Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53
54 static inline void device_links_write_lock(void)
55 {
56 mutex_lock(&device_links_lock);
57 }
58
59 static inline void device_links_write_unlock(void)
60 {
61 mutex_unlock(&device_links_lock);
62 }
63
64 int device_links_read_lock(void)
65 {
66 return srcu_read_lock(&device_links_srcu);
67 }
68
69 void device_links_read_unlock(int idx)
70 {
71 srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75
76 static inline void device_links_write_lock(void)
77 {
78 down_write(&device_links_lock);
79 }
80
81 static inline void device_links_write_unlock(void)
82 {
83 up_write(&device_links_lock);
84 }
85
86 int device_links_read_lock(void)
87 {
88 down_read(&device_links_lock);
89 return 0;
90 }
91
92 void device_links_read_unlock(int not_used)
93 {
94 up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97
98 /**
99 * device_is_dependent - Check if one device depends on another one
100 * @dev: Device to check dependencies for.
101 * @target: Device to check against.
102 *
103 * Check if @target depends on @dev or any device dependent on it (its child or
104 * its consumer etc). Return 1 if that is the case or 0 otherwise.
105 */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 struct device_link *link;
109 int ret;
110
111 if (WARN_ON(dev == target))
112 return 1;
113
114 ret = device_for_each_child(dev, target, device_is_dependent);
115 if (ret)
116 return ret;
117
118 list_for_each_entry(link, &dev->links.consumers, s_node) {
119 if (WARN_ON(link->consumer == target))
120 return 1;
121
122 ret = device_is_dependent(link->consumer, target);
123 if (ret)
124 break;
125 }
126 return ret;
127 }
128
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 struct device_link *link;
132
133 /*
134 * Devices that have not been registered yet will be put to the ends
135 * of the lists during the registration, so skip them here.
136 */
137 if (device_is_registered(dev))
138 devices_kset_move_last(dev);
139
140 if (device_pm_initialized(dev))
141 device_pm_move_last(dev);
142
143 device_for_each_child(dev, NULL, device_reorder_to_tail);
144 list_for_each_entry(link, &dev->links.consumers, s_node)
145 device_reorder_to_tail(link->consumer, NULL);
146
147 return 0;
148 }
149
150 /**
151 * device_link_add - Create a link between two devices.
152 * @consumer: Consumer end of the link.
153 * @supplier: Supplier end of the link.
154 * @flags: Link flags.
155 *
156 * The caller is responsible for the proper synchronization of the link creation
157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158 * runtime PM framework to take the link into account. Second, if the
159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160 * be forced into the active metastate and reference-counted upon the creation
161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162 * ignored.
163 *
164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165 * when the consumer device driver unbinds from it. The combination of both
166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167 * to be returned.
168 *
169 * A side effect of the link creation is re-ordering of dpm_list and the
170 * devices_kset list by moving the consumer device and all devices depending
171 * on it to the ends of these lists (that does not happen to devices that have
172 * not been registered when this function is called).
173 *
174 * The supplier device is required to be registered when this function is called
175 * and NULL will be returned if that is not the case. The consumer device need
176 * not be registered, however.
177 */
178 struct device_link *device_link_add(struct device *consumer,
179 struct device *supplier, u32 flags)
180 {
181 struct device_link *link;
182
183 if (!consumer || !supplier ||
184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 return NULL;
186
187 device_links_write_lock();
188 device_pm_lock();
189
190 /*
191 * If the supplier has not been fully registered yet or there is a
192 * reverse dependency between the consumer and the supplier already in
193 * the graph, return NULL.
194 */
195 if (!device_pm_initialized(supplier)
196 || device_is_dependent(consumer, supplier)) {
197 link = NULL;
198 goto out;
199 }
200
201 list_for_each_entry(link, &supplier->links.consumers, s_node)
202 if (link->consumer == consumer)
203 goto out;
204
205 link = kzalloc(sizeof(*link), GFP_KERNEL);
206 if (!link)
207 goto out;
208
209 if (flags & DL_FLAG_PM_RUNTIME) {
210 if (flags & DL_FLAG_RPM_ACTIVE) {
211 if (pm_runtime_get_sync(supplier) < 0) {
212 pm_runtime_put_noidle(supplier);
213 kfree(link);
214 link = NULL;
215 goto out;
216 }
217 link->rpm_active = true;
218 }
219 pm_runtime_new_link(consumer);
220 }
221 get_device(supplier);
222 link->supplier = supplier;
223 INIT_LIST_HEAD(&link->s_node);
224 get_device(consumer);
225 link->consumer = consumer;
226 INIT_LIST_HEAD(&link->c_node);
227 link->flags = flags;
228
229 /* Determine the initial link state. */
230 if (flags & DL_FLAG_STATELESS) {
231 link->status = DL_STATE_NONE;
232 } else {
233 switch (supplier->links.status) {
234 case DL_DEV_DRIVER_BOUND:
235 switch (consumer->links.status) {
236 case DL_DEV_PROBING:
237 /*
238 * Balance the decrementation of the supplier's
239 * runtime PM usage counter after consumer probe
240 * in driver_probe_device().
241 */
242 if (flags & DL_FLAG_PM_RUNTIME)
243 pm_runtime_get_sync(supplier);
244
245 link->status = DL_STATE_CONSUMER_PROBE;
246 break;
247 case DL_DEV_DRIVER_BOUND:
248 link->status = DL_STATE_ACTIVE;
249 break;
250 default:
251 link->status = DL_STATE_AVAILABLE;
252 break;
253 }
254 break;
255 case DL_DEV_UNBINDING:
256 link->status = DL_STATE_SUPPLIER_UNBIND;
257 break;
258 default:
259 link->status = DL_STATE_DORMANT;
260 break;
261 }
262 }
263
264 /*
265 * Move the consumer and all of the devices depending on it to the end
266 * of dpm_list and the devices_kset list.
267 *
268 * It is necessary to hold dpm_list locked throughout all that or else
269 * we may end up suspending with a wrong ordering of it.
270 */
271 device_reorder_to_tail(consumer, NULL);
272
273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275
276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277
278 out:
279 device_pm_unlock();
280 device_links_write_unlock();
281 return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284
285 static void device_link_free(struct device_link *link)
286 {
287 put_device(link->consumer);
288 put_device(link->supplier);
289 kfree(link);
290 }
291
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297
298 static void __device_link_del(struct device_link *link)
299 {
300 dev_info(link->consumer, "Dropping the link to %s\n",
301 dev_name(link->supplier));
302
303 if (link->flags & DL_FLAG_PM_RUNTIME)
304 pm_runtime_drop_link(link->consumer);
305
306 list_del_rcu(&link->s_node);
307 list_del_rcu(&link->c_node);
308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 dev_info(link->consumer, "Dropping the link to %s\n",
314 dev_name(link->supplier));
315
316 list_del(&link->s_node);
317 list_del(&link->c_node);
318 device_link_free(link);
319 }
320 #endif /* !CONFIG_SRCU */
321
322 /**
323 * device_link_del - Delete a link between two devices.
324 * @link: Device link to delete.
325 *
326 * The caller must ensure proper synchronization of this function with runtime
327 * PM.
328 */
329 void device_link_del(struct device_link *link)
330 {
331 device_links_write_lock();
332 device_pm_lock();
333 __device_link_del(link);
334 device_pm_unlock();
335 device_links_write_unlock();
336 }
337 EXPORT_SYMBOL_GPL(device_link_del);
338
339 static void device_links_missing_supplier(struct device *dev)
340 {
341 struct device_link *link;
342
343 list_for_each_entry(link, &dev->links.suppliers, c_node)
344 if (link->status == DL_STATE_CONSUMER_PROBE)
345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
346 }
347
348 /**
349 * device_links_check_suppliers - Check presence of supplier drivers.
350 * @dev: Consumer device.
351 *
352 * Check links from this device to any suppliers. Walk the list of the device's
353 * links to suppliers and see if all of them are available. If not, simply
354 * return -EPROBE_DEFER.
355 *
356 * We need to guarantee that the supplier will not go away after the check has
357 * been positive here. It only can go away in __device_release_driver() and
358 * that function checks the device's links to consumers. This means we need to
359 * mark the link as "consumer probe in progress" to make the supplier removal
360 * wait for us to complete (or bad things may happen).
361 *
362 * Links with the DL_FLAG_STATELESS flag set are ignored.
363 */
364 int device_links_check_suppliers(struct device *dev)
365 {
366 struct device_link *link;
367 int ret = 0;
368
369 device_links_write_lock();
370
371 list_for_each_entry(link, &dev->links.suppliers, c_node) {
372 if (link->flags & DL_FLAG_STATELESS)
373 continue;
374
375 if (link->status != DL_STATE_AVAILABLE) {
376 device_links_missing_supplier(dev);
377 ret = -EPROBE_DEFER;
378 break;
379 }
380 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
381 }
382 dev->links.status = DL_DEV_PROBING;
383
384 device_links_write_unlock();
385 return ret;
386 }
387
388 /**
389 * device_links_driver_bound - Update device links after probing its driver.
390 * @dev: Device to update the links for.
391 *
392 * The probe has been successful, so update links from this device to any
393 * consumers by changing their status to "available".
394 *
395 * Also change the status of @dev's links to suppliers to "active".
396 *
397 * Links with the DL_FLAG_STATELESS flag set are ignored.
398 */
399 void device_links_driver_bound(struct device *dev)
400 {
401 struct device_link *link;
402
403 device_links_write_lock();
404
405 list_for_each_entry(link, &dev->links.consumers, s_node) {
406 if (link->flags & DL_FLAG_STATELESS)
407 continue;
408
409 WARN_ON(link->status != DL_STATE_DORMANT);
410 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
411 }
412
413 list_for_each_entry(link, &dev->links.suppliers, c_node) {
414 if (link->flags & DL_FLAG_STATELESS)
415 continue;
416
417 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
418 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
419 }
420
421 dev->links.status = DL_DEV_DRIVER_BOUND;
422
423 device_links_write_unlock();
424 }
425
426 /**
427 * __device_links_no_driver - Update links of a device without a driver.
428 * @dev: Device without a drvier.
429 *
430 * Delete all non-persistent links from this device to any suppliers.
431 *
432 * Persistent links stay around, but their status is changed to "available",
433 * unless they already are in the "supplier unbind in progress" state in which
434 * case they need not be updated.
435 *
436 * Links with the DL_FLAG_STATELESS flag set are ignored.
437 */
438 static void __device_links_no_driver(struct device *dev)
439 {
440 struct device_link *link, *ln;
441
442 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
443 if (link->flags & DL_FLAG_STATELESS)
444 continue;
445
446 if (link->flags & DL_FLAG_AUTOREMOVE)
447 __device_link_del(link);
448 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
449 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
450 }
451
452 dev->links.status = DL_DEV_NO_DRIVER;
453 }
454
455 void device_links_no_driver(struct device *dev)
456 {
457 device_links_write_lock();
458 __device_links_no_driver(dev);
459 device_links_write_unlock();
460 }
461
462 /**
463 * device_links_driver_cleanup - Update links after driver removal.
464 * @dev: Device whose driver has just gone away.
465 *
466 * Update links to consumers for @dev by changing their status to "dormant" and
467 * invoke %__device_links_no_driver() to update links to suppliers for it as
468 * appropriate.
469 *
470 * Links with the DL_FLAG_STATELESS flag set are ignored.
471 */
472 void device_links_driver_cleanup(struct device *dev)
473 {
474 struct device_link *link;
475
476 device_links_write_lock();
477
478 list_for_each_entry(link, &dev->links.consumers, s_node) {
479 if (link->flags & DL_FLAG_STATELESS)
480 continue;
481
482 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
483 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
484 WRITE_ONCE(link->status, DL_STATE_DORMANT);
485 }
486
487 __device_links_no_driver(dev);
488
489 device_links_write_unlock();
490 }
491
492 /**
493 * device_links_busy - Check if there are any busy links to consumers.
494 * @dev: Device to check.
495 *
496 * Check each consumer of the device and return 'true' if its link's status
497 * is one of "consumer probe" or "active" (meaning that the given consumer is
498 * probing right now or its driver is present). Otherwise, change the link
499 * state to "supplier unbind" to prevent the consumer from being probed
500 * successfully going forward.
501 *
502 * Return 'false' if there are no probing or active consumers.
503 *
504 * Links with the DL_FLAG_STATELESS flag set are ignored.
505 */
506 bool device_links_busy(struct device *dev)
507 {
508 struct device_link *link;
509 bool ret = false;
510
511 device_links_write_lock();
512
513 list_for_each_entry(link, &dev->links.consumers, s_node) {
514 if (link->flags & DL_FLAG_STATELESS)
515 continue;
516
517 if (link->status == DL_STATE_CONSUMER_PROBE
518 || link->status == DL_STATE_ACTIVE) {
519 ret = true;
520 break;
521 }
522 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
523 }
524
525 dev->links.status = DL_DEV_UNBINDING;
526
527 device_links_write_unlock();
528 return ret;
529 }
530
531 /**
532 * device_links_unbind_consumers - Force unbind consumers of the given device.
533 * @dev: Device to unbind the consumers of.
534 *
535 * Walk the list of links to consumers for @dev and if any of them is in the
536 * "consumer probe" state, wait for all device probes in progress to complete
537 * and start over.
538 *
539 * If that's not the case, change the status of the link to "supplier unbind"
540 * and check if the link was in the "active" state. If so, force the consumer
541 * driver to unbind and start over (the consumer will not re-probe as we have
542 * changed the state of the link already).
543 *
544 * Links with the DL_FLAG_STATELESS flag set are ignored.
545 */
546 void device_links_unbind_consumers(struct device *dev)
547 {
548 struct device_link *link;
549
550 start:
551 device_links_write_lock();
552
553 list_for_each_entry(link, &dev->links.consumers, s_node) {
554 enum device_link_state status;
555
556 if (link->flags & DL_FLAG_STATELESS)
557 continue;
558
559 status = link->status;
560 if (status == DL_STATE_CONSUMER_PROBE) {
561 device_links_write_unlock();
562
563 wait_for_device_probe();
564 goto start;
565 }
566 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
567 if (status == DL_STATE_ACTIVE) {
568 struct device *consumer = link->consumer;
569
570 get_device(consumer);
571
572 device_links_write_unlock();
573
574 device_release_driver_internal(consumer, NULL,
575 consumer->parent);
576 put_device(consumer);
577 goto start;
578 }
579 }
580
581 device_links_write_unlock();
582 }
583
584 /**
585 * device_links_purge - Delete existing links to other devices.
586 * @dev: Target device.
587 */
588 static void device_links_purge(struct device *dev)
589 {
590 struct device_link *link, *ln;
591
592 /*
593 * Delete all of the remaining links from this device to any other
594 * devices (either consumers or suppliers).
595 */
596 device_links_write_lock();
597
598 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
599 WARN_ON(link->status == DL_STATE_ACTIVE);
600 __device_link_del(link);
601 }
602
603 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
604 WARN_ON(link->status != DL_STATE_DORMANT &&
605 link->status != DL_STATE_NONE);
606 __device_link_del(link);
607 }
608
609 device_links_write_unlock();
610 }
611
612 /* Device links support end. */
613
614 int (*platform_notify)(struct device *dev) = NULL;
615 int (*platform_notify_remove)(struct device *dev) = NULL;
616 static struct kobject *dev_kobj;
617 struct kobject *sysfs_dev_char_kobj;
618 struct kobject *sysfs_dev_block_kobj;
619
620 static DEFINE_MUTEX(device_hotplug_lock);
621
622 void lock_device_hotplug(void)
623 {
624 mutex_lock(&device_hotplug_lock);
625 }
626
627 void unlock_device_hotplug(void)
628 {
629 mutex_unlock(&device_hotplug_lock);
630 }
631
632 int lock_device_hotplug_sysfs(void)
633 {
634 if (mutex_trylock(&device_hotplug_lock))
635 return 0;
636
637 /* Avoid busy looping (5 ms of sleep should do). */
638 msleep(5);
639 return restart_syscall();
640 }
641
642 #ifdef CONFIG_BLOCK
643 static inline int device_is_not_partition(struct device *dev)
644 {
645 return !(dev->type == &part_type);
646 }
647 #else
648 static inline int device_is_not_partition(struct device *dev)
649 {
650 return 1;
651 }
652 #endif
653
654 /**
655 * dev_driver_string - Return a device's driver name, if at all possible
656 * @dev: struct device to get the name of
657 *
658 * Will return the device's driver's name if it is bound to a device. If
659 * the device is not bound to a driver, it will return the name of the bus
660 * it is attached to. If it is not attached to a bus either, an empty
661 * string will be returned.
662 */
663 const char *dev_driver_string(const struct device *dev)
664 {
665 struct device_driver *drv;
666
667 /* dev->driver can change to NULL underneath us because of unbinding,
668 * so be careful about accessing it. dev->bus and dev->class should
669 * never change once they are set, so they don't need special care.
670 */
671 drv = ACCESS_ONCE(dev->driver);
672 return drv ? drv->name :
673 (dev->bus ? dev->bus->name :
674 (dev->class ? dev->class->name : ""));
675 }
676 EXPORT_SYMBOL(dev_driver_string);
677
678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
679
680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
681 char *buf)
682 {
683 struct device_attribute *dev_attr = to_dev_attr(attr);
684 struct device *dev = kobj_to_dev(kobj);
685 ssize_t ret = -EIO;
686
687 if (dev_attr->show)
688 ret = dev_attr->show(dev, dev_attr, buf);
689 if (ret >= (ssize_t)PAGE_SIZE) {
690 print_symbol("dev_attr_show: %s returned bad count\n",
691 (unsigned long)dev_attr->show);
692 }
693 return ret;
694 }
695
696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
697 const char *buf, size_t count)
698 {
699 struct device_attribute *dev_attr = to_dev_attr(attr);
700 struct device *dev = kobj_to_dev(kobj);
701 ssize_t ret = -EIO;
702
703 if (dev_attr->store)
704 ret = dev_attr->store(dev, dev_attr, buf, count);
705 return ret;
706 }
707
708 static const struct sysfs_ops dev_sysfs_ops = {
709 .show = dev_attr_show,
710 .store = dev_attr_store,
711 };
712
713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
714
715 ssize_t device_store_ulong(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
718 {
719 struct dev_ext_attribute *ea = to_ext_attr(attr);
720 char *end;
721 unsigned long new = simple_strtoul(buf, &end, 0);
722 if (end == buf)
723 return -EINVAL;
724 *(unsigned long *)(ea->var) = new;
725 /* Always return full write size even if we didn't consume all */
726 return size;
727 }
728 EXPORT_SYMBOL_GPL(device_store_ulong);
729
730 ssize_t device_show_ulong(struct device *dev,
731 struct device_attribute *attr,
732 char *buf)
733 {
734 struct dev_ext_attribute *ea = to_ext_attr(attr);
735 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
736 }
737 EXPORT_SYMBOL_GPL(device_show_ulong);
738
739 ssize_t device_store_int(struct device *dev,
740 struct device_attribute *attr,
741 const char *buf, size_t size)
742 {
743 struct dev_ext_attribute *ea = to_ext_attr(attr);
744 char *end;
745 long new = simple_strtol(buf, &end, 0);
746 if (end == buf || new > INT_MAX || new < INT_MIN)
747 return -EINVAL;
748 *(int *)(ea->var) = new;
749 /* Always return full write size even if we didn't consume all */
750 return size;
751 }
752 EXPORT_SYMBOL_GPL(device_store_int);
753
754 ssize_t device_show_int(struct device *dev,
755 struct device_attribute *attr,
756 char *buf)
757 {
758 struct dev_ext_attribute *ea = to_ext_attr(attr);
759
760 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
761 }
762 EXPORT_SYMBOL_GPL(device_show_int);
763
764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
765 const char *buf, size_t size)
766 {
767 struct dev_ext_attribute *ea = to_ext_attr(attr);
768
769 if (strtobool(buf, ea->var) < 0)
770 return -EINVAL;
771
772 return size;
773 }
774 EXPORT_SYMBOL_GPL(device_store_bool);
775
776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
777 char *buf)
778 {
779 struct dev_ext_attribute *ea = to_ext_attr(attr);
780
781 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
782 }
783 EXPORT_SYMBOL_GPL(device_show_bool);
784
785 /**
786 * device_release - free device structure.
787 * @kobj: device's kobject.
788 *
789 * This is called once the reference count for the object
790 * reaches 0. We forward the call to the device's release
791 * method, which should handle actually freeing the structure.
792 */
793 static void device_release(struct kobject *kobj)
794 {
795 struct device *dev = kobj_to_dev(kobj);
796 struct device_private *p = dev->p;
797
798 /*
799 * Some platform devices are driven without driver attached
800 * and managed resources may have been acquired. Make sure
801 * all resources are released.
802 *
803 * Drivers still can add resources into device after device
804 * is deleted but alive, so release devres here to avoid
805 * possible memory leak.
806 */
807 devres_release_all(dev);
808
809 if (dev->release)
810 dev->release(dev);
811 else if (dev->type && dev->type->release)
812 dev->type->release(dev);
813 else if (dev->class && dev->class->dev_release)
814 dev->class->dev_release(dev);
815 else
816 WARN(1, KERN_ERR "Device '%s' does not have a release() "
817 "function, it is broken and must be fixed.\n",
818 dev_name(dev));
819 kfree(p);
820 }
821
822 static const void *device_namespace(struct kobject *kobj)
823 {
824 struct device *dev = kobj_to_dev(kobj);
825 const void *ns = NULL;
826
827 if (dev->class && dev->class->ns_type)
828 ns = dev->class->namespace(dev);
829
830 return ns;
831 }
832
833 static struct kobj_type device_ktype = {
834 .release = device_release,
835 .sysfs_ops = &dev_sysfs_ops,
836 .namespace = device_namespace,
837 };
838
839
840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
841 {
842 struct kobj_type *ktype = get_ktype(kobj);
843
844 if (ktype == &device_ktype) {
845 struct device *dev = kobj_to_dev(kobj);
846 if (dev->bus)
847 return 1;
848 if (dev->class)
849 return 1;
850 }
851 return 0;
852 }
853
854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
855 {
856 struct device *dev = kobj_to_dev(kobj);
857
858 if (dev->bus)
859 return dev->bus->name;
860 if (dev->class)
861 return dev->class->name;
862 return NULL;
863 }
864
865 static int dev_uevent(struct kset *kset, struct kobject *kobj,
866 struct kobj_uevent_env *env)
867 {
868 struct device *dev = kobj_to_dev(kobj);
869 int retval = 0;
870
871 /* add device node properties if present */
872 if (MAJOR(dev->devt)) {
873 const char *tmp;
874 const char *name;
875 umode_t mode = 0;
876 kuid_t uid = GLOBAL_ROOT_UID;
877 kgid_t gid = GLOBAL_ROOT_GID;
878
879 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
880 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
881 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
882 if (name) {
883 add_uevent_var(env, "DEVNAME=%s", name);
884 if (mode)
885 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
886 if (!uid_eq(uid, GLOBAL_ROOT_UID))
887 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
888 if (!gid_eq(gid, GLOBAL_ROOT_GID))
889 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
890 kfree(tmp);
891 }
892 }
893
894 if (dev->type && dev->type->name)
895 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
896
897 if (dev->driver)
898 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
899
900 /* Add common DT information about the device */
901 of_device_uevent(dev, env);
902
903 /* have the bus specific function add its stuff */
904 if (dev->bus && dev->bus->uevent) {
905 retval = dev->bus->uevent(dev, env);
906 if (retval)
907 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
908 dev_name(dev), __func__, retval);
909 }
910
911 /* have the class specific function add its stuff */
912 if (dev->class && dev->class->dev_uevent) {
913 retval = dev->class->dev_uevent(dev, env);
914 if (retval)
915 pr_debug("device: '%s': %s: class uevent() "
916 "returned %d\n", dev_name(dev),
917 __func__, retval);
918 }
919
920 /* have the device type specific function add its stuff */
921 if (dev->type && dev->type->uevent) {
922 retval = dev->type->uevent(dev, env);
923 if (retval)
924 pr_debug("device: '%s': %s: dev_type uevent() "
925 "returned %d\n", dev_name(dev),
926 __func__, retval);
927 }
928
929 return retval;
930 }
931
932 static const struct kset_uevent_ops device_uevent_ops = {
933 .filter = dev_uevent_filter,
934 .name = dev_uevent_name,
935 .uevent = dev_uevent,
936 };
937
938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
939 char *buf)
940 {
941 struct kobject *top_kobj;
942 struct kset *kset;
943 struct kobj_uevent_env *env = NULL;
944 int i;
945 size_t count = 0;
946 int retval;
947
948 /* search the kset, the device belongs to */
949 top_kobj = &dev->kobj;
950 while (!top_kobj->kset && top_kobj->parent)
951 top_kobj = top_kobj->parent;
952 if (!top_kobj->kset)
953 goto out;
954
955 kset = top_kobj->kset;
956 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
957 goto out;
958
959 /* respect filter */
960 if (kset->uevent_ops && kset->uevent_ops->filter)
961 if (!kset->uevent_ops->filter(kset, &dev->kobj))
962 goto out;
963
964 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
965 if (!env)
966 return -ENOMEM;
967
968 /* let the kset specific function add its keys */
969 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
970 if (retval)
971 goto out;
972
973 /* copy keys to file */
974 for (i = 0; i < env->envp_idx; i++)
975 count += sprintf(&buf[count], "%s\n", env->envp[i]);
976 out:
977 kfree(env);
978 return count;
979 }
980
981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
982 const char *buf, size_t count)
983 {
984 enum kobject_action action;
985
986 if (kobject_action_type(buf, count, &action) == 0)
987 kobject_uevent(&dev->kobj, action);
988 else
989 dev_err(dev, "uevent: unknown action-string\n");
990 return count;
991 }
992 static DEVICE_ATTR_RW(uevent);
993
994 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
995 char *buf)
996 {
997 bool val;
998
999 device_lock(dev);
1000 val = !dev->offline;
1001 device_unlock(dev);
1002 return sprintf(buf, "%u\n", val);
1003 }
1004
1005 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1006 const char *buf, size_t count)
1007 {
1008 bool val;
1009 int ret;
1010
1011 ret = strtobool(buf, &val);
1012 if (ret < 0)
1013 return ret;
1014
1015 ret = lock_device_hotplug_sysfs();
1016 if (ret)
1017 return ret;
1018
1019 ret = val ? device_online(dev) : device_offline(dev);
1020 unlock_device_hotplug();
1021 return ret < 0 ? ret : count;
1022 }
1023 static DEVICE_ATTR_RW(online);
1024
1025 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1026 {
1027 return sysfs_create_groups(&dev->kobj, groups);
1028 }
1029 EXPORT_SYMBOL_GPL(device_add_groups);
1030
1031 void device_remove_groups(struct device *dev,
1032 const struct attribute_group **groups)
1033 {
1034 sysfs_remove_groups(&dev->kobj, groups);
1035 }
1036 EXPORT_SYMBOL_GPL(device_remove_groups);
1037
1038 union device_attr_group_devres {
1039 const struct attribute_group *group;
1040 const struct attribute_group **groups;
1041 };
1042
1043 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1044 {
1045 return ((union device_attr_group_devres *)res)->group == data;
1046 }
1047
1048 static void devm_attr_group_remove(struct device *dev, void *res)
1049 {
1050 union device_attr_group_devres *devres = res;
1051 const struct attribute_group *group = devres->group;
1052
1053 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1054 sysfs_remove_group(&dev->kobj, group);
1055 }
1056
1057 static void devm_attr_groups_remove(struct device *dev, void *res)
1058 {
1059 union device_attr_group_devres *devres = res;
1060 const struct attribute_group **groups = devres->groups;
1061
1062 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1063 sysfs_remove_groups(&dev->kobj, groups);
1064 }
1065
1066 /**
1067 * devm_device_add_group - given a device, create a managed attribute group
1068 * @dev: The device to create the group for
1069 * @grp: The attribute group to create
1070 *
1071 * This function creates a group for the first time. It will explicitly
1072 * warn and error if any of the attribute files being created already exist.
1073 *
1074 * Returns 0 on success or error code on failure.
1075 */
1076 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1077 {
1078 union device_attr_group_devres *devres;
1079 int error;
1080
1081 devres = devres_alloc(devm_attr_group_remove,
1082 sizeof(*devres), GFP_KERNEL);
1083 if (!devres)
1084 return -ENOMEM;
1085
1086 error = sysfs_create_group(&dev->kobj, grp);
1087 if (error) {
1088 devres_free(devres);
1089 return error;
1090 }
1091
1092 devres->group = grp;
1093 devres_add(dev, devres);
1094 return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(devm_device_add_group);
1097
1098 /**
1099 * devm_device_remove_group: remove a managed group from a device
1100 * @dev: device to remove the group from
1101 * @grp: group to remove
1102 *
1103 * This function removes a group of attributes from a device. The attributes
1104 * previously have to have been created for this group, otherwise it will fail.
1105 */
1106 void devm_device_remove_group(struct device *dev,
1107 const struct attribute_group *grp)
1108 {
1109 WARN_ON(devres_release(dev, devm_attr_group_remove,
1110 devm_attr_group_match,
1111 /* cast away const */ (void *)grp));
1112 }
1113 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1114
1115 /**
1116 * devm_device_add_groups - create a bunch of managed attribute groups
1117 * @dev: The device to create the group for
1118 * @groups: The attribute groups to create, NULL terminated
1119 *
1120 * This function creates a bunch of managed attribute groups. If an error
1121 * occurs when creating a group, all previously created groups will be
1122 * removed, unwinding everything back to the original state when this
1123 * function was called. It will explicitly warn and error if any of the
1124 * attribute files being created already exist.
1125 *
1126 * Returns 0 on success or error code from sysfs_create_group on failure.
1127 */
1128 int devm_device_add_groups(struct device *dev,
1129 const struct attribute_group **groups)
1130 {
1131 union device_attr_group_devres *devres;
1132 int error;
1133
1134 devres = devres_alloc(devm_attr_groups_remove,
1135 sizeof(*devres), GFP_KERNEL);
1136 if (!devres)
1137 return -ENOMEM;
1138
1139 error = sysfs_create_groups(&dev->kobj, groups);
1140 if (error) {
1141 devres_free(devres);
1142 return error;
1143 }
1144
1145 devres->groups = groups;
1146 devres_add(dev, devres);
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1150
1151 /**
1152 * devm_device_remove_groups - remove a list of managed groups
1153 *
1154 * @dev: The device for the groups to be removed from
1155 * @groups: NULL terminated list of groups to be removed
1156 *
1157 * If groups is not NULL, remove the specified groups from the device.
1158 */
1159 void devm_device_remove_groups(struct device *dev,
1160 const struct attribute_group **groups)
1161 {
1162 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1163 devm_attr_group_match,
1164 /* cast away const */ (void *)groups));
1165 }
1166 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1167
1168 static int device_add_attrs(struct device *dev)
1169 {
1170 struct class *class = dev->class;
1171 const struct device_type *type = dev->type;
1172 int error;
1173
1174 if (class) {
1175 error = device_add_groups(dev, class->dev_groups);
1176 if (error)
1177 return error;
1178 }
1179
1180 if (type) {
1181 error = device_add_groups(dev, type->groups);
1182 if (error)
1183 goto err_remove_class_groups;
1184 }
1185
1186 error = device_add_groups(dev, dev->groups);
1187 if (error)
1188 goto err_remove_type_groups;
1189
1190 if (device_supports_offline(dev) && !dev->offline_disabled) {
1191 error = device_create_file(dev, &dev_attr_online);
1192 if (error)
1193 goto err_remove_dev_groups;
1194 }
1195
1196 return 0;
1197
1198 err_remove_dev_groups:
1199 device_remove_groups(dev, dev->groups);
1200 err_remove_type_groups:
1201 if (type)
1202 device_remove_groups(dev, type->groups);
1203 err_remove_class_groups:
1204 if (class)
1205 device_remove_groups(dev, class->dev_groups);
1206
1207 return error;
1208 }
1209
1210 static void device_remove_attrs(struct device *dev)
1211 {
1212 struct class *class = dev->class;
1213 const struct device_type *type = dev->type;
1214
1215 device_remove_file(dev, &dev_attr_online);
1216 device_remove_groups(dev, dev->groups);
1217
1218 if (type)
1219 device_remove_groups(dev, type->groups);
1220
1221 if (class)
1222 device_remove_groups(dev, class->dev_groups);
1223 }
1224
1225 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1226 char *buf)
1227 {
1228 return print_dev_t(buf, dev->devt);
1229 }
1230 static DEVICE_ATTR_RO(dev);
1231
1232 /* /sys/devices/ */
1233 struct kset *devices_kset;
1234
1235 /**
1236 * devices_kset_move_before - Move device in the devices_kset's list.
1237 * @deva: Device to move.
1238 * @devb: Device @deva should come before.
1239 */
1240 static void devices_kset_move_before(struct device *deva, struct device *devb)
1241 {
1242 if (!devices_kset)
1243 return;
1244 pr_debug("devices_kset: Moving %s before %s\n",
1245 dev_name(deva), dev_name(devb));
1246 spin_lock(&devices_kset->list_lock);
1247 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1248 spin_unlock(&devices_kset->list_lock);
1249 }
1250
1251 /**
1252 * devices_kset_move_after - Move device in the devices_kset's list.
1253 * @deva: Device to move
1254 * @devb: Device @deva should come after.
1255 */
1256 static void devices_kset_move_after(struct device *deva, struct device *devb)
1257 {
1258 if (!devices_kset)
1259 return;
1260 pr_debug("devices_kset: Moving %s after %s\n",
1261 dev_name(deva), dev_name(devb));
1262 spin_lock(&devices_kset->list_lock);
1263 list_move(&deva->kobj.entry, &devb->kobj.entry);
1264 spin_unlock(&devices_kset->list_lock);
1265 }
1266
1267 /**
1268 * devices_kset_move_last - move the device to the end of devices_kset's list.
1269 * @dev: device to move
1270 */
1271 void devices_kset_move_last(struct device *dev)
1272 {
1273 if (!devices_kset)
1274 return;
1275 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1276 spin_lock(&devices_kset->list_lock);
1277 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1278 spin_unlock(&devices_kset->list_lock);
1279 }
1280
1281 /**
1282 * device_create_file - create sysfs attribute file for device.
1283 * @dev: device.
1284 * @attr: device attribute descriptor.
1285 */
1286 int device_create_file(struct device *dev,
1287 const struct device_attribute *attr)
1288 {
1289 int error = 0;
1290
1291 if (dev) {
1292 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1293 "Attribute %s: write permission without 'store'\n",
1294 attr->attr.name);
1295 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1296 "Attribute %s: read permission without 'show'\n",
1297 attr->attr.name);
1298 error = sysfs_create_file(&dev->kobj, &attr->attr);
1299 }
1300
1301 return error;
1302 }
1303 EXPORT_SYMBOL_GPL(device_create_file);
1304
1305 /**
1306 * device_remove_file - remove sysfs attribute file.
1307 * @dev: device.
1308 * @attr: device attribute descriptor.
1309 */
1310 void device_remove_file(struct device *dev,
1311 const struct device_attribute *attr)
1312 {
1313 if (dev)
1314 sysfs_remove_file(&dev->kobj, &attr->attr);
1315 }
1316 EXPORT_SYMBOL_GPL(device_remove_file);
1317
1318 /**
1319 * device_remove_file_self - remove sysfs attribute file from its own method.
1320 * @dev: device.
1321 * @attr: device attribute descriptor.
1322 *
1323 * See kernfs_remove_self() for details.
1324 */
1325 bool device_remove_file_self(struct device *dev,
1326 const struct device_attribute *attr)
1327 {
1328 if (dev)
1329 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1330 else
1331 return false;
1332 }
1333 EXPORT_SYMBOL_GPL(device_remove_file_self);
1334
1335 /**
1336 * device_create_bin_file - create sysfs binary attribute file for device.
1337 * @dev: device.
1338 * @attr: device binary attribute descriptor.
1339 */
1340 int device_create_bin_file(struct device *dev,
1341 const struct bin_attribute *attr)
1342 {
1343 int error = -EINVAL;
1344 if (dev)
1345 error = sysfs_create_bin_file(&dev->kobj, attr);
1346 return error;
1347 }
1348 EXPORT_SYMBOL_GPL(device_create_bin_file);
1349
1350 /**
1351 * device_remove_bin_file - remove sysfs binary attribute file
1352 * @dev: device.
1353 * @attr: device binary attribute descriptor.
1354 */
1355 void device_remove_bin_file(struct device *dev,
1356 const struct bin_attribute *attr)
1357 {
1358 if (dev)
1359 sysfs_remove_bin_file(&dev->kobj, attr);
1360 }
1361 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1362
1363 static void klist_children_get(struct klist_node *n)
1364 {
1365 struct device_private *p = to_device_private_parent(n);
1366 struct device *dev = p->device;
1367
1368 get_device(dev);
1369 }
1370
1371 static void klist_children_put(struct klist_node *n)
1372 {
1373 struct device_private *p = to_device_private_parent(n);
1374 struct device *dev = p->device;
1375
1376 put_device(dev);
1377 }
1378
1379 /**
1380 * device_initialize - init device structure.
1381 * @dev: device.
1382 *
1383 * This prepares the device for use by other layers by initializing
1384 * its fields.
1385 * It is the first half of device_register(), if called by
1386 * that function, though it can also be called separately, so one
1387 * may use @dev's fields. In particular, get_device()/put_device()
1388 * may be used for reference counting of @dev after calling this
1389 * function.
1390 *
1391 * All fields in @dev must be initialized by the caller to 0, except
1392 * for those explicitly set to some other value. The simplest
1393 * approach is to use kzalloc() to allocate the structure containing
1394 * @dev.
1395 *
1396 * NOTE: Use put_device() to give up your reference instead of freeing
1397 * @dev directly once you have called this function.
1398 */
1399 void device_initialize(struct device *dev)
1400 {
1401 dev->kobj.kset = devices_kset;
1402 kobject_init(&dev->kobj, &device_ktype);
1403 INIT_LIST_HEAD(&dev->dma_pools);
1404 mutex_init(&dev->mutex);
1405 lockdep_set_novalidate_class(&dev->mutex);
1406 spin_lock_init(&dev->devres_lock);
1407 INIT_LIST_HEAD(&dev->devres_head);
1408 device_pm_init(dev);
1409 set_dev_node(dev, -1);
1410 #ifdef CONFIG_GENERIC_MSI_IRQ
1411 INIT_LIST_HEAD(&dev->msi_list);
1412 #endif
1413 INIT_LIST_HEAD(&dev->links.consumers);
1414 INIT_LIST_HEAD(&dev->links.suppliers);
1415 dev->links.status = DL_DEV_NO_DRIVER;
1416 }
1417 EXPORT_SYMBOL_GPL(device_initialize);
1418
1419 struct kobject *virtual_device_parent(struct device *dev)
1420 {
1421 static struct kobject *virtual_dir = NULL;
1422
1423 if (!virtual_dir)
1424 virtual_dir = kobject_create_and_add("virtual",
1425 &devices_kset->kobj);
1426
1427 return virtual_dir;
1428 }
1429
1430 struct class_dir {
1431 struct kobject kobj;
1432 struct class *class;
1433 };
1434
1435 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1436
1437 static void class_dir_release(struct kobject *kobj)
1438 {
1439 struct class_dir *dir = to_class_dir(kobj);
1440 kfree(dir);
1441 }
1442
1443 static const
1444 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1445 {
1446 struct class_dir *dir = to_class_dir(kobj);
1447 return dir->class->ns_type;
1448 }
1449
1450 static struct kobj_type class_dir_ktype = {
1451 .release = class_dir_release,
1452 .sysfs_ops = &kobj_sysfs_ops,
1453 .child_ns_type = class_dir_child_ns_type
1454 };
1455
1456 static struct kobject *
1457 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1458 {
1459 struct class_dir *dir;
1460 int retval;
1461
1462 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1463 if (!dir)
1464 return NULL;
1465
1466 dir->class = class;
1467 kobject_init(&dir->kobj, &class_dir_ktype);
1468
1469 dir->kobj.kset = &class->p->glue_dirs;
1470
1471 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1472 if (retval < 0) {
1473 kobject_put(&dir->kobj);
1474 return NULL;
1475 }
1476 return &dir->kobj;
1477 }
1478
1479 static DEFINE_MUTEX(gdp_mutex);
1480
1481 static struct kobject *get_device_parent(struct device *dev,
1482 struct device *parent)
1483 {
1484 if (dev->class) {
1485 struct kobject *kobj = NULL;
1486 struct kobject *parent_kobj;
1487 struct kobject *k;
1488
1489 #ifdef CONFIG_BLOCK
1490 /* block disks show up in /sys/block */
1491 if (sysfs_deprecated && dev->class == &block_class) {
1492 if (parent && parent->class == &block_class)
1493 return &parent->kobj;
1494 return &block_class.p->subsys.kobj;
1495 }
1496 #endif
1497
1498 /*
1499 * If we have no parent, we live in "virtual".
1500 * Class-devices with a non class-device as parent, live
1501 * in a "glue" directory to prevent namespace collisions.
1502 */
1503 if (parent == NULL)
1504 parent_kobj = virtual_device_parent(dev);
1505 else if (parent->class && !dev->class->ns_type)
1506 return &parent->kobj;
1507 else
1508 parent_kobj = &parent->kobj;
1509
1510 mutex_lock(&gdp_mutex);
1511
1512 /* find our class-directory at the parent and reference it */
1513 spin_lock(&dev->class->p->glue_dirs.list_lock);
1514 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1515 if (k->parent == parent_kobj) {
1516 kobj = kobject_get(k);
1517 break;
1518 }
1519 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1520 if (kobj) {
1521 mutex_unlock(&gdp_mutex);
1522 return kobj;
1523 }
1524
1525 /* or create a new class-directory at the parent device */
1526 k = class_dir_create_and_add(dev->class, parent_kobj);
1527 /* do not emit an uevent for this simple "glue" directory */
1528 mutex_unlock(&gdp_mutex);
1529 return k;
1530 }
1531
1532 /* subsystems can specify a default root directory for their devices */
1533 if (!parent && dev->bus && dev->bus->dev_root)
1534 return &dev->bus->dev_root->kobj;
1535
1536 if (parent)
1537 return &parent->kobj;
1538 return NULL;
1539 }
1540
1541 static inline bool live_in_glue_dir(struct kobject *kobj,
1542 struct device *dev)
1543 {
1544 if (!kobj || !dev->class ||
1545 kobj->kset != &dev->class->p->glue_dirs)
1546 return false;
1547 return true;
1548 }
1549
1550 static inline struct kobject *get_glue_dir(struct device *dev)
1551 {
1552 return dev->kobj.parent;
1553 }
1554
1555 /*
1556 * make sure cleaning up dir as the last step, we need to make
1557 * sure .release handler of kobject is run with holding the
1558 * global lock
1559 */
1560 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1561 {
1562 /* see if we live in a "glue" directory */
1563 if (!live_in_glue_dir(glue_dir, dev))
1564 return;
1565
1566 mutex_lock(&gdp_mutex);
1567 kobject_put(glue_dir);
1568 mutex_unlock(&gdp_mutex);
1569 }
1570
1571 static int device_add_class_symlinks(struct device *dev)
1572 {
1573 struct device_node *of_node = dev_of_node(dev);
1574 int error;
1575
1576 if (of_node) {
1577 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1578 if (error)
1579 dev_warn(dev, "Error %d creating of_node link\n",error);
1580 /* An error here doesn't warrant bringing down the device */
1581 }
1582
1583 if (!dev->class)
1584 return 0;
1585
1586 error = sysfs_create_link(&dev->kobj,
1587 &dev->class->p->subsys.kobj,
1588 "subsystem");
1589 if (error)
1590 goto out_devnode;
1591
1592 if (dev->parent && device_is_not_partition(dev)) {
1593 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1594 "device");
1595 if (error)
1596 goto out_subsys;
1597 }
1598
1599 #ifdef CONFIG_BLOCK
1600 /* /sys/block has directories and does not need symlinks */
1601 if (sysfs_deprecated && dev->class == &block_class)
1602 return 0;
1603 #endif
1604
1605 /* link in the class directory pointing to the device */
1606 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1607 &dev->kobj, dev_name(dev));
1608 if (error)
1609 goto out_device;
1610
1611 return 0;
1612
1613 out_device:
1614 sysfs_remove_link(&dev->kobj, "device");
1615
1616 out_subsys:
1617 sysfs_remove_link(&dev->kobj, "subsystem");
1618 out_devnode:
1619 sysfs_remove_link(&dev->kobj, "of_node");
1620 return error;
1621 }
1622
1623 static void device_remove_class_symlinks(struct device *dev)
1624 {
1625 if (dev_of_node(dev))
1626 sysfs_remove_link(&dev->kobj, "of_node");
1627
1628 if (!dev->class)
1629 return;
1630
1631 if (dev->parent && device_is_not_partition(dev))
1632 sysfs_remove_link(&dev->kobj, "device");
1633 sysfs_remove_link(&dev->kobj, "subsystem");
1634 #ifdef CONFIG_BLOCK
1635 if (sysfs_deprecated && dev->class == &block_class)
1636 return;
1637 #endif
1638 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1639 }
1640
1641 /**
1642 * dev_set_name - set a device name
1643 * @dev: device
1644 * @fmt: format string for the device's name
1645 */
1646 int dev_set_name(struct device *dev, const char *fmt, ...)
1647 {
1648 va_list vargs;
1649 int err;
1650
1651 va_start(vargs, fmt);
1652 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1653 va_end(vargs);
1654 return err;
1655 }
1656 EXPORT_SYMBOL_GPL(dev_set_name);
1657
1658 /**
1659 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1660 * @dev: device
1661 *
1662 * By default we select char/ for new entries. Setting class->dev_obj
1663 * to NULL prevents an entry from being created. class->dev_kobj must
1664 * be set (or cleared) before any devices are registered to the class
1665 * otherwise device_create_sys_dev_entry() and
1666 * device_remove_sys_dev_entry() will disagree about the presence of
1667 * the link.
1668 */
1669 static struct kobject *device_to_dev_kobj(struct device *dev)
1670 {
1671 struct kobject *kobj;
1672
1673 if (dev->class)
1674 kobj = dev->class->dev_kobj;
1675 else
1676 kobj = sysfs_dev_char_kobj;
1677
1678 return kobj;
1679 }
1680
1681 static int device_create_sys_dev_entry(struct device *dev)
1682 {
1683 struct kobject *kobj = device_to_dev_kobj(dev);
1684 int error = 0;
1685 char devt_str[15];
1686
1687 if (kobj) {
1688 format_dev_t(devt_str, dev->devt);
1689 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1690 }
1691
1692 return error;
1693 }
1694
1695 static void device_remove_sys_dev_entry(struct device *dev)
1696 {
1697 struct kobject *kobj = device_to_dev_kobj(dev);
1698 char devt_str[15];
1699
1700 if (kobj) {
1701 format_dev_t(devt_str, dev->devt);
1702 sysfs_remove_link(kobj, devt_str);
1703 }
1704 }
1705
1706 int device_private_init(struct device *dev)
1707 {
1708 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1709 if (!dev->p)
1710 return -ENOMEM;
1711 dev->p->device = dev;
1712 klist_init(&dev->p->klist_children, klist_children_get,
1713 klist_children_put);
1714 INIT_LIST_HEAD(&dev->p->deferred_probe);
1715 return 0;
1716 }
1717
1718 /**
1719 * device_add - add device to device hierarchy.
1720 * @dev: device.
1721 *
1722 * This is part 2 of device_register(), though may be called
1723 * separately _iff_ device_initialize() has been called separately.
1724 *
1725 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1726 * to the global and sibling lists for the device, then
1727 * adds it to the other relevant subsystems of the driver model.
1728 *
1729 * Do not call this routine or device_register() more than once for
1730 * any device structure. The driver model core is not designed to work
1731 * with devices that get unregistered and then spring back to life.
1732 * (Among other things, it's very hard to guarantee that all references
1733 * to the previous incarnation of @dev have been dropped.) Allocate
1734 * and register a fresh new struct device instead.
1735 *
1736 * NOTE: _Never_ directly free @dev after calling this function, even
1737 * if it returned an error! Always use put_device() to give up your
1738 * reference instead.
1739 */
1740 int device_add(struct device *dev)
1741 {
1742 struct device *parent;
1743 struct kobject *kobj;
1744 struct class_interface *class_intf;
1745 int error = -EINVAL;
1746 struct kobject *glue_dir = NULL;
1747
1748 dev = get_device(dev);
1749 if (!dev)
1750 goto done;
1751
1752 if (!dev->p) {
1753 error = device_private_init(dev);
1754 if (error)
1755 goto done;
1756 }
1757
1758 /*
1759 * for statically allocated devices, which should all be converted
1760 * some day, we need to initialize the name. We prevent reading back
1761 * the name, and force the use of dev_name()
1762 */
1763 if (dev->init_name) {
1764 dev_set_name(dev, "%s", dev->init_name);
1765 dev->init_name = NULL;
1766 }
1767
1768 /* subsystems can specify simple device enumeration */
1769 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1770 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1771
1772 if (!dev_name(dev)) {
1773 error = -EINVAL;
1774 goto name_error;
1775 }
1776
1777 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1778
1779 parent = get_device(dev->parent);
1780 kobj = get_device_parent(dev, parent);
1781 if (kobj)
1782 dev->kobj.parent = kobj;
1783
1784 /* use parent numa_node */
1785 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1786 set_dev_node(dev, dev_to_node(parent));
1787
1788 /* first, register with generic layer. */
1789 /* we require the name to be set before, and pass NULL */
1790 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1791 if (error) {
1792 glue_dir = get_glue_dir(dev);
1793 goto Error;
1794 }
1795
1796 /* notify platform of device entry */
1797 if (platform_notify)
1798 platform_notify(dev);
1799
1800 error = device_create_file(dev, &dev_attr_uevent);
1801 if (error)
1802 goto attrError;
1803
1804 error = device_add_class_symlinks(dev);
1805 if (error)
1806 goto SymlinkError;
1807 error = device_add_attrs(dev);
1808 if (error)
1809 goto AttrsError;
1810 error = bus_add_device(dev);
1811 if (error)
1812 goto BusError;
1813 error = dpm_sysfs_add(dev);
1814 if (error)
1815 goto DPMError;
1816 device_pm_add(dev);
1817
1818 if (MAJOR(dev->devt)) {
1819 error = device_create_file(dev, &dev_attr_dev);
1820 if (error)
1821 goto DevAttrError;
1822
1823 error = device_create_sys_dev_entry(dev);
1824 if (error)
1825 goto SysEntryError;
1826
1827 devtmpfs_create_node(dev);
1828 }
1829
1830 /* Notify clients of device addition. This call must come
1831 * after dpm_sysfs_add() and before kobject_uevent().
1832 */
1833 if (dev->bus)
1834 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1835 BUS_NOTIFY_ADD_DEVICE, dev);
1836
1837 kobject_uevent(&dev->kobj, KOBJ_ADD);
1838 bus_probe_device(dev);
1839 if (parent)
1840 klist_add_tail(&dev->p->knode_parent,
1841 &parent->p->klist_children);
1842
1843 if (dev->class) {
1844 mutex_lock(&dev->class->p->mutex);
1845 /* tie the class to the device */
1846 klist_add_tail(&dev->knode_class,
1847 &dev->class->p->klist_devices);
1848
1849 /* notify any interfaces that the device is here */
1850 list_for_each_entry(class_intf,
1851 &dev->class->p->interfaces, node)
1852 if (class_intf->add_dev)
1853 class_intf->add_dev(dev, class_intf);
1854 mutex_unlock(&dev->class->p->mutex);
1855 }
1856 done:
1857 put_device(dev);
1858 return error;
1859 SysEntryError:
1860 if (MAJOR(dev->devt))
1861 device_remove_file(dev, &dev_attr_dev);
1862 DevAttrError:
1863 device_pm_remove(dev);
1864 dpm_sysfs_remove(dev);
1865 DPMError:
1866 bus_remove_device(dev);
1867 BusError:
1868 device_remove_attrs(dev);
1869 AttrsError:
1870 device_remove_class_symlinks(dev);
1871 SymlinkError:
1872 device_remove_file(dev, &dev_attr_uevent);
1873 attrError:
1874 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1875 glue_dir = get_glue_dir(dev);
1876 kobject_del(&dev->kobj);
1877 Error:
1878 cleanup_glue_dir(dev, glue_dir);
1879 put_device(parent);
1880 name_error:
1881 kfree(dev->p);
1882 dev->p = NULL;
1883 goto done;
1884 }
1885 EXPORT_SYMBOL_GPL(device_add);
1886
1887 /**
1888 * device_register - register a device with the system.
1889 * @dev: pointer to the device structure
1890 *
1891 * This happens in two clean steps - initialize the device
1892 * and add it to the system. The two steps can be called
1893 * separately, but this is the easiest and most common.
1894 * I.e. you should only call the two helpers separately if
1895 * have a clearly defined need to use and refcount the device
1896 * before it is added to the hierarchy.
1897 *
1898 * For more information, see the kerneldoc for device_initialize()
1899 * and device_add().
1900 *
1901 * NOTE: _Never_ directly free @dev after calling this function, even
1902 * if it returned an error! Always use put_device() to give up the
1903 * reference initialized in this function instead.
1904 */
1905 int device_register(struct device *dev)
1906 {
1907 device_initialize(dev);
1908 return device_add(dev);
1909 }
1910 EXPORT_SYMBOL_GPL(device_register);
1911
1912 /**
1913 * get_device - increment reference count for device.
1914 * @dev: device.
1915 *
1916 * This simply forwards the call to kobject_get(), though
1917 * we do take care to provide for the case that we get a NULL
1918 * pointer passed in.
1919 */
1920 struct device *get_device(struct device *dev)
1921 {
1922 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1923 }
1924 EXPORT_SYMBOL_GPL(get_device);
1925
1926 /**
1927 * put_device - decrement reference count.
1928 * @dev: device in question.
1929 */
1930 void put_device(struct device *dev)
1931 {
1932 /* might_sleep(); */
1933 if (dev)
1934 kobject_put(&dev->kobj);
1935 }
1936 EXPORT_SYMBOL_GPL(put_device);
1937
1938 /**
1939 * device_del - delete device from system.
1940 * @dev: device.
1941 *
1942 * This is the first part of the device unregistration
1943 * sequence. This removes the device from the lists we control
1944 * from here, has it removed from the other driver model
1945 * subsystems it was added to in device_add(), and removes it
1946 * from the kobject hierarchy.
1947 *
1948 * NOTE: this should be called manually _iff_ device_add() was
1949 * also called manually.
1950 */
1951 void device_del(struct device *dev)
1952 {
1953 struct device *parent = dev->parent;
1954 struct kobject *glue_dir = NULL;
1955 struct class_interface *class_intf;
1956
1957 /* Notify clients of device removal. This call must come
1958 * before dpm_sysfs_remove().
1959 */
1960 if (dev->bus)
1961 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1962 BUS_NOTIFY_DEL_DEVICE, dev);
1963
1964 device_links_purge(dev);
1965 dpm_sysfs_remove(dev);
1966 if (parent)
1967 klist_del(&dev->p->knode_parent);
1968 if (MAJOR(dev->devt)) {
1969 devtmpfs_delete_node(dev);
1970 device_remove_sys_dev_entry(dev);
1971 device_remove_file(dev, &dev_attr_dev);
1972 }
1973 if (dev->class) {
1974 device_remove_class_symlinks(dev);
1975
1976 mutex_lock(&dev->class->p->mutex);
1977 /* notify any interfaces that the device is now gone */
1978 list_for_each_entry(class_intf,
1979 &dev->class->p->interfaces, node)
1980 if (class_intf->remove_dev)
1981 class_intf->remove_dev(dev, class_intf);
1982 /* remove the device from the class list */
1983 klist_del(&dev->knode_class);
1984 mutex_unlock(&dev->class->p->mutex);
1985 }
1986 device_remove_file(dev, &dev_attr_uevent);
1987 device_remove_attrs(dev);
1988 bus_remove_device(dev);
1989 device_pm_remove(dev);
1990 driver_deferred_probe_del(dev);
1991 device_remove_properties(dev);
1992
1993 /* Notify the platform of the removal, in case they
1994 * need to do anything...
1995 */
1996 if (platform_notify_remove)
1997 platform_notify_remove(dev);
1998 if (dev->bus)
1999 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2000 BUS_NOTIFY_REMOVED_DEVICE, dev);
2001 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2002 glue_dir = get_glue_dir(dev);
2003 kobject_del(&dev->kobj);
2004 cleanup_glue_dir(dev, glue_dir);
2005 put_device(parent);
2006 }
2007 EXPORT_SYMBOL_GPL(device_del);
2008
2009 /**
2010 * device_unregister - unregister device from system.
2011 * @dev: device going away.
2012 *
2013 * We do this in two parts, like we do device_register(). First,
2014 * we remove it from all the subsystems with device_del(), then
2015 * we decrement the reference count via put_device(). If that
2016 * is the final reference count, the device will be cleaned up
2017 * via device_release() above. Otherwise, the structure will
2018 * stick around until the final reference to the device is dropped.
2019 */
2020 void device_unregister(struct device *dev)
2021 {
2022 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2023 device_del(dev);
2024 put_device(dev);
2025 }
2026 EXPORT_SYMBOL_GPL(device_unregister);
2027
2028 static struct device *prev_device(struct klist_iter *i)
2029 {
2030 struct klist_node *n = klist_prev(i);
2031 struct device *dev = NULL;
2032 struct device_private *p;
2033
2034 if (n) {
2035 p = to_device_private_parent(n);
2036 dev = p->device;
2037 }
2038 return dev;
2039 }
2040
2041 static struct device *next_device(struct klist_iter *i)
2042 {
2043 struct klist_node *n = klist_next(i);
2044 struct device *dev = NULL;
2045 struct device_private *p;
2046
2047 if (n) {
2048 p = to_device_private_parent(n);
2049 dev = p->device;
2050 }
2051 return dev;
2052 }
2053
2054 /**
2055 * device_get_devnode - path of device node file
2056 * @dev: device
2057 * @mode: returned file access mode
2058 * @uid: returned file owner
2059 * @gid: returned file group
2060 * @tmp: possibly allocated string
2061 *
2062 * Return the relative path of a possible device node.
2063 * Non-default names may need to allocate a memory to compose
2064 * a name. This memory is returned in tmp and needs to be
2065 * freed by the caller.
2066 */
2067 const char *device_get_devnode(struct device *dev,
2068 umode_t *mode, kuid_t *uid, kgid_t *gid,
2069 const char **tmp)
2070 {
2071 char *s;
2072
2073 *tmp = NULL;
2074
2075 /* the device type may provide a specific name */
2076 if (dev->type && dev->type->devnode)
2077 *tmp = dev->type->devnode(dev, mode, uid, gid);
2078 if (*tmp)
2079 return *tmp;
2080
2081 /* the class may provide a specific name */
2082 if (dev->class && dev->class->devnode)
2083 *tmp = dev->class->devnode(dev, mode);
2084 if (*tmp)
2085 return *tmp;
2086
2087 /* return name without allocation, tmp == NULL */
2088 if (strchr(dev_name(dev), '!') == NULL)
2089 return dev_name(dev);
2090
2091 /* replace '!' in the name with '/' */
2092 s = kstrdup(dev_name(dev), GFP_KERNEL);
2093 if (!s)
2094 return NULL;
2095 strreplace(s, '!', '/');
2096 return *tmp = s;
2097 }
2098
2099 /**
2100 * device_for_each_child - device child iterator.
2101 * @parent: parent struct device.
2102 * @fn: function to be called for each device.
2103 * @data: data for the callback.
2104 *
2105 * Iterate over @parent's child devices, and call @fn for each,
2106 * passing it @data.
2107 *
2108 * We check the return of @fn each time. If it returns anything
2109 * other than 0, we break out and return that value.
2110 */
2111 int device_for_each_child(struct device *parent, void *data,
2112 int (*fn)(struct device *dev, void *data))
2113 {
2114 struct klist_iter i;
2115 struct device *child;
2116 int error = 0;
2117
2118 if (!parent->p)
2119 return 0;
2120
2121 klist_iter_init(&parent->p->klist_children, &i);
2122 while ((child = next_device(&i)) && !error)
2123 error = fn(child, data);
2124 klist_iter_exit(&i);
2125 return error;
2126 }
2127 EXPORT_SYMBOL_GPL(device_for_each_child);
2128
2129 /**
2130 * device_for_each_child_reverse - device child iterator in reversed order.
2131 * @parent: parent struct device.
2132 * @fn: function to be called for each device.
2133 * @data: data for the callback.
2134 *
2135 * Iterate over @parent's child devices, and call @fn for each,
2136 * passing it @data.
2137 *
2138 * We check the return of @fn each time. If it returns anything
2139 * other than 0, we break out and return that value.
2140 */
2141 int device_for_each_child_reverse(struct device *parent, void *data,
2142 int (*fn)(struct device *dev, void *data))
2143 {
2144 struct klist_iter i;
2145 struct device *child;
2146 int error = 0;
2147
2148 if (!parent->p)
2149 return 0;
2150
2151 klist_iter_init(&parent->p->klist_children, &i);
2152 while ((child = prev_device(&i)) && !error)
2153 error = fn(child, data);
2154 klist_iter_exit(&i);
2155 return error;
2156 }
2157 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2158
2159 /**
2160 * device_find_child - device iterator for locating a particular device.
2161 * @parent: parent struct device
2162 * @match: Callback function to check device
2163 * @data: Data to pass to match function
2164 *
2165 * This is similar to the device_for_each_child() function above, but it
2166 * returns a reference to a device that is 'found' for later use, as
2167 * determined by the @match callback.
2168 *
2169 * The callback should return 0 if the device doesn't match and non-zero
2170 * if it does. If the callback returns non-zero and a reference to the
2171 * current device can be obtained, this function will return to the caller
2172 * and not iterate over any more devices.
2173 *
2174 * NOTE: you will need to drop the reference with put_device() after use.
2175 */
2176 struct device *device_find_child(struct device *parent, void *data,
2177 int (*match)(struct device *dev, void *data))
2178 {
2179 struct klist_iter i;
2180 struct device *child;
2181
2182 if (!parent)
2183 return NULL;
2184
2185 klist_iter_init(&parent->p->klist_children, &i);
2186 while ((child = next_device(&i)))
2187 if (match(child, data) && get_device(child))
2188 break;
2189 klist_iter_exit(&i);
2190 return child;
2191 }
2192 EXPORT_SYMBOL_GPL(device_find_child);
2193
2194 int __init devices_init(void)
2195 {
2196 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2197 if (!devices_kset)
2198 return -ENOMEM;
2199 dev_kobj = kobject_create_and_add("dev", NULL);
2200 if (!dev_kobj)
2201 goto dev_kobj_err;
2202 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2203 if (!sysfs_dev_block_kobj)
2204 goto block_kobj_err;
2205 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2206 if (!sysfs_dev_char_kobj)
2207 goto char_kobj_err;
2208
2209 return 0;
2210
2211 char_kobj_err:
2212 kobject_put(sysfs_dev_block_kobj);
2213 block_kobj_err:
2214 kobject_put(dev_kobj);
2215 dev_kobj_err:
2216 kset_unregister(devices_kset);
2217 return -ENOMEM;
2218 }
2219
2220 static int device_check_offline(struct device *dev, void *not_used)
2221 {
2222 int ret;
2223
2224 ret = device_for_each_child(dev, NULL, device_check_offline);
2225 if (ret)
2226 return ret;
2227
2228 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2229 }
2230
2231 /**
2232 * device_offline - Prepare the device for hot-removal.
2233 * @dev: Device to be put offline.
2234 *
2235 * Execute the device bus type's .offline() callback, if present, to prepare
2236 * the device for a subsequent hot-removal. If that succeeds, the device must
2237 * not be used until either it is removed or its bus type's .online() callback
2238 * is executed.
2239 *
2240 * Call under device_hotplug_lock.
2241 */
2242 int device_offline(struct device *dev)
2243 {
2244 int ret;
2245
2246 if (dev->offline_disabled)
2247 return -EPERM;
2248
2249 ret = device_for_each_child(dev, NULL, device_check_offline);
2250 if (ret)
2251 return ret;
2252
2253 device_lock(dev);
2254 if (device_supports_offline(dev)) {
2255 if (dev->offline) {
2256 ret = 1;
2257 } else {
2258 ret = dev->bus->offline(dev);
2259 if (!ret) {
2260 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2261 dev->offline = true;
2262 }
2263 }
2264 }
2265 device_unlock(dev);
2266
2267 return ret;
2268 }
2269
2270 /**
2271 * device_online - Put the device back online after successful device_offline().
2272 * @dev: Device to be put back online.
2273 *
2274 * If device_offline() has been successfully executed for @dev, but the device
2275 * has not been removed subsequently, execute its bus type's .online() callback
2276 * to indicate that the device can be used again.
2277 *
2278 * Call under device_hotplug_lock.
2279 */
2280 int device_online(struct device *dev)
2281 {
2282 int ret = 0;
2283
2284 device_lock(dev);
2285 if (device_supports_offline(dev)) {
2286 if (dev->offline) {
2287 ret = dev->bus->online(dev);
2288 if (!ret) {
2289 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2290 dev->offline = false;
2291 }
2292 } else {
2293 ret = 1;
2294 }
2295 }
2296 device_unlock(dev);
2297
2298 return ret;
2299 }
2300
2301 struct root_device {
2302 struct device dev;
2303 struct module *owner;
2304 };
2305
2306 static inline struct root_device *to_root_device(struct device *d)
2307 {
2308 return container_of(d, struct root_device, dev);
2309 }
2310
2311 static void root_device_release(struct device *dev)
2312 {
2313 kfree(to_root_device(dev));
2314 }
2315
2316 /**
2317 * __root_device_register - allocate and register a root device
2318 * @name: root device name
2319 * @owner: owner module of the root device, usually THIS_MODULE
2320 *
2321 * This function allocates a root device and registers it
2322 * using device_register(). In order to free the returned
2323 * device, use root_device_unregister().
2324 *
2325 * Root devices are dummy devices which allow other devices
2326 * to be grouped under /sys/devices. Use this function to
2327 * allocate a root device and then use it as the parent of
2328 * any device which should appear under /sys/devices/{name}
2329 *
2330 * The /sys/devices/{name} directory will also contain a
2331 * 'module' symlink which points to the @owner directory
2332 * in sysfs.
2333 *
2334 * Returns &struct device pointer on success, or ERR_PTR() on error.
2335 *
2336 * Note: You probably want to use root_device_register().
2337 */
2338 struct device *__root_device_register(const char *name, struct module *owner)
2339 {
2340 struct root_device *root;
2341 int err = -ENOMEM;
2342
2343 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2344 if (!root)
2345 return ERR_PTR(err);
2346
2347 err = dev_set_name(&root->dev, "%s", name);
2348 if (err) {
2349 kfree(root);
2350 return ERR_PTR(err);
2351 }
2352
2353 root->dev.release = root_device_release;
2354
2355 err = device_register(&root->dev);
2356 if (err) {
2357 put_device(&root->dev);
2358 return ERR_PTR(err);
2359 }
2360
2361 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2362 if (owner) {
2363 struct module_kobject *mk = &owner->mkobj;
2364
2365 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2366 if (err) {
2367 device_unregister(&root->dev);
2368 return ERR_PTR(err);
2369 }
2370 root->owner = owner;
2371 }
2372 #endif
2373
2374 return &root->dev;
2375 }
2376 EXPORT_SYMBOL_GPL(__root_device_register);
2377
2378 /**
2379 * root_device_unregister - unregister and free a root device
2380 * @dev: device going away
2381 *
2382 * This function unregisters and cleans up a device that was created by
2383 * root_device_register().
2384 */
2385 void root_device_unregister(struct device *dev)
2386 {
2387 struct root_device *root = to_root_device(dev);
2388
2389 if (root->owner)
2390 sysfs_remove_link(&root->dev.kobj, "module");
2391
2392 device_unregister(dev);
2393 }
2394 EXPORT_SYMBOL_GPL(root_device_unregister);
2395
2396
2397 static void device_create_release(struct device *dev)
2398 {
2399 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2400 kfree(dev);
2401 }
2402
2403 static struct device *
2404 device_create_groups_vargs(struct class *class, struct device *parent,
2405 dev_t devt, void *drvdata,
2406 const struct attribute_group **groups,
2407 const char *fmt, va_list args)
2408 {
2409 struct device *dev = NULL;
2410 int retval = -ENODEV;
2411
2412 if (class == NULL || IS_ERR(class))
2413 goto error;
2414
2415 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2416 if (!dev) {
2417 retval = -ENOMEM;
2418 goto error;
2419 }
2420
2421 device_initialize(dev);
2422 dev->devt = devt;
2423 dev->class = class;
2424 dev->parent = parent;
2425 dev->groups = groups;
2426 dev->release = device_create_release;
2427 dev_set_drvdata(dev, drvdata);
2428
2429 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2430 if (retval)
2431 goto error;
2432
2433 retval = device_add(dev);
2434 if (retval)
2435 goto error;
2436
2437 return dev;
2438
2439 error:
2440 put_device(dev);
2441 return ERR_PTR(retval);
2442 }
2443
2444 /**
2445 * device_create_vargs - creates a device and registers it with sysfs
2446 * @class: pointer to the struct class that this device should be registered to
2447 * @parent: pointer to the parent struct device of this new device, if any
2448 * @devt: the dev_t for the char device to be added
2449 * @drvdata: the data to be added to the device for callbacks
2450 * @fmt: string for the device's name
2451 * @args: va_list for the device's name
2452 *
2453 * This function can be used by char device classes. A struct device
2454 * will be created in sysfs, registered to the specified class.
2455 *
2456 * A "dev" file will be created, showing the dev_t for the device, if
2457 * the dev_t is not 0,0.
2458 * If a pointer to a parent struct device is passed in, the newly created
2459 * struct device will be a child of that device in sysfs.
2460 * The pointer to the struct device will be returned from the call.
2461 * Any further sysfs files that might be required can be created using this
2462 * pointer.
2463 *
2464 * Returns &struct device pointer on success, or ERR_PTR() on error.
2465 *
2466 * Note: the struct class passed to this function must have previously
2467 * been created with a call to class_create().
2468 */
2469 struct device *device_create_vargs(struct class *class, struct device *parent,
2470 dev_t devt, void *drvdata, const char *fmt,
2471 va_list args)
2472 {
2473 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2474 fmt, args);
2475 }
2476 EXPORT_SYMBOL_GPL(device_create_vargs);
2477
2478 /**
2479 * device_create - creates a device and registers it with sysfs
2480 * @class: pointer to the struct class that this device should be registered to
2481 * @parent: pointer to the parent struct device of this new device, if any
2482 * @devt: the dev_t for the char device to be added
2483 * @drvdata: the data to be added to the device for callbacks
2484 * @fmt: string for the device's name
2485 *
2486 * This function can be used by char device classes. A struct device
2487 * will be created in sysfs, registered to the specified class.
2488 *
2489 * A "dev" file will be created, showing the dev_t for the device, if
2490 * the dev_t is not 0,0.
2491 * If a pointer to a parent struct device is passed in, the newly created
2492 * struct device will be a child of that device in sysfs.
2493 * The pointer to the struct device will be returned from the call.
2494 * Any further sysfs files that might be required can be created using this
2495 * pointer.
2496 *
2497 * Returns &struct device pointer on success, or ERR_PTR() on error.
2498 *
2499 * Note: the struct class passed to this function must have previously
2500 * been created with a call to class_create().
2501 */
2502 struct device *device_create(struct class *class, struct device *parent,
2503 dev_t devt, void *drvdata, const char *fmt, ...)
2504 {
2505 va_list vargs;
2506 struct device *dev;
2507
2508 va_start(vargs, fmt);
2509 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2510 va_end(vargs);
2511 return dev;
2512 }
2513 EXPORT_SYMBOL_GPL(device_create);
2514
2515 /**
2516 * device_create_with_groups - creates a device and registers it with sysfs
2517 * @class: pointer to the struct class that this device should be registered to
2518 * @parent: pointer to the parent struct device of this new device, if any
2519 * @devt: the dev_t for the char device to be added
2520 * @drvdata: the data to be added to the device for callbacks
2521 * @groups: NULL-terminated list of attribute groups to be created
2522 * @fmt: string for the device's name
2523 *
2524 * This function can be used by char device classes. A struct device
2525 * will be created in sysfs, registered to the specified class.
2526 * Additional attributes specified in the groups parameter will also
2527 * be created automatically.
2528 *
2529 * A "dev" file will be created, showing the dev_t for the device, if
2530 * the dev_t is not 0,0.
2531 * If a pointer to a parent struct device is passed in, the newly created
2532 * struct device will be a child of that device in sysfs.
2533 * The pointer to the struct device will be returned from the call.
2534 * Any further sysfs files that might be required can be created using this
2535 * pointer.
2536 *
2537 * Returns &struct device pointer on success, or ERR_PTR() on error.
2538 *
2539 * Note: the struct class passed to this function must have previously
2540 * been created with a call to class_create().
2541 */
2542 struct device *device_create_with_groups(struct class *class,
2543 struct device *parent, dev_t devt,
2544 void *drvdata,
2545 const struct attribute_group **groups,
2546 const char *fmt, ...)
2547 {
2548 va_list vargs;
2549 struct device *dev;
2550
2551 va_start(vargs, fmt);
2552 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2553 fmt, vargs);
2554 va_end(vargs);
2555 return dev;
2556 }
2557 EXPORT_SYMBOL_GPL(device_create_with_groups);
2558
2559 static int __match_devt(struct device *dev, const void *data)
2560 {
2561 const dev_t *devt = data;
2562
2563 return dev->devt == *devt;
2564 }
2565
2566 /**
2567 * device_destroy - removes a device that was created with device_create()
2568 * @class: pointer to the struct class that this device was registered with
2569 * @devt: the dev_t of the device that was previously registered
2570 *
2571 * This call unregisters and cleans up a device that was created with a
2572 * call to device_create().
2573 */
2574 void device_destroy(struct class *class, dev_t devt)
2575 {
2576 struct device *dev;
2577
2578 dev = class_find_device(class, NULL, &devt, __match_devt);
2579 if (dev) {
2580 put_device(dev);
2581 device_unregister(dev);
2582 }
2583 }
2584 EXPORT_SYMBOL_GPL(device_destroy);
2585
2586 /**
2587 * device_rename - renames a device
2588 * @dev: the pointer to the struct device to be renamed
2589 * @new_name: the new name of the device
2590 *
2591 * It is the responsibility of the caller to provide mutual
2592 * exclusion between two different calls of device_rename
2593 * on the same device to ensure that new_name is valid and
2594 * won't conflict with other devices.
2595 *
2596 * Note: Don't call this function. Currently, the networking layer calls this
2597 * function, but that will change. The following text from Kay Sievers offers
2598 * some insight:
2599 *
2600 * Renaming devices is racy at many levels, symlinks and other stuff are not
2601 * replaced atomically, and you get a "move" uevent, but it's not easy to
2602 * connect the event to the old and new device. Device nodes are not renamed at
2603 * all, there isn't even support for that in the kernel now.
2604 *
2605 * In the meantime, during renaming, your target name might be taken by another
2606 * driver, creating conflicts. Or the old name is taken directly after you
2607 * renamed it -- then you get events for the same DEVPATH, before you even see
2608 * the "move" event. It's just a mess, and nothing new should ever rely on
2609 * kernel device renaming. Besides that, it's not even implemented now for
2610 * other things than (driver-core wise very simple) network devices.
2611 *
2612 * We are currently about to change network renaming in udev to completely
2613 * disallow renaming of devices in the same namespace as the kernel uses,
2614 * because we can't solve the problems properly, that arise with swapping names
2615 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2616 * be allowed to some other name than eth[0-9]*, for the aforementioned
2617 * reasons.
2618 *
2619 * Make up a "real" name in the driver before you register anything, or add
2620 * some other attributes for userspace to find the device, or use udev to add
2621 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2622 * don't even want to get into that and try to implement the missing pieces in
2623 * the core. We really have other pieces to fix in the driver core mess. :)
2624 */
2625 int device_rename(struct device *dev, const char *new_name)
2626 {
2627 struct kobject *kobj = &dev->kobj;
2628 char *old_device_name = NULL;
2629 int error;
2630
2631 dev = get_device(dev);
2632 if (!dev)
2633 return -EINVAL;
2634
2635 dev_dbg(dev, "renaming to %s\n", new_name);
2636
2637 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2638 if (!old_device_name) {
2639 error = -ENOMEM;
2640 goto out;
2641 }
2642
2643 if (dev->class) {
2644 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2645 kobj, old_device_name,
2646 new_name, kobject_namespace(kobj));
2647 if (error)
2648 goto out;
2649 }
2650
2651 error = kobject_rename(kobj, new_name);
2652 if (error)
2653 goto out;
2654
2655 out:
2656 put_device(dev);
2657
2658 kfree(old_device_name);
2659
2660 return error;
2661 }
2662 EXPORT_SYMBOL_GPL(device_rename);
2663
2664 static int device_move_class_links(struct device *dev,
2665 struct device *old_parent,
2666 struct device *new_parent)
2667 {
2668 int error = 0;
2669
2670 if (old_parent)
2671 sysfs_remove_link(&dev->kobj, "device");
2672 if (new_parent)
2673 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2674 "device");
2675 return error;
2676 }
2677
2678 /**
2679 * device_move - moves a device to a new parent
2680 * @dev: the pointer to the struct device to be moved
2681 * @new_parent: the new parent of the device (can by NULL)
2682 * @dpm_order: how to reorder the dpm_list
2683 */
2684 int device_move(struct device *dev, struct device *new_parent,
2685 enum dpm_order dpm_order)
2686 {
2687 int error;
2688 struct device *old_parent;
2689 struct kobject *new_parent_kobj;
2690
2691 dev = get_device(dev);
2692 if (!dev)
2693 return -EINVAL;
2694
2695 device_pm_lock();
2696 new_parent = get_device(new_parent);
2697 new_parent_kobj = get_device_parent(dev, new_parent);
2698
2699 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2700 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2701 error = kobject_move(&dev->kobj, new_parent_kobj);
2702 if (error) {
2703 cleanup_glue_dir(dev, new_parent_kobj);
2704 put_device(new_parent);
2705 goto out;
2706 }
2707 old_parent = dev->parent;
2708 dev->parent = new_parent;
2709 if (old_parent)
2710 klist_remove(&dev->p->knode_parent);
2711 if (new_parent) {
2712 klist_add_tail(&dev->p->knode_parent,
2713 &new_parent->p->klist_children);
2714 set_dev_node(dev, dev_to_node(new_parent));
2715 }
2716
2717 if (dev->class) {
2718 error = device_move_class_links(dev, old_parent, new_parent);
2719 if (error) {
2720 /* We ignore errors on cleanup since we're hosed anyway... */
2721 device_move_class_links(dev, new_parent, old_parent);
2722 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2723 if (new_parent)
2724 klist_remove(&dev->p->knode_parent);
2725 dev->parent = old_parent;
2726 if (old_parent) {
2727 klist_add_tail(&dev->p->knode_parent,
2728 &old_parent->p->klist_children);
2729 set_dev_node(dev, dev_to_node(old_parent));
2730 }
2731 }
2732 cleanup_glue_dir(dev, new_parent_kobj);
2733 put_device(new_parent);
2734 goto out;
2735 }
2736 }
2737 switch (dpm_order) {
2738 case DPM_ORDER_NONE:
2739 break;
2740 case DPM_ORDER_DEV_AFTER_PARENT:
2741 device_pm_move_after(dev, new_parent);
2742 devices_kset_move_after(dev, new_parent);
2743 break;
2744 case DPM_ORDER_PARENT_BEFORE_DEV:
2745 device_pm_move_before(new_parent, dev);
2746 devices_kset_move_before(new_parent, dev);
2747 break;
2748 case DPM_ORDER_DEV_LAST:
2749 device_pm_move_last(dev);
2750 devices_kset_move_last(dev);
2751 break;
2752 }
2753
2754 put_device(old_parent);
2755 out:
2756 device_pm_unlock();
2757 put_device(dev);
2758 return error;
2759 }
2760 EXPORT_SYMBOL_GPL(device_move);
2761
2762 /**
2763 * device_shutdown - call ->shutdown() on each device to shutdown.
2764 */
2765 void device_shutdown(void)
2766 {
2767 struct device *dev, *parent;
2768
2769 spin_lock(&devices_kset->list_lock);
2770 /*
2771 * Walk the devices list backward, shutting down each in turn.
2772 * Beware that device unplug events may also start pulling
2773 * devices offline, even as the system is shutting down.
2774 */
2775 while (!list_empty(&devices_kset->list)) {
2776 dev = list_entry(devices_kset->list.prev, struct device,
2777 kobj.entry);
2778
2779 /*
2780 * hold reference count of device's parent to
2781 * prevent it from being freed because parent's
2782 * lock is to be held
2783 */
2784 parent = get_device(dev->parent);
2785 get_device(dev);
2786 /*
2787 * Make sure the device is off the kset list, in the
2788 * event that dev->*->shutdown() doesn't remove it.
2789 */
2790 list_del_init(&dev->kobj.entry);
2791 spin_unlock(&devices_kset->list_lock);
2792
2793 /* hold lock to avoid race with probe/release */
2794 if (parent)
2795 device_lock(parent);
2796 device_lock(dev);
2797
2798 /* Don't allow any more runtime suspends */
2799 pm_runtime_get_noresume(dev);
2800 pm_runtime_barrier(dev);
2801
2802 if (dev->bus && dev->bus->shutdown) {
2803 if (initcall_debug)
2804 dev_info(dev, "shutdown\n");
2805 dev->bus->shutdown(dev);
2806 } else if (dev->driver && dev->driver->shutdown) {
2807 if (initcall_debug)
2808 dev_info(dev, "shutdown\n");
2809 dev->driver->shutdown(dev);
2810 }
2811
2812 device_unlock(dev);
2813 if (parent)
2814 device_unlock(parent);
2815
2816 put_device(dev);
2817 put_device(parent);
2818
2819 spin_lock(&devices_kset->list_lock);
2820 }
2821 spin_unlock(&devices_kset->list_lock);
2822 }
2823
2824 /*
2825 * Device logging functions
2826 */
2827
2828 #ifdef CONFIG_PRINTK
2829 static int
2830 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2831 {
2832 const char *subsys;
2833 size_t pos = 0;
2834
2835 if (dev->class)
2836 subsys = dev->class->name;
2837 else if (dev->bus)
2838 subsys = dev->bus->name;
2839 else
2840 return 0;
2841
2842 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2843 if (pos >= hdrlen)
2844 goto overflow;
2845
2846 /*
2847 * Add device identifier DEVICE=:
2848 * b12:8 block dev_t
2849 * c127:3 char dev_t
2850 * n8 netdev ifindex
2851 * +sound:card0 subsystem:devname
2852 */
2853 if (MAJOR(dev->devt)) {
2854 char c;
2855
2856 if (strcmp(subsys, "block") == 0)
2857 c = 'b';
2858 else
2859 c = 'c';
2860 pos++;
2861 pos += snprintf(hdr + pos, hdrlen - pos,
2862 "DEVICE=%c%u:%u",
2863 c, MAJOR(dev->devt), MINOR(dev->devt));
2864 } else if (strcmp(subsys, "net") == 0) {
2865 struct net_device *net = to_net_dev(dev);
2866
2867 pos++;
2868 pos += snprintf(hdr + pos, hdrlen - pos,
2869 "DEVICE=n%u", net->ifindex);
2870 } else {
2871 pos++;
2872 pos += snprintf(hdr + pos, hdrlen - pos,
2873 "DEVICE=+%s:%s", subsys, dev_name(dev));
2874 }
2875
2876 if (pos >= hdrlen)
2877 goto overflow;
2878
2879 return pos;
2880
2881 overflow:
2882 dev_WARN(dev, "device/subsystem name too long");
2883 return 0;
2884 }
2885
2886 int dev_vprintk_emit(int level, const struct device *dev,
2887 const char *fmt, va_list args)
2888 {
2889 char hdr[128];
2890 size_t hdrlen;
2891
2892 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2893
2894 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2895 }
2896 EXPORT_SYMBOL(dev_vprintk_emit);
2897
2898 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2899 {
2900 va_list args;
2901 int r;
2902
2903 va_start(args, fmt);
2904
2905 r = dev_vprintk_emit(level, dev, fmt, args);
2906
2907 va_end(args);
2908
2909 return r;
2910 }
2911 EXPORT_SYMBOL(dev_printk_emit);
2912
2913 static void __dev_printk(const char *level, const struct device *dev,
2914 struct va_format *vaf)
2915 {
2916 if (dev)
2917 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2918 dev_driver_string(dev), dev_name(dev), vaf);
2919 else
2920 printk("%s(NULL device *): %pV", level, vaf);
2921 }
2922
2923 void dev_printk(const char *level, const struct device *dev,
2924 const char *fmt, ...)
2925 {
2926 struct va_format vaf;
2927 va_list args;
2928
2929 va_start(args, fmt);
2930
2931 vaf.fmt = fmt;
2932 vaf.va = &args;
2933
2934 __dev_printk(level, dev, &vaf);
2935
2936 va_end(args);
2937 }
2938 EXPORT_SYMBOL(dev_printk);
2939
2940 #define define_dev_printk_level(func, kern_level) \
2941 void func(const struct device *dev, const char *fmt, ...) \
2942 { \
2943 struct va_format vaf; \
2944 va_list args; \
2945 \
2946 va_start(args, fmt); \
2947 \
2948 vaf.fmt = fmt; \
2949 vaf.va = &args; \
2950 \
2951 __dev_printk(kern_level, dev, &vaf); \
2952 \
2953 va_end(args); \
2954 } \
2955 EXPORT_SYMBOL(func);
2956
2957 define_dev_printk_level(dev_emerg, KERN_EMERG);
2958 define_dev_printk_level(dev_alert, KERN_ALERT);
2959 define_dev_printk_level(dev_crit, KERN_CRIT);
2960 define_dev_printk_level(dev_err, KERN_ERR);
2961 define_dev_printk_level(dev_warn, KERN_WARNING);
2962 define_dev_printk_level(dev_notice, KERN_NOTICE);
2963 define_dev_printk_level(_dev_info, KERN_INFO);
2964
2965 #endif
2966
2967 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2968 {
2969 return fwnode && !IS_ERR(fwnode->secondary);
2970 }
2971
2972 /**
2973 * set_primary_fwnode - Change the primary firmware node of a given device.
2974 * @dev: Device to handle.
2975 * @fwnode: New primary firmware node of the device.
2976 *
2977 * Set the device's firmware node pointer to @fwnode, but if a secondary
2978 * firmware node of the device is present, preserve it.
2979 */
2980 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2981 {
2982 if (fwnode) {
2983 struct fwnode_handle *fn = dev->fwnode;
2984
2985 if (fwnode_is_primary(fn))
2986 fn = fn->secondary;
2987
2988 if (fn) {
2989 WARN_ON(fwnode->secondary);
2990 fwnode->secondary = fn;
2991 }
2992 dev->fwnode = fwnode;
2993 } else {
2994 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2995 dev->fwnode->secondary : NULL;
2996 }
2997 }
2998 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2999
3000 /**
3001 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3002 * @dev: Device to handle.
3003 * @fwnode: New secondary firmware node of the device.
3004 *
3005 * If a primary firmware node of the device is present, set its secondary
3006 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3007 * @fwnode.
3008 */
3009 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3010 {
3011 if (fwnode)
3012 fwnode->secondary = ERR_PTR(-ENODEV);
3013
3014 if (fwnode_is_primary(dev->fwnode))
3015 dev->fwnode->secondary = fwnode;
3016 else
3017 dev->fwnode = fwnode;
3018 }