Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71
72 #include "libata.h"
73 #include "libata-transport.h"
74
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79
80 const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
86 };
87
88 const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
93 };
94
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
111 };
112
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117 };
118
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171
172
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 return (sstatus & 0xf) == 0x3;
176 }
177
178 /**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
186 *
187 * RETURNS:
188 * Pointer to the next link.
189 */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
192 {
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
207
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
221 }
222
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
234 return NULL;
235 }
236
237 /**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251 {
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288 }
289
290 /**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313 }
314
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
396 }
397 }
398
399 /**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
449 return;
450 }
451 }
452
453 /**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
493 }
494 }
495
496 /**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508 int atapi_cmd_type(u8 opcode)
509 {
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
529 default:
530 return ATAPI_MISC;
531 }
532 }
533
534 /**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = 0;
573 fis[17] = 0;
574 fis[18] = 0;
575 fis[19] = 0;
576 }
577
578 /**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605 }
606
607 static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
622 0,
623 0,
624 0,
625 0,
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
635 };
636
637 /**
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
641 *
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
644 *
645 * LOCKING:
646 * caller.
647 */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 u8 cmd;
651
652 int index, fua, lba48, write;
653
654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else {
666 tf->protocol = ATA_PROT_DMA;
667 index = 16;
668 }
669
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
676 }
677
678 /**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
701 block |= (u64)tf->hob_lbal << 24;
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
715 if (!sect) {
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 }
723
724 return block;
725 }
726
727 /**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750 {
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
778 tf->device = ATA_LBA;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848 }
849
850 /**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
868 {
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873
874 /**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894
895 static const struct ata_xfer_ent {
896 int shift, bits;
897 u8 base;
898 } ata_xfer_tbl[] = {
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 { -1, },
903 };
904
905 /**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching XFER_* value, 0xff if no match found.
917 */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
926 return 0xff;
927 }
928
929 /**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
949 return 0;
950 }
951
952 /**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972 }
973
974 /**
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
977 *
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
987 */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
996 "PIO5",
997 "PIO6",
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
1001 "MWDMA3",
1002 "MWDMA4",
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1012 int highbit;
1013
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1017 return "<n/a>";
1018 }
1019
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
1025 "6.0 Gbps",
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031 }
1032
1033 /**
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1036 *
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 * LOCKING:
1042 * None.
1043 *
1044 * RETURNS:
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1053 *
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1064 *
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1070 */
1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1074 }
1075
1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1079 }
1080
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1084 }
1085
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
1089 }
1090
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1093 }
1094
1095 /**
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1101 *
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1105 *
1106 * LOCKING:
1107 * caller.
1108 */
1109
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1112 {
1113 unsigned int c;
1114
1115 BUG_ON(len & 1);
1116
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1121
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1125
1126 ofs++;
1127 len -= 2;
1128 }
1129 }
1130
1131 /**
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1137 *
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
1147 {
1148 unsigned char *p;
1149
1150 ata_id_string(id, s, ofs, len - 1);
1151
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1156 }
1157
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 else
1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 } else {
1166 if (ata_id_current_chs_valid(id))
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
1169 else
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
1172 }
1173 }
1174
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 u64 sectors = 0;
1178
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1185
1186 return sectors;
1187 }
1188
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 u64 sectors = 0;
1192
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
1198 return sectors;
1199 }
1200
1201 /**
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1205 *
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1212 */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 unsigned int err_mask;
1216 struct ata_taskfile tf;
1217 int lba48 = ata_id_has_lba48(dev->id);
1218
1219 ata_tf_init(dev, &tf);
1220
1221 /* always clear all address registers */
1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230 tf.protocol |= ATA_PROT_NODATA;
1231 tf.device |= ATA_LBA;
1232
1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 if (err_mask) {
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1241 }
1242
1243 if (lba48)
1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 else
1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 (*max_sectors)--;
1249 return 0;
1250 }
1251
1252 /**
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1256 *
1257 * Set max sectors of @dev to @new_sectors.
1258 *
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1263 */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 unsigned int err_mask;
1267 struct ata_taskfile tf;
1268 int lba48 = ata_id_has_lba48(dev->id);
1269
1270 new_sectors--;
1271
1272 ata_tf_init(dev, &tf);
1273
1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1279
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 } else {
1284 tf.command = ATA_CMD_SET_MAX;
1285
1286 tf.device |= (new_sectors >> 24) & 0xf;
1287 }
1288
1289 tf.protocol |= ATA_PROT_NODATA;
1290 tf.device |= ATA_LBA;
1291
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 if (err_mask) {
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1313 *
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1317 *
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1320 */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
1328 int rc;
1329
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 return 0;
1335
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1341 */
1342 if (rc == -EACCES || !unlock_hpa) {
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1350 }
1351
1352 return rc;
1353 }
1354 dev->n_native_sectors = native_sectors;
1355
1356 /* nothing to do? */
1357 if (native_sectors <= sectors || !unlock_hpa) {
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1360
1361 if (native_sectors > sectors)
1362 ata_dev_info(dev,
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1372 }
1373
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1386
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1392 return rc;
1393 }
1394
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
1397 ata_dev_info(dev,
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1410 *
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1413 *
1414 * LOCKING:
1415 * caller.
1416 */
1417
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
1442 id[88],
1443 id[93]);
1444 }
1445
1446 /**
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1449 *
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1452 *
1453 * FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 * LOCKING:
1456 * None.
1457 *
1458 * RETURNS:
1459 * Computed xfermask
1460 */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1474 */
1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 if (mode < 5) /* Valid PIO range */
1477 pio_mask = (2 << mode) - 1;
1478 else
1479 pio_mask = 1;
1480
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1486 */
1487 }
1488
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491 if (ata_id_is_cfa(id)) {
1492 /*
1493 * Process compact flash extended modes
1494 */
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1506 }
1507
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 struct completion *waiting = qc->private_data;
1518
1519 complete(waiting);
1520 }
1521
1522 /**
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1531 *
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1537 *
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
1546 int dma_dir, struct scatterlist *sgl,
1547 unsigned int n_elem, unsigned long timeout)
1548 {
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
1551 u8 command = tf->command;
1552 int auto_timeout = 0;
1553 struct ata_queued_cmd *qc;
1554 unsigned int tag, preempted_tag;
1555 u32 preempted_sactive, preempted_qc_active;
1556 int preempted_nr_active_links;
1557 DECLARE_COMPLETION_ONSTACK(wait);
1558 unsigned long flags;
1559 unsigned int err_mask;
1560 int rc;
1561
1562 spin_lock_irqsave(ap->lock, flags);
1563
1564 /* no internal command while frozen */
1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 spin_unlock_irqrestore(ap->lock, flags);
1567 return AC_ERR_SYSTEM;
1568 }
1569
1570 /* initialize internal qc */
1571
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1576 */
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1581
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
1584 qc = __ata_qc_from_tag(ap, tag);
1585
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1591
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
1594 preempted_qc_active = ap->qc_active;
1595 preempted_nr_active_links = ap->nr_active_links;
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
1598 ap->qc_active = 0;
1599 ap->nr_active_links = 0;
1600
1601 /* prepare & issue qc */
1602 qc->tf = *tf;
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606 /* some SATA bridges need us to indicate data xfer direction */
1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 dma_dir == DMA_FROM_DEVICE)
1609 qc->tf.feature |= ATAPI_DMADIR;
1610
1611 qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 qc->dma_dir = dma_dir;
1613 if (dma_dir != DMA_NONE) {
1614 unsigned int i, buflen = 0;
1615 struct scatterlist *sg;
1616
1617 for_each_sg(sgl, sg, n_elem, i)
1618 buflen += sg->length;
1619
1620 ata_sg_init(qc, sgl, n_elem);
1621 qc->nbytes = buflen;
1622 }
1623
1624 qc->private_data = &wait;
1625 qc->complete_fn = ata_qc_complete_internal;
1626
1627 ata_qc_issue(qc);
1628
1629 spin_unlock_irqrestore(ap->lock, flags);
1630
1631 if (!timeout) {
1632 if (ata_probe_timeout)
1633 timeout = ata_probe_timeout * 1000;
1634 else {
1635 timeout = ata_internal_cmd_timeout(dev, command);
1636 auto_timeout = 1;
1637 }
1638 }
1639
1640 if (ap->ops->error_handler)
1641 ata_eh_release(ap);
1642
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645 if (ap->ops->error_handler)
1646 ata_eh_acquire(ap);
1647
1648 ata_sff_flush_pio_task(ap);
1649
1650 if (!rc) {
1651 spin_lock_irqsave(ap->lock, flags);
1652
1653 /* We're racing with irq here. If we lose, the
1654 * following test prevents us from completing the qc
1655 * twice. If we win, the port is frozen and will be
1656 * cleaned up by ->post_internal_cmd().
1657 */
1658 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661 if (ap->ops->error_handler)
1662 ata_port_freeze(ap);
1663 else
1664 ata_qc_complete(qc);
1665
1666 if (ata_msg_warn(ap))
1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 command);
1669 }
1670
1671 spin_unlock_irqrestore(ap->lock, flags);
1672 }
1673
1674 /* do post_internal_cmd */
1675 if (ap->ops->post_internal_cmd)
1676 ap->ops->post_internal_cmd(qc);
1677
1678 /* perform minimal error analysis */
1679 if (qc->flags & ATA_QCFLAG_FAILED) {
1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 qc->err_mask |= AC_ERR_DEV;
1682
1683 if (!qc->err_mask)
1684 qc->err_mask |= AC_ERR_OTHER;
1685
1686 if (qc->err_mask & ~AC_ERR_OTHER)
1687 qc->err_mask &= ~AC_ERR_OTHER;
1688 }
1689
1690 /* finish up */
1691 spin_lock_irqsave(ap->lock, flags);
1692
1693 *tf = qc->result_tf;
1694 err_mask = qc->err_mask;
1695
1696 ata_qc_free(qc);
1697 link->active_tag = preempted_tag;
1698 link->sactive = preempted_sactive;
1699 ap->qc_active = preempted_qc_active;
1700 ap->nr_active_links = preempted_nr_active_links;
1701
1702 spin_unlock_irqrestore(ap->lock, flags);
1703
1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 ata_internal_cmd_timed_out(dev, command);
1706
1707 return err_mask;
1708 }
1709
1710 /**
1711 * ata_exec_internal - execute libata internal command
1712 * @dev: Device to which the command is sent
1713 * @tf: Taskfile registers for the command and the result
1714 * @cdb: CDB for packet command
1715 * @dma_dir: Data tranfer direction of the command
1716 * @buf: Data buffer of the command
1717 * @buflen: Length of data buffer
1718 * @timeout: Timeout in msecs (0 for default)
1719 *
1720 * Wrapper around ata_exec_internal_sg() which takes simple
1721 * buffer instead of sg list.
1722 *
1723 * LOCKING:
1724 * None. Should be called with kernel context, might sleep.
1725 *
1726 * RETURNS:
1727 * Zero on success, AC_ERR_* mask on failure
1728 */
1729 unsigned ata_exec_internal(struct ata_device *dev,
1730 struct ata_taskfile *tf, const u8 *cdb,
1731 int dma_dir, void *buf, unsigned int buflen,
1732 unsigned long timeout)
1733 {
1734 struct scatterlist *psg = NULL, sg;
1735 unsigned int n_elem = 0;
1736
1737 if (dma_dir != DMA_NONE) {
1738 WARN_ON(!buf);
1739 sg_init_one(&sg, buf, buflen);
1740 psg = &sg;
1741 n_elem++;
1742 }
1743
1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 timeout);
1746 }
1747
1748 /**
1749 * ata_do_simple_cmd - execute simple internal command
1750 * @dev: Device to which the command is sent
1751 * @cmd: Opcode to execute
1752 *
1753 * Execute a 'simple' command, that only consists of the opcode
1754 * 'cmd' itself, without filling any other registers
1755 *
1756 * LOCKING:
1757 * Kernel thread context (may sleep).
1758 *
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
1761 */
1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763 {
1764 struct ata_taskfile tf;
1765
1766 ata_tf_init(dev, &tf);
1767
1768 tf.command = cmd;
1769 tf.flags |= ATA_TFLAG_DEVICE;
1770 tf.protocol = ATA_PROT_NODATA;
1771
1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773 }
1774
1775 /**
1776 * ata_pio_need_iordy - check if iordy needed
1777 * @adev: ATA device
1778 *
1779 * Check if the current speed of the device requires IORDY. Used
1780 * by various controllers for chip configuration.
1781 */
1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783 {
1784 /* Don't set IORDY if we're preparing for reset. IORDY may
1785 * lead to controller lock up on certain controllers if the
1786 * port is not occupied. See bko#11703 for details.
1787 */
1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 return 0;
1790 /* Controller doesn't support IORDY. Probably a pointless
1791 * check as the caller should know this.
1792 */
1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 return 0;
1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1796 if (ata_id_is_cfa(adev->id)
1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 return 0;
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1804 return 1;
1805 return 0;
1806 }
1807
1808 /**
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1811 *
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1814 */
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816 {
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1826 }
1827 }
1828 return 3 << ATA_SHIFT_PIO;
1829 }
1830
1831 /**
1832 * ata_do_dev_read_id - default ID read method
1833 * @dev: device
1834 * @tf: proposed taskfile
1835 * @id: data buffer
1836 *
1837 * Issue the identify taskfile and hand back the buffer containing
1838 * identify data. For some RAID controllers and for pre ATA devices
1839 * this function is wrapped or replaced by the driver
1840 */
1841 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 struct ata_taskfile *tf, u16 *id)
1843 {
1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846 }
1847
1848 /**
1849 * ata_dev_read_id - Read ID data from the specified device
1850 * @dev: target device
1851 * @p_class: pointer to class of the target device (may be changed)
1852 * @flags: ATA_READID_* flags
1853 * @id: buffer to read IDENTIFY data into
1854 *
1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 * for pre-ATA4 drives.
1859 *
1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 * now we abort if we hit that case.
1862 *
1863 * LOCKING:
1864 * Kernel thread context (may sleep)
1865 *
1866 * RETURNS:
1867 * 0 on success, -errno otherwise.
1868 */
1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 unsigned int flags, u16 *id)
1871 {
1872 struct ata_port *ap = dev->link->ap;
1873 unsigned int class = *p_class;
1874 struct ata_taskfile tf;
1875 unsigned int err_mask = 0;
1876 const char *reason;
1877 bool is_semb = class == ATA_DEV_SEMB;
1878 int may_fallback = 1, tried_spinup = 0;
1879 int rc;
1880
1881 if (ata_msg_ctl(ap))
1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884 retry:
1885 ata_tf_init(dev, &tf);
1886
1887 switch (class) {
1888 case ATA_DEV_SEMB:
1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1890 case ATA_DEV_ATA:
1891 tf.command = ATA_CMD_ID_ATA;
1892 break;
1893 case ATA_DEV_ATAPI:
1894 tf.command = ATA_CMD_ID_ATAPI;
1895 break;
1896 default:
1897 rc = -ENODEV;
1898 reason = "unsupported class";
1899 goto err_out;
1900 }
1901
1902 tf.protocol = ATA_PROT_PIO;
1903
1904 /* Some devices choke if TF registers contain garbage. Make
1905 * sure those are properly initialized.
1906 */
1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909 /* Device presence detection is unreliable on some
1910 * controllers. Always poll IDENTIFY if available.
1911 */
1912 tf.flags |= ATA_TFLAG_POLLING;
1913
1914 if (ap->ops->read_id)
1915 err_mask = ap->ops->read_id(dev, &tf, id);
1916 else
1917 err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919 if (err_mask) {
1920 if (err_mask & AC_ERR_NODEV_HINT) {
1921 ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 return -ENOENT;
1923 }
1924
1925 if (is_semb) {
1926 ata_dev_info(dev,
1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 /* SEMB is not supported yet */
1929 *p_class = ATA_DEV_SEMB_UNSUP;
1930 return 0;
1931 }
1932
1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 /* Device or controller might have reported
1935 * the wrong device class. Give a shot at the
1936 * other IDENTIFY if the current one is
1937 * aborted by the device.
1938 */
1939 if (may_fallback) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
1949 /* Control reaches here iff the device aborted
1950 * both flavors of IDENTIFYs which happens
1951 * sometimes with phantom devices.
1952 */
1953 ata_dev_dbg(dev,
1954 "both IDENTIFYs aborted, assuming NODEV\n");
1955 return -ENOENT;
1956 }
1957
1958 rc = -EIO;
1959 reason = "I/O error";
1960 goto err_out;
1961 }
1962
1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 "class=%d may_fallback=%d tried_spinup=%d\n",
1966 class, may_fallback, tried_spinup);
1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969 }
1970
1971 /* Falling back doesn't make sense if ID data was read
1972 * successfully at least once.
1973 */
1974 may_fallback = 0;
1975
1976 swap_buf_le16(id, ATA_ID_WORDS);
1977
1978 /* sanity check */
1979 rc = -EINVAL;
1980 reason = "device reports invalid type";
1981
1982 if (class == ATA_DEV_ATA) {
1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 goto err_out;
1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 ata_id_is_ata(id)) {
1987 ata_dev_dbg(dev,
1988 "host indicates ignore ATA devices, ignored\n");
1989 return -ENOENT;
1990 }
1991 } else {
1992 if (ata_id_is_ata(id))
1993 goto err_out;
1994 }
1995
1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 tried_spinup = 1;
1998 /*
1999 * Drive powered-up in standby mode, and requires a specific
2000 * SET_FEATURES spin-up subcommand before it will accept
2001 * anything other than the original IDENTIFY command.
2002 */
2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 if (err_mask && id[2] != 0x738c) {
2005 rc = -EIO;
2006 reason = "SPINUP failed";
2007 goto err_out;
2008 }
2009 /*
2010 * If the drive initially returned incomplete IDENTIFY info,
2011 * we now must reissue the IDENTIFY command.
2012 */
2013 if (id[2] == 0x37c8)
2014 goto retry;
2015 }
2016
2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018 /*
2019 * The exact sequence expected by certain pre-ATA4 drives is:
2020 * SRST RESET
2021 * IDENTIFY (optional in early ATA)
2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 * anything else..
2024 * Some drives were very specific about that exact sequence.
2025 *
2026 * Note that ATA4 says lba is mandatory so the second check
2027 * should never trigger.
2028 */
2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 if (err_mask) {
2032 rc = -EIO;
2033 reason = "INIT_DEV_PARAMS failed";
2034 goto err_out;
2035 }
2036
2037 /* current CHS translation info (id[53-58]) might be
2038 * changed. reread the identify device info.
2039 */
2040 flags &= ~ATA_READID_POSTRESET;
2041 goto retry;
2042 }
2043 }
2044
2045 *p_class = class;
2046
2047 return 0;
2048
2049 err_out:
2050 if (ata_msg_warn(ap))
2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 reason, err_mask);
2053 return rc;
2054 }
2055
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 struct ata_link *plink = ata_dev_phys_link(dev);
2059 u32 target, target_limit;
2060
2061 if (!sata_scr_valid(plink))
2062 return 0;
2063
2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 target = 1;
2066 else
2067 return 0;
2068
2069 target_limit = (1 << target) - 1;
2070
2071 /* if already on stricter limit, no need to push further */
2072 if (plink->sata_spd_limit <= target_limit)
2073 return 0;
2074
2075 plink->sata_spd_limit = target_limit;
2076
2077 /* Request another EH round by returning -EAGAIN if link is
2078 * going faster than the target speed. Forward progress is
2079 * guaranteed by setting sata_spd_limit to target_limit above.
2080 */
2081 if (plink->sata_spd > target) {
2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 sata_spd_string(target));
2084 return -EAGAIN;
2085 }
2086 return 0;
2087 }
2088
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 struct ata_port *ap = dev->link->ap;
2092
2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 return 0;
2095
2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098
2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 char *desc, size_t desc_sz)
2101 {
2102 struct ata_port *ap = dev->link->ap;
2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 unsigned int err_mask;
2105 char *aa_desc = "";
2106
2107 if (!ata_id_has_ncq(dev->id)) {
2108 desc[0] = '\0';
2109 return 0;
2110 }
2111 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 snprintf(desc, desc_sz, "NCQ (not used)");
2113 return 0;
2114 }
2115 if (ap->flags & ATA_FLAG_NCQ) {
2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 dev->flags |= ATA_DFLAG_NCQ;
2118 }
2119
2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 ata_id_has_fpdma_aa(dev->id)) {
2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 SATA_FPDMA_AA);
2125 if (err_mask) {
2126 ata_dev_err(dev,
2127 "failed to enable AA (error_mask=0x%x)\n",
2128 err_mask);
2129 if (err_mask != AC_ERR_DEV) {
2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 return -EIO;
2132 }
2133 } else
2134 aa_desc = ", AA";
2135 }
2136
2137 if (hdepth >= ddepth)
2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 else
2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 ddepth, aa_desc);
2142 return 0;
2143 }
2144
2145 /**
2146 * ata_dev_configure - Configure the specified ATA/ATAPI device
2147 * @dev: Target device to configure
2148 *
2149 * Configure @dev according to @dev->id. Generic and low-level
2150 * driver specific fixups are also applied.
2151 *
2152 * LOCKING:
2153 * Kernel thread context (may sleep)
2154 *
2155 * RETURNS:
2156 * 0 on success, -errno otherwise
2157 */
2158 int ata_dev_configure(struct ata_device *dev)
2159 {
2160 struct ata_port *ap = dev->link->ap;
2161 struct ata_eh_context *ehc = &dev->link->eh_context;
2162 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2163 const u16 *id = dev->id;
2164 unsigned long xfer_mask;
2165 unsigned int err_mask;
2166 char revbuf[7]; /* XYZ-99\0 */
2167 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2168 char modelbuf[ATA_ID_PROD_LEN+1];
2169 int rc;
2170
2171 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2172 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2173 return 0;
2174 }
2175
2176 if (ata_msg_probe(ap))
2177 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2178
2179 /* set horkage */
2180 dev->horkage |= ata_dev_blacklisted(dev);
2181 ata_force_horkage(dev);
2182
2183 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2184 ata_dev_info(dev, "unsupported device, disabling\n");
2185 ata_dev_disable(dev);
2186 return 0;
2187 }
2188
2189 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2190 dev->class == ATA_DEV_ATAPI) {
2191 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2192 atapi_enabled ? "not supported with this driver"
2193 : "disabled");
2194 ata_dev_disable(dev);
2195 return 0;
2196 }
2197
2198 rc = ata_do_link_spd_horkage(dev);
2199 if (rc)
2200 return rc;
2201
2202 /* let ACPI work its magic */
2203 rc = ata_acpi_on_devcfg(dev);
2204 if (rc)
2205 return rc;
2206
2207 /* massage HPA, do it early as it might change IDENTIFY data */
2208 rc = ata_hpa_resize(dev);
2209 if (rc)
2210 return rc;
2211
2212 /* print device capabilities */
2213 if (ata_msg_probe(ap))
2214 ata_dev_dbg(dev,
2215 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2216 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2217 __func__,
2218 id[49], id[82], id[83], id[84],
2219 id[85], id[86], id[87], id[88]);
2220
2221 /* initialize to-be-configured parameters */
2222 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2223 dev->max_sectors = 0;
2224 dev->cdb_len = 0;
2225 dev->n_sectors = 0;
2226 dev->cylinders = 0;
2227 dev->heads = 0;
2228 dev->sectors = 0;
2229 dev->multi_count = 0;
2230
2231 /*
2232 * common ATA, ATAPI feature tests
2233 */
2234
2235 /* find max transfer mode; for printk only */
2236 xfer_mask = ata_id_xfermask(id);
2237
2238 if (ata_msg_probe(ap))
2239 ata_dump_id(id);
2240
2241 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2242 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2243 sizeof(fwrevbuf));
2244
2245 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2246 sizeof(modelbuf));
2247
2248 /* ATA-specific feature tests */
2249 if (dev->class == ATA_DEV_ATA) {
2250 if (ata_id_is_cfa(id)) {
2251 /* CPRM may make this media unusable */
2252 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2253 ata_dev_warn(dev,
2254 "supports DRM functions and may not be fully accessible\n");
2255 snprintf(revbuf, 7, "CFA");
2256 } else {
2257 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2258 /* Warn the user if the device has TPM extensions */
2259 if (ata_id_has_tpm(id))
2260 ata_dev_warn(dev,
2261 "supports DRM functions and may not be fully accessible\n");
2262 }
2263
2264 dev->n_sectors = ata_id_n_sectors(id);
2265
2266 /* get current R/W Multiple count setting */
2267 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2268 unsigned int max = dev->id[47] & 0xff;
2269 unsigned int cnt = dev->id[59] & 0xff;
2270 /* only recognize/allow powers of two here */
2271 if (is_power_of_2(max) && is_power_of_2(cnt))
2272 if (cnt <= max)
2273 dev->multi_count = cnt;
2274 }
2275
2276 if (ata_id_has_lba(id)) {
2277 const char *lba_desc;
2278 char ncq_desc[24];
2279
2280 lba_desc = "LBA";
2281 dev->flags |= ATA_DFLAG_LBA;
2282 if (ata_id_has_lba48(id)) {
2283 dev->flags |= ATA_DFLAG_LBA48;
2284 lba_desc = "LBA48";
2285
2286 if (dev->n_sectors >= (1UL << 28) &&
2287 ata_id_has_flush_ext(id))
2288 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2289 }
2290
2291 /* config NCQ */
2292 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2293 if (rc)
2294 return rc;
2295
2296 /* print device info to dmesg */
2297 if (ata_msg_drv(ap) && print_info) {
2298 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2299 revbuf, modelbuf, fwrevbuf,
2300 ata_mode_string(xfer_mask));
2301 ata_dev_info(dev,
2302 "%llu sectors, multi %u: %s %s\n",
2303 (unsigned long long)dev->n_sectors,
2304 dev->multi_count, lba_desc, ncq_desc);
2305 }
2306 } else {
2307 /* CHS */
2308
2309 /* Default translation */
2310 dev->cylinders = id[1];
2311 dev->heads = id[3];
2312 dev->sectors = id[6];
2313
2314 if (ata_id_current_chs_valid(id)) {
2315 /* Current CHS translation is valid. */
2316 dev->cylinders = id[54];
2317 dev->heads = id[55];
2318 dev->sectors = id[56];
2319 }
2320
2321 /* print device info to dmesg */
2322 if (ata_msg_drv(ap) && print_info) {
2323 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2324 revbuf, modelbuf, fwrevbuf,
2325 ata_mode_string(xfer_mask));
2326 ata_dev_info(dev,
2327 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2328 (unsigned long long)dev->n_sectors,
2329 dev->multi_count, dev->cylinders,
2330 dev->heads, dev->sectors);
2331 }
2332 }
2333
2334 /* Check and mark DevSlp capability. Get DevSlp timing variables
2335 * from SATA Settings page of Identify Device Data Log.
2336 */
2337 if (ata_id_has_devslp(dev->id)) {
2338 u8 *sata_setting = ap->sector_buf;
2339 int i, j;
2340
2341 dev->flags |= ATA_DFLAG_DEVSLP;
2342 err_mask = ata_read_log_page(dev,
2343 ATA_LOG_SATA_ID_DEV_DATA,
2344 ATA_LOG_SATA_SETTINGS,
2345 sata_setting,
2346 1);
2347 if (err_mask)
2348 ata_dev_dbg(dev,
2349 "failed to get Identify Device Data, Emask 0x%x\n",
2350 err_mask);
2351 else
2352 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2353 j = ATA_LOG_DEVSLP_OFFSET + i;
2354 dev->devslp_timing[i] = sata_setting[j];
2355 }
2356 }
2357
2358 dev->cdb_len = 16;
2359 }
2360
2361 /* ATAPI-specific feature tests */
2362 else if (dev->class == ATA_DEV_ATAPI) {
2363 const char *cdb_intr_string = "";
2364 const char *atapi_an_string = "";
2365 const char *dma_dir_string = "";
2366 u32 sntf;
2367
2368 rc = atapi_cdb_len(id);
2369 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2370 if (ata_msg_warn(ap))
2371 ata_dev_warn(dev, "unsupported CDB len\n");
2372 rc = -EINVAL;
2373 goto err_out_nosup;
2374 }
2375 dev->cdb_len = (unsigned int) rc;
2376
2377 /* Enable ATAPI AN if both the host and device have
2378 * the support. If PMP is attached, SNTF is required
2379 * to enable ATAPI AN to discern between PHY status
2380 * changed notifications and ATAPI ANs.
2381 */
2382 if (atapi_an &&
2383 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2384 (!sata_pmp_attached(ap) ||
2385 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2386 /* issue SET feature command to turn this on */
2387 err_mask = ata_dev_set_feature(dev,
2388 SETFEATURES_SATA_ENABLE, SATA_AN);
2389 if (err_mask)
2390 ata_dev_err(dev,
2391 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2392 err_mask);
2393 else {
2394 dev->flags |= ATA_DFLAG_AN;
2395 atapi_an_string = ", ATAPI AN";
2396 }
2397 }
2398
2399 if (ata_id_cdb_intr(dev->id)) {
2400 dev->flags |= ATA_DFLAG_CDB_INTR;
2401 cdb_intr_string = ", CDB intr";
2402 }
2403
2404 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2405 dev->flags |= ATA_DFLAG_DMADIR;
2406 dma_dir_string = ", DMADIR";
2407 }
2408
2409 if (ata_id_has_da(dev->id)) {
2410 dev->flags |= ATA_DFLAG_DA;
2411 zpodd_init(dev);
2412 }
2413
2414 /* print device info to dmesg */
2415 if (ata_msg_drv(ap) && print_info)
2416 ata_dev_info(dev,
2417 "ATAPI: %s, %s, max %s%s%s%s\n",
2418 modelbuf, fwrevbuf,
2419 ata_mode_string(xfer_mask),
2420 cdb_intr_string, atapi_an_string,
2421 dma_dir_string);
2422 }
2423
2424 /* determine max_sectors */
2425 dev->max_sectors = ATA_MAX_SECTORS;
2426 if (dev->flags & ATA_DFLAG_LBA48)
2427 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2428
2429 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2430 200 sectors */
2431 if (ata_dev_knobble(dev)) {
2432 if (ata_msg_drv(ap) && print_info)
2433 ata_dev_info(dev, "applying bridge limits\n");
2434 dev->udma_mask &= ATA_UDMA5;
2435 dev->max_sectors = ATA_MAX_SECTORS;
2436 }
2437
2438 if ((dev->class == ATA_DEV_ATAPI) &&
2439 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2440 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2441 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2442 }
2443
2444 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2445 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2446 dev->max_sectors);
2447
2448 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2449 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2450
2451 if (ap->ops->dev_config)
2452 ap->ops->dev_config(dev);
2453
2454 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2455 /* Let the user know. We don't want to disallow opens for
2456 rescue purposes, or in case the vendor is just a blithering
2457 idiot. Do this after the dev_config call as some controllers
2458 with buggy firmware may want to avoid reporting false device
2459 bugs */
2460
2461 if (print_info) {
2462 ata_dev_warn(dev,
2463 "Drive reports diagnostics failure. This may indicate a drive\n");
2464 ata_dev_warn(dev,
2465 "fault or invalid emulation. Contact drive vendor for information.\n");
2466 }
2467 }
2468
2469 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2470 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2471 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2472 }
2473
2474 return 0;
2475
2476 err_out_nosup:
2477 if (ata_msg_probe(ap))
2478 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2479 return rc;
2480 }
2481
2482 /**
2483 * ata_cable_40wire - return 40 wire cable type
2484 * @ap: port
2485 *
2486 * Helper method for drivers which want to hardwire 40 wire cable
2487 * detection.
2488 */
2489
2490 int ata_cable_40wire(struct ata_port *ap)
2491 {
2492 return ATA_CBL_PATA40;
2493 }
2494
2495 /**
2496 * ata_cable_80wire - return 80 wire cable type
2497 * @ap: port
2498 *
2499 * Helper method for drivers which want to hardwire 80 wire cable
2500 * detection.
2501 */
2502
2503 int ata_cable_80wire(struct ata_port *ap)
2504 {
2505 return ATA_CBL_PATA80;
2506 }
2507
2508 /**
2509 * ata_cable_unknown - return unknown PATA cable.
2510 * @ap: port
2511 *
2512 * Helper method for drivers which have no PATA cable detection.
2513 */
2514
2515 int ata_cable_unknown(struct ata_port *ap)
2516 {
2517 return ATA_CBL_PATA_UNK;
2518 }
2519
2520 /**
2521 * ata_cable_ignore - return ignored PATA cable.
2522 * @ap: port
2523 *
2524 * Helper method for drivers which don't use cable type to limit
2525 * transfer mode.
2526 */
2527 int ata_cable_ignore(struct ata_port *ap)
2528 {
2529 return ATA_CBL_PATA_IGN;
2530 }
2531
2532 /**
2533 * ata_cable_sata - return SATA cable type
2534 * @ap: port
2535 *
2536 * Helper method for drivers which have SATA cables
2537 */
2538
2539 int ata_cable_sata(struct ata_port *ap)
2540 {
2541 return ATA_CBL_SATA;
2542 }
2543
2544 /**
2545 * ata_bus_probe - Reset and probe ATA bus
2546 * @ap: Bus to probe
2547 *
2548 * Master ATA bus probing function. Initiates a hardware-dependent
2549 * bus reset, then attempts to identify any devices found on
2550 * the bus.
2551 *
2552 * LOCKING:
2553 * PCI/etc. bus probe sem.
2554 *
2555 * RETURNS:
2556 * Zero on success, negative errno otherwise.
2557 */
2558
2559 int ata_bus_probe(struct ata_port *ap)
2560 {
2561 unsigned int classes[ATA_MAX_DEVICES];
2562 int tries[ATA_MAX_DEVICES];
2563 int rc;
2564 struct ata_device *dev;
2565
2566 ata_for_each_dev(dev, &ap->link, ALL)
2567 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2568
2569 retry:
2570 ata_for_each_dev(dev, &ap->link, ALL) {
2571 /* If we issue an SRST then an ATA drive (not ATAPI)
2572 * may change configuration and be in PIO0 timing. If
2573 * we do a hard reset (or are coming from power on)
2574 * this is true for ATA or ATAPI. Until we've set a
2575 * suitable controller mode we should not touch the
2576 * bus as we may be talking too fast.
2577 */
2578 dev->pio_mode = XFER_PIO_0;
2579 dev->dma_mode = 0xff;
2580
2581 /* If the controller has a pio mode setup function
2582 * then use it to set the chipset to rights. Don't
2583 * touch the DMA setup as that will be dealt with when
2584 * configuring devices.
2585 */
2586 if (ap->ops->set_piomode)
2587 ap->ops->set_piomode(ap, dev);
2588 }
2589
2590 /* reset and determine device classes */
2591 ap->ops->phy_reset(ap);
2592
2593 ata_for_each_dev(dev, &ap->link, ALL) {
2594 if (dev->class != ATA_DEV_UNKNOWN)
2595 classes[dev->devno] = dev->class;
2596 else
2597 classes[dev->devno] = ATA_DEV_NONE;
2598
2599 dev->class = ATA_DEV_UNKNOWN;
2600 }
2601
2602 /* read IDENTIFY page and configure devices. We have to do the identify
2603 specific sequence bass-ackwards so that PDIAG- is released by
2604 the slave device */
2605
2606 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2607 if (tries[dev->devno])
2608 dev->class = classes[dev->devno];
2609
2610 if (!ata_dev_enabled(dev))
2611 continue;
2612
2613 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2614 dev->id);
2615 if (rc)
2616 goto fail;
2617 }
2618
2619 /* Now ask for the cable type as PDIAG- should have been released */
2620 if (ap->ops->cable_detect)
2621 ap->cbl = ap->ops->cable_detect(ap);
2622
2623 /* We may have SATA bridge glue hiding here irrespective of
2624 * the reported cable types and sensed types. When SATA
2625 * drives indicate we have a bridge, we don't know which end
2626 * of the link the bridge is which is a problem.
2627 */
2628 ata_for_each_dev(dev, &ap->link, ENABLED)
2629 if (ata_id_is_sata(dev->id))
2630 ap->cbl = ATA_CBL_SATA;
2631
2632 /* After the identify sequence we can now set up the devices. We do
2633 this in the normal order so that the user doesn't get confused */
2634
2635 ata_for_each_dev(dev, &ap->link, ENABLED) {
2636 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2637 rc = ata_dev_configure(dev);
2638 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2639 if (rc)
2640 goto fail;
2641 }
2642
2643 /* configure transfer mode */
2644 rc = ata_set_mode(&ap->link, &dev);
2645 if (rc)
2646 goto fail;
2647
2648 ata_for_each_dev(dev, &ap->link, ENABLED)
2649 return 0;
2650
2651 return -ENODEV;
2652
2653 fail:
2654 tries[dev->devno]--;
2655
2656 switch (rc) {
2657 case -EINVAL:
2658 /* eeek, something went very wrong, give up */
2659 tries[dev->devno] = 0;
2660 break;
2661
2662 case -ENODEV:
2663 /* give it just one more chance */
2664 tries[dev->devno] = min(tries[dev->devno], 1);
2665 case -EIO:
2666 if (tries[dev->devno] == 1) {
2667 /* This is the last chance, better to slow
2668 * down than lose it.
2669 */
2670 sata_down_spd_limit(&ap->link, 0);
2671 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2672 }
2673 }
2674
2675 if (!tries[dev->devno])
2676 ata_dev_disable(dev);
2677
2678 goto retry;
2679 }
2680
2681 /**
2682 * sata_print_link_status - Print SATA link status
2683 * @link: SATA link to printk link status about
2684 *
2685 * This function prints link speed and status of a SATA link.
2686 *
2687 * LOCKING:
2688 * None.
2689 */
2690 static void sata_print_link_status(struct ata_link *link)
2691 {
2692 u32 sstatus, scontrol, tmp;
2693
2694 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2695 return;
2696 sata_scr_read(link, SCR_CONTROL, &scontrol);
2697
2698 if (ata_phys_link_online(link)) {
2699 tmp = (sstatus >> 4) & 0xf;
2700 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2701 sata_spd_string(tmp), sstatus, scontrol);
2702 } else {
2703 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2704 sstatus, scontrol);
2705 }
2706 }
2707
2708 /**
2709 * ata_dev_pair - return other device on cable
2710 * @adev: device
2711 *
2712 * Obtain the other device on the same cable, or if none is
2713 * present NULL is returned
2714 */
2715
2716 struct ata_device *ata_dev_pair(struct ata_device *adev)
2717 {
2718 struct ata_link *link = adev->link;
2719 struct ata_device *pair = &link->device[1 - adev->devno];
2720 if (!ata_dev_enabled(pair))
2721 return NULL;
2722 return pair;
2723 }
2724
2725 /**
2726 * sata_down_spd_limit - adjust SATA spd limit downward
2727 * @link: Link to adjust SATA spd limit for
2728 * @spd_limit: Additional limit
2729 *
2730 * Adjust SATA spd limit of @link downward. Note that this
2731 * function only adjusts the limit. The change must be applied
2732 * using sata_set_spd().
2733 *
2734 * If @spd_limit is non-zero, the speed is limited to equal to or
2735 * lower than @spd_limit if such speed is supported. If
2736 * @spd_limit is slower than any supported speed, only the lowest
2737 * supported speed is allowed.
2738 *
2739 * LOCKING:
2740 * Inherited from caller.
2741 *
2742 * RETURNS:
2743 * 0 on success, negative errno on failure
2744 */
2745 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2746 {
2747 u32 sstatus, spd, mask;
2748 int rc, bit;
2749
2750 if (!sata_scr_valid(link))
2751 return -EOPNOTSUPP;
2752
2753 /* If SCR can be read, use it to determine the current SPD.
2754 * If not, use cached value in link->sata_spd.
2755 */
2756 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2757 if (rc == 0 && ata_sstatus_online(sstatus))
2758 spd = (sstatus >> 4) & 0xf;
2759 else
2760 spd = link->sata_spd;
2761
2762 mask = link->sata_spd_limit;
2763 if (mask <= 1)
2764 return -EINVAL;
2765
2766 /* unconditionally mask off the highest bit */
2767 bit = fls(mask) - 1;
2768 mask &= ~(1 << bit);
2769
2770 /* Mask off all speeds higher than or equal to the current
2771 * one. Force 1.5Gbps if current SPD is not available.
2772 */
2773 if (spd > 1)
2774 mask &= (1 << (spd - 1)) - 1;
2775 else
2776 mask &= 1;
2777
2778 /* were we already at the bottom? */
2779 if (!mask)
2780 return -EINVAL;
2781
2782 if (spd_limit) {
2783 if (mask & ((1 << spd_limit) - 1))
2784 mask &= (1 << spd_limit) - 1;
2785 else {
2786 bit = ffs(mask) - 1;
2787 mask = 1 << bit;
2788 }
2789 }
2790
2791 link->sata_spd_limit = mask;
2792
2793 ata_link_warn(link, "limiting SATA link speed to %s\n",
2794 sata_spd_string(fls(mask)));
2795
2796 return 0;
2797 }
2798
2799 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2800 {
2801 struct ata_link *host_link = &link->ap->link;
2802 u32 limit, target, spd;
2803
2804 limit = link->sata_spd_limit;
2805
2806 /* Don't configure downstream link faster than upstream link.
2807 * It doesn't speed up anything and some PMPs choke on such
2808 * configuration.
2809 */
2810 if (!ata_is_host_link(link) && host_link->sata_spd)
2811 limit &= (1 << host_link->sata_spd) - 1;
2812
2813 if (limit == UINT_MAX)
2814 target = 0;
2815 else
2816 target = fls(limit);
2817
2818 spd = (*scontrol >> 4) & 0xf;
2819 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2820
2821 return spd != target;
2822 }
2823
2824 /**
2825 * sata_set_spd_needed - is SATA spd configuration needed
2826 * @link: Link in question
2827 *
2828 * Test whether the spd limit in SControl matches
2829 * @link->sata_spd_limit. This function is used to determine
2830 * whether hardreset is necessary to apply SATA spd
2831 * configuration.
2832 *
2833 * LOCKING:
2834 * Inherited from caller.
2835 *
2836 * RETURNS:
2837 * 1 if SATA spd configuration is needed, 0 otherwise.
2838 */
2839 static int sata_set_spd_needed(struct ata_link *link)
2840 {
2841 u32 scontrol;
2842
2843 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2844 return 1;
2845
2846 return __sata_set_spd_needed(link, &scontrol);
2847 }
2848
2849 /**
2850 * sata_set_spd - set SATA spd according to spd limit
2851 * @link: Link to set SATA spd for
2852 *
2853 * Set SATA spd of @link according to sata_spd_limit.
2854 *
2855 * LOCKING:
2856 * Inherited from caller.
2857 *
2858 * RETURNS:
2859 * 0 if spd doesn't need to be changed, 1 if spd has been
2860 * changed. Negative errno if SCR registers are inaccessible.
2861 */
2862 int sata_set_spd(struct ata_link *link)
2863 {
2864 u32 scontrol;
2865 int rc;
2866
2867 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2868 return rc;
2869
2870 if (!__sata_set_spd_needed(link, &scontrol))
2871 return 0;
2872
2873 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2874 return rc;
2875
2876 return 1;
2877 }
2878
2879 /*
2880 * This mode timing computation functionality is ported over from
2881 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2882 */
2883 /*
2884 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2885 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2886 * for UDMA6, which is currently supported only by Maxtor drives.
2887 *
2888 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2889 */
2890
2891 static const struct ata_timing ata_timing[] = {
2892 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2893 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2894 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2895 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2896 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2897 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2898 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2899 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2900
2901 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2902 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2903 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2904
2905 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2906 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2907 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2908 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2909 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2910
2911 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2912 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2913 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2914 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2916 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2917 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2918 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2919
2920 { 0xFF }
2921 };
2922
2923 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2924 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2925
2926 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2927 {
2928 q->setup = EZ(t->setup * 1000, T);
2929 q->act8b = EZ(t->act8b * 1000, T);
2930 q->rec8b = EZ(t->rec8b * 1000, T);
2931 q->cyc8b = EZ(t->cyc8b * 1000, T);
2932 q->active = EZ(t->active * 1000, T);
2933 q->recover = EZ(t->recover * 1000, T);
2934 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2935 q->cycle = EZ(t->cycle * 1000, T);
2936 q->udma = EZ(t->udma * 1000, UT);
2937 }
2938
2939 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2940 struct ata_timing *m, unsigned int what)
2941 {
2942 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2943 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2944 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2945 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2946 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2947 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2948 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2949 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2950 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2951 }
2952
2953 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2954 {
2955 const struct ata_timing *t = ata_timing;
2956
2957 while (xfer_mode > t->mode)
2958 t++;
2959
2960 if (xfer_mode == t->mode)
2961 return t;
2962
2963 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2964 __func__, xfer_mode);
2965
2966 return NULL;
2967 }
2968
2969 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2970 struct ata_timing *t, int T, int UT)
2971 {
2972 const u16 *id = adev->id;
2973 const struct ata_timing *s;
2974 struct ata_timing p;
2975
2976 /*
2977 * Find the mode.
2978 */
2979
2980 if (!(s = ata_timing_find_mode(speed)))
2981 return -EINVAL;
2982
2983 memcpy(t, s, sizeof(*s));
2984
2985 /*
2986 * If the drive is an EIDE drive, it can tell us it needs extended
2987 * PIO/MW_DMA cycle timing.
2988 */
2989
2990 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2991 memset(&p, 0, sizeof(p));
2992
2993 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2994 if (speed <= XFER_PIO_2)
2995 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2996 else if ((speed <= XFER_PIO_4) ||
2997 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2998 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2999 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3000 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3001
3002 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3003 }
3004
3005 /*
3006 * Convert the timing to bus clock counts.
3007 */
3008
3009 ata_timing_quantize(t, t, T, UT);
3010
3011 /*
3012 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3013 * S.M.A.R.T * and some other commands. We have to ensure that the
3014 * DMA cycle timing is slower/equal than the fastest PIO timing.
3015 */
3016
3017 if (speed > XFER_PIO_6) {
3018 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3019 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3020 }
3021
3022 /*
3023 * Lengthen active & recovery time so that cycle time is correct.
3024 */
3025
3026 if (t->act8b + t->rec8b < t->cyc8b) {
3027 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3028 t->rec8b = t->cyc8b - t->act8b;
3029 }
3030
3031 if (t->active + t->recover < t->cycle) {
3032 t->active += (t->cycle - (t->active + t->recover)) / 2;
3033 t->recover = t->cycle - t->active;
3034 }
3035
3036 /* In a few cases quantisation may produce enough errors to
3037 leave t->cycle too low for the sum of active and recovery
3038 if so we must correct this */
3039 if (t->active + t->recover > t->cycle)
3040 t->cycle = t->active + t->recover;
3041
3042 return 0;
3043 }
3044
3045 /**
3046 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3047 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3048 * @cycle: cycle duration in ns
3049 *
3050 * Return matching xfer mode for @cycle. The returned mode is of
3051 * the transfer type specified by @xfer_shift. If @cycle is too
3052 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3053 * than the fastest known mode, the fasted mode is returned.
3054 *
3055 * LOCKING:
3056 * None.
3057 *
3058 * RETURNS:
3059 * Matching xfer_mode, 0xff if no match found.
3060 */
3061 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3062 {
3063 u8 base_mode = 0xff, last_mode = 0xff;
3064 const struct ata_xfer_ent *ent;
3065 const struct ata_timing *t;
3066
3067 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3068 if (ent->shift == xfer_shift)
3069 base_mode = ent->base;
3070
3071 for (t = ata_timing_find_mode(base_mode);
3072 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3073 unsigned short this_cycle;
3074
3075 switch (xfer_shift) {
3076 case ATA_SHIFT_PIO:
3077 case ATA_SHIFT_MWDMA:
3078 this_cycle = t->cycle;
3079 break;
3080 case ATA_SHIFT_UDMA:
3081 this_cycle = t->udma;
3082 break;
3083 default:
3084 return 0xff;
3085 }
3086
3087 if (cycle > this_cycle)
3088 break;
3089
3090 last_mode = t->mode;
3091 }
3092
3093 return last_mode;
3094 }
3095
3096 /**
3097 * ata_down_xfermask_limit - adjust dev xfer masks downward
3098 * @dev: Device to adjust xfer masks
3099 * @sel: ATA_DNXFER_* selector
3100 *
3101 * Adjust xfer masks of @dev downward. Note that this function
3102 * does not apply the change. Invoking ata_set_mode() afterwards
3103 * will apply the limit.
3104 *
3105 * LOCKING:
3106 * Inherited from caller.
3107 *
3108 * RETURNS:
3109 * 0 on success, negative errno on failure
3110 */
3111 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3112 {
3113 char buf[32];
3114 unsigned long orig_mask, xfer_mask;
3115 unsigned long pio_mask, mwdma_mask, udma_mask;
3116 int quiet, highbit;
3117
3118 quiet = !!(sel & ATA_DNXFER_QUIET);
3119 sel &= ~ATA_DNXFER_QUIET;
3120
3121 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3122 dev->mwdma_mask,
3123 dev->udma_mask);
3124 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3125
3126 switch (sel) {
3127 case ATA_DNXFER_PIO:
3128 highbit = fls(pio_mask) - 1;
3129 pio_mask &= ~(1 << highbit);
3130 break;
3131
3132 case ATA_DNXFER_DMA:
3133 if (udma_mask) {
3134 highbit = fls(udma_mask) - 1;
3135 udma_mask &= ~(1 << highbit);
3136 if (!udma_mask)
3137 return -ENOENT;
3138 } else if (mwdma_mask) {
3139 highbit = fls(mwdma_mask) - 1;
3140 mwdma_mask &= ~(1 << highbit);
3141 if (!mwdma_mask)
3142 return -ENOENT;
3143 }
3144 break;
3145
3146 case ATA_DNXFER_40C:
3147 udma_mask &= ATA_UDMA_MASK_40C;
3148 break;
3149
3150 case ATA_DNXFER_FORCE_PIO0:
3151 pio_mask &= 1;
3152 case ATA_DNXFER_FORCE_PIO:
3153 mwdma_mask = 0;
3154 udma_mask = 0;
3155 break;
3156
3157 default:
3158 BUG();
3159 }
3160
3161 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3162
3163 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3164 return -ENOENT;
3165
3166 if (!quiet) {
3167 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3168 snprintf(buf, sizeof(buf), "%s:%s",
3169 ata_mode_string(xfer_mask),
3170 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3171 else
3172 snprintf(buf, sizeof(buf), "%s",
3173 ata_mode_string(xfer_mask));
3174
3175 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3176 }
3177
3178 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3179 &dev->udma_mask);
3180
3181 return 0;
3182 }
3183
3184 static int ata_dev_set_mode(struct ata_device *dev)
3185 {
3186 struct ata_port *ap = dev->link->ap;
3187 struct ata_eh_context *ehc = &dev->link->eh_context;
3188 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3189 const char *dev_err_whine = "";
3190 int ign_dev_err = 0;
3191 unsigned int err_mask = 0;
3192 int rc;
3193
3194 dev->flags &= ~ATA_DFLAG_PIO;
3195 if (dev->xfer_shift == ATA_SHIFT_PIO)
3196 dev->flags |= ATA_DFLAG_PIO;
3197
3198 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3199 dev_err_whine = " (SET_XFERMODE skipped)";
3200 else {
3201 if (nosetxfer)
3202 ata_dev_warn(dev,
3203 "NOSETXFER but PATA detected - can't "
3204 "skip SETXFER, might malfunction\n");
3205 err_mask = ata_dev_set_xfermode(dev);
3206 }
3207
3208 if (err_mask & ~AC_ERR_DEV)
3209 goto fail;
3210
3211 /* revalidate */
3212 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3213 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3214 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3215 if (rc)
3216 return rc;
3217
3218 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3219 /* Old CFA may refuse this command, which is just fine */
3220 if (ata_id_is_cfa(dev->id))
3221 ign_dev_err = 1;
3222 /* Catch several broken garbage emulations plus some pre
3223 ATA devices */
3224 if (ata_id_major_version(dev->id) == 0 &&
3225 dev->pio_mode <= XFER_PIO_2)
3226 ign_dev_err = 1;
3227 /* Some very old devices and some bad newer ones fail
3228 any kind of SET_XFERMODE request but support PIO0-2
3229 timings and no IORDY */
3230 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3231 ign_dev_err = 1;
3232 }
3233 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3234 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3235 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3236 dev->dma_mode == XFER_MW_DMA_0 &&
3237 (dev->id[63] >> 8) & 1)
3238 ign_dev_err = 1;
3239
3240 /* if the device is actually configured correctly, ignore dev err */
3241 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3242 ign_dev_err = 1;
3243
3244 if (err_mask & AC_ERR_DEV) {
3245 if (!ign_dev_err)
3246 goto fail;
3247 else
3248 dev_err_whine = " (device error ignored)";
3249 }
3250
3251 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3252 dev->xfer_shift, (int)dev->xfer_mode);
3253
3254 ata_dev_info(dev, "configured for %s%s\n",
3255 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3256 dev_err_whine);
3257
3258 return 0;
3259
3260 fail:
3261 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3262 return -EIO;
3263 }
3264
3265 /**
3266 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3267 * @link: link on which timings will be programmed
3268 * @r_failed_dev: out parameter for failed device
3269 *
3270 * Standard implementation of the function used to tune and set
3271 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3272 * ata_dev_set_mode() fails, pointer to the failing device is
3273 * returned in @r_failed_dev.
3274 *
3275 * LOCKING:
3276 * PCI/etc. bus probe sem.
3277 *
3278 * RETURNS:
3279 * 0 on success, negative errno otherwise
3280 */
3281
3282 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3283 {
3284 struct ata_port *ap = link->ap;
3285 struct ata_device *dev;
3286 int rc = 0, used_dma = 0, found = 0;
3287
3288 /* step 1: calculate xfer_mask */
3289 ata_for_each_dev(dev, link, ENABLED) {
3290 unsigned long pio_mask, dma_mask;
3291 unsigned int mode_mask;
3292
3293 mode_mask = ATA_DMA_MASK_ATA;
3294 if (dev->class == ATA_DEV_ATAPI)
3295 mode_mask = ATA_DMA_MASK_ATAPI;
3296 else if (ata_id_is_cfa(dev->id))
3297 mode_mask = ATA_DMA_MASK_CFA;
3298
3299 ata_dev_xfermask(dev);
3300 ata_force_xfermask(dev);
3301
3302 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3303
3304 if (libata_dma_mask & mode_mask)
3305 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3306 dev->udma_mask);
3307 else
3308 dma_mask = 0;
3309
3310 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3311 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3312
3313 found = 1;
3314 if (ata_dma_enabled(dev))
3315 used_dma = 1;
3316 }
3317 if (!found)
3318 goto out;
3319
3320 /* step 2: always set host PIO timings */
3321 ata_for_each_dev(dev, link, ENABLED) {
3322 if (dev->pio_mode == 0xff) {
3323 ata_dev_warn(dev, "no PIO support\n");
3324 rc = -EINVAL;
3325 goto out;
3326 }
3327
3328 dev->xfer_mode = dev->pio_mode;
3329 dev->xfer_shift = ATA_SHIFT_PIO;
3330 if (ap->ops->set_piomode)
3331 ap->ops->set_piomode(ap, dev);
3332 }
3333
3334 /* step 3: set host DMA timings */
3335 ata_for_each_dev(dev, link, ENABLED) {
3336 if (!ata_dma_enabled(dev))
3337 continue;
3338
3339 dev->xfer_mode = dev->dma_mode;
3340 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3341 if (ap->ops->set_dmamode)
3342 ap->ops->set_dmamode(ap, dev);
3343 }
3344
3345 /* step 4: update devices' xfer mode */
3346 ata_for_each_dev(dev, link, ENABLED) {
3347 rc = ata_dev_set_mode(dev);
3348 if (rc)
3349 goto out;
3350 }
3351
3352 /* Record simplex status. If we selected DMA then the other
3353 * host channels are not permitted to do so.
3354 */
3355 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3356 ap->host->simplex_claimed = ap;
3357
3358 out:
3359 if (rc)
3360 *r_failed_dev = dev;
3361 return rc;
3362 }
3363
3364 /**
3365 * ata_wait_ready - wait for link to become ready
3366 * @link: link to be waited on
3367 * @deadline: deadline jiffies for the operation
3368 * @check_ready: callback to check link readiness
3369 *
3370 * Wait for @link to become ready. @check_ready should return
3371 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3372 * link doesn't seem to be occupied, other errno for other error
3373 * conditions.
3374 *
3375 * Transient -ENODEV conditions are allowed for
3376 * ATA_TMOUT_FF_WAIT.
3377 *
3378 * LOCKING:
3379 * EH context.
3380 *
3381 * RETURNS:
3382 * 0 if @linke is ready before @deadline; otherwise, -errno.
3383 */
3384 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3385 int (*check_ready)(struct ata_link *link))
3386 {
3387 unsigned long start = jiffies;
3388 unsigned long nodev_deadline;
3389 int warned = 0;
3390
3391 /* choose which 0xff timeout to use, read comment in libata.h */
3392 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3393 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3394 else
3395 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3396
3397 /* Slave readiness can't be tested separately from master. On
3398 * M/S emulation configuration, this function should be called
3399 * only on the master and it will handle both master and slave.
3400 */
3401 WARN_ON(link == link->ap->slave_link);
3402
3403 if (time_after(nodev_deadline, deadline))
3404 nodev_deadline = deadline;
3405
3406 while (1) {
3407 unsigned long now = jiffies;
3408 int ready, tmp;
3409
3410 ready = tmp = check_ready(link);
3411 if (ready > 0)
3412 return 0;
3413
3414 /*
3415 * -ENODEV could be transient. Ignore -ENODEV if link
3416 * is online. Also, some SATA devices take a long
3417 * time to clear 0xff after reset. Wait for
3418 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3419 * offline.
3420 *
3421 * Note that some PATA controllers (pata_ali) explode
3422 * if status register is read more than once when
3423 * there's no device attached.
3424 */
3425 if (ready == -ENODEV) {
3426 if (ata_link_online(link))
3427 ready = 0;
3428 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3429 !ata_link_offline(link) &&
3430 time_before(now, nodev_deadline))
3431 ready = 0;
3432 }
3433
3434 if (ready)
3435 return ready;
3436 if (time_after(now, deadline))
3437 return -EBUSY;
3438
3439 if (!warned && time_after(now, start + 5 * HZ) &&
3440 (deadline - now > 3 * HZ)) {
3441 ata_link_warn(link,
3442 "link is slow to respond, please be patient "
3443 "(ready=%d)\n", tmp);
3444 warned = 1;
3445 }
3446
3447 ata_msleep(link->ap, 50);
3448 }
3449 }
3450
3451 /**
3452 * ata_wait_after_reset - wait for link to become ready after reset
3453 * @link: link to be waited on
3454 * @deadline: deadline jiffies for the operation
3455 * @check_ready: callback to check link readiness
3456 *
3457 * Wait for @link to become ready after reset.
3458 *
3459 * LOCKING:
3460 * EH context.
3461 *
3462 * RETURNS:
3463 * 0 if @linke is ready before @deadline; otherwise, -errno.
3464 */
3465 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3466 int (*check_ready)(struct ata_link *link))
3467 {
3468 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3469
3470 return ata_wait_ready(link, deadline, check_ready);
3471 }
3472
3473 /**
3474 * sata_link_debounce - debounce SATA phy status
3475 * @link: ATA link to debounce SATA phy status for
3476 * @params: timing parameters { interval, duratinon, timeout } in msec
3477 * @deadline: deadline jiffies for the operation
3478 *
3479 * Make sure SStatus of @link reaches stable state, determined by
3480 * holding the same value where DET is not 1 for @duration polled
3481 * every @interval, before @timeout. Timeout constraints the
3482 * beginning of the stable state. Because DET gets stuck at 1 on
3483 * some controllers after hot unplugging, this functions waits
3484 * until timeout then returns 0 if DET is stable at 1.
3485 *
3486 * @timeout is further limited by @deadline. The sooner of the
3487 * two is used.
3488 *
3489 * LOCKING:
3490 * Kernel thread context (may sleep)
3491 *
3492 * RETURNS:
3493 * 0 on success, -errno on failure.
3494 */
3495 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3496 unsigned long deadline)
3497 {
3498 unsigned long interval = params[0];
3499 unsigned long duration = params[1];
3500 unsigned long last_jiffies, t;
3501 u32 last, cur;
3502 int rc;
3503
3504 t = ata_deadline(jiffies, params[2]);
3505 if (time_before(t, deadline))
3506 deadline = t;
3507
3508 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3509 return rc;
3510 cur &= 0xf;
3511
3512 last = cur;
3513 last_jiffies = jiffies;
3514
3515 while (1) {
3516 ata_msleep(link->ap, interval);
3517 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3518 return rc;
3519 cur &= 0xf;
3520
3521 /* DET stable? */
3522 if (cur == last) {
3523 if (cur == 1 && time_before(jiffies, deadline))
3524 continue;
3525 if (time_after(jiffies,
3526 ata_deadline(last_jiffies, duration)))
3527 return 0;
3528 continue;
3529 }
3530
3531 /* unstable, start over */
3532 last = cur;
3533 last_jiffies = jiffies;
3534
3535 /* Check deadline. If debouncing failed, return
3536 * -EPIPE to tell upper layer to lower link speed.
3537 */
3538 if (time_after(jiffies, deadline))
3539 return -EPIPE;
3540 }
3541 }
3542
3543 /**
3544 * sata_link_resume - resume SATA link
3545 * @link: ATA link to resume SATA
3546 * @params: timing parameters { interval, duratinon, timeout } in msec
3547 * @deadline: deadline jiffies for the operation
3548 *
3549 * Resume SATA phy @link and debounce it.
3550 *
3551 * LOCKING:
3552 * Kernel thread context (may sleep)
3553 *
3554 * RETURNS:
3555 * 0 on success, -errno on failure.
3556 */
3557 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3558 unsigned long deadline)
3559 {
3560 int tries = ATA_LINK_RESUME_TRIES;
3561 u32 scontrol, serror;
3562 int rc;
3563
3564 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3565 return rc;
3566
3567 /*
3568 * Writes to SControl sometimes get ignored under certain
3569 * controllers (ata_piix SIDPR). Make sure DET actually is
3570 * cleared.
3571 */
3572 do {
3573 scontrol = (scontrol & 0x0f0) | 0x300;
3574 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3575 return rc;
3576 /*
3577 * Some PHYs react badly if SStatus is pounded
3578 * immediately after resuming. Delay 200ms before
3579 * debouncing.
3580 */
3581 ata_msleep(link->ap, 200);
3582
3583 /* is SControl restored correctly? */
3584 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3585 return rc;
3586 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3587
3588 if ((scontrol & 0xf0f) != 0x300) {
3589 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3590 scontrol);
3591 return 0;
3592 }
3593
3594 if (tries < ATA_LINK_RESUME_TRIES)
3595 ata_link_warn(link, "link resume succeeded after %d retries\n",
3596 ATA_LINK_RESUME_TRIES - tries);
3597
3598 if ((rc = sata_link_debounce(link, params, deadline)))
3599 return rc;
3600
3601 /* clear SError, some PHYs require this even for SRST to work */
3602 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3603 rc = sata_scr_write(link, SCR_ERROR, serror);
3604
3605 return rc != -EINVAL ? rc : 0;
3606 }
3607
3608 /**
3609 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3610 * @link: ATA link to manipulate SControl for
3611 * @policy: LPM policy to configure
3612 * @spm_wakeup: initiate LPM transition to active state
3613 *
3614 * Manipulate the IPM field of the SControl register of @link
3615 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3616 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3617 * the link. This function also clears PHYRDY_CHG before
3618 * returning.
3619 *
3620 * LOCKING:
3621 * EH context.
3622 *
3623 * RETURNS:
3624 * 0 on succes, -errno otherwise.
3625 */
3626 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3627 bool spm_wakeup)
3628 {
3629 struct ata_eh_context *ehc = &link->eh_context;
3630 bool woken_up = false;
3631 u32 scontrol;
3632 int rc;
3633
3634 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3635 if (rc)
3636 return rc;
3637
3638 switch (policy) {
3639 case ATA_LPM_MAX_POWER:
3640 /* disable all LPM transitions */
3641 scontrol |= (0x7 << 8);
3642 /* initiate transition to active state */
3643 if (spm_wakeup) {
3644 scontrol |= (0x4 << 12);
3645 woken_up = true;
3646 }
3647 break;
3648 case ATA_LPM_MED_POWER:
3649 /* allow LPM to PARTIAL */
3650 scontrol &= ~(0x1 << 8);
3651 scontrol |= (0x6 << 8);
3652 break;
3653 case ATA_LPM_MIN_POWER:
3654 if (ata_link_nr_enabled(link) > 0)
3655 /* no restrictions on LPM transitions */
3656 scontrol &= ~(0x7 << 8);
3657 else {
3658 /* empty port, power off */
3659 scontrol &= ~0xf;
3660 scontrol |= (0x1 << 2);
3661 }
3662 break;
3663 default:
3664 WARN_ON(1);
3665 }
3666
3667 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3668 if (rc)
3669 return rc;
3670
3671 /* give the link time to transit out of LPM state */
3672 if (woken_up)
3673 msleep(10);
3674
3675 /* clear PHYRDY_CHG from SError */
3676 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3677 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3678 }
3679
3680 /**
3681 * ata_std_prereset - prepare for reset
3682 * @link: ATA link to be reset
3683 * @deadline: deadline jiffies for the operation
3684 *
3685 * @link is about to be reset. Initialize it. Failure from
3686 * prereset makes libata abort whole reset sequence and give up
3687 * that port, so prereset should be best-effort. It does its
3688 * best to prepare for reset sequence but if things go wrong, it
3689 * should just whine, not fail.
3690 *
3691 * LOCKING:
3692 * Kernel thread context (may sleep)
3693 *
3694 * RETURNS:
3695 * 0 on success, -errno otherwise.
3696 */
3697 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3698 {
3699 struct ata_port *ap = link->ap;
3700 struct ata_eh_context *ehc = &link->eh_context;
3701 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3702 int rc;
3703
3704 /* if we're about to do hardreset, nothing more to do */
3705 if (ehc->i.action & ATA_EH_HARDRESET)
3706 return 0;
3707
3708 /* if SATA, resume link */
3709 if (ap->flags & ATA_FLAG_SATA) {
3710 rc = sata_link_resume(link, timing, deadline);
3711 /* whine about phy resume failure but proceed */
3712 if (rc && rc != -EOPNOTSUPP)
3713 ata_link_warn(link,
3714 "failed to resume link for reset (errno=%d)\n",
3715 rc);
3716 }
3717
3718 /* no point in trying softreset on offline link */
3719 if (ata_phys_link_offline(link))
3720 ehc->i.action &= ~ATA_EH_SOFTRESET;
3721
3722 return 0;
3723 }
3724
3725 /**
3726 * sata_link_hardreset - reset link via SATA phy reset
3727 * @link: link to reset
3728 * @timing: timing parameters { interval, duratinon, timeout } in msec
3729 * @deadline: deadline jiffies for the operation
3730 * @online: optional out parameter indicating link onlineness
3731 * @check_ready: optional callback to check link readiness
3732 *
3733 * SATA phy-reset @link using DET bits of SControl register.
3734 * After hardreset, link readiness is waited upon using
3735 * ata_wait_ready() if @check_ready is specified. LLDs are
3736 * allowed to not specify @check_ready and wait itself after this
3737 * function returns. Device classification is LLD's
3738 * responsibility.
3739 *
3740 * *@online is set to one iff reset succeeded and @link is online
3741 * after reset.
3742 *
3743 * LOCKING:
3744 * Kernel thread context (may sleep)
3745 *
3746 * RETURNS:
3747 * 0 on success, -errno otherwise.
3748 */
3749 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3750 unsigned long deadline,
3751 bool *online, int (*check_ready)(struct ata_link *))
3752 {
3753 u32 scontrol;
3754 int rc;
3755
3756 DPRINTK("ENTER\n");
3757
3758 if (online)
3759 *online = false;
3760
3761 if (sata_set_spd_needed(link)) {
3762 /* SATA spec says nothing about how to reconfigure
3763 * spd. To be on the safe side, turn off phy during
3764 * reconfiguration. This works for at least ICH7 AHCI
3765 * and Sil3124.
3766 */
3767 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3768 goto out;
3769
3770 scontrol = (scontrol & 0x0f0) | 0x304;
3771
3772 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3773 goto out;
3774
3775 sata_set_spd(link);
3776 }
3777
3778 /* issue phy wake/reset */
3779 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3780 goto out;
3781
3782 scontrol = (scontrol & 0x0f0) | 0x301;
3783
3784 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3785 goto out;
3786
3787 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3788 * 10.4.2 says at least 1 ms.
3789 */
3790 ata_msleep(link->ap, 1);
3791
3792 /* bring link back */
3793 rc = sata_link_resume(link, timing, deadline);
3794 if (rc)
3795 goto out;
3796 /* if link is offline nothing more to do */
3797 if (ata_phys_link_offline(link))
3798 goto out;
3799
3800 /* Link is online. From this point, -ENODEV too is an error. */
3801 if (online)
3802 *online = true;
3803
3804 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3805 /* If PMP is supported, we have to do follow-up SRST.
3806 * Some PMPs don't send D2H Reg FIS after hardreset if
3807 * the first port is empty. Wait only for
3808 * ATA_TMOUT_PMP_SRST_WAIT.
3809 */
3810 if (check_ready) {
3811 unsigned long pmp_deadline;
3812
3813 pmp_deadline = ata_deadline(jiffies,
3814 ATA_TMOUT_PMP_SRST_WAIT);
3815 if (time_after(pmp_deadline, deadline))
3816 pmp_deadline = deadline;
3817 ata_wait_ready(link, pmp_deadline, check_ready);
3818 }
3819 rc = -EAGAIN;
3820 goto out;
3821 }
3822
3823 rc = 0;
3824 if (check_ready)
3825 rc = ata_wait_ready(link, deadline, check_ready);
3826 out:
3827 if (rc && rc != -EAGAIN) {
3828 /* online is set iff link is online && reset succeeded */
3829 if (online)
3830 *online = false;
3831 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3832 }
3833 DPRINTK("EXIT, rc=%d\n", rc);
3834 return rc;
3835 }
3836
3837 /**
3838 * sata_std_hardreset - COMRESET w/o waiting or classification
3839 * @link: link to reset
3840 * @class: resulting class of attached device
3841 * @deadline: deadline jiffies for the operation
3842 *
3843 * Standard SATA COMRESET w/o waiting or classification.
3844 *
3845 * LOCKING:
3846 * Kernel thread context (may sleep)
3847 *
3848 * RETURNS:
3849 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3850 */
3851 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3852 unsigned long deadline)
3853 {
3854 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3855 bool online;
3856 int rc;
3857
3858 /* do hardreset */
3859 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3860 return online ? -EAGAIN : rc;
3861 }
3862
3863 /**
3864 * ata_std_postreset - standard postreset callback
3865 * @link: the target ata_link
3866 * @classes: classes of attached devices
3867 *
3868 * This function is invoked after a successful reset. Note that
3869 * the device might have been reset more than once using
3870 * different reset methods before postreset is invoked.
3871 *
3872 * LOCKING:
3873 * Kernel thread context (may sleep)
3874 */
3875 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3876 {
3877 u32 serror;
3878
3879 DPRINTK("ENTER\n");
3880
3881 /* reset complete, clear SError */
3882 if (!sata_scr_read(link, SCR_ERROR, &serror))
3883 sata_scr_write(link, SCR_ERROR, serror);
3884
3885 /* print link status */
3886 sata_print_link_status(link);
3887
3888 DPRINTK("EXIT\n");
3889 }
3890
3891 /**
3892 * ata_dev_same_device - Determine whether new ID matches configured device
3893 * @dev: device to compare against
3894 * @new_class: class of the new device
3895 * @new_id: IDENTIFY page of the new device
3896 *
3897 * Compare @new_class and @new_id against @dev and determine
3898 * whether @dev is the device indicated by @new_class and
3899 * @new_id.
3900 *
3901 * LOCKING:
3902 * None.
3903 *
3904 * RETURNS:
3905 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3906 */
3907 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3908 const u16 *new_id)
3909 {
3910 const u16 *old_id = dev->id;
3911 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3912 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3913
3914 if (dev->class != new_class) {
3915 ata_dev_info(dev, "class mismatch %d != %d\n",
3916 dev->class, new_class);
3917 return 0;
3918 }
3919
3920 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3921 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3922 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3923 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3924
3925 if (strcmp(model[0], model[1])) {
3926 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3927 model[0], model[1]);
3928 return 0;
3929 }
3930
3931 if (strcmp(serial[0], serial[1])) {
3932 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3933 serial[0], serial[1]);
3934 return 0;
3935 }
3936
3937 return 1;
3938 }
3939
3940 /**
3941 * ata_dev_reread_id - Re-read IDENTIFY data
3942 * @dev: target ATA device
3943 * @readid_flags: read ID flags
3944 *
3945 * Re-read IDENTIFY page and make sure @dev is still attached to
3946 * the port.
3947 *
3948 * LOCKING:
3949 * Kernel thread context (may sleep)
3950 *
3951 * RETURNS:
3952 * 0 on success, negative errno otherwise
3953 */
3954 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3955 {
3956 unsigned int class = dev->class;
3957 u16 *id = (void *)dev->link->ap->sector_buf;
3958 int rc;
3959
3960 /* read ID data */
3961 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3962 if (rc)
3963 return rc;
3964
3965 /* is the device still there? */
3966 if (!ata_dev_same_device(dev, class, id))
3967 return -ENODEV;
3968
3969 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3970 return 0;
3971 }
3972
3973 /**
3974 * ata_dev_revalidate - Revalidate ATA device
3975 * @dev: device to revalidate
3976 * @new_class: new class code
3977 * @readid_flags: read ID flags
3978 *
3979 * Re-read IDENTIFY page, make sure @dev is still attached to the
3980 * port and reconfigure it according to the new IDENTIFY page.
3981 *
3982 * LOCKING:
3983 * Kernel thread context (may sleep)
3984 *
3985 * RETURNS:
3986 * 0 on success, negative errno otherwise
3987 */
3988 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3989 unsigned int readid_flags)
3990 {
3991 u64 n_sectors = dev->n_sectors;
3992 u64 n_native_sectors = dev->n_native_sectors;
3993 int rc;
3994
3995 if (!ata_dev_enabled(dev))
3996 return -ENODEV;
3997
3998 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3999 if (ata_class_enabled(new_class) &&
4000 new_class != ATA_DEV_ATA &&
4001 new_class != ATA_DEV_ATAPI &&
4002 new_class != ATA_DEV_SEMB) {
4003 ata_dev_info(dev, "class mismatch %u != %u\n",
4004 dev->class, new_class);
4005 rc = -ENODEV;
4006 goto fail;
4007 }
4008
4009 /* re-read ID */
4010 rc = ata_dev_reread_id(dev, readid_flags);
4011 if (rc)
4012 goto fail;
4013
4014 /* configure device according to the new ID */
4015 rc = ata_dev_configure(dev);
4016 if (rc)
4017 goto fail;
4018
4019 /* verify n_sectors hasn't changed */
4020 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4021 dev->n_sectors == n_sectors)
4022 return 0;
4023
4024 /* n_sectors has changed */
4025 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4026 (unsigned long long)n_sectors,
4027 (unsigned long long)dev->n_sectors);
4028
4029 /*
4030 * Something could have caused HPA to be unlocked
4031 * involuntarily. If n_native_sectors hasn't changed and the
4032 * new size matches it, keep the device.
4033 */
4034 if (dev->n_native_sectors == n_native_sectors &&
4035 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4036 ata_dev_warn(dev,
4037 "new n_sectors matches native, probably "
4038 "late HPA unlock, n_sectors updated\n");
4039 /* use the larger n_sectors */
4040 return 0;
4041 }
4042
4043 /*
4044 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4045 * unlocking HPA in those cases.
4046 *
4047 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4048 */
4049 if (dev->n_native_sectors == n_native_sectors &&
4050 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4051 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4052 ata_dev_warn(dev,
4053 "old n_sectors matches native, probably "
4054 "late HPA lock, will try to unlock HPA\n");
4055 /* try unlocking HPA */
4056 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4057 rc = -EIO;
4058 } else
4059 rc = -ENODEV;
4060
4061 /* restore original n_[native_]sectors and fail */
4062 dev->n_native_sectors = n_native_sectors;
4063 dev->n_sectors = n_sectors;
4064 fail:
4065 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4066 return rc;
4067 }
4068
4069 struct ata_blacklist_entry {
4070 const char *model_num;
4071 const char *model_rev;
4072 unsigned long horkage;
4073 };
4074
4075 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4076 /* Devices with DMA related problems under Linux */
4077 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4078 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4079 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4080 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4081 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4082 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4083 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4084 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4085 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4086 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4087 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4088 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4089 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4090 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4091 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4092 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4093 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4094 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4095 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4096 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4097 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4098 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4099 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4100 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4101 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4102 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4103 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4104 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4105 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4106 /* Odd clown on sil3726/4726 PMPs */
4107 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4108
4109 /* Weird ATAPI devices */
4110 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4111 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4112 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4113
4114 /* Devices we expect to fail diagnostics */
4115
4116 /* Devices where NCQ should be avoided */
4117 /* NCQ is slow */
4118 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4119 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4120 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4121 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4122 /* NCQ is broken */
4123 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4124 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4125 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4126 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4127 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4128
4129 /* Seagate NCQ + FLUSH CACHE firmware bug */
4130 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4131 ATA_HORKAGE_FIRMWARE_WARN },
4132
4133 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4134 ATA_HORKAGE_FIRMWARE_WARN },
4135
4136 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4137 ATA_HORKAGE_FIRMWARE_WARN },
4138
4139 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4140 ATA_HORKAGE_FIRMWARE_WARN },
4141
4142 /* Blacklist entries taken from Silicon Image 3124/3132
4143 Windows driver .inf file - also several Linux problem reports */
4144 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4145 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4146 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4147
4148 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4149 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4150
4151 /* devices which puke on READ_NATIVE_MAX */
4152 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4153 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4154 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4155 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4156
4157 /* this one allows HPA unlocking but fails IOs on the area */
4158 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4159
4160 /* Devices which report 1 sector over size HPA */
4161 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4162 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4163 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4164
4165 /* Devices which get the IVB wrong */
4166 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4167 /* Maybe we should just blacklist TSSTcorp... */
4168 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4169
4170 /* Devices that do not need bridging limits applied */
4171 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4172 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4173
4174 /* Devices which aren't very happy with higher link speeds */
4175 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4176 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4177
4178 /*
4179 * Devices which choke on SETXFER. Applies only if both the
4180 * device and controller are SATA.
4181 */
4182 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4183 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4184 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4185 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4186 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4187
4188 /* End Marker */
4189 { }
4190 };
4191
4192 /**
4193 * glob_match - match a text string against a glob-style pattern
4194 * @text: the string to be examined
4195 * @pattern: the glob-style pattern to be matched against
4196 *
4197 * Either/both of text and pattern can be empty strings.
4198 *
4199 * Match text against a glob-style pattern, with wildcards and simple sets:
4200 *
4201 * ? matches any single character.
4202 * * matches any run of characters.
4203 * [xyz] matches a single character from the set: x, y, or z.
4204 * [a-d] matches a single character from the range: a, b, c, or d.
4205 * [a-d0-9] matches a single character from either range.
4206 *
4207 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4208 * Behaviour with malformed patterns is undefined, though generally reasonable.
4209 *
4210 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4211 *
4212 * This function uses one level of recursion per '*' in pattern.
4213 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4214 * this will not cause stack problems for any reasonable use here.
4215 *
4216 * RETURNS:
4217 * 0 on match, 1 otherwise.
4218 */
4219 static int glob_match (const char *text, const char *pattern)
4220 {
4221 do {
4222 /* Match single character or a '?' wildcard */
4223 if (*text == *pattern || *pattern == '?') {
4224 if (!*pattern++)
4225 return 0; /* End of both strings: match */
4226 } else {
4227 /* Match single char against a '[' bracketed ']' pattern set */
4228 if (!*text || *pattern != '[')
4229 break; /* Not a pattern set */
4230 while (*++pattern && *pattern != ']' && *text != *pattern) {
4231 if (*pattern == '-' && *(pattern - 1) != '[')
4232 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4233 ++pattern;
4234 break;
4235 }
4236 }
4237 if (!*pattern || *pattern == ']')
4238 return 1; /* No match */
4239 while (*pattern && *pattern++ != ']');
4240 }
4241 } while (*++text && *pattern);
4242
4243 /* Match any run of chars against a '*' wildcard */
4244 if (*pattern == '*') {
4245 if (!*++pattern)
4246 return 0; /* Match: avoid recursion at end of pattern */
4247 /* Loop to handle additional pattern chars after the wildcard */
4248 while (*text) {
4249 if (glob_match(text, pattern) == 0)
4250 return 0; /* Remainder matched */
4251 ++text; /* Absorb (match) this char and try again */
4252 }
4253 }
4254 if (!*text && !*pattern)
4255 return 0; /* End of both strings: match */
4256 return 1; /* No match */
4257 }
4258
4259 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4260 {
4261 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4262 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4263 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4264
4265 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4266 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4267
4268 while (ad->model_num) {
4269 if (!glob_match(model_num, ad->model_num)) {
4270 if (ad->model_rev == NULL)
4271 return ad->horkage;
4272 if (!glob_match(model_rev, ad->model_rev))
4273 return ad->horkage;
4274 }
4275 ad++;
4276 }
4277 return 0;
4278 }
4279
4280 static int ata_dma_blacklisted(const struct ata_device *dev)
4281 {
4282 /* We don't support polling DMA.
4283 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4284 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4285 */
4286 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4287 (dev->flags & ATA_DFLAG_CDB_INTR))
4288 return 1;
4289 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4290 }
4291
4292 /**
4293 * ata_is_40wire - check drive side detection
4294 * @dev: device
4295 *
4296 * Perform drive side detection decoding, allowing for device vendors
4297 * who can't follow the documentation.
4298 */
4299
4300 static int ata_is_40wire(struct ata_device *dev)
4301 {
4302 if (dev->horkage & ATA_HORKAGE_IVB)
4303 return ata_drive_40wire_relaxed(dev->id);
4304 return ata_drive_40wire(dev->id);
4305 }
4306
4307 /**
4308 * cable_is_40wire - 40/80/SATA decider
4309 * @ap: port to consider
4310 *
4311 * This function encapsulates the policy for speed management
4312 * in one place. At the moment we don't cache the result but
4313 * there is a good case for setting ap->cbl to the result when
4314 * we are called with unknown cables (and figuring out if it
4315 * impacts hotplug at all).
4316 *
4317 * Return 1 if the cable appears to be 40 wire.
4318 */
4319
4320 static int cable_is_40wire(struct ata_port *ap)
4321 {
4322 struct ata_link *link;
4323 struct ata_device *dev;
4324
4325 /* If the controller thinks we are 40 wire, we are. */
4326 if (ap->cbl == ATA_CBL_PATA40)
4327 return 1;
4328
4329 /* If the controller thinks we are 80 wire, we are. */
4330 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4331 return 0;
4332
4333 /* If the system is known to be 40 wire short cable (eg
4334 * laptop), then we allow 80 wire modes even if the drive
4335 * isn't sure.
4336 */
4337 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4338 return 0;
4339
4340 /* If the controller doesn't know, we scan.
4341 *
4342 * Note: We look for all 40 wire detects at this point. Any
4343 * 80 wire detect is taken to be 80 wire cable because
4344 * - in many setups only the one drive (slave if present) will
4345 * give a valid detect
4346 * - if you have a non detect capable drive you don't want it
4347 * to colour the choice
4348 */
4349 ata_for_each_link(link, ap, EDGE) {
4350 ata_for_each_dev(dev, link, ENABLED) {
4351 if (!ata_is_40wire(dev))
4352 return 0;
4353 }
4354 }
4355 return 1;
4356 }
4357
4358 /**
4359 * ata_dev_xfermask - Compute supported xfermask of the given device
4360 * @dev: Device to compute xfermask for
4361 *
4362 * Compute supported xfermask of @dev and store it in
4363 * dev->*_mask. This function is responsible for applying all
4364 * known limits including host controller limits, device
4365 * blacklist, etc...
4366 *
4367 * LOCKING:
4368 * None.
4369 */
4370 static void ata_dev_xfermask(struct ata_device *dev)
4371 {
4372 struct ata_link *link = dev->link;
4373 struct ata_port *ap = link->ap;
4374 struct ata_host *host = ap->host;
4375 unsigned long xfer_mask;
4376
4377 /* controller modes available */
4378 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4379 ap->mwdma_mask, ap->udma_mask);
4380
4381 /* drive modes available */
4382 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4383 dev->mwdma_mask, dev->udma_mask);
4384 xfer_mask &= ata_id_xfermask(dev->id);
4385
4386 /*
4387 * CFA Advanced TrueIDE timings are not allowed on a shared
4388 * cable
4389 */
4390 if (ata_dev_pair(dev)) {
4391 /* No PIO5 or PIO6 */
4392 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4393 /* No MWDMA3 or MWDMA 4 */
4394 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4395 }
4396
4397 if (ata_dma_blacklisted(dev)) {
4398 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4399 ata_dev_warn(dev,
4400 "device is on DMA blacklist, disabling DMA\n");
4401 }
4402
4403 if ((host->flags & ATA_HOST_SIMPLEX) &&
4404 host->simplex_claimed && host->simplex_claimed != ap) {
4405 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4406 ata_dev_warn(dev,
4407 "simplex DMA is claimed by other device, disabling DMA\n");
4408 }
4409
4410 if (ap->flags & ATA_FLAG_NO_IORDY)
4411 xfer_mask &= ata_pio_mask_no_iordy(dev);
4412
4413 if (ap->ops->mode_filter)
4414 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4415
4416 /* Apply cable rule here. Don't apply it early because when
4417 * we handle hot plug the cable type can itself change.
4418 * Check this last so that we know if the transfer rate was
4419 * solely limited by the cable.
4420 * Unknown or 80 wire cables reported host side are checked
4421 * drive side as well. Cases where we know a 40wire cable
4422 * is used safely for 80 are not checked here.
4423 */
4424 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4425 /* UDMA/44 or higher would be available */
4426 if (cable_is_40wire(ap)) {
4427 ata_dev_warn(dev,
4428 "limited to UDMA/33 due to 40-wire cable\n");
4429 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4430 }
4431
4432 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4433 &dev->mwdma_mask, &dev->udma_mask);
4434 }
4435
4436 /**
4437 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4438 * @dev: Device to which command will be sent
4439 *
4440 * Issue SET FEATURES - XFER MODE command to device @dev
4441 * on port @ap.
4442 *
4443 * LOCKING:
4444 * PCI/etc. bus probe sem.
4445 *
4446 * RETURNS:
4447 * 0 on success, AC_ERR_* mask otherwise.
4448 */
4449
4450 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4451 {
4452 struct ata_taskfile tf;
4453 unsigned int err_mask;
4454
4455 /* set up set-features taskfile */
4456 DPRINTK("set features - xfer mode\n");
4457
4458 /* Some controllers and ATAPI devices show flaky interrupt
4459 * behavior after setting xfer mode. Use polling instead.
4460 */
4461 ata_tf_init(dev, &tf);
4462 tf.command = ATA_CMD_SET_FEATURES;
4463 tf.feature = SETFEATURES_XFER;
4464 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4465 tf.protocol = ATA_PROT_NODATA;
4466 /* If we are using IORDY we must send the mode setting command */
4467 if (ata_pio_need_iordy(dev))
4468 tf.nsect = dev->xfer_mode;
4469 /* If the device has IORDY and the controller does not - turn it off */
4470 else if (ata_id_has_iordy(dev->id))
4471 tf.nsect = 0x01;
4472 else /* In the ancient relic department - skip all of this */
4473 return 0;
4474
4475 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4476
4477 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4478 return err_mask;
4479 }
4480
4481 /**
4482 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4483 * @dev: Device to which command will be sent
4484 * @enable: Whether to enable or disable the feature
4485 * @feature: The sector count represents the feature to set
4486 *
4487 * Issue SET FEATURES - SATA FEATURES command to device @dev
4488 * on port @ap with sector count
4489 *
4490 * LOCKING:
4491 * PCI/etc. bus probe sem.
4492 *
4493 * RETURNS:
4494 * 0 on success, AC_ERR_* mask otherwise.
4495 */
4496 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4497 {
4498 struct ata_taskfile tf;
4499 unsigned int err_mask;
4500
4501 /* set up set-features taskfile */
4502 DPRINTK("set features - SATA features\n");
4503
4504 ata_tf_init(dev, &tf);
4505 tf.command = ATA_CMD_SET_FEATURES;
4506 tf.feature = enable;
4507 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4508 tf.protocol = ATA_PROT_NODATA;
4509 tf.nsect = feature;
4510
4511 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4512
4513 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4514 return err_mask;
4515 }
4516 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4517
4518 /**
4519 * ata_dev_init_params - Issue INIT DEV PARAMS command
4520 * @dev: Device to which command will be sent
4521 * @heads: Number of heads (taskfile parameter)
4522 * @sectors: Number of sectors (taskfile parameter)
4523 *
4524 * LOCKING:
4525 * Kernel thread context (may sleep)
4526 *
4527 * RETURNS:
4528 * 0 on success, AC_ERR_* mask otherwise.
4529 */
4530 static unsigned int ata_dev_init_params(struct ata_device *dev,
4531 u16 heads, u16 sectors)
4532 {
4533 struct ata_taskfile tf;
4534 unsigned int err_mask;
4535
4536 /* Number of sectors per track 1-255. Number of heads 1-16 */
4537 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4538 return AC_ERR_INVALID;
4539
4540 /* set up init dev params taskfile */
4541 DPRINTK("init dev params \n");
4542
4543 ata_tf_init(dev, &tf);
4544 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4545 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4546 tf.protocol = ATA_PROT_NODATA;
4547 tf.nsect = sectors;
4548 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4549
4550 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4551 /* A clean abort indicates an original or just out of spec drive
4552 and we should continue as we issue the setup based on the
4553 drive reported working geometry */
4554 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4555 err_mask = 0;
4556
4557 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4558 return err_mask;
4559 }
4560
4561 /**
4562 * ata_sg_clean - Unmap DMA memory associated with command
4563 * @qc: Command containing DMA memory to be released
4564 *
4565 * Unmap all mapped DMA memory associated with this command.
4566 *
4567 * LOCKING:
4568 * spin_lock_irqsave(host lock)
4569 */
4570 void ata_sg_clean(struct ata_queued_cmd *qc)
4571 {
4572 struct ata_port *ap = qc->ap;
4573 struct scatterlist *sg = qc->sg;
4574 int dir = qc->dma_dir;
4575
4576 WARN_ON_ONCE(sg == NULL);
4577
4578 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4579
4580 if (qc->n_elem)
4581 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4582
4583 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4584 qc->sg = NULL;
4585 }
4586
4587 /**
4588 * atapi_check_dma - Check whether ATAPI DMA can be supported
4589 * @qc: Metadata associated with taskfile to check
4590 *
4591 * Allow low-level driver to filter ATA PACKET commands, returning
4592 * a status indicating whether or not it is OK to use DMA for the
4593 * supplied PACKET command.
4594 *
4595 * LOCKING:
4596 * spin_lock_irqsave(host lock)
4597 *
4598 * RETURNS: 0 when ATAPI DMA can be used
4599 * nonzero otherwise
4600 */
4601 int atapi_check_dma(struct ata_queued_cmd *qc)
4602 {
4603 struct ata_port *ap = qc->ap;
4604
4605 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4606 * few ATAPI devices choke on such DMA requests.
4607 */
4608 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4609 unlikely(qc->nbytes & 15))
4610 return 1;
4611
4612 if (ap->ops->check_atapi_dma)
4613 return ap->ops->check_atapi_dma(qc);
4614
4615 return 0;
4616 }
4617
4618 /**
4619 * ata_std_qc_defer - Check whether a qc needs to be deferred
4620 * @qc: ATA command in question
4621 *
4622 * Non-NCQ commands cannot run with any other command, NCQ or
4623 * not. As upper layer only knows the queue depth, we are
4624 * responsible for maintaining exclusion. This function checks
4625 * whether a new command @qc can be issued.
4626 *
4627 * LOCKING:
4628 * spin_lock_irqsave(host lock)
4629 *
4630 * RETURNS:
4631 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4632 */
4633 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4634 {
4635 struct ata_link *link = qc->dev->link;
4636
4637 if (qc->tf.protocol == ATA_PROT_NCQ) {
4638 if (!ata_tag_valid(link->active_tag))
4639 return 0;
4640 } else {
4641 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4642 return 0;
4643 }
4644
4645 return ATA_DEFER_LINK;
4646 }
4647
4648 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4649
4650 /**
4651 * ata_sg_init - Associate command with scatter-gather table.
4652 * @qc: Command to be associated
4653 * @sg: Scatter-gather table.
4654 * @n_elem: Number of elements in s/g table.
4655 *
4656 * Initialize the data-related elements of queued_cmd @qc
4657 * to point to a scatter-gather table @sg, containing @n_elem
4658 * elements.
4659 *
4660 * LOCKING:
4661 * spin_lock_irqsave(host lock)
4662 */
4663 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4664 unsigned int n_elem)
4665 {
4666 qc->sg = sg;
4667 qc->n_elem = n_elem;
4668 qc->cursg = qc->sg;
4669 }
4670
4671 /**
4672 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4673 * @qc: Command with scatter-gather table to be mapped.
4674 *
4675 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4676 *
4677 * LOCKING:
4678 * spin_lock_irqsave(host lock)
4679 *
4680 * RETURNS:
4681 * Zero on success, negative on error.
4682 *
4683 */
4684 static int ata_sg_setup(struct ata_queued_cmd *qc)
4685 {
4686 struct ata_port *ap = qc->ap;
4687 unsigned int n_elem;
4688
4689 VPRINTK("ENTER, ata%u\n", ap->print_id);
4690
4691 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4692 if (n_elem < 1)
4693 return -1;
4694
4695 DPRINTK("%d sg elements mapped\n", n_elem);
4696 qc->orig_n_elem = qc->n_elem;
4697 qc->n_elem = n_elem;
4698 qc->flags |= ATA_QCFLAG_DMAMAP;
4699
4700 return 0;
4701 }
4702
4703 /**
4704 * swap_buf_le16 - swap halves of 16-bit words in place
4705 * @buf: Buffer to swap
4706 * @buf_words: Number of 16-bit words in buffer.
4707 *
4708 * Swap halves of 16-bit words if needed to convert from
4709 * little-endian byte order to native cpu byte order, or
4710 * vice-versa.
4711 *
4712 * LOCKING:
4713 * Inherited from caller.
4714 */
4715 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4716 {
4717 #ifdef __BIG_ENDIAN
4718 unsigned int i;
4719
4720 for (i = 0; i < buf_words; i++)
4721 buf[i] = le16_to_cpu(buf[i]);
4722 #endif /* __BIG_ENDIAN */
4723 }
4724
4725 /**
4726 * ata_qc_new - Request an available ATA command, for queueing
4727 * @ap: target port
4728 *
4729 * LOCKING:
4730 * None.
4731 */
4732
4733 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4734 {
4735 struct ata_queued_cmd *qc = NULL;
4736 unsigned int i;
4737
4738 /* no command while frozen */
4739 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4740 return NULL;
4741
4742 /* the last tag is reserved for internal command. */
4743 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4744 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4745 qc = __ata_qc_from_tag(ap, i);
4746 break;
4747 }
4748
4749 if (qc)
4750 qc->tag = i;
4751
4752 return qc;
4753 }
4754
4755 /**
4756 * ata_qc_new_init - Request an available ATA command, and initialize it
4757 * @dev: Device from whom we request an available command structure
4758 *
4759 * LOCKING:
4760 * None.
4761 */
4762
4763 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4764 {
4765 struct ata_port *ap = dev->link->ap;
4766 struct ata_queued_cmd *qc;
4767
4768 qc = ata_qc_new(ap);
4769 if (qc) {
4770 qc->scsicmd = NULL;
4771 qc->ap = ap;
4772 qc->dev = dev;
4773
4774 ata_qc_reinit(qc);
4775 }
4776
4777 return qc;
4778 }
4779
4780 /**
4781 * ata_qc_free - free unused ata_queued_cmd
4782 * @qc: Command to complete
4783 *
4784 * Designed to free unused ata_queued_cmd object
4785 * in case something prevents using it.
4786 *
4787 * LOCKING:
4788 * spin_lock_irqsave(host lock)
4789 */
4790 void ata_qc_free(struct ata_queued_cmd *qc)
4791 {
4792 struct ata_port *ap;
4793 unsigned int tag;
4794
4795 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4796 ap = qc->ap;
4797
4798 qc->flags = 0;
4799 tag = qc->tag;
4800 if (likely(ata_tag_valid(tag))) {
4801 qc->tag = ATA_TAG_POISON;
4802 clear_bit(tag, &ap->qc_allocated);
4803 }
4804 }
4805
4806 void __ata_qc_complete(struct ata_queued_cmd *qc)
4807 {
4808 struct ata_port *ap;
4809 struct ata_link *link;
4810
4811 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4812 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4813 ap = qc->ap;
4814 link = qc->dev->link;
4815
4816 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4817 ata_sg_clean(qc);
4818
4819 /* command should be marked inactive atomically with qc completion */
4820 if (qc->tf.protocol == ATA_PROT_NCQ) {
4821 link->sactive &= ~(1 << qc->tag);
4822 if (!link->sactive)
4823 ap->nr_active_links--;
4824 } else {
4825 link->active_tag = ATA_TAG_POISON;
4826 ap->nr_active_links--;
4827 }
4828
4829 /* clear exclusive status */
4830 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4831 ap->excl_link == link))
4832 ap->excl_link = NULL;
4833
4834 /* atapi: mark qc as inactive to prevent the interrupt handler
4835 * from completing the command twice later, before the error handler
4836 * is called. (when rc != 0 and atapi request sense is needed)
4837 */
4838 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4839 ap->qc_active &= ~(1 << qc->tag);
4840
4841 /* call completion callback */
4842 qc->complete_fn(qc);
4843 }
4844
4845 static void fill_result_tf(struct ata_queued_cmd *qc)
4846 {
4847 struct ata_port *ap = qc->ap;
4848
4849 qc->result_tf.flags = qc->tf.flags;
4850 ap->ops->qc_fill_rtf(qc);
4851 }
4852
4853 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4854 {
4855 struct ata_device *dev = qc->dev;
4856
4857 if (ata_is_nodata(qc->tf.protocol))
4858 return;
4859
4860 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4861 return;
4862
4863 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4864 }
4865
4866 /**
4867 * ata_qc_complete - Complete an active ATA command
4868 * @qc: Command to complete
4869 *
4870 * Indicate to the mid and upper layers that an ATA command has
4871 * completed, with either an ok or not-ok status.
4872 *
4873 * Refrain from calling this function multiple times when
4874 * successfully completing multiple NCQ commands.
4875 * ata_qc_complete_multiple() should be used instead, which will
4876 * properly update IRQ expect state.
4877 *
4878 * LOCKING:
4879 * spin_lock_irqsave(host lock)
4880 */
4881 void ata_qc_complete(struct ata_queued_cmd *qc)
4882 {
4883 struct ata_port *ap = qc->ap;
4884
4885 /* XXX: New EH and old EH use different mechanisms to
4886 * synchronize EH with regular execution path.
4887 *
4888 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4889 * Normal execution path is responsible for not accessing a
4890 * failed qc. libata core enforces the rule by returning NULL
4891 * from ata_qc_from_tag() for failed qcs.
4892 *
4893 * Old EH depends on ata_qc_complete() nullifying completion
4894 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4895 * not synchronize with interrupt handler. Only PIO task is
4896 * taken care of.
4897 */
4898 if (ap->ops->error_handler) {
4899 struct ata_device *dev = qc->dev;
4900 struct ata_eh_info *ehi = &dev->link->eh_info;
4901
4902 if (unlikely(qc->err_mask))
4903 qc->flags |= ATA_QCFLAG_FAILED;
4904
4905 /*
4906 * Finish internal commands without any further processing
4907 * and always with the result TF filled.
4908 */
4909 if (unlikely(ata_tag_internal(qc->tag))) {
4910 fill_result_tf(qc);
4911 __ata_qc_complete(qc);
4912 return;
4913 }
4914
4915 /*
4916 * Non-internal qc has failed. Fill the result TF and
4917 * summon EH.
4918 */
4919 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4920 fill_result_tf(qc);
4921 ata_qc_schedule_eh(qc);
4922 return;
4923 }
4924
4925 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4926
4927 /* read result TF if requested */
4928 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4929 fill_result_tf(qc);
4930
4931 /* Some commands need post-processing after successful
4932 * completion.
4933 */
4934 switch (qc->tf.command) {
4935 case ATA_CMD_SET_FEATURES:
4936 if (qc->tf.feature != SETFEATURES_WC_ON &&
4937 qc->tf.feature != SETFEATURES_WC_OFF)
4938 break;
4939 /* fall through */
4940 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4941 case ATA_CMD_SET_MULTI: /* multi_count changed */
4942 /* revalidate device */
4943 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4944 ata_port_schedule_eh(ap);
4945 break;
4946
4947 case ATA_CMD_SLEEP:
4948 dev->flags |= ATA_DFLAG_SLEEPING;
4949 break;
4950 }
4951
4952 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4953 ata_verify_xfer(qc);
4954
4955 __ata_qc_complete(qc);
4956 } else {
4957 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4958 return;
4959
4960 /* read result TF if failed or requested */
4961 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4962 fill_result_tf(qc);
4963
4964 __ata_qc_complete(qc);
4965 }
4966 }
4967
4968 /**
4969 * ata_qc_complete_multiple - Complete multiple qcs successfully
4970 * @ap: port in question
4971 * @qc_active: new qc_active mask
4972 *
4973 * Complete in-flight commands. This functions is meant to be
4974 * called from low-level driver's interrupt routine to complete
4975 * requests normally. ap->qc_active and @qc_active is compared
4976 * and commands are completed accordingly.
4977 *
4978 * Always use this function when completing multiple NCQ commands
4979 * from IRQ handlers instead of calling ata_qc_complete()
4980 * multiple times to keep IRQ expect status properly in sync.
4981 *
4982 * LOCKING:
4983 * spin_lock_irqsave(host lock)
4984 *
4985 * RETURNS:
4986 * Number of completed commands on success, -errno otherwise.
4987 */
4988 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4989 {
4990 int nr_done = 0;
4991 u32 done_mask;
4992
4993 done_mask = ap->qc_active ^ qc_active;
4994
4995 if (unlikely(done_mask & qc_active)) {
4996 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4997 ap->qc_active, qc_active);
4998 return -EINVAL;
4999 }
5000
5001 while (done_mask) {
5002 struct ata_queued_cmd *qc;
5003 unsigned int tag = __ffs(done_mask);
5004
5005 qc = ata_qc_from_tag(ap, tag);
5006 if (qc) {
5007 ata_qc_complete(qc);
5008 nr_done++;
5009 }
5010 done_mask &= ~(1 << tag);
5011 }
5012
5013 return nr_done;
5014 }
5015
5016 /**
5017 * ata_qc_issue - issue taskfile to device
5018 * @qc: command to issue to device
5019 *
5020 * Prepare an ATA command to submission to device.
5021 * This includes mapping the data into a DMA-able
5022 * area, filling in the S/G table, and finally
5023 * writing the taskfile to hardware, starting the command.
5024 *
5025 * LOCKING:
5026 * spin_lock_irqsave(host lock)
5027 */
5028 void ata_qc_issue(struct ata_queued_cmd *qc)
5029 {
5030 struct ata_port *ap = qc->ap;
5031 struct ata_link *link = qc->dev->link;
5032 u8 prot = qc->tf.protocol;
5033
5034 /* Make sure only one non-NCQ command is outstanding. The
5035 * check is skipped for old EH because it reuses active qc to
5036 * request ATAPI sense.
5037 */
5038 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5039
5040 if (ata_is_ncq(prot)) {
5041 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5042
5043 if (!link->sactive)
5044 ap->nr_active_links++;
5045 link->sactive |= 1 << qc->tag;
5046 } else {
5047 WARN_ON_ONCE(link->sactive);
5048
5049 ap->nr_active_links++;
5050 link->active_tag = qc->tag;
5051 }
5052
5053 qc->flags |= ATA_QCFLAG_ACTIVE;
5054 ap->qc_active |= 1 << qc->tag;
5055
5056 /*
5057 * We guarantee to LLDs that they will have at least one
5058 * non-zero sg if the command is a data command.
5059 */
5060 if (WARN_ON_ONCE(ata_is_data(prot) &&
5061 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5062 goto sys_err;
5063
5064 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5065 (ap->flags & ATA_FLAG_PIO_DMA)))
5066 if (ata_sg_setup(qc))
5067 goto sys_err;
5068
5069 /* if device is sleeping, schedule reset and abort the link */
5070 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5071 link->eh_info.action |= ATA_EH_RESET;
5072 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5073 ata_link_abort(link);
5074 return;
5075 }
5076
5077 ap->ops->qc_prep(qc);
5078
5079 qc->err_mask |= ap->ops->qc_issue(qc);
5080 if (unlikely(qc->err_mask))
5081 goto err;
5082 return;
5083
5084 sys_err:
5085 qc->err_mask |= AC_ERR_SYSTEM;
5086 err:
5087 ata_qc_complete(qc);
5088 }
5089
5090 /**
5091 * sata_scr_valid - test whether SCRs are accessible
5092 * @link: ATA link to test SCR accessibility for
5093 *
5094 * Test whether SCRs are accessible for @link.
5095 *
5096 * LOCKING:
5097 * None.
5098 *
5099 * RETURNS:
5100 * 1 if SCRs are accessible, 0 otherwise.
5101 */
5102 int sata_scr_valid(struct ata_link *link)
5103 {
5104 struct ata_port *ap = link->ap;
5105
5106 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5107 }
5108
5109 /**
5110 * sata_scr_read - read SCR register of the specified port
5111 * @link: ATA link to read SCR for
5112 * @reg: SCR to read
5113 * @val: Place to store read value
5114 *
5115 * Read SCR register @reg of @link into *@val. This function is
5116 * guaranteed to succeed if @link is ap->link, the cable type of
5117 * the port is SATA and the port implements ->scr_read.
5118 *
5119 * LOCKING:
5120 * None if @link is ap->link. Kernel thread context otherwise.
5121 *
5122 * RETURNS:
5123 * 0 on success, negative errno on failure.
5124 */
5125 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5126 {
5127 if (ata_is_host_link(link)) {
5128 if (sata_scr_valid(link))
5129 return link->ap->ops->scr_read(link, reg, val);
5130 return -EOPNOTSUPP;
5131 }
5132
5133 return sata_pmp_scr_read(link, reg, val);
5134 }
5135
5136 /**
5137 * sata_scr_write - write SCR register of the specified port
5138 * @link: ATA link to write SCR for
5139 * @reg: SCR to write
5140 * @val: value to write
5141 *
5142 * Write @val to SCR register @reg of @link. This function is
5143 * guaranteed to succeed if @link is ap->link, the cable type of
5144 * the port is SATA and the port implements ->scr_read.
5145 *
5146 * LOCKING:
5147 * None if @link is ap->link. Kernel thread context otherwise.
5148 *
5149 * RETURNS:
5150 * 0 on success, negative errno on failure.
5151 */
5152 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5153 {
5154 if (ata_is_host_link(link)) {
5155 if (sata_scr_valid(link))
5156 return link->ap->ops->scr_write(link, reg, val);
5157 return -EOPNOTSUPP;
5158 }
5159
5160 return sata_pmp_scr_write(link, reg, val);
5161 }
5162
5163 /**
5164 * sata_scr_write_flush - write SCR register of the specified port and flush
5165 * @link: ATA link to write SCR for
5166 * @reg: SCR to write
5167 * @val: value to write
5168 *
5169 * This function is identical to sata_scr_write() except that this
5170 * function performs flush after writing to the register.
5171 *
5172 * LOCKING:
5173 * None if @link is ap->link. Kernel thread context otherwise.
5174 *
5175 * RETURNS:
5176 * 0 on success, negative errno on failure.
5177 */
5178 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5179 {
5180 if (ata_is_host_link(link)) {
5181 int rc;
5182
5183 if (sata_scr_valid(link)) {
5184 rc = link->ap->ops->scr_write(link, reg, val);
5185 if (rc == 0)
5186 rc = link->ap->ops->scr_read(link, reg, &val);
5187 return rc;
5188 }
5189 return -EOPNOTSUPP;
5190 }
5191
5192 return sata_pmp_scr_write(link, reg, val);
5193 }
5194
5195 /**
5196 * ata_phys_link_online - test whether the given link is online
5197 * @link: ATA link to test
5198 *
5199 * Test whether @link is online. Note that this function returns
5200 * 0 if online status of @link cannot be obtained, so
5201 * ata_link_online(link) != !ata_link_offline(link).
5202 *
5203 * LOCKING:
5204 * None.
5205 *
5206 * RETURNS:
5207 * True if the port online status is available and online.
5208 */
5209 bool ata_phys_link_online(struct ata_link *link)
5210 {
5211 u32 sstatus;
5212
5213 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5214 ata_sstatus_online(sstatus))
5215 return true;
5216 return false;
5217 }
5218
5219 /**
5220 * ata_phys_link_offline - test whether the given link is offline
5221 * @link: ATA link to test
5222 *
5223 * Test whether @link is offline. Note that this function
5224 * returns 0 if offline status of @link cannot be obtained, so
5225 * ata_link_online(link) != !ata_link_offline(link).
5226 *
5227 * LOCKING:
5228 * None.
5229 *
5230 * RETURNS:
5231 * True if the port offline status is available and offline.
5232 */
5233 bool ata_phys_link_offline(struct ata_link *link)
5234 {
5235 u32 sstatus;
5236
5237 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5238 !ata_sstatus_online(sstatus))
5239 return true;
5240 return false;
5241 }
5242
5243 /**
5244 * ata_link_online - test whether the given link is online
5245 * @link: ATA link to test
5246 *
5247 * Test whether @link is online. This is identical to
5248 * ata_phys_link_online() when there's no slave link. When
5249 * there's a slave link, this function should only be called on
5250 * the master link and will return true if any of M/S links is
5251 * online.
5252 *
5253 * LOCKING:
5254 * None.
5255 *
5256 * RETURNS:
5257 * True if the port online status is available and online.
5258 */
5259 bool ata_link_online(struct ata_link *link)
5260 {
5261 struct ata_link *slave = link->ap->slave_link;
5262
5263 WARN_ON(link == slave); /* shouldn't be called on slave link */
5264
5265 return ata_phys_link_online(link) ||
5266 (slave && ata_phys_link_online(slave));
5267 }
5268
5269 /**
5270 * ata_link_offline - test whether the given link is offline
5271 * @link: ATA link to test
5272 *
5273 * Test whether @link is offline. This is identical to
5274 * ata_phys_link_offline() when there's no slave link. When
5275 * there's a slave link, this function should only be called on
5276 * the master link and will return true if both M/S links are
5277 * offline.
5278 *
5279 * LOCKING:
5280 * None.
5281 *
5282 * RETURNS:
5283 * True if the port offline status is available and offline.
5284 */
5285 bool ata_link_offline(struct ata_link *link)
5286 {
5287 struct ata_link *slave = link->ap->slave_link;
5288
5289 WARN_ON(link == slave); /* shouldn't be called on slave link */
5290
5291 return ata_phys_link_offline(link) &&
5292 (!slave || ata_phys_link_offline(slave));
5293 }
5294
5295 #ifdef CONFIG_PM
5296 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5297 unsigned int action, unsigned int ehi_flags,
5298 int *async)
5299 {
5300 struct ata_link *link;
5301 unsigned long flags;
5302 int rc = 0;
5303
5304 /* Previous resume operation might still be in
5305 * progress. Wait for PM_PENDING to clear.
5306 */
5307 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5308 if (async) {
5309 *async = -EAGAIN;
5310 return 0;
5311 }
5312 ata_port_wait_eh(ap);
5313 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5314 }
5315
5316 /* request PM ops to EH */
5317 spin_lock_irqsave(ap->lock, flags);
5318
5319 ap->pm_mesg = mesg;
5320 if (async)
5321 ap->pm_result = async;
5322 else
5323 ap->pm_result = &rc;
5324
5325 ap->pflags |= ATA_PFLAG_PM_PENDING;
5326 ata_for_each_link(link, ap, HOST_FIRST) {
5327 link->eh_info.action |= action;
5328 link->eh_info.flags |= ehi_flags;
5329 }
5330
5331 ata_port_schedule_eh(ap);
5332
5333 spin_unlock_irqrestore(ap->lock, flags);
5334
5335 /* wait and check result */
5336 if (!async) {
5337 ata_port_wait_eh(ap);
5338 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5339 }
5340
5341 return rc;
5342 }
5343
5344 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5345 {
5346 /*
5347 * On some hardware, device fails to respond after spun down
5348 * for suspend. As the device won't be used before being
5349 * resumed, we don't need to touch the device. Ask EH to skip
5350 * the usual stuff and proceed directly to suspend.
5351 *
5352 * http://thread.gmane.org/gmane.linux.ide/46764
5353 */
5354 unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5355 ATA_EHI_NO_RECOVERY;
5356 return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5357 }
5358
5359 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5360 {
5361 struct ata_port *ap = to_ata_port(dev);
5362
5363 return __ata_port_suspend_common(ap, mesg, NULL);
5364 }
5365
5366 static int ata_port_suspend(struct device *dev)
5367 {
5368 if (pm_runtime_suspended(dev))
5369 return 0;
5370
5371 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5372 }
5373
5374 static int ata_port_do_freeze(struct device *dev)
5375 {
5376 if (pm_runtime_suspended(dev))
5377 return 0;
5378
5379 return ata_port_suspend_common(dev, PMSG_FREEZE);
5380 }
5381
5382 static int ata_port_poweroff(struct device *dev)
5383 {
5384 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5385 }
5386
5387 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5388 int *async)
5389 {
5390 int rc;
5391
5392 rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5393 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5394 return rc;
5395 }
5396
5397 static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5398 {
5399 struct ata_port *ap = to_ata_port(dev);
5400
5401 return __ata_port_resume_common(ap, mesg, NULL);
5402 }
5403
5404 static int ata_port_resume(struct device *dev)
5405 {
5406 int rc;
5407
5408 rc = ata_port_resume_common(dev, PMSG_RESUME);
5409 if (!rc) {
5410 pm_runtime_disable(dev);
5411 pm_runtime_set_active(dev);
5412 pm_runtime_enable(dev);
5413 }
5414
5415 return rc;
5416 }
5417
5418 /*
5419 * For ODDs, the upper layer will poll for media change every few seconds,
5420 * which will make it enter and leave suspend state every few seconds. And
5421 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5422 * is very little and the ODD may malfunction after constantly being reset.
5423 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5424 * ODD is attached to the port.
5425 */
5426 static int ata_port_runtime_idle(struct device *dev)
5427 {
5428 struct ata_port *ap = to_ata_port(dev);
5429 struct ata_link *link;
5430 struct ata_device *adev;
5431
5432 ata_for_each_link(link, ap, HOST_FIRST) {
5433 ata_for_each_dev(adev, link, ENABLED)
5434 if (adev->class == ATA_DEV_ATAPI &&
5435 !zpodd_dev_enabled(adev))
5436 return -EBUSY;
5437 }
5438
5439 return pm_runtime_suspend(dev);
5440 }
5441
5442 static int ata_port_runtime_suspend(struct device *dev)
5443 {
5444 return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5445 }
5446
5447 static int ata_port_runtime_resume(struct device *dev)
5448 {
5449 return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5450 }
5451
5452 static const struct dev_pm_ops ata_port_pm_ops = {
5453 .suspend = ata_port_suspend,
5454 .resume = ata_port_resume,
5455 .freeze = ata_port_do_freeze,
5456 .thaw = ata_port_resume,
5457 .poweroff = ata_port_poweroff,
5458 .restore = ata_port_resume,
5459
5460 .runtime_suspend = ata_port_runtime_suspend,
5461 .runtime_resume = ata_port_runtime_resume,
5462 .runtime_idle = ata_port_runtime_idle,
5463 };
5464
5465 /* sas ports don't participate in pm runtime management of ata_ports,
5466 * and need to resume ata devices at the domain level, not the per-port
5467 * level. sas suspend/resume is async to allow parallel port recovery
5468 * since sas has multiple ata_port instances per Scsi_Host.
5469 */
5470 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5471 {
5472 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5473 }
5474 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5475
5476 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5477 {
5478 return __ata_port_resume_common(ap, PMSG_RESUME, async);
5479 }
5480 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5481
5482
5483 /**
5484 * ata_host_suspend - suspend host
5485 * @host: host to suspend
5486 * @mesg: PM message
5487 *
5488 * Suspend @host. Actual operation is performed by port suspend.
5489 */
5490 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5491 {
5492 host->dev->power.power_state = mesg;
5493 return 0;
5494 }
5495
5496 /**
5497 * ata_host_resume - resume host
5498 * @host: host to resume
5499 *
5500 * Resume @host. Actual operation is performed by port resume.
5501 */
5502 void ata_host_resume(struct ata_host *host)
5503 {
5504 host->dev->power.power_state = PMSG_ON;
5505 }
5506 #endif
5507
5508 struct device_type ata_port_type = {
5509 .name = "ata_port",
5510 #ifdef CONFIG_PM
5511 .pm = &ata_port_pm_ops,
5512 #endif
5513 };
5514
5515 /**
5516 * ata_dev_init - Initialize an ata_device structure
5517 * @dev: Device structure to initialize
5518 *
5519 * Initialize @dev in preparation for probing.
5520 *
5521 * LOCKING:
5522 * Inherited from caller.
5523 */
5524 void ata_dev_init(struct ata_device *dev)
5525 {
5526 struct ata_link *link = ata_dev_phys_link(dev);
5527 struct ata_port *ap = link->ap;
5528 unsigned long flags;
5529
5530 /* SATA spd limit is bound to the attached device, reset together */
5531 link->sata_spd_limit = link->hw_sata_spd_limit;
5532 link->sata_spd = 0;
5533
5534 /* High bits of dev->flags are used to record warm plug
5535 * requests which occur asynchronously. Synchronize using
5536 * host lock.
5537 */
5538 spin_lock_irqsave(ap->lock, flags);
5539 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5540 dev->horkage = 0;
5541 spin_unlock_irqrestore(ap->lock, flags);
5542
5543 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5544 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5545 dev->pio_mask = UINT_MAX;
5546 dev->mwdma_mask = UINT_MAX;
5547 dev->udma_mask = UINT_MAX;
5548 }
5549
5550 /**
5551 * ata_link_init - Initialize an ata_link structure
5552 * @ap: ATA port link is attached to
5553 * @link: Link structure to initialize
5554 * @pmp: Port multiplier port number
5555 *
5556 * Initialize @link.
5557 *
5558 * LOCKING:
5559 * Kernel thread context (may sleep)
5560 */
5561 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5562 {
5563 int i;
5564
5565 /* clear everything except for devices */
5566 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5567 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5568
5569 link->ap = ap;
5570 link->pmp = pmp;
5571 link->active_tag = ATA_TAG_POISON;
5572 link->hw_sata_spd_limit = UINT_MAX;
5573
5574 /* can't use iterator, ap isn't initialized yet */
5575 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5576 struct ata_device *dev = &link->device[i];
5577
5578 dev->link = link;
5579 dev->devno = dev - link->device;
5580 #ifdef CONFIG_ATA_ACPI
5581 dev->gtf_filter = ata_acpi_gtf_filter;
5582 #endif
5583 ata_dev_init(dev);
5584 }
5585 }
5586
5587 /**
5588 * sata_link_init_spd - Initialize link->sata_spd_limit
5589 * @link: Link to configure sata_spd_limit for
5590 *
5591 * Initialize @link->[hw_]sata_spd_limit to the currently
5592 * configured value.
5593 *
5594 * LOCKING:
5595 * Kernel thread context (may sleep).
5596 *
5597 * RETURNS:
5598 * 0 on success, -errno on failure.
5599 */
5600 int sata_link_init_spd(struct ata_link *link)
5601 {
5602 u8 spd;
5603 int rc;
5604
5605 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5606 if (rc)
5607 return rc;
5608
5609 spd = (link->saved_scontrol >> 4) & 0xf;
5610 if (spd)
5611 link->hw_sata_spd_limit &= (1 << spd) - 1;
5612
5613 ata_force_link_limits(link);
5614
5615 link->sata_spd_limit = link->hw_sata_spd_limit;
5616
5617 return 0;
5618 }
5619
5620 /**
5621 * ata_port_alloc - allocate and initialize basic ATA port resources
5622 * @host: ATA host this allocated port belongs to
5623 *
5624 * Allocate and initialize basic ATA port resources.
5625 *
5626 * RETURNS:
5627 * Allocate ATA port on success, NULL on failure.
5628 *
5629 * LOCKING:
5630 * Inherited from calling layer (may sleep).
5631 */
5632 struct ata_port *ata_port_alloc(struct ata_host *host)
5633 {
5634 struct ata_port *ap;
5635
5636 DPRINTK("ENTER\n");
5637
5638 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5639 if (!ap)
5640 return NULL;
5641
5642 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5643 ap->lock = &host->lock;
5644 ap->print_id = -1;
5645 ap->host = host;
5646 ap->dev = host->dev;
5647
5648 #if defined(ATA_VERBOSE_DEBUG)
5649 /* turn on all debugging levels */
5650 ap->msg_enable = 0x00FF;
5651 #elif defined(ATA_DEBUG)
5652 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5653 #else
5654 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5655 #endif
5656
5657 mutex_init(&ap->scsi_scan_mutex);
5658 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5659 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5660 INIT_LIST_HEAD(&ap->eh_done_q);
5661 init_waitqueue_head(&ap->eh_wait_q);
5662 init_completion(&ap->park_req_pending);
5663 init_timer_deferrable(&ap->fastdrain_timer);
5664 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5665 ap->fastdrain_timer.data = (unsigned long)ap;
5666
5667 ap->cbl = ATA_CBL_NONE;
5668
5669 ata_link_init(ap, &ap->link, 0);
5670
5671 #ifdef ATA_IRQ_TRAP
5672 ap->stats.unhandled_irq = 1;
5673 ap->stats.idle_irq = 1;
5674 #endif
5675 ata_sff_port_init(ap);
5676
5677 return ap;
5678 }
5679
5680 static void ata_host_release(struct device *gendev, void *res)
5681 {
5682 struct ata_host *host = dev_get_drvdata(gendev);
5683 int i;
5684
5685 for (i = 0; i < host->n_ports; i++) {
5686 struct ata_port *ap = host->ports[i];
5687
5688 if (!ap)
5689 continue;
5690
5691 if (ap->scsi_host)
5692 scsi_host_put(ap->scsi_host);
5693
5694 kfree(ap->pmp_link);
5695 kfree(ap->slave_link);
5696 kfree(ap);
5697 host->ports[i] = NULL;
5698 }
5699
5700 dev_set_drvdata(gendev, NULL);
5701 }
5702
5703 /**
5704 * ata_host_alloc - allocate and init basic ATA host resources
5705 * @dev: generic device this host is associated with
5706 * @max_ports: maximum number of ATA ports associated with this host
5707 *
5708 * Allocate and initialize basic ATA host resources. LLD calls
5709 * this function to allocate a host, initializes it fully and
5710 * attaches it using ata_host_register().
5711 *
5712 * @max_ports ports are allocated and host->n_ports is
5713 * initialized to @max_ports. The caller is allowed to decrease
5714 * host->n_ports before calling ata_host_register(). The unused
5715 * ports will be automatically freed on registration.
5716 *
5717 * RETURNS:
5718 * Allocate ATA host on success, NULL on failure.
5719 *
5720 * LOCKING:
5721 * Inherited from calling layer (may sleep).
5722 */
5723 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5724 {
5725 struct ata_host *host;
5726 size_t sz;
5727 int i;
5728
5729 DPRINTK("ENTER\n");
5730
5731 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5732 return NULL;
5733
5734 /* alloc a container for our list of ATA ports (buses) */
5735 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5736 /* alloc a container for our list of ATA ports (buses) */
5737 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5738 if (!host)
5739 goto err_out;
5740
5741 devres_add(dev, host);
5742 dev_set_drvdata(dev, host);
5743
5744 spin_lock_init(&host->lock);
5745 mutex_init(&host->eh_mutex);
5746 host->dev = dev;
5747 host->n_ports = max_ports;
5748
5749 /* allocate ports bound to this host */
5750 for (i = 0; i < max_ports; i++) {
5751 struct ata_port *ap;
5752
5753 ap = ata_port_alloc(host);
5754 if (!ap)
5755 goto err_out;
5756
5757 ap->port_no = i;
5758 host->ports[i] = ap;
5759 }
5760
5761 devres_remove_group(dev, NULL);
5762 return host;
5763
5764 err_out:
5765 devres_release_group(dev, NULL);
5766 return NULL;
5767 }
5768
5769 /**
5770 * ata_host_alloc_pinfo - alloc host and init with port_info array
5771 * @dev: generic device this host is associated with
5772 * @ppi: array of ATA port_info to initialize host with
5773 * @n_ports: number of ATA ports attached to this host
5774 *
5775 * Allocate ATA host and initialize with info from @ppi. If NULL
5776 * terminated, @ppi may contain fewer entries than @n_ports. The
5777 * last entry will be used for the remaining ports.
5778 *
5779 * RETURNS:
5780 * Allocate ATA host on success, NULL on failure.
5781 *
5782 * LOCKING:
5783 * Inherited from calling layer (may sleep).
5784 */
5785 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5786 const struct ata_port_info * const * ppi,
5787 int n_ports)
5788 {
5789 const struct ata_port_info *pi;
5790 struct ata_host *host;
5791 int i, j;
5792
5793 host = ata_host_alloc(dev, n_ports);
5794 if (!host)
5795 return NULL;
5796
5797 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5798 struct ata_port *ap = host->ports[i];
5799
5800 if (ppi[j])
5801 pi = ppi[j++];
5802
5803 ap->pio_mask = pi->pio_mask;
5804 ap->mwdma_mask = pi->mwdma_mask;
5805 ap->udma_mask = pi->udma_mask;
5806 ap->flags |= pi->flags;
5807 ap->link.flags |= pi->link_flags;
5808 ap->ops = pi->port_ops;
5809
5810 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5811 host->ops = pi->port_ops;
5812 }
5813
5814 return host;
5815 }
5816
5817 /**
5818 * ata_slave_link_init - initialize slave link
5819 * @ap: port to initialize slave link for
5820 *
5821 * Create and initialize slave link for @ap. This enables slave
5822 * link handling on the port.
5823 *
5824 * In libata, a port contains links and a link contains devices.
5825 * There is single host link but if a PMP is attached to it,
5826 * there can be multiple fan-out links. On SATA, there's usually
5827 * a single device connected to a link but PATA and SATA
5828 * controllers emulating TF based interface can have two - master
5829 * and slave.
5830 *
5831 * However, there are a few controllers which don't fit into this
5832 * abstraction too well - SATA controllers which emulate TF
5833 * interface with both master and slave devices but also have
5834 * separate SCR register sets for each device. These controllers
5835 * need separate links for physical link handling
5836 * (e.g. onlineness, link speed) but should be treated like a
5837 * traditional M/S controller for everything else (e.g. command
5838 * issue, softreset).
5839 *
5840 * slave_link is libata's way of handling this class of
5841 * controllers without impacting core layer too much. For
5842 * anything other than physical link handling, the default host
5843 * link is used for both master and slave. For physical link
5844 * handling, separate @ap->slave_link is used. All dirty details
5845 * are implemented inside libata core layer. From LLD's POV, the
5846 * only difference is that prereset, hardreset and postreset are
5847 * called once more for the slave link, so the reset sequence
5848 * looks like the following.
5849 *
5850 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5851 * softreset(M) -> postreset(M) -> postreset(S)
5852 *
5853 * Note that softreset is called only for the master. Softreset
5854 * resets both M/S by definition, so SRST on master should handle
5855 * both (the standard method will work just fine).
5856 *
5857 * LOCKING:
5858 * Should be called before host is registered.
5859 *
5860 * RETURNS:
5861 * 0 on success, -errno on failure.
5862 */
5863 int ata_slave_link_init(struct ata_port *ap)
5864 {
5865 struct ata_link *link;
5866
5867 WARN_ON(ap->slave_link);
5868 WARN_ON(ap->flags & ATA_FLAG_PMP);
5869
5870 link = kzalloc(sizeof(*link), GFP_KERNEL);
5871 if (!link)
5872 return -ENOMEM;
5873
5874 ata_link_init(ap, link, 1);
5875 ap->slave_link = link;
5876 return 0;
5877 }
5878
5879 static void ata_host_stop(struct device *gendev, void *res)
5880 {
5881 struct ata_host *host = dev_get_drvdata(gendev);
5882 int i;
5883
5884 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5885
5886 for (i = 0; i < host->n_ports; i++) {
5887 struct ata_port *ap = host->ports[i];
5888
5889 if (ap->ops->port_stop)
5890 ap->ops->port_stop(ap);
5891 }
5892
5893 if (host->ops->host_stop)
5894 host->ops->host_stop(host);
5895 }
5896
5897 /**
5898 * ata_finalize_port_ops - finalize ata_port_operations
5899 * @ops: ata_port_operations to finalize
5900 *
5901 * An ata_port_operations can inherit from another ops and that
5902 * ops can again inherit from another. This can go on as many
5903 * times as necessary as long as there is no loop in the
5904 * inheritance chain.
5905 *
5906 * Ops tables are finalized when the host is started. NULL or
5907 * unspecified entries are inherited from the closet ancestor
5908 * which has the method and the entry is populated with it.
5909 * After finalization, the ops table directly points to all the
5910 * methods and ->inherits is no longer necessary and cleared.
5911 *
5912 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5913 *
5914 * LOCKING:
5915 * None.
5916 */
5917 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5918 {
5919 static DEFINE_SPINLOCK(lock);
5920 const struct ata_port_operations *cur;
5921 void **begin = (void **)ops;
5922 void **end = (void **)&ops->inherits;
5923 void **pp;
5924
5925 if (!ops || !ops->inherits)
5926 return;
5927
5928 spin_lock(&lock);
5929
5930 for (cur = ops->inherits; cur; cur = cur->inherits) {
5931 void **inherit = (void **)cur;
5932
5933 for (pp = begin; pp < end; pp++, inherit++)
5934 if (!*pp)
5935 *pp = *inherit;
5936 }
5937
5938 for (pp = begin; pp < end; pp++)
5939 if (IS_ERR(*pp))
5940 *pp = NULL;
5941
5942 ops->inherits = NULL;
5943
5944 spin_unlock(&lock);
5945 }
5946
5947 /**
5948 * ata_host_start - start and freeze ports of an ATA host
5949 * @host: ATA host to start ports for
5950 *
5951 * Start and then freeze ports of @host. Started status is
5952 * recorded in host->flags, so this function can be called
5953 * multiple times. Ports are guaranteed to get started only
5954 * once. If host->ops isn't initialized yet, its set to the
5955 * first non-dummy port ops.
5956 *
5957 * LOCKING:
5958 * Inherited from calling layer (may sleep).
5959 *
5960 * RETURNS:
5961 * 0 if all ports are started successfully, -errno otherwise.
5962 */
5963 int ata_host_start(struct ata_host *host)
5964 {
5965 int have_stop = 0;
5966 void *start_dr = NULL;
5967 int i, rc;
5968
5969 if (host->flags & ATA_HOST_STARTED)
5970 return 0;
5971
5972 ata_finalize_port_ops(host->ops);
5973
5974 for (i = 0; i < host->n_ports; i++) {
5975 struct ata_port *ap = host->ports[i];
5976
5977 ata_finalize_port_ops(ap->ops);
5978
5979 if (!host->ops && !ata_port_is_dummy(ap))
5980 host->ops = ap->ops;
5981
5982 if (ap->ops->port_stop)
5983 have_stop = 1;
5984 }
5985
5986 if (host->ops->host_stop)
5987 have_stop = 1;
5988
5989 if (have_stop) {
5990 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5991 if (!start_dr)
5992 return -ENOMEM;
5993 }
5994
5995 for (i = 0; i < host->n_ports; i++) {
5996 struct ata_port *ap = host->ports[i];
5997
5998 if (ap->ops->port_start) {
5999 rc = ap->ops->port_start(ap);
6000 if (rc) {
6001 if (rc != -ENODEV)
6002 dev_err(host->dev,
6003 "failed to start port %d (errno=%d)\n",
6004 i, rc);
6005 goto err_out;
6006 }
6007 }
6008 ata_eh_freeze_port(ap);
6009 }
6010
6011 if (start_dr)
6012 devres_add(host->dev, start_dr);
6013 host->flags |= ATA_HOST_STARTED;
6014 return 0;
6015
6016 err_out:
6017 while (--i >= 0) {
6018 struct ata_port *ap = host->ports[i];
6019
6020 if (ap->ops->port_stop)
6021 ap->ops->port_stop(ap);
6022 }
6023 devres_free(start_dr);
6024 return rc;
6025 }
6026
6027 /**
6028 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6029 * @host: host to initialize
6030 * @dev: device host is attached to
6031 * @ops: port_ops
6032 *
6033 */
6034 void ata_host_init(struct ata_host *host, struct device *dev,
6035 struct ata_port_operations *ops)
6036 {
6037 spin_lock_init(&host->lock);
6038 mutex_init(&host->eh_mutex);
6039 host->dev = dev;
6040 host->ops = ops;
6041 }
6042
6043 void __ata_port_probe(struct ata_port *ap)
6044 {
6045 struct ata_eh_info *ehi = &ap->link.eh_info;
6046 unsigned long flags;
6047
6048 /* kick EH for boot probing */
6049 spin_lock_irqsave(ap->lock, flags);
6050
6051 ehi->probe_mask |= ATA_ALL_DEVICES;
6052 ehi->action |= ATA_EH_RESET;
6053 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6054
6055 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6056 ap->pflags |= ATA_PFLAG_LOADING;
6057 ata_port_schedule_eh(ap);
6058
6059 spin_unlock_irqrestore(ap->lock, flags);
6060 }
6061
6062 int ata_port_probe(struct ata_port *ap)
6063 {
6064 int rc = 0;
6065
6066 if (ap->ops->error_handler) {
6067 __ata_port_probe(ap);
6068 ata_port_wait_eh(ap);
6069 } else {
6070 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6071 rc = ata_bus_probe(ap);
6072 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6073 }
6074 return rc;
6075 }
6076
6077
6078 static void async_port_probe(void *data, async_cookie_t cookie)
6079 {
6080 struct ata_port *ap = data;
6081
6082 /*
6083 * If we're not allowed to scan this host in parallel,
6084 * we need to wait until all previous scans have completed
6085 * before going further.
6086 * Jeff Garzik says this is only within a controller, so we
6087 * don't need to wait for port 0, only for later ports.
6088 */
6089 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6090 async_synchronize_cookie(cookie);
6091
6092 (void)ata_port_probe(ap);
6093
6094 /* in order to keep device order, we need to synchronize at this point */
6095 async_synchronize_cookie(cookie);
6096
6097 ata_scsi_scan_host(ap, 1);
6098 }
6099
6100 /**
6101 * ata_host_register - register initialized ATA host
6102 * @host: ATA host to register
6103 * @sht: template for SCSI host
6104 *
6105 * Register initialized ATA host. @host is allocated using
6106 * ata_host_alloc() and fully initialized by LLD. This function
6107 * starts ports, registers @host with ATA and SCSI layers and
6108 * probe registered devices.
6109 *
6110 * LOCKING:
6111 * Inherited from calling layer (may sleep).
6112 *
6113 * RETURNS:
6114 * 0 on success, -errno otherwise.
6115 */
6116 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6117 {
6118 int i, rc;
6119
6120 /* host must have been started */
6121 if (!(host->flags & ATA_HOST_STARTED)) {
6122 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6123 WARN_ON(1);
6124 return -EINVAL;
6125 }
6126
6127 /* Blow away unused ports. This happens when LLD can't
6128 * determine the exact number of ports to allocate at
6129 * allocation time.
6130 */
6131 for (i = host->n_ports; host->ports[i]; i++)
6132 kfree(host->ports[i]);
6133
6134 /* give ports names and add SCSI hosts */
6135 for (i = 0; i < host->n_ports; i++)
6136 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6137
6138
6139 /* Create associated sysfs transport objects */
6140 for (i = 0; i < host->n_ports; i++) {
6141 rc = ata_tport_add(host->dev,host->ports[i]);
6142 if (rc) {
6143 goto err_tadd;
6144 }
6145 }
6146
6147 rc = ata_scsi_add_hosts(host, sht);
6148 if (rc)
6149 goto err_tadd;
6150
6151 ata_acpi_hotplug_init(host);
6152
6153 /* set cable, sata_spd_limit and report */
6154 for (i = 0; i < host->n_ports; i++) {
6155 struct ata_port *ap = host->ports[i];
6156 unsigned long xfer_mask;
6157
6158 /* set SATA cable type if still unset */
6159 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6160 ap->cbl = ATA_CBL_SATA;
6161
6162 /* init sata_spd_limit to the current value */
6163 sata_link_init_spd(&ap->link);
6164 if (ap->slave_link)
6165 sata_link_init_spd(ap->slave_link);
6166
6167 /* print per-port info to dmesg */
6168 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6169 ap->udma_mask);
6170
6171 if (!ata_port_is_dummy(ap)) {
6172 ata_port_info(ap, "%cATA max %s %s\n",
6173 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6174 ata_mode_string(xfer_mask),
6175 ap->link.eh_info.desc);
6176 ata_ehi_clear_desc(&ap->link.eh_info);
6177 } else
6178 ata_port_info(ap, "DUMMY\n");
6179 }
6180
6181 /* perform each probe asynchronously */
6182 for (i = 0; i < host->n_ports; i++) {
6183 struct ata_port *ap = host->ports[i];
6184 async_schedule(async_port_probe, ap);
6185 }
6186
6187 return 0;
6188
6189 err_tadd:
6190 while (--i >= 0) {
6191 ata_tport_delete(host->ports[i]);
6192 }
6193 return rc;
6194
6195 }
6196
6197 /**
6198 * ata_host_activate - start host, request IRQ and register it
6199 * @host: target ATA host
6200 * @irq: IRQ to request
6201 * @irq_handler: irq_handler used when requesting IRQ
6202 * @irq_flags: irq_flags used when requesting IRQ
6203 * @sht: scsi_host_template to use when registering the host
6204 *
6205 * After allocating an ATA host and initializing it, most libata
6206 * LLDs perform three steps to activate the host - start host,
6207 * request IRQ and register it. This helper takes necessasry
6208 * arguments and performs the three steps in one go.
6209 *
6210 * An invalid IRQ skips the IRQ registration and expects the host to
6211 * have set polling mode on the port. In this case, @irq_handler
6212 * should be NULL.
6213 *
6214 * LOCKING:
6215 * Inherited from calling layer (may sleep).
6216 *
6217 * RETURNS:
6218 * 0 on success, -errno otherwise.
6219 */
6220 int ata_host_activate(struct ata_host *host, int irq,
6221 irq_handler_t irq_handler, unsigned long irq_flags,
6222 struct scsi_host_template *sht)
6223 {
6224 int i, rc;
6225
6226 rc = ata_host_start(host);
6227 if (rc)
6228 return rc;
6229
6230 /* Special case for polling mode */
6231 if (!irq) {
6232 WARN_ON(irq_handler);
6233 return ata_host_register(host, sht);
6234 }
6235
6236 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6237 dev_driver_string(host->dev), host);
6238 if (rc)
6239 return rc;
6240
6241 for (i = 0; i < host->n_ports; i++)
6242 ata_port_desc(host->ports[i], "irq %d", irq);
6243
6244 rc = ata_host_register(host, sht);
6245 /* if failed, just free the IRQ and leave ports alone */
6246 if (rc)
6247 devm_free_irq(host->dev, irq, host);
6248
6249 return rc;
6250 }
6251
6252 /**
6253 * ata_port_detach - Detach ATA port in prepration of device removal
6254 * @ap: ATA port to be detached
6255 *
6256 * Detach all ATA devices and the associated SCSI devices of @ap;
6257 * then, remove the associated SCSI host. @ap is guaranteed to
6258 * be quiescent on return from this function.
6259 *
6260 * LOCKING:
6261 * Kernel thread context (may sleep).
6262 */
6263 static void ata_port_detach(struct ata_port *ap)
6264 {
6265 unsigned long flags;
6266
6267 if (!ap->ops->error_handler)
6268 goto skip_eh;
6269
6270 /* tell EH we're leaving & flush EH */
6271 spin_lock_irqsave(ap->lock, flags);
6272 ap->pflags |= ATA_PFLAG_UNLOADING;
6273 ata_port_schedule_eh(ap);
6274 spin_unlock_irqrestore(ap->lock, flags);
6275
6276 /* wait till EH commits suicide */
6277 ata_port_wait_eh(ap);
6278
6279 /* it better be dead now */
6280 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6281
6282 cancel_delayed_work_sync(&ap->hotplug_task);
6283
6284 skip_eh:
6285 if (ap->pmp_link) {
6286 int i;
6287 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6288 ata_tlink_delete(&ap->pmp_link[i]);
6289 }
6290 ata_tport_delete(ap);
6291
6292 /* remove the associated SCSI host */
6293 scsi_remove_host(ap->scsi_host);
6294 }
6295
6296 /**
6297 * ata_host_detach - Detach all ports of an ATA host
6298 * @host: Host to detach
6299 *
6300 * Detach all ports of @host.
6301 *
6302 * LOCKING:
6303 * Kernel thread context (may sleep).
6304 */
6305 void ata_host_detach(struct ata_host *host)
6306 {
6307 int i;
6308
6309 for (i = 0; i < host->n_ports; i++)
6310 ata_port_detach(host->ports[i]);
6311
6312 /* the host is dead now, dissociate ACPI */
6313 ata_acpi_dissociate(host);
6314 }
6315
6316 #ifdef CONFIG_PCI
6317
6318 /**
6319 * ata_pci_remove_one - PCI layer callback for device removal
6320 * @pdev: PCI device that was removed
6321 *
6322 * PCI layer indicates to libata via this hook that hot-unplug or
6323 * module unload event has occurred. Detach all ports. Resource
6324 * release is handled via devres.
6325 *
6326 * LOCKING:
6327 * Inherited from PCI layer (may sleep).
6328 */
6329 void ata_pci_remove_one(struct pci_dev *pdev)
6330 {
6331 struct ata_host *host = pci_get_drvdata(pdev);
6332
6333 ata_host_detach(host);
6334 }
6335
6336 /* move to PCI subsystem */
6337 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6338 {
6339 unsigned long tmp = 0;
6340
6341 switch (bits->width) {
6342 case 1: {
6343 u8 tmp8 = 0;
6344 pci_read_config_byte(pdev, bits->reg, &tmp8);
6345 tmp = tmp8;
6346 break;
6347 }
6348 case 2: {
6349 u16 tmp16 = 0;
6350 pci_read_config_word(pdev, bits->reg, &tmp16);
6351 tmp = tmp16;
6352 break;
6353 }
6354 case 4: {
6355 u32 tmp32 = 0;
6356 pci_read_config_dword(pdev, bits->reg, &tmp32);
6357 tmp = tmp32;
6358 break;
6359 }
6360
6361 default:
6362 return -EINVAL;
6363 }
6364
6365 tmp &= bits->mask;
6366
6367 return (tmp == bits->val) ? 1 : 0;
6368 }
6369
6370 #ifdef CONFIG_PM
6371 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6372 {
6373 pci_save_state(pdev);
6374 pci_disable_device(pdev);
6375
6376 if (mesg.event & PM_EVENT_SLEEP)
6377 pci_set_power_state(pdev, PCI_D3hot);
6378 }
6379
6380 int ata_pci_device_do_resume(struct pci_dev *pdev)
6381 {
6382 int rc;
6383
6384 pci_set_power_state(pdev, PCI_D0);
6385 pci_restore_state(pdev);
6386
6387 rc = pcim_enable_device(pdev);
6388 if (rc) {
6389 dev_err(&pdev->dev,
6390 "failed to enable device after resume (%d)\n", rc);
6391 return rc;
6392 }
6393
6394 pci_set_master(pdev);
6395 return 0;
6396 }
6397
6398 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6399 {
6400 struct ata_host *host = pci_get_drvdata(pdev);
6401 int rc = 0;
6402
6403 rc = ata_host_suspend(host, mesg);
6404 if (rc)
6405 return rc;
6406
6407 ata_pci_device_do_suspend(pdev, mesg);
6408
6409 return 0;
6410 }
6411
6412 int ata_pci_device_resume(struct pci_dev *pdev)
6413 {
6414 struct ata_host *host = pci_get_drvdata(pdev);
6415 int rc;
6416
6417 rc = ata_pci_device_do_resume(pdev);
6418 if (rc == 0)
6419 ata_host_resume(host);
6420 return rc;
6421 }
6422 #endif /* CONFIG_PM */
6423
6424 #endif /* CONFIG_PCI */
6425
6426 /**
6427 * ata_platform_remove_one - Platform layer callback for device removal
6428 * @pdev: Platform device that was removed
6429 *
6430 * Platform layer indicates to libata via this hook that hot-unplug or
6431 * module unload event has occurred. Detach all ports. Resource
6432 * release is handled via devres.
6433 *
6434 * LOCKING:
6435 * Inherited from platform layer (may sleep).
6436 */
6437 int ata_platform_remove_one(struct platform_device *pdev)
6438 {
6439 struct ata_host *host = platform_get_drvdata(pdev);
6440
6441 ata_host_detach(host);
6442
6443 return 0;
6444 }
6445
6446 static int __init ata_parse_force_one(char **cur,
6447 struct ata_force_ent *force_ent,
6448 const char **reason)
6449 {
6450 /* FIXME: Currently, there's no way to tag init const data and
6451 * using __initdata causes build failure on some versions of
6452 * gcc. Once __initdataconst is implemented, add const to the
6453 * following structure.
6454 */
6455 static struct ata_force_param force_tbl[] __initdata = {
6456 { "40c", .cbl = ATA_CBL_PATA40 },
6457 { "80c", .cbl = ATA_CBL_PATA80 },
6458 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6459 { "unk", .cbl = ATA_CBL_PATA_UNK },
6460 { "ign", .cbl = ATA_CBL_PATA_IGN },
6461 { "sata", .cbl = ATA_CBL_SATA },
6462 { "1.5Gbps", .spd_limit = 1 },
6463 { "3.0Gbps", .spd_limit = 2 },
6464 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6465 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6466 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6467 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6468 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6469 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6470 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6471 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6472 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6473 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6474 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6475 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6476 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6477 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6478 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6479 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6480 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6481 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6482 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6483 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6484 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6485 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6486 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6487 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6488 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6489 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6490 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6491 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6492 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6493 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6494 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6495 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6496 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6497 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6498 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6499 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6500 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6501 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6502 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6503 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6504 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6505 };
6506 char *start = *cur, *p = *cur;
6507 char *id, *val, *endp;
6508 const struct ata_force_param *match_fp = NULL;
6509 int nr_matches = 0, i;
6510
6511 /* find where this param ends and update *cur */
6512 while (*p != '\0' && *p != ',')
6513 p++;
6514
6515 if (*p == '\0')
6516 *cur = p;
6517 else
6518 *cur = p + 1;
6519
6520 *p = '\0';
6521
6522 /* parse */
6523 p = strchr(start, ':');
6524 if (!p) {
6525 val = strstrip(start);
6526 goto parse_val;
6527 }
6528 *p = '\0';
6529
6530 id = strstrip(start);
6531 val = strstrip(p + 1);
6532
6533 /* parse id */
6534 p = strchr(id, '.');
6535 if (p) {
6536 *p++ = '\0';
6537 force_ent->device = simple_strtoul(p, &endp, 10);
6538 if (p == endp || *endp != '\0') {
6539 *reason = "invalid device";
6540 return -EINVAL;
6541 }
6542 }
6543
6544 force_ent->port = simple_strtoul(id, &endp, 10);
6545 if (p == endp || *endp != '\0') {
6546 *reason = "invalid port/link";
6547 return -EINVAL;
6548 }
6549
6550 parse_val:
6551 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6552 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6553 const struct ata_force_param *fp = &force_tbl[i];
6554
6555 if (strncasecmp(val, fp->name, strlen(val)))
6556 continue;
6557
6558 nr_matches++;
6559 match_fp = fp;
6560
6561 if (strcasecmp(val, fp->name) == 0) {
6562 nr_matches = 1;
6563 break;
6564 }
6565 }
6566
6567 if (!nr_matches) {
6568 *reason = "unknown value";
6569 return -EINVAL;
6570 }
6571 if (nr_matches > 1) {
6572 *reason = "ambigious value";
6573 return -EINVAL;
6574 }
6575
6576 force_ent->param = *match_fp;
6577
6578 return 0;
6579 }
6580
6581 static void __init ata_parse_force_param(void)
6582 {
6583 int idx = 0, size = 1;
6584 int last_port = -1, last_device = -1;
6585 char *p, *cur, *next;
6586
6587 /* calculate maximum number of params and allocate force_tbl */
6588 for (p = ata_force_param_buf; *p; p++)
6589 if (*p == ',')
6590 size++;
6591
6592 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6593 if (!ata_force_tbl) {
6594 printk(KERN_WARNING "ata: failed to extend force table, "
6595 "libata.force ignored\n");
6596 return;
6597 }
6598
6599 /* parse and populate the table */
6600 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6601 const char *reason = "";
6602 struct ata_force_ent te = { .port = -1, .device = -1 };
6603
6604 next = cur;
6605 if (ata_parse_force_one(&next, &te, &reason)) {
6606 printk(KERN_WARNING "ata: failed to parse force "
6607 "parameter \"%s\" (%s)\n",
6608 cur, reason);
6609 continue;
6610 }
6611
6612 if (te.port == -1) {
6613 te.port = last_port;
6614 te.device = last_device;
6615 }
6616
6617 ata_force_tbl[idx++] = te;
6618
6619 last_port = te.port;
6620 last_device = te.device;
6621 }
6622
6623 ata_force_tbl_size = idx;
6624 }
6625
6626 static int __init ata_init(void)
6627 {
6628 int rc;
6629
6630 ata_parse_force_param();
6631
6632 ata_acpi_register();
6633
6634 rc = ata_sff_init();
6635 if (rc) {
6636 kfree(ata_force_tbl);
6637 return rc;
6638 }
6639
6640 libata_transport_init();
6641 ata_scsi_transport_template = ata_attach_transport();
6642 if (!ata_scsi_transport_template) {
6643 ata_sff_exit();
6644 rc = -ENOMEM;
6645 goto err_out;
6646 }
6647
6648 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6649 return 0;
6650
6651 err_out:
6652 return rc;
6653 }
6654
6655 static void __exit ata_exit(void)
6656 {
6657 ata_release_transport(ata_scsi_transport_template);
6658 libata_transport_exit();
6659 ata_sff_exit();
6660 ata_acpi_unregister();
6661 kfree(ata_force_tbl);
6662 }
6663
6664 subsys_initcall(ata_init);
6665 module_exit(ata_exit);
6666
6667 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6668
6669 int ata_ratelimit(void)
6670 {
6671 return __ratelimit(&ratelimit);
6672 }
6673
6674 /**
6675 * ata_msleep - ATA EH owner aware msleep
6676 * @ap: ATA port to attribute the sleep to
6677 * @msecs: duration to sleep in milliseconds
6678 *
6679 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6680 * ownership is released before going to sleep and reacquired
6681 * after the sleep is complete. IOW, other ports sharing the
6682 * @ap->host will be allowed to own the EH while this task is
6683 * sleeping.
6684 *
6685 * LOCKING:
6686 * Might sleep.
6687 */
6688 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6689 {
6690 bool owns_eh = ap && ap->host->eh_owner == current;
6691
6692 if (owns_eh)
6693 ata_eh_release(ap);
6694
6695 msleep(msecs);
6696
6697 if (owns_eh)
6698 ata_eh_acquire(ap);
6699 }
6700
6701 /**
6702 * ata_wait_register - wait until register value changes
6703 * @ap: ATA port to wait register for, can be NULL
6704 * @reg: IO-mapped register
6705 * @mask: Mask to apply to read register value
6706 * @val: Wait condition
6707 * @interval: polling interval in milliseconds
6708 * @timeout: timeout in milliseconds
6709 *
6710 * Waiting for some bits of register to change is a common
6711 * operation for ATA controllers. This function reads 32bit LE
6712 * IO-mapped register @reg and tests for the following condition.
6713 *
6714 * (*@reg & mask) != val
6715 *
6716 * If the condition is met, it returns; otherwise, the process is
6717 * repeated after @interval_msec until timeout.
6718 *
6719 * LOCKING:
6720 * Kernel thread context (may sleep)
6721 *
6722 * RETURNS:
6723 * The final register value.
6724 */
6725 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6726 unsigned long interval, unsigned long timeout)
6727 {
6728 unsigned long deadline;
6729 u32 tmp;
6730
6731 tmp = ioread32(reg);
6732
6733 /* Calculate timeout _after_ the first read to make sure
6734 * preceding writes reach the controller before starting to
6735 * eat away the timeout.
6736 */
6737 deadline = ata_deadline(jiffies, timeout);
6738
6739 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6740 ata_msleep(ap, interval);
6741 tmp = ioread32(reg);
6742 }
6743
6744 return tmp;
6745 }
6746
6747 /*
6748 * Dummy port_ops
6749 */
6750 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6751 {
6752 return AC_ERR_SYSTEM;
6753 }
6754
6755 static void ata_dummy_error_handler(struct ata_port *ap)
6756 {
6757 /* truly dummy */
6758 }
6759
6760 struct ata_port_operations ata_dummy_port_ops = {
6761 .qc_prep = ata_noop_qc_prep,
6762 .qc_issue = ata_dummy_qc_issue,
6763 .error_handler = ata_dummy_error_handler,
6764 .sched_eh = ata_std_sched_eh,
6765 .end_eh = ata_std_end_eh,
6766 };
6767
6768 const struct ata_port_info ata_dummy_port_info = {
6769 .port_ops = &ata_dummy_port_ops,
6770 };
6771
6772 /*
6773 * Utility print functions
6774 */
6775 int ata_port_printk(const struct ata_port *ap, const char *level,
6776 const char *fmt, ...)
6777 {
6778 struct va_format vaf;
6779 va_list args;
6780 int r;
6781
6782 va_start(args, fmt);
6783
6784 vaf.fmt = fmt;
6785 vaf.va = &args;
6786
6787 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6788
6789 va_end(args);
6790
6791 return r;
6792 }
6793 EXPORT_SYMBOL(ata_port_printk);
6794
6795 int ata_link_printk(const struct ata_link *link, const char *level,
6796 const char *fmt, ...)
6797 {
6798 struct va_format vaf;
6799 va_list args;
6800 int r;
6801
6802 va_start(args, fmt);
6803
6804 vaf.fmt = fmt;
6805 vaf.va = &args;
6806
6807 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6808 r = printk("%sata%u.%02u: %pV",
6809 level, link->ap->print_id, link->pmp, &vaf);
6810 else
6811 r = printk("%sata%u: %pV",
6812 level, link->ap->print_id, &vaf);
6813
6814 va_end(args);
6815
6816 return r;
6817 }
6818 EXPORT_SYMBOL(ata_link_printk);
6819
6820 int ata_dev_printk(const struct ata_device *dev, const char *level,
6821 const char *fmt, ...)
6822 {
6823 struct va_format vaf;
6824 va_list args;
6825 int r;
6826
6827 va_start(args, fmt);
6828
6829 vaf.fmt = fmt;
6830 vaf.va = &args;
6831
6832 r = printk("%sata%u.%02u: %pV",
6833 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6834 &vaf);
6835
6836 va_end(args);
6837
6838 return r;
6839 }
6840 EXPORT_SYMBOL(ata_dev_printk);
6841
6842 void ata_print_version(const struct device *dev, const char *version)
6843 {
6844 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6845 }
6846 EXPORT_SYMBOL(ata_print_version);
6847
6848 /*
6849 * libata is essentially a library of internal helper functions for
6850 * low-level ATA host controller drivers. As such, the API/ABI is
6851 * likely to change as new drivers are added and updated.
6852 * Do not depend on ABI/API stability.
6853 */
6854 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6855 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6856 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6857 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6858 EXPORT_SYMBOL_GPL(sata_port_ops);
6859 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6860 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6861 EXPORT_SYMBOL_GPL(ata_link_next);
6862 EXPORT_SYMBOL_GPL(ata_dev_next);
6863 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6864 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6865 EXPORT_SYMBOL_GPL(ata_host_init);
6866 EXPORT_SYMBOL_GPL(ata_host_alloc);
6867 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6868 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6869 EXPORT_SYMBOL_GPL(ata_host_start);
6870 EXPORT_SYMBOL_GPL(ata_host_register);
6871 EXPORT_SYMBOL_GPL(ata_host_activate);
6872 EXPORT_SYMBOL_GPL(ata_host_detach);
6873 EXPORT_SYMBOL_GPL(ata_sg_init);
6874 EXPORT_SYMBOL_GPL(ata_qc_complete);
6875 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6876 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6877 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6878 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6879 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6880 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6881 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6882 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6883 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6884 EXPORT_SYMBOL_GPL(ata_mode_string);
6885 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6886 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6887 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6888 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6889 EXPORT_SYMBOL_GPL(ata_dev_disable);
6890 EXPORT_SYMBOL_GPL(sata_set_spd);
6891 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6892 EXPORT_SYMBOL_GPL(sata_link_debounce);
6893 EXPORT_SYMBOL_GPL(sata_link_resume);
6894 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6895 EXPORT_SYMBOL_GPL(ata_std_prereset);
6896 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6897 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6898 EXPORT_SYMBOL_GPL(ata_std_postreset);
6899 EXPORT_SYMBOL_GPL(ata_dev_classify);
6900 EXPORT_SYMBOL_GPL(ata_dev_pair);
6901 EXPORT_SYMBOL_GPL(ata_ratelimit);
6902 EXPORT_SYMBOL_GPL(ata_msleep);
6903 EXPORT_SYMBOL_GPL(ata_wait_register);
6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6908 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6909 EXPORT_SYMBOL_GPL(sata_scr_valid);
6910 EXPORT_SYMBOL_GPL(sata_scr_read);
6911 EXPORT_SYMBOL_GPL(sata_scr_write);
6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6913 EXPORT_SYMBOL_GPL(ata_link_online);
6914 EXPORT_SYMBOL_GPL(ata_link_offline);
6915 #ifdef CONFIG_PM
6916 EXPORT_SYMBOL_GPL(ata_host_suspend);
6917 EXPORT_SYMBOL_GPL(ata_host_resume);
6918 #endif /* CONFIG_PM */
6919 EXPORT_SYMBOL_GPL(ata_id_string);
6920 EXPORT_SYMBOL_GPL(ata_id_c_string);
6921 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6923
6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6925 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6926 EXPORT_SYMBOL_GPL(ata_timing_compute);
6927 EXPORT_SYMBOL_GPL(ata_timing_merge);
6928 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6929
6930 #ifdef CONFIG_PCI
6931 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6932 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6933 #ifdef CONFIG_PM
6934 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6935 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6936 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6937 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6938 #endif /* CONFIG_PM */
6939 #endif /* CONFIG_PCI */
6940
6941 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6942
6943 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6944 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6945 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6946 EXPORT_SYMBOL_GPL(ata_port_desc);
6947 #ifdef CONFIG_PCI
6948 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6949 #endif /* CONFIG_PCI */
6950 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6951 EXPORT_SYMBOL_GPL(ata_link_abort);
6952 EXPORT_SYMBOL_GPL(ata_port_abort);
6953 EXPORT_SYMBOL_GPL(ata_port_freeze);
6954 EXPORT_SYMBOL_GPL(sata_async_notification);
6955 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6956 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6957 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6958 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6959 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6960 EXPORT_SYMBOL_GPL(ata_do_eh);
6961 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6962
6963 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6964 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6965 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6966 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6967 EXPORT_SYMBOL_GPL(ata_cable_sata);