a7391a30cb294ab7fbc405b6f5b2496654626dc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/kallsyms.h>
25 #include <linux/mutex.h>
26 #include <linux/async.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29
30 #include "base.h"
31 #include "power/power.h"
32
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static __init int sysfs_deprecated_setup(char *arg)
40 {
41 return strict_strtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45
46 int (*platform_notify)(struct device *dev) = NULL;
47 int (*platform_notify_remove)(struct device *dev) = NULL;
48 static struct kobject *dev_kobj;
49 struct kobject *sysfs_dev_char_kobj;
50 struct kobject *sysfs_dev_block_kobj;
51
52 #ifdef CONFIG_BLOCK
53 static inline int device_is_not_partition(struct device *dev)
54 {
55 return !(dev->type == &part_type);
56 }
57 #else
58 static inline int device_is_not_partition(struct device *dev)
59 {
60 return 1;
61 }
62 #endif
63
64 /**
65 * dev_driver_string - Return a device's driver name, if at all possible
66 * @dev: struct device to get the name of
67 *
68 * Will return the device's driver's name if it is bound to a device. If
69 * the device is not bound to a driver, it will return the name of the bus
70 * it is attached to. If it is not attached to a bus either, an empty
71 * string will be returned.
72 */
73 const char *dev_driver_string(const struct device *dev)
74 {
75 struct device_driver *drv;
76
77 /* dev->driver can change to NULL underneath us because of unbinding,
78 * so be careful about accessing it. dev->bus and dev->class should
79 * never change once they are set, so they don't need special care.
80 */
81 drv = ACCESS_ONCE(dev->driver);
82 return drv ? drv->name :
83 (dev->bus ? dev->bus->name :
84 (dev->class ? dev->class->name : ""));
85 }
86 EXPORT_SYMBOL(dev_driver_string);
87
88 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
89
90 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
91 char *buf)
92 {
93 struct device_attribute *dev_attr = to_dev_attr(attr);
94 struct device *dev = kobj_to_dev(kobj);
95 ssize_t ret = -EIO;
96
97 if (dev_attr->show)
98 ret = dev_attr->show(dev, dev_attr, buf);
99 if (ret >= (ssize_t)PAGE_SIZE) {
100 print_symbol("dev_attr_show: %s returned bad count\n",
101 (unsigned long)dev_attr->show);
102 }
103 return ret;
104 }
105
106 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
107 const char *buf, size_t count)
108 {
109 struct device_attribute *dev_attr = to_dev_attr(attr);
110 struct device *dev = kobj_to_dev(kobj);
111 ssize_t ret = -EIO;
112
113 if (dev_attr->store)
114 ret = dev_attr->store(dev, dev_attr, buf, count);
115 return ret;
116 }
117
118 static const struct sysfs_ops dev_sysfs_ops = {
119 .show = dev_attr_show,
120 .store = dev_attr_store,
121 };
122
123 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
124
125 ssize_t device_store_ulong(struct device *dev,
126 struct device_attribute *attr,
127 const char *buf, size_t size)
128 {
129 struct dev_ext_attribute *ea = to_ext_attr(attr);
130 char *end;
131 unsigned long new = simple_strtoul(buf, &end, 0);
132 if (end == buf)
133 return -EINVAL;
134 *(unsigned long *)(ea->var) = new;
135 /* Always return full write size even if we didn't consume all */
136 return size;
137 }
138 EXPORT_SYMBOL_GPL(device_store_ulong);
139
140 ssize_t device_show_ulong(struct device *dev,
141 struct device_attribute *attr,
142 char *buf)
143 {
144 struct dev_ext_attribute *ea = to_ext_attr(attr);
145 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
146 }
147 EXPORT_SYMBOL_GPL(device_show_ulong);
148
149 ssize_t device_store_int(struct device *dev,
150 struct device_attribute *attr,
151 const char *buf, size_t size)
152 {
153 struct dev_ext_attribute *ea = to_ext_attr(attr);
154 char *end;
155 long new = simple_strtol(buf, &end, 0);
156 if (end == buf || new > INT_MAX || new < INT_MIN)
157 return -EINVAL;
158 *(int *)(ea->var) = new;
159 /* Always return full write size even if we didn't consume all */
160 return size;
161 }
162 EXPORT_SYMBOL_GPL(device_store_int);
163
164 ssize_t device_show_int(struct device *dev,
165 struct device_attribute *attr,
166 char *buf)
167 {
168 struct dev_ext_attribute *ea = to_ext_attr(attr);
169
170 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
171 }
172 EXPORT_SYMBOL_GPL(device_show_int);
173
174 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
175 const char *buf, size_t size)
176 {
177 struct dev_ext_attribute *ea = to_ext_attr(attr);
178
179 if (strtobool(buf, ea->var) < 0)
180 return -EINVAL;
181
182 return size;
183 }
184 EXPORT_SYMBOL_GPL(device_store_bool);
185
186 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
187 char *buf)
188 {
189 struct dev_ext_attribute *ea = to_ext_attr(attr);
190
191 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
192 }
193 EXPORT_SYMBOL_GPL(device_show_bool);
194
195 /**
196 * device_release - free device structure.
197 * @kobj: device's kobject.
198 *
199 * This is called once the reference count for the object
200 * reaches 0. We forward the call to the device's release
201 * method, which should handle actually freeing the structure.
202 */
203 static void device_release(struct kobject *kobj)
204 {
205 struct device *dev = kobj_to_dev(kobj);
206 struct device_private *p = dev->p;
207
208 /*
209 * Some platform devices are driven without driver attached
210 * and managed resources may have been acquired. Make sure
211 * all resources are released.
212 *
213 * Drivers still can add resources into device after device
214 * is deleted but alive, so release devres here to avoid
215 * possible memory leak.
216 */
217 devres_release_all(dev);
218
219 if (dev->release)
220 dev->release(dev);
221 else if (dev->type && dev->type->release)
222 dev->type->release(dev);
223 else if (dev->class && dev->class->dev_release)
224 dev->class->dev_release(dev);
225 else
226 WARN(1, KERN_ERR "Device '%s' does not have a release() "
227 "function, it is broken and must be fixed.\n",
228 dev_name(dev));
229 kfree(p);
230 }
231
232 static const void *device_namespace(struct kobject *kobj)
233 {
234 struct device *dev = kobj_to_dev(kobj);
235 const void *ns = NULL;
236
237 if (dev->class && dev->class->ns_type)
238 ns = dev->class->namespace(dev);
239
240 return ns;
241 }
242
243 static struct kobj_type device_ktype = {
244 .release = device_release,
245 .sysfs_ops = &dev_sysfs_ops,
246 .namespace = device_namespace,
247 };
248
249
250 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
251 {
252 struct kobj_type *ktype = get_ktype(kobj);
253
254 if (ktype == &device_ktype) {
255 struct device *dev = kobj_to_dev(kobj);
256 if (dev->bus)
257 return 1;
258 if (dev->class)
259 return 1;
260 }
261 return 0;
262 }
263
264 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
265 {
266 struct device *dev = kobj_to_dev(kobj);
267
268 if (dev->bus)
269 return dev->bus->name;
270 if (dev->class)
271 return dev->class->name;
272 return NULL;
273 }
274
275 static int dev_uevent(struct kset *kset, struct kobject *kobj,
276 struct kobj_uevent_env *env)
277 {
278 struct device *dev = kobj_to_dev(kobj);
279 int retval = 0;
280
281 /* add device node properties if present */
282 if (MAJOR(dev->devt)) {
283 const char *tmp;
284 const char *name;
285 umode_t mode = 0;
286
287 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
288 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
289 name = device_get_devnode(dev, &mode, &tmp);
290 if (name) {
291 add_uevent_var(env, "DEVNAME=%s", name);
292 kfree(tmp);
293 if (mode)
294 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
295 }
296 }
297
298 if (dev->type && dev->type->name)
299 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
300
301 if (dev->driver)
302 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
303
304 /* Add common DT information about the device */
305 of_device_uevent(dev, env);
306
307 /* have the bus specific function add its stuff */
308 if (dev->bus && dev->bus->uevent) {
309 retval = dev->bus->uevent(dev, env);
310 if (retval)
311 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
312 dev_name(dev), __func__, retval);
313 }
314
315 /* have the class specific function add its stuff */
316 if (dev->class && dev->class->dev_uevent) {
317 retval = dev->class->dev_uevent(dev, env);
318 if (retval)
319 pr_debug("device: '%s': %s: class uevent() "
320 "returned %d\n", dev_name(dev),
321 __func__, retval);
322 }
323
324 /* have the device type specific function add its stuff */
325 if (dev->type && dev->type->uevent) {
326 retval = dev->type->uevent(dev, env);
327 if (retval)
328 pr_debug("device: '%s': %s: dev_type uevent() "
329 "returned %d\n", dev_name(dev),
330 __func__, retval);
331 }
332
333 return retval;
334 }
335
336 static const struct kset_uevent_ops device_uevent_ops = {
337 .filter = dev_uevent_filter,
338 .name = dev_uevent_name,
339 .uevent = dev_uevent,
340 };
341
342 static ssize_t show_uevent(struct device *dev, struct device_attribute *attr,
343 char *buf)
344 {
345 struct kobject *top_kobj;
346 struct kset *kset;
347 struct kobj_uevent_env *env = NULL;
348 int i;
349 size_t count = 0;
350 int retval;
351
352 /* search the kset, the device belongs to */
353 top_kobj = &dev->kobj;
354 while (!top_kobj->kset && top_kobj->parent)
355 top_kobj = top_kobj->parent;
356 if (!top_kobj->kset)
357 goto out;
358
359 kset = top_kobj->kset;
360 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
361 goto out;
362
363 /* respect filter */
364 if (kset->uevent_ops && kset->uevent_ops->filter)
365 if (!kset->uevent_ops->filter(kset, &dev->kobj))
366 goto out;
367
368 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
369 if (!env)
370 return -ENOMEM;
371
372 /* let the kset specific function add its keys */
373 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
374 if (retval)
375 goto out;
376
377 /* copy keys to file */
378 for (i = 0; i < env->envp_idx; i++)
379 count += sprintf(&buf[count], "%s\n", env->envp[i]);
380 out:
381 kfree(env);
382 return count;
383 }
384
385 static ssize_t store_uevent(struct device *dev, struct device_attribute *attr,
386 const char *buf, size_t count)
387 {
388 enum kobject_action action;
389
390 if (kobject_action_type(buf, count, &action) == 0)
391 kobject_uevent(&dev->kobj, action);
392 else
393 dev_err(dev, "uevent: unknown action-string\n");
394 return count;
395 }
396
397 static struct device_attribute uevent_attr =
398 __ATTR(uevent, S_IRUGO | S_IWUSR, show_uevent, store_uevent);
399
400 static int device_add_attributes(struct device *dev,
401 struct device_attribute *attrs)
402 {
403 int error = 0;
404 int i;
405
406 if (attrs) {
407 for (i = 0; attr_name(attrs[i]); i++) {
408 error = device_create_file(dev, &attrs[i]);
409 if (error)
410 break;
411 }
412 if (error)
413 while (--i >= 0)
414 device_remove_file(dev, &attrs[i]);
415 }
416 return error;
417 }
418
419 static void device_remove_attributes(struct device *dev,
420 struct device_attribute *attrs)
421 {
422 int i;
423
424 if (attrs)
425 for (i = 0; attr_name(attrs[i]); i++)
426 device_remove_file(dev, &attrs[i]);
427 }
428
429 static int device_add_bin_attributes(struct device *dev,
430 struct bin_attribute *attrs)
431 {
432 int error = 0;
433 int i;
434
435 if (attrs) {
436 for (i = 0; attr_name(attrs[i]); i++) {
437 error = device_create_bin_file(dev, &attrs[i]);
438 if (error)
439 break;
440 }
441 if (error)
442 while (--i >= 0)
443 device_remove_bin_file(dev, &attrs[i]);
444 }
445 return error;
446 }
447
448 static void device_remove_bin_attributes(struct device *dev,
449 struct bin_attribute *attrs)
450 {
451 int i;
452
453 if (attrs)
454 for (i = 0; attr_name(attrs[i]); i++)
455 device_remove_bin_file(dev, &attrs[i]);
456 }
457
458 static int device_add_groups(struct device *dev,
459 const struct attribute_group **groups)
460 {
461 int error = 0;
462 int i;
463
464 if (groups) {
465 for (i = 0; groups[i]; i++) {
466 error = sysfs_create_group(&dev->kobj, groups[i]);
467 if (error) {
468 while (--i >= 0)
469 sysfs_remove_group(&dev->kobj,
470 groups[i]);
471 break;
472 }
473 }
474 }
475 return error;
476 }
477
478 static void device_remove_groups(struct device *dev,
479 const struct attribute_group **groups)
480 {
481 int i;
482
483 if (groups)
484 for (i = 0; groups[i]; i++)
485 sysfs_remove_group(&dev->kobj, groups[i]);
486 }
487
488 static int device_add_attrs(struct device *dev)
489 {
490 struct class *class = dev->class;
491 const struct device_type *type = dev->type;
492 int error;
493
494 if (class) {
495 error = device_add_attributes(dev, class->dev_attrs);
496 if (error)
497 return error;
498 error = device_add_bin_attributes(dev, class->dev_bin_attrs);
499 if (error)
500 goto err_remove_class_attrs;
501 }
502
503 if (type) {
504 error = device_add_groups(dev, type->groups);
505 if (error)
506 goto err_remove_class_bin_attrs;
507 }
508
509 error = device_add_groups(dev, dev->groups);
510 if (error)
511 goto err_remove_type_groups;
512
513 return 0;
514
515 err_remove_type_groups:
516 if (type)
517 device_remove_groups(dev, type->groups);
518 err_remove_class_bin_attrs:
519 if (class)
520 device_remove_bin_attributes(dev, class->dev_bin_attrs);
521 err_remove_class_attrs:
522 if (class)
523 device_remove_attributes(dev, class->dev_attrs);
524
525 return error;
526 }
527
528 static void device_remove_attrs(struct device *dev)
529 {
530 struct class *class = dev->class;
531 const struct device_type *type = dev->type;
532
533 device_remove_groups(dev, dev->groups);
534
535 if (type)
536 device_remove_groups(dev, type->groups);
537
538 if (class) {
539 device_remove_attributes(dev, class->dev_attrs);
540 device_remove_bin_attributes(dev, class->dev_bin_attrs);
541 }
542 }
543
544
545 static ssize_t show_dev(struct device *dev, struct device_attribute *attr,
546 char *buf)
547 {
548 return print_dev_t(buf, dev->devt);
549 }
550
551 static struct device_attribute devt_attr =
552 __ATTR(dev, S_IRUGO, show_dev, NULL);
553
554 /* /sys/devices/ */
555 struct kset *devices_kset;
556
557 /**
558 * device_create_file - create sysfs attribute file for device.
559 * @dev: device.
560 * @attr: device attribute descriptor.
561 */
562 int device_create_file(struct device *dev,
563 const struct device_attribute *attr)
564 {
565 int error = 0;
566
567 if (dev) {
568 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
569 "Write permission without 'store'\n");
570 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
571 "Read permission without 'show'\n");
572 error = sysfs_create_file(&dev->kobj, &attr->attr);
573 }
574
575 return error;
576 }
577
578 /**
579 * device_remove_file - remove sysfs attribute file.
580 * @dev: device.
581 * @attr: device attribute descriptor.
582 */
583 void device_remove_file(struct device *dev,
584 const struct device_attribute *attr)
585 {
586 if (dev)
587 sysfs_remove_file(&dev->kobj, &attr->attr);
588 }
589
590 /**
591 * device_create_bin_file - create sysfs binary attribute file for device.
592 * @dev: device.
593 * @attr: device binary attribute descriptor.
594 */
595 int device_create_bin_file(struct device *dev,
596 const struct bin_attribute *attr)
597 {
598 int error = -EINVAL;
599 if (dev)
600 error = sysfs_create_bin_file(&dev->kobj, attr);
601 return error;
602 }
603 EXPORT_SYMBOL_GPL(device_create_bin_file);
604
605 /**
606 * device_remove_bin_file - remove sysfs binary attribute file
607 * @dev: device.
608 * @attr: device binary attribute descriptor.
609 */
610 void device_remove_bin_file(struct device *dev,
611 const struct bin_attribute *attr)
612 {
613 if (dev)
614 sysfs_remove_bin_file(&dev->kobj, attr);
615 }
616 EXPORT_SYMBOL_GPL(device_remove_bin_file);
617
618 /**
619 * device_schedule_callback_owner - helper to schedule a callback for a device
620 * @dev: device.
621 * @func: callback function to invoke later.
622 * @owner: module owning the callback routine
623 *
624 * Attribute methods must not unregister themselves or their parent device
625 * (which would amount to the same thing). Attempts to do so will deadlock,
626 * since unregistration is mutually exclusive with driver callbacks.
627 *
628 * Instead methods can call this routine, which will attempt to allocate
629 * and schedule a workqueue request to call back @func with @dev as its
630 * argument in the workqueue's process context. @dev will be pinned until
631 * @func returns.
632 *
633 * This routine is usually called via the inline device_schedule_callback(),
634 * which automatically sets @owner to THIS_MODULE.
635 *
636 * Returns 0 if the request was submitted, -ENOMEM if storage could not
637 * be allocated, -ENODEV if a reference to @owner isn't available.
638 *
639 * NOTE: This routine won't work if CONFIG_SYSFS isn't set! It uses an
640 * underlying sysfs routine (since it is intended for use by attribute
641 * methods), and if sysfs isn't available you'll get nothing but -ENOSYS.
642 */
643 int device_schedule_callback_owner(struct device *dev,
644 void (*func)(struct device *), struct module *owner)
645 {
646 return sysfs_schedule_callback(&dev->kobj,
647 (void (*)(void *)) func, dev, owner);
648 }
649 EXPORT_SYMBOL_GPL(device_schedule_callback_owner);
650
651 static void klist_children_get(struct klist_node *n)
652 {
653 struct device_private *p = to_device_private_parent(n);
654 struct device *dev = p->device;
655
656 get_device(dev);
657 }
658
659 static void klist_children_put(struct klist_node *n)
660 {
661 struct device_private *p = to_device_private_parent(n);
662 struct device *dev = p->device;
663
664 put_device(dev);
665 }
666
667 /**
668 * device_initialize - init device structure.
669 * @dev: device.
670 *
671 * This prepares the device for use by other layers by initializing
672 * its fields.
673 * It is the first half of device_register(), if called by
674 * that function, though it can also be called separately, so one
675 * may use @dev's fields. In particular, get_device()/put_device()
676 * may be used for reference counting of @dev after calling this
677 * function.
678 *
679 * All fields in @dev must be initialized by the caller to 0, except
680 * for those explicitly set to some other value. The simplest
681 * approach is to use kzalloc() to allocate the structure containing
682 * @dev.
683 *
684 * NOTE: Use put_device() to give up your reference instead of freeing
685 * @dev directly once you have called this function.
686 */
687 void device_initialize(struct device *dev)
688 {
689 dev->kobj.kset = devices_kset;
690 kobject_init(&dev->kobj, &device_ktype);
691 INIT_LIST_HEAD(&dev->dma_pools);
692 mutex_init(&dev->mutex);
693 lockdep_set_novalidate_class(&dev->mutex);
694 spin_lock_init(&dev->devres_lock);
695 INIT_LIST_HEAD(&dev->devres_head);
696 device_pm_init(dev);
697 set_dev_node(dev, -1);
698 }
699
700 static struct kobject *virtual_device_parent(struct device *dev)
701 {
702 static struct kobject *virtual_dir = NULL;
703
704 if (!virtual_dir)
705 virtual_dir = kobject_create_and_add("virtual",
706 &devices_kset->kobj);
707
708 return virtual_dir;
709 }
710
711 struct class_dir {
712 struct kobject kobj;
713 struct class *class;
714 };
715
716 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
717
718 static void class_dir_release(struct kobject *kobj)
719 {
720 struct class_dir *dir = to_class_dir(kobj);
721 kfree(dir);
722 }
723
724 static const
725 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
726 {
727 struct class_dir *dir = to_class_dir(kobj);
728 return dir->class->ns_type;
729 }
730
731 static struct kobj_type class_dir_ktype = {
732 .release = class_dir_release,
733 .sysfs_ops = &kobj_sysfs_ops,
734 .child_ns_type = class_dir_child_ns_type
735 };
736
737 static struct kobject *
738 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
739 {
740 struct class_dir *dir;
741 int retval;
742
743 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
744 if (!dir)
745 return NULL;
746
747 dir->class = class;
748 kobject_init(&dir->kobj, &class_dir_ktype);
749
750 dir->kobj.kset = &class->p->glue_dirs;
751
752 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
753 if (retval < 0) {
754 kobject_put(&dir->kobj);
755 return NULL;
756 }
757 return &dir->kobj;
758 }
759
760
761 static struct kobject *get_device_parent(struct device *dev,
762 struct device *parent)
763 {
764 if (dev->class) {
765 static DEFINE_MUTEX(gdp_mutex);
766 struct kobject *kobj = NULL;
767 struct kobject *parent_kobj;
768 struct kobject *k;
769
770 #ifdef CONFIG_BLOCK
771 /* block disks show up in /sys/block */
772 if (sysfs_deprecated && dev->class == &block_class) {
773 if (parent && parent->class == &block_class)
774 return &parent->kobj;
775 return &block_class.p->subsys.kobj;
776 }
777 #endif
778
779 /*
780 * If we have no parent, we live in "virtual".
781 * Class-devices with a non class-device as parent, live
782 * in a "glue" directory to prevent namespace collisions.
783 */
784 if (parent == NULL)
785 parent_kobj = virtual_device_parent(dev);
786 else if (parent->class && !dev->class->ns_type)
787 return &parent->kobj;
788 else
789 parent_kobj = &parent->kobj;
790
791 mutex_lock(&gdp_mutex);
792
793 /* find our class-directory at the parent and reference it */
794 spin_lock(&dev->class->p->glue_dirs.list_lock);
795 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
796 if (k->parent == parent_kobj) {
797 kobj = kobject_get(k);
798 break;
799 }
800 spin_unlock(&dev->class->p->glue_dirs.list_lock);
801 if (kobj) {
802 mutex_unlock(&gdp_mutex);
803 return kobj;
804 }
805
806 /* or create a new class-directory at the parent device */
807 k = class_dir_create_and_add(dev->class, parent_kobj);
808 /* do not emit an uevent for this simple "glue" directory */
809 mutex_unlock(&gdp_mutex);
810 return k;
811 }
812
813 /* subsystems can specify a default root directory for their devices */
814 if (!parent && dev->bus && dev->bus->dev_root)
815 return &dev->bus->dev_root->kobj;
816
817 if (parent)
818 return &parent->kobj;
819 return NULL;
820 }
821
822 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
823 {
824 /* see if we live in a "glue" directory */
825 if (!glue_dir || !dev->class ||
826 glue_dir->kset != &dev->class->p->glue_dirs)
827 return;
828
829 kobject_put(glue_dir);
830 }
831
832 static void cleanup_device_parent(struct device *dev)
833 {
834 cleanup_glue_dir(dev, dev->kobj.parent);
835 }
836
837 static int device_add_class_symlinks(struct device *dev)
838 {
839 int error;
840
841 if (!dev->class)
842 return 0;
843
844 error = sysfs_create_link(&dev->kobj,
845 &dev->class->p->subsys.kobj,
846 "subsystem");
847 if (error)
848 goto out;
849
850 if (dev->parent && device_is_not_partition(dev)) {
851 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
852 "device");
853 if (error)
854 goto out_subsys;
855 }
856
857 #ifdef CONFIG_BLOCK
858 /* /sys/block has directories and does not need symlinks */
859 if (sysfs_deprecated && dev->class == &block_class)
860 return 0;
861 #endif
862
863 /* link in the class directory pointing to the device */
864 error = sysfs_create_link(&dev->class->p->subsys.kobj,
865 &dev->kobj, dev_name(dev));
866 if (error)
867 goto out_device;
868
869 return 0;
870
871 out_device:
872 sysfs_remove_link(&dev->kobj, "device");
873
874 out_subsys:
875 sysfs_remove_link(&dev->kobj, "subsystem");
876 out:
877 return error;
878 }
879
880 static void device_remove_class_symlinks(struct device *dev)
881 {
882 if (!dev->class)
883 return;
884
885 if (dev->parent && device_is_not_partition(dev))
886 sysfs_remove_link(&dev->kobj, "device");
887 sysfs_remove_link(&dev->kobj, "subsystem");
888 #ifdef CONFIG_BLOCK
889 if (sysfs_deprecated && dev->class == &block_class)
890 return;
891 #endif
892 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
893 }
894
895 /**
896 * dev_set_name - set a device name
897 * @dev: device
898 * @fmt: format string for the device's name
899 */
900 int dev_set_name(struct device *dev, const char *fmt, ...)
901 {
902 va_list vargs;
903 int err;
904
905 va_start(vargs, fmt);
906 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
907 va_end(vargs);
908 return err;
909 }
910 EXPORT_SYMBOL_GPL(dev_set_name);
911
912 /**
913 * device_to_dev_kobj - select a /sys/dev/ directory for the device
914 * @dev: device
915 *
916 * By default we select char/ for new entries. Setting class->dev_obj
917 * to NULL prevents an entry from being created. class->dev_kobj must
918 * be set (or cleared) before any devices are registered to the class
919 * otherwise device_create_sys_dev_entry() and
920 * device_remove_sys_dev_entry() will disagree about the presence of
921 * the link.
922 */
923 static struct kobject *device_to_dev_kobj(struct device *dev)
924 {
925 struct kobject *kobj;
926
927 if (dev->class)
928 kobj = dev->class->dev_kobj;
929 else
930 kobj = sysfs_dev_char_kobj;
931
932 return kobj;
933 }
934
935 static int device_create_sys_dev_entry(struct device *dev)
936 {
937 struct kobject *kobj = device_to_dev_kobj(dev);
938 int error = 0;
939 char devt_str[15];
940
941 if (kobj) {
942 format_dev_t(devt_str, dev->devt);
943 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
944 }
945
946 return error;
947 }
948
949 static void device_remove_sys_dev_entry(struct device *dev)
950 {
951 struct kobject *kobj = device_to_dev_kobj(dev);
952 char devt_str[15];
953
954 if (kobj) {
955 format_dev_t(devt_str, dev->devt);
956 sysfs_remove_link(kobj, devt_str);
957 }
958 }
959
960 int device_private_init(struct device *dev)
961 {
962 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
963 if (!dev->p)
964 return -ENOMEM;
965 dev->p->device = dev;
966 klist_init(&dev->p->klist_children, klist_children_get,
967 klist_children_put);
968 INIT_LIST_HEAD(&dev->p->deferred_probe);
969 return 0;
970 }
971
972 /**
973 * device_add - add device to device hierarchy.
974 * @dev: device.
975 *
976 * This is part 2 of device_register(), though may be called
977 * separately _iff_ device_initialize() has been called separately.
978 *
979 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
980 * to the global and sibling lists for the device, then
981 * adds it to the other relevant subsystems of the driver model.
982 *
983 * Do not call this routine or device_register() more than once for
984 * any device structure. The driver model core is not designed to work
985 * with devices that get unregistered and then spring back to life.
986 * (Among other things, it's very hard to guarantee that all references
987 * to the previous incarnation of @dev have been dropped.) Allocate
988 * and register a fresh new struct device instead.
989 *
990 * NOTE: _Never_ directly free @dev after calling this function, even
991 * if it returned an error! Always use put_device() to give up your
992 * reference instead.
993 */
994 int device_add(struct device *dev)
995 {
996 struct device *parent = NULL;
997 struct kobject *kobj;
998 struct class_interface *class_intf;
999 int error = -EINVAL;
1000
1001 dev = get_device(dev);
1002 if (!dev)
1003 goto done;
1004
1005 if (!dev->p) {
1006 error = device_private_init(dev);
1007 if (error)
1008 goto done;
1009 }
1010
1011 /*
1012 * for statically allocated devices, which should all be converted
1013 * some day, we need to initialize the name. We prevent reading back
1014 * the name, and force the use of dev_name()
1015 */
1016 if (dev->init_name) {
1017 dev_set_name(dev, "%s", dev->init_name);
1018 dev->init_name = NULL;
1019 }
1020
1021 /* subsystems can specify simple device enumeration */
1022 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1023 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1024
1025 if (!dev_name(dev)) {
1026 error = -EINVAL;
1027 goto name_error;
1028 }
1029
1030 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1031
1032 parent = get_device(dev->parent);
1033 kobj = get_device_parent(dev, parent);
1034 if (kobj)
1035 dev->kobj.parent = kobj;
1036
1037 /* use parent numa_node */
1038 if (parent)
1039 set_dev_node(dev, dev_to_node(parent));
1040
1041 /* first, register with generic layer. */
1042 /* we require the name to be set before, and pass NULL */
1043 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1044 if (error)
1045 goto Error;
1046
1047 /* notify platform of device entry */
1048 if (platform_notify)
1049 platform_notify(dev);
1050
1051 error = device_create_file(dev, &uevent_attr);
1052 if (error)
1053 goto attrError;
1054
1055 if (MAJOR(dev->devt)) {
1056 error = device_create_file(dev, &devt_attr);
1057 if (error)
1058 goto ueventattrError;
1059
1060 error = device_create_sys_dev_entry(dev);
1061 if (error)
1062 goto devtattrError;
1063
1064 devtmpfs_create_node(dev);
1065 }
1066
1067 error = device_add_class_symlinks(dev);
1068 if (error)
1069 goto SymlinkError;
1070 error = device_add_attrs(dev);
1071 if (error)
1072 goto AttrsError;
1073 error = bus_add_device(dev);
1074 if (error)
1075 goto BusError;
1076 error = dpm_sysfs_add(dev);
1077 if (error)
1078 goto DPMError;
1079 device_pm_add(dev);
1080
1081 /* Notify clients of device addition. This call must come
1082 * after dpm_sysfs_add() and before kobject_uevent().
1083 */
1084 if (dev->bus)
1085 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1086 BUS_NOTIFY_ADD_DEVICE, dev);
1087
1088 kobject_uevent(&dev->kobj, KOBJ_ADD);
1089 bus_probe_device(dev);
1090 if (parent)
1091 klist_add_tail(&dev->p->knode_parent,
1092 &parent->p->klist_children);
1093
1094 if (dev->class) {
1095 mutex_lock(&dev->class->p->mutex);
1096 /* tie the class to the device */
1097 klist_add_tail(&dev->knode_class,
1098 &dev->class->p->klist_devices);
1099
1100 /* notify any interfaces that the device is here */
1101 list_for_each_entry(class_intf,
1102 &dev->class->p->interfaces, node)
1103 if (class_intf->add_dev)
1104 class_intf->add_dev(dev, class_intf);
1105 mutex_unlock(&dev->class->p->mutex);
1106 }
1107 done:
1108 put_device(dev);
1109 return error;
1110 DPMError:
1111 bus_remove_device(dev);
1112 BusError:
1113 device_remove_attrs(dev);
1114 AttrsError:
1115 device_remove_class_symlinks(dev);
1116 SymlinkError:
1117 if (MAJOR(dev->devt))
1118 devtmpfs_delete_node(dev);
1119 if (MAJOR(dev->devt))
1120 device_remove_sys_dev_entry(dev);
1121 devtattrError:
1122 if (MAJOR(dev->devt))
1123 device_remove_file(dev, &devt_attr);
1124 ueventattrError:
1125 device_remove_file(dev, &uevent_attr);
1126 attrError:
1127 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1128 kobject_del(&dev->kobj);
1129 Error:
1130 cleanup_device_parent(dev);
1131 if (parent)
1132 put_device(parent);
1133 name_error:
1134 kfree(dev->p);
1135 dev->p = NULL;
1136 goto done;
1137 }
1138
1139 /**
1140 * device_register - register a device with the system.
1141 * @dev: pointer to the device structure
1142 *
1143 * This happens in two clean steps - initialize the device
1144 * and add it to the system. The two steps can be called
1145 * separately, but this is the easiest and most common.
1146 * I.e. you should only call the two helpers separately if
1147 * have a clearly defined need to use and refcount the device
1148 * before it is added to the hierarchy.
1149 *
1150 * For more information, see the kerneldoc for device_initialize()
1151 * and device_add().
1152 *
1153 * NOTE: _Never_ directly free @dev after calling this function, even
1154 * if it returned an error! Always use put_device() to give up the
1155 * reference initialized in this function instead.
1156 */
1157 int device_register(struct device *dev)
1158 {
1159 device_initialize(dev);
1160 return device_add(dev);
1161 }
1162
1163 /**
1164 * get_device - increment reference count for device.
1165 * @dev: device.
1166 *
1167 * This simply forwards the call to kobject_get(), though
1168 * we do take care to provide for the case that we get a NULL
1169 * pointer passed in.
1170 */
1171 struct device *get_device(struct device *dev)
1172 {
1173 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1174 }
1175
1176 /**
1177 * put_device - decrement reference count.
1178 * @dev: device in question.
1179 */
1180 void put_device(struct device *dev)
1181 {
1182 /* might_sleep(); */
1183 if (dev)
1184 kobject_put(&dev->kobj);
1185 }
1186
1187 /**
1188 * device_del - delete device from system.
1189 * @dev: device.
1190 *
1191 * This is the first part of the device unregistration
1192 * sequence. This removes the device from the lists we control
1193 * from here, has it removed from the other driver model
1194 * subsystems it was added to in device_add(), and removes it
1195 * from the kobject hierarchy.
1196 *
1197 * NOTE: this should be called manually _iff_ device_add() was
1198 * also called manually.
1199 */
1200 void device_del(struct device *dev)
1201 {
1202 struct device *parent = dev->parent;
1203 struct class_interface *class_intf;
1204
1205 /* Notify clients of device removal. This call must come
1206 * before dpm_sysfs_remove().
1207 */
1208 if (dev->bus)
1209 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1210 BUS_NOTIFY_DEL_DEVICE, dev);
1211 dpm_sysfs_remove(dev);
1212 if (parent)
1213 klist_del(&dev->p->knode_parent);
1214 if (MAJOR(dev->devt)) {
1215 devtmpfs_delete_node(dev);
1216 device_remove_sys_dev_entry(dev);
1217 device_remove_file(dev, &devt_attr);
1218 }
1219 if (dev->class) {
1220 device_remove_class_symlinks(dev);
1221
1222 mutex_lock(&dev->class->p->mutex);
1223 /* notify any interfaces that the device is now gone */
1224 list_for_each_entry(class_intf,
1225 &dev->class->p->interfaces, node)
1226 if (class_intf->remove_dev)
1227 class_intf->remove_dev(dev, class_intf);
1228 /* remove the device from the class list */
1229 klist_del(&dev->knode_class);
1230 mutex_unlock(&dev->class->p->mutex);
1231 }
1232 device_remove_file(dev, &uevent_attr);
1233 device_remove_attrs(dev);
1234 bus_remove_device(dev);
1235 device_pm_remove(dev);
1236 driver_deferred_probe_del(dev);
1237
1238 /* Notify the platform of the removal, in case they
1239 * need to do anything...
1240 */
1241 if (platform_notify_remove)
1242 platform_notify_remove(dev);
1243 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1244 cleanup_device_parent(dev);
1245 kobject_del(&dev->kobj);
1246 put_device(parent);
1247 }
1248
1249 /**
1250 * device_unregister - unregister device from system.
1251 * @dev: device going away.
1252 *
1253 * We do this in two parts, like we do device_register(). First,
1254 * we remove it from all the subsystems with device_del(), then
1255 * we decrement the reference count via put_device(). If that
1256 * is the final reference count, the device will be cleaned up
1257 * via device_release() above. Otherwise, the structure will
1258 * stick around until the final reference to the device is dropped.
1259 */
1260 void device_unregister(struct device *dev)
1261 {
1262 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1263 device_del(dev);
1264 put_device(dev);
1265 }
1266
1267 static struct device *next_device(struct klist_iter *i)
1268 {
1269 struct klist_node *n = klist_next(i);
1270 struct device *dev = NULL;
1271 struct device_private *p;
1272
1273 if (n) {
1274 p = to_device_private_parent(n);
1275 dev = p->device;
1276 }
1277 return dev;
1278 }
1279
1280 /**
1281 * device_get_devnode - path of device node file
1282 * @dev: device
1283 * @mode: returned file access mode
1284 * @tmp: possibly allocated string
1285 *
1286 * Return the relative path of a possible device node.
1287 * Non-default names may need to allocate a memory to compose
1288 * a name. This memory is returned in tmp and needs to be
1289 * freed by the caller.
1290 */
1291 const char *device_get_devnode(struct device *dev,
1292 umode_t *mode, const char **tmp)
1293 {
1294 char *s;
1295
1296 *tmp = NULL;
1297
1298 /* the device type may provide a specific name */
1299 if (dev->type && dev->type->devnode)
1300 *tmp = dev->type->devnode(dev, mode);
1301 if (*tmp)
1302 return *tmp;
1303
1304 /* the class may provide a specific name */
1305 if (dev->class && dev->class->devnode)
1306 *tmp = dev->class->devnode(dev, mode);
1307 if (*tmp)
1308 return *tmp;
1309
1310 /* return name without allocation, tmp == NULL */
1311 if (strchr(dev_name(dev), '!') == NULL)
1312 return dev_name(dev);
1313
1314 /* replace '!' in the name with '/' */
1315 *tmp = kstrdup(dev_name(dev), GFP_KERNEL);
1316 if (!*tmp)
1317 return NULL;
1318 while ((s = strchr(*tmp, '!')))
1319 s[0] = '/';
1320 return *tmp;
1321 }
1322
1323 /**
1324 * device_for_each_child - device child iterator.
1325 * @parent: parent struct device.
1326 * @data: data for the callback.
1327 * @fn: function to be called for each device.
1328 *
1329 * Iterate over @parent's child devices, and call @fn for each,
1330 * passing it @data.
1331 *
1332 * We check the return of @fn each time. If it returns anything
1333 * other than 0, we break out and return that value.
1334 */
1335 int device_for_each_child(struct device *parent, void *data,
1336 int (*fn)(struct device *dev, void *data))
1337 {
1338 struct klist_iter i;
1339 struct device *child;
1340 int error = 0;
1341
1342 if (!parent->p)
1343 return 0;
1344
1345 klist_iter_init(&parent->p->klist_children, &i);
1346 while ((child = next_device(&i)) && !error)
1347 error = fn(child, data);
1348 klist_iter_exit(&i);
1349 return error;
1350 }
1351
1352 /**
1353 * device_find_child - device iterator for locating a particular device.
1354 * @parent: parent struct device
1355 * @data: Data to pass to match function
1356 * @match: Callback function to check device
1357 *
1358 * This is similar to the device_for_each_child() function above, but it
1359 * returns a reference to a device that is 'found' for later use, as
1360 * determined by the @match callback.
1361 *
1362 * The callback should return 0 if the device doesn't match and non-zero
1363 * if it does. If the callback returns non-zero and a reference to the
1364 * current device can be obtained, this function will return to the caller
1365 * and not iterate over any more devices.
1366 */
1367 struct device *device_find_child(struct device *parent, void *data,
1368 int (*match)(struct device *dev, void *data))
1369 {
1370 struct klist_iter i;
1371 struct device *child;
1372
1373 if (!parent)
1374 return NULL;
1375
1376 klist_iter_init(&parent->p->klist_children, &i);
1377 while ((child = next_device(&i)))
1378 if (match(child, data) && get_device(child))
1379 break;
1380 klist_iter_exit(&i);
1381 return child;
1382 }
1383
1384 int __init devices_init(void)
1385 {
1386 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1387 if (!devices_kset)
1388 return -ENOMEM;
1389 dev_kobj = kobject_create_and_add("dev", NULL);
1390 if (!dev_kobj)
1391 goto dev_kobj_err;
1392 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1393 if (!sysfs_dev_block_kobj)
1394 goto block_kobj_err;
1395 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1396 if (!sysfs_dev_char_kobj)
1397 goto char_kobj_err;
1398
1399 return 0;
1400
1401 char_kobj_err:
1402 kobject_put(sysfs_dev_block_kobj);
1403 block_kobj_err:
1404 kobject_put(dev_kobj);
1405 dev_kobj_err:
1406 kset_unregister(devices_kset);
1407 return -ENOMEM;
1408 }
1409
1410 EXPORT_SYMBOL_GPL(device_for_each_child);
1411 EXPORT_SYMBOL_GPL(device_find_child);
1412
1413 EXPORT_SYMBOL_GPL(device_initialize);
1414 EXPORT_SYMBOL_GPL(device_add);
1415 EXPORT_SYMBOL_GPL(device_register);
1416
1417 EXPORT_SYMBOL_GPL(device_del);
1418 EXPORT_SYMBOL_GPL(device_unregister);
1419 EXPORT_SYMBOL_GPL(get_device);
1420 EXPORT_SYMBOL_GPL(put_device);
1421
1422 EXPORT_SYMBOL_GPL(device_create_file);
1423 EXPORT_SYMBOL_GPL(device_remove_file);
1424
1425 struct root_device {
1426 struct device dev;
1427 struct module *owner;
1428 };
1429
1430 static inline struct root_device *to_root_device(struct device *d)
1431 {
1432 return container_of(d, struct root_device, dev);
1433 }
1434
1435 static void root_device_release(struct device *dev)
1436 {
1437 kfree(to_root_device(dev));
1438 }
1439
1440 /**
1441 * __root_device_register - allocate and register a root device
1442 * @name: root device name
1443 * @owner: owner module of the root device, usually THIS_MODULE
1444 *
1445 * This function allocates a root device and registers it
1446 * using device_register(). In order to free the returned
1447 * device, use root_device_unregister().
1448 *
1449 * Root devices are dummy devices which allow other devices
1450 * to be grouped under /sys/devices. Use this function to
1451 * allocate a root device and then use it as the parent of
1452 * any device which should appear under /sys/devices/{name}
1453 *
1454 * The /sys/devices/{name} directory will also contain a
1455 * 'module' symlink which points to the @owner directory
1456 * in sysfs.
1457 *
1458 * Returns &struct device pointer on success, or ERR_PTR() on error.
1459 *
1460 * Note: You probably want to use root_device_register().
1461 */
1462 struct device *__root_device_register(const char *name, struct module *owner)
1463 {
1464 struct root_device *root;
1465 int err = -ENOMEM;
1466
1467 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1468 if (!root)
1469 return ERR_PTR(err);
1470
1471 err = dev_set_name(&root->dev, "%s", name);
1472 if (err) {
1473 kfree(root);
1474 return ERR_PTR(err);
1475 }
1476
1477 root->dev.release = root_device_release;
1478
1479 err = device_register(&root->dev);
1480 if (err) {
1481 put_device(&root->dev);
1482 return ERR_PTR(err);
1483 }
1484
1485 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
1486 if (owner) {
1487 struct module_kobject *mk = &owner->mkobj;
1488
1489 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1490 if (err) {
1491 device_unregister(&root->dev);
1492 return ERR_PTR(err);
1493 }
1494 root->owner = owner;
1495 }
1496 #endif
1497
1498 return &root->dev;
1499 }
1500 EXPORT_SYMBOL_GPL(__root_device_register);
1501
1502 /**
1503 * root_device_unregister - unregister and free a root device
1504 * @dev: device going away
1505 *
1506 * This function unregisters and cleans up a device that was created by
1507 * root_device_register().
1508 */
1509 void root_device_unregister(struct device *dev)
1510 {
1511 struct root_device *root = to_root_device(dev);
1512
1513 if (root->owner)
1514 sysfs_remove_link(&root->dev.kobj, "module");
1515
1516 device_unregister(dev);
1517 }
1518 EXPORT_SYMBOL_GPL(root_device_unregister);
1519
1520
1521 static void device_create_release(struct device *dev)
1522 {
1523 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1524 kfree(dev);
1525 }
1526
1527 /**
1528 * device_create_vargs - creates a device and registers it with sysfs
1529 * @class: pointer to the struct class that this device should be registered to
1530 * @parent: pointer to the parent struct device of this new device, if any
1531 * @devt: the dev_t for the char device to be added
1532 * @drvdata: the data to be added to the device for callbacks
1533 * @fmt: string for the device's name
1534 * @args: va_list for the device's name
1535 *
1536 * This function can be used by char device classes. A struct device
1537 * will be created in sysfs, registered to the specified class.
1538 *
1539 * A "dev" file will be created, showing the dev_t for the device, if
1540 * the dev_t is not 0,0.
1541 * If a pointer to a parent struct device is passed in, the newly created
1542 * struct device will be a child of that device in sysfs.
1543 * The pointer to the struct device will be returned from the call.
1544 * Any further sysfs files that might be required can be created using this
1545 * pointer.
1546 *
1547 * Returns &struct device pointer on success, or ERR_PTR() on error.
1548 *
1549 * Note: the struct class passed to this function must have previously
1550 * been created with a call to class_create().
1551 */
1552 struct device *device_create_vargs(struct class *class, struct device *parent,
1553 dev_t devt, void *drvdata, const char *fmt,
1554 va_list args)
1555 {
1556 struct device *dev = NULL;
1557 int retval = -ENODEV;
1558
1559 if (class == NULL || IS_ERR(class))
1560 goto error;
1561
1562 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1563 if (!dev) {
1564 retval = -ENOMEM;
1565 goto error;
1566 }
1567
1568 dev->devt = devt;
1569 dev->class = class;
1570 dev->parent = parent;
1571 dev->release = device_create_release;
1572 dev_set_drvdata(dev, drvdata);
1573
1574 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1575 if (retval)
1576 goto error;
1577
1578 retval = device_register(dev);
1579 if (retval)
1580 goto error;
1581
1582 return dev;
1583
1584 error:
1585 put_device(dev);
1586 return ERR_PTR(retval);
1587 }
1588 EXPORT_SYMBOL_GPL(device_create_vargs);
1589
1590 /**
1591 * device_create - creates a device and registers it with sysfs
1592 * @class: pointer to the struct class that this device should be registered to
1593 * @parent: pointer to the parent struct device of this new device, if any
1594 * @devt: the dev_t for the char device to be added
1595 * @drvdata: the data to be added to the device for callbacks
1596 * @fmt: string for the device's name
1597 *
1598 * This function can be used by char device classes. A struct device
1599 * will be created in sysfs, registered to the specified class.
1600 *
1601 * A "dev" file will be created, showing the dev_t for the device, if
1602 * the dev_t is not 0,0.
1603 * If a pointer to a parent struct device is passed in, the newly created
1604 * struct device will be a child of that device in sysfs.
1605 * The pointer to the struct device will be returned from the call.
1606 * Any further sysfs files that might be required can be created using this
1607 * pointer.
1608 *
1609 * Returns &struct device pointer on success, or ERR_PTR() on error.
1610 *
1611 * Note: the struct class passed to this function must have previously
1612 * been created with a call to class_create().
1613 */
1614 struct device *device_create(struct class *class, struct device *parent,
1615 dev_t devt, void *drvdata, const char *fmt, ...)
1616 {
1617 va_list vargs;
1618 struct device *dev;
1619
1620 va_start(vargs, fmt);
1621 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1622 va_end(vargs);
1623 return dev;
1624 }
1625 EXPORT_SYMBOL_GPL(device_create);
1626
1627 static int __match_devt(struct device *dev, const void *data)
1628 {
1629 const dev_t *devt = data;
1630
1631 return dev->devt == *devt;
1632 }
1633
1634 /**
1635 * device_destroy - removes a device that was created with device_create()
1636 * @class: pointer to the struct class that this device was registered with
1637 * @devt: the dev_t of the device that was previously registered
1638 *
1639 * This call unregisters and cleans up a device that was created with a
1640 * call to device_create().
1641 */
1642 void device_destroy(struct class *class, dev_t devt)
1643 {
1644 struct device *dev;
1645
1646 dev = class_find_device(class, NULL, &devt, __match_devt);
1647 if (dev) {
1648 put_device(dev);
1649 device_unregister(dev);
1650 }
1651 }
1652 EXPORT_SYMBOL_GPL(device_destroy);
1653
1654 /**
1655 * device_rename - renames a device
1656 * @dev: the pointer to the struct device to be renamed
1657 * @new_name: the new name of the device
1658 *
1659 * It is the responsibility of the caller to provide mutual
1660 * exclusion between two different calls of device_rename
1661 * on the same device to ensure that new_name is valid and
1662 * won't conflict with other devices.
1663 *
1664 * Note: Don't call this function. Currently, the networking layer calls this
1665 * function, but that will change. The following text from Kay Sievers offers
1666 * some insight:
1667 *
1668 * Renaming devices is racy at many levels, symlinks and other stuff are not
1669 * replaced atomically, and you get a "move" uevent, but it's not easy to
1670 * connect the event to the old and new device. Device nodes are not renamed at
1671 * all, there isn't even support for that in the kernel now.
1672 *
1673 * In the meantime, during renaming, your target name might be taken by another
1674 * driver, creating conflicts. Or the old name is taken directly after you
1675 * renamed it -- then you get events for the same DEVPATH, before you even see
1676 * the "move" event. It's just a mess, and nothing new should ever rely on
1677 * kernel device renaming. Besides that, it's not even implemented now for
1678 * other things than (driver-core wise very simple) network devices.
1679 *
1680 * We are currently about to change network renaming in udev to completely
1681 * disallow renaming of devices in the same namespace as the kernel uses,
1682 * because we can't solve the problems properly, that arise with swapping names
1683 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1684 * be allowed to some other name than eth[0-9]*, for the aforementioned
1685 * reasons.
1686 *
1687 * Make up a "real" name in the driver before you register anything, or add
1688 * some other attributes for userspace to find the device, or use udev to add
1689 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1690 * don't even want to get into that and try to implement the missing pieces in
1691 * the core. We really have other pieces to fix in the driver core mess. :)
1692 */
1693 int device_rename(struct device *dev, const char *new_name)
1694 {
1695 char *old_device_name = NULL;
1696 int error;
1697
1698 dev = get_device(dev);
1699 if (!dev)
1700 return -EINVAL;
1701
1702 pr_debug("device: '%s': %s: renaming to '%s'\n", dev_name(dev),
1703 __func__, new_name);
1704
1705 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1706 if (!old_device_name) {
1707 error = -ENOMEM;
1708 goto out;
1709 }
1710
1711 if (dev->class) {
1712 error = sysfs_rename_link(&dev->class->p->subsys.kobj,
1713 &dev->kobj, old_device_name, new_name);
1714 if (error)
1715 goto out;
1716 }
1717
1718 error = kobject_rename(&dev->kobj, new_name);
1719 if (error)
1720 goto out;
1721
1722 out:
1723 put_device(dev);
1724
1725 kfree(old_device_name);
1726
1727 return error;
1728 }
1729 EXPORT_SYMBOL_GPL(device_rename);
1730
1731 static int device_move_class_links(struct device *dev,
1732 struct device *old_parent,
1733 struct device *new_parent)
1734 {
1735 int error = 0;
1736
1737 if (old_parent)
1738 sysfs_remove_link(&dev->kobj, "device");
1739 if (new_parent)
1740 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1741 "device");
1742 return error;
1743 }
1744
1745 /**
1746 * device_move - moves a device to a new parent
1747 * @dev: the pointer to the struct device to be moved
1748 * @new_parent: the new parent of the device (can by NULL)
1749 * @dpm_order: how to reorder the dpm_list
1750 */
1751 int device_move(struct device *dev, struct device *new_parent,
1752 enum dpm_order dpm_order)
1753 {
1754 int error;
1755 struct device *old_parent;
1756 struct kobject *new_parent_kobj;
1757
1758 dev = get_device(dev);
1759 if (!dev)
1760 return -EINVAL;
1761
1762 device_pm_lock();
1763 new_parent = get_device(new_parent);
1764 new_parent_kobj = get_device_parent(dev, new_parent);
1765
1766 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1767 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1768 error = kobject_move(&dev->kobj, new_parent_kobj);
1769 if (error) {
1770 cleanup_glue_dir(dev, new_parent_kobj);
1771 put_device(new_parent);
1772 goto out;
1773 }
1774 old_parent = dev->parent;
1775 dev->parent = new_parent;
1776 if (old_parent)
1777 klist_remove(&dev->p->knode_parent);
1778 if (new_parent) {
1779 klist_add_tail(&dev->p->knode_parent,
1780 &new_parent->p->klist_children);
1781 set_dev_node(dev, dev_to_node(new_parent));
1782 }
1783
1784 if (dev->class) {
1785 error = device_move_class_links(dev, old_parent, new_parent);
1786 if (error) {
1787 /* We ignore errors on cleanup since we're hosed anyway... */
1788 device_move_class_links(dev, new_parent, old_parent);
1789 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1790 if (new_parent)
1791 klist_remove(&dev->p->knode_parent);
1792 dev->parent = old_parent;
1793 if (old_parent) {
1794 klist_add_tail(&dev->p->knode_parent,
1795 &old_parent->p->klist_children);
1796 set_dev_node(dev, dev_to_node(old_parent));
1797 }
1798 }
1799 cleanup_glue_dir(dev, new_parent_kobj);
1800 put_device(new_parent);
1801 goto out;
1802 }
1803 }
1804 switch (dpm_order) {
1805 case DPM_ORDER_NONE:
1806 break;
1807 case DPM_ORDER_DEV_AFTER_PARENT:
1808 device_pm_move_after(dev, new_parent);
1809 break;
1810 case DPM_ORDER_PARENT_BEFORE_DEV:
1811 device_pm_move_before(new_parent, dev);
1812 break;
1813 case DPM_ORDER_DEV_LAST:
1814 device_pm_move_last(dev);
1815 break;
1816 }
1817
1818 put_device(old_parent);
1819 out:
1820 device_pm_unlock();
1821 put_device(dev);
1822 return error;
1823 }
1824 EXPORT_SYMBOL_GPL(device_move);
1825
1826 /**
1827 * device_shutdown - call ->shutdown() on each device to shutdown.
1828 */
1829 void device_shutdown(void)
1830 {
1831 struct device *dev;
1832
1833 spin_lock(&devices_kset->list_lock);
1834 /*
1835 * Walk the devices list backward, shutting down each in turn.
1836 * Beware that device unplug events may also start pulling
1837 * devices offline, even as the system is shutting down.
1838 */
1839 while (!list_empty(&devices_kset->list)) {
1840 dev = list_entry(devices_kset->list.prev, struct device,
1841 kobj.entry);
1842
1843 /*
1844 * hold reference count of device's parent to
1845 * prevent it from being freed because parent's
1846 * lock is to be held
1847 */
1848 get_device(dev->parent);
1849 get_device(dev);
1850 /*
1851 * Make sure the device is off the kset list, in the
1852 * event that dev->*->shutdown() doesn't remove it.
1853 */
1854 list_del_init(&dev->kobj.entry);
1855 spin_unlock(&devices_kset->list_lock);
1856
1857 /* hold lock to avoid race with probe/release */
1858 if (dev->parent)
1859 device_lock(dev->parent);
1860 device_lock(dev);
1861
1862 /* Don't allow any more runtime suspends */
1863 pm_runtime_get_noresume(dev);
1864 pm_runtime_barrier(dev);
1865
1866 if (dev->bus && dev->bus->shutdown) {
1867 if (initcall_debug)
1868 dev_info(dev, "shutdown\n");
1869 dev->bus->shutdown(dev);
1870 } else if (dev->driver && dev->driver->shutdown) {
1871 if (initcall_debug)
1872 dev_info(dev, "shutdown\n");
1873 dev->driver->shutdown(dev);
1874 }
1875
1876 device_unlock(dev);
1877 if (dev->parent)
1878 device_unlock(dev->parent);
1879
1880 put_device(dev);
1881 put_device(dev->parent);
1882
1883 spin_lock(&devices_kset->list_lock);
1884 }
1885 spin_unlock(&devices_kset->list_lock);
1886 async_synchronize_full();
1887 }
1888
1889 /*
1890 * Device logging functions
1891 */
1892
1893 #ifdef CONFIG_PRINTK
1894 static int
1895 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
1896 {
1897 const char *subsys;
1898 size_t pos = 0;
1899
1900 if (dev->class)
1901 subsys = dev->class->name;
1902 else if (dev->bus)
1903 subsys = dev->bus->name;
1904 else
1905 return 0;
1906
1907 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
1908
1909 /*
1910 * Add device identifier DEVICE=:
1911 * b12:8 block dev_t
1912 * c127:3 char dev_t
1913 * n8 netdev ifindex
1914 * +sound:card0 subsystem:devname
1915 */
1916 if (MAJOR(dev->devt)) {
1917 char c;
1918
1919 if (strcmp(subsys, "block") == 0)
1920 c = 'b';
1921 else
1922 c = 'c';
1923 pos++;
1924 pos += snprintf(hdr + pos, hdrlen - pos,
1925 "DEVICE=%c%u:%u",
1926 c, MAJOR(dev->devt), MINOR(dev->devt));
1927 } else if (strcmp(subsys, "net") == 0) {
1928 struct net_device *net = to_net_dev(dev);
1929
1930 pos++;
1931 pos += snprintf(hdr + pos, hdrlen - pos,
1932 "DEVICE=n%u", net->ifindex);
1933 } else {
1934 pos++;
1935 pos += snprintf(hdr + pos, hdrlen - pos,
1936 "DEVICE=+%s:%s", subsys, dev_name(dev));
1937 }
1938
1939 return pos;
1940 }
1941 EXPORT_SYMBOL(create_syslog_header);
1942
1943 int dev_vprintk_emit(int level, const struct device *dev,
1944 const char *fmt, va_list args)
1945 {
1946 char hdr[128];
1947 size_t hdrlen;
1948
1949 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
1950
1951 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
1952 }
1953 EXPORT_SYMBOL(dev_vprintk_emit);
1954
1955 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
1956 {
1957 va_list args;
1958 int r;
1959
1960 va_start(args, fmt);
1961
1962 r = dev_vprintk_emit(level, dev, fmt, args);
1963
1964 va_end(args);
1965
1966 return r;
1967 }
1968 EXPORT_SYMBOL(dev_printk_emit);
1969
1970 static int __dev_printk(const char *level, const struct device *dev,
1971 struct va_format *vaf)
1972 {
1973 if (!dev)
1974 return printk("%s(NULL device *): %pV", level, vaf);
1975
1976 return dev_printk_emit(level[1] - '0', dev,
1977 "%s %s: %pV",
1978 dev_driver_string(dev), dev_name(dev), vaf);
1979 }
1980
1981 int dev_printk(const char *level, const struct device *dev,
1982 const char *fmt, ...)
1983 {
1984 struct va_format vaf;
1985 va_list args;
1986 int r;
1987
1988 va_start(args, fmt);
1989
1990 vaf.fmt = fmt;
1991 vaf.va = &args;
1992
1993 r = __dev_printk(level, dev, &vaf);
1994
1995 va_end(args);
1996
1997 return r;
1998 }
1999 EXPORT_SYMBOL(dev_printk);
2000
2001 #define define_dev_printk_level(func, kern_level) \
2002 int func(const struct device *dev, const char *fmt, ...) \
2003 { \
2004 struct va_format vaf; \
2005 va_list args; \
2006 int r; \
2007 \
2008 va_start(args, fmt); \
2009 \
2010 vaf.fmt = fmt; \
2011 vaf.va = &args; \
2012 \
2013 r = __dev_printk(kern_level, dev, &vaf); \
2014 \
2015 va_end(args); \
2016 \
2017 return r; \
2018 } \
2019 EXPORT_SYMBOL(func);
2020
2021 define_dev_printk_level(dev_emerg, KERN_EMERG);
2022 define_dev_printk_level(dev_alert, KERN_ALERT);
2023 define_dev_printk_level(dev_crit, KERN_CRIT);
2024 define_dev_printk_level(dev_err, KERN_ERR);
2025 define_dev_printk_level(dev_warn, KERN_WARNING);
2026 define_dev_printk_level(dev_notice, KERN_NOTICE);
2027 define_dev_printk_level(_dev_info, KERN_INFO);
2028
2029 #endif