Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / atm / ambassador.c
1 /*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
21 */
22
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
36 #include <linux/mutex.h>
37
38 #include <asm/atomic.h>
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41
42 #include "ambassador.h"
43
44 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
45 #define description_string "Madge ATM Ambassador driver"
46 #define version_string "1.2.4"
47
48 static inline void __init show_version (void) {
49 printk ("%s version %s\n", description_string, version_string);
50 }
51
52 /*
53
54 Theory of Operation
55
56 I Hardware, detection, initialisation and shutdown.
57
58 1. Supported Hardware
59
60 This driver is for the PCI ATMizer-based Ambassador card (except
61 very early versions). It is not suitable for the similar EISA "TR7"
62 card. Commercially, both cards are known as Collage Server ATM
63 adapters.
64
65 The loader supports image transfer to the card, image start and few
66 other miscellaneous commands.
67
68 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
69
70 The cards are big-endian.
71
72 2. Detection
73
74 Standard PCI stuff, the early cards are detected and rejected.
75
76 3. Initialisation
77
78 The cards are reset and the self-test results are checked. The
79 microcode image is then transferred and started. This waits for a
80 pointer to a descriptor containing details of the host-based queues
81 and buffers and various parameters etc. Once they are processed
82 normal operations may begin. The BIA is read using a microcode
83 command.
84
85 4. Shutdown
86
87 This may be accomplished either by a card reset or via the microcode
88 shutdown command. Further investigation required.
89
90 5. Persistent state
91
92 The card reset does not affect PCI configuration (good) or the
93 contents of several other "shared run-time registers" (bad) which
94 include doorbell and interrupt control as well as EEPROM and PCI
95 control. The driver must be careful when modifying these registers
96 not to touch bits it does not use and to undo any changes at exit.
97
98 II Driver software
99
100 0. Generalities
101
102 The adapter is quite intelligent (fast) and has a simple interface
103 (few features). VPI is always zero, 1024 VCIs are supported. There
104 is limited cell rate support. UBR channels can be capped and ABR
105 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
106 support.
107
108 1. Driver <-> Adapter Communication
109
110 Apart from the basic loader commands, the driver communicates
111 through three entities: the command queue (CQ), the transmit queue
112 pair (TXQ) and the receive queue pairs (RXQ). These three entities
113 are set up by the host and passed to the microcode just after it has
114 been started.
115
116 All queues are host-based circular queues. They are contiguous and
117 (due to hardware limitations) have some restrictions as to their
118 locations in (bus) memory. They are of the "full means the same as
119 empty so don't do that" variety since the adapter uses pointers
120 internally.
121
122 The queue pairs work as follows: one queue is for supply to the
123 adapter, items in it are pending and are owned by the adapter; the
124 other is the queue for return from the adapter, items in it have
125 been dealt with by the adapter. The host adds items to the supply
126 (TX descriptors and free RX buffer descriptors) and removes items
127 from the return (TX and RX completions). The adapter deals with out
128 of order completions.
129
130 Interrupts (card to host) and the doorbell (host to card) are used
131 for signalling.
132
133 1. CQ
134
135 This is to communicate "open VC", "close VC", "get stats" etc. to
136 the adapter. At most one command is retired every millisecond by the
137 card. There is no out of order completion or notification. The
138 driver needs to check the return code of the command, waiting as
139 appropriate.
140
141 2. TXQ
142
143 TX supply items are of variable length (scatter gather support) and
144 so the queue items are (more or less) pointers to the real thing.
145 Each TX supply item contains a unique, host-supplied handle (the skb
146 bus address seems most sensible as this works for Alphas as well,
147 there is no need to do any endian conversions on the handles).
148
149 TX return items consist of just the handles above.
150
151 3. RXQ (up to 4 of these with different lengths and buffer sizes)
152
153 RX supply items consist of a unique, host-supplied handle (the skb
154 bus address again) and a pointer to the buffer data area.
155
156 RX return items consist of the handle above, the VC, length and a
157 status word. This just screams "oh so easy" doesn't it?
158
159 Note on RX pool sizes:
160
161 Each pool should have enough buffers to handle a back-to-back stream
162 of minimum sized frames on a single VC. For example:
163
164 frame spacing = 3us (about right)
165
166 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
167
168 min number of buffers for one VC = 1 + delay/spacing (buffers)
169
170 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
171
172 The 20us delay assumes that there is no need to sleep; if we need to
173 sleep to get buffers we are going to drop frames anyway.
174
175 In fact, each pool should have enough buffers to support the
176 simultaneous reassembly of a separate frame on each VC and cope with
177 the case in which frames complete in round robin cell fashion on
178 each VC.
179
180 Only one frame can complete at each cell arrival, so if "n" VCs are
181 open, the worst case is to have them all complete frames together
182 followed by all starting new frames together.
183
184 desired number of buffers = n + delay/spacing
185
186 These are the extreme requirements, however, they are "n+k" for some
187 "k" so we have only the constant to choose. This is the argument
188 rx_lats which current defaults to 7.
189
190 Actually, "n ? n+k : 0" is better and this is what is implemented,
191 subject to the limit given by the pool size.
192
193 4. Driver locking
194
195 Simple spinlocks are used around the TX and RX queue mechanisms.
196 Anyone with a faster, working method is welcome to implement it.
197
198 The adapter command queue is protected with a spinlock. We always
199 wait for commands to complete.
200
201 A more complex form of locking is used around parts of the VC open
202 and close functions. There are three reasons for a lock: 1. we need
203 to do atomic rate reservation and release (not used yet), 2. Opening
204 sometimes involves two adapter commands which must not be separated
205 by another command on the same VC, 3. the changes to RX pool size
206 must be atomic. The lock needs to work over context switches, so we
207 use a semaphore.
208
209 III Hardware Features and Microcode Bugs
210
211 1. Byte Ordering
212
213 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
214
215 2. Memory access
216
217 All structures that are not accessed using DMA must be 4-byte
218 aligned (not a problem) and must not cross 4MB boundaries.
219
220 There is a DMA memory hole at E0000000-E00000FF (groan).
221
222 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
223 but for a hardware bug).
224
225 RX buffers (DMA write) must not cross 16MB boundaries and must
226 include spare trailing bytes up to the next 4-byte boundary; they
227 will be written with rubbish.
228
229 The PLX likes to prefetch; if reading up to 4 u32 past the end of
230 each TX fragment is not a problem, then TX can be made to go a
231 little faster by passing a flag at init that disables a prefetch
232 workaround. We do not pass this flag. (new microcode only)
233
234 Now we:
235 . Note that alloc_skb rounds up size to a 16byte boundary.
236 . Ensure all areas do not traverse 4MB boundaries.
237 . Ensure all areas do not start at a E00000xx bus address.
238 (I cannot be certain, but this may always hold with Linux)
239 . Make all failures cause a loud message.
240 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
241 . Discard non-conforming TX fragment descriptors (the TX fails).
242 In the future we could:
243 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
244 . Segment TX areas into some/more fragments, when necessary.
245 . Relax checks for non-DMA items (ignore hole).
246 . Give scatter-gather (iovec) requirements using ???. (?)
247
248 3. VC close is broken (only for new microcode)
249
250 The VC close adapter microcode command fails to do anything if any
251 frames have been received on the VC but none have been transmitted.
252 Frames continue to be reassembled and passed (with IRQ) to the
253 driver.
254
255 IV To Do List
256
257 . Fix bugs!
258
259 . Timer code may be broken.
260
261 . Deal with buggy VC close (somehow) in microcode 12.
262
263 . Handle interrupted and/or non-blocking writes - is this a job for
264 the protocol layer?
265
266 . Add code to break up TX fragments when they span 4MB boundaries.
267
268 . Add SUNI phy layer (need to know where SUNI lives on card).
269
270 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
271 leave extra headroom space for Ambassador TX descriptors.
272
273 . Understand these elements of struct atm_vcc: recvq (proto?),
274 sleep, callback, listenq, backlog_quota, reply and user_back.
275
276 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
277
278 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
279
280 . Decide whether RX buffer recycling is or can be made completely safe;
281 turn it back on. It looks like Werner is going to axe this.
282
283 . Implement QoS changes on open VCs (involves extracting parts of VC open
284 and close into separate functions and using them to make changes).
285
286 . Hack on command queue so that someone can issue multiple commands and wait
287 on the last one (OR only "no-op" or "wait" commands are waited for).
288
289 . Eliminate need for while-schedule around do_command.
290
291 */
292
293 /********** microcode **********/
294
295 #ifdef AMB_NEW_MICROCODE
296 #define UCODE(x) UCODE2(atmsar12.x)
297 #else
298 #define UCODE(x) UCODE2(atmsar11.x)
299 #endif
300 #define UCODE2(x) #x
301
302 static u32 __devinitdata ucode_start =
303 #include UCODE(start)
304 ;
305
306 static region __devinitdata ucode_regions[] = {
307 #include UCODE(regions)
308 { 0, 0 }
309 };
310
311 static u32 __devinitdata ucode_data[] = {
312 #include UCODE(data)
313 0xdeadbeef
314 };
315
316 static void do_housekeeping (unsigned long arg);
317 /********** globals **********/
318
319 static unsigned short debug = 0;
320 static unsigned int cmds = 8;
321 static unsigned int txs = 32;
322 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
323 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
324 static unsigned int rx_lats = 7;
325 static unsigned char pci_lat = 0;
326
327 static const unsigned long onegigmask = -1 << 30;
328
329 /********** access to adapter **********/
330
331 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
332 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
333 #ifdef AMB_MMIO
334 dev->membase[addr / sizeof(u32)] = data;
335 #else
336 outl (data, dev->iobase + addr);
337 #endif
338 }
339
340 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
341 #ifdef AMB_MMIO
342 u32 data = dev->membase[addr / sizeof(u32)];
343 #else
344 u32 data = inl (dev->iobase + addr);
345 #endif
346 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
347 return data;
348 }
349
350 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
351 __be32 be = cpu_to_be32 (data);
352 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
353 #ifdef AMB_MMIO
354 dev->membase[addr / sizeof(u32)] = be;
355 #else
356 outl (be, dev->iobase + addr);
357 #endif
358 }
359
360 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
361 #ifdef AMB_MMIO
362 __be32 be = dev->membase[addr / sizeof(u32)];
363 #else
364 __be32 be = inl (dev->iobase + addr);
365 #endif
366 u32 data = be32_to_cpu (be);
367 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
368 return data;
369 }
370
371 /********** dump routines **********/
372
373 static inline void dump_registers (const amb_dev * dev) {
374 #ifdef DEBUG_AMBASSADOR
375 if (debug & DBG_REGS) {
376 size_t i;
377 PRINTD (DBG_REGS, "reading PLX control: ");
378 for (i = 0x00; i < 0x30; i += sizeof(u32))
379 rd_mem (dev, i);
380 PRINTD (DBG_REGS, "reading mailboxes: ");
381 for (i = 0x40; i < 0x60; i += sizeof(u32))
382 rd_mem (dev, i);
383 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
384 for (i = 0x60; i < 0x70; i += sizeof(u32))
385 rd_mem (dev, i);
386 }
387 #else
388 (void) dev;
389 #endif
390 return;
391 }
392
393 static inline void dump_loader_block (volatile loader_block * lb) {
394 #ifdef DEBUG_AMBASSADOR
395 unsigned int i;
396 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
397 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
398 for (i = 0; i < MAX_COMMAND_DATA; ++i)
399 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
400 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
401 #else
402 (void) lb;
403 #endif
404 return;
405 }
406
407 static inline void dump_command (command * cmd) {
408 #ifdef DEBUG_AMBASSADOR
409 unsigned int i;
410 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
411 cmd, /*be32_to_cpu*/ (cmd->request));
412 for (i = 0; i < 3; ++i)
413 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
414 PRINTDE (DBG_CMD, "");
415 #else
416 (void) cmd;
417 #endif
418 return;
419 }
420
421 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
422 #ifdef DEBUG_AMBASSADOR
423 unsigned int i;
424 unsigned char * data = skb->data;
425 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
426 for (i=0; i<skb->len && i < 256;i++)
427 PRINTDM (DBG_DATA, "%02x ", data[i]);
428 PRINTDE (DBG_DATA,"");
429 #else
430 (void) prefix;
431 (void) vc;
432 (void) skb;
433 #endif
434 return;
435 }
436
437 /********** check memory areas for use by Ambassador **********/
438
439 /* see limitations under Hardware Features */
440
441 static int check_area (void * start, size_t length) {
442 // assumes length > 0
443 const u32 fourmegmask = -1 << 22;
444 const u32 twofivesixmask = -1 << 8;
445 const u32 starthole = 0xE0000000;
446 u32 startaddress = virt_to_bus (start);
447 u32 lastaddress = startaddress+length-1;
448 if ((startaddress ^ lastaddress) & fourmegmask ||
449 (startaddress & twofivesixmask) == starthole) {
450 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
451 startaddress, lastaddress);
452 return -1;
453 } else {
454 return 0;
455 }
456 }
457
458 /********** free an skb (as per ATM device driver documentation) **********/
459
460 static void amb_kfree_skb (struct sk_buff * skb) {
461 if (ATM_SKB(skb)->vcc->pop) {
462 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
463 } else {
464 dev_kfree_skb_any (skb);
465 }
466 }
467
468 /********** TX completion **********/
469
470 static void tx_complete (amb_dev * dev, tx_out * tx) {
471 tx_simple * tx_descr = bus_to_virt (tx->handle);
472 struct sk_buff * skb = tx_descr->skb;
473
474 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
475
476 // VC layer stats
477 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
478
479 // free the descriptor
480 kfree (tx_descr);
481
482 // free the skb
483 amb_kfree_skb (skb);
484
485 dev->stats.tx_ok++;
486 return;
487 }
488
489 /********** RX completion **********/
490
491 static void rx_complete (amb_dev * dev, rx_out * rx) {
492 struct sk_buff * skb = bus_to_virt (rx->handle);
493 u16 vc = be16_to_cpu (rx->vc);
494 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
495 u16 status = be16_to_cpu (rx->status);
496 u16 rx_len = be16_to_cpu (rx->length);
497
498 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
499
500 // XXX move this in and add to VC stats ???
501 if (!status) {
502 struct atm_vcc * atm_vcc = dev->rxer[vc];
503 dev->stats.rx.ok++;
504
505 if (atm_vcc) {
506
507 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
508
509 if (atm_charge (atm_vcc, skb->truesize)) {
510
511 // prepare socket buffer
512 ATM_SKB(skb)->vcc = atm_vcc;
513 skb_put (skb, rx_len);
514
515 dump_skb ("<<<", vc, skb);
516
517 // VC layer stats
518 atomic_inc(&atm_vcc->stats->rx);
519 __net_timestamp(skb);
520 // end of our responsability
521 atm_vcc->push (atm_vcc, skb);
522 return;
523
524 } else {
525 // someone fix this (message), please!
526 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
527 // drop stats incremented in atm_charge
528 }
529
530 } else {
531 PRINTK (KERN_INFO, "dropped over-size frame");
532 // should we count this?
533 atomic_inc(&atm_vcc->stats->rx_drop);
534 }
535
536 } else {
537 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
538 // this is an adapter bug, only in new version of microcode
539 }
540
541 } else {
542 dev->stats.rx.error++;
543 if (status & CRC_ERR)
544 dev->stats.rx.badcrc++;
545 if (status & LEN_ERR)
546 dev->stats.rx.toolong++;
547 if (status & ABORT_ERR)
548 dev->stats.rx.aborted++;
549 if (status & UNUSED_ERR)
550 dev->stats.rx.unused++;
551 }
552
553 dev_kfree_skb_any (skb);
554 return;
555 }
556
557 /*
558
559 Note on queue handling.
560
561 Here "give" and "take" refer to queue entries and a queue (pair)
562 rather than frames to or from the host or adapter. Empty frame
563 buffers are given to the RX queue pair and returned unused or
564 containing RX frames. TX frames (well, pointers to TX fragment
565 lists) are given to the TX queue pair, completions are returned.
566
567 */
568
569 /********** command queue **********/
570
571 // I really don't like this, but it's the best I can do at the moment
572
573 // also, the callers are responsible for byte order as the microcode
574 // sometimes does 16-bit accesses (yuk yuk yuk)
575
576 static int command_do (amb_dev * dev, command * cmd) {
577 amb_cq * cq = &dev->cq;
578 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
579 command * my_slot;
580
581 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
582
583 if (test_bit (dead, &dev->flags))
584 return 0;
585
586 spin_lock (&cq->lock);
587
588 // if not full...
589 if (cq->pending < cq->maximum) {
590 // remember my slot for later
591 my_slot = ptrs->in;
592 PRINTD (DBG_CMD, "command in slot %p", my_slot);
593
594 dump_command (cmd);
595
596 // copy command in
597 *ptrs->in = *cmd;
598 cq->pending++;
599 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
600
601 // mail the command
602 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
603
604 if (cq->pending > cq->high)
605 cq->high = cq->pending;
606 spin_unlock (&cq->lock);
607
608 // these comments were in a while-loop before, msleep removes the loop
609 // go to sleep
610 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
611 msleep(cq->pending);
612
613 // wait for my slot to be reached (all waiters are here or above, until...)
614 while (ptrs->out != my_slot) {
615 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
616 set_current_state(TASK_UNINTERRUPTIBLE);
617 schedule();
618 }
619
620 // wait on my slot (... one gets to its slot, and... )
621 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
622 PRINTD (DBG_CMD, "wait: command slot completion");
623 set_current_state(TASK_UNINTERRUPTIBLE);
624 schedule();
625 }
626
627 PRINTD (DBG_CMD, "command complete");
628 // update queue (... moves the queue along to the next slot)
629 spin_lock (&cq->lock);
630 cq->pending--;
631 // copy command out
632 *cmd = *ptrs->out;
633 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
634 spin_unlock (&cq->lock);
635
636 return 0;
637 } else {
638 cq->filled++;
639 spin_unlock (&cq->lock);
640 return -EAGAIN;
641 }
642
643 }
644
645 /********** TX queue pair **********/
646
647 static int tx_give (amb_dev * dev, tx_in * tx) {
648 amb_txq * txq = &dev->txq;
649 unsigned long flags;
650
651 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
652
653 if (test_bit (dead, &dev->flags))
654 return 0;
655
656 spin_lock_irqsave (&txq->lock, flags);
657
658 if (txq->pending < txq->maximum) {
659 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
660
661 *txq->in.ptr = *tx;
662 txq->pending++;
663 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
664 // hand over the TX and ring the bell
665 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
666 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
667
668 if (txq->pending > txq->high)
669 txq->high = txq->pending;
670 spin_unlock_irqrestore (&txq->lock, flags);
671 return 0;
672 } else {
673 txq->filled++;
674 spin_unlock_irqrestore (&txq->lock, flags);
675 return -EAGAIN;
676 }
677 }
678
679 static int tx_take (amb_dev * dev) {
680 amb_txq * txq = &dev->txq;
681 unsigned long flags;
682
683 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
684
685 spin_lock_irqsave (&txq->lock, flags);
686
687 if (txq->pending && txq->out.ptr->handle) {
688 // deal with TX completion
689 tx_complete (dev, txq->out.ptr);
690 // mark unused again
691 txq->out.ptr->handle = 0;
692 // remove item
693 txq->pending--;
694 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
695
696 spin_unlock_irqrestore (&txq->lock, flags);
697 return 0;
698 } else {
699
700 spin_unlock_irqrestore (&txq->lock, flags);
701 return -1;
702 }
703 }
704
705 /********** RX queue pairs **********/
706
707 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
708 amb_rxq * rxq = &dev->rxq[pool];
709 unsigned long flags;
710
711 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
712
713 spin_lock_irqsave (&rxq->lock, flags);
714
715 if (rxq->pending < rxq->maximum) {
716 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
717
718 *rxq->in.ptr = *rx;
719 rxq->pending++;
720 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
721 // hand over the RX buffer
722 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
723
724 spin_unlock_irqrestore (&rxq->lock, flags);
725 return 0;
726 } else {
727 spin_unlock_irqrestore (&rxq->lock, flags);
728 return -1;
729 }
730 }
731
732 static int rx_take (amb_dev * dev, unsigned char pool) {
733 amb_rxq * rxq = &dev->rxq[pool];
734 unsigned long flags;
735
736 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
737
738 spin_lock_irqsave (&rxq->lock, flags);
739
740 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
741 // deal with RX completion
742 rx_complete (dev, rxq->out.ptr);
743 // mark unused again
744 rxq->out.ptr->status = 0;
745 rxq->out.ptr->length = 0;
746 // remove item
747 rxq->pending--;
748 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
749
750 if (rxq->pending < rxq->low)
751 rxq->low = rxq->pending;
752 spin_unlock_irqrestore (&rxq->lock, flags);
753 return 0;
754 } else {
755 if (!rxq->pending && rxq->buffers_wanted)
756 rxq->emptied++;
757 spin_unlock_irqrestore (&rxq->lock, flags);
758 return -1;
759 }
760 }
761
762 /********** RX Pool handling **********/
763
764 /* pre: buffers_wanted = 0, post: pending = 0 */
765 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
766 amb_rxq * rxq = &dev->rxq[pool];
767
768 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
769
770 if (test_bit (dead, &dev->flags))
771 return;
772
773 /* we are not quite like the fill pool routines as we cannot just
774 remove one buffer, we have to remove all of them, but we might as
775 well pretend... */
776 if (rxq->pending > rxq->buffers_wanted) {
777 command cmd;
778 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
779 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
780 while (command_do (dev, &cmd))
781 schedule();
782 /* the pool may also be emptied via the interrupt handler */
783 while (rxq->pending > rxq->buffers_wanted)
784 if (rx_take (dev, pool))
785 schedule();
786 }
787
788 return;
789 }
790
791 static void drain_rx_pools (amb_dev * dev) {
792 unsigned char pool;
793
794 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
795
796 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
797 drain_rx_pool (dev, pool);
798 }
799
800 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
801 gfp_t priority)
802 {
803 rx_in rx;
804 amb_rxq * rxq;
805
806 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
807
808 if (test_bit (dead, &dev->flags))
809 return;
810
811 rxq = &dev->rxq[pool];
812 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
813
814 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
815 if (!skb) {
816 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
817 return;
818 }
819 if (check_area (skb->data, skb->truesize)) {
820 dev_kfree_skb_any (skb);
821 return;
822 }
823 // cast needed as there is no %? for pointer differences
824 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
825 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
826 rx.handle = virt_to_bus (skb);
827 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
828 if (rx_give (dev, &rx, pool))
829 dev_kfree_skb_any (skb);
830
831 }
832
833 return;
834 }
835
836 // top up all RX pools (can also be called as a bottom half)
837 static void fill_rx_pools (amb_dev * dev) {
838 unsigned char pool;
839
840 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
841
842 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
843 fill_rx_pool (dev, pool, GFP_ATOMIC);
844
845 return;
846 }
847
848 /********** enable host interrupts **********/
849
850 static void interrupts_on (amb_dev * dev) {
851 wr_plain (dev, offsetof(amb_mem, interrupt_control),
852 rd_plain (dev, offsetof(amb_mem, interrupt_control))
853 | AMB_INTERRUPT_BITS);
854 }
855
856 /********** disable host interrupts **********/
857
858 static void interrupts_off (amb_dev * dev) {
859 wr_plain (dev, offsetof(amb_mem, interrupt_control),
860 rd_plain (dev, offsetof(amb_mem, interrupt_control))
861 &~ AMB_INTERRUPT_BITS);
862 }
863
864 /********** interrupt handling **********/
865
866 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
867 amb_dev * dev = dev_id;
868
869 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
870
871 {
872 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
873
874 // for us or someone else sharing the same interrupt
875 if (!interrupt) {
876 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
877 return IRQ_NONE;
878 }
879
880 // definitely for us
881 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
882 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
883 }
884
885 {
886 unsigned int irq_work = 0;
887 unsigned char pool;
888 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
889 while (!rx_take (dev, pool))
890 ++irq_work;
891 while (!tx_take (dev))
892 ++irq_work;
893
894 if (irq_work) {
895 #ifdef FILL_RX_POOLS_IN_BH
896 schedule_work (&dev->bh);
897 #else
898 fill_rx_pools (dev);
899 #endif
900
901 PRINTD (DBG_IRQ, "work done: %u", irq_work);
902 } else {
903 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
904 }
905 }
906
907 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
908 return IRQ_HANDLED;
909 }
910
911 /********** make rate (not quite as much fun as Horizon) **********/
912
913 static int make_rate (unsigned int rate, rounding r,
914 u16 * bits, unsigned int * actual) {
915 unsigned char exp = -1; // hush gcc
916 unsigned int man = -1; // hush gcc
917
918 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
919
920 // rates in cells per second, ITU format (nasty 16-bit floating-point)
921 // given 5-bit e and 9-bit m:
922 // rate = EITHER (1+m/2^9)*2^e OR 0
923 // bits = EITHER 1<<14 | e<<9 | m OR 0
924 // (bit 15 is "reserved", bit 14 "non-zero")
925 // smallest rate is 0 (special representation)
926 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
927 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
928 // simple algorithm:
929 // find position of top bit, this gives e
930 // remove top bit and shift (rounding if feeling clever) by 9-e
931
932 // ucode bug: please don't set bit 14! so 0 rate not representable
933
934 if (rate > 0xffc00000U) {
935 // larger than largest representable rate
936
937 if (r == round_up) {
938 return -EINVAL;
939 } else {
940 exp = 31;
941 man = 511;
942 }
943
944 } else if (rate) {
945 // representable rate
946
947 exp = 31;
948 man = rate;
949
950 // invariant: rate = man*2^(exp-31)
951 while (!(man & (1<<31))) {
952 exp = exp - 1;
953 man = man<<1;
954 }
955
956 // man has top bit set
957 // rate = (2^31+(man-2^31))*2^(exp-31)
958 // rate = (1+(man-2^31)/2^31)*2^exp
959 man = man<<1;
960 man &= 0xffffffffU; // a nop on 32-bit systems
961 // rate = (1+man/2^32)*2^exp
962
963 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
964 // time to lose significance... we want m in the range 0 to 2^9-1
965 // rounding presents a minor problem... we first decide which way
966 // we are rounding (based on given rounding direction and possibly
967 // the bits of the mantissa that are to be discarded).
968
969 switch (r) {
970 case round_down: {
971 // just truncate
972 man = man>>(32-9);
973 break;
974 }
975 case round_up: {
976 // check all bits that we are discarding
977 if (man & (~0U>>9)) {
978 man = (man>>(32-9)) + 1;
979 if (man == (1<<9)) {
980 // no need to check for round up outside of range
981 man = 0;
982 exp += 1;
983 }
984 } else {
985 man = (man>>(32-9));
986 }
987 break;
988 }
989 case round_nearest: {
990 // check msb that we are discarding
991 if (man & (1<<(32-9-1))) {
992 man = (man>>(32-9)) + 1;
993 if (man == (1<<9)) {
994 // no need to check for round up outside of range
995 man = 0;
996 exp += 1;
997 }
998 } else {
999 man = (man>>(32-9));
1000 }
1001 break;
1002 }
1003 }
1004
1005 } else {
1006 // zero rate - not representable
1007
1008 if (r == round_down) {
1009 return -EINVAL;
1010 } else {
1011 exp = 0;
1012 man = 0;
1013 }
1014
1015 }
1016
1017 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
1018
1019 if (bits)
1020 *bits = /* (1<<14) | */ (exp<<9) | man;
1021
1022 if (actual)
1023 *actual = (exp >= 9)
1024 ? (1 << exp) + (man << (exp-9))
1025 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1026
1027 return 0;
1028 }
1029
1030 /********** Linux ATM Operations **********/
1031
1032 // some are not yet implemented while others do not make sense for
1033 // this device
1034
1035 /********** Open a VC **********/
1036
1037 static int amb_open (struct atm_vcc * atm_vcc)
1038 {
1039 int error;
1040
1041 struct atm_qos * qos;
1042 struct atm_trafprm * txtp;
1043 struct atm_trafprm * rxtp;
1044 u16 tx_rate_bits = -1; // hush gcc
1045 u16 tx_vc_bits = -1; // hush gcc
1046 u16 tx_frame_bits = -1; // hush gcc
1047
1048 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1049 amb_vcc * vcc;
1050 unsigned char pool = -1; // hush gcc
1051 short vpi = atm_vcc->vpi;
1052 int vci = atm_vcc->vci;
1053
1054 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1055
1056 #ifdef ATM_VPI_UNSPEC
1057 // UNSPEC is deprecated, remove this code eventually
1058 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1059 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1060 return -EINVAL;
1061 }
1062 #endif
1063
1064 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1065 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1066 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1067 return -EINVAL;
1068 }
1069
1070 qos = &atm_vcc->qos;
1071
1072 if (qos->aal != ATM_AAL5) {
1073 PRINTD (DBG_QOS, "AAL not supported");
1074 return -EINVAL;
1075 }
1076
1077 // traffic parameters
1078
1079 PRINTD (DBG_QOS, "TX:");
1080 txtp = &qos->txtp;
1081 if (txtp->traffic_class != ATM_NONE) {
1082 switch (txtp->traffic_class) {
1083 case ATM_UBR: {
1084 // we take "the PCR" as a rate-cap
1085 int pcr = atm_pcr_goal (txtp);
1086 if (!pcr) {
1087 // no rate cap
1088 tx_rate_bits = 0;
1089 tx_vc_bits = TX_UBR;
1090 tx_frame_bits = TX_FRAME_NOTCAP;
1091 } else {
1092 rounding r;
1093 if (pcr < 0) {
1094 r = round_down;
1095 pcr = -pcr;
1096 } else {
1097 r = round_up;
1098 }
1099 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1100 if (error)
1101 return error;
1102 tx_vc_bits = TX_UBR_CAPPED;
1103 tx_frame_bits = TX_FRAME_CAPPED;
1104 }
1105 break;
1106 }
1107 #if 0
1108 case ATM_ABR: {
1109 pcr = atm_pcr_goal (txtp);
1110 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1111 break;
1112 }
1113 #endif
1114 default: {
1115 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1116 PRINTD (DBG_QOS, "request for non-UBR denied");
1117 return -EINVAL;
1118 }
1119 }
1120 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1121 tx_rate_bits, tx_vc_bits);
1122 }
1123
1124 PRINTD (DBG_QOS, "RX:");
1125 rxtp = &qos->rxtp;
1126 if (rxtp->traffic_class == ATM_NONE) {
1127 // do nothing
1128 } else {
1129 // choose an RX pool (arranged in increasing size)
1130 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1131 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1132 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1133 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1134 break;
1135 }
1136 if (pool == NUM_RX_POOLS) {
1137 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1138 "no pool suitable for VC (RX max_sdu %d is too large)",
1139 rxtp->max_sdu);
1140 return -EINVAL;
1141 }
1142
1143 switch (rxtp->traffic_class) {
1144 case ATM_UBR: {
1145 break;
1146 }
1147 #if 0
1148 case ATM_ABR: {
1149 pcr = atm_pcr_goal (rxtp);
1150 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1151 break;
1152 }
1153 #endif
1154 default: {
1155 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1156 PRINTD (DBG_QOS, "request for non-UBR denied");
1157 return -EINVAL;
1158 }
1159 }
1160 }
1161
1162 // get space for our vcc stuff
1163 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1164 if (!vcc) {
1165 PRINTK (KERN_ERR, "out of memory!");
1166 return -ENOMEM;
1167 }
1168 atm_vcc->dev_data = (void *) vcc;
1169
1170 // no failures beyond this point
1171
1172 // we are not really "immediately before allocating the connection
1173 // identifier in hardware", but it will just have to do!
1174 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1175
1176 if (txtp->traffic_class != ATM_NONE) {
1177 command cmd;
1178
1179 vcc->tx_frame_bits = tx_frame_bits;
1180
1181 mutex_lock(&dev->vcc_sf);
1182 if (dev->rxer[vci]) {
1183 // RXer on the channel already, just modify rate...
1184 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1185 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1186 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1187 while (command_do (dev, &cmd))
1188 schedule();
1189 // ... and TX flags, preserving the RX pool
1190 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1191 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1192 cmd.args.modify_flags.flags = cpu_to_be32
1193 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1194 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1195 while (command_do (dev, &cmd))
1196 schedule();
1197 } else {
1198 // no RXer on the channel, just open (with pool zero)
1199 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1200 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1201 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1202 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1203 while (command_do (dev, &cmd))
1204 schedule();
1205 }
1206 dev->txer[vci].tx_present = 1;
1207 mutex_unlock(&dev->vcc_sf);
1208 }
1209
1210 if (rxtp->traffic_class != ATM_NONE) {
1211 command cmd;
1212
1213 vcc->rx_info.pool = pool;
1214
1215 mutex_lock(&dev->vcc_sf);
1216 /* grow RX buffer pool */
1217 if (!dev->rxq[pool].buffers_wanted)
1218 dev->rxq[pool].buffers_wanted = rx_lats;
1219 dev->rxq[pool].buffers_wanted += 1;
1220 fill_rx_pool (dev, pool, GFP_KERNEL);
1221
1222 if (dev->txer[vci].tx_present) {
1223 // TXer on the channel already
1224 // switch (from pool zero) to this pool, preserving the TX bits
1225 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1226 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1227 cmd.args.modify_flags.flags = cpu_to_be32
1228 ( (pool << SRB_POOL_SHIFT)
1229 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1230 } else {
1231 // no TXer on the channel, open the VC (with no rate info)
1232 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1233 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1234 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1235 cmd.args.open.rate = cpu_to_be32 (0);
1236 }
1237 while (command_do (dev, &cmd))
1238 schedule();
1239 // this link allows RX frames through
1240 dev->rxer[vci] = atm_vcc;
1241 mutex_unlock(&dev->vcc_sf);
1242 }
1243
1244 // indicate readiness
1245 set_bit(ATM_VF_READY,&atm_vcc->flags);
1246
1247 return 0;
1248 }
1249
1250 /********** Close a VC **********/
1251
1252 static void amb_close (struct atm_vcc * atm_vcc) {
1253 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1254 amb_vcc * vcc = AMB_VCC (atm_vcc);
1255 u16 vci = atm_vcc->vci;
1256
1257 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1258
1259 // indicate unreadiness
1260 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1261
1262 // disable TXing
1263 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1264 command cmd;
1265
1266 mutex_lock(&dev->vcc_sf);
1267 if (dev->rxer[vci]) {
1268 // RXer still on the channel, just modify rate... XXX not really needed
1269 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1270 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1271 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1272 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1273 } else {
1274 // no RXer on the channel, close channel
1275 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1276 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1277 }
1278 dev->txer[vci].tx_present = 0;
1279 while (command_do (dev, &cmd))
1280 schedule();
1281 mutex_unlock(&dev->vcc_sf);
1282 }
1283
1284 // disable RXing
1285 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1286 command cmd;
1287
1288 // this is (the?) one reason why we need the amb_vcc struct
1289 unsigned char pool = vcc->rx_info.pool;
1290
1291 mutex_lock(&dev->vcc_sf);
1292 if (dev->txer[vci].tx_present) {
1293 // TXer still on the channel, just go to pool zero XXX not really needed
1294 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1295 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1296 cmd.args.modify_flags.flags = cpu_to_be32
1297 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1298 } else {
1299 // no TXer on the channel, close the VC
1300 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1301 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1302 }
1303 // forget the rxer - no more skbs will be pushed
1304 if (atm_vcc != dev->rxer[vci])
1305 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1306 "arghhh! we're going to die!",
1307 vcc, dev->rxer[vci]);
1308 dev->rxer[vci] = NULL;
1309 while (command_do (dev, &cmd))
1310 schedule();
1311
1312 /* shrink RX buffer pool */
1313 dev->rxq[pool].buffers_wanted -= 1;
1314 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1315 dev->rxq[pool].buffers_wanted = 0;
1316 drain_rx_pool (dev, pool);
1317 }
1318 mutex_unlock(&dev->vcc_sf);
1319 }
1320
1321 // free our structure
1322 kfree (vcc);
1323
1324 // say the VPI/VCI is free again
1325 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1326
1327 return;
1328 }
1329
1330 /********** Set socket options for a VC **********/
1331
1332 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1333
1334 /********** Set socket options for a VC **********/
1335
1336 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1337
1338 /********** Send **********/
1339
1340 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1341 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1342 amb_vcc * vcc = AMB_VCC(atm_vcc);
1343 u16 vc = atm_vcc->vci;
1344 unsigned int tx_len = skb->len;
1345 unsigned char * tx_data = skb->data;
1346 tx_simple * tx_descr;
1347 tx_in tx;
1348
1349 if (test_bit (dead, &dev->flags))
1350 return -EIO;
1351
1352 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1353 vc, tx_data, tx_len);
1354
1355 dump_skb (">>>", vc, skb);
1356
1357 if (!dev->txer[vc].tx_present) {
1358 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1359 return -EBADFD;
1360 }
1361
1362 // this is a driver private field so we have to set it ourselves,
1363 // despite the fact that we are _required_ to use it to check for a
1364 // pop function
1365 ATM_SKB(skb)->vcc = atm_vcc;
1366
1367 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1368 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1369 return -EIO;
1370 }
1371
1372 if (check_area (skb->data, skb->len)) {
1373 atomic_inc(&atm_vcc->stats->tx_err);
1374 return -ENOMEM; // ?
1375 }
1376
1377 // allocate memory for fragments
1378 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1379 if (!tx_descr) {
1380 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1381 return -ENOMEM;
1382 }
1383 if (check_area (tx_descr, sizeof(tx_simple))) {
1384 kfree (tx_descr);
1385 return -ENOMEM;
1386 }
1387 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1388
1389 tx_descr->skb = skb;
1390
1391 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1392 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1393
1394 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1395 tx_descr->tx_frag_end.vc = 0;
1396 tx_descr->tx_frag_end.next_descriptor_length = 0;
1397 tx_descr->tx_frag_end.next_descriptor = 0;
1398 #ifdef AMB_NEW_MICROCODE
1399 tx_descr->tx_frag_end.cpcs_uu = 0;
1400 tx_descr->tx_frag_end.cpi = 0;
1401 tx_descr->tx_frag_end.pad = 0;
1402 #endif
1403
1404 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1405 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1406 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1407
1408 while (tx_give (dev, &tx))
1409 schedule();
1410 return 0;
1411 }
1412
1413 /********** Change QoS on a VC **********/
1414
1415 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1416
1417 /********** Free RX Socket Buffer **********/
1418
1419 #if 0
1420 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1421 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1422 amb_vcc * vcc = AMB_VCC (atm_vcc);
1423 unsigned char pool = vcc->rx_info.pool;
1424 rx_in rx;
1425
1426 // This may be unsafe for various reasons that I cannot really guess
1427 // at. However, I note that the ATM layer calls kfree_skb rather
1428 // than dev_kfree_skb at this point so we are least covered as far
1429 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1430
1431 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1432 skb, atm_vcc, vcc);
1433
1434 rx.handle = virt_to_bus (skb);
1435 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1436
1437 skb->data = skb->head;
1438 skb->tail = skb->head;
1439 skb->len = 0;
1440
1441 if (!rx_give (dev, &rx, pool)) {
1442 // success
1443 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1444 return;
1445 }
1446
1447 // just do what the ATM layer would have done
1448 dev_kfree_skb_any (skb);
1449
1450 return;
1451 }
1452 #endif
1453
1454 /********** Proc File Output **********/
1455
1456 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1457 amb_dev * dev = AMB_DEV (atm_dev);
1458 int left = *pos;
1459 unsigned char pool;
1460
1461 PRINTD (DBG_FLOW, "amb_proc_read");
1462
1463 /* more diagnostics here? */
1464
1465 if (!left--) {
1466 amb_stats * s = &dev->stats;
1467 return sprintf (page,
1468 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1469 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1470 s->tx_ok, s->rx.ok, s->rx.error,
1471 s->rx.badcrc, s->rx.toolong,
1472 s->rx.aborted, s->rx.unused);
1473 }
1474
1475 if (!left--) {
1476 amb_cq * c = &dev->cq;
1477 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1478 c->pending, c->high, c->maximum);
1479 }
1480
1481 if (!left--) {
1482 amb_txq * t = &dev->txq;
1483 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1484 t->pending, t->maximum, t->high, t->filled);
1485 }
1486
1487 if (!left--) {
1488 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1489 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1490 amb_rxq * r = &dev->rxq[pool];
1491 count += sprintf (page+count, " %u/%u/%u %u %u",
1492 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1493 }
1494 count += sprintf (page+count, ".\n");
1495 return count;
1496 }
1497
1498 if (!left--) {
1499 unsigned int count = sprintf (page, "RX buffer sizes:");
1500 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1501 amb_rxq * r = &dev->rxq[pool];
1502 count += sprintf (page+count, " %u", r->buffer_size);
1503 }
1504 count += sprintf (page+count, ".\n");
1505 return count;
1506 }
1507
1508 #if 0
1509 if (!left--) {
1510 // suni block etc?
1511 }
1512 #endif
1513
1514 return 0;
1515 }
1516
1517 /********** Operation Structure **********/
1518
1519 static const struct atmdev_ops amb_ops = {
1520 .open = amb_open,
1521 .close = amb_close,
1522 .send = amb_send,
1523 .proc_read = amb_proc_read,
1524 .owner = THIS_MODULE,
1525 };
1526
1527 /********** housekeeping **********/
1528 static void do_housekeeping (unsigned long arg) {
1529 amb_dev * dev = (amb_dev *) arg;
1530
1531 // could collect device-specific (not driver/atm-linux) stats here
1532
1533 // last resort refill once every ten seconds
1534 fill_rx_pools (dev);
1535 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1536
1537 return;
1538 }
1539
1540 /********** creation of communication queues **********/
1541
1542 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1543 unsigned int txs, unsigned int * rxs,
1544 unsigned int * rx_buffer_sizes) {
1545 unsigned char pool;
1546 size_t total = 0;
1547 void * memory;
1548 void * limit;
1549
1550 PRINTD (DBG_FLOW, "create_queues %p", dev);
1551
1552 total += cmds * sizeof(command);
1553
1554 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1555
1556 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1557 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1558
1559 memory = kmalloc (total, GFP_KERNEL);
1560 if (!memory) {
1561 PRINTK (KERN_ERR, "could not allocate queues");
1562 return -ENOMEM;
1563 }
1564 if (check_area (memory, total)) {
1565 PRINTK (KERN_ERR, "queues allocated in nasty area");
1566 kfree (memory);
1567 return -ENOMEM;
1568 }
1569
1570 limit = memory + total;
1571 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1572
1573 PRINTD (DBG_CMD, "command queue at %p", memory);
1574
1575 {
1576 command * cmd = memory;
1577 amb_cq * cq = &dev->cq;
1578
1579 cq->pending = 0;
1580 cq->high = 0;
1581 cq->maximum = cmds - 1;
1582
1583 cq->ptrs.start = cmd;
1584 cq->ptrs.in = cmd;
1585 cq->ptrs.out = cmd;
1586 cq->ptrs.limit = cmd + cmds;
1587
1588 memory = cq->ptrs.limit;
1589 }
1590
1591 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1592
1593 {
1594 tx_in * in = memory;
1595 tx_out * out;
1596 amb_txq * txq = &dev->txq;
1597
1598 txq->pending = 0;
1599 txq->high = 0;
1600 txq->filled = 0;
1601 txq->maximum = txs - 1;
1602
1603 txq->in.start = in;
1604 txq->in.ptr = in;
1605 txq->in.limit = in + txs;
1606
1607 memory = txq->in.limit;
1608 out = memory;
1609
1610 txq->out.start = out;
1611 txq->out.ptr = out;
1612 txq->out.limit = out + txs;
1613
1614 memory = txq->out.limit;
1615 }
1616
1617 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1618
1619 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1620 rx_in * in = memory;
1621 rx_out * out;
1622 amb_rxq * rxq = &dev->rxq[pool];
1623
1624 rxq->buffer_size = rx_buffer_sizes[pool];
1625 rxq->buffers_wanted = 0;
1626
1627 rxq->pending = 0;
1628 rxq->low = rxs[pool] - 1;
1629 rxq->emptied = 0;
1630 rxq->maximum = rxs[pool] - 1;
1631
1632 rxq->in.start = in;
1633 rxq->in.ptr = in;
1634 rxq->in.limit = in + rxs[pool];
1635
1636 memory = rxq->in.limit;
1637 out = memory;
1638
1639 rxq->out.start = out;
1640 rxq->out.ptr = out;
1641 rxq->out.limit = out + rxs[pool];
1642
1643 memory = rxq->out.limit;
1644 }
1645
1646 if (memory == limit) {
1647 return 0;
1648 } else {
1649 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1650 kfree (limit - total);
1651 return -ENOMEM;
1652 }
1653
1654 }
1655
1656 /********** destruction of communication queues **********/
1657
1658 static void destroy_queues (amb_dev * dev) {
1659 // all queues assumed empty
1660 void * memory = dev->cq.ptrs.start;
1661 // includes txq.in, txq.out, rxq[].in and rxq[].out
1662
1663 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1664
1665 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1666 kfree (memory);
1667
1668 return;
1669 }
1670
1671 /********** basic loader commands and error handling **********/
1672 // centisecond timeouts - guessing away here
1673 static unsigned int command_timeouts [] = {
1674 [host_memory_test] = 15,
1675 [read_adapter_memory] = 2,
1676 [write_adapter_memory] = 2,
1677 [adapter_start] = 50,
1678 [get_version_number] = 10,
1679 [interrupt_host] = 1,
1680 [flash_erase_sector] = 1,
1681 [adap_download_block] = 1,
1682 [adap_erase_flash] = 1,
1683 [adap_run_in_iram] = 1,
1684 [adap_end_download] = 1
1685 };
1686
1687
1688 static unsigned int command_successes [] = {
1689 [host_memory_test] = COMMAND_PASSED_TEST,
1690 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1691 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1692 [adapter_start] = COMMAND_COMPLETE,
1693 [get_version_number] = COMMAND_COMPLETE,
1694 [interrupt_host] = COMMAND_COMPLETE,
1695 [flash_erase_sector] = COMMAND_COMPLETE,
1696 [adap_download_block] = COMMAND_COMPLETE,
1697 [adap_erase_flash] = COMMAND_COMPLETE,
1698 [adap_run_in_iram] = COMMAND_COMPLETE,
1699 [adap_end_download] = COMMAND_COMPLETE
1700 };
1701
1702 static int decode_loader_result (loader_command cmd, u32 result)
1703 {
1704 int res;
1705 const char *msg;
1706
1707 if (result == command_successes[cmd])
1708 return 0;
1709
1710 switch (result) {
1711 case BAD_COMMAND:
1712 res = -EINVAL;
1713 msg = "bad command";
1714 break;
1715 case COMMAND_IN_PROGRESS:
1716 res = -ETIMEDOUT;
1717 msg = "command in progress";
1718 break;
1719 case COMMAND_PASSED_TEST:
1720 res = 0;
1721 msg = "command passed test";
1722 break;
1723 case COMMAND_FAILED_TEST:
1724 res = -EIO;
1725 msg = "command failed test";
1726 break;
1727 case COMMAND_READ_DATA_OK:
1728 res = 0;
1729 msg = "command read data ok";
1730 break;
1731 case COMMAND_READ_BAD_ADDRESS:
1732 res = -EINVAL;
1733 msg = "command read bad address";
1734 break;
1735 case COMMAND_WRITE_DATA_OK:
1736 res = 0;
1737 msg = "command write data ok";
1738 break;
1739 case COMMAND_WRITE_BAD_ADDRESS:
1740 res = -EINVAL;
1741 msg = "command write bad address";
1742 break;
1743 case COMMAND_WRITE_FLASH_FAILURE:
1744 res = -EIO;
1745 msg = "command write flash failure";
1746 break;
1747 case COMMAND_COMPLETE:
1748 res = 0;
1749 msg = "command complete";
1750 break;
1751 case COMMAND_FLASH_ERASE_FAILURE:
1752 res = -EIO;
1753 msg = "command flash erase failure";
1754 break;
1755 case COMMAND_WRITE_BAD_DATA:
1756 res = -EINVAL;
1757 msg = "command write bad data";
1758 break;
1759 default:
1760 res = -EINVAL;
1761 msg = "unknown error";
1762 PRINTD (DBG_LOAD|DBG_ERR,
1763 "decode_loader_result got %d=%x !",
1764 result, result);
1765 break;
1766 }
1767
1768 PRINTK (KERN_ERR, "%s", msg);
1769 return res;
1770 }
1771
1772 static int __devinit do_loader_command (volatile loader_block * lb,
1773 const amb_dev * dev, loader_command cmd) {
1774
1775 unsigned long timeout;
1776
1777 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1778
1779 /* do a command
1780
1781 Set the return value to zero, set the command type and set the
1782 valid entry to the right magic value. The payload is already
1783 correctly byte-ordered so we leave it alone. Hit the doorbell
1784 with the bus address of this structure.
1785
1786 */
1787
1788 lb->result = 0;
1789 lb->command = cpu_to_be32 (cmd);
1790 lb->valid = cpu_to_be32 (DMA_VALID);
1791 // dump_registers (dev);
1792 // dump_loader_block (lb);
1793 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1794
1795 timeout = command_timeouts[cmd] * 10;
1796
1797 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1798 if (timeout) {
1799 timeout = msleep_interruptible(timeout);
1800 } else {
1801 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1802 dump_registers (dev);
1803 dump_loader_block (lb);
1804 return -ETIMEDOUT;
1805 }
1806
1807 if (cmd == adapter_start) {
1808 // wait for start command to acknowledge...
1809 timeout = 100;
1810 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1811 if (timeout) {
1812 timeout = msleep_interruptible(timeout);
1813 } else {
1814 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1815 be32_to_cpu (lb->result));
1816 dump_registers (dev);
1817 return -ETIMEDOUT;
1818 }
1819 return 0;
1820 } else {
1821 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1822 }
1823
1824 }
1825
1826 /* loader: determine loader version */
1827
1828 static int __devinit get_loader_version (loader_block * lb,
1829 const amb_dev * dev, u32 * version) {
1830 int res;
1831
1832 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1833
1834 res = do_loader_command (lb, dev, get_version_number);
1835 if (res)
1836 return res;
1837 if (version)
1838 *version = be32_to_cpu (lb->payload.version);
1839 return 0;
1840 }
1841
1842 /* loader: write memory data blocks */
1843
1844 static int __devinit loader_write (loader_block * lb,
1845 const amb_dev * dev, const u32 * data,
1846 u32 address, unsigned int count) {
1847 unsigned int i;
1848 transfer_block * tb = &lb->payload.transfer;
1849
1850 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1851
1852 if (count > MAX_TRANSFER_DATA)
1853 return -EINVAL;
1854 tb->address = cpu_to_be32 (address);
1855 tb->count = cpu_to_be32 (count);
1856 for (i = 0; i < count; ++i)
1857 tb->data[i] = cpu_to_be32 (data[i]);
1858 return do_loader_command (lb, dev, write_adapter_memory);
1859 }
1860
1861 /* loader: verify memory data blocks */
1862
1863 static int __devinit loader_verify (loader_block * lb,
1864 const amb_dev * dev, const u32 * data,
1865 u32 address, unsigned int count) {
1866 unsigned int i;
1867 transfer_block * tb = &lb->payload.transfer;
1868 int res;
1869
1870 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1871
1872 if (count > MAX_TRANSFER_DATA)
1873 return -EINVAL;
1874 tb->address = cpu_to_be32 (address);
1875 tb->count = cpu_to_be32 (count);
1876 res = do_loader_command (lb, dev, read_adapter_memory);
1877 if (!res)
1878 for (i = 0; i < count; ++i)
1879 if (tb->data[i] != cpu_to_be32 (data[i])) {
1880 res = -EINVAL;
1881 break;
1882 }
1883 return res;
1884 }
1885
1886 /* loader: start microcode */
1887
1888 static int __devinit loader_start (loader_block * lb,
1889 const amb_dev * dev, u32 address) {
1890 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1891
1892 lb->payload.start = cpu_to_be32 (address);
1893 return do_loader_command (lb, dev, adapter_start);
1894 }
1895
1896 /********** reset card **********/
1897
1898 static inline void sf (const char * msg)
1899 {
1900 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1901 }
1902
1903 static int amb_reset (amb_dev * dev, int diags) {
1904 u32 word;
1905
1906 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1907
1908 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1909 // put card into reset state
1910 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1911 // wait a short while
1912 udelay (10);
1913 #if 1
1914 // put card into known good state
1915 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1916 // clear all interrupts just in case
1917 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1918 #endif
1919 // clear self-test done flag
1920 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1921 // take card out of reset state
1922 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1923
1924 if (diags) {
1925 unsigned long timeout;
1926 // 4.2 second wait
1927 msleep(4200);
1928 // half second time-out
1929 timeout = 500;
1930 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1931 if (timeout) {
1932 timeout = msleep_interruptible(timeout);
1933 } else {
1934 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1935 return -ETIMEDOUT;
1936 }
1937
1938 // get results of self-test
1939 // XXX double check byte-order
1940 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1941 if (word & SELF_TEST_FAILURE) {
1942 if (word & GPINT_TST_FAILURE)
1943 sf ("interrupt");
1944 if (word & SUNI_DATA_PATTERN_FAILURE)
1945 sf ("SUNI data pattern");
1946 if (word & SUNI_DATA_BITS_FAILURE)
1947 sf ("SUNI data bits");
1948 if (word & SUNI_UTOPIA_FAILURE)
1949 sf ("SUNI UTOPIA interface");
1950 if (word & SUNI_FIFO_FAILURE)
1951 sf ("SUNI cell buffer FIFO");
1952 if (word & SRAM_FAILURE)
1953 sf ("bad SRAM");
1954 // better return value?
1955 return -EIO;
1956 }
1957
1958 }
1959 return 0;
1960 }
1961
1962 /********** transfer and start the microcode **********/
1963
1964 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1965 unsigned int i = 0;
1966 unsigned int total = 0;
1967 const u32 * pointer = ucode_data;
1968 u32 address;
1969 unsigned int count;
1970 int res;
1971
1972 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1973
1974 while (address = ucode_regions[i].start,
1975 count = ucode_regions[i].count) {
1976 PRINTD (DBG_LOAD, "starting region (%x, %u)", address, count);
1977 while (count) {
1978 unsigned int words;
1979 if (count <= MAX_TRANSFER_DATA)
1980 words = count;
1981 else
1982 words = MAX_TRANSFER_DATA;
1983 total += words;
1984 res = loader_write (lb, dev, pointer, address, words);
1985 if (res)
1986 return res;
1987 res = loader_verify (lb, dev, pointer, address, words);
1988 if (res)
1989 return res;
1990 count -= words;
1991 address += sizeof(u32) * words;
1992 pointer += words;
1993 }
1994 i += 1;
1995 }
1996 if (*pointer == ATM_POISON) {
1997 return loader_start (lb, dev, ucode_start);
1998 } else {
1999 // cast needed as there is no %? for pointer differnces
2000 PRINTD (DBG_LOAD|DBG_ERR,
2001 "offset=%li, *pointer=%x, address=%x, total=%u",
2002 (long) (pointer - ucode_data), *pointer, address, total);
2003 PRINTK (KERN_ERR, "incorrect microcode data");
2004 return -ENOMEM;
2005 }
2006 }
2007
2008 /********** give adapter parameters **********/
2009
2010 static inline __be32 bus_addr(void * addr) {
2011 return cpu_to_be32 (virt_to_bus (addr));
2012 }
2013
2014 static int __devinit amb_talk (amb_dev * dev) {
2015 adap_talk_block a;
2016 unsigned char pool;
2017 unsigned long timeout;
2018
2019 PRINTD (DBG_FLOW, "amb_talk %p", dev);
2020
2021 a.command_start = bus_addr (dev->cq.ptrs.start);
2022 a.command_end = bus_addr (dev->cq.ptrs.limit);
2023 a.tx_start = bus_addr (dev->txq.in.start);
2024 a.tx_end = bus_addr (dev->txq.in.limit);
2025 a.txcom_start = bus_addr (dev->txq.out.start);
2026 a.txcom_end = bus_addr (dev->txq.out.limit);
2027
2028 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2029 // the other "a" items are set up by the adapter
2030 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2031 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2032 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2033 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2034 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2035 }
2036
2037 #ifdef AMB_NEW_MICROCODE
2038 // disable fast PLX prefetching
2039 a.init_flags = 0;
2040 #endif
2041
2042 // pass the structure
2043 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2044
2045 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2046 msleep(2200);
2047 // give the adapter another half second?
2048 timeout = 500;
2049 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2050 if (timeout) {
2051 timeout = msleep_interruptible(timeout);
2052 } else {
2053 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2054 return -ETIMEDOUT;
2055 }
2056
2057 return 0;
2058 }
2059
2060 // get microcode version
2061 static void __devinit amb_ucode_version (amb_dev * dev) {
2062 u32 major;
2063 u32 minor;
2064 command cmd;
2065 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2066 while (command_do (dev, &cmd)) {
2067 set_current_state(TASK_UNINTERRUPTIBLE);
2068 schedule();
2069 }
2070 major = be32_to_cpu (cmd.args.version.major);
2071 minor = be32_to_cpu (cmd.args.version.minor);
2072 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2073 }
2074
2075 // get end station address
2076 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2077 u32 lower4;
2078 u16 upper2;
2079 command cmd;
2080
2081 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2082 while (command_do (dev, &cmd)) {
2083 set_current_state(TASK_UNINTERRUPTIBLE);
2084 schedule();
2085 }
2086 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2087 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2088 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2089
2090 if (esi) {
2091 unsigned int i;
2092
2093 PRINTDB (DBG_INIT, "ESI:");
2094 for (i = 0; i < ESI_LEN; ++i) {
2095 if (i < 4)
2096 esi[i] = bitrev8(lower4>>(8*i));
2097 else
2098 esi[i] = bitrev8(upper2>>(8*(i-4)));
2099 PRINTDM (DBG_INIT, " %02x", esi[i]);
2100 }
2101
2102 PRINTDE (DBG_INIT, "");
2103 }
2104
2105 return;
2106 }
2107
2108 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2109 {
2110 // fix up the PLX-mapped window base address to match the block
2111 unsigned long blb;
2112 u32 mapreg;
2113 blb = virt_to_bus(lb);
2114 // the kernel stack had better not ever cross a 1Gb boundary!
2115 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2116 mapreg &= ~onegigmask;
2117 mapreg |= blb & onegigmask;
2118 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2119 return;
2120 }
2121
2122 static int __devinit amb_init (amb_dev * dev)
2123 {
2124 loader_block lb;
2125
2126 u32 version;
2127
2128 if (amb_reset (dev, 1)) {
2129 PRINTK (KERN_ERR, "card reset failed!");
2130 } else {
2131 fixup_plx_window (dev, &lb);
2132
2133 if (get_loader_version (&lb, dev, &version)) {
2134 PRINTK (KERN_INFO, "failed to get loader version");
2135 } else {
2136 PRINTK (KERN_INFO, "loader version is %08x", version);
2137
2138 if (ucode_init (&lb, dev)) {
2139 PRINTK (KERN_ERR, "microcode failure");
2140 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2141 PRINTK (KERN_ERR, "failed to get memory for queues");
2142 } else {
2143
2144 if (amb_talk (dev)) {
2145 PRINTK (KERN_ERR, "adapter did not accept queues");
2146 } else {
2147
2148 amb_ucode_version (dev);
2149 return 0;
2150
2151 } /* amb_talk */
2152
2153 destroy_queues (dev);
2154 } /* create_queues, ucode_init */
2155
2156 amb_reset (dev, 0);
2157 } /* get_loader_version */
2158
2159 } /* amb_reset */
2160
2161 return -EINVAL;
2162 }
2163
2164 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2165 {
2166 unsigned char pool;
2167
2168 // set up known dev items straight away
2169 dev->pci_dev = pci_dev;
2170 pci_set_drvdata(pci_dev, dev);
2171
2172 dev->iobase = pci_resource_start (pci_dev, 1);
2173 dev->irq = pci_dev->irq;
2174 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2175
2176 // flags (currently only dead)
2177 dev->flags = 0;
2178
2179 // Allocate cell rates (fibre)
2180 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2181 // to be really pedantic, this should be ATM_OC3c_PCR
2182 dev->tx_avail = ATM_OC3_PCR;
2183 dev->rx_avail = ATM_OC3_PCR;
2184
2185 #ifdef FILL_RX_POOLS_IN_BH
2186 // initialise bottom half
2187 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2188 #endif
2189
2190 // semaphore for txer/rxer modifications - we cannot use a
2191 // spinlock as the critical region needs to switch processes
2192 mutex_init(&dev->vcc_sf);
2193 // queue manipulation spinlocks; we want atomic reads and
2194 // writes to the queue descriptors (handles IRQ and SMP)
2195 // consider replacing "int pending" -> "atomic_t available"
2196 // => problem related to who gets to move queue pointers
2197 spin_lock_init (&dev->cq.lock);
2198 spin_lock_init (&dev->txq.lock);
2199 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2200 spin_lock_init (&dev->rxq[pool].lock);
2201 }
2202
2203 static void setup_pci_dev(struct pci_dev *pci_dev)
2204 {
2205 unsigned char lat;
2206
2207 // enable bus master accesses
2208 pci_set_master(pci_dev);
2209
2210 // frobnicate latency (upwards, usually)
2211 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2212
2213 if (!pci_lat)
2214 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2215
2216 if (lat != pci_lat) {
2217 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2218 lat, pci_lat);
2219 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2220 }
2221 }
2222
2223 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2224 {
2225 amb_dev * dev;
2226 int err;
2227 unsigned int irq;
2228
2229 err = pci_enable_device(pci_dev);
2230 if (err < 0) {
2231 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2232 goto out;
2233 }
2234
2235 // read resources from PCI configuration space
2236 irq = pci_dev->irq;
2237
2238 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2239 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2240 err = -EINVAL;
2241 goto out_disable;
2242 }
2243
2244 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2245 " IO %llx, IRQ %u, MEM %p",
2246 (unsigned long long)pci_resource_start(pci_dev, 1),
2247 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2248
2249 // check IO region
2250 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2251 if (err < 0) {
2252 PRINTK (KERN_ERR, "IO range already in use!");
2253 goto out_disable;
2254 }
2255
2256 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2257 if (!dev) {
2258 PRINTK (KERN_ERR, "out of memory!");
2259 err = -ENOMEM;
2260 goto out_release;
2261 }
2262
2263 setup_dev(dev, pci_dev);
2264
2265 err = amb_init(dev);
2266 if (err < 0) {
2267 PRINTK (KERN_ERR, "adapter initialisation failure");
2268 goto out_free;
2269 }
2270
2271 setup_pci_dev(pci_dev);
2272
2273 // grab (but share) IRQ and install handler
2274 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2275 if (err < 0) {
2276 PRINTK (KERN_ERR, "request IRQ failed!");
2277 goto out_reset;
2278 }
2279
2280 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2281 if (!dev->atm_dev) {
2282 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2283 err = -EINVAL;
2284 goto out_free_irq;
2285 }
2286
2287 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2288 dev->atm_dev->number, dev, dev->atm_dev);
2289 dev->atm_dev->dev_data = (void *) dev;
2290
2291 // register our address
2292 amb_esi (dev, dev->atm_dev->esi);
2293
2294 // 0 bits for vpi, 10 bits for vci
2295 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2296 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2297
2298 init_timer(&dev->housekeeping);
2299 dev->housekeeping.function = do_housekeeping;
2300 dev->housekeeping.data = (unsigned long) dev;
2301 mod_timer(&dev->housekeeping, jiffies);
2302
2303 // enable host interrupts
2304 interrupts_on (dev);
2305
2306 out:
2307 return err;
2308
2309 out_free_irq:
2310 free_irq(irq, dev);
2311 out_reset:
2312 amb_reset(dev, 0);
2313 out_free:
2314 kfree(dev);
2315 out_release:
2316 pci_release_region(pci_dev, 1);
2317 out_disable:
2318 pci_disable_device(pci_dev);
2319 goto out;
2320 }
2321
2322
2323 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2324 {
2325 struct amb_dev *dev;
2326
2327 dev = pci_get_drvdata(pci_dev);
2328
2329 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2330 del_timer_sync(&dev->housekeeping);
2331 // the drain should not be necessary
2332 drain_rx_pools(dev);
2333 interrupts_off(dev);
2334 amb_reset(dev, 0);
2335 free_irq(dev->irq, dev);
2336 pci_disable_device(pci_dev);
2337 destroy_queues(dev);
2338 atm_dev_deregister(dev->atm_dev);
2339 kfree(dev);
2340 pci_release_region(pci_dev, 1);
2341 }
2342
2343 static void __init amb_check_args (void) {
2344 unsigned char pool;
2345 unsigned int max_rx_size;
2346
2347 #ifdef DEBUG_AMBASSADOR
2348 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2349 #else
2350 if (debug)
2351 PRINTK (KERN_NOTICE, "no debugging support");
2352 #endif
2353
2354 if (cmds < MIN_QUEUE_SIZE)
2355 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2356 cmds = MIN_QUEUE_SIZE);
2357
2358 if (txs < MIN_QUEUE_SIZE)
2359 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2360 txs = MIN_QUEUE_SIZE);
2361
2362 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2363 if (rxs[pool] < MIN_QUEUE_SIZE)
2364 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2365 pool, rxs[pool] = MIN_QUEUE_SIZE);
2366
2367 // buffers sizes should be greater than zero and strictly increasing
2368 max_rx_size = 0;
2369 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2370 if (rxs_bs[pool] <= max_rx_size)
2371 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2372 pool, rxs_bs[pool]);
2373 else
2374 max_rx_size = rxs_bs[pool];
2375
2376 if (rx_lats < MIN_RX_BUFFERS)
2377 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2378 rx_lats = MIN_RX_BUFFERS);
2379
2380 return;
2381 }
2382
2383 /********** module stuff **********/
2384
2385 MODULE_AUTHOR(maintainer_string);
2386 MODULE_DESCRIPTION(description_string);
2387 MODULE_LICENSE("GPL");
2388 module_param(debug, ushort, 0644);
2389 module_param(cmds, uint, 0);
2390 module_param(txs, uint, 0);
2391 module_param_array(rxs, uint, NULL, 0);
2392 module_param_array(rxs_bs, uint, NULL, 0);
2393 module_param(rx_lats, uint, 0);
2394 module_param(pci_lat, byte, 0);
2395 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2396 MODULE_PARM_DESC(cmds, "number of command queue entries");
2397 MODULE_PARM_DESC(txs, "number of TX queue entries");
2398 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2399 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2400 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2401 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2402
2403 /********** module entry **********/
2404
2405 static struct pci_device_id amb_pci_tbl[] = {
2406 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2407 0, 0, 0 },
2408 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2409 0, 0, 0 },
2410 { 0, }
2411 };
2412
2413 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2414
2415 static struct pci_driver amb_driver = {
2416 .name = "amb",
2417 .probe = amb_probe,
2418 .remove = __devexit_p(amb_remove_one),
2419 .id_table = amb_pci_tbl,
2420 };
2421
2422 static int __init amb_module_init (void)
2423 {
2424 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2425
2426 // sanity check - cast needed as printk does not support %Zu
2427 if (sizeof(amb_mem) != 4*16 + 4*12) {
2428 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2429 (unsigned long) sizeof(amb_mem));
2430 return -ENOMEM;
2431 }
2432
2433 show_version();
2434
2435 amb_check_args();
2436
2437 // get the juice
2438 return pci_register_driver(&amb_driver);
2439 }
2440
2441 /********** module exit **********/
2442
2443 static void __exit amb_module_exit (void)
2444 {
2445 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2446
2447 pci_unregister_driver(&amb_driver);
2448 }
2449
2450 module_init(amb_module_init);
2451 module_exit(amb_module_exit);