 MEM_OFFLINE, ONLINE_KEEP);
344 else if(!strncmp(buf, "offline", min_t(int, count, 7)))
345 ret = memory_block_change_state(mem, MEM_OFFLINE,
346 MEM_ONLINE, -1);
347
348 if (ret)
349 return ret;
350 return count;
351 }
352
353 /*
354 * phys_device is a bad name for this. What I really want
355 * is a way to differentiate between memory ranges that
356 * are part of physical devices that constitute
357 * a complete removable unit or fru.
358 * i.e. do these ranges belong to the same physical device,
359 * s.t. if I offline all of these sections I can then
360 * remove the physical device?
361 */
362 static ssize_t show_phys_device(struct device *dev,
363 struct device_attribute *attr, char *buf)
364 {
365 struct memory_block *mem =
366 container_of(dev, struct memory_block, dev);
367 return sprintf(buf, "%d\n", mem->phys_device);
368 }
369
370 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
371 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
372 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
373 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
374 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
375
376 #define mem_create_simple_file(mem, attr_name) \
377 device_create_file(&mem->dev, &dev_attr_##attr_name)
378 #define mem_remove_simple_file(mem, attr_name) \
379 device_remove_file(&mem->dev, &dev_attr_##attr_name)
380
381 /*
382 * Block size attribute stuff
383 */
384 static ssize_t
385 print_block_size(struct device *dev, struct device_attribute *attr,
386 char *buf)
387 {
388 return sprintf(buf, "%lx\n", get_memory_block_size());
389 }
390
391 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
392
393 static int block_size_init(void)
394 {
395 return device_create_file(memory_subsys.dev_root,
396 &dev_attr_block_size_bytes);
397 }
398
399 /*
400 * Some architectures will have custom drivers to do this, and
401 * will not need to do it from userspace. The fake hot-add code
402 * as well as ppc64 will do all of their discovery in userspace
403 * and will require this interface.
404 */
405 #ifdef CONFIG_ARCH_MEMORY_PROBE
406 static ssize_t
407 memory_probe_store(struct device *dev, struct device_attribute *attr,
408 const char *buf, size_t count)
409 {
410 u64 phys_addr;
411 int nid;
412 int i, ret;
413 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
414
415 phys_addr = simple_strtoull(buf, NULL, 0);
416
417 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
418 return -EINVAL;
419
420 for (i = 0; i < sections_per_block; i++) {
421 nid = memory_add_physaddr_to_nid(phys_addr);
422 ret = add_memory(nid, phys_addr,
423 PAGES_PER_SECTION << PAGE_SHIFT);
424 if (ret)
425 goto out;
426
427 phys_addr += MIN_MEMORY_BLOCK_SIZE;
428 }
429
430 ret = count;
431 out:
432 return ret;
433 }
434 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
435
436 static int memory_probe_init(void)
437 {
438 return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
439 }
440 #else
441 static inline int memory_probe_init(void)
442 {
443 return 0;
444 }
445 #endif
446
447 #ifdef CONFIG_MEMORY_FAILURE
448 /*
449 * Support for offlining pages of memory
450 */
451
452 /* Soft offline a page */
453 static ssize_t
454 store_soft_offline_page(struct device *dev,
455 struct device_attribute *attr,
456 const char *buf, size_t count)
457 {
458 int ret;
459 u64 pfn;
460 if (!capable(CAP_SYS_ADMIN))
461 return -EPERM;
462 if (strict_strtoull(buf, 0, &pfn) < 0)
463 return -EINVAL;
464 pfn >>= PAGE_SHIFT;
465 if (!pfn_valid(pfn))
466 return -ENXIO;
467 ret = soft_offline_page(pfn_to_page(pfn), 0);
468 return ret == 0 ? count : ret;
469 }
470
471 /* Forcibly offline a page, including killing processes. */
472 static ssize_t
473 store_hard_offline_page(struct device *dev,
474 struct device_attribute *attr,
475 const char *buf, size_t count)
476 {
477 int ret;
478 u64 pfn;
479 if (!capable(CAP_SYS_ADMIN))
480 return -EPERM;
481 if (strict_strtoull(buf, 0, &pfn) < 0)
482 return -EINVAL;
483 pfn >>= PAGE_SHIFT;
484 ret = memory_failure(pfn, 0, 0);
485 return ret ? ret : count;
486 }
487
488 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
489 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
490
491 static __init int memory_fail_init(void)
492 {
493 int err;
494
495 err = device_create_file(memory_subsys.dev_root,
496 &dev_attr_soft_offline_page);
497 if (!err)
498 err = device_create_file(memory_subsys.dev_root,
499 &dev_attr_hard_offline_page);
500 return err;
501 }
502 #else
503 static inline int memory_fail_init(void)
504 {
505 return 0;
506 }
507 #endif
508
509 /*
510 * Note that phys_device is optional. It is here to allow for
511 * differentiation between which *physical* devices each
512 * section belongs to...
513 */
514 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
515 {
516 return 0;
517 }
518
519 /*
520 * A reference for the returned object is held and the reference for the
521 * hinted object is released.
522 */
523 struct memory_block *find_memory_block_hinted(struct mem_section *section,
524 struct memory_block *hint)
525 {
526 int block_id = base_memory_block_id(__section_nr(section));
527 struct device *hintdev = hint ? &hint->dev : NULL;
528 struct device *dev;
529
530 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
531 if (hint)
532 put_device(&hint->dev);
533 if (!dev)
534 return NULL;
535 return container_of(dev, struct memory_block, dev);
536 }
537
538 /*
539 * For now, we have a linear search to go find the appropriate
540 * memory_block corresponding to a particular phys_index. If
541 * this gets to be a real problem, we can always use a radix
542 * tree or something here.
543 *
544 * This could be made generic for all device subsystems.
545 */
546 struct memory_block *find_memory_block(struct mem_section *section)
547 {
548 return find_memory_block_hinted(section, NULL);
549 }
550
551 static int init_memory_block(struct memory_block **memory,
552 struct mem_section *section, unsigned long state)
553 {
554 struct memory_block *mem;
555 unsigned long start_pfn;
556 int scn_nr;
557 int ret = 0;
558
559 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
560 if (!mem)
561 return -ENOMEM;
562
563 scn_nr = __section_nr(section);
564 mem->start_section_nr =
565 base_memory_block_id(scn_nr) * sections_per_block;
566 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
567 mem->state = state;
568 mem->section_count++;
569 mutex_init(&mem->state_mutex);
570 start_pfn = section_nr_to_pfn(mem->start_section_nr);
571 mem->phys_device = arch_get_memory_phys_device(start_pfn);
572
573 ret = register_memory(mem);
574 if (!ret)
575 ret = mem_create_simple_file(mem, phys_index);
576 if (!ret)
577 ret = mem_create_simple_file(mem, end_phys_index);
578 if (!ret)
579 ret = mem_create_simple_file(mem, state);
580 if (!ret)
581 ret = mem_create_simple_file(mem, phys_device);
582 if (!ret)
583 ret = mem_create_simple_file(mem, removable);
584
585 *memory = mem;
586 return ret;
587 }
588
589 static int add_memory_section(int nid, struct mem_section *section,
590 struct memory_block **mem_p,
591 unsigned long state, enum mem_add_context context)
592 {
593 struct memory_block *mem = NULL;
594 int scn_nr = __section_nr(section);
595 int ret = 0;
596
597 mutex_lock(&mem_sysfs_mutex);
598
599 if (context == BOOT) {
600 /* same memory block ? */
601 if (mem_p && *mem_p)
602 if (scn_nr >= (*mem_p)->start_section_nr &&
603 scn_nr <= (*mem_p)->end_section_nr) {
604 mem = *mem_p;
605 kobject_get(&mem->dev.kobj);
606 }
607 } else
608 mem = find_memory_block(section);
609
610 if (mem) {
611 mem->section_count++;
612 kobject_put(&mem->dev.kobj);
613 } else {
614 ret = init_memory_block(&mem, section, state);
615 /* store memory_block pointer for next loop */
616 if (!ret && context == BOOT)
617 if (mem_p)
618 *mem_p = mem;
619 }
620
621 if (!ret) {
622 if (context == HOTPLUG &&
623 mem->section_count == sections_per_block)
624 ret = register_mem_sect_under_node(mem, nid);
625 }
626
627 mutex_unlock(&mem_sysfs_mutex);
628 return ret;
629 }
630
631 /*
632 * need an interface for the VM to add new memory regions,
633 * but without onlining it.
634 */
635 int register_new_memory(int nid, struct mem_section *section)
636 {
637 return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
638 }
639
640 #ifdef CONFIG_MEMORY_HOTREMOVE
641 static void
642 unregister_memory(struct memory_block *memory)
643 {
644 BUG_ON(memory->dev.bus != &memory_subsys);
645
646 /* drop the ref. we got in remove_memory_block() */
647 kobject_put(&memory->dev.kobj);
648 device_unregister(&memory->dev);
649 }
650
651 static int remove_memory_block(unsigned long node_id,
652 struct mem_section *section, int phys_device)
653 {
654 struct memory_block *mem;
655
656 mutex_lock(&mem_sysfs_mutex);
657 mem = find_memory_block(section);
658 unregister_mem_sect_under_nodes(mem, __section_nr(section));
659
660 mem->section_count--;
661 if (mem->section_count == 0) {
662 mem_remove_simple_file(mem, phys_index);
663 mem_remove_simple_file(mem, end_phys_index);
664 mem_remove_simple_file(mem, state);
665 mem_remove_simple_file(mem, phys_device);
666 mem_remove_simple_file(mem, removable);
667 unregister_memory(mem);
668 } else
669 kobject_put(&mem->dev.kobj);
670
671 mutex_unlock(&mem_sysfs_mutex);
672 return 0;
673 }
674
675 int unregister_memory_section(struct mem_section *section)
676 {
677 if (!present_section(section))
678 return -EINVAL;
679
680 return remove_memory_block(0, section, 0);
681 }
682 #endif /* CONFIG_MEMORY_HOTREMOVE */
683
684 /*
685 * offline one memory block. If the memory block has been offlined, do nothing.
686 */
687 int offline_memory_block(struct memory_block *mem)
688 {
689 int ret = 0;
690
691 mutex_lock(&mem->state_mutex);
692 if (mem->state != MEM_OFFLINE)
693 ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
694 mutex_unlock(&mem->state_mutex);
695
696 return ret;
697 }
698
699 /* return true if the memory block is offlined, otherwise, return false */
700 bool is_memblock_offlined(struct memory_block *mem)
701 {
702 return mem->state == MEM_OFFLINE;
703 }
704
705 /*
706 * Initialize the sysfs support for memory devices...
707 */
708 int __init memory_dev_init(void)
709 {
710 unsigned int i;
711 int ret;
712 int err;
713 unsigned long block_sz;
714 struct memory_block *mem = NULL;
715
716 ret = subsys_system_register(&memory_subsys, NULL);
717 if (ret)
718 goto out;
719
720 block_sz = get_memory_block_size();
721 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
722
723 /*
724 * Create entries for memory sections that were found
725 * during boot and have been initialized
726 */
727 for (i = 0; i < NR_MEM_SECTIONS; i++) {
728 if (!present_section_nr(i))
729 continue;
730 /* don't need to reuse memory_block if only one per block */
731 err = add_memory_section(0, __nr_to_section(i),
732 (sections_per_block == 1) ? NULL : &mem,
733 MEM_ONLINE,
734 BOOT);
735 if (!ret)
736 ret = err;
737 }
738
739 err = memory_probe_init();
740 if (!ret)
741 ret = err;
742 err = memory_fail_init();
743 if (!ret)
744 ret = err;
745 err = block_size_init();
746 if (!ret)
747 ret = err;
748 out:
749 if (ret)
750 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
751 return ret;
752 }