Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53
54 static inline void device_links_write_lock(void)
55 {
56 mutex_lock(&device_links_lock);
57 }
58
59 static inline void device_links_write_unlock(void)
60 {
61 mutex_unlock(&device_links_lock);
62 }
63
64 int device_links_read_lock(void)
65 {
66 return srcu_read_lock(&device_links_srcu);
67 }
68
69 void device_links_read_unlock(int idx)
70 {
71 srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75
76 static inline void device_links_write_lock(void)
77 {
78 down_write(&device_links_lock);
79 }
80
81 static inline void device_links_write_unlock(void)
82 {
83 up_write(&device_links_lock);
84 }
85
86 int device_links_read_lock(void)
87 {
88 down_read(&device_links_lock);
89 return 0;
90 }
91
92 void device_links_read_unlock(int not_used)
93 {
94 up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97
98 /**
99 * device_is_dependent - Check if one device depends on another one
100 * @dev: Device to check dependencies for.
101 * @target: Device to check against.
102 *
103 * Check if @target depends on @dev or any device dependent on it (its child or
104 * its consumer etc). Return 1 if that is the case or 0 otherwise.
105 */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 struct device_link *link;
109 int ret;
110
111 if (WARN_ON(dev == target))
112 return 1;
113
114 ret = device_for_each_child(dev, target, device_is_dependent);
115 if (ret)
116 return ret;
117
118 list_for_each_entry(link, &dev->links.consumers, s_node) {
119 if (WARN_ON(link->consumer == target))
120 return 1;
121
122 ret = device_is_dependent(link->consumer, target);
123 if (ret)
124 break;
125 }
126 return ret;
127 }
128
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 struct device_link *link;
132
133 /*
134 * Devices that have not been registered yet will be put to the ends
135 * of the lists during the registration, so skip them here.
136 */
137 if (device_is_registered(dev))
138 devices_kset_move_last(dev);
139
140 if (device_pm_initialized(dev))
141 device_pm_move_last(dev);
142
143 device_for_each_child(dev, NULL, device_reorder_to_tail);
144 list_for_each_entry(link, &dev->links.consumers, s_node)
145 device_reorder_to_tail(link->consumer, NULL);
146
147 return 0;
148 }
149
150 /**
151 * device_link_add - Create a link between two devices.
152 * @consumer: Consumer end of the link.
153 * @supplier: Supplier end of the link.
154 * @flags: Link flags.
155 *
156 * The caller is responsible for the proper synchronization of the link creation
157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158 * runtime PM framework to take the link into account. Second, if the
159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160 * be forced into the active metastate and reference-counted upon the creation
161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162 * ignored.
163 *
164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165 * when the consumer device driver unbinds from it. The combination of both
166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167 * to be returned.
168 *
169 * A side effect of the link creation is re-ordering of dpm_list and the
170 * devices_kset list by moving the consumer device and all devices depending
171 * on it to the ends of these lists (that does not happen to devices that have
172 * not been registered when this function is called).
173 *
174 * The supplier device is required to be registered when this function is called
175 * and NULL will be returned if that is not the case. The consumer device need
176 * not be registered, however.
177 */
178 struct device_link *device_link_add(struct device *consumer,
179 struct device *supplier, u32 flags)
180 {
181 struct device_link *link;
182
183 if (!consumer || !supplier ||
184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 return NULL;
186
187 device_links_write_lock();
188 device_pm_lock();
189
190 /*
191 * If the supplier has not been fully registered yet or there is a
192 * reverse dependency between the consumer and the supplier already in
193 * the graph, return NULL.
194 */
195 if (!device_pm_initialized(supplier)
196 || device_is_dependent(consumer, supplier)) {
197 link = NULL;
198 goto out;
199 }
200
201 list_for_each_entry(link, &supplier->links.consumers, s_node)
202 if (link->consumer == consumer)
203 goto out;
204
205 link = kzalloc(sizeof(*link), GFP_KERNEL);
206 if (!link)
207 goto out;
208
209 if (flags & DL_FLAG_PM_RUNTIME) {
210 if (flags & DL_FLAG_RPM_ACTIVE) {
211 if (pm_runtime_get_sync(supplier) < 0) {
212 pm_runtime_put_noidle(supplier);
213 kfree(link);
214 link = NULL;
215 goto out;
216 }
217 link->rpm_active = true;
218 }
219 pm_runtime_new_link(consumer);
220 }
221 get_device(supplier);
222 link->supplier = supplier;
223 INIT_LIST_HEAD(&link->s_node);
224 get_device(consumer);
225 link->consumer = consumer;
226 INIT_LIST_HEAD(&link->c_node);
227 link->flags = flags;
228
229 /* Determine the initial link state. */
230 if (flags & DL_FLAG_STATELESS) {
231 link->status = DL_STATE_NONE;
232 } else {
233 switch (supplier->links.status) {
234 case DL_DEV_DRIVER_BOUND:
235 switch (consumer->links.status) {
236 case DL_DEV_PROBING:
237 /*
238 * Balance the decrementation of the supplier's
239 * runtime PM usage counter after consumer probe
240 * in driver_probe_device().
241 */
242 if (flags & DL_FLAG_PM_RUNTIME)
243 pm_runtime_get_sync(supplier);
244
245 link->status = DL_STATE_CONSUMER_PROBE;
246 break;
247 case DL_DEV_DRIVER_BOUND:
248 link->status = DL_STATE_ACTIVE;
249 break;
250 default:
251 link->status = DL_STATE_AVAILABLE;
252 break;
253 }
254 break;
255 case DL_DEV_UNBINDING:
256 link->status = DL_STATE_SUPPLIER_UNBIND;
257 break;
258 default:
259 link->status = DL_STATE_DORMANT;
260 break;
261 }
262 }
263
264 /*
265 * Move the consumer and all of the devices depending on it to the end
266 * of dpm_list and the devices_kset list.
267 *
268 * It is necessary to hold dpm_list locked throughout all that or else
269 * we may end up suspending with a wrong ordering of it.
270 */
271 device_reorder_to_tail(consumer, NULL);
272
273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275
276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277
278 out:
279 device_pm_unlock();
280 device_links_write_unlock();
281 return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284
285 static void device_link_free(struct device_link *link)
286 {
287 put_device(link->consumer);
288 put_device(link->supplier);
289 kfree(link);
290 }
291
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297
298 static void __device_link_del(struct device_link *link)
299 {
300 dev_info(link->consumer, "Dropping the link to %s\n",
301 dev_name(link->supplier));
302
303 if (link->flags & DL_FLAG_PM_RUNTIME)
304 pm_runtime_drop_link(link->consumer);
305
306 list_del_rcu(&link->s_node);
307 list_del_rcu(&link->c_node);
308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 dev_info(link->consumer, "Dropping the link to %s\n",
314 dev_name(link->supplier));
315
316 list_del(&link->s_node);
317 list_del(&link->c_node);
318 device_link_free(link);
319 }
320 #endif /* !CONFIG_SRCU */
321
322 /**
323 * device_link_del - Delete a link between two devices.
324 * @link: Device link to delete.
325 *
326 * The caller must ensure proper synchronization of this function with runtime
327 * PM.
328 */
329 void device_link_del(struct device_link *link)
330 {
331 device_links_write_lock();
332 device_pm_lock();
333 __device_link_del(link);
334 device_pm_unlock();
335 device_links_write_unlock();
336 }
337 EXPORT_SYMBOL_GPL(device_link_del);
338
339 static void device_links_missing_supplier(struct device *dev)
340 {
341 struct device_link *link;
342
343 list_for_each_entry(link, &dev->links.suppliers, c_node)
344 if (link->status == DL_STATE_CONSUMER_PROBE)
345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
346 }
347
348 /**
349 * device_links_check_suppliers - Check presence of supplier drivers.
350 * @dev: Consumer device.
351 *
352 * Check links from this device to any suppliers. Walk the list of the device's
353 * links to suppliers and see if all of them are available. If not, simply
354 * return -EPROBE_DEFER.
355 *
356 * We need to guarantee that the supplier will not go away after the check has
357 * been positive here. It only can go away in __device_release_driver() and
358 * that function checks the device's links to consumers. This means we need to
359 * mark the link as "consumer probe in progress" to make the supplier removal
360 * wait for us to complete (or bad things may happen).
361 *
362 * Links with the DL_FLAG_STATELESS flag set are ignored.
363 */
364 int device_links_check_suppliers(struct device *dev)
365 {
366 struct device_link *link;
367 int ret = 0;
368
369 device_links_write_lock();
370
371 list_for_each_entry(link, &dev->links.suppliers, c_node) {
372 if (link->flags & DL_FLAG_STATELESS)
373 continue;
374
375 if (link->status != DL_STATE_AVAILABLE) {
376 device_links_missing_supplier(dev);
377 ret = -EPROBE_DEFER;
378 break;
379 }
380 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
381 }
382 dev->links.status = DL_DEV_PROBING;
383
384 device_links_write_unlock();
385 return ret;
386 }
387
388 /**
389 * device_links_driver_bound - Update device links after probing its driver.
390 * @dev: Device to update the links for.
391 *
392 * The probe has been successful, so update links from this device to any
393 * consumers by changing their status to "available".
394 *
395 * Also change the status of @dev's links to suppliers to "active".
396 *
397 * Links with the DL_FLAG_STATELESS flag set are ignored.
398 */
399 void device_links_driver_bound(struct device *dev)
400 {
401 struct device_link *link;
402
403 device_links_write_lock();
404
405 list_for_each_entry(link, &dev->links.consumers, s_node) {
406 if (link->flags & DL_FLAG_STATELESS)
407 continue;
408
409 WARN_ON(link->status != DL_STATE_DORMANT);
410 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
411 }
412
413 list_for_each_entry(link, &dev->links.suppliers, c_node) {
414 if (link->flags & DL_FLAG_STATELESS)
415 continue;
416
417 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
418 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
419 }
420
421 dev->links.status = DL_DEV_DRIVER_BOUND;
422
423 device_links_write_unlock();
424 }
425
426 /**
427 * __device_links_no_driver - Update links of a device without a driver.
428 * @dev: Device without a drvier.
429 *
430 * Delete all non-persistent links from this device to any suppliers.
431 *
432 * Persistent links stay around, but their status is changed to "available",
433 * unless they already are in the "supplier unbind in progress" state in which
434 * case they need not be updated.
435 *
436 * Links with the DL_FLAG_STATELESS flag set are ignored.
437 */
438 static void __device_links_no_driver(struct device *dev)
439 {
440 struct device_link *link, *ln;
441
442 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
443 if (link->flags & DL_FLAG_STATELESS)
444 continue;
445
446 if (link->flags & DL_FLAG_AUTOREMOVE)
447 __device_link_del(link);
448 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
449 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
450 }
451
452 dev->links.status = DL_DEV_NO_DRIVER;
453 }
454
455 void device_links_no_driver(struct device *dev)
456 {
457 device_links_write_lock();
458 __device_links_no_driver(dev);
459 device_links_write_unlock();
460 }
461
462 /**
463 * device_links_driver_cleanup - Update links after driver removal.
464 * @dev: Device whose driver has just gone away.
465 *
466 * Update links to consumers for @dev by changing their status to "dormant" and
467 * invoke %__device_links_no_driver() to update links to suppliers for it as
468 * appropriate.
469 *
470 * Links with the DL_FLAG_STATELESS flag set are ignored.
471 */
472 void device_links_driver_cleanup(struct device *dev)
473 {
474 struct device_link *link;
475
476 device_links_write_lock();
477
478 list_for_each_entry(link, &dev->links.consumers, s_node) {
479 if (link->flags & DL_FLAG_STATELESS)
480 continue;
481
482 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
483 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
484 WRITE_ONCE(link->status, DL_STATE_DORMANT);
485 }
486
487 __device_links_no_driver(dev);
488
489 device_links_write_unlock();
490 }
491
492 /**
493 * device_links_busy - Check if there are any busy links to consumers.
494 * @dev: Device to check.
495 *
496 * Check each consumer of the device and return 'true' if its link's status
497 * is one of "consumer probe" or "active" (meaning that the given consumer is
498 * probing right now or its driver is present). Otherwise, change the link
499 * state to "supplier unbind" to prevent the consumer from being probed
500 * successfully going forward.
501 *
502 * Return 'false' if there are no probing or active consumers.
503 *
504 * Links with the DL_FLAG_STATELESS flag set are ignored.
505 */
506 bool device_links_busy(struct device *dev)
507 {
508 struct device_link *link;
509 bool ret = false;
510
511 device_links_write_lock();
512
513 list_for_each_entry(link, &dev->links.consumers, s_node) {
514 if (link->flags & DL_FLAG_STATELESS)
515 continue;
516
517 if (link->status == DL_STATE_CONSUMER_PROBE
518 || link->status == DL_STATE_ACTIVE) {
519 ret = true;
520 break;
521 }
522 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
523 }
524
525 dev->links.status = DL_DEV_UNBINDING;
526
527 device_links_write_unlock();
528 return ret;
529 }
530
531 /**
532 * device_links_unbind_consumers - Force unbind consumers of the given device.
533 * @dev: Device to unbind the consumers of.
534 *
535 * Walk the list of links to consumers for @dev and if any of them is in the
536 * "consumer probe" state, wait for all device probes in progress to complete
537 * and start over.
538 *
539 * If that's not the case, change the status of the link to "supplier unbind"
540 * and check if the link was in the "active" state. If so, force the consumer
541 * driver to unbind and start over (the consumer will not re-probe as we have
542 * changed the state of the link already).
543 *
544 * Links with the DL_FLAG_STATELESS flag set are ignored.
545 */
546 void device_links_unbind_consumers(struct device *dev)
547 {
548 struct device_link *link;
549
550 start:
551 device_links_write_lock();
552
553 list_for_each_entry(link, &dev->links.consumers, s_node) {
554 enum device_link_state status;
555
556 if (link->flags & DL_FLAG_STATELESS)
557 continue;
558
559 status = link->status;
560 if (status == DL_STATE_CONSUMER_PROBE) {
561 device_links_write_unlock();
562
563 wait_for_device_probe();
564 goto start;
565 }
566 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
567 if (status == DL_STATE_ACTIVE) {
568 struct device *consumer = link->consumer;
569
570 get_device(consumer);
571
572 device_links_write_unlock();
573
574 device_release_driver_internal(consumer, NULL,
575 consumer->parent);
576 put_device(consumer);
577 goto start;
578 }
579 }
580
581 device_links_write_unlock();
582 }
583
584 /**
585 * device_links_purge - Delete existing links to other devices.
586 * @dev: Target device.
587 */
588 static void device_links_purge(struct device *dev)
589 {
590 struct device_link *link, *ln;
591
592 /*
593 * Delete all of the remaining links from this device to any other
594 * devices (either consumers or suppliers).
595 */
596 device_links_write_lock();
597
598 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
599 WARN_ON(link->status == DL_STATE_ACTIVE);
600 __device_link_del(link);
601 }
602
603 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
604 WARN_ON(link->status != DL_STATE_DORMANT &&
605 link->status != DL_STATE_NONE);
606 __device_link_del(link);
607 }
608
609 device_links_write_unlock();
610 }
611
612 /* Device links support end. */
613
614 int (*platform_notify)(struct device *dev) = NULL;
615 int (*platform_notify_remove)(struct device *dev) = NULL;
616 static struct kobject *dev_kobj;
617 struct kobject *sysfs_dev_char_kobj;
618 struct kobject *sysfs_dev_block_kobj;
619
620 static DEFINE_MUTEX(device_hotplug_lock);
621
622 void lock_device_hotplug(void)
623 {
624 mutex_lock(&device_hotplug_lock);
625 }
626
627 void unlock_device_hotplug(void)
628 {
629 mutex_unlock(&device_hotplug_lock);
630 }
631
632 int lock_device_hotplug_sysfs(void)
633 {
634 if (mutex_trylock(&device_hotplug_lock))
635 return 0;
636
637 /* Avoid busy looping (5 ms of sleep should do). */
638 msleep(5);
639 return restart_syscall();
640 }
641
642 #ifdef CONFIG_BLOCK
643 static inline int device_is_not_partition(struct device *dev)
644 {
645 return !(dev->type == &part_type);
646 }
647 #else
648 static inline int device_is_not_partition(struct device *dev)
649 {
650 return 1;
651 }
652 #endif
653
654 /**
655 * dev_driver_string - Return a device's driver name, if at all possible
656 * @dev: struct device to get the name of
657 *
658 * Will return the device's driver's name if it is bound to a device. If
659 * the device is not bound to a driver, it will return the name of the bus
660 * it is attached to. If it is not attached to a bus either, an empty
661 * string will be returned.
662 */
663 const char *dev_driver_string(const struct device *dev)
664 {
665 struct device_driver *drv;
666
667 /* dev->driver can change to NULL underneath us because of unbinding,
668 * so be careful about accessing it. dev->bus and dev->class should
669 * never change once they are set, so they don't need special care.
670 */
671 drv = ACCESS_ONCE(dev->driver);
672 return drv ? drv->name :
673 (dev->bus ? dev->bus->name :
674 (dev->class ? dev->class->name : ""));
675 }
676 EXPORT_SYMBOL(dev_driver_string);
677
678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
679
680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
681 char *buf)
682 {
683 struct device_attribute *dev_attr = to_dev_attr(attr);
684 struct device *dev = kobj_to_dev(kobj);
685 ssize_t ret = -EIO;
686
687 if (dev_attr->show)
688 ret = dev_attr->show(dev, dev_attr, buf);
689 if (ret >= (ssize_t)PAGE_SIZE) {
690 print_symbol("dev_attr_show: %s returned bad count\n",
691 (unsigned long)dev_attr->show);
692 }
693 return ret;
694 }
695
696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
697 const char *buf, size_t count)
698 {
699 struct device_attribute *dev_attr = to_dev_attr(attr);
700 struct device *dev = kobj_to_dev(kobj);
701 ssize_t ret = -EIO;
702
703 if (dev_attr->store)
704 ret = dev_attr->store(dev, dev_attr, buf, count);
705 return ret;
706 }
707
708 static const struct sysfs_ops dev_sysfs_ops = {
709 .show = dev_attr_show,
710 .store = dev_attr_store,
711 };
712
713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
714
715 ssize_t device_store_ulong(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
718 {
719 struct dev_ext_attribute *ea = to_ext_attr(attr);
720 char *end;
721 unsigned long new = simple_strtoul(buf, &end, 0);
722 if (end == buf)
723 return -EINVAL;
724 *(unsigned long *)(ea->var) = new;
725 /* Always return full write size even if we didn't consume all */
726 return size;
727 }
728 EXPORT_SYMBOL_GPL(device_store_ulong);
729
730 ssize_t device_show_ulong(struct device *dev,
731 struct device_attribute *attr,
732 char *buf)
733 {
734 struct dev_ext_attribute *ea = to_ext_attr(attr);
735 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
736 }
737 EXPORT_SYMBOL_GPL(device_show_ulong);
738
739 ssize_t device_store_int(struct device *dev,
740 struct device_attribute *attr,
741 const char *buf, size_t size)
742 {
743 struct dev_ext_attribute *ea = to_ext_attr(attr);
744 char *end;
745 long new = simple_strtol(buf, &end, 0);
746 if (end == buf || new > INT_MAX || new < INT_MIN)
747 return -EINVAL;
748 *(int *)(ea->var) = new;
749 /* Always return full write size even if we didn't consume all */
750 return size;
751 }
752 EXPORT_SYMBOL_GPL(device_store_int);
753
754 ssize_t device_show_int(struct device *dev,
755 struct device_attribute *attr,
756 char *buf)
757 {
758 struct dev_ext_attribute *ea = to_ext_attr(attr);
759
760 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
761 }
762 EXPORT_SYMBOL_GPL(device_show_int);
763
764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
765 const char *buf, size_t size)
766 {
767 struct dev_ext_attribute *ea = to_ext_attr(attr);
768
769 if (strtobool(buf, ea->var) < 0)
770 return -EINVAL;
771
772 return size;
773 }
774 EXPORT_SYMBOL_GPL(device_store_bool);
775
776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
777 char *buf)
778 {
779 struct dev_ext_attribute *ea = to_ext_attr(attr);
780
781 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
782 }
783 EXPORT_SYMBOL_GPL(device_show_bool);
784
785 /**
786 * device_release - free device structure.
787 * @kobj: device's kobject.
788 *
789 * This is called once the reference count for the object
790 * reaches 0. We forward the call to the device's release
791 * method, which should handle actually freeing the structure.
792 */
793 static void device_release(struct kobject *kobj)
794 {
795 struct device *dev = kobj_to_dev(kobj);
796 struct device_private *p = dev->p;
797
798 /*
799 * Some platform devices are driven without driver attached
800 * and managed resources may have been acquired. Make sure
801 * all resources are released.
802 *
803 * Drivers still can add resources into device after device
804 * is deleted but alive, so release devres here to avoid
805 * possible memory leak.
806 */
807 devres_release_all(dev);
808
809 if (dev->release)
810 dev->release(dev);
811 else if (dev->type && dev->type->release)
812 dev->type->release(dev);
813 else if (dev->class && dev->class->dev_release)
814 dev->class->dev_release(dev);
815 else
816 WARN(1, KERN_ERR "Device '%s' does not have a release() "
817 "function, it is broken and must be fixed.\n",
818 dev_name(dev));
819 kfree(p);
820 }
821
822 static const void *device_namespace(struct kobject *kobj)
823 {
824 struct device *dev = kobj_to_dev(kobj);
825 const void *ns = NULL;
826
827 if (dev->class && dev->class->ns_type)
828 ns = dev->class->namespace(dev);
829
830 return ns;
831 }
832
833 static struct kobj_type device_ktype = {
834 .release = device_release,
835 .sysfs_ops = &dev_sysfs_ops,
836 .namespace = device_namespace,
837 };
838
839
840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
841 {
842 struct kobj_type *ktype = get_ktype(kobj);
843
844 if (ktype == &device_ktype) {
845 struct device *dev = kobj_to_dev(kobj);
846 if (dev->bus)
847 return 1;
848 if (dev->class)
849 return 1;
850 }
851 return 0;
852 }
853
854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
855 {
856 struct device *dev = kobj_to_dev(kobj);
857
858 if (dev->bus)
859 return dev->bus->name;
860 if (dev->class)
861 return dev->class->name;
862 return NULL;
863 }
864
865 static int dev_uevent(struct kset *kset, struct kobject *kobj,
866 struct kobj_uevent_env *env)
867 {
868 struct device *dev = kobj_to_dev(kobj);
869 int retval = 0;
870
871 /* add device node properties if present */
872 if (MAJOR(dev->devt)) {
873 const char *tmp;
874 const char *name;
875 umode_t mode = 0;
876 kuid_t uid = GLOBAL_ROOT_UID;
877 kgid_t gid = GLOBAL_ROOT_GID;
878
879 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
880 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
881 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
882 if (name) {
883 add_uevent_var(env, "DEVNAME=%s", name);
884 if (mode)
885 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
886 if (!uid_eq(uid, GLOBAL_ROOT_UID))
887 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
888 if (!gid_eq(gid, GLOBAL_ROOT_GID))
889 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
890 kfree(tmp);
891 }
892 }
893
894 if (dev->type && dev->type->name)
895 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
896
897 if (dev->driver)
898 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
899
900 /* Add common DT information about the device */
901 of_device_uevent(dev, env);
902
903 /* have the bus specific function add its stuff */
904 if (dev->bus && dev->bus->uevent) {
905 retval = dev->bus->uevent(dev, env);
906 if (retval)
907 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
908 dev_name(dev), __func__, retval);
909 }
910
911 /* have the class specific function add its stuff */
912 if (dev->class && dev->class->dev_uevent) {
913 retval = dev->class->dev_uevent(dev, env);
914 if (retval)
915 pr_debug("device: '%s': %s: class uevent() "
916 "returned %d\n", dev_name(dev),
917 __func__, retval);
918 }
919
920 /* have the device type specific function add its stuff */
921 if (dev->type && dev->type->uevent) {
922 retval = dev->type->uevent(dev, env);
923 if (retval)
924 pr_debug("device: '%s': %s: dev_type uevent() "
925 "returned %d\n", dev_name(dev),
926 __func__, retval);
927 }
928
929 return retval;
930 }
931
932 static const struct kset_uevent_ops device_uevent_ops = {
933 .filter = dev_uevent_filter,
934 .name = dev_uevent_name,
935 .uevent = dev_uevent,
936 };
937
938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
939 char *buf)
940 {
941 struct kobject *top_kobj;
942 struct kset *kset;
943 struct kobj_uevent_env *env = NULL;
944 int i;
945 size_t count = 0;
946 int retval;
947
948 /* search the kset, the device belongs to */
949 top_kobj = &dev->kobj;
950 while (!top_kobj->kset && top_kobj->parent)
951 top_kobj = top_kobj->parent;
952 if (!top_kobj->kset)
953 goto out;
954
955 kset = top_kobj->kset;
956 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
957 goto out;
958
959 /* respect filter */
960 if (kset->uevent_ops && kset->uevent_ops->filter)
961 if (!kset->uevent_ops->filter(kset, &dev->kobj))
962 goto out;
963
964 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
965 if (!env)
966 return -ENOMEM;
967
968 /* let the kset specific function add its keys */
969 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
970 if (retval)
971 goto out;
972
973 /* copy keys to file */
974 for (i = 0; i < env->envp_idx; i++)
975 count += sprintf(&buf[count], "%s\n", env->envp[i]);
976 out:
977 kfree(env);
978 return count;
979 }
980
981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
982 const char *buf, size_t count)
983 {
984 if (kobject_synth_uevent(&dev->kobj, buf, count))
985 dev_err(dev, "uevent: failed to send synthetic uevent\n");
986
987 return count;
988 }
989 static DEVICE_ATTR_RW(uevent);
990
991 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
992 char *buf)
993 {
994 bool val;
995
996 device_lock(dev);
997 val = !dev->offline;
998 device_unlock(dev);
999 return sprintf(buf, "%u\n", val);
1000 }
1001
1002 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1003 const char *buf, size_t count)
1004 {
1005 bool val;
1006 int ret;
1007
1008 ret = strtobool(buf, &val);
1009 if (ret < 0)
1010 return ret;
1011
1012 ret = lock_device_hotplug_sysfs();
1013 if (ret)
1014 return ret;
1015
1016 ret = val ? device_online(dev) : device_offline(dev);
1017 unlock_device_hotplug();
1018 return ret < 0 ? ret : count;
1019 }
1020 static DEVICE_ATTR_RW(online);
1021
1022 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1023 {
1024 return sysfs_create_groups(&dev->kobj, groups);
1025 }
1026
1027 void device_remove_groups(struct device *dev,
1028 const struct attribute_group **groups)
1029 {
1030 sysfs_remove_groups(&dev->kobj, groups);
1031 }
1032
1033 static int device_add_attrs(struct device *dev)
1034 {
1035 struct class *class = dev->class;
1036 const struct device_type *type = dev->type;
1037 int error;
1038
1039 if (class) {
1040 error = device_add_groups(dev, class->dev_groups);
1041 if (error)
1042 return error;
1043 }
1044
1045 if (type) {
1046 error = device_add_groups(dev, type->groups);
1047 if (error)
1048 goto err_remove_class_groups;
1049 }
1050
1051 error = device_add_groups(dev, dev->groups);
1052 if (error)
1053 goto err_remove_type_groups;
1054
1055 if (device_supports_offline(dev) && !dev->offline_disabled) {
1056 error = device_create_file(dev, &dev_attr_online);
1057 if (error)
1058 goto err_remove_dev_groups;
1059 }
1060
1061 return 0;
1062
1063 err_remove_dev_groups:
1064 device_remove_groups(dev, dev->groups);
1065 err_remove_type_groups:
1066 if (type)
1067 device_remove_groups(dev, type->groups);
1068 err_remove_class_groups:
1069 if (class)
1070 device_remove_groups(dev, class->dev_groups);
1071
1072 return error;
1073 }
1074
1075 static void device_remove_attrs(struct device *dev)
1076 {
1077 struct class *class = dev->class;
1078 const struct device_type *type = dev->type;
1079
1080 device_remove_file(dev, &dev_attr_online);
1081 device_remove_groups(dev, dev->groups);
1082
1083 if (type)
1084 device_remove_groups(dev, type->groups);
1085
1086 if (class)
1087 device_remove_groups(dev, class->dev_groups);
1088 }
1089
1090 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1091 char *buf)
1092 {
1093 return print_dev_t(buf, dev->devt);
1094 }
1095 static DEVICE_ATTR_RO(dev);
1096
1097 /* /sys/devices/ */
1098 struct kset *devices_kset;
1099
1100 /**
1101 * devices_kset_move_before - Move device in the devices_kset's list.
1102 * @deva: Device to move.
1103 * @devb: Device @deva should come before.
1104 */
1105 static void devices_kset_move_before(struct device *deva, struct device *devb)
1106 {
1107 if (!devices_kset)
1108 return;
1109 pr_debug("devices_kset: Moving %s before %s\n",
1110 dev_name(deva), dev_name(devb));
1111 spin_lock(&devices_kset->list_lock);
1112 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1113 spin_unlock(&devices_kset->list_lock);
1114 }
1115
1116 /**
1117 * devices_kset_move_after - Move device in the devices_kset's list.
1118 * @deva: Device to move
1119 * @devb: Device @deva should come after.
1120 */
1121 static void devices_kset_move_after(struct device *deva, struct device *devb)
1122 {
1123 if (!devices_kset)
1124 return;
1125 pr_debug("devices_kset: Moving %s after %s\n",
1126 dev_name(deva), dev_name(devb));
1127 spin_lock(&devices_kset->list_lock);
1128 list_move(&deva->kobj.entry, &devb->kobj.entry);
1129 spin_unlock(&devices_kset->list_lock);
1130 }
1131
1132 /**
1133 * devices_kset_move_last - move the device to the end of devices_kset's list.
1134 * @dev: device to move
1135 */
1136 void devices_kset_move_last(struct device *dev)
1137 {
1138 if (!devices_kset)
1139 return;
1140 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1141 spin_lock(&devices_kset->list_lock);
1142 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1143 spin_unlock(&devices_kset->list_lock);
1144 }
1145
1146 /**
1147 * device_create_file - create sysfs attribute file for device.
1148 * @dev: device.
1149 * @attr: device attribute descriptor.
1150 */
1151 int device_create_file(struct device *dev,
1152 const struct device_attribute *attr)
1153 {
1154 int error = 0;
1155
1156 if (dev) {
1157 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1158 "Attribute %s: write permission without 'store'\n",
1159 attr->attr.name);
1160 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1161 "Attribute %s: read permission without 'show'\n",
1162 attr->attr.name);
1163 error = sysfs_create_file(&dev->kobj, &attr->attr);
1164 }
1165
1166 return error;
1167 }
1168 EXPORT_SYMBOL_GPL(device_create_file);
1169
1170 /**
1171 * device_remove_file - remove sysfs attribute file.
1172 * @dev: device.
1173 * @attr: device attribute descriptor.
1174 */
1175 void device_remove_file(struct device *dev,
1176 const struct device_attribute *attr)
1177 {
1178 if (dev)
1179 sysfs_remove_file(&dev->kobj, &attr->attr);
1180 }
1181 EXPORT_SYMBOL_GPL(device_remove_file);
1182
1183 /**
1184 * device_remove_file_self - remove sysfs attribute file from its own method.
1185 * @dev: device.
1186 * @attr: device attribute descriptor.
1187 *
1188 * See kernfs_remove_self() for details.
1189 */
1190 bool device_remove_file_self(struct device *dev,
1191 const struct device_attribute *attr)
1192 {
1193 if (dev)
1194 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1195 else
1196 return false;
1197 }
1198 EXPORT_SYMBOL_GPL(device_remove_file_self);
1199
1200 /**
1201 * device_create_bin_file - create sysfs binary attribute file for device.
1202 * @dev: device.
1203 * @attr: device binary attribute descriptor.
1204 */
1205 int device_create_bin_file(struct device *dev,
1206 const struct bin_attribute *attr)
1207 {
1208 int error = -EINVAL;
1209 if (dev)
1210 error = sysfs_create_bin_file(&dev->kobj, attr);
1211 return error;
1212 }
1213 EXPORT_SYMBOL_GPL(device_create_bin_file);
1214
1215 /**
1216 * device_remove_bin_file - remove sysfs binary attribute file
1217 * @dev: device.
1218 * @attr: device binary attribute descriptor.
1219 */
1220 void device_remove_bin_file(struct device *dev,
1221 const struct bin_attribute *attr)
1222 {
1223 if (dev)
1224 sysfs_remove_bin_file(&dev->kobj, attr);
1225 }
1226 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1227
1228 static void klist_children_get(struct klist_node *n)
1229 {
1230 struct device_private *p = to_device_private_parent(n);
1231 struct device *dev = p->device;
1232
1233 get_device(dev);
1234 }
1235
1236 static void klist_children_put(struct klist_node *n)
1237 {
1238 struct device_private *p = to_device_private_parent(n);
1239 struct device *dev = p->device;
1240
1241 put_device(dev);
1242 }
1243
1244 /**
1245 * device_initialize - init device structure.
1246 * @dev: device.
1247 *
1248 * This prepares the device for use by other layers by initializing
1249 * its fields.
1250 * It is the first half of device_register(), if called by
1251 * that function, though it can also be called separately, so one
1252 * may use @dev's fields. In particular, get_device()/put_device()
1253 * may be used for reference counting of @dev after calling this
1254 * function.
1255 *
1256 * All fields in @dev must be initialized by the caller to 0, except
1257 * for those explicitly set to some other value. The simplest
1258 * approach is to use kzalloc() to allocate the structure containing
1259 * @dev.
1260 *
1261 * NOTE: Use put_device() to give up your reference instead of freeing
1262 * @dev directly once you have called this function.
1263 */
1264 void device_initialize(struct device *dev)
1265 {
1266 dev->kobj.kset = devices_kset;
1267 kobject_init(&dev->kobj, &device_ktype);
1268 INIT_LIST_HEAD(&dev->dma_pools);
1269 mutex_init(&dev->mutex);
1270 lockdep_set_novalidate_class(&dev->mutex);
1271 spin_lock_init(&dev->devres_lock);
1272 INIT_LIST_HEAD(&dev->devres_head);
1273 device_pm_init(dev);
1274 set_dev_node(dev, -1);
1275 #ifdef CONFIG_GENERIC_MSI_IRQ
1276 INIT_LIST_HEAD(&dev->msi_list);
1277 #endif
1278 INIT_LIST_HEAD(&dev->links.consumers);
1279 INIT_LIST_HEAD(&dev->links.suppliers);
1280 dev->links.status = DL_DEV_NO_DRIVER;
1281 }
1282 EXPORT_SYMBOL_GPL(device_initialize);
1283
1284 struct kobject *virtual_device_parent(struct device *dev)
1285 {
1286 static struct kobject *virtual_dir = NULL;
1287
1288 if (!virtual_dir)
1289 virtual_dir = kobject_create_and_add("virtual",
1290 &devices_kset->kobj);
1291
1292 return virtual_dir;
1293 }
1294
1295 struct class_dir {
1296 struct kobject kobj;
1297 struct class *class;
1298 };
1299
1300 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1301
1302 static void class_dir_release(struct kobject *kobj)
1303 {
1304 struct class_dir *dir = to_class_dir(kobj);
1305 kfree(dir);
1306 }
1307
1308 static const
1309 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1310 {
1311 struct class_dir *dir = to_class_dir(kobj);
1312 return dir->class->ns_type;
1313 }
1314
1315 static struct kobj_type class_dir_ktype = {
1316 .release = class_dir_release,
1317 .sysfs_ops = &kobj_sysfs_ops,
1318 .child_ns_type = class_dir_child_ns_type
1319 };
1320
1321 static struct kobject *
1322 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1323 {
1324 struct class_dir *dir;
1325 int retval;
1326
1327 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1328 if (!dir)
1329 return NULL;
1330
1331 dir->class = class;
1332 kobject_init(&dir->kobj, &class_dir_ktype);
1333
1334 dir->kobj.kset = &class->p->glue_dirs;
1335
1336 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1337 if (retval < 0) {
1338 kobject_put(&dir->kobj);
1339 return NULL;
1340 }
1341 return &dir->kobj;
1342 }
1343
1344 static DEFINE_MUTEX(gdp_mutex);
1345
1346 static struct kobject *get_device_parent(struct device *dev,
1347 struct device *parent)
1348 {
1349 if (dev->class) {
1350 struct kobject *kobj = NULL;
1351 struct kobject *parent_kobj;
1352 struct kobject *k;
1353
1354 #ifdef CONFIG_BLOCK
1355 /* block disks show up in /sys/block */
1356 if (sysfs_deprecated && dev->class == &block_class) {
1357 if (parent && parent->class == &block_class)
1358 return &parent->kobj;
1359 return &block_class.p->subsys.kobj;
1360 }
1361 #endif
1362
1363 /*
1364 * If we have no parent, we live in "virtual".
1365 * Class-devices with a non class-device as parent, live
1366 * in a "glue" directory to prevent namespace collisions.
1367 */
1368 if (parent == NULL)
1369 parent_kobj = virtual_device_parent(dev);
1370 else if (parent->class && !dev->class->ns_type)
1371 return &parent->kobj;
1372 else
1373 parent_kobj = &parent->kobj;
1374
1375 mutex_lock(&gdp_mutex);
1376
1377 /* find our class-directory at the parent and reference it */
1378 spin_lock(&dev->class->p->glue_dirs.list_lock);
1379 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1380 if (k->parent == parent_kobj) {
1381 kobj = kobject_get(k);
1382 break;
1383 }
1384 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1385 if (kobj) {
1386 mutex_unlock(&gdp_mutex);
1387 return kobj;
1388 }
1389
1390 /* or create a new class-directory at the parent device */
1391 k = class_dir_create_and_add(dev->class, parent_kobj);
1392 /* do not emit an uevent for this simple "glue" directory */
1393 mutex_unlock(&gdp_mutex);
1394 return k;
1395 }
1396
1397 /* subsystems can specify a default root directory for their devices */
1398 if (!parent && dev->bus && dev->bus->dev_root)
1399 return &dev->bus->dev_root->kobj;
1400
1401 if (parent)
1402 return &parent->kobj;
1403 return NULL;
1404 }
1405
1406 static inline bool live_in_glue_dir(struct kobject *kobj,
1407 struct device *dev)
1408 {
1409 if (!kobj || !dev->class ||
1410 kobj->kset != &dev->class->p->glue_dirs)
1411 return false;
1412 return true;
1413 }
1414
1415 static inline struct kobject *get_glue_dir(struct device *dev)
1416 {
1417 return dev->kobj.parent;
1418 }
1419
1420 /*
1421 * make sure cleaning up dir as the last step, we need to make
1422 * sure .release handler of kobject is run with holding the
1423 * global lock
1424 */
1425 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1426 {
1427 /* see if we live in a "glue" directory */
1428 if (!live_in_glue_dir(glue_dir, dev))
1429 return;
1430
1431 mutex_lock(&gdp_mutex);
1432 kobject_put(glue_dir);
1433 mutex_unlock(&gdp_mutex);
1434 }
1435
1436 static int device_add_class_symlinks(struct device *dev)
1437 {
1438 struct device_node *of_node = dev_of_node(dev);
1439 int error;
1440
1441 if (of_node) {
1442 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1443 if (error)
1444 dev_warn(dev, "Error %d creating of_node link\n",error);
1445 /* An error here doesn't warrant bringing down the device */
1446 }
1447
1448 if (!dev->class)
1449 return 0;
1450
1451 error = sysfs_create_link(&dev->kobj,
1452 &dev->class->p->subsys.kobj,
1453 "subsystem");
1454 if (error)
1455 goto out_devnode;
1456
1457 if (dev->parent && device_is_not_partition(dev)) {
1458 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1459 "device");
1460 if (error)
1461 goto out_subsys;
1462 }
1463
1464 #ifdef CONFIG_BLOCK
1465 /* /sys/block has directories and does not need symlinks */
1466 if (sysfs_deprecated && dev->class == &block_class)
1467 return 0;
1468 #endif
1469
1470 /* link in the class directory pointing to the device */
1471 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1472 &dev->kobj, dev_name(dev));
1473 if (error)
1474 goto out_device;
1475
1476 return 0;
1477
1478 out_device:
1479 sysfs_remove_link(&dev->kobj, "device");
1480
1481 out_subsys:
1482 sysfs_remove_link(&dev->kobj, "subsystem");
1483 out_devnode:
1484 sysfs_remove_link(&dev->kobj, "of_node");
1485 return error;
1486 }
1487
1488 static void device_remove_class_symlinks(struct device *dev)
1489 {
1490 if (dev_of_node(dev))
1491 sysfs_remove_link(&dev->kobj, "of_node");
1492
1493 if (!dev->class)
1494 return;
1495
1496 if (dev->parent && device_is_not_partition(dev))
1497 sysfs_remove_link(&dev->kobj, "device");
1498 sysfs_remove_link(&dev->kobj, "subsystem");
1499 #ifdef CONFIG_BLOCK
1500 if (sysfs_deprecated && dev->class == &block_class)
1501 return;
1502 #endif
1503 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1504 }
1505
1506 /**
1507 * dev_set_name - set a device name
1508 * @dev: device
1509 * @fmt: format string for the device's name
1510 */
1511 int dev_set_name(struct device *dev, const char *fmt, ...)
1512 {
1513 va_list vargs;
1514 int err;
1515
1516 va_start(vargs, fmt);
1517 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1518 va_end(vargs);
1519 return err;
1520 }
1521 EXPORT_SYMBOL_GPL(dev_set_name);
1522
1523 /**
1524 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1525 * @dev: device
1526 *
1527 * By default we select char/ for new entries. Setting class->dev_obj
1528 * to NULL prevents an entry from being created. class->dev_kobj must
1529 * be set (or cleared) before any devices are registered to the class
1530 * otherwise device_create_sys_dev_entry() and
1531 * device_remove_sys_dev_entry() will disagree about the presence of
1532 * the link.
1533 */
1534 static struct kobject *device_to_dev_kobj(struct device *dev)
1535 {
1536 struct kobject *kobj;
1537
1538 if (dev->class)
1539 kobj = dev->class->dev_kobj;
1540 else
1541 kobj = sysfs_dev_char_kobj;
1542
1543 return kobj;
1544 }
1545
1546 static int device_create_sys_dev_entry(struct device *dev)
1547 {
1548 struct kobject *kobj = device_to_dev_kobj(dev);
1549 int error = 0;
1550 char devt_str[15];
1551
1552 if (kobj) {
1553 format_dev_t(devt_str, dev->devt);
1554 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1555 }
1556
1557 return error;
1558 }
1559
1560 static void device_remove_sys_dev_entry(struct device *dev)
1561 {
1562 struct kobject *kobj = device_to_dev_kobj(dev);
1563 char devt_str[15];
1564
1565 if (kobj) {
1566 format_dev_t(devt_str, dev->devt);
1567 sysfs_remove_link(kobj, devt_str);
1568 }
1569 }
1570
1571 int device_private_init(struct device *dev)
1572 {
1573 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1574 if (!dev->p)
1575 return -ENOMEM;
1576 dev->p->device = dev;
1577 klist_init(&dev->p->klist_children, klist_children_get,
1578 klist_children_put);
1579 INIT_LIST_HEAD(&dev->p->deferred_probe);
1580 return 0;
1581 }
1582
1583 /**
1584 * device_add - add device to device hierarchy.
1585 * @dev: device.
1586 *
1587 * This is part 2 of device_register(), though may be called
1588 * separately _iff_ device_initialize() has been called separately.
1589 *
1590 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1591 * to the global and sibling lists for the device, then
1592 * adds it to the other relevant subsystems of the driver model.
1593 *
1594 * Do not call this routine or device_register() more than once for
1595 * any device structure. The driver model core is not designed to work
1596 * with devices that get unregistered and then spring back to life.
1597 * (Among other things, it's very hard to guarantee that all references
1598 * to the previous incarnation of @dev have been dropped.) Allocate
1599 * and register a fresh new struct device instead.
1600 *
1601 * NOTE: _Never_ directly free @dev after calling this function, even
1602 * if it returned an error! Always use put_device() to give up your
1603 * reference instead.
1604 */
1605 int device_add(struct device *dev)
1606 {
1607 struct device *parent;
1608 struct kobject *kobj;
1609 struct class_interface *class_intf;
1610 int error = -EINVAL;
1611 struct kobject *glue_dir = NULL;
1612
1613 dev = get_device(dev);
1614 if (!dev)
1615 goto done;
1616
1617 if (!dev->p) {
1618 error = device_private_init(dev);
1619 if (error)
1620 goto done;
1621 }
1622
1623 /*
1624 * for statically allocated devices, which should all be converted
1625 * some day, we need to initialize the name. We prevent reading back
1626 * the name, and force the use of dev_name()
1627 */
1628 if (dev->init_name) {
1629 dev_set_name(dev, "%s", dev->init_name);
1630 dev->init_name = NULL;
1631 }
1632
1633 /* subsystems can specify simple device enumeration */
1634 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1635 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1636
1637 if (!dev_name(dev)) {
1638 error = -EINVAL;
1639 goto name_error;
1640 }
1641
1642 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1643
1644 parent = get_device(dev->parent);
1645 kobj = get_device_parent(dev, parent);
1646 if (kobj)
1647 dev->kobj.parent = kobj;
1648
1649 /* use parent numa_node */
1650 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1651 set_dev_node(dev, dev_to_node(parent));
1652
1653 /* first, register with generic layer. */
1654 /* we require the name to be set before, and pass NULL */
1655 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1656 if (error) {
1657 glue_dir = get_glue_dir(dev);
1658 goto Error;
1659 }
1660
1661 /* notify platform of device entry */
1662 if (platform_notify)
1663 platform_notify(dev);
1664
1665 error = device_create_file(dev, &dev_attr_uevent);
1666 if (error)
1667 goto attrError;
1668
1669 error = device_add_class_symlinks(dev);
1670 if (error)
1671 goto SymlinkError;
1672 error = device_add_attrs(dev);
1673 if (error)
1674 goto AttrsError;
1675 error = bus_add_device(dev);
1676 if (error)
1677 goto BusError;
1678 error = dpm_sysfs_add(dev);
1679 if (error)
1680 goto DPMError;
1681 device_pm_add(dev);
1682
1683 if (MAJOR(dev->devt)) {
1684 error = device_create_file(dev, &dev_attr_dev);
1685 if (error)
1686 goto DevAttrError;
1687
1688 error = device_create_sys_dev_entry(dev);
1689 if (error)
1690 goto SysEntryError;
1691
1692 devtmpfs_create_node(dev);
1693 }
1694
1695 /* Notify clients of device addition. This call must come
1696 * after dpm_sysfs_add() and before kobject_uevent().
1697 */
1698 if (dev->bus)
1699 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1700 BUS_NOTIFY_ADD_DEVICE, dev);
1701
1702 kobject_uevent(&dev->kobj, KOBJ_ADD);
1703 bus_probe_device(dev);
1704 if (parent)
1705 klist_add_tail(&dev->p->knode_parent,
1706 &parent->p->klist_children);
1707
1708 if (dev->class) {
1709 mutex_lock(&dev->class->p->mutex);
1710 /* tie the class to the device */
1711 klist_add_tail(&dev->knode_class,
1712 &dev->class->p->klist_devices);
1713
1714 /* notify any interfaces that the device is here */
1715 list_for_each_entry(class_intf,
1716 &dev->class->p->interfaces, node)
1717 if (class_intf->add_dev)
1718 class_intf->add_dev(dev, class_intf);
1719 mutex_unlock(&dev->class->p->mutex);
1720 }
1721 done:
1722 put_device(dev);
1723 return error;
1724 SysEntryError:
1725 if (MAJOR(dev->devt))
1726 device_remove_file(dev, &dev_attr_dev);
1727 DevAttrError:
1728 device_pm_remove(dev);
1729 dpm_sysfs_remove(dev);
1730 DPMError:
1731 bus_remove_device(dev);
1732 BusError:
1733 device_remove_attrs(dev);
1734 AttrsError:
1735 device_remove_class_symlinks(dev);
1736 SymlinkError:
1737 device_remove_file(dev, &dev_attr_uevent);
1738 attrError:
1739 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1740 glue_dir = get_glue_dir(dev);
1741 kobject_del(&dev->kobj);
1742 Error:
1743 cleanup_glue_dir(dev, glue_dir);
1744 put_device(parent);
1745 name_error:
1746 kfree(dev->p);
1747 dev->p = NULL;
1748 goto done;
1749 }
1750 EXPORT_SYMBOL_GPL(device_add);
1751
1752 /**
1753 * device_register - register a device with the system.
1754 * @dev: pointer to the device structure
1755 *
1756 * This happens in two clean steps - initialize the device
1757 * and add it to the system. The two steps can be called
1758 * separately, but this is the easiest and most common.
1759 * I.e. you should only call the two helpers separately if
1760 * have a clearly defined need to use and refcount the device
1761 * before it is added to the hierarchy.
1762 *
1763 * For more information, see the kerneldoc for device_initialize()
1764 * and device_add().
1765 *
1766 * NOTE: _Never_ directly free @dev after calling this function, even
1767 * if it returned an error! Always use put_device() to give up the
1768 * reference initialized in this function instead.
1769 */
1770 int device_register(struct device *dev)
1771 {
1772 device_initialize(dev);
1773 return device_add(dev);
1774 }
1775 EXPORT_SYMBOL_GPL(device_register);
1776
1777 /**
1778 * get_device - increment reference count for device.
1779 * @dev: device.
1780 *
1781 * This simply forwards the call to kobject_get(), though
1782 * we do take care to provide for the case that we get a NULL
1783 * pointer passed in.
1784 */
1785 struct device *get_device(struct device *dev)
1786 {
1787 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1788 }
1789 EXPORT_SYMBOL_GPL(get_device);
1790
1791 /**
1792 * put_device - decrement reference count.
1793 * @dev: device in question.
1794 */
1795 void put_device(struct device *dev)
1796 {
1797 /* might_sleep(); */
1798 if (dev)
1799 kobject_put(&dev->kobj);
1800 }
1801 EXPORT_SYMBOL_GPL(put_device);
1802
1803 /**
1804 * device_del - delete device from system.
1805 * @dev: device.
1806 *
1807 * This is the first part of the device unregistration
1808 * sequence. This removes the device from the lists we control
1809 * from here, has it removed from the other driver model
1810 * subsystems it was added to in device_add(), and removes it
1811 * from the kobject hierarchy.
1812 *
1813 * NOTE: this should be called manually _iff_ device_add() was
1814 * also called manually.
1815 */
1816 void device_del(struct device *dev)
1817 {
1818 struct device *parent = dev->parent;
1819 struct kobject *glue_dir = NULL;
1820 struct class_interface *class_intf;
1821
1822 /* Notify clients of device removal. This call must come
1823 * before dpm_sysfs_remove().
1824 */
1825 if (dev->bus)
1826 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1827 BUS_NOTIFY_DEL_DEVICE, dev);
1828
1829 device_links_purge(dev);
1830 dpm_sysfs_remove(dev);
1831 if (parent)
1832 klist_del(&dev->p->knode_parent);
1833 if (MAJOR(dev->devt)) {
1834 devtmpfs_delete_node(dev);
1835 device_remove_sys_dev_entry(dev);
1836 device_remove_file(dev, &dev_attr_dev);
1837 }
1838 if (dev->class) {
1839 device_remove_class_symlinks(dev);
1840
1841 mutex_lock(&dev->class->p->mutex);
1842 /* notify any interfaces that the device is now gone */
1843 list_for_each_entry(class_intf,
1844 &dev->class->p->interfaces, node)
1845 if (class_intf->remove_dev)
1846 class_intf->remove_dev(dev, class_intf);
1847 /* remove the device from the class list */
1848 klist_del(&dev->knode_class);
1849 mutex_unlock(&dev->class->p->mutex);
1850 }
1851 device_remove_file(dev, &dev_attr_uevent);
1852 device_remove_attrs(dev);
1853 bus_remove_device(dev);
1854 device_pm_remove(dev);
1855 driver_deferred_probe_del(dev);
1856 device_remove_properties(dev);
1857
1858 /* Notify the platform of the removal, in case they
1859 * need to do anything...
1860 */
1861 if (platform_notify_remove)
1862 platform_notify_remove(dev);
1863 if (dev->bus)
1864 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1865 BUS_NOTIFY_REMOVED_DEVICE, dev);
1866 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1867 glue_dir = get_glue_dir(dev);
1868 kobject_del(&dev->kobj);
1869 cleanup_glue_dir(dev, glue_dir);
1870 put_device(parent);
1871 }
1872 EXPORT_SYMBOL_GPL(device_del);
1873
1874 /**
1875 * device_unregister - unregister device from system.
1876 * @dev: device going away.
1877 *
1878 * We do this in two parts, like we do device_register(). First,
1879 * we remove it from all the subsystems with device_del(), then
1880 * we decrement the reference count via put_device(). If that
1881 * is the final reference count, the device will be cleaned up
1882 * via device_release() above. Otherwise, the structure will
1883 * stick around until the final reference to the device is dropped.
1884 */
1885 void device_unregister(struct device *dev)
1886 {
1887 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1888 device_del(dev);
1889 put_device(dev);
1890 }
1891 EXPORT_SYMBOL_GPL(device_unregister);
1892
1893 static struct device *prev_device(struct klist_iter *i)
1894 {
1895 struct klist_node *n = klist_prev(i);
1896 struct device *dev = NULL;
1897 struct device_private *p;
1898
1899 if (n) {
1900 p = to_device_private_parent(n);
1901 dev = p->device;
1902 }
1903 return dev;
1904 }
1905
1906 static struct device *next_device(struct klist_iter *i)
1907 {
1908 struct klist_node *n = klist_next(i);
1909 struct device *dev = NULL;
1910 struct device_private *p;
1911
1912 if (n) {
1913 p = to_device_private_parent(n);
1914 dev = p->device;
1915 }
1916 return dev;
1917 }
1918
1919 /**
1920 * device_get_devnode - path of device node file
1921 * @dev: device
1922 * @mode: returned file access mode
1923 * @uid: returned file owner
1924 * @gid: returned file group
1925 * @tmp: possibly allocated string
1926 *
1927 * Return the relative path of a possible device node.
1928 * Non-default names may need to allocate a memory to compose
1929 * a name. This memory is returned in tmp and needs to be
1930 * freed by the caller.
1931 */
1932 const char *device_get_devnode(struct device *dev,
1933 umode_t *mode, kuid_t *uid, kgid_t *gid,
1934 const char **tmp)
1935 {
1936 char *s;
1937
1938 *tmp = NULL;
1939
1940 /* the device type may provide a specific name */
1941 if (dev->type && dev->type->devnode)
1942 *tmp = dev->type->devnode(dev, mode, uid, gid);
1943 if (*tmp)
1944 return *tmp;
1945
1946 /* the class may provide a specific name */
1947 if (dev->class && dev->class->devnode)
1948 *tmp = dev->class->devnode(dev, mode);
1949 if (*tmp)
1950 return *tmp;
1951
1952 /* return name without allocation, tmp == NULL */
1953 if (strchr(dev_name(dev), '!') == NULL)
1954 return dev_name(dev);
1955
1956 /* replace '!' in the name with '/' */
1957 s = kstrdup(dev_name(dev), GFP_KERNEL);
1958 if (!s)
1959 return NULL;
1960 strreplace(s, '!', '/');
1961 return *tmp = s;
1962 }
1963
1964 /**
1965 * device_for_each_child - device child iterator.
1966 * @parent: parent struct device.
1967 * @fn: function to be called for each device.
1968 * @data: data for the callback.
1969 *
1970 * Iterate over @parent's child devices, and call @fn for each,
1971 * passing it @data.
1972 *
1973 * We check the return of @fn each time. If it returns anything
1974 * other than 0, we break out and return that value.
1975 */
1976 int device_for_each_child(struct device *parent, void *data,
1977 int (*fn)(struct device *dev, void *data))
1978 {
1979 struct klist_iter i;
1980 struct device *child;
1981 int error = 0;
1982
1983 if (!parent->p)
1984 return 0;
1985
1986 klist_iter_init(&parent->p->klist_children, &i);
1987 while ((child = next_device(&i)) && !error)
1988 error = fn(child, data);
1989 klist_iter_exit(&i);
1990 return error;
1991 }
1992 EXPORT_SYMBOL_GPL(device_for_each_child);
1993
1994 /**
1995 * device_for_each_child_reverse - device child iterator in reversed order.
1996 * @parent: parent struct device.
1997 * @fn: function to be called for each device.
1998 * @data: data for the callback.
1999 *
2000 * Iterate over @parent's child devices, and call @fn for each,
2001 * passing it @data.
2002 *
2003 * We check the return of @fn each time. If it returns anything
2004 * other than 0, we break out and return that value.
2005 */
2006 int device_for_each_child_reverse(struct device *parent, void *data,
2007 int (*fn)(struct device *dev, void *data))
2008 {
2009 struct klist_iter i;
2010 struct device *child;
2011 int error = 0;
2012
2013 if (!parent->p)
2014 return 0;
2015
2016 klist_iter_init(&parent->p->klist_children, &i);
2017 while ((child = prev_device(&i)) && !error)
2018 error = fn(child, data);
2019 klist_iter_exit(&i);
2020 return error;
2021 }
2022 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2023
2024 /**
2025 * device_find_child - device iterator for locating a particular device.
2026 * @parent: parent struct device
2027 * @match: Callback function to check device
2028 * @data: Data to pass to match function
2029 *
2030 * This is similar to the device_for_each_child() function above, but it
2031 * returns a reference to a device that is 'found' for later use, as
2032 * determined by the @match callback.
2033 *
2034 * The callback should return 0 if the device doesn't match and non-zero
2035 * if it does. If the callback returns non-zero and a reference to the
2036 * current device can be obtained, this function will return to the caller
2037 * and not iterate over any more devices.
2038 *
2039 * NOTE: you will need to drop the reference with put_device() after use.
2040 */
2041 struct device *device_find_child(struct device *parent, void *data,
2042 int (*match)(struct device *dev, void *data))
2043 {
2044 struct klist_iter i;
2045 struct device *child;
2046
2047 if (!parent)
2048 return NULL;
2049
2050 klist_iter_init(&parent->p->klist_children, &i);
2051 while ((child = next_device(&i)))
2052 if (match(child, data) && get_device(child))
2053 break;
2054 klist_iter_exit(&i);
2055 return child;
2056 }
2057 EXPORT_SYMBOL_GPL(device_find_child);
2058
2059 int __init devices_init(void)
2060 {
2061 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2062 if (!devices_kset)
2063 return -ENOMEM;
2064 dev_kobj = kobject_create_and_add("dev", NULL);
2065 if (!dev_kobj)
2066 goto dev_kobj_err;
2067 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2068 if (!sysfs_dev_block_kobj)
2069 goto block_kobj_err;
2070 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2071 if (!sysfs_dev_char_kobj)
2072 goto char_kobj_err;
2073
2074 return 0;
2075
2076 char_kobj_err:
2077 kobject_put(sysfs_dev_block_kobj);
2078 block_kobj_err:
2079 kobject_put(dev_kobj);
2080 dev_kobj_err:
2081 kset_unregister(devices_kset);
2082 return -ENOMEM;
2083 }
2084
2085 static int device_check_offline(struct device *dev, void *not_used)
2086 {
2087 int ret;
2088
2089 ret = device_for_each_child(dev, NULL, device_check_offline);
2090 if (ret)
2091 return ret;
2092
2093 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2094 }
2095
2096 /**
2097 * device_offline - Prepare the device for hot-removal.
2098 * @dev: Device to be put offline.
2099 *
2100 * Execute the device bus type's .offline() callback, if present, to prepare
2101 * the device for a subsequent hot-removal. If that succeeds, the device must
2102 * not be used until either it is removed or its bus type's .online() callback
2103 * is executed.
2104 *
2105 * Call under device_hotplug_lock.
2106 */
2107 int device_offline(struct device *dev)
2108 {
2109 int ret;
2110
2111 if (dev->offline_disabled)
2112 return -EPERM;
2113
2114 ret = device_for_each_child(dev, NULL, device_check_offline);
2115 if (ret)
2116 return ret;
2117
2118 device_lock(dev);
2119 if (device_supports_offline(dev)) {
2120 if (dev->offline) {
2121 ret = 1;
2122 } else {
2123 ret = dev->bus->offline(dev);
2124 if (!ret) {
2125 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2126 dev->offline = true;
2127 }
2128 }
2129 }
2130 device_unlock(dev);
2131
2132 return ret;
2133 }
2134
2135 /**
2136 * device_online - Put the device back online after successful device_offline().
2137 * @dev: Device to be put back online.
2138 *
2139 * If device_offline() has been successfully executed for @dev, but the device
2140 * has not been removed subsequently, execute its bus type's .online() callback
2141 * to indicate that the device can be used again.
2142 *
2143 * Call under device_hotplug_lock.
2144 */
2145 int device_online(struct device *dev)
2146 {
2147 int ret = 0;
2148
2149 device_lock(dev);
2150 if (device_supports_offline(dev)) {
2151 if (dev->offline) {
2152 ret = dev->bus->online(dev);
2153 if (!ret) {
2154 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2155 dev->offline = false;
2156 }
2157 } else {
2158 ret = 1;
2159 }
2160 }
2161 device_unlock(dev);
2162
2163 return ret;
2164 }
2165
2166 struct root_device {
2167 struct device dev;
2168 struct module *owner;
2169 };
2170
2171 static inline struct root_device *to_root_device(struct device *d)
2172 {
2173 return container_of(d, struct root_device, dev);
2174 }
2175
2176 static void root_device_release(struct device *dev)
2177 {
2178 kfree(to_root_device(dev));
2179 }
2180
2181 /**
2182 * __root_device_register - allocate and register a root device
2183 * @name: root device name
2184 * @owner: owner module of the root device, usually THIS_MODULE
2185 *
2186 * This function allocates a root device and registers it
2187 * using device_register(). In order to free the returned
2188 * device, use root_device_unregister().
2189 *
2190 * Root devices are dummy devices which allow other devices
2191 * to be grouped under /sys/devices. Use this function to
2192 * allocate a root device and then use it as the parent of
2193 * any device which should appear under /sys/devices/{name}
2194 *
2195 * The /sys/devices/{name} directory will also contain a
2196 * 'module' symlink which points to the @owner directory
2197 * in sysfs.
2198 *
2199 * Returns &struct device pointer on success, or ERR_PTR() on error.
2200 *
2201 * Note: You probably want to use root_device_register().
2202 */
2203 struct device *__root_device_register(const char *name, struct module *owner)
2204 {
2205 struct root_device *root;
2206 int err = -ENOMEM;
2207
2208 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2209 if (!root)
2210 return ERR_PTR(err);
2211
2212 err = dev_set_name(&root->dev, "%s", name);
2213 if (err) {
2214 kfree(root);
2215 return ERR_PTR(err);
2216 }
2217
2218 root->dev.release = root_device_release;
2219
2220 err = device_register(&root->dev);
2221 if (err) {
2222 put_device(&root->dev);
2223 return ERR_PTR(err);
2224 }
2225
2226 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2227 if (owner) {
2228 struct module_kobject *mk = &owner->mkobj;
2229
2230 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2231 if (err) {
2232 device_unregister(&root->dev);
2233 return ERR_PTR(err);
2234 }
2235 root->owner = owner;
2236 }
2237 #endif
2238
2239 return &root->dev;
2240 }
2241 EXPORT_SYMBOL_GPL(__root_device_register);
2242
2243 /**
2244 * root_device_unregister - unregister and free a root device
2245 * @dev: device going away
2246 *
2247 * This function unregisters and cleans up a device that was created by
2248 * root_device_register().
2249 */
2250 void root_device_unregister(struct device *dev)
2251 {
2252 struct root_device *root = to_root_device(dev);
2253
2254 if (root->owner)
2255 sysfs_remove_link(&root->dev.kobj, "module");
2256
2257 device_unregister(dev);
2258 }
2259 EXPORT_SYMBOL_GPL(root_device_unregister);
2260
2261
2262 static void device_create_release(struct device *dev)
2263 {
2264 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2265 kfree(dev);
2266 }
2267
2268 static struct device *
2269 device_create_groups_vargs(struct class *class, struct device *parent,
2270 dev_t devt, void *drvdata,
2271 const struct attribute_group **groups,
2272 const char *fmt, va_list args)
2273 {
2274 struct device *dev = NULL;
2275 int retval = -ENODEV;
2276
2277 if (class == NULL || IS_ERR(class))
2278 goto error;
2279
2280 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2281 if (!dev) {
2282 retval = -ENOMEM;
2283 goto error;
2284 }
2285
2286 device_initialize(dev);
2287 dev->devt = devt;
2288 dev->class = class;
2289 dev->parent = parent;
2290 dev->groups = groups;
2291 dev->release = device_create_release;
2292 dev_set_drvdata(dev, drvdata);
2293
2294 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2295 if (retval)
2296 goto error;
2297
2298 retval = device_add(dev);
2299 if (retval)
2300 goto error;
2301
2302 return dev;
2303
2304 error:
2305 put_device(dev);
2306 return ERR_PTR(retval);
2307 }
2308
2309 /**
2310 * device_create_vargs - creates a device and registers it with sysfs
2311 * @class: pointer to the struct class that this device should be registered to
2312 * @parent: pointer to the parent struct device of this new device, if any
2313 * @devt: the dev_t for the char device to be added
2314 * @drvdata: the data to be added to the device for callbacks
2315 * @fmt: string for the device's name
2316 * @args: va_list for the device's name
2317 *
2318 * This function can be used by char device classes. A struct device
2319 * will be created in sysfs, registered to the specified class.
2320 *
2321 * A "dev" file will be created, showing the dev_t for the device, if
2322 * the dev_t is not 0,0.
2323 * If a pointer to a parent struct device is passed in, the newly created
2324 * struct device will be a child of that device in sysfs.
2325 * The pointer to the struct device will be returned from the call.
2326 * Any further sysfs files that might be required can be created using this
2327 * pointer.
2328 *
2329 * Returns &struct device pointer on success, or ERR_PTR() on error.
2330 *
2331 * Note: the struct class passed to this function must have previously
2332 * been created with a call to class_create().
2333 */
2334 struct device *device_create_vargs(struct class *class, struct device *parent,
2335 dev_t devt, void *drvdata, const char *fmt,
2336 va_list args)
2337 {
2338 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2339 fmt, args);
2340 }
2341 EXPORT_SYMBOL_GPL(device_create_vargs);
2342
2343 /**
2344 * device_create - creates a device and registers it with sysfs
2345 * @class: pointer to the struct class that this device should be registered to
2346 * @parent: pointer to the parent struct device of this new device, if any
2347 * @devt: the dev_t for the char device to be added
2348 * @drvdata: the data to be added to the device for callbacks
2349 * @fmt: string for the device's name
2350 *
2351 * This function can be used by char device classes. A struct device
2352 * will be created in sysfs, registered to the specified class.
2353 *
2354 * A "dev" file will be created, showing the dev_t for the device, if
2355 * the dev_t is not 0,0.
2356 * If a pointer to a parent struct device is passed in, the newly created
2357 * struct device will be a child of that device in sysfs.
2358 * The pointer to the struct device will be returned from the call.
2359 * Any further sysfs files that might be required can be created using this
2360 * pointer.
2361 *
2362 * Returns &struct device pointer on success, or ERR_PTR() on error.
2363 *
2364 * Note: the struct class passed to this function must have previously
2365 * been created with a call to class_create().
2366 */
2367 struct device *device_create(struct class *class, struct device *parent,
2368 dev_t devt, void *drvdata, const char *fmt, ...)
2369 {
2370 va_list vargs;
2371 struct device *dev;
2372
2373 va_start(vargs, fmt);
2374 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2375 va_end(vargs);
2376 return dev;
2377 }
2378 EXPORT_SYMBOL_GPL(device_create);
2379
2380 /**
2381 * device_create_with_groups - creates a device and registers it with sysfs
2382 * @class: pointer to the struct class that this device should be registered to
2383 * @parent: pointer to the parent struct device of this new device, if any
2384 * @devt: the dev_t for the char device to be added
2385 * @drvdata: the data to be added to the device for callbacks
2386 * @groups: NULL-terminated list of attribute groups to be created
2387 * @fmt: string for the device's name
2388 *
2389 * This function can be used by char device classes. A struct device
2390 * will be created in sysfs, registered to the specified class.
2391 * Additional attributes specified in the groups parameter will also
2392 * be created automatically.
2393 *
2394 * A "dev" file will be created, showing the dev_t for the device, if
2395 * the dev_t is not 0,0.
2396 * If a pointer to a parent struct device is passed in, the newly created
2397 * struct device will be a child of that device in sysfs.
2398 * The pointer to the struct device will be returned from the call.
2399 * Any further sysfs files that might be required can be created using this
2400 * pointer.
2401 *
2402 * Returns &struct device pointer on success, or ERR_PTR() on error.
2403 *
2404 * Note: the struct class passed to this function must have previously
2405 * been created with a call to class_create().
2406 */
2407 struct device *device_create_with_groups(struct class *class,
2408 struct device *parent, dev_t devt,
2409 void *drvdata,
2410 const struct attribute_group **groups,
2411 const char *fmt, ...)
2412 {
2413 va_list vargs;
2414 struct device *dev;
2415
2416 va_start(vargs, fmt);
2417 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2418 fmt, vargs);
2419 va_end(vargs);
2420 return dev;
2421 }
2422 EXPORT_SYMBOL_GPL(device_create_with_groups);
2423
2424 static int __match_devt(struct device *dev, const void *data)
2425 {
2426 const dev_t *devt = data;
2427
2428 return dev->devt == *devt;
2429 }
2430
2431 /**
2432 * device_destroy - removes a device that was created with device_create()
2433 * @class: pointer to the struct class that this device was registered with
2434 * @devt: the dev_t of the device that was previously registered
2435 *
2436 * This call unregisters and cleans up a device that was created with a
2437 * call to device_create().
2438 */
2439 void device_destroy(struct class *class, dev_t devt)
2440 {
2441 struct device *dev;
2442
2443 dev = class_find_device(class, NULL, &devt, __match_devt);
2444 if (dev) {
2445 put_device(dev);
2446 device_unregister(dev);
2447 }
2448 }
2449 EXPORT_SYMBOL_GPL(device_destroy);
2450
2451 /**
2452 * device_rename - renames a device
2453 * @dev: the pointer to the struct device to be renamed
2454 * @new_name: the new name of the device
2455 *
2456 * It is the responsibility of the caller to provide mutual
2457 * exclusion between two different calls of device_rename
2458 * on the same device to ensure that new_name is valid and
2459 * won't conflict with other devices.
2460 *
2461 * Note: Don't call this function. Currently, the networking layer calls this
2462 * function, but that will change. The following text from Kay Sievers offers
2463 * some insight:
2464 *
2465 * Renaming devices is racy at many levels, symlinks and other stuff are not
2466 * replaced atomically, and you get a "move" uevent, but it's not easy to
2467 * connect the event to the old and new device. Device nodes are not renamed at
2468 * all, there isn't even support for that in the kernel now.
2469 *
2470 * In the meantime, during renaming, your target name might be taken by another
2471 * driver, creating conflicts. Or the old name is taken directly after you
2472 * renamed it -- then you get events for the same DEVPATH, before you even see
2473 * the "move" event. It's just a mess, and nothing new should ever rely on
2474 * kernel device renaming. Besides that, it's not even implemented now for
2475 * other things than (driver-core wise very simple) network devices.
2476 *
2477 * We are currently about to change network renaming in udev to completely
2478 * disallow renaming of devices in the same namespace as the kernel uses,
2479 * because we can't solve the problems properly, that arise with swapping names
2480 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2481 * be allowed to some other name than eth[0-9]*, for the aforementioned
2482 * reasons.
2483 *
2484 * Make up a "real" name in the driver before you register anything, or add
2485 * some other attributes for userspace to find the device, or use udev to add
2486 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2487 * don't even want to get into that and try to implement the missing pieces in
2488 * the core. We really have other pieces to fix in the driver core mess. :)
2489 */
2490 int device_rename(struct device *dev, const char *new_name)
2491 {
2492 struct kobject *kobj = &dev->kobj;
2493 char *old_device_name = NULL;
2494 int error;
2495
2496 dev = get_device(dev);
2497 if (!dev)
2498 return -EINVAL;
2499
2500 dev_dbg(dev, "renaming to %s\n", new_name);
2501
2502 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2503 if (!old_device_name) {
2504 error = -ENOMEM;
2505 goto out;
2506 }
2507
2508 if (dev->class) {
2509 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2510 kobj, old_device_name,
2511 new_name, kobject_namespace(kobj));
2512 if (error)
2513 goto out;
2514 }
2515
2516 error = kobject_rename(kobj, new_name);
2517 if (error)
2518 goto out;
2519
2520 out:
2521 put_device(dev);
2522
2523 kfree(old_device_name);
2524
2525 return error;
2526 }
2527 EXPORT_SYMBOL_GPL(device_rename);
2528
2529 static int device_move_class_links(struct device *dev,
2530 struct device *old_parent,
2531 struct device *new_parent)
2532 {
2533 int error = 0;
2534
2535 if (old_parent)
2536 sysfs_remove_link(&dev->kobj, "device");
2537 if (new_parent)
2538 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2539 "device");
2540 return error;
2541 }
2542
2543 /**
2544 * device_move - moves a device to a new parent
2545 * @dev: the pointer to the struct device to be moved
2546 * @new_parent: the new parent of the device (can by NULL)
2547 * @dpm_order: how to reorder the dpm_list
2548 */
2549 int device_move(struct device *dev, struct device *new_parent,
2550 enum dpm_order dpm_order)
2551 {
2552 int error;
2553 struct device *old_parent;
2554 struct kobject *new_parent_kobj;
2555
2556 dev = get_device(dev);
2557 if (!dev)
2558 return -EINVAL;
2559
2560 device_pm_lock();
2561 new_parent = get_device(new_parent);
2562 new_parent_kobj = get_device_parent(dev, new_parent);
2563
2564 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2565 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2566 error = kobject_move(&dev->kobj, new_parent_kobj);
2567 if (error) {
2568 cleanup_glue_dir(dev, new_parent_kobj);
2569 put_device(new_parent);
2570 goto out;
2571 }
2572 old_parent = dev->parent;
2573 dev->parent = new_parent;
2574 if (old_parent)
2575 klist_remove(&dev->p->knode_parent);
2576 if (new_parent) {
2577 klist_add_tail(&dev->p->knode_parent,
2578 &new_parent->p->klist_children);
2579 set_dev_node(dev, dev_to_node(new_parent));
2580 }
2581
2582 if (dev->class) {
2583 error = device_move_class_links(dev, old_parent, new_parent);
2584 if (error) {
2585 /* We ignore errors on cleanup since we're hosed anyway... */
2586 device_move_class_links(dev, new_parent, old_parent);
2587 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2588 if (new_parent)
2589 klist_remove(&dev->p->knode_parent);
2590 dev->parent = old_parent;
2591 if (old_parent) {
2592 klist_add_tail(&dev->p->knode_parent,
2593 &old_parent->p->klist_children);
2594 set_dev_node(dev, dev_to_node(old_parent));
2595 }
2596 }
2597 cleanup_glue_dir(dev, new_parent_kobj);
2598 put_device(new_parent);
2599 goto out;
2600 }
2601 }
2602 switch (dpm_order) {
2603 case DPM_ORDER_NONE:
2604 break;
2605 case DPM_ORDER_DEV_AFTER_PARENT:
2606 device_pm_move_after(dev, new_parent);
2607 devices_kset_move_after(dev, new_parent);
2608 break;
2609 case DPM_ORDER_PARENT_BEFORE_DEV:
2610 device_pm_move_before(new_parent, dev);
2611 devices_kset_move_before(new_parent, dev);
2612 break;
2613 case DPM_ORDER_DEV_LAST:
2614 device_pm_move_last(dev);
2615 devices_kset_move_last(dev);
2616 break;
2617 }
2618
2619 put_device(old_parent);
2620 out:
2621 device_pm_unlock();
2622 put_device(dev);
2623 return error;
2624 }
2625 EXPORT_SYMBOL_GPL(device_move);
2626
2627 /**
2628 * device_shutdown - call ->shutdown() on each device to shutdown.
2629 */
2630 void device_shutdown(void)
2631 {
2632 struct device *dev, *parent;
2633
2634 spin_lock(&devices_kset->list_lock);
2635 /*
2636 * Walk the devices list backward, shutting down each in turn.
2637 * Beware that device unplug events may also start pulling
2638 * devices offline, even as the system is shutting down.
2639 */
2640 while (!list_empty(&devices_kset->list)) {
2641 dev = list_entry(devices_kset->list.prev, struct device,
2642 kobj.entry);
2643
2644 /*
2645 * hold reference count of device's parent to
2646 * prevent it from being freed because parent's
2647 * lock is to be held
2648 */
2649 parent = get_device(dev->parent);
2650 get_device(dev);
2651 /*
2652 * Make sure the device is off the kset list, in the
2653 * event that dev->*->shutdown() doesn't remove it.
2654 */
2655 list_del_init(&dev->kobj.entry);
2656 spin_unlock(&devices_kset->list_lock);
2657
2658 /* hold lock to avoid race with probe/release */
2659 if (parent)
2660 device_lock(parent);
2661 device_lock(dev);
2662
2663 /* Don't allow any more runtime suspends */
2664 pm_runtime_get_noresume(dev);
2665 pm_runtime_barrier(dev);
2666
2667 if (dev->class && dev->class->shutdown) {
2668 if (initcall_debug)
2669 dev_info(dev, "shutdown\n");
2670 dev->class->shutdown(dev);
2671 } else if (dev->bus && dev->bus->shutdown) {
2672 if (initcall_debug)
2673 dev_info(dev, "shutdown\n");
2674 dev->bus->shutdown(dev);
2675 } else if (dev->driver && dev->driver->shutdown) {
2676 if (initcall_debug)
2677 dev_info(dev, "shutdown\n");
2678 dev->driver->shutdown(dev);
2679 }
2680
2681 device_unlock(dev);
2682 if (parent)
2683 device_unlock(parent);
2684
2685 put_device(dev);
2686 put_device(parent);
2687
2688 spin_lock(&devices_kset->list_lock);
2689 }
2690 spin_unlock(&devices_kset->list_lock);
2691 }
2692
2693 /*
2694 * Device logging functions
2695 */
2696
2697 #ifdef CONFIG_PRINTK
2698 static int
2699 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2700 {
2701 const char *subsys;
2702 size_t pos = 0;
2703
2704 if (dev->class)
2705 subsys = dev->class->name;
2706 else if (dev->bus)
2707 subsys = dev->bus->name;
2708 else
2709 return 0;
2710
2711 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2712 if (pos >= hdrlen)
2713 goto overflow;
2714
2715 /*
2716 * Add device identifier DEVICE=:
2717 * b12:8 block dev_t
2718 * c127:3 char dev_t
2719 * n8 netdev ifindex
2720 * +sound:card0 subsystem:devname
2721 */
2722 if (MAJOR(dev->devt)) {
2723 char c;
2724
2725 if (strcmp(subsys, "block") == 0)
2726 c = 'b';
2727 else
2728 c = 'c';
2729 pos++;
2730 pos += snprintf(hdr + pos, hdrlen - pos,
2731 "DEVICE=%c%u:%u",
2732 c, MAJOR(dev->devt), MINOR(dev->devt));
2733 } else if (strcmp(subsys, "net") == 0) {
2734 struct net_device *net = to_net_dev(dev);
2735
2736 pos++;
2737 pos += snprintf(hdr + pos, hdrlen - pos,
2738 "DEVICE=n%u", net->ifindex);
2739 } else {
2740 pos++;
2741 pos += snprintf(hdr + pos, hdrlen - pos,
2742 "DEVICE=+%s:%s", subsys, dev_name(dev));
2743 }
2744
2745 if (pos >= hdrlen)
2746 goto overflow;
2747
2748 return pos;
2749
2750 overflow:
2751 dev_WARN(dev, "device/subsystem name too long");
2752 return 0;
2753 }
2754
2755 int dev_vprintk_emit(int level, const struct device *dev,
2756 const char *fmt, va_list args)
2757 {
2758 char hdr[128];
2759 size_t hdrlen;
2760
2761 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2762
2763 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2764 }
2765 EXPORT_SYMBOL(dev_vprintk_emit);
2766
2767 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2768 {
2769 va_list args;
2770 int r;
2771
2772 va_start(args, fmt);
2773
2774 r = dev_vprintk_emit(level, dev, fmt, args);
2775
2776 va_end(args);
2777
2778 return r;
2779 }
2780 EXPORT_SYMBOL(dev_printk_emit);
2781
2782 static void __dev_printk(const char *level, const struct device *dev,
2783 struct va_format *vaf)
2784 {
2785 if (dev)
2786 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2787 dev_driver_string(dev), dev_name(dev), vaf);
2788 else
2789 printk("%s(NULL device *): %pV", level, vaf);
2790 }
2791
2792 void dev_printk(const char *level, const struct device *dev,
2793 const char *fmt, ...)
2794 {
2795 struct va_format vaf;
2796 va_list args;
2797
2798 va_start(args, fmt);
2799
2800 vaf.fmt = fmt;
2801 vaf.va = &args;
2802
2803 __dev_printk(level, dev, &vaf);
2804
2805 va_end(args);
2806 }
2807 EXPORT_SYMBOL(dev_printk);
2808
2809 #define define_dev_printk_level(func, kern_level) \
2810 void func(const struct device *dev, const char *fmt, ...) \
2811 { \
2812 struct va_format vaf; \
2813 va_list args; \
2814 \
2815 va_start(args, fmt); \
2816 \
2817 vaf.fmt = fmt; \
2818 vaf.va = &args; \
2819 \
2820 __dev_printk(kern_level, dev, &vaf); \
2821 \
2822 va_end(args); \
2823 } \
2824 EXPORT_SYMBOL(func);
2825
2826 define_dev_printk_level(dev_emerg, KERN_EMERG);
2827 define_dev_printk_level(dev_alert, KERN_ALERT);
2828 define_dev_printk_level(dev_crit, KERN_CRIT);
2829 define_dev_printk_level(dev_err, KERN_ERR);
2830 define_dev_printk_level(dev_warn, KERN_WARNING);
2831 define_dev_printk_level(dev_notice, KERN_NOTICE);
2832 define_dev_printk_level(_dev_info, KERN_INFO);
2833
2834 #endif
2835
2836 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2837 {
2838 return fwnode && !IS_ERR(fwnode->secondary);
2839 }
2840
2841 /**
2842 * set_primary_fwnode - Change the primary firmware node of a given device.
2843 * @dev: Device to handle.
2844 * @fwnode: New primary firmware node of the device.
2845 *
2846 * Set the device's firmware node pointer to @fwnode, but if a secondary
2847 * firmware node of the device is present, preserve it.
2848 */
2849 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2850 {
2851 if (fwnode) {
2852 struct fwnode_handle *fn = dev->fwnode;
2853
2854 if (fwnode_is_primary(fn))
2855 fn = fn->secondary;
2856
2857 if (fn) {
2858 WARN_ON(fwnode->secondary);
2859 fwnode->secondary = fn;
2860 }
2861 dev->fwnode = fwnode;
2862 } else {
2863 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2864 dev->fwnode->secondary : NULL;
2865 }
2866 }
2867 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2868
2869 /**
2870 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2871 * @dev: Device to handle.
2872 * @fwnode: New secondary firmware node of the device.
2873 *
2874 * If a primary firmware node of the device is present, set its secondary
2875 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
2876 * @fwnode.
2877 */
2878 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2879 {
2880 if (fwnode)
2881 fwnode->secondary = ERR_PTR(-ENODEV);
2882
2883 if (fwnode_is_primary(dev->fwnode))
2884 dev->fwnode->secondary = fwnode;
2885 else
2886 dev->fwnode = fwnode;
2887 }
2888
2889 /**
2890 * device_set_of_node_from_dev - reuse device-tree node of another device
2891 * @dev: device whose device-tree node is being set
2892 * @dev2: device whose device-tree node is being reused
2893 *
2894 * Takes another reference to the new device-tree node after first dropping
2895 * any reference held to the old node.
2896 */
2897 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
2898 {
2899 of_node_put(dev->of_node);
2900 dev->of_node = of_node_get(dev2->of_node);
2901 dev->of_node_reused = true;
2902 }
2903 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);