Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71
72 #include "libata.h"
73 #include "libata-transport.h"
74
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79
80 const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
86 };
87
88 const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
93 };
94
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
111 };
112
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117 };
118
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171
172
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 return (sstatus & 0xf) == 0x3;
176 }
177
178 /**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
186 *
187 * RETURNS:
188 * Pointer to the next link.
189 */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
192 {
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
207
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
221 }
222
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
234 return NULL;
235 }
236
237 /**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251 {
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288 }
289
290 /**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313 }
314
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
396 }
397 }
398
399 /**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
449 return;
450 }
451 }
452
453 /**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
493 }
494 }
495
496 /**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508 int atapi_cmd_type(u8 opcode)
509 {
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
529 default:
530 return ATAPI_MISC;
531 }
532 }
533
534 /**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = 0;
573 fis[17] = 0;
574 fis[18] = 0;
575 fis[19] = 0;
576 }
577
578 /**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605 }
606
607 static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
622 0,
623 0,
624 0,
625 0,
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
635 };
636
637 /**
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
641 *
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
644 *
645 * LOCKING:
646 * caller.
647 */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 u8 cmd;
651
652 int index, fua, lba48, write;
653
654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else {
666 tf->protocol = ATA_PROT_DMA;
667 index = 16;
668 }
669
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
676 }
677
678 /**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
701 block |= (u64)tf->hob_lbal << 24;
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
715 if (!sect) {
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 }
723
724 return block;
725 }
726
727 /**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750 {
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
778 tf->device = ATA_LBA;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848 }
849
850 /**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
868 {
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873
874 /**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894
895 static const struct ata_xfer_ent {
896 int shift, bits;
897 u8 base;
898 } ata_xfer_tbl[] = {
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 { -1, },
903 };
904
905 /**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching XFER_* value, 0xff if no match found.
917 */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
926 return 0xff;
927 }
928
929 /**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
949 return 0;
950 }
951
952 /**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972 }
973
974 /**
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
977 *
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
987 */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
996 "PIO5",
997 "PIO6",
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
1001 "MWDMA3",
1002 "MWDMA4",
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1012 int highbit;
1013
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1017 return "<n/a>";
1018 }
1019
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
1025 "6.0 Gbps",
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031 }
1032
1033 /**
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1036 *
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 * LOCKING:
1042 * None.
1043 *
1044 * RETURNS:
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1053 *
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1064 *
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1070 */
1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1074 }
1075
1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1079 }
1080
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1084 }
1085
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
1089 }
1090
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1093 }
1094
1095 /**
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1101 *
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1105 *
1106 * LOCKING:
1107 * caller.
1108 */
1109
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1112 {
1113 unsigned int c;
1114
1115 BUG_ON(len & 1);
1116
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1121
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1125
1126 ofs++;
1127 len -= 2;
1128 }
1129 }
1130
1131 /**
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1137 *
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
1147 {
1148 unsigned char *p;
1149
1150 ata_id_string(id, s, ofs, len - 1);
1151
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1156 }
1157
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 else
1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 } else {
1166 if (ata_id_current_chs_valid(id))
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
1169 else
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
1172 }
1173 }
1174
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 u64 sectors = 0;
1178
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1185
1186 return sectors;
1187 }
1188
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 u64 sectors = 0;
1192
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
1198 return sectors;
1199 }
1200
1201 /**
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1205 *
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1212 */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 unsigned int err_mask;
1216 struct ata_taskfile tf;
1217 int lba48 = ata_id_has_lba48(dev->id);
1218
1219 ata_tf_init(dev, &tf);
1220
1221 /* always clear all address registers */
1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230 tf.protocol |= ATA_PROT_NODATA;
1231 tf.device |= ATA_LBA;
1232
1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 if (err_mask) {
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1241 }
1242
1243 if (lba48)
1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 else
1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 (*max_sectors)--;
1249 return 0;
1250 }
1251
1252 /**
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1256 *
1257 * Set max sectors of @dev to @new_sectors.
1258 *
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1263 */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 unsigned int err_mask;
1267 struct ata_taskfile tf;
1268 int lba48 = ata_id_has_lba48(dev->id);
1269
1270 new_sectors--;
1271
1272 ata_tf_init(dev, &tf);
1273
1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1279
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 } else {
1284 tf.command = ATA_CMD_SET_MAX;
1285
1286 tf.device |= (new_sectors >> 24) & 0xf;
1287 }
1288
1289 tf.protocol |= ATA_PROT_NODATA;
1290 tf.device |= ATA_LBA;
1291
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 if (err_mask) {
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1313 *
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1317 *
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1320 */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
1328 int rc;
1329
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 return 0;
1335
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1341 */
1342 if (rc == -EACCES || !unlock_hpa) {
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1350 }
1351
1352 return rc;
1353 }
1354 dev->n_native_sectors = native_sectors;
1355
1356 /* nothing to do? */
1357 if (native_sectors <= sectors || !unlock_hpa) {
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1360
1361 if (native_sectors > sectors)
1362 ata_dev_info(dev,
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1372 }
1373
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1386
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1392 return rc;
1393 }
1394
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
1397 ata_dev_info(dev,
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1410 *
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1413 *
1414 * LOCKING:
1415 * caller.
1416 */
1417
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
1442 id[88],
1443 id[93]);
1444 }
1445
1446 /**
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1449 *
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1452 *
1453 * FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 * LOCKING:
1456 * None.
1457 *
1458 * RETURNS:
1459 * Computed xfermask
1460 */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1474 */
1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 if (mode < 5) /* Valid PIO range */
1477 pio_mask = (2 << mode) - 1;
1478 else
1479 pio_mask = 1;
1480
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1486 */
1487 }
1488
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491 if (ata_id_is_cfa(id)) {
1492 /*
1493 * Process compact flash extended modes
1494 */
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1506 }
1507
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 struct completion *waiting = qc->private_data;
1518
1519 complete(waiting);
1520 }
1521
1522 /**
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1531 *
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1537 *
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
1546 int dma_dir, struct scatterlist *sgl,
1547 unsigned int n_elem, unsigned long timeout)
1548 {
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
1551 u8 command = tf->command;
1552 int auto_timeout = 0;
1553 struct ata_queued_cmd *qc;
1554 unsigned int tag, preempted_tag;
1555 u32 preempted_sactive, preempted_qc_active;
1556 int preempted_nr_active_links;
1557 DECLARE_COMPLETION_ONSTACK(wait);
1558 unsigned long flags;
1559 unsigned int err_mask;
1560 int rc;
1561
1562 spin_lock_irqsave(ap->lock, flags);
1563
1564 /* no internal command while frozen */
1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 spin_unlock_irqrestore(ap->lock, flags);
1567 return AC_ERR_SYSTEM;
1568 }
1569
1570 /* initialize internal qc */
1571
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1576 */
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1581
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
1584 qc = __ata_qc_from_tag(ap, tag);
1585
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1591
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
1594 preempted_qc_active = ap->qc_active;
1595 preempted_nr_active_links = ap->nr_active_links;
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
1598 ap->qc_active = 0;
1599 ap->nr_active_links = 0;
1600
1601 /* prepare & issue qc */
1602 qc->tf = *tf;
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605 qc->flags |= ATA_QCFLAG_RESULT_TF;
1606 qc->dma_dir = dma_dir;
1607 if (dma_dir != DMA_NONE) {
1608 unsigned int i, buflen = 0;
1609 struct scatterlist *sg;
1610
1611 for_each_sg(sgl, sg, n_elem, i)
1612 buflen += sg->length;
1613
1614 ata_sg_init(qc, sgl, n_elem);
1615 qc->nbytes = buflen;
1616 }
1617
1618 qc->private_data = &wait;
1619 qc->complete_fn = ata_qc_complete_internal;
1620
1621 ata_qc_issue(qc);
1622
1623 spin_unlock_irqrestore(ap->lock, flags);
1624
1625 if (!timeout) {
1626 if (ata_probe_timeout)
1627 timeout = ata_probe_timeout * 1000;
1628 else {
1629 timeout = ata_internal_cmd_timeout(dev, command);
1630 auto_timeout = 1;
1631 }
1632 }
1633
1634 if (ap->ops->error_handler)
1635 ata_eh_release(ap);
1636
1637 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1638
1639 if (ap->ops->error_handler)
1640 ata_eh_acquire(ap);
1641
1642 ata_sff_flush_pio_task(ap);
1643
1644 if (!rc) {
1645 spin_lock_irqsave(ap->lock, flags);
1646
1647 /* We're racing with irq here. If we lose, the
1648 * following test prevents us from completing the qc
1649 * twice. If we win, the port is frozen and will be
1650 * cleaned up by ->post_internal_cmd().
1651 */
1652 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1653 qc->err_mask |= AC_ERR_TIMEOUT;
1654
1655 if (ap->ops->error_handler)
1656 ata_port_freeze(ap);
1657 else
1658 ata_qc_complete(qc);
1659
1660 if (ata_msg_warn(ap))
1661 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1662 command);
1663 }
1664
1665 spin_unlock_irqrestore(ap->lock, flags);
1666 }
1667
1668 /* do post_internal_cmd */
1669 if (ap->ops->post_internal_cmd)
1670 ap->ops->post_internal_cmd(qc);
1671
1672 /* perform minimal error analysis */
1673 if (qc->flags & ATA_QCFLAG_FAILED) {
1674 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1675 qc->err_mask |= AC_ERR_DEV;
1676
1677 if (!qc->err_mask)
1678 qc->err_mask |= AC_ERR_OTHER;
1679
1680 if (qc->err_mask & ~AC_ERR_OTHER)
1681 qc->err_mask &= ~AC_ERR_OTHER;
1682 }
1683
1684 /* finish up */
1685 spin_lock_irqsave(ap->lock, flags);
1686
1687 *tf = qc->result_tf;
1688 err_mask = qc->err_mask;
1689
1690 ata_qc_free(qc);
1691 link->active_tag = preempted_tag;
1692 link->sactive = preempted_sactive;
1693 ap->qc_active = preempted_qc_active;
1694 ap->nr_active_links = preempted_nr_active_links;
1695
1696 spin_unlock_irqrestore(ap->lock, flags);
1697
1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 ata_internal_cmd_timed_out(dev, command);
1700
1701 return err_mask;
1702 }
1703
1704 /**
1705 * ata_exec_internal - execute libata internal command
1706 * @dev: Device to which the command is sent
1707 * @tf: Taskfile registers for the command and the result
1708 * @cdb: CDB for packet command
1709 * @dma_dir: Data tranfer direction of the command
1710 * @buf: Data buffer of the command
1711 * @buflen: Length of data buffer
1712 * @timeout: Timeout in msecs (0 for default)
1713 *
1714 * Wrapper around ata_exec_internal_sg() which takes simple
1715 * buffer instead of sg list.
1716 *
1717 * LOCKING:
1718 * None. Should be called with kernel context, might sleep.
1719 *
1720 * RETURNS:
1721 * Zero on success, AC_ERR_* mask on failure
1722 */
1723 unsigned ata_exec_internal(struct ata_device *dev,
1724 struct ata_taskfile *tf, const u8 *cdb,
1725 int dma_dir, void *buf, unsigned int buflen,
1726 unsigned long timeout)
1727 {
1728 struct scatterlist *psg = NULL, sg;
1729 unsigned int n_elem = 0;
1730
1731 if (dma_dir != DMA_NONE) {
1732 WARN_ON(!buf);
1733 sg_init_one(&sg, buf, buflen);
1734 psg = &sg;
1735 n_elem++;
1736 }
1737
1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 timeout);
1740 }
1741
1742 /**
1743 * ata_do_simple_cmd - execute simple internal command
1744 * @dev: Device to which the command is sent
1745 * @cmd: Opcode to execute
1746 *
1747 * Execute a 'simple' command, that only consists of the opcode
1748 * 'cmd' itself, without filling any other registers
1749 *
1750 * LOCKING:
1751 * Kernel thread context (may sleep).
1752 *
1753 * RETURNS:
1754 * Zero on success, AC_ERR_* mask on failure
1755 */
1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1757 {
1758 struct ata_taskfile tf;
1759
1760 ata_tf_init(dev, &tf);
1761
1762 tf.command = cmd;
1763 tf.flags |= ATA_TFLAG_DEVICE;
1764 tf.protocol = ATA_PROT_NODATA;
1765
1766 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1767 }
1768
1769 /**
1770 * ata_pio_need_iordy - check if iordy needed
1771 * @adev: ATA device
1772 *
1773 * Check if the current speed of the device requires IORDY. Used
1774 * by various controllers for chip configuration.
1775 */
1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1777 {
1778 /* Don't set IORDY if we're preparing for reset. IORDY may
1779 * lead to controller lock up on certain controllers if the
1780 * port is not occupied. See bko#11703 for details.
1781 */
1782 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1783 return 0;
1784 /* Controller doesn't support IORDY. Probably a pointless
1785 * check as the caller should know this.
1786 */
1787 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1788 return 0;
1789 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1790 if (ata_id_is_cfa(adev->id)
1791 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1792 return 0;
1793 /* PIO3 and higher it is mandatory */
1794 if (adev->pio_mode > XFER_PIO_2)
1795 return 1;
1796 /* We turn it on when possible */
1797 if (ata_id_has_iordy(adev->id))
1798 return 1;
1799 return 0;
1800 }
1801
1802 /**
1803 * ata_pio_mask_no_iordy - Return the non IORDY mask
1804 * @adev: ATA device
1805 *
1806 * Compute the highest mode possible if we are not using iordy. Return
1807 * -1 if no iordy mode is available.
1808 */
1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1810 {
1811 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1812 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1813 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1814 /* Is the speed faster than the drive allows non IORDY ? */
1815 if (pio) {
1816 /* This is cycle times not frequency - watch the logic! */
1817 if (pio > 240) /* PIO2 is 240nS per cycle */
1818 return 3 << ATA_SHIFT_PIO;
1819 return 7 << ATA_SHIFT_PIO;
1820 }
1821 }
1822 return 3 << ATA_SHIFT_PIO;
1823 }
1824
1825 /**
1826 * ata_do_dev_read_id - default ID read method
1827 * @dev: device
1828 * @tf: proposed taskfile
1829 * @id: data buffer
1830 *
1831 * Issue the identify taskfile and hand back the buffer containing
1832 * identify data. For some RAID controllers and for pre ATA devices
1833 * this function is wrapped or replaced by the driver
1834 */
1835 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1836 struct ata_taskfile *tf, u16 *id)
1837 {
1838 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1839 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840 }
1841
1842 /**
1843 * ata_dev_read_id - Read ID data from the specified device
1844 * @dev: target device
1845 * @p_class: pointer to class of the target device (may be changed)
1846 * @flags: ATA_READID_* flags
1847 * @id: buffer to read IDENTIFY data into
1848 *
1849 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1850 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1851 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1852 * for pre-ATA4 drives.
1853 *
1854 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1855 * now we abort if we hit that case.
1856 *
1857 * LOCKING:
1858 * Kernel thread context (may sleep)
1859 *
1860 * RETURNS:
1861 * 0 on success, -errno otherwise.
1862 */
1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1864 unsigned int flags, u16 *id)
1865 {
1866 struct ata_port *ap = dev->link->ap;
1867 unsigned int class = *p_class;
1868 struct ata_taskfile tf;
1869 unsigned int err_mask = 0;
1870 const char *reason;
1871 bool is_semb = class == ATA_DEV_SEMB;
1872 int may_fallback = 1, tried_spinup = 0;
1873 int rc;
1874
1875 if (ata_msg_ctl(ap))
1876 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1877
1878 retry:
1879 ata_tf_init(dev, &tf);
1880
1881 switch (class) {
1882 case ATA_DEV_SEMB:
1883 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1884 case ATA_DEV_ATA:
1885 tf.command = ATA_CMD_ID_ATA;
1886 break;
1887 case ATA_DEV_ATAPI:
1888 tf.command = ATA_CMD_ID_ATAPI;
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1894 }
1895
1896 tf.protocol = ATA_PROT_PIO;
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1907
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913 if (err_mask) {
1914 if (err_mask & AC_ERR_NODEV_HINT) {
1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 return -ENOENT;
1917 }
1918
1919 if (is_semb) {
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1949 return -ENOENT;
1950 }
1951
1952 rc = -EIO;
1953 reason = "I/O error";
1954 goto err_out;
1955 }
1956
1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
1970 swap_buf_le16(id, ATA_ID_WORDS);
1971
1972 /* sanity check */
1973 rc = -EINVAL;
1974 reason = "device reports invalid type";
1975
1976 if (class == ATA_DEV_ATA) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
1988 }
1989
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 if (err_mask && id[2] != 0x738c) {
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
2011 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
2021 * should never trigger.
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
2034 flags &= ~ATA_READID_POSTRESET;
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
2040
2041 return 0;
2042
2043 err_out:
2044 if (ata_msg_warn(ap))
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
2047 return rc;
2048 }
2049
2050 static int ata_do_link_spd_horkage(struct ata_device *dev)
2051 {
2052 struct ata_link *plink = ata_dev_phys_link(dev);
2053 u32 target, target_limit;
2054
2055 if (!sata_scr_valid(plink))
2056 return 0;
2057
2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059 target = 1;
2060 else
2061 return 0;
2062
2063 target_limit = (1 << target) - 1;
2064
2065 /* if already on stricter limit, no need to push further */
2066 if (plink->sata_spd_limit <= target_limit)
2067 return 0;
2068
2069 plink->sata_spd_limit = target_limit;
2070
2071 /* Request another EH round by returning -EAGAIN if link is
2072 * going faster than the target speed. Forward progress is
2073 * guaranteed by setting sata_spd_limit to target_limit above.
2074 */
2075 if (plink->sata_spd > target) {
2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077 sata_spd_string(target));
2078 return -EAGAIN;
2079 }
2080 return 0;
2081 }
2082
2083 static inline u8 ata_dev_knobble(struct ata_device *dev)
2084 {
2085 struct ata_port *ap = dev->link->ap;
2086
2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088 return 0;
2089
2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091 }
2092
2093 static int ata_dev_config_ncq(struct ata_device *dev,
2094 char *desc, size_t desc_sz)
2095 {
2096 struct ata_port *ap = dev->link->ap;
2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2098 unsigned int err_mask;
2099 char *aa_desc = "";
2100
2101 if (!ata_id_has_ncq(dev->id)) {
2102 desc[0] = '\0';
2103 return 0;
2104 }
2105 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2106 snprintf(desc, desc_sz, "NCQ (not used)");
2107 return 0;
2108 }
2109 if (ap->flags & ATA_FLAG_NCQ) {
2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2111 dev->flags |= ATA_DFLAG_NCQ;
2112 }
2113
2114 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2115 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2116 ata_id_has_fpdma_aa(dev->id)) {
2117 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2118 SATA_FPDMA_AA);
2119 if (err_mask) {
2120 ata_dev_err(dev,
2121 "failed to enable AA (error_mask=0x%x)\n",
2122 err_mask);
2123 if (err_mask != AC_ERR_DEV) {
2124 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2125 return -EIO;
2126 }
2127 } else
2128 aa_desc = ", AA";
2129 }
2130
2131 if (hdepth >= ddepth)
2132 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2133 else
2134 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2135 ddepth, aa_desc);
2136 return 0;
2137 }
2138
2139 /**
2140 * ata_dev_configure - Configure the specified ATA/ATAPI device
2141 * @dev: Target device to configure
2142 *
2143 * Configure @dev according to @dev->id. Generic and low-level
2144 * driver specific fixups are also applied.
2145 *
2146 * LOCKING:
2147 * Kernel thread context (may sleep)
2148 *
2149 * RETURNS:
2150 * 0 on success, -errno otherwise
2151 */
2152 int ata_dev_configure(struct ata_device *dev)
2153 {
2154 struct ata_port *ap = dev->link->ap;
2155 struct ata_eh_context *ehc = &dev->link->eh_context;
2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2157 const u16 *id = dev->id;
2158 unsigned long xfer_mask;
2159 unsigned int err_mask;
2160 char revbuf[7]; /* XYZ-99\0 */
2161 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2162 char modelbuf[ATA_ID_PROD_LEN+1];
2163 int rc;
2164
2165 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2166 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2167 return 0;
2168 }
2169
2170 if (ata_msg_probe(ap))
2171 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2172
2173 /* set horkage */
2174 dev->horkage |= ata_dev_blacklisted(dev);
2175 ata_force_horkage(dev);
2176
2177 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2178 ata_dev_info(dev, "unsupported device, disabling\n");
2179 ata_dev_disable(dev);
2180 return 0;
2181 }
2182
2183 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2184 dev->class == ATA_DEV_ATAPI) {
2185 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2186 atapi_enabled ? "not supported with this driver"
2187 : "disabled");
2188 ata_dev_disable(dev);
2189 return 0;
2190 }
2191
2192 rc = ata_do_link_spd_horkage(dev);
2193 if (rc)
2194 return rc;
2195
2196 /* let ACPI work its magic */
2197 rc = ata_acpi_on_devcfg(dev);
2198 if (rc)
2199 return rc;
2200
2201 /* massage HPA, do it early as it might change IDENTIFY data */
2202 rc = ata_hpa_resize(dev);
2203 if (rc)
2204 return rc;
2205
2206 /* print device capabilities */
2207 if (ata_msg_probe(ap))
2208 ata_dev_dbg(dev,
2209 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2210 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2211 __func__,
2212 id[49], id[82], id[83], id[84],
2213 id[85], id[86], id[87], id[88]);
2214
2215 /* initialize to-be-configured parameters */
2216 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2217 dev->max_sectors = 0;
2218 dev->cdb_len = 0;
2219 dev->n_sectors = 0;
2220 dev->cylinders = 0;
2221 dev->heads = 0;
2222 dev->sectors = 0;
2223 dev->multi_count = 0;
2224
2225 /*
2226 * common ATA, ATAPI feature tests
2227 */
2228
2229 /* find max transfer mode; for printk only */
2230 xfer_mask = ata_id_xfermask(id);
2231
2232 if (ata_msg_probe(ap))
2233 ata_dump_id(id);
2234
2235 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2236 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2237 sizeof(fwrevbuf));
2238
2239 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2240 sizeof(modelbuf));
2241
2242 /* ATA-specific feature tests */
2243 if (dev->class == ATA_DEV_ATA) {
2244 if (ata_id_is_cfa(id)) {
2245 /* CPRM may make this media unusable */
2246 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2247 ata_dev_warn(dev,
2248 "supports DRM functions and may not be fully accessible\n");
2249 snprintf(revbuf, 7, "CFA");
2250 } else {
2251 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2252 /* Warn the user if the device has TPM extensions */
2253 if (ata_id_has_tpm(id))
2254 ata_dev_warn(dev,
2255 "supports DRM functions and may not be fully accessible\n");
2256 }
2257
2258 dev->n_sectors = ata_id_n_sectors(id);
2259
2260 /* get current R/W Multiple count setting */
2261 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2262 unsigned int max = dev->id[47] & 0xff;
2263 unsigned int cnt = dev->id[59] & 0xff;
2264 /* only recognize/allow powers of two here */
2265 if (is_power_of_2(max) && is_power_of_2(cnt))
2266 if (cnt <= max)
2267 dev->multi_count = cnt;
2268 }
2269
2270 if (ata_id_has_lba(id)) {
2271 const char *lba_desc;
2272 char ncq_desc[24];
2273
2274 lba_desc = "LBA";
2275 dev->flags |= ATA_DFLAG_LBA;
2276 if (ata_id_has_lba48(id)) {
2277 dev->flags |= ATA_DFLAG_LBA48;
2278 lba_desc = "LBA48";
2279
2280 if (dev->n_sectors >= (1UL << 28) &&
2281 ata_id_has_flush_ext(id))
2282 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2283 }
2284
2285 /* config NCQ */
2286 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2287 if (rc)
2288 return rc;
2289
2290 /* print device info to dmesg */
2291 if (ata_msg_drv(ap) && print_info) {
2292 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2293 revbuf, modelbuf, fwrevbuf,
2294 ata_mode_string(xfer_mask));
2295 ata_dev_info(dev,
2296 "%llu sectors, multi %u: %s %s\n",
2297 (unsigned long long)dev->n_sectors,
2298 dev->multi_count, lba_desc, ncq_desc);
2299 }
2300 } else {
2301 /* CHS */
2302
2303 /* Default translation */
2304 dev->cylinders = id[1];
2305 dev->heads = id[3];
2306 dev->sectors = id[6];
2307
2308 if (ata_id_current_chs_valid(id)) {
2309 /* Current CHS translation is valid. */
2310 dev->cylinders = id[54];
2311 dev->heads = id[55];
2312 dev->sectors = id[56];
2313 }
2314
2315 /* print device info to dmesg */
2316 if (ata_msg_drv(ap) && print_info) {
2317 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2318 revbuf, modelbuf, fwrevbuf,
2319 ata_mode_string(xfer_mask));
2320 ata_dev_info(dev,
2321 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2322 (unsigned long long)dev->n_sectors,
2323 dev->multi_count, dev->cylinders,
2324 dev->heads, dev->sectors);
2325 }
2326 }
2327
2328 /* check and mark DevSlp capability */
2329 if (ata_id_has_devslp(dev->id))
2330 dev->flags |= ATA_DFLAG_DEVSLP;
2331
2332 /* Obtain SATA Settings page from Identify Device Data Log,
2333 * which contains DevSlp timing variables etc.
2334 * Exclude old devices with ata_id_has_ncq()
2335 */
2336 if (ata_id_has_ncq(dev->id)) {
2337 err_mask = ata_read_log_page(dev,
2338 ATA_LOG_SATA_ID_DEV_DATA,
2339 ATA_LOG_SATA_SETTINGS,
2340 dev->sata_settings,
2341 1);
2342 if (err_mask)
2343 ata_dev_dbg(dev,
2344 "failed to get Identify Device Data, Emask 0x%x\n",
2345 err_mask);
2346 }
2347
2348 dev->cdb_len = 16;
2349 }
2350
2351 /* ATAPI-specific feature tests */
2352 else if (dev->class == ATA_DEV_ATAPI) {
2353 const char *cdb_intr_string = "";
2354 const char *atapi_an_string = "";
2355 const char *dma_dir_string = "";
2356 u32 sntf;
2357
2358 rc = atapi_cdb_len(id);
2359 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2360 if (ata_msg_warn(ap))
2361 ata_dev_warn(dev, "unsupported CDB len\n");
2362 rc = -EINVAL;
2363 goto err_out_nosup;
2364 }
2365 dev->cdb_len = (unsigned int) rc;
2366
2367 /* Enable ATAPI AN if both the host and device have
2368 * the support. If PMP is attached, SNTF is required
2369 * to enable ATAPI AN to discern between PHY status
2370 * changed notifications and ATAPI ANs.
2371 */
2372 if (atapi_an &&
2373 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2374 (!sata_pmp_attached(ap) ||
2375 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2376 /* issue SET feature command to turn this on */
2377 err_mask = ata_dev_set_feature(dev,
2378 SETFEATURES_SATA_ENABLE, SATA_AN);
2379 if (err_mask)
2380 ata_dev_err(dev,
2381 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2382 err_mask);
2383 else {
2384 dev->flags |= ATA_DFLAG_AN;
2385 atapi_an_string = ", ATAPI AN";
2386 }
2387 }
2388
2389 if (ata_id_cdb_intr(dev->id)) {
2390 dev->flags |= ATA_DFLAG_CDB_INTR;
2391 cdb_intr_string = ", CDB intr";
2392 }
2393
2394 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2395 dev->flags |= ATA_DFLAG_DMADIR;
2396 dma_dir_string = ", DMADIR";
2397 }
2398
2399 if (ata_id_has_da(dev->id))
2400 dev->flags |= ATA_DFLAG_DA;
2401
2402 /* print device info to dmesg */
2403 if (ata_msg_drv(ap) && print_info)
2404 ata_dev_info(dev,
2405 "ATAPI: %s, %s, max %s%s%s%s\n",
2406 modelbuf, fwrevbuf,
2407 ata_mode_string(xfer_mask),
2408 cdb_intr_string, atapi_an_string,
2409 dma_dir_string);
2410 }
2411
2412 /* determine max_sectors */
2413 dev->max_sectors = ATA_MAX_SECTORS;
2414 if (dev->flags & ATA_DFLAG_LBA48)
2415 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2416
2417 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2418 200 sectors */
2419 if (ata_dev_knobble(dev)) {
2420 if (ata_msg_drv(ap) && print_info)
2421 ata_dev_info(dev, "applying bridge limits\n");
2422 dev->udma_mask &= ATA_UDMA5;
2423 dev->max_sectors = ATA_MAX_SECTORS;
2424 }
2425
2426 if ((dev->class == ATA_DEV_ATAPI) &&
2427 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2428 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2429 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2430 }
2431
2432 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2433 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2434 dev->max_sectors);
2435
2436 if (ap->ops->dev_config)
2437 ap->ops->dev_config(dev);
2438
2439 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2440 /* Let the user know. We don't want to disallow opens for
2441 rescue purposes, or in case the vendor is just a blithering
2442 idiot. Do this after the dev_config call as some controllers
2443 with buggy firmware may want to avoid reporting false device
2444 bugs */
2445
2446 if (print_info) {
2447 ata_dev_warn(dev,
2448 "Drive reports diagnostics failure. This may indicate a drive\n");
2449 ata_dev_warn(dev,
2450 "fault or invalid emulation. Contact drive vendor for information.\n");
2451 }
2452 }
2453
2454 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2455 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2456 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2457 }
2458
2459 return 0;
2460
2461 err_out_nosup:
2462 if (ata_msg_probe(ap))
2463 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2464 return rc;
2465 }
2466
2467 /**
2468 * ata_cable_40wire - return 40 wire cable type
2469 * @ap: port
2470 *
2471 * Helper method for drivers which want to hardwire 40 wire cable
2472 * detection.
2473 */
2474
2475 int ata_cable_40wire(struct ata_port *ap)
2476 {
2477 return ATA_CBL_PATA40;
2478 }
2479
2480 /**
2481 * ata_cable_80wire - return 80 wire cable type
2482 * @ap: port
2483 *
2484 * Helper method for drivers which want to hardwire 80 wire cable
2485 * detection.
2486 */
2487
2488 int ata_cable_80wire(struct ata_port *ap)
2489 {
2490 return ATA_CBL_PATA80;
2491 }
2492
2493 /**
2494 * ata_cable_unknown - return unknown PATA cable.
2495 * @ap: port
2496 *
2497 * Helper method for drivers which have no PATA cable detection.
2498 */
2499
2500 int ata_cable_unknown(struct ata_port *ap)
2501 {
2502 return ATA_CBL_PATA_UNK;
2503 }
2504
2505 /**
2506 * ata_cable_ignore - return ignored PATA cable.
2507 * @ap: port
2508 *
2509 * Helper method for drivers which don't use cable type to limit
2510 * transfer mode.
2511 */
2512 int ata_cable_ignore(struct ata_port *ap)
2513 {
2514 return ATA_CBL_PATA_IGN;
2515 }
2516
2517 /**
2518 * ata_cable_sata - return SATA cable type
2519 * @ap: port
2520 *
2521 * Helper method for drivers which have SATA cables
2522 */
2523
2524 int ata_cable_sata(struct ata_port *ap)
2525 {
2526 return ATA_CBL_SATA;
2527 }
2528
2529 /**
2530 * ata_bus_probe - Reset and probe ATA bus
2531 * @ap: Bus to probe
2532 *
2533 * Master ATA bus probing function. Initiates a hardware-dependent
2534 * bus reset, then attempts to identify any devices found on
2535 * the bus.
2536 *
2537 * LOCKING:
2538 * PCI/etc. bus probe sem.
2539 *
2540 * RETURNS:
2541 * Zero on success, negative errno otherwise.
2542 */
2543
2544 int ata_bus_probe(struct ata_port *ap)
2545 {
2546 unsigned int classes[ATA_MAX_DEVICES];
2547 int tries[ATA_MAX_DEVICES];
2548 int rc;
2549 struct ata_device *dev;
2550
2551 ata_for_each_dev(dev, &ap->link, ALL)
2552 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2553
2554 retry:
2555 ata_for_each_dev(dev, &ap->link, ALL) {
2556 /* If we issue an SRST then an ATA drive (not ATAPI)
2557 * may change configuration and be in PIO0 timing. If
2558 * we do a hard reset (or are coming from power on)
2559 * this is true for ATA or ATAPI. Until we've set a
2560 * suitable controller mode we should not touch the
2561 * bus as we may be talking too fast.
2562 */
2563 dev->pio_mode = XFER_PIO_0;
2564 dev->dma_mode = 0xff;
2565
2566 /* If the controller has a pio mode setup function
2567 * then use it to set the chipset to rights. Don't
2568 * touch the DMA setup as that will be dealt with when
2569 * configuring devices.
2570 */
2571 if (ap->ops->set_piomode)
2572 ap->ops->set_piomode(ap, dev);
2573 }
2574
2575 /* reset and determine device classes */
2576 ap->ops->phy_reset(ap);
2577
2578 ata_for_each_dev(dev, &ap->link, ALL) {
2579 if (dev->class != ATA_DEV_UNKNOWN)
2580 classes[dev->devno] = dev->class;
2581 else
2582 classes[dev->devno] = ATA_DEV_NONE;
2583
2584 dev->class = ATA_DEV_UNKNOWN;
2585 }
2586
2587 /* read IDENTIFY page and configure devices. We have to do the identify
2588 specific sequence bass-ackwards so that PDIAG- is released by
2589 the slave device */
2590
2591 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2592 if (tries[dev->devno])
2593 dev->class = classes[dev->devno];
2594
2595 if (!ata_dev_enabled(dev))
2596 continue;
2597
2598 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2599 dev->id);
2600 if (rc)
2601 goto fail;
2602 }
2603
2604 /* Now ask for the cable type as PDIAG- should have been released */
2605 if (ap->ops->cable_detect)
2606 ap->cbl = ap->ops->cable_detect(ap);
2607
2608 /* We may have SATA bridge glue hiding here irrespective of
2609 * the reported cable types and sensed types. When SATA
2610 * drives indicate we have a bridge, we don't know which end
2611 * of the link the bridge is which is a problem.
2612 */
2613 ata_for_each_dev(dev, &ap->link, ENABLED)
2614 if (ata_id_is_sata(dev->id))
2615 ap->cbl = ATA_CBL_SATA;
2616
2617 /* After the identify sequence we can now set up the devices. We do
2618 this in the normal order so that the user doesn't get confused */
2619
2620 ata_for_each_dev(dev, &ap->link, ENABLED) {
2621 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2622 rc = ata_dev_configure(dev);
2623 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2624 if (rc)
2625 goto fail;
2626 }
2627
2628 /* configure transfer mode */
2629 rc = ata_set_mode(&ap->link, &dev);
2630 if (rc)
2631 goto fail;
2632
2633 ata_for_each_dev(dev, &ap->link, ENABLED)
2634 return 0;
2635
2636 return -ENODEV;
2637
2638 fail:
2639 tries[dev->devno]--;
2640
2641 switch (rc) {
2642 case -EINVAL:
2643 /* eeek, something went very wrong, give up */
2644 tries[dev->devno] = 0;
2645 break;
2646
2647 case -ENODEV:
2648 /* give it just one more chance */
2649 tries[dev->devno] = min(tries[dev->devno], 1);
2650 case -EIO:
2651 if (tries[dev->devno] == 1) {
2652 /* This is the last chance, better to slow
2653 * down than lose it.
2654 */
2655 sata_down_spd_limit(&ap->link, 0);
2656 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2657 }
2658 }
2659
2660 if (!tries[dev->devno])
2661 ata_dev_disable(dev);
2662
2663 goto retry;
2664 }
2665
2666 /**
2667 * sata_print_link_status - Print SATA link status
2668 * @link: SATA link to printk link status about
2669 *
2670 * This function prints link speed and status of a SATA link.
2671 *
2672 * LOCKING:
2673 * None.
2674 */
2675 static void sata_print_link_status(struct ata_link *link)
2676 {
2677 u32 sstatus, scontrol, tmp;
2678
2679 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2680 return;
2681 sata_scr_read(link, SCR_CONTROL, &scontrol);
2682
2683 if (ata_phys_link_online(link)) {
2684 tmp = (sstatus >> 4) & 0xf;
2685 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2686 sata_spd_string(tmp), sstatus, scontrol);
2687 } else {
2688 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2689 sstatus, scontrol);
2690 }
2691 }
2692
2693 /**
2694 * ata_dev_pair - return other device on cable
2695 * @adev: device
2696 *
2697 * Obtain the other device on the same cable, or if none is
2698 * present NULL is returned
2699 */
2700
2701 struct ata_device *ata_dev_pair(struct ata_device *adev)
2702 {
2703 struct ata_link *link = adev->link;
2704 struct ata_device *pair = &link->device[1 - adev->devno];
2705 if (!ata_dev_enabled(pair))
2706 return NULL;
2707 return pair;
2708 }
2709
2710 /**
2711 * sata_down_spd_limit - adjust SATA spd limit downward
2712 * @link: Link to adjust SATA spd limit for
2713 * @spd_limit: Additional limit
2714 *
2715 * Adjust SATA spd limit of @link downward. Note that this
2716 * function only adjusts the limit. The change must be applied
2717 * using sata_set_spd().
2718 *
2719 * If @spd_limit is non-zero, the speed is limited to equal to or
2720 * lower than @spd_limit if such speed is supported. If
2721 * @spd_limit is slower than any supported speed, only the lowest
2722 * supported speed is allowed.
2723 *
2724 * LOCKING:
2725 * Inherited from caller.
2726 *
2727 * RETURNS:
2728 * 0 on success, negative errno on failure
2729 */
2730 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2731 {
2732 u32 sstatus, spd, mask;
2733 int rc, bit;
2734
2735 if (!sata_scr_valid(link))
2736 return -EOPNOTSUPP;
2737
2738 /* If SCR can be read, use it to determine the current SPD.
2739 * If not, use cached value in link->sata_spd.
2740 */
2741 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2742 if (rc == 0 && ata_sstatus_online(sstatus))
2743 spd = (sstatus >> 4) & 0xf;
2744 else
2745 spd = link->sata_spd;
2746
2747 mask = link->sata_spd_limit;
2748 if (mask <= 1)
2749 return -EINVAL;
2750
2751 /* unconditionally mask off the highest bit */
2752 bit = fls(mask) - 1;
2753 mask &= ~(1 << bit);
2754
2755 /* Mask off all speeds higher than or equal to the current
2756 * one. Force 1.5Gbps if current SPD is not available.
2757 */
2758 if (spd > 1)
2759 mask &= (1 << (spd - 1)) - 1;
2760 else
2761 mask &= 1;
2762
2763 /* were we already at the bottom? */
2764 if (!mask)
2765 return -EINVAL;
2766
2767 if (spd_limit) {
2768 if (mask & ((1 << spd_limit) - 1))
2769 mask &= (1 << spd_limit) - 1;
2770 else {
2771 bit = ffs(mask) - 1;
2772 mask = 1 << bit;
2773 }
2774 }
2775
2776 link->sata_spd_limit = mask;
2777
2778 ata_link_warn(link, "limiting SATA link speed to %s\n",
2779 sata_spd_string(fls(mask)));
2780
2781 return 0;
2782 }
2783
2784 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2785 {
2786 struct ata_link *host_link = &link->ap->link;
2787 u32 limit, target, spd;
2788
2789 limit = link->sata_spd_limit;
2790
2791 /* Don't configure downstream link faster than upstream link.
2792 * It doesn't speed up anything and some PMPs choke on such
2793 * configuration.
2794 */
2795 if (!ata_is_host_link(link) && host_link->sata_spd)
2796 limit &= (1 << host_link->sata_spd) - 1;
2797
2798 if (limit == UINT_MAX)
2799 target = 0;
2800 else
2801 target = fls(limit);
2802
2803 spd = (*scontrol >> 4) & 0xf;
2804 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2805
2806 return spd != target;
2807 }
2808
2809 /**
2810 * sata_set_spd_needed - is SATA spd configuration needed
2811 * @link: Link in question
2812 *
2813 * Test whether the spd limit in SControl matches
2814 * @link->sata_spd_limit. This function is used to determine
2815 * whether hardreset is necessary to apply SATA spd
2816 * configuration.
2817 *
2818 * LOCKING:
2819 * Inherited from caller.
2820 *
2821 * RETURNS:
2822 * 1 if SATA spd configuration is needed, 0 otherwise.
2823 */
2824 static int sata_set_spd_needed(struct ata_link *link)
2825 {
2826 u32 scontrol;
2827
2828 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2829 return 1;
2830
2831 return __sata_set_spd_needed(link, &scontrol);
2832 }
2833
2834 /**
2835 * sata_set_spd - set SATA spd according to spd limit
2836 * @link: Link to set SATA spd for
2837 *
2838 * Set SATA spd of @link according to sata_spd_limit.
2839 *
2840 * LOCKING:
2841 * Inherited from caller.
2842 *
2843 * RETURNS:
2844 * 0 if spd doesn't need to be changed, 1 if spd has been
2845 * changed. Negative errno if SCR registers are inaccessible.
2846 */
2847 int sata_set_spd(struct ata_link *link)
2848 {
2849 u32 scontrol;
2850 int rc;
2851
2852 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2853 return rc;
2854
2855 if (!__sata_set_spd_needed(link, &scontrol))
2856 return 0;
2857
2858 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2859 return rc;
2860
2861 return 1;
2862 }
2863
2864 /*
2865 * This mode timing computation functionality is ported over from
2866 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2867 */
2868 /*
2869 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2870 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2871 * for UDMA6, which is currently supported only by Maxtor drives.
2872 *
2873 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2874 */
2875
2876 static const struct ata_timing ata_timing[] = {
2877 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2878 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2879 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2880 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2881 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2882 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2883 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2884 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2885
2886 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2887 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2888 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2889
2890 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2891 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2892 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2893 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2894 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2895
2896 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2897 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2898 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2899 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2900 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2901 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2902 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2903 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2904
2905 { 0xFF }
2906 };
2907
2908 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2909 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2910
2911 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2912 {
2913 q->setup = EZ(t->setup * 1000, T);
2914 q->act8b = EZ(t->act8b * 1000, T);
2915 q->rec8b = EZ(t->rec8b * 1000, T);
2916 q->cyc8b = EZ(t->cyc8b * 1000, T);
2917 q->active = EZ(t->active * 1000, T);
2918 q->recover = EZ(t->recover * 1000, T);
2919 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2920 q->cycle = EZ(t->cycle * 1000, T);
2921 q->udma = EZ(t->udma * 1000, UT);
2922 }
2923
2924 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2925 struct ata_timing *m, unsigned int what)
2926 {
2927 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2928 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2929 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2930 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2931 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2932 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2933 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2934 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2935 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2936 }
2937
2938 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2939 {
2940 const struct ata_timing *t = ata_timing;
2941
2942 while (xfer_mode > t->mode)
2943 t++;
2944
2945 if (xfer_mode == t->mode)
2946 return t;
2947
2948 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2949 __func__, xfer_mode);
2950
2951 return NULL;
2952 }
2953
2954 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2955 struct ata_timing *t, int T, int UT)
2956 {
2957 const u16 *id = adev->id;
2958 const struct ata_timing *s;
2959 struct ata_timing p;
2960
2961 /*
2962 * Find the mode.
2963 */
2964
2965 if (!(s = ata_timing_find_mode(speed)))
2966 return -EINVAL;
2967
2968 memcpy(t, s, sizeof(*s));
2969
2970 /*
2971 * If the drive is an EIDE drive, it can tell us it needs extended
2972 * PIO/MW_DMA cycle timing.
2973 */
2974
2975 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2976 memset(&p, 0, sizeof(p));
2977
2978 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2979 if (speed <= XFER_PIO_2)
2980 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2981 else if ((speed <= XFER_PIO_4) ||
2982 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2983 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2984 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2985 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2986
2987 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2988 }
2989
2990 /*
2991 * Convert the timing to bus clock counts.
2992 */
2993
2994 ata_timing_quantize(t, t, T, UT);
2995
2996 /*
2997 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2998 * S.M.A.R.T * and some other commands. We have to ensure that the
2999 * DMA cycle timing is slower/equal than the fastest PIO timing.
3000 */
3001
3002 if (speed > XFER_PIO_6) {
3003 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3004 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3005 }
3006
3007 /*
3008 * Lengthen active & recovery time so that cycle time is correct.
3009 */
3010
3011 if (t->act8b + t->rec8b < t->cyc8b) {
3012 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3013 t->rec8b = t->cyc8b - t->act8b;
3014 }
3015
3016 if (t->active + t->recover < t->cycle) {
3017 t->active += (t->cycle - (t->active + t->recover)) / 2;
3018 t->recover = t->cycle - t->active;
3019 }
3020
3021 /* In a few cases quantisation may produce enough errors to
3022 leave t->cycle too low for the sum of active and recovery
3023 if so we must correct this */
3024 if (t->active + t->recover > t->cycle)
3025 t->cycle = t->active + t->recover;
3026
3027 return 0;
3028 }
3029
3030 /**
3031 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3032 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3033 * @cycle: cycle duration in ns
3034 *
3035 * Return matching xfer mode for @cycle. The returned mode is of
3036 * the transfer type specified by @xfer_shift. If @cycle is too
3037 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3038 * than the fastest known mode, the fasted mode is returned.
3039 *
3040 * LOCKING:
3041 * None.
3042 *
3043 * RETURNS:
3044 * Matching xfer_mode, 0xff if no match found.
3045 */
3046 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3047 {
3048 u8 base_mode = 0xff, last_mode = 0xff;
3049 const struct ata_xfer_ent *ent;
3050 const struct ata_timing *t;
3051
3052 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3053 if (ent->shift == xfer_shift)
3054 base_mode = ent->base;
3055
3056 for (t = ata_timing_find_mode(base_mode);
3057 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3058 unsigned short this_cycle;
3059
3060 switch (xfer_shift) {
3061 case ATA_SHIFT_PIO:
3062 case ATA_SHIFT_MWDMA:
3063 this_cycle = t->cycle;
3064 break;
3065 case ATA_SHIFT_UDMA:
3066 this_cycle = t->udma;
3067 break;
3068 default:
3069 return 0xff;
3070 }
3071
3072 if (cycle > this_cycle)
3073 break;
3074
3075 last_mode = t->mode;
3076 }
3077
3078 return last_mode;
3079 }
3080
3081 /**
3082 * ata_down_xfermask_limit - adjust dev xfer masks downward
3083 * @dev: Device to adjust xfer masks
3084 * @sel: ATA_DNXFER_* selector
3085 *
3086 * Adjust xfer masks of @dev downward. Note that this function
3087 * does not apply the change. Invoking ata_set_mode() afterwards
3088 * will apply the limit.
3089 *
3090 * LOCKING:
3091 * Inherited from caller.
3092 *
3093 * RETURNS:
3094 * 0 on success, negative errno on failure
3095 */
3096 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3097 {
3098 char buf[32];
3099 unsigned long orig_mask, xfer_mask;
3100 unsigned long pio_mask, mwdma_mask, udma_mask;
3101 int quiet, highbit;
3102
3103 quiet = !!(sel & ATA_DNXFER_QUIET);
3104 sel &= ~ATA_DNXFER_QUIET;
3105
3106 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3107 dev->mwdma_mask,
3108 dev->udma_mask);
3109 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3110
3111 switch (sel) {
3112 case ATA_DNXFER_PIO:
3113 highbit = fls(pio_mask) - 1;
3114 pio_mask &= ~(1 << highbit);
3115 break;
3116
3117 case ATA_DNXFER_DMA:
3118 if (udma_mask) {
3119 highbit = fls(udma_mask) - 1;
3120 udma_mask &= ~(1 << highbit);
3121 if (!udma_mask)
3122 return -ENOENT;
3123 } else if (mwdma_mask) {
3124 highbit = fls(mwdma_mask) - 1;
3125 mwdma_mask &= ~(1 << highbit);
3126 if (!mwdma_mask)
3127 return -ENOENT;
3128 }
3129 break;
3130
3131 case ATA_DNXFER_40C:
3132 udma_mask &= ATA_UDMA_MASK_40C;
3133 break;
3134
3135 case ATA_DNXFER_FORCE_PIO0:
3136 pio_mask &= 1;
3137 case ATA_DNXFER_FORCE_PIO:
3138 mwdma_mask = 0;
3139 udma_mask = 0;
3140 break;
3141
3142 default:
3143 BUG();
3144 }
3145
3146 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3147
3148 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3149 return -ENOENT;
3150
3151 if (!quiet) {
3152 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3153 snprintf(buf, sizeof(buf), "%s:%s",
3154 ata_mode_string(xfer_mask),
3155 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3156 else
3157 snprintf(buf, sizeof(buf), "%s",
3158 ata_mode_string(xfer_mask));
3159
3160 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3161 }
3162
3163 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3164 &dev->udma_mask);
3165
3166 return 0;
3167 }
3168
3169 static int ata_dev_set_mode(struct ata_device *dev)
3170 {
3171 struct ata_port *ap = dev->link->ap;
3172 struct ata_eh_context *ehc = &dev->link->eh_context;
3173 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3174 const char *dev_err_whine = "";
3175 int ign_dev_err = 0;
3176 unsigned int err_mask = 0;
3177 int rc;
3178
3179 dev->flags &= ~ATA_DFLAG_PIO;
3180 if (dev->xfer_shift == ATA_SHIFT_PIO)
3181 dev->flags |= ATA_DFLAG_PIO;
3182
3183 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3184 dev_err_whine = " (SET_XFERMODE skipped)";
3185 else {
3186 if (nosetxfer)
3187 ata_dev_warn(dev,
3188 "NOSETXFER but PATA detected - can't "
3189 "skip SETXFER, might malfunction\n");
3190 err_mask = ata_dev_set_xfermode(dev);
3191 }
3192
3193 if (err_mask & ~AC_ERR_DEV)
3194 goto fail;
3195
3196 /* revalidate */
3197 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3198 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3199 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3200 if (rc)
3201 return rc;
3202
3203 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3204 /* Old CFA may refuse this command, which is just fine */
3205 if (ata_id_is_cfa(dev->id))
3206 ign_dev_err = 1;
3207 /* Catch several broken garbage emulations plus some pre
3208 ATA devices */
3209 if (ata_id_major_version(dev->id) == 0 &&
3210 dev->pio_mode <= XFER_PIO_2)
3211 ign_dev_err = 1;
3212 /* Some very old devices and some bad newer ones fail
3213 any kind of SET_XFERMODE request but support PIO0-2
3214 timings and no IORDY */
3215 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3216 ign_dev_err = 1;
3217 }
3218 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3219 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3220 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3221 dev->dma_mode == XFER_MW_DMA_0 &&
3222 (dev->id[63] >> 8) & 1)
3223 ign_dev_err = 1;
3224
3225 /* if the device is actually configured correctly, ignore dev err */
3226 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3227 ign_dev_err = 1;
3228
3229 if (err_mask & AC_ERR_DEV) {
3230 if (!ign_dev_err)
3231 goto fail;
3232 else
3233 dev_err_whine = " (device error ignored)";
3234 }
3235
3236 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3237 dev->xfer_shift, (int)dev->xfer_mode);
3238
3239 ata_dev_info(dev, "configured for %s%s\n",
3240 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3241 dev_err_whine);
3242
3243 return 0;
3244
3245 fail:
3246 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3247 return -EIO;
3248 }
3249
3250 /**
3251 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3252 * @link: link on which timings will be programmed
3253 * @r_failed_dev: out parameter for failed device
3254 *
3255 * Standard implementation of the function used to tune and set
3256 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3257 * ata_dev_set_mode() fails, pointer to the failing device is
3258 * returned in @r_failed_dev.
3259 *
3260 * LOCKING:
3261 * PCI/etc. bus probe sem.
3262 *
3263 * RETURNS:
3264 * 0 on success, negative errno otherwise
3265 */
3266
3267 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3268 {
3269 struct ata_port *ap = link->ap;
3270 struct ata_device *dev;
3271 int rc = 0, used_dma = 0, found = 0;
3272
3273 /* step 1: calculate xfer_mask */
3274 ata_for_each_dev(dev, link, ENABLED) {
3275 unsigned long pio_mask, dma_mask;
3276 unsigned int mode_mask;
3277
3278 mode_mask = ATA_DMA_MASK_ATA;
3279 if (dev->class == ATA_DEV_ATAPI)
3280 mode_mask = ATA_DMA_MASK_ATAPI;
3281 else if (ata_id_is_cfa(dev->id))
3282 mode_mask = ATA_DMA_MASK_CFA;
3283
3284 ata_dev_xfermask(dev);
3285 ata_force_xfermask(dev);
3286
3287 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3288
3289 if (libata_dma_mask & mode_mask)
3290 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3291 dev->udma_mask);
3292 else
3293 dma_mask = 0;
3294
3295 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3296 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3297
3298 found = 1;
3299 if (ata_dma_enabled(dev))
3300 used_dma = 1;
3301 }
3302 if (!found)
3303 goto out;
3304
3305 /* step 2: always set host PIO timings */
3306 ata_for_each_dev(dev, link, ENABLED) {
3307 if (dev->pio_mode == 0xff) {
3308 ata_dev_warn(dev, "no PIO support\n");
3309 rc = -EINVAL;
3310 goto out;
3311 }
3312
3313 dev->xfer_mode = dev->pio_mode;
3314 dev->xfer_shift = ATA_SHIFT_PIO;
3315 if (ap->ops->set_piomode)
3316 ap->ops->set_piomode(ap, dev);
3317 }
3318
3319 /* step 3: set host DMA timings */
3320 ata_for_each_dev(dev, link, ENABLED) {
3321 if (!ata_dma_enabled(dev))
3322 continue;
3323
3324 dev->xfer_mode = dev->dma_mode;
3325 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3326 if (ap->ops->set_dmamode)
3327 ap->ops->set_dmamode(ap, dev);
3328 }
3329
3330 /* step 4: update devices' xfer mode */
3331 ata_for_each_dev(dev, link, ENABLED) {
3332 rc = ata_dev_set_mode(dev);
3333 if (rc)
3334 goto out;
3335 }
3336
3337 /* Record simplex status. If we selected DMA then the other
3338 * host channels are not permitted to do so.
3339 */
3340 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3341 ap->host->simplex_claimed = ap;
3342
3343 out:
3344 if (rc)
3345 *r_failed_dev = dev;
3346 return rc;
3347 }
3348
3349 /**
3350 * ata_wait_ready - wait for link to become ready
3351 * @link: link to be waited on
3352 * @deadline: deadline jiffies for the operation
3353 * @check_ready: callback to check link readiness
3354 *
3355 * Wait for @link to become ready. @check_ready should return
3356 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3357 * link doesn't seem to be occupied, other errno for other error
3358 * conditions.
3359 *
3360 * Transient -ENODEV conditions are allowed for
3361 * ATA_TMOUT_FF_WAIT.
3362 *
3363 * LOCKING:
3364 * EH context.
3365 *
3366 * RETURNS:
3367 * 0 if @linke is ready before @deadline; otherwise, -errno.
3368 */
3369 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3370 int (*check_ready)(struct ata_link *link))
3371 {
3372 unsigned long start = jiffies;
3373 unsigned long nodev_deadline;
3374 int warned = 0;
3375
3376 /* choose which 0xff timeout to use, read comment in libata.h */
3377 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3378 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3379 else
3380 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3381
3382 /* Slave readiness can't be tested separately from master. On
3383 * M/S emulation configuration, this function should be called
3384 * only on the master and it will handle both master and slave.
3385 */
3386 WARN_ON(link == link->ap->slave_link);
3387
3388 if (time_after(nodev_deadline, deadline))
3389 nodev_deadline = deadline;
3390
3391 while (1) {
3392 unsigned long now = jiffies;
3393 int ready, tmp;
3394
3395 ready = tmp = check_ready(link);
3396 if (ready > 0)
3397 return 0;
3398
3399 /*
3400 * -ENODEV could be transient. Ignore -ENODEV if link
3401 * is online. Also, some SATA devices take a long
3402 * time to clear 0xff after reset. Wait for
3403 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3404 * offline.
3405 *
3406 * Note that some PATA controllers (pata_ali) explode
3407 * if status register is read more than once when
3408 * there's no device attached.
3409 */
3410 if (ready == -ENODEV) {
3411 if (ata_link_online(link))
3412 ready = 0;
3413 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3414 !ata_link_offline(link) &&
3415 time_before(now, nodev_deadline))
3416 ready = 0;
3417 }
3418
3419 if (ready)
3420 return ready;
3421 if (time_after(now, deadline))
3422 return -EBUSY;
3423
3424 if (!warned && time_after(now, start + 5 * HZ) &&
3425 (deadline - now > 3 * HZ)) {
3426 ata_link_warn(link,
3427 "link is slow to respond, please be patient "
3428 "(ready=%d)\n", tmp);
3429 warned = 1;
3430 }
3431
3432 ata_msleep(link->ap, 50);
3433 }
3434 }
3435
3436 /**
3437 * ata_wait_after_reset - wait for link to become ready after reset
3438 * @link: link to be waited on
3439 * @deadline: deadline jiffies for the operation
3440 * @check_ready: callback to check link readiness
3441 *
3442 * Wait for @link to become ready after reset.
3443 *
3444 * LOCKING:
3445 * EH context.
3446 *
3447 * RETURNS:
3448 * 0 if @linke is ready before @deadline; otherwise, -errno.
3449 */
3450 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3451 int (*check_ready)(struct ata_link *link))
3452 {
3453 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3454
3455 return ata_wait_ready(link, deadline, check_ready);
3456 }
3457
3458 /**
3459 * sata_link_debounce - debounce SATA phy status
3460 * @link: ATA link to debounce SATA phy status for
3461 * @params: timing parameters { interval, duratinon, timeout } in msec
3462 * @deadline: deadline jiffies for the operation
3463 *
3464 * Make sure SStatus of @link reaches stable state, determined by
3465 * holding the same value where DET is not 1 for @duration polled
3466 * every @interval, before @timeout. Timeout constraints the
3467 * beginning of the stable state. Because DET gets stuck at 1 on
3468 * some controllers after hot unplugging, this functions waits
3469 * until timeout then returns 0 if DET is stable at 1.
3470 *
3471 * @timeout is further limited by @deadline. The sooner of the
3472 * two is used.
3473 *
3474 * LOCKING:
3475 * Kernel thread context (may sleep)
3476 *
3477 * RETURNS:
3478 * 0 on success, -errno on failure.
3479 */
3480 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3481 unsigned long deadline)
3482 {
3483 unsigned long interval = params[0];
3484 unsigned long duration = params[1];
3485 unsigned long last_jiffies, t;
3486 u32 last, cur;
3487 int rc;
3488
3489 t = ata_deadline(jiffies, params[2]);
3490 if (time_before(t, deadline))
3491 deadline = t;
3492
3493 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3494 return rc;
3495 cur &= 0xf;
3496
3497 last = cur;
3498 last_jiffies = jiffies;
3499
3500 while (1) {
3501 ata_msleep(link->ap, interval);
3502 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3503 return rc;
3504 cur &= 0xf;
3505
3506 /* DET stable? */
3507 if (cur == last) {
3508 if (cur == 1 && time_before(jiffies, deadline))
3509 continue;
3510 if (time_after(jiffies,
3511 ata_deadline(last_jiffies, duration)))
3512 return 0;
3513 continue;
3514 }
3515
3516 /* unstable, start over */
3517 last = cur;
3518 last_jiffies = jiffies;
3519
3520 /* Check deadline. If debouncing failed, return
3521 * -EPIPE to tell upper layer to lower link speed.
3522 */
3523 if (time_after(jiffies, deadline))
3524 return -EPIPE;
3525 }
3526 }
3527
3528 /**
3529 * sata_link_resume - resume SATA link
3530 * @link: ATA link to resume SATA
3531 * @params: timing parameters { interval, duratinon, timeout } in msec
3532 * @deadline: deadline jiffies for the operation
3533 *
3534 * Resume SATA phy @link and debounce it.
3535 *
3536 * LOCKING:
3537 * Kernel thread context (may sleep)
3538 *
3539 * RETURNS:
3540 * 0 on success, -errno on failure.
3541 */
3542 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3543 unsigned long deadline)
3544 {
3545 int tries = ATA_LINK_RESUME_TRIES;
3546 u32 scontrol, serror;
3547 int rc;
3548
3549 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3550 return rc;
3551
3552 /*
3553 * Writes to SControl sometimes get ignored under certain
3554 * controllers (ata_piix SIDPR). Make sure DET actually is
3555 * cleared.
3556 */
3557 do {
3558 scontrol = (scontrol & 0x0f0) | 0x300;
3559 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3560 return rc;
3561 /*
3562 * Some PHYs react badly if SStatus is pounded
3563 * immediately after resuming. Delay 200ms before
3564 * debouncing.
3565 */
3566 ata_msleep(link->ap, 200);
3567
3568 /* is SControl restored correctly? */
3569 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3570 return rc;
3571 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3572
3573 if ((scontrol & 0xf0f) != 0x300) {
3574 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3575 scontrol);
3576 return 0;
3577 }
3578
3579 if (tries < ATA_LINK_RESUME_TRIES)
3580 ata_link_warn(link, "link resume succeeded after %d retries\n",
3581 ATA_LINK_RESUME_TRIES - tries);
3582
3583 if ((rc = sata_link_debounce(link, params, deadline)))
3584 return rc;
3585
3586 /* clear SError, some PHYs require this even for SRST to work */
3587 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3588 rc = sata_scr_write(link, SCR_ERROR, serror);
3589
3590 return rc != -EINVAL ? rc : 0;
3591 }
3592
3593 /**
3594 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3595 * @link: ATA link to manipulate SControl for
3596 * @policy: LPM policy to configure
3597 * @spm_wakeup: initiate LPM transition to active state
3598 *
3599 * Manipulate the IPM field of the SControl register of @link
3600 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3601 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3602 * the link. This function also clears PHYRDY_CHG before
3603 * returning.
3604 *
3605 * LOCKING:
3606 * EH context.
3607 *
3608 * RETURNS:
3609 * 0 on succes, -errno otherwise.
3610 */
3611 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3612 bool spm_wakeup)
3613 {
3614 struct ata_eh_context *ehc = &link->eh_context;
3615 bool woken_up = false;
3616 u32 scontrol;
3617 int rc;
3618
3619 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3620 if (rc)
3621 return rc;
3622
3623 switch (policy) {
3624 case ATA_LPM_MAX_POWER:
3625 /* disable all LPM transitions */
3626 scontrol |= (0x7 << 8);
3627 /* initiate transition to active state */
3628 if (spm_wakeup) {
3629 scontrol |= (0x4 << 12);
3630 woken_up = true;
3631 }
3632 break;
3633 case ATA_LPM_MED_POWER:
3634 /* allow LPM to PARTIAL */
3635 scontrol &= ~(0x1 << 8);
3636 scontrol |= (0x6 << 8);
3637 break;
3638 case ATA_LPM_MIN_POWER:
3639 if (ata_link_nr_enabled(link) > 0)
3640 /* no restrictions on LPM transitions */
3641 scontrol &= ~(0x7 << 8);
3642 else {
3643 /* empty port, power off */
3644 scontrol &= ~0xf;
3645 scontrol |= (0x1 << 2);
3646 }
3647 break;
3648 default:
3649 WARN_ON(1);
3650 }
3651
3652 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3653 if (rc)
3654 return rc;
3655
3656 /* give the link time to transit out of LPM state */
3657 if (woken_up)
3658 msleep(10);
3659
3660 /* clear PHYRDY_CHG from SError */
3661 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3662 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3663 }
3664
3665 /**
3666 * ata_std_prereset - prepare for reset
3667 * @link: ATA link to be reset
3668 * @deadline: deadline jiffies for the operation
3669 *
3670 * @link is about to be reset. Initialize it. Failure from
3671 * prereset makes libata abort whole reset sequence and give up
3672 * that port, so prereset should be best-effort. It does its
3673 * best to prepare for reset sequence but if things go wrong, it
3674 * should just whine, not fail.
3675 *
3676 * LOCKING:
3677 * Kernel thread context (may sleep)
3678 *
3679 * RETURNS:
3680 * 0 on success, -errno otherwise.
3681 */
3682 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3683 {
3684 struct ata_port *ap = link->ap;
3685 struct ata_eh_context *ehc = &link->eh_context;
3686 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3687 int rc;
3688
3689 /* if we're about to do hardreset, nothing more to do */
3690 if (ehc->i.action & ATA_EH_HARDRESET)
3691 return 0;
3692
3693 /* if SATA, resume link */
3694 if (ap->flags & ATA_FLAG_SATA) {
3695 rc = sata_link_resume(link, timing, deadline);
3696 /* whine about phy resume failure but proceed */
3697 if (rc && rc != -EOPNOTSUPP)
3698 ata_link_warn(link,
3699 "failed to resume link for reset (errno=%d)\n",
3700 rc);
3701 }
3702
3703 /* no point in trying softreset on offline link */
3704 if (ata_phys_link_offline(link))
3705 ehc->i.action &= ~ATA_EH_SOFTRESET;
3706
3707 return 0;
3708 }
3709
3710 /**
3711 * sata_link_hardreset - reset link via SATA phy reset
3712 * @link: link to reset
3713 * @timing: timing parameters { interval, duratinon, timeout } in msec
3714 * @deadline: deadline jiffies for the operation
3715 * @online: optional out parameter indicating link onlineness
3716 * @check_ready: optional callback to check link readiness
3717 *
3718 * SATA phy-reset @link using DET bits of SControl register.
3719 * After hardreset, link readiness is waited upon using
3720 * ata_wait_ready() if @check_ready is specified. LLDs are
3721 * allowed to not specify @check_ready and wait itself after this
3722 * function returns. Device classification is LLD's
3723 * responsibility.
3724 *
3725 * *@online is set to one iff reset succeeded and @link is online
3726 * after reset.
3727 *
3728 * LOCKING:
3729 * Kernel thread context (may sleep)
3730 *
3731 * RETURNS:
3732 * 0 on success, -errno otherwise.
3733 */
3734 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3735 unsigned long deadline,
3736 bool *online, int (*check_ready)(struct ata_link *))
3737 {
3738 u32 scontrol;
3739 int rc;
3740
3741 DPRINTK("ENTER\n");
3742
3743 if (online)
3744 *online = false;
3745
3746 if (sata_set_spd_needed(link)) {
3747 /* SATA spec says nothing about how to reconfigure
3748 * spd. To be on the safe side, turn off phy during
3749 * reconfiguration. This works for at least ICH7 AHCI
3750 * and Sil3124.
3751 */
3752 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3753 goto out;
3754
3755 scontrol = (scontrol & 0x0f0) | 0x304;
3756
3757 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3758 goto out;
3759
3760 sata_set_spd(link);
3761 }
3762
3763 /* issue phy wake/reset */
3764 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3765 goto out;
3766
3767 scontrol = (scontrol & 0x0f0) | 0x301;
3768
3769 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3770 goto out;
3771
3772 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3773 * 10.4.2 says at least 1 ms.
3774 */
3775 ata_msleep(link->ap, 1);
3776
3777 /* bring link back */
3778 rc = sata_link_resume(link, timing, deadline);
3779 if (rc)
3780 goto out;
3781 /* if link is offline nothing more to do */
3782 if (ata_phys_link_offline(link))
3783 goto out;
3784
3785 /* Link is online. From this point, -ENODEV too is an error. */
3786 if (online)
3787 *online = true;
3788
3789 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3790 /* If PMP is supported, we have to do follow-up SRST.
3791 * Some PMPs don't send D2H Reg FIS after hardreset if
3792 * the first port is empty. Wait only for
3793 * ATA_TMOUT_PMP_SRST_WAIT.
3794 */
3795 if (check_ready) {
3796 unsigned long pmp_deadline;
3797
3798 pmp_deadline = ata_deadline(jiffies,
3799 ATA_TMOUT_PMP_SRST_WAIT);
3800 if (time_after(pmp_deadline, deadline))
3801 pmp_deadline = deadline;
3802 ata_wait_ready(link, pmp_deadline, check_ready);
3803 }
3804 rc = -EAGAIN;
3805 goto out;
3806 }
3807
3808 rc = 0;
3809 if (check_ready)
3810 rc = ata_wait_ready(link, deadline, check_ready);
3811 out:
3812 if (rc && rc != -EAGAIN) {
3813 /* online is set iff link is online && reset succeeded */
3814 if (online)
3815 *online = false;
3816 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3817 }
3818 DPRINTK("EXIT, rc=%d\n", rc);
3819 return rc;
3820 }
3821
3822 /**
3823 * sata_std_hardreset - COMRESET w/o waiting or classification
3824 * @link: link to reset
3825 * @class: resulting class of attached device
3826 * @deadline: deadline jiffies for the operation
3827 *
3828 * Standard SATA COMRESET w/o waiting or classification.
3829 *
3830 * LOCKING:
3831 * Kernel thread context (may sleep)
3832 *
3833 * RETURNS:
3834 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3835 */
3836 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3837 unsigned long deadline)
3838 {
3839 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3840 bool online;
3841 int rc;
3842
3843 /* do hardreset */
3844 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3845 return online ? -EAGAIN : rc;
3846 }
3847
3848 /**
3849 * ata_std_postreset - standard postreset callback
3850 * @link: the target ata_link
3851 * @classes: classes of attached devices
3852 *
3853 * This function is invoked after a successful reset. Note that
3854 * the device might have been reset more than once using
3855 * different reset methods before postreset is invoked.
3856 *
3857 * LOCKING:
3858 * Kernel thread context (may sleep)
3859 */
3860 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3861 {
3862 u32 serror;
3863
3864 DPRINTK("ENTER\n");
3865
3866 /* reset complete, clear SError */
3867 if (!sata_scr_read(link, SCR_ERROR, &serror))
3868 sata_scr_write(link, SCR_ERROR, serror);
3869
3870 /* print link status */
3871 sata_print_link_status(link);
3872
3873 DPRINTK("EXIT\n");
3874 }
3875
3876 /**
3877 * ata_dev_same_device - Determine whether new ID matches configured device
3878 * @dev: device to compare against
3879 * @new_class: class of the new device
3880 * @new_id: IDENTIFY page of the new device
3881 *
3882 * Compare @new_class and @new_id against @dev and determine
3883 * whether @dev is the device indicated by @new_class and
3884 * @new_id.
3885 *
3886 * LOCKING:
3887 * None.
3888 *
3889 * RETURNS:
3890 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3891 */
3892 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3893 const u16 *new_id)
3894 {
3895 const u16 *old_id = dev->id;
3896 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3897 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3898
3899 if (dev->class != new_class) {
3900 ata_dev_info(dev, "class mismatch %d != %d\n",
3901 dev->class, new_class);
3902 return 0;
3903 }
3904
3905 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3906 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3907 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3908 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3909
3910 if (strcmp(model[0], model[1])) {
3911 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3912 model[0], model[1]);
3913 return 0;
3914 }
3915
3916 if (strcmp(serial[0], serial[1])) {
3917 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3918 serial[0], serial[1]);
3919 return 0;
3920 }
3921
3922 return 1;
3923 }
3924
3925 /**
3926 * ata_dev_reread_id - Re-read IDENTIFY data
3927 * @dev: target ATA device
3928 * @readid_flags: read ID flags
3929 *
3930 * Re-read IDENTIFY page and make sure @dev is still attached to
3931 * the port.
3932 *
3933 * LOCKING:
3934 * Kernel thread context (may sleep)
3935 *
3936 * RETURNS:
3937 * 0 on success, negative errno otherwise
3938 */
3939 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3940 {
3941 unsigned int class = dev->class;
3942 u16 *id = (void *)dev->link->ap->sector_buf;
3943 int rc;
3944
3945 /* read ID data */
3946 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3947 if (rc)
3948 return rc;
3949
3950 /* is the device still there? */
3951 if (!ata_dev_same_device(dev, class, id))
3952 return -ENODEV;
3953
3954 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3955 return 0;
3956 }
3957
3958 /**
3959 * ata_dev_revalidate - Revalidate ATA device
3960 * @dev: device to revalidate
3961 * @new_class: new class code
3962 * @readid_flags: read ID flags
3963 *
3964 * Re-read IDENTIFY page, make sure @dev is still attached to the
3965 * port and reconfigure it according to the new IDENTIFY page.
3966 *
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3969 *
3970 * RETURNS:
3971 * 0 on success, negative errno otherwise
3972 */
3973 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3974 unsigned int readid_flags)
3975 {
3976 u64 n_sectors = dev->n_sectors;
3977 u64 n_native_sectors = dev->n_native_sectors;
3978 int rc;
3979
3980 if (!ata_dev_enabled(dev))
3981 return -ENODEV;
3982
3983 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3984 if (ata_class_enabled(new_class) &&
3985 new_class != ATA_DEV_ATA &&
3986 new_class != ATA_DEV_ATAPI &&
3987 new_class != ATA_DEV_SEMB) {
3988 ata_dev_info(dev, "class mismatch %u != %u\n",
3989 dev->class, new_class);
3990 rc = -ENODEV;
3991 goto fail;
3992 }
3993
3994 /* re-read ID */
3995 rc = ata_dev_reread_id(dev, readid_flags);
3996 if (rc)
3997 goto fail;
3998
3999 /* configure device according to the new ID */
4000 rc = ata_dev_configure(dev);
4001 if (rc)
4002 goto fail;
4003
4004 /* verify n_sectors hasn't changed */
4005 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4006 dev->n_sectors == n_sectors)
4007 return 0;
4008
4009 /* n_sectors has changed */
4010 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4011 (unsigned long long)n_sectors,
4012 (unsigned long long)dev->n_sectors);
4013
4014 /*
4015 * Something could have caused HPA to be unlocked
4016 * involuntarily. If n_native_sectors hasn't changed and the
4017 * new size matches it, keep the device.
4018 */
4019 if (dev->n_native_sectors == n_native_sectors &&
4020 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4021 ata_dev_warn(dev,
4022 "new n_sectors matches native, probably "
4023 "late HPA unlock, n_sectors updated\n");
4024 /* use the larger n_sectors */
4025 return 0;
4026 }
4027
4028 /*
4029 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4030 * unlocking HPA in those cases.
4031 *
4032 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4033 */
4034 if (dev->n_native_sectors == n_native_sectors &&
4035 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4036 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4037 ata_dev_warn(dev,
4038 "old n_sectors matches native, probably "
4039 "late HPA lock, will try to unlock HPA\n");
4040 /* try unlocking HPA */
4041 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4042 rc = -EIO;
4043 } else
4044 rc = -ENODEV;
4045
4046 /* restore original n_[native_]sectors and fail */
4047 dev->n_native_sectors = n_native_sectors;
4048 dev->n_sectors = n_sectors;
4049 fail:
4050 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4051 return rc;
4052 }
4053
4054 struct ata_blacklist_entry {
4055 const char *model_num;
4056 const char *model_rev;
4057 unsigned long horkage;
4058 };
4059
4060 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4061 /* Devices with DMA related problems under Linux */
4062 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4063 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4064 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4065 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4066 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4067 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4068 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4069 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4070 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4071 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4072 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4073 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4074 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4075 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4076 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4077 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4078 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4079 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4080 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4081 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4082 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4083 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4084 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4085 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4086 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4087 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4088 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4089 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4090 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4091 /* Odd clown on sil3726/4726 PMPs */
4092 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4093
4094 /* Weird ATAPI devices */
4095 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4096 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4097
4098 /* Devices we expect to fail diagnostics */
4099
4100 /* Devices where NCQ should be avoided */
4101 /* NCQ is slow */
4102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4103 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4104 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4105 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4106 /* NCQ is broken */
4107 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4108 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4109 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4110 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4111 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4112
4113 /* Seagate NCQ + FLUSH CACHE firmware bug */
4114 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4115 ATA_HORKAGE_FIRMWARE_WARN },
4116
4117 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4118 ATA_HORKAGE_FIRMWARE_WARN },
4119
4120 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4121 ATA_HORKAGE_FIRMWARE_WARN },
4122
4123 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4124 ATA_HORKAGE_FIRMWARE_WARN },
4125
4126 /* Blacklist entries taken from Silicon Image 3124/3132
4127 Windows driver .inf file - also several Linux problem reports */
4128 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4129 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4130 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4131
4132 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4133 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4134
4135 /* devices which puke on READ_NATIVE_MAX */
4136 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4137 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4138 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4139 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4140
4141 /* this one allows HPA unlocking but fails IOs on the area */
4142 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4143
4144 /* Devices which report 1 sector over size HPA */
4145 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4146 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4147 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4148
4149 /* Devices which get the IVB wrong */
4150 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4151 /* Maybe we should just blacklist TSSTcorp... */
4152 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4153
4154 /* Devices that do not need bridging limits applied */
4155 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4156 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4157
4158 /* Devices which aren't very happy with higher link speeds */
4159 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4160 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4161
4162 /*
4163 * Devices which choke on SETXFER. Applies only if both the
4164 * device and controller are SATA.
4165 */
4166 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4167 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4168 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4169 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4170 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4171
4172 /* End Marker */
4173 { }
4174 };
4175
4176 /**
4177 * glob_match - match a text string against a glob-style pattern
4178 * @text: the string to be examined
4179 * @pattern: the glob-style pattern to be matched against
4180 *
4181 * Either/both of text and pattern can be empty strings.
4182 *
4183 * Match text against a glob-style pattern, with wildcards and simple sets:
4184 *
4185 * ? matches any single character.
4186 * * matches any run of characters.
4187 * [xyz] matches a single character from the set: x, y, or z.
4188 * [a-d] matches a single character from the range: a, b, c, or d.
4189 * [a-d0-9] matches a single character from either range.
4190 *
4191 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4192 * Behaviour with malformed patterns is undefined, though generally reasonable.
4193 *
4194 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4195 *
4196 * This function uses one level of recursion per '*' in pattern.
4197 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4198 * this will not cause stack problems for any reasonable use here.
4199 *
4200 * RETURNS:
4201 * 0 on match, 1 otherwise.
4202 */
4203 static int glob_match (const char *text, const char *pattern)
4204 {
4205 do {
4206 /* Match single character or a '?' wildcard */
4207 if (*text == *pattern || *pattern == '?') {
4208 if (!*pattern++)
4209 return 0; /* End of both strings: match */
4210 } else {
4211 /* Match single char against a '[' bracketed ']' pattern set */
4212 if (!*text || *pattern != '[')
4213 break; /* Not a pattern set */
4214 while (*++pattern && *pattern != ']' && *text != *pattern) {
4215 if (*pattern == '-' && *(pattern - 1) != '[')
4216 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4217 ++pattern;
4218 break;
4219 }
4220 }
4221 if (!*pattern || *pattern == ']')
4222 return 1; /* No match */
4223 while (*pattern && *pattern++ != ']');
4224 }
4225 } while (*++text && *pattern);
4226
4227 /* Match any run of chars against a '*' wildcard */
4228 if (*pattern == '*') {
4229 if (!*++pattern)
4230 return 0; /* Match: avoid recursion at end of pattern */
4231 /* Loop to handle additional pattern chars after the wildcard */
4232 while (*text) {
4233 if (glob_match(text, pattern) == 0)
4234 return 0; /* Remainder matched */
4235 ++text; /* Absorb (match) this char and try again */
4236 }
4237 }
4238 if (!*text && !*pattern)
4239 return 0; /* End of both strings: match */
4240 return 1; /* No match */
4241 }
4242
4243 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4244 {
4245 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4246 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4247 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4248
4249 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4250 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4251
4252 while (ad->model_num) {
4253 if (!glob_match(model_num, ad->model_num)) {
4254 if (ad->model_rev == NULL)
4255 return ad->horkage;
4256 if (!glob_match(model_rev, ad->model_rev))
4257 return ad->horkage;
4258 }
4259 ad++;
4260 }
4261 return 0;
4262 }
4263
4264 static int ata_dma_blacklisted(const struct ata_device *dev)
4265 {
4266 /* We don't support polling DMA.
4267 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4268 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4269 */
4270 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4271 (dev->flags & ATA_DFLAG_CDB_INTR))
4272 return 1;
4273 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4274 }
4275
4276 /**
4277 * ata_is_40wire - check drive side detection
4278 * @dev: device
4279 *
4280 * Perform drive side detection decoding, allowing for device vendors
4281 * who can't follow the documentation.
4282 */
4283
4284 static int ata_is_40wire(struct ata_device *dev)
4285 {
4286 if (dev->horkage & ATA_HORKAGE_IVB)
4287 return ata_drive_40wire_relaxed(dev->id);
4288 return ata_drive_40wire(dev->id);
4289 }
4290
4291 /**
4292 * cable_is_40wire - 40/80/SATA decider
4293 * @ap: port to consider
4294 *
4295 * This function encapsulates the policy for speed management
4296 * in one place. At the moment we don't cache the result but
4297 * there is a good case for setting ap->cbl to the result when
4298 * we are called with unknown cables (and figuring out if it
4299 * impacts hotplug at all).
4300 *
4301 * Return 1 if the cable appears to be 40 wire.
4302 */
4303
4304 static int cable_is_40wire(struct ata_port *ap)
4305 {
4306 struct ata_link *link;
4307 struct ata_device *dev;
4308
4309 /* If the controller thinks we are 40 wire, we are. */
4310 if (ap->cbl == ATA_CBL_PATA40)
4311 return 1;
4312
4313 /* If the controller thinks we are 80 wire, we are. */
4314 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4315 return 0;
4316
4317 /* If the system is known to be 40 wire short cable (eg
4318 * laptop), then we allow 80 wire modes even if the drive
4319 * isn't sure.
4320 */
4321 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4322 return 0;
4323
4324 /* If the controller doesn't know, we scan.
4325 *
4326 * Note: We look for all 40 wire detects at this point. Any
4327 * 80 wire detect is taken to be 80 wire cable because
4328 * - in many setups only the one drive (slave if present) will
4329 * give a valid detect
4330 * - if you have a non detect capable drive you don't want it
4331 * to colour the choice
4332 */
4333 ata_for_each_link(link, ap, EDGE) {
4334 ata_for_each_dev(dev, link, ENABLED) {
4335 if (!ata_is_40wire(dev))
4336 return 0;
4337 }
4338 }
4339 return 1;
4340 }
4341
4342 /**
4343 * ata_dev_xfermask - Compute supported xfermask of the given device
4344 * @dev: Device to compute xfermask for
4345 *
4346 * Compute supported xfermask of @dev and store it in
4347 * dev->*_mask. This function is responsible for applying all
4348 * known limits including host controller limits, device
4349 * blacklist, etc...
4350 *
4351 * LOCKING:
4352 * None.
4353 */
4354 static void ata_dev_xfermask(struct ata_device *dev)
4355 {
4356 struct ata_link *link = dev->link;
4357 struct ata_port *ap = link->ap;
4358 struct ata_host *host = ap->host;
4359 unsigned long xfer_mask;
4360
4361 /* controller modes available */
4362 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4363 ap->mwdma_mask, ap->udma_mask);
4364
4365 /* drive modes available */
4366 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4367 dev->mwdma_mask, dev->udma_mask);
4368 xfer_mask &= ata_id_xfermask(dev->id);
4369
4370 /*
4371 * CFA Advanced TrueIDE timings are not allowed on a shared
4372 * cable
4373 */
4374 if (ata_dev_pair(dev)) {
4375 /* No PIO5 or PIO6 */
4376 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4377 /* No MWDMA3 or MWDMA 4 */
4378 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4379 }
4380
4381 if (ata_dma_blacklisted(dev)) {
4382 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4383 ata_dev_warn(dev,
4384 "device is on DMA blacklist, disabling DMA\n");
4385 }
4386
4387 if ((host->flags & ATA_HOST_SIMPLEX) &&
4388 host->simplex_claimed && host->simplex_claimed != ap) {
4389 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4390 ata_dev_warn(dev,
4391 "simplex DMA is claimed by other device, disabling DMA\n");
4392 }
4393
4394 if (ap->flags & ATA_FLAG_NO_IORDY)
4395 xfer_mask &= ata_pio_mask_no_iordy(dev);
4396
4397 if (ap->ops->mode_filter)
4398 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4399
4400 /* Apply cable rule here. Don't apply it early because when
4401 * we handle hot plug the cable type can itself change.
4402 * Check this last so that we know if the transfer rate was
4403 * solely limited by the cable.
4404 * Unknown or 80 wire cables reported host side are checked
4405 * drive side as well. Cases where we know a 40wire cable
4406 * is used safely for 80 are not checked here.
4407 */
4408 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4409 /* UDMA/44 or higher would be available */
4410 if (cable_is_40wire(ap)) {
4411 ata_dev_warn(dev,
4412 "limited to UDMA/33 due to 40-wire cable\n");
4413 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4414 }
4415
4416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4417 &dev->mwdma_mask, &dev->udma_mask);
4418 }
4419
4420 /**
4421 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4422 * @dev: Device to which command will be sent
4423 *
4424 * Issue SET FEATURES - XFER MODE command to device @dev
4425 * on port @ap.
4426 *
4427 * LOCKING:
4428 * PCI/etc. bus probe sem.
4429 *
4430 * RETURNS:
4431 * 0 on success, AC_ERR_* mask otherwise.
4432 */
4433
4434 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4435 {
4436 struct ata_taskfile tf;
4437 unsigned int err_mask;
4438
4439 /* set up set-features taskfile */
4440 DPRINTK("set features - xfer mode\n");
4441
4442 /* Some controllers and ATAPI devices show flaky interrupt
4443 * behavior after setting xfer mode. Use polling instead.
4444 */
4445 ata_tf_init(dev, &tf);
4446 tf.command = ATA_CMD_SET_FEATURES;
4447 tf.feature = SETFEATURES_XFER;
4448 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4449 tf.protocol = ATA_PROT_NODATA;
4450 /* If we are using IORDY we must send the mode setting command */
4451 if (ata_pio_need_iordy(dev))
4452 tf.nsect = dev->xfer_mode;
4453 /* If the device has IORDY and the controller does not - turn it off */
4454 else if (ata_id_has_iordy(dev->id))
4455 tf.nsect = 0x01;
4456 else /* In the ancient relic department - skip all of this */
4457 return 0;
4458
4459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4460
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 return err_mask;
4463 }
4464
4465 /**
4466 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4467 * @dev: Device to which command will be sent
4468 * @enable: Whether to enable or disable the feature
4469 * @feature: The sector count represents the feature to set
4470 *
4471 * Issue SET FEATURES - SATA FEATURES command to device @dev
4472 * on port @ap with sector count
4473 *
4474 * LOCKING:
4475 * PCI/etc. bus probe sem.
4476 *
4477 * RETURNS:
4478 * 0 on success, AC_ERR_* mask otherwise.
4479 */
4480 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4481 {
4482 struct ata_taskfile tf;
4483 unsigned int err_mask;
4484
4485 /* set up set-features taskfile */
4486 DPRINTK("set features - SATA features\n");
4487
4488 ata_tf_init(dev, &tf);
4489 tf.command = ATA_CMD_SET_FEATURES;
4490 tf.feature = enable;
4491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4492 tf.protocol = ATA_PROT_NODATA;
4493 tf.nsect = feature;
4494
4495 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4496
4497 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4498 return err_mask;
4499 }
4500 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4501
4502 /**
4503 * ata_dev_init_params - Issue INIT DEV PARAMS command
4504 * @dev: Device to which command will be sent
4505 * @heads: Number of heads (taskfile parameter)
4506 * @sectors: Number of sectors (taskfile parameter)
4507 *
4508 * LOCKING:
4509 * Kernel thread context (may sleep)
4510 *
4511 * RETURNS:
4512 * 0 on success, AC_ERR_* mask otherwise.
4513 */
4514 static unsigned int ata_dev_init_params(struct ata_device *dev,
4515 u16 heads, u16 sectors)
4516 {
4517 struct ata_taskfile tf;
4518 unsigned int err_mask;
4519
4520 /* Number of sectors per track 1-255. Number of heads 1-16 */
4521 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4522 return AC_ERR_INVALID;
4523
4524 /* set up init dev params taskfile */
4525 DPRINTK("init dev params \n");
4526
4527 ata_tf_init(dev, &tf);
4528 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4529 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4530 tf.protocol = ATA_PROT_NODATA;
4531 tf.nsect = sectors;
4532 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4533
4534 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4535 /* A clean abort indicates an original or just out of spec drive
4536 and we should continue as we issue the setup based on the
4537 drive reported working geometry */
4538 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4539 err_mask = 0;
4540
4541 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4542 return err_mask;
4543 }
4544
4545 /**
4546 * ata_sg_clean - Unmap DMA memory associated with command
4547 * @qc: Command containing DMA memory to be released
4548 *
4549 * Unmap all mapped DMA memory associated with this command.
4550 *
4551 * LOCKING:
4552 * spin_lock_irqsave(host lock)
4553 */
4554 void ata_sg_clean(struct ata_queued_cmd *qc)
4555 {
4556 struct ata_port *ap = qc->ap;
4557 struct scatterlist *sg = qc->sg;
4558 int dir = qc->dma_dir;
4559
4560 WARN_ON_ONCE(sg == NULL);
4561
4562 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4563
4564 if (qc->n_elem)
4565 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4566
4567 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4568 qc->sg = NULL;
4569 }
4570
4571 /**
4572 * atapi_check_dma - Check whether ATAPI DMA can be supported
4573 * @qc: Metadata associated with taskfile to check
4574 *
4575 * Allow low-level driver to filter ATA PACKET commands, returning
4576 * a status indicating whether or not it is OK to use DMA for the
4577 * supplied PACKET command.
4578 *
4579 * LOCKING:
4580 * spin_lock_irqsave(host lock)
4581 *
4582 * RETURNS: 0 when ATAPI DMA can be used
4583 * nonzero otherwise
4584 */
4585 int atapi_check_dma(struct ata_queued_cmd *qc)
4586 {
4587 struct ata_port *ap = qc->ap;
4588
4589 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4590 * few ATAPI devices choke on such DMA requests.
4591 */
4592 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4593 unlikely(qc->nbytes & 15))
4594 return 1;
4595
4596 if (ap->ops->check_atapi_dma)
4597 return ap->ops->check_atapi_dma(qc);
4598
4599 return 0;
4600 }
4601
4602 /**
4603 * ata_std_qc_defer - Check whether a qc needs to be deferred
4604 * @qc: ATA command in question
4605 *
4606 * Non-NCQ commands cannot run with any other command, NCQ or
4607 * not. As upper layer only knows the queue depth, we are
4608 * responsible for maintaining exclusion. This function checks
4609 * whether a new command @qc can be issued.
4610 *
4611 * LOCKING:
4612 * spin_lock_irqsave(host lock)
4613 *
4614 * RETURNS:
4615 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4616 */
4617 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4618 {
4619 struct ata_link *link = qc->dev->link;
4620
4621 if (qc->tf.protocol == ATA_PROT_NCQ) {
4622 if (!ata_tag_valid(link->active_tag))
4623 return 0;
4624 } else {
4625 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4626 return 0;
4627 }
4628
4629 return ATA_DEFER_LINK;
4630 }
4631
4632 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4633
4634 /**
4635 * ata_sg_init - Associate command with scatter-gather table.
4636 * @qc: Command to be associated
4637 * @sg: Scatter-gather table.
4638 * @n_elem: Number of elements in s/g table.
4639 *
4640 * Initialize the data-related elements of queued_cmd @qc
4641 * to point to a scatter-gather table @sg, containing @n_elem
4642 * elements.
4643 *
4644 * LOCKING:
4645 * spin_lock_irqsave(host lock)
4646 */
4647 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4648 unsigned int n_elem)
4649 {
4650 qc->sg = sg;
4651 qc->n_elem = n_elem;
4652 qc->cursg = qc->sg;
4653 }
4654
4655 /**
4656 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4657 * @qc: Command with scatter-gather table to be mapped.
4658 *
4659 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4660 *
4661 * LOCKING:
4662 * spin_lock_irqsave(host lock)
4663 *
4664 * RETURNS:
4665 * Zero on success, negative on error.
4666 *
4667 */
4668 static int ata_sg_setup(struct ata_queued_cmd *qc)
4669 {
4670 struct ata_port *ap = qc->ap;
4671 unsigned int n_elem;
4672
4673 VPRINTK("ENTER, ata%u\n", ap->print_id);
4674
4675 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4676 if (n_elem < 1)
4677 return -1;
4678
4679 DPRINTK("%d sg elements mapped\n", n_elem);
4680 qc->orig_n_elem = qc->n_elem;
4681 qc->n_elem = n_elem;
4682 qc->flags |= ATA_QCFLAG_DMAMAP;
4683
4684 return 0;
4685 }
4686
4687 /**
4688 * swap_buf_le16 - swap halves of 16-bit words in place
4689 * @buf: Buffer to swap
4690 * @buf_words: Number of 16-bit words in buffer.
4691 *
4692 * Swap halves of 16-bit words if needed to convert from
4693 * little-endian byte order to native cpu byte order, or
4694 * vice-versa.
4695 *
4696 * LOCKING:
4697 * Inherited from caller.
4698 */
4699 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4700 {
4701 #ifdef __BIG_ENDIAN
4702 unsigned int i;
4703
4704 for (i = 0; i < buf_words; i++)
4705 buf[i] = le16_to_cpu(buf[i]);
4706 #endif /* __BIG_ENDIAN */
4707 }
4708
4709 /**
4710 * ata_qc_new - Request an available ATA command, for queueing
4711 * @ap: target port
4712 *
4713 * LOCKING:
4714 * None.
4715 */
4716
4717 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4718 {
4719 struct ata_queued_cmd *qc = NULL;
4720 unsigned int i;
4721
4722 /* no command while frozen */
4723 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4724 return NULL;
4725
4726 /* the last tag is reserved for internal command. */
4727 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4728 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4729 qc = __ata_qc_from_tag(ap, i);
4730 break;
4731 }
4732
4733 if (qc)
4734 qc->tag = i;
4735
4736 return qc;
4737 }
4738
4739 /**
4740 * ata_qc_new_init - Request an available ATA command, and initialize it
4741 * @dev: Device from whom we request an available command structure
4742 *
4743 * LOCKING:
4744 * None.
4745 */
4746
4747 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4748 {
4749 struct ata_port *ap = dev->link->ap;
4750 struct ata_queued_cmd *qc;
4751
4752 qc = ata_qc_new(ap);
4753 if (qc) {
4754 qc->scsicmd = NULL;
4755 qc->ap = ap;
4756 qc->dev = dev;
4757
4758 ata_qc_reinit(qc);
4759 }
4760
4761 return qc;
4762 }
4763
4764 /**
4765 * ata_qc_free - free unused ata_queued_cmd
4766 * @qc: Command to complete
4767 *
4768 * Designed to free unused ata_queued_cmd object
4769 * in case something prevents using it.
4770 *
4771 * LOCKING:
4772 * spin_lock_irqsave(host lock)
4773 */
4774 void ata_qc_free(struct ata_queued_cmd *qc)
4775 {
4776 struct ata_port *ap;
4777 unsigned int tag;
4778
4779 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4780 ap = qc->ap;
4781
4782 qc->flags = 0;
4783 tag = qc->tag;
4784 if (likely(ata_tag_valid(tag))) {
4785 qc->tag = ATA_TAG_POISON;
4786 clear_bit(tag, &ap->qc_allocated);
4787 }
4788 }
4789
4790 void __ata_qc_complete(struct ata_queued_cmd *qc)
4791 {
4792 struct ata_port *ap;
4793 struct ata_link *link;
4794
4795 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4796 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4797 ap = qc->ap;
4798 link = qc->dev->link;
4799
4800 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4801 ata_sg_clean(qc);
4802
4803 /* command should be marked inactive atomically with qc completion */
4804 if (qc->tf.protocol == ATA_PROT_NCQ) {
4805 link->sactive &= ~(1 << qc->tag);
4806 if (!link->sactive)
4807 ap->nr_active_links--;
4808 } else {
4809 link->active_tag = ATA_TAG_POISON;
4810 ap->nr_active_links--;
4811 }
4812
4813 /* clear exclusive status */
4814 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4815 ap->excl_link == link))
4816 ap->excl_link = NULL;
4817
4818 /* atapi: mark qc as inactive to prevent the interrupt handler
4819 * from completing the command twice later, before the error handler
4820 * is called. (when rc != 0 and atapi request sense is needed)
4821 */
4822 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4823 ap->qc_active &= ~(1 << qc->tag);
4824
4825 /* call completion callback */
4826 qc->complete_fn(qc);
4827 }
4828
4829 static void fill_result_tf(struct ata_queued_cmd *qc)
4830 {
4831 struct ata_port *ap = qc->ap;
4832
4833 qc->result_tf.flags = qc->tf.flags;
4834 ap->ops->qc_fill_rtf(qc);
4835 }
4836
4837 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4838 {
4839 struct ata_device *dev = qc->dev;
4840
4841 if (ata_is_nodata(qc->tf.protocol))
4842 return;
4843
4844 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4845 return;
4846
4847 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4848 }
4849
4850 /**
4851 * ata_qc_complete - Complete an active ATA command
4852 * @qc: Command to complete
4853 *
4854 * Indicate to the mid and upper layers that an ATA command has
4855 * completed, with either an ok or not-ok status.
4856 *
4857 * Refrain from calling this function multiple times when
4858 * successfully completing multiple NCQ commands.
4859 * ata_qc_complete_multiple() should be used instead, which will
4860 * properly update IRQ expect state.
4861 *
4862 * LOCKING:
4863 * spin_lock_irqsave(host lock)
4864 */
4865 void ata_qc_complete(struct ata_queued_cmd *qc)
4866 {
4867 struct ata_port *ap = qc->ap;
4868
4869 /* XXX: New EH and old EH use different mechanisms to
4870 * synchronize EH with regular execution path.
4871 *
4872 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4873 * Normal execution path is responsible for not accessing a
4874 * failed qc. libata core enforces the rule by returning NULL
4875 * from ata_qc_from_tag() for failed qcs.
4876 *
4877 * Old EH depends on ata_qc_complete() nullifying completion
4878 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4879 * not synchronize with interrupt handler. Only PIO task is
4880 * taken care of.
4881 */
4882 if (ap->ops->error_handler) {
4883 struct ata_device *dev = qc->dev;
4884 struct ata_eh_info *ehi = &dev->link->eh_info;
4885
4886 if (unlikely(qc->err_mask))
4887 qc->flags |= ATA_QCFLAG_FAILED;
4888
4889 /*
4890 * Finish internal commands without any further processing
4891 * and always with the result TF filled.
4892 */
4893 if (unlikely(ata_tag_internal(qc->tag))) {
4894 fill_result_tf(qc);
4895 __ata_qc_complete(qc);
4896 return;
4897 }
4898
4899 /*
4900 * Non-internal qc has failed. Fill the result TF and
4901 * summon EH.
4902 */
4903 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4904 fill_result_tf(qc);
4905 ata_qc_schedule_eh(qc);
4906 return;
4907 }
4908
4909 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4910
4911 /* read result TF if requested */
4912 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4913 fill_result_tf(qc);
4914
4915 /* Some commands need post-processing after successful
4916 * completion.
4917 */
4918 switch (qc->tf.command) {
4919 case ATA_CMD_SET_FEATURES:
4920 if (qc->tf.feature != SETFEATURES_WC_ON &&
4921 qc->tf.feature != SETFEATURES_WC_OFF)
4922 break;
4923 /* fall through */
4924 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4925 case ATA_CMD_SET_MULTI: /* multi_count changed */
4926 /* revalidate device */
4927 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4928 ata_port_schedule_eh(ap);
4929 break;
4930
4931 case ATA_CMD_SLEEP:
4932 dev->flags |= ATA_DFLAG_SLEEPING;
4933 break;
4934 }
4935
4936 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4937 ata_verify_xfer(qc);
4938
4939 __ata_qc_complete(qc);
4940 } else {
4941 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4942 return;
4943
4944 /* read result TF if failed or requested */
4945 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4946 fill_result_tf(qc);
4947
4948 __ata_qc_complete(qc);
4949 }
4950 }
4951
4952 /**
4953 * ata_qc_complete_multiple - Complete multiple qcs successfully
4954 * @ap: port in question
4955 * @qc_active: new qc_active mask
4956 *
4957 * Complete in-flight commands. This functions is meant to be
4958 * called from low-level driver's interrupt routine to complete
4959 * requests normally. ap->qc_active and @qc_active is compared
4960 * and commands are completed accordingly.
4961 *
4962 * Always use this function when completing multiple NCQ commands
4963 * from IRQ handlers instead of calling ata_qc_complete()
4964 * multiple times to keep IRQ expect status properly in sync.
4965 *
4966 * LOCKING:
4967 * spin_lock_irqsave(host lock)
4968 *
4969 * RETURNS:
4970 * Number of completed commands on success, -errno otherwise.
4971 */
4972 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4973 {
4974 int nr_done = 0;
4975 u32 done_mask;
4976
4977 done_mask = ap->qc_active ^ qc_active;
4978
4979 if (unlikely(done_mask & qc_active)) {
4980 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4981 ap->qc_active, qc_active);
4982 return -EINVAL;
4983 }
4984
4985 while (done_mask) {
4986 struct ata_queued_cmd *qc;
4987 unsigned int tag = __ffs(done_mask);
4988
4989 qc = ata_qc_from_tag(ap, tag);
4990 if (qc) {
4991 ata_qc_complete(qc);
4992 nr_done++;
4993 }
4994 done_mask &= ~(1 << tag);
4995 }
4996
4997 return nr_done;
4998 }
4999
5000 /**
5001 * ata_qc_issue - issue taskfile to device
5002 * @qc: command to issue to device
5003 *
5004 * Prepare an ATA command to submission to device.
5005 * This includes mapping the data into a DMA-able
5006 * area, filling in the S/G table, and finally
5007 * writing the taskfile to hardware, starting the command.
5008 *
5009 * LOCKING:
5010 * spin_lock_irqsave(host lock)
5011 */
5012 void ata_qc_issue(struct ata_queued_cmd *qc)
5013 {
5014 struct ata_port *ap = qc->ap;
5015 struct ata_link *link = qc->dev->link;
5016 u8 prot = qc->tf.protocol;
5017
5018 /* Make sure only one non-NCQ command is outstanding. The
5019 * check is skipped for old EH because it reuses active qc to
5020 * request ATAPI sense.
5021 */
5022 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5023
5024 if (ata_is_ncq(prot)) {
5025 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5026
5027 if (!link->sactive)
5028 ap->nr_active_links++;
5029 link->sactive |= 1 << qc->tag;
5030 } else {
5031 WARN_ON_ONCE(link->sactive);
5032
5033 ap->nr_active_links++;
5034 link->active_tag = qc->tag;
5035 }
5036
5037 qc->flags |= ATA_QCFLAG_ACTIVE;
5038 ap->qc_active |= 1 << qc->tag;
5039
5040 /*
5041 * We guarantee to LLDs that they will have at least one
5042 * non-zero sg if the command is a data command.
5043 */
5044 if (WARN_ON_ONCE(ata_is_data(prot) &&
5045 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5046 goto sys_err;
5047
5048 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5049 (ap->flags & ATA_FLAG_PIO_DMA)))
5050 if (ata_sg_setup(qc))
5051 goto sys_err;
5052
5053 /* if device is sleeping, schedule reset and abort the link */
5054 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5055 link->eh_info.action |= ATA_EH_RESET;
5056 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5057 ata_link_abort(link);
5058 return;
5059 }
5060
5061 ap->ops->qc_prep(qc);
5062
5063 qc->err_mask |= ap->ops->qc_issue(qc);
5064 if (unlikely(qc->err_mask))
5065 goto err;
5066 return;
5067
5068 sys_err:
5069 qc->err_mask |= AC_ERR_SYSTEM;
5070 err:
5071 ata_qc_complete(qc);
5072 }
5073
5074 /**
5075 * sata_scr_valid - test whether SCRs are accessible
5076 * @link: ATA link to test SCR accessibility for
5077 *
5078 * Test whether SCRs are accessible for @link.
5079 *
5080 * LOCKING:
5081 * None.
5082 *
5083 * RETURNS:
5084 * 1 if SCRs are accessible, 0 otherwise.
5085 */
5086 int sata_scr_valid(struct ata_link *link)
5087 {
5088 struct ata_port *ap = link->ap;
5089
5090 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5091 }
5092
5093 /**
5094 * sata_scr_read - read SCR register of the specified port
5095 * @link: ATA link to read SCR for
5096 * @reg: SCR to read
5097 * @val: Place to store read value
5098 *
5099 * Read SCR register @reg of @link into *@val. This function is
5100 * guaranteed to succeed if @link is ap->link, the cable type of
5101 * the port is SATA and the port implements ->scr_read.
5102 *
5103 * LOCKING:
5104 * None if @link is ap->link. Kernel thread context otherwise.
5105 *
5106 * RETURNS:
5107 * 0 on success, negative errno on failure.
5108 */
5109 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5110 {
5111 if (ata_is_host_link(link)) {
5112 if (sata_scr_valid(link))
5113 return link->ap->ops->scr_read(link, reg, val);
5114 return -EOPNOTSUPP;
5115 }
5116
5117 return sata_pmp_scr_read(link, reg, val);
5118 }
5119
5120 /**
5121 * sata_scr_write - write SCR register of the specified port
5122 * @link: ATA link to write SCR for
5123 * @reg: SCR to write
5124 * @val: value to write
5125 *
5126 * Write @val to SCR register @reg of @link. This function is
5127 * guaranteed to succeed if @link is ap->link, the cable type of
5128 * the port is SATA and the port implements ->scr_read.
5129 *
5130 * LOCKING:
5131 * None if @link is ap->link. Kernel thread context otherwise.
5132 *
5133 * RETURNS:
5134 * 0 on success, negative errno on failure.
5135 */
5136 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5137 {
5138 if (ata_is_host_link(link)) {
5139 if (sata_scr_valid(link))
5140 return link->ap->ops->scr_write(link, reg, val);
5141 return -EOPNOTSUPP;
5142 }
5143
5144 return sata_pmp_scr_write(link, reg, val);
5145 }
5146
5147 /**
5148 * sata_scr_write_flush - write SCR register of the specified port and flush
5149 * @link: ATA link to write SCR for
5150 * @reg: SCR to write
5151 * @val: value to write
5152 *
5153 * This function is identical to sata_scr_write() except that this
5154 * function performs flush after writing to the register.
5155 *
5156 * LOCKING:
5157 * None if @link is ap->link. Kernel thread context otherwise.
5158 *
5159 * RETURNS:
5160 * 0 on success, negative errno on failure.
5161 */
5162 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5163 {
5164 if (ata_is_host_link(link)) {
5165 int rc;
5166
5167 if (sata_scr_valid(link)) {
5168 rc = link->ap->ops->scr_write(link, reg, val);
5169 if (rc == 0)
5170 rc = link->ap->ops->scr_read(link, reg, &val);
5171 return rc;
5172 }
5173 return -EOPNOTSUPP;
5174 }
5175
5176 return sata_pmp_scr_write(link, reg, val);
5177 }
5178
5179 /**
5180 * ata_phys_link_online - test whether the given link is online
5181 * @link: ATA link to test
5182 *
5183 * Test whether @link is online. Note that this function returns
5184 * 0 if online status of @link cannot be obtained, so
5185 * ata_link_online(link) != !ata_link_offline(link).
5186 *
5187 * LOCKING:
5188 * None.
5189 *
5190 * RETURNS:
5191 * True if the port online status is available and online.
5192 */
5193 bool ata_phys_link_online(struct ata_link *link)
5194 {
5195 u32 sstatus;
5196
5197 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5198 ata_sstatus_online(sstatus))
5199 return true;
5200 return false;
5201 }
5202
5203 /**
5204 * ata_phys_link_offline - test whether the given link is offline
5205 * @link: ATA link to test
5206 *
5207 * Test whether @link is offline. Note that this function
5208 * returns 0 if offline status of @link cannot be obtained, so
5209 * ata_link_online(link) != !ata_link_offline(link).
5210 *
5211 * LOCKING:
5212 * None.
5213 *
5214 * RETURNS:
5215 * True if the port offline status is available and offline.
5216 */
5217 bool ata_phys_link_offline(struct ata_link *link)
5218 {
5219 u32 sstatus;
5220
5221 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5222 !ata_sstatus_online(sstatus))
5223 return true;
5224 return false;
5225 }
5226
5227 /**
5228 * ata_link_online - test whether the given link is online
5229 * @link: ATA link to test
5230 *
5231 * Test whether @link is online. This is identical to
5232 * ata_phys_link_online() when there's no slave link. When
5233 * there's a slave link, this function should only be called on
5234 * the master link and will return true if any of M/S links is
5235 * online.
5236 *
5237 * LOCKING:
5238 * None.
5239 *
5240 * RETURNS:
5241 * True if the port online status is available and online.
5242 */
5243 bool ata_link_online(struct ata_link *link)
5244 {
5245 struct ata_link *slave = link->ap->slave_link;
5246
5247 WARN_ON(link == slave); /* shouldn't be called on slave link */
5248
5249 return ata_phys_link_online(link) ||
5250 (slave && ata_phys_link_online(slave));
5251 }
5252
5253 /**
5254 * ata_link_offline - test whether the given link is offline
5255 * @link: ATA link to test
5256 *
5257 * Test whether @link is offline. This is identical to
5258 * ata_phys_link_offline() when there's no slave link. When
5259 * there's a slave link, this function should only be called on
5260 * the master link and will return true if both M/S links are
5261 * offline.
5262 *
5263 * LOCKING:
5264 * None.
5265 *
5266 * RETURNS:
5267 * True if the port offline status is available and offline.
5268 */
5269 bool ata_link_offline(struct ata_link *link)
5270 {
5271 struct ata_link *slave = link->ap->slave_link;
5272
5273 WARN_ON(link == slave); /* shouldn't be called on slave link */
5274
5275 return ata_phys_link_offline(link) &&
5276 (!slave || ata_phys_link_offline(slave));
5277 }
5278
5279 #ifdef CONFIG_PM
5280 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5281 unsigned int action, unsigned int ehi_flags,
5282 int *async)
5283 {
5284 struct ata_link *link;
5285 unsigned long flags;
5286 int rc = 0;
5287
5288 /* Previous resume operation might still be in
5289 * progress. Wait for PM_PENDING to clear.
5290 */
5291 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5292 if (async) {
5293 *async = -EAGAIN;
5294 return 0;
5295 }
5296 ata_port_wait_eh(ap);
5297 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5298 }
5299
5300 /* request PM ops to EH */
5301 spin_lock_irqsave(ap->lock, flags);
5302
5303 ap->pm_mesg = mesg;
5304 if (async)
5305 ap->pm_result = async;
5306 else
5307 ap->pm_result = &rc;
5308
5309 ap->pflags |= ATA_PFLAG_PM_PENDING;
5310 ata_for_each_link(link, ap, HOST_FIRST) {
5311 link->eh_info.action |= action;
5312 link->eh_info.flags |= ehi_flags;
5313 }
5314
5315 ata_port_schedule_eh(ap);
5316
5317 spin_unlock_irqrestore(ap->lock, flags);
5318
5319 /* wait and check result */
5320 if (!async) {
5321 ata_port_wait_eh(ap);
5322 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5323 }
5324
5325 return rc;
5326 }
5327
5328 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5329 {
5330 unsigned int ehi_flags = ATA_EHI_QUIET;
5331 int rc;
5332
5333 /*
5334 * On some hardware, device fails to respond after spun down
5335 * for suspend. As the device won't be used before being
5336 * resumed, we don't need to touch the device. Ask EH to skip
5337 * the usual stuff and proceed directly to suspend.
5338 *
5339 * http://thread.gmane.org/gmane.linux.ide/46764
5340 */
5341 if (mesg.event == PM_EVENT_SUSPEND)
5342 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5343
5344 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5345 return rc;
5346 }
5347
5348 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5349 {
5350 struct ata_port *ap = to_ata_port(dev);
5351
5352 return __ata_port_suspend_common(ap, mesg, NULL);
5353 }
5354
5355 static int ata_port_suspend(struct device *dev)
5356 {
5357 if (pm_runtime_suspended(dev))
5358 return 0;
5359
5360 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5361 }
5362
5363 static int ata_port_do_freeze(struct device *dev)
5364 {
5365 if (pm_runtime_suspended(dev))
5366 pm_runtime_resume(dev);
5367
5368 return ata_port_suspend_common(dev, PMSG_FREEZE);
5369 }
5370
5371 static int ata_port_poweroff(struct device *dev)
5372 {
5373 if (pm_runtime_suspended(dev))
5374 return 0;
5375
5376 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5377 }
5378
5379 static int __ata_port_resume_common(struct ata_port *ap, int *async)
5380 {
5381 int rc;
5382
5383 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5384 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5385 return rc;
5386 }
5387
5388 static int ata_port_resume_common(struct device *dev)
5389 {
5390 struct ata_port *ap = to_ata_port(dev);
5391
5392 return __ata_port_resume_common(ap, NULL);
5393 }
5394
5395 static int ata_port_resume(struct device *dev)
5396 {
5397 int rc;
5398
5399 rc = ata_port_resume_common(dev);
5400 if (!rc) {
5401 pm_runtime_disable(dev);
5402 pm_runtime_set_active(dev);
5403 pm_runtime_enable(dev);
5404 }
5405
5406 return rc;
5407 }
5408
5409 static int ata_port_runtime_idle(struct device *dev)
5410 {
5411 return pm_runtime_suspend(dev);
5412 }
5413
5414 static const struct dev_pm_ops ata_port_pm_ops = {
5415 .suspend = ata_port_suspend,
5416 .resume = ata_port_resume,
5417 .freeze = ata_port_do_freeze,
5418 .thaw = ata_port_resume,
5419 .poweroff = ata_port_poweroff,
5420 .restore = ata_port_resume,
5421
5422 .runtime_suspend = ata_port_suspend,
5423 .runtime_resume = ata_port_resume_common,
5424 .runtime_idle = ata_port_runtime_idle,
5425 };
5426
5427 /* sas ports don't participate in pm runtime management of ata_ports,
5428 * and need to resume ata devices at the domain level, not the per-port
5429 * level. sas suspend/resume is async to allow parallel port recovery
5430 * since sas has multiple ata_port instances per Scsi_Host.
5431 */
5432 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5433 {
5434 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5435 }
5436 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5437
5438 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5439 {
5440 return __ata_port_resume_common(ap, async);
5441 }
5442 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5443
5444
5445 /**
5446 * ata_host_suspend - suspend host
5447 * @host: host to suspend
5448 * @mesg: PM message
5449 *
5450 * Suspend @host. Actual operation is performed by port suspend.
5451 */
5452 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5453 {
5454 host->dev->power.power_state = mesg;
5455 return 0;
5456 }
5457
5458 /**
5459 * ata_host_resume - resume host
5460 * @host: host to resume
5461 *
5462 * Resume @host. Actual operation is performed by port resume.
5463 */
5464 void ata_host_resume(struct ata_host *host)
5465 {
5466 host->dev->power.power_state = PMSG_ON;
5467 }
5468 #endif
5469
5470 struct device_type ata_port_type = {
5471 .name = "ata_port",
5472 #ifdef CONFIG_PM
5473 .pm = &ata_port_pm_ops,
5474 #endif
5475 };
5476
5477 /**
5478 * ata_dev_init - Initialize an ata_device structure
5479 * @dev: Device structure to initialize
5480 *
5481 * Initialize @dev in preparation for probing.
5482 *
5483 * LOCKING:
5484 * Inherited from caller.
5485 */
5486 void ata_dev_init(struct ata_device *dev)
5487 {
5488 struct ata_link *link = ata_dev_phys_link(dev);
5489 struct ata_port *ap = link->ap;
5490 unsigned long flags;
5491
5492 /* SATA spd limit is bound to the attached device, reset together */
5493 link->sata_spd_limit = link->hw_sata_spd_limit;
5494 link->sata_spd = 0;
5495
5496 /* High bits of dev->flags are used to record warm plug
5497 * requests which occur asynchronously. Synchronize using
5498 * host lock.
5499 */
5500 spin_lock_irqsave(ap->lock, flags);
5501 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5502 dev->horkage = 0;
5503 spin_unlock_irqrestore(ap->lock, flags);
5504
5505 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5506 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5507 dev->pio_mask = UINT_MAX;
5508 dev->mwdma_mask = UINT_MAX;
5509 dev->udma_mask = UINT_MAX;
5510 }
5511
5512 /**
5513 * ata_link_init - Initialize an ata_link structure
5514 * @ap: ATA port link is attached to
5515 * @link: Link structure to initialize
5516 * @pmp: Port multiplier port number
5517 *
5518 * Initialize @link.
5519 *
5520 * LOCKING:
5521 * Kernel thread context (may sleep)
5522 */
5523 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5524 {
5525 int i;
5526
5527 /* clear everything except for devices */
5528 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5529 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5530
5531 link->ap = ap;
5532 link->pmp = pmp;
5533 link->active_tag = ATA_TAG_POISON;
5534 link->hw_sata_spd_limit = UINT_MAX;
5535
5536 /* can't use iterator, ap isn't initialized yet */
5537 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5538 struct ata_device *dev = &link->device[i];
5539
5540 dev->link = link;
5541 dev->devno = dev - link->device;
5542 #ifdef CONFIG_ATA_ACPI
5543 dev->gtf_filter = ata_acpi_gtf_filter;
5544 #endif
5545 ata_dev_init(dev);
5546 }
5547 }
5548
5549 /**
5550 * sata_link_init_spd - Initialize link->sata_spd_limit
5551 * @link: Link to configure sata_spd_limit for
5552 *
5553 * Initialize @link->[hw_]sata_spd_limit to the currently
5554 * configured value.
5555 *
5556 * LOCKING:
5557 * Kernel thread context (may sleep).
5558 *
5559 * RETURNS:
5560 * 0 on success, -errno on failure.
5561 */
5562 int sata_link_init_spd(struct ata_link *link)
5563 {
5564 u8 spd;
5565 int rc;
5566
5567 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5568 if (rc)
5569 return rc;
5570
5571 spd = (link->saved_scontrol >> 4) & 0xf;
5572 if (spd)
5573 link->hw_sata_spd_limit &= (1 << spd) - 1;
5574
5575 ata_force_link_limits(link);
5576
5577 link->sata_spd_limit = link->hw_sata_spd_limit;
5578
5579 return 0;
5580 }
5581
5582 /**
5583 * ata_port_alloc - allocate and initialize basic ATA port resources
5584 * @host: ATA host this allocated port belongs to
5585 *
5586 * Allocate and initialize basic ATA port resources.
5587 *
5588 * RETURNS:
5589 * Allocate ATA port on success, NULL on failure.
5590 *
5591 * LOCKING:
5592 * Inherited from calling layer (may sleep).
5593 */
5594 struct ata_port *ata_port_alloc(struct ata_host *host)
5595 {
5596 struct ata_port *ap;
5597
5598 DPRINTK("ENTER\n");
5599
5600 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5601 if (!ap)
5602 return NULL;
5603
5604 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5605 ap->lock = &host->lock;
5606 ap->print_id = -1;
5607 ap->host = host;
5608 ap->dev = host->dev;
5609
5610 #if defined(ATA_VERBOSE_DEBUG)
5611 /* turn on all debugging levels */
5612 ap->msg_enable = 0x00FF;
5613 #elif defined(ATA_DEBUG)
5614 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5615 #else
5616 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5617 #endif
5618
5619 mutex_init(&ap->scsi_scan_mutex);
5620 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5621 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5622 INIT_LIST_HEAD(&ap->eh_done_q);
5623 init_waitqueue_head(&ap->eh_wait_q);
5624 init_completion(&ap->park_req_pending);
5625 init_timer_deferrable(&ap->fastdrain_timer);
5626 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5627 ap->fastdrain_timer.data = (unsigned long)ap;
5628
5629 ap->cbl = ATA_CBL_NONE;
5630
5631 ata_link_init(ap, &ap->link, 0);
5632
5633 #ifdef ATA_IRQ_TRAP
5634 ap->stats.unhandled_irq = 1;
5635 ap->stats.idle_irq = 1;
5636 #endif
5637 ata_sff_port_init(ap);
5638
5639 return ap;
5640 }
5641
5642 static void ata_host_release(struct device *gendev, void *res)
5643 {
5644 struct ata_host *host = dev_get_drvdata(gendev);
5645 int i;
5646
5647 for (i = 0; i < host->n_ports; i++) {
5648 struct ata_port *ap = host->ports[i];
5649
5650 if (!ap)
5651 continue;
5652
5653 if (ap->scsi_host)
5654 scsi_host_put(ap->scsi_host);
5655
5656 kfree(ap->pmp_link);
5657 kfree(ap->slave_link);
5658 kfree(ap);
5659 host->ports[i] = NULL;
5660 }
5661
5662 dev_set_drvdata(gendev, NULL);
5663 }
5664
5665 /**
5666 * ata_host_alloc - allocate and init basic ATA host resources
5667 * @dev: generic device this host is associated with
5668 * @max_ports: maximum number of ATA ports associated with this host
5669 *
5670 * Allocate and initialize basic ATA host resources. LLD calls
5671 * this function to allocate a host, initializes it fully and
5672 * attaches it using ata_host_register().
5673 *
5674 * @max_ports ports are allocated and host->n_ports is
5675 * initialized to @max_ports. The caller is allowed to decrease
5676 * host->n_ports before calling ata_host_register(). The unused
5677 * ports will be automatically freed on registration.
5678 *
5679 * RETURNS:
5680 * Allocate ATA host on success, NULL on failure.
5681 *
5682 * LOCKING:
5683 * Inherited from calling layer (may sleep).
5684 */
5685 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5686 {
5687 struct ata_host *host;
5688 size_t sz;
5689 int i;
5690
5691 DPRINTK("ENTER\n");
5692
5693 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5694 return NULL;
5695
5696 /* alloc a container for our list of ATA ports (buses) */
5697 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5698 /* alloc a container for our list of ATA ports (buses) */
5699 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5700 if (!host)
5701 goto err_out;
5702
5703 devres_add(dev, host);
5704 dev_set_drvdata(dev, host);
5705
5706 spin_lock_init(&host->lock);
5707 mutex_init(&host->eh_mutex);
5708 host->dev = dev;
5709 host->n_ports = max_ports;
5710
5711 /* allocate ports bound to this host */
5712 for (i = 0; i < max_ports; i++) {
5713 struct ata_port *ap;
5714
5715 ap = ata_port_alloc(host);
5716 if (!ap)
5717 goto err_out;
5718
5719 ap->port_no = i;
5720 host->ports[i] = ap;
5721 }
5722
5723 devres_remove_group(dev, NULL);
5724 return host;
5725
5726 err_out:
5727 devres_release_group(dev, NULL);
5728 return NULL;
5729 }
5730
5731 /**
5732 * ata_host_alloc_pinfo - alloc host and init with port_info array
5733 * @dev: generic device this host is associated with
5734 * @ppi: array of ATA port_info to initialize host with
5735 * @n_ports: number of ATA ports attached to this host
5736 *
5737 * Allocate ATA host and initialize with info from @ppi. If NULL
5738 * terminated, @ppi may contain fewer entries than @n_ports. The
5739 * last entry will be used for the remaining ports.
5740 *
5741 * RETURNS:
5742 * Allocate ATA host on success, NULL on failure.
5743 *
5744 * LOCKING:
5745 * Inherited from calling layer (may sleep).
5746 */
5747 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5748 const struct ata_port_info * const * ppi,
5749 int n_ports)
5750 {
5751 const struct ata_port_info *pi;
5752 struct ata_host *host;
5753 int i, j;
5754
5755 host = ata_host_alloc(dev, n_ports);
5756 if (!host)
5757 return NULL;
5758
5759 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5760 struct ata_port *ap = host->ports[i];
5761
5762 if (ppi[j])
5763 pi = ppi[j++];
5764
5765 ap->pio_mask = pi->pio_mask;
5766 ap->mwdma_mask = pi->mwdma_mask;
5767 ap->udma_mask = pi->udma_mask;
5768 ap->flags |= pi->flags;
5769 ap->link.flags |= pi->link_flags;
5770 ap->ops = pi->port_ops;
5771
5772 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5773 host->ops = pi->port_ops;
5774 }
5775
5776 return host;
5777 }
5778
5779 /**
5780 * ata_slave_link_init - initialize slave link
5781 * @ap: port to initialize slave link for
5782 *
5783 * Create and initialize slave link for @ap. This enables slave
5784 * link handling on the port.
5785 *
5786 * In libata, a port contains links and a link contains devices.
5787 * There is single host link but if a PMP is attached to it,
5788 * there can be multiple fan-out links. On SATA, there's usually
5789 * a single device connected to a link but PATA and SATA
5790 * controllers emulating TF based interface can have two - master
5791 * and slave.
5792 *
5793 * However, there are a few controllers which don't fit into this
5794 * abstraction too well - SATA controllers which emulate TF
5795 * interface with both master and slave devices but also have
5796 * separate SCR register sets for each device. These controllers
5797 * need separate links for physical link handling
5798 * (e.g. onlineness, link speed) but should be treated like a
5799 * traditional M/S controller for everything else (e.g. command
5800 * issue, softreset).
5801 *
5802 * slave_link is libata's way of handling this class of
5803 * controllers without impacting core layer too much. For
5804 * anything other than physical link handling, the default host
5805 * link is used for both master and slave. For physical link
5806 * handling, separate @ap->slave_link is used. All dirty details
5807 * are implemented inside libata core layer. From LLD's POV, the
5808 * only difference is that prereset, hardreset and postreset are
5809 * called once more for the slave link, so the reset sequence
5810 * looks like the following.
5811 *
5812 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5813 * softreset(M) -> postreset(M) -> postreset(S)
5814 *
5815 * Note that softreset is called only for the master. Softreset
5816 * resets both M/S by definition, so SRST on master should handle
5817 * both (the standard method will work just fine).
5818 *
5819 * LOCKING:
5820 * Should be called before host is registered.
5821 *
5822 * RETURNS:
5823 * 0 on success, -errno on failure.
5824 */
5825 int ata_slave_link_init(struct ata_port *ap)
5826 {
5827 struct ata_link *link;
5828
5829 WARN_ON(ap->slave_link);
5830 WARN_ON(ap->flags & ATA_FLAG_PMP);
5831
5832 link = kzalloc(sizeof(*link), GFP_KERNEL);
5833 if (!link)
5834 return -ENOMEM;
5835
5836 ata_link_init(ap, link, 1);
5837 ap->slave_link = link;
5838 return 0;
5839 }
5840
5841 static void ata_host_stop(struct device *gendev, void *res)
5842 {
5843 struct ata_host *host = dev_get_drvdata(gendev);
5844 int i;
5845
5846 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5847
5848 for (i = 0; i < host->n_ports; i++) {
5849 struct ata_port *ap = host->ports[i];
5850
5851 if (ap->ops->port_stop)
5852 ap->ops->port_stop(ap);
5853 }
5854
5855 if (host->ops->host_stop)
5856 host->ops->host_stop(host);
5857 }
5858
5859 /**
5860 * ata_finalize_port_ops - finalize ata_port_operations
5861 * @ops: ata_port_operations to finalize
5862 *
5863 * An ata_port_operations can inherit from another ops and that
5864 * ops can again inherit from another. This can go on as many
5865 * times as necessary as long as there is no loop in the
5866 * inheritance chain.
5867 *
5868 * Ops tables are finalized when the host is started. NULL or
5869 * unspecified entries are inherited from the closet ancestor
5870 * which has the method and the entry is populated with it.
5871 * After finalization, the ops table directly points to all the
5872 * methods and ->inherits is no longer necessary and cleared.
5873 *
5874 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5875 *
5876 * LOCKING:
5877 * None.
5878 */
5879 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5880 {
5881 static DEFINE_SPINLOCK(lock);
5882 const struct ata_port_operations *cur;
5883 void **begin = (void **)ops;
5884 void **end = (void **)&ops->inherits;
5885 void **pp;
5886
5887 if (!ops || !ops->inherits)
5888 return;
5889
5890 spin_lock(&lock);
5891
5892 for (cur = ops->inherits; cur; cur = cur->inherits) {
5893 void **inherit = (void **)cur;
5894
5895 for (pp = begin; pp < end; pp++, inherit++)
5896 if (!*pp)
5897 *pp = *inherit;
5898 }
5899
5900 for (pp = begin; pp < end; pp++)
5901 if (IS_ERR(*pp))
5902 *pp = NULL;
5903
5904 ops->inherits = NULL;
5905
5906 spin_unlock(&lock);
5907 }
5908
5909 /**
5910 * ata_host_start - start and freeze ports of an ATA host
5911 * @host: ATA host to start ports for
5912 *
5913 * Start and then freeze ports of @host. Started status is
5914 * recorded in host->flags, so this function can be called
5915 * multiple times. Ports are guaranteed to get started only
5916 * once. If host->ops isn't initialized yet, its set to the
5917 * first non-dummy port ops.
5918 *
5919 * LOCKING:
5920 * Inherited from calling layer (may sleep).
5921 *
5922 * RETURNS:
5923 * 0 if all ports are started successfully, -errno otherwise.
5924 */
5925 int ata_host_start(struct ata_host *host)
5926 {
5927 int have_stop = 0;
5928 void *start_dr = NULL;
5929 int i, rc;
5930
5931 if (host->flags & ATA_HOST_STARTED)
5932 return 0;
5933
5934 ata_finalize_port_ops(host->ops);
5935
5936 for (i = 0; i < host->n_ports; i++) {
5937 struct ata_port *ap = host->ports[i];
5938
5939 ata_finalize_port_ops(ap->ops);
5940
5941 if (!host->ops && !ata_port_is_dummy(ap))
5942 host->ops = ap->ops;
5943
5944 if (ap->ops->port_stop)
5945 have_stop = 1;
5946 }
5947
5948 if (host->ops->host_stop)
5949 have_stop = 1;
5950
5951 if (have_stop) {
5952 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5953 if (!start_dr)
5954 return -ENOMEM;
5955 }
5956
5957 for (i = 0; i < host->n_ports; i++) {
5958 struct ata_port *ap = host->ports[i];
5959
5960 if (ap->ops->port_start) {
5961 rc = ap->ops->port_start(ap);
5962 if (rc) {
5963 if (rc != -ENODEV)
5964 dev_err(host->dev,
5965 "failed to start port %d (errno=%d)\n",
5966 i, rc);
5967 goto err_out;
5968 }
5969 }
5970 ata_eh_freeze_port(ap);
5971 }
5972
5973 if (start_dr)
5974 devres_add(host->dev, start_dr);
5975 host->flags |= ATA_HOST_STARTED;
5976 return 0;
5977
5978 err_out:
5979 while (--i >= 0) {
5980 struct ata_port *ap = host->ports[i];
5981
5982 if (ap->ops->port_stop)
5983 ap->ops->port_stop(ap);
5984 }
5985 devres_free(start_dr);
5986 return rc;
5987 }
5988
5989 /**
5990 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5991 * @host: host to initialize
5992 * @dev: device host is attached to
5993 * @ops: port_ops
5994 *
5995 */
5996 void ata_host_init(struct ata_host *host, struct device *dev,
5997 struct ata_port_operations *ops)
5998 {
5999 spin_lock_init(&host->lock);
6000 mutex_init(&host->eh_mutex);
6001 host->dev = dev;
6002 host->ops = ops;
6003 }
6004
6005 void __ata_port_probe(struct ata_port *ap)
6006 {
6007 struct ata_eh_info *ehi = &ap->link.eh_info;
6008 unsigned long flags;
6009
6010 /* kick EH for boot probing */
6011 spin_lock_irqsave(ap->lock, flags);
6012
6013 ehi->probe_mask |= ATA_ALL_DEVICES;
6014 ehi->action |= ATA_EH_RESET;
6015 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6016
6017 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6018 ap->pflags |= ATA_PFLAG_LOADING;
6019 ata_port_schedule_eh(ap);
6020
6021 spin_unlock_irqrestore(ap->lock, flags);
6022 }
6023
6024 int ata_port_probe(struct ata_port *ap)
6025 {
6026 int rc = 0;
6027
6028 if (ap->ops->error_handler) {
6029 __ata_port_probe(ap);
6030 ata_port_wait_eh(ap);
6031 } else {
6032 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6033 rc = ata_bus_probe(ap);
6034 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6035 }
6036 return rc;
6037 }
6038
6039
6040 static void async_port_probe(void *data, async_cookie_t cookie)
6041 {
6042 struct ata_port *ap = data;
6043
6044 /*
6045 * If we're not allowed to scan this host in parallel,
6046 * we need to wait until all previous scans have completed
6047 * before going further.
6048 * Jeff Garzik says this is only within a controller, so we
6049 * don't need to wait for port 0, only for later ports.
6050 */
6051 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6052 async_synchronize_cookie(cookie);
6053
6054 (void)ata_port_probe(ap);
6055
6056 /* in order to keep device order, we need to synchronize at this point */
6057 async_synchronize_cookie(cookie);
6058
6059 ata_scsi_scan_host(ap, 1);
6060 }
6061
6062 /**
6063 * ata_host_register - register initialized ATA host
6064 * @host: ATA host to register
6065 * @sht: template for SCSI host
6066 *
6067 * Register initialized ATA host. @host is allocated using
6068 * ata_host_alloc() and fully initialized by LLD. This function
6069 * starts ports, registers @host with ATA and SCSI layers and
6070 * probe registered devices.
6071 *
6072 * LOCKING:
6073 * Inherited from calling layer (may sleep).
6074 *
6075 * RETURNS:
6076 * 0 on success, -errno otherwise.
6077 */
6078 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6079 {
6080 int i, rc;
6081
6082 /* host must have been started */
6083 if (!(host->flags & ATA_HOST_STARTED)) {
6084 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6085 WARN_ON(1);
6086 return -EINVAL;
6087 }
6088
6089 /* Blow away unused ports. This happens when LLD can't
6090 * determine the exact number of ports to allocate at
6091 * allocation time.
6092 */
6093 for (i = host->n_ports; host->ports[i]; i++)
6094 kfree(host->ports[i]);
6095
6096 /* give ports names and add SCSI hosts */
6097 for (i = 0; i < host->n_ports; i++)
6098 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6099
6100
6101 /* Create associated sysfs transport objects */
6102 for (i = 0; i < host->n_ports; i++) {
6103 rc = ata_tport_add(host->dev,host->ports[i]);
6104 if (rc) {
6105 goto err_tadd;
6106 }
6107 }
6108
6109 rc = ata_scsi_add_hosts(host, sht);
6110 if (rc)
6111 goto err_tadd;
6112
6113 /* set cable, sata_spd_limit and report */
6114 for (i = 0; i < host->n_ports; i++) {
6115 struct ata_port *ap = host->ports[i];
6116 unsigned long xfer_mask;
6117
6118 /* set SATA cable type if still unset */
6119 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6120 ap->cbl = ATA_CBL_SATA;
6121
6122 /* init sata_spd_limit to the current value */
6123 sata_link_init_spd(&ap->link);
6124 if (ap->slave_link)
6125 sata_link_init_spd(ap->slave_link);
6126
6127 /* print per-port info to dmesg */
6128 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6129 ap->udma_mask);
6130
6131 if (!ata_port_is_dummy(ap)) {
6132 ata_port_info(ap, "%cATA max %s %s\n",
6133 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6134 ata_mode_string(xfer_mask),
6135 ap->link.eh_info.desc);
6136 ata_ehi_clear_desc(&ap->link.eh_info);
6137 } else
6138 ata_port_info(ap, "DUMMY\n");
6139 }
6140
6141 /* perform each probe asynchronously */
6142 for (i = 0; i < host->n_ports; i++) {
6143 struct ata_port *ap = host->ports[i];
6144 async_schedule(async_port_probe, ap);
6145 }
6146
6147 return 0;
6148
6149 err_tadd:
6150 while (--i >= 0) {
6151 ata_tport_delete(host->ports[i]);
6152 }
6153 return rc;
6154
6155 }
6156
6157 /**
6158 * ata_host_activate - start host, request IRQ and register it
6159 * @host: target ATA host
6160 * @irq: IRQ to request
6161 * @irq_handler: irq_handler used when requesting IRQ
6162 * @irq_flags: irq_flags used when requesting IRQ
6163 * @sht: scsi_host_template to use when registering the host
6164 *
6165 * After allocating an ATA host and initializing it, most libata
6166 * LLDs perform three steps to activate the host - start host,
6167 * request IRQ and register it. This helper takes necessasry
6168 * arguments and performs the three steps in one go.
6169 *
6170 * An invalid IRQ skips the IRQ registration and expects the host to
6171 * have set polling mode on the port. In this case, @irq_handler
6172 * should be NULL.
6173 *
6174 * LOCKING:
6175 * Inherited from calling layer (may sleep).
6176 *
6177 * RETURNS:
6178 * 0 on success, -errno otherwise.
6179 */
6180 int ata_host_activate(struct ata_host *host, int irq,
6181 irq_handler_t irq_handler, unsigned long irq_flags,
6182 struct scsi_host_template *sht)
6183 {
6184 int i, rc;
6185
6186 rc = ata_host_start(host);
6187 if (rc)
6188 return rc;
6189
6190 /* Special case for polling mode */
6191 if (!irq) {
6192 WARN_ON(irq_handler);
6193 return ata_host_register(host, sht);
6194 }
6195
6196 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6197 dev_driver_string(host->dev), host);
6198 if (rc)
6199 return rc;
6200
6201 for (i = 0; i < host->n_ports; i++)
6202 ata_port_desc(host->ports[i], "irq %d", irq);
6203
6204 rc = ata_host_register(host, sht);
6205 /* if failed, just free the IRQ and leave ports alone */
6206 if (rc)
6207 devm_free_irq(host->dev, irq, host);
6208
6209 return rc;
6210 }
6211
6212 /**
6213 * ata_port_detach - Detach ATA port in prepration of device removal
6214 * @ap: ATA port to be detached
6215 *
6216 * Detach all ATA devices and the associated SCSI devices of @ap;
6217 * then, remove the associated SCSI host. @ap is guaranteed to
6218 * be quiescent on return from this function.
6219 *
6220 * LOCKING:
6221 * Kernel thread context (may sleep).
6222 */
6223 static void ata_port_detach(struct ata_port *ap)
6224 {
6225 unsigned long flags;
6226
6227 if (!ap->ops->error_handler)
6228 goto skip_eh;
6229
6230 /* tell EH we're leaving & flush EH */
6231 spin_lock_irqsave(ap->lock, flags);
6232 ap->pflags |= ATA_PFLAG_UNLOADING;
6233 ata_port_schedule_eh(ap);
6234 spin_unlock_irqrestore(ap->lock, flags);
6235
6236 /* wait till EH commits suicide */
6237 ata_port_wait_eh(ap);
6238
6239 /* it better be dead now */
6240 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6241
6242 cancel_delayed_work_sync(&ap->hotplug_task);
6243
6244 skip_eh:
6245 if (ap->pmp_link) {
6246 int i;
6247 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6248 ata_tlink_delete(&ap->pmp_link[i]);
6249 }
6250 ata_tport_delete(ap);
6251
6252 /* remove the associated SCSI host */
6253 scsi_remove_host(ap->scsi_host);
6254 }
6255
6256 /**
6257 * ata_host_detach - Detach all ports of an ATA host
6258 * @host: Host to detach
6259 *
6260 * Detach all ports of @host.
6261 *
6262 * LOCKING:
6263 * Kernel thread context (may sleep).
6264 */
6265 void ata_host_detach(struct ata_host *host)
6266 {
6267 int i;
6268
6269 for (i = 0; i < host->n_ports; i++)
6270 ata_port_detach(host->ports[i]);
6271
6272 /* the host is dead now, dissociate ACPI */
6273 ata_acpi_dissociate(host);
6274 }
6275
6276 #ifdef CONFIG_PCI
6277
6278 /**
6279 * ata_pci_remove_one - PCI layer callback for device removal
6280 * @pdev: PCI device that was removed
6281 *
6282 * PCI layer indicates to libata via this hook that hot-unplug or
6283 * module unload event has occurred. Detach all ports. Resource
6284 * release is handled via devres.
6285 *
6286 * LOCKING:
6287 * Inherited from PCI layer (may sleep).
6288 */
6289 void ata_pci_remove_one(struct pci_dev *pdev)
6290 {
6291 struct ata_host *host = pci_get_drvdata(pdev);
6292
6293 ata_host_detach(host);
6294 }
6295
6296 /* move to PCI subsystem */
6297 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6298 {
6299 unsigned long tmp = 0;
6300
6301 switch (bits->width) {
6302 case 1: {
6303 u8 tmp8 = 0;
6304 pci_read_config_byte(pdev, bits->reg, &tmp8);
6305 tmp = tmp8;
6306 break;
6307 }
6308 case 2: {
6309 u16 tmp16 = 0;
6310 pci_read_config_word(pdev, bits->reg, &tmp16);
6311 tmp = tmp16;
6312 break;
6313 }
6314 case 4: {
6315 u32 tmp32 = 0;
6316 pci_read_config_dword(pdev, bits->reg, &tmp32);
6317 tmp = tmp32;
6318 break;
6319 }
6320
6321 default:
6322 return -EINVAL;
6323 }
6324
6325 tmp &= bits->mask;
6326
6327 return (tmp == bits->val) ? 1 : 0;
6328 }
6329
6330 #ifdef CONFIG_PM
6331 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6332 {
6333 pci_save_state(pdev);
6334 pci_disable_device(pdev);
6335
6336 if (mesg.event & PM_EVENT_SLEEP)
6337 pci_set_power_state(pdev, PCI_D3hot);
6338 }
6339
6340 int ata_pci_device_do_resume(struct pci_dev *pdev)
6341 {
6342 int rc;
6343
6344 pci_set_power_state(pdev, PCI_D0);
6345 pci_restore_state(pdev);
6346
6347 rc = pcim_enable_device(pdev);
6348 if (rc) {
6349 dev_err(&pdev->dev,
6350 "failed to enable device after resume (%d)\n", rc);
6351 return rc;
6352 }
6353
6354 pci_set_master(pdev);
6355 return 0;
6356 }
6357
6358 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6359 {
6360 struct ata_host *host = pci_get_drvdata(pdev);
6361 int rc = 0;
6362
6363 rc = ata_host_suspend(host, mesg);
6364 if (rc)
6365 return rc;
6366
6367 ata_pci_device_do_suspend(pdev, mesg);
6368
6369 return 0;
6370 }
6371
6372 int ata_pci_device_resume(struct pci_dev *pdev)
6373 {
6374 struct ata_host *host = pci_get_drvdata(pdev);
6375 int rc;
6376
6377 rc = ata_pci_device_do_resume(pdev);
6378 if (rc == 0)
6379 ata_host_resume(host);
6380 return rc;
6381 }
6382 #endif /* CONFIG_PM */
6383
6384 #endif /* CONFIG_PCI */
6385
6386 /**
6387 * ata_platform_remove_one - Platform layer callback for device removal
6388 * @pdev: Platform device that was removed
6389 *
6390 * Platform layer indicates to libata via this hook that hot-unplug or
6391 * module unload event has occurred. Detach all ports. Resource
6392 * release is handled via devres.
6393 *
6394 * LOCKING:
6395 * Inherited from platform layer (may sleep).
6396 */
6397 int ata_platform_remove_one(struct platform_device *pdev)
6398 {
6399 struct ata_host *host = platform_get_drvdata(pdev);
6400
6401 ata_host_detach(host);
6402
6403 return 0;
6404 }
6405
6406 static int __init ata_parse_force_one(char **cur,
6407 struct ata_force_ent *force_ent,
6408 const char **reason)
6409 {
6410 /* FIXME: Currently, there's no way to tag init const data and
6411 * using __initdata causes build failure on some versions of
6412 * gcc. Once __initdataconst is implemented, add const to the
6413 * following structure.
6414 */
6415 static struct ata_force_param force_tbl[] __initdata = {
6416 { "40c", .cbl = ATA_CBL_PATA40 },
6417 { "80c", .cbl = ATA_CBL_PATA80 },
6418 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6419 { "unk", .cbl = ATA_CBL_PATA_UNK },
6420 { "ign", .cbl = ATA_CBL_PATA_IGN },
6421 { "sata", .cbl = ATA_CBL_SATA },
6422 { "1.5Gbps", .spd_limit = 1 },
6423 { "3.0Gbps", .spd_limit = 2 },
6424 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6425 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6426 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6427 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6428 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6429 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6430 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6431 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6432 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6433 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6434 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6435 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6436 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6437 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6438 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6439 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6440 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6441 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6442 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6443 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6444 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6445 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6446 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6447 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6448 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6449 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6450 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6451 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6452 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6453 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6454 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6455 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6456 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6457 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6458 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6459 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6460 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6461 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6462 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6463 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6464 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6465 };
6466 char *start = *cur, *p = *cur;
6467 char *id, *val, *endp;
6468 const struct ata_force_param *match_fp = NULL;
6469 int nr_matches = 0, i;
6470
6471 /* find where this param ends and update *cur */
6472 while (*p != '\0' && *p != ',')
6473 p++;
6474
6475 if (*p == '\0')
6476 *cur = p;
6477 else
6478 *cur = p + 1;
6479
6480 *p = '\0';
6481
6482 /* parse */
6483 p = strchr(start, ':');
6484 if (!p) {
6485 val = strstrip(start);
6486 goto parse_val;
6487 }
6488 *p = '\0';
6489
6490 id = strstrip(start);
6491 val = strstrip(p + 1);
6492
6493 /* parse id */
6494 p = strchr(id, '.');
6495 if (p) {
6496 *p++ = '\0';
6497 force_ent->device = simple_strtoul(p, &endp, 10);
6498 if (p == endp || *endp != '\0') {
6499 *reason = "invalid device";
6500 return -EINVAL;
6501 }
6502 }
6503
6504 force_ent->port = simple_strtoul(id, &endp, 10);
6505 if (p == endp || *endp != '\0') {
6506 *reason = "invalid port/link";
6507 return -EINVAL;
6508 }
6509
6510 parse_val:
6511 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6512 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6513 const struct ata_force_param *fp = &force_tbl[i];
6514
6515 if (strncasecmp(val, fp->name, strlen(val)))
6516 continue;
6517
6518 nr_matches++;
6519 match_fp = fp;
6520
6521 if (strcasecmp(val, fp->name) == 0) {
6522 nr_matches = 1;
6523 break;
6524 }
6525 }
6526
6527 if (!nr_matches) {
6528 *reason = "unknown value";
6529 return -EINVAL;
6530 }
6531 if (nr_matches > 1) {
6532 *reason = "ambigious value";
6533 return -EINVAL;
6534 }
6535
6536 force_ent->param = *match_fp;
6537
6538 return 0;
6539 }
6540
6541 static void __init ata_parse_force_param(void)
6542 {
6543 int idx = 0, size = 1;
6544 int last_port = -1, last_device = -1;
6545 char *p, *cur, *next;
6546
6547 /* calculate maximum number of params and allocate force_tbl */
6548 for (p = ata_force_param_buf; *p; p++)
6549 if (*p == ',')
6550 size++;
6551
6552 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6553 if (!ata_force_tbl) {
6554 printk(KERN_WARNING "ata: failed to extend force table, "
6555 "libata.force ignored\n");
6556 return;
6557 }
6558
6559 /* parse and populate the table */
6560 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6561 const char *reason = "";
6562 struct ata_force_ent te = { .port = -1, .device = -1 };
6563
6564 next = cur;
6565 if (ata_parse_force_one(&next, &te, &reason)) {
6566 printk(KERN_WARNING "ata: failed to parse force "
6567 "parameter \"%s\" (%s)\n",
6568 cur, reason);
6569 continue;
6570 }
6571
6572 if (te.port == -1) {
6573 te.port = last_port;
6574 te.device = last_device;
6575 }
6576
6577 ata_force_tbl[idx++] = te;
6578
6579 last_port = te.port;
6580 last_device = te.device;
6581 }
6582
6583 ata_force_tbl_size = idx;
6584 }
6585
6586 static int __init ata_init(void)
6587 {
6588 int rc;
6589
6590 ata_parse_force_param();
6591
6592 ata_acpi_register();
6593
6594 rc = ata_sff_init();
6595 if (rc) {
6596 kfree(ata_force_tbl);
6597 return rc;
6598 }
6599
6600 libata_transport_init();
6601 ata_scsi_transport_template = ata_attach_transport();
6602 if (!ata_scsi_transport_template) {
6603 ata_sff_exit();
6604 rc = -ENOMEM;
6605 goto err_out;
6606 }
6607
6608 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6609 return 0;
6610
6611 err_out:
6612 return rc;
6613 }
6614
6615 static void __exit ata_exit(void)
6616 {
6617 ata_release_transport(ata_scsi_transport_template);
6618 libata_transport_exit();
6619 ata_sff_exit();
6620 ata_acpi_unregister();
6621 kfree(ata_force_tbl);
6622 }
6623
6624 subsys_initcall(ata_init);
6625 module_exit(ata_exit);
6626
6627 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6628
6629 int ata_ratelimit(void)
6630 {
6631 return __ratelimit(&ratelimit);
6632 }
6633
6634 /**
6635 * ata_msleep - ATA EH owner aware msleep
6636 * @ap: ATA port to attribute the sleep to
6637 * @msecs: duration to sleep in milliseconds
6638 *
6639 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6640 * ownership is released before going to sleep and reacquired
6641 * after the sleep is complete. IOW, other ports sharing the
6642 * @ap->host will be allowed to own the EH while this task is
6643 * sleeping.
6644 *
6645 * LOCKING:
6646 * Might sleep.
6647 */
6648 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6649 {
6650 bool owns_eh = ap && ap->host->eh_owner == current;
6651
6652 if (owns_eh)
6653 ata_eh_release(ap);
6654
6655 msleep(msecs);
6656
6657 if (owns_eh)
6658 ata_eh_acquire(ap);
6659 }
6660
6661 /**
6662 * ata_wait_register - wait until register value changes
6663 * @ap: ATA port to wait register for, can be NULL
6664 * @reg: IO-mapped register
6665 * @mask: Mask to apply to read register value
6666 * @val: Wait condition
6667 * @interval: polling interval in milliseconds
6668 * @timeout: timeout in milliseconds
6669 *
6670 * Waiting for some bits of register to change is a common
6671 * operation for ATA controllers. This function reads 32bit LE
6672 * IO-mapped register @reg and tests for the following condition.
6673 *
6674 * (*@reg & mask) != val
6675 *
6676 * If the condition is met, it returns; otherwise, the process is
6677 * repeated after @interval_msec until timeout.
6678 *
6679 * LOCKING:
6680 * Kernel thread context (may sleep)
6681 *
6682 * RETURNS:
6683 * The final register value.
6684 */
6685 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6686 unsigned long interval, unsigned long timeout)
6687 {
6688 unsigned long deadline;
6689 u32 tmp;
6690
6691 tmp = ioread32(reg);
6692
6693 /* Calculate timeout _after_ the first read to make sure
6694 * preceding writes reach the controller before starting to
6695 * eat away the timeout.
6696 */
6697 deadline = ata_deadline(jiffies, timeout);
6698
6699 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6700 ata_msleep(ap, interval);
6701 tmp = ioread32(reg);
6702 }
6703
6704 return tmp;
6705 }
6706
6707 /*
6708 * Dummy port_ops
6709 */
6710 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6711 {
6712 return AC_ERR_SYSTEM;
6713 }
6714
6715 static void ata_dummy_error_handler(struct ata_port *ap)
6716 {
6717 /* truly dummy */
6718 }
6719
6720 struct ata_port_operations ata_dummy_port_ops = {
6721 .qc_prep = ata_noop_qc_prep,
6722 .qc_issue = ata_dummy_qc_issue,
6723 .error_handler = ata_dummy_error_handler,
6724 .sched_eh = ata_std_sched_eh,
6725 .end_eh = ata_std_end_eh,
6726 };
6727
6728 const struct ata_port_info ata_dummy_port_info = {
6729 .port_ops = &ata_dummy_port_ops,
6730 };
6731
6732 /*
6733 * Utility print functions
6734 */
6735 int ata_port_printk(const struct ata_port *ap, const char *level,
6736 const char *fmt, ...)
6737 {
6738 struct va_format vaf;
6739 va_list args;
6740 int r;
6741
6742 va_start(args, fmt);
6743
6744 vaf.fmt = fmt;
6745 vaf.va = &args;
6746
6747 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6748
6749 va_end(args);
6750
6751 return r;
6752 }
6753 EXPORT_SYMBOL(ata_port_printk);
6754
6755 int ata_link_printk(const struct ata_link *link, const char *level,
6756 const char *fmt, ...)
6757 {
6758 struct va_format vaf;
6759 va_list args;
6760 int r;
6761
6762 va_start(args, fmt);
6763
6764 vaf.fmt = fmt;
6765 vaf.va = &args;
6766
6767 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6768 r = printk("%sata%u.%02u: %pV",
6769 level, link->ap->print_id, link->pmp, &vaf);
6770 else
6771 r = printk("%sata%u: %pV",
6772 level, link->ap->print_id, &vaf);
6773
6774 va_end(args);
6775
6776 return r;
6777 }
6778 EXPORT_SYMBOL(ata_link_printk);
6779
6780 int ata_dev_printk(const struct ata_device *dev, const char *level,
6781 const char *fmt, ...)
6782 {
6783 struct va_format vaf;
6784 va_list args;
6785 int r;
6786
6787 va_start(args, fmt);
6788
6789 vaf.fmt = fmt;
6790 vaf.va = &args;
6791
6792 r = printk("%sata%u.%02u: %pV",
6793 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6794 &vaf);
6795
6796 va_end(args);
6797
6798 return r;
6799 }
6800 EXPORT_SYMBOL(ata_dev_printk);
6801
6802 void ata_print_version(const struct device *dev, const char *version)
6803 {
6804 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6805 }
6806 EXPORT_SYMBOL(ata_print_version);
6807
6808 /*
6809 * libata is essentially a library of internal helper functions for
6810 * low-level ATA host controller drivers. As such, the API/ABI is
6811 * likely to change as new drivers are added and updated.
6812 * Do not depend on ABI/API stability.
6813 */
6814 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6815 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6816 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6817 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6818 EXPORT_SYMBOL_GPL(sata_port_ops);
6819 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6820 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6821 EXPORT_SYMBOL_GPL(ata_link_next);
6822 EXPORT_SYMBOL_GPL(ata_dev_next);
6823 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6824 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6825 EXPORT_SYMBOL_GPL(ata_host_init);
6826 EXPORT_SYMBOL_GPL(ata_host_alloc);
6827 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6828 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6829 EXPORT_SYMBOL_GPL(ata_host_start);
6830 EXPORT_SYMBOL_GPL(ata_host_register);
6831 EXPORT_SYMBOL_GPL(ata_host_activate);
6832 EXPORT_SYMBOL_GPL(ata_host_detach);
6833 EXPORT_SYMBOL_GPL(ata_sg_init);
6834 EXPORT_SYMBOL_GPL(ata_qc_complete);
6835 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6836 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6837 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6838 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6839 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6840 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6841 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6842 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6843 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6844 EXPORT_SYMBOL_GPL(ata_mode_string);
6845 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6846 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6847 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6848 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6849 EXPORT_SYMBOL_GPL(ata_dev_disable);
6850 EXPORT_SYMBOL_GPL(sata_set_spd);
6851 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6852 EXPORT_SYMBOL_GPL(sata_link_debounce);
6853 EXPORT_SYMBOL_GPL(sata_link_resume);
6854 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6855 EXPORT_SYMBOL_GPL(ata_std_prereset);
6856 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6857 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6858 EXPORT_SYMBOL_GPL(ata_std_postreset);
6859 EXPORT_SYMBOL_GPL(ata_dev_classify);
6860 EXPORT_SYMBOL_GPL(ata_dev_pair);
6861 EXPORT_SYMBOL_GPL(ata_ratelimit);
6862 EXPORT_SYMBOL_GPL(ata_msleep);
6863 EXPORT_SYMBOL_GPL(ata_wait_register);
6864 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6866 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6867 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6868 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6869 EXPORT_SYMBOL_GPL(sata_scr_valid);
6870 EXPORT_SYMBOL_GPL(sata_scr_read);
6871 EXPORT_SYMBOL_GPL(sata_scr_write);
6872 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6873 EXPORT_SYMBOL_GPL(ata_link_online);
6874 EXPORT_SYMBOL_GPL(ata_link_offline);
6875 #ifdef CONFIG_PM
6876 EXPORT_SYMBOL_GPL(ata_host_suspend);
6877 EXPORT_SYMBOL_GPL(ata_host_resume);
6878 #endif /* CONFIG_PM */
6879 EXPORT_SYMBOL_GPL(ata_id_string);
6880 EXPORT_SYMBOL_GPL(ata_id_c_string);
6881 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6882 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6883
6884 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6885 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6886 EXPORT_SYMBOL_GPL(ata_timing_compute);
6887 EXPORT_SYMBOL_GPL(ata_timing_merge);
6888 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6889
6890 #ifdef CONFIG_PCI
6891 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6892 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6893 #ifdef CONFIG_PM
6894 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6895 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6896 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6897 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6898 #endif /* CONFIG_PM */
6899 #endif /* CONFIG_PCI */
6900
6901 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6902
6903 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6904 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6905 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6906 EXPORT_SYMBOL_GPL(ata_port_desc);
6907 #ifdef CONFIG_PCI
6908 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6909 #endif /* CONFIG_PCI */
6910 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6911 EXPORT_SYMBOL_GPL(ata_link_abort);
6912 EXPORT_SYMBOL_GPL(ata_port_abort);
6913 EXPORT_SYMBOL_GPL(ata_port_freeze);
6914 EXPORT_SYMBOL_GPL(sata_async_notification);
6915 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6916 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6917 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6918 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6919 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6920 EXPORT_SYMBOL_GPL(ata_do_eh);
6921 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6922
6923 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6924 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6925 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6926 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6927 EXPORT_SYMBOL_GPL(ata_cable_sata);