Staging: comedi: Remove lsampl_t and sampl_t typedefs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67
68 #include "libata.h"
69
70
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
80 };
81
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
84
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
87 };
88
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99
100 struct workqueue_struct *ata_aux_wq;
101
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
110 };
111
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
116 };
117
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
166
167
168 static bool ata_sstatus_online(u32 sstatus)
169 {
170 return (sstatus & 0xf) == 0x3;
171 }
172
173 /**
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
178 *
179 * LOCKING:
180 * Host lock or EH context.
181 *
182 * RETURNS:
183 * Pointer to the next link.
184 */
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 enum ata_link_iter_mode mode)
187 {
188 BUG_ON(mode != ATA_LITER_EDGE &&
189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190
191 /* NULL link indicates start of iteration */
192 if (!link)
193 switch (mode) {
194 case ATA_LITER_EDGE:
195 case ATA_LITER_PMP_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 /* fall through */
199 case ATA_LITER_HOST_FIRST:
200 return &ap->link;
201 }
202
203 /* we just iterated over the host link, what's next? */
204 if (link == &ap->link)
205 switch (mode) {
206 case ATA_LITER_HOST_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_PMP_FIRST:
211 if (unlikely(ap->slave_link))
212 return ap->slave_link;
213 /* fall through */
214 case ATA_LITER_EDGE:
215 return NULL;
216 }
217
218 /* slave_link excludes PMP */
219 if (unlikely(link == ap->slave_link))
220 return NULL;
221
222 /* we were over a PMP link */
223 if (++link < ap->pmp_link + ap->nr_pmp_links)
224 return link;
225
226 if (mode == ATA_LITER_PMP_FIRST)
227 return &ap->link;
228
229 return NULL;
230 }
231
232 /**
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
237 *
238 * LOCKING:
239 * Host lock or EH context.
240 *
241 * RETURNS:
242 * Pointer to the next device.
243 */
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 enum ata_dev_iter_mode mode)
246 {
247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249
250 /* NULL dev indicates start of iteration */
251 if (!dev)
252 switch (mode) {
253 case ATA_DITER_ENABLED:
254 case ATA_DITER_ALL:
255 dev = link->device;
256 goto check;
257 case ATA_DITER_ENABLED_REVERSE:
258 case ATA_DITER_ALL_REVERSE:
259 dev = link->device + ata_link_max_devices(link) - 1;
260 goto check;
261 }
262
263 next:
264 /* move to the next one */
265 switch (mode) {
266 case ATA_DITER_ENABLED:
267 case ATA_DITER_ALL:
268 if (++dev < link->device + ata_link_max_devices(link))
269 goto check;
270 return NULL;
271 case ATA_DITER_ENABLED_REVERSE:
272 case ATA_DITER_ALL_REVERSE:
273 if (--dev >= link->device)
274 goto check;
275 return NULL;
276 }
277
278 check:
279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 !ata_dev_enabled(dev))
281 goto next;
282 return dev;
283 }
284
285 /**
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
288 *
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
292 *
293 * LOCKING:
294 * Don't care.
295 *
296 * RETURNS:
297 * Pointer to the found physical link.
298 */
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 {
301 struct ata_port *ap = dev->link->ap;
302
303 if (!ap->slave_link)
304 return dev->link;
305 if (!dev->devno)
306 return &ap->link;
307 return ap->slave_link;
308 }
309
310 /**
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
313 *
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318 * same effect.
319 *
320 * LOCKING:
321 * EH context.
322 */
323 void ata_force_cbl(struct ata_port *ap)
324 {
325 int i;
326
327 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
329
330 if (fe->port != -1 && fe->port != ap->print_id)
331 continue;
332
333 if (fe->param.cbl == ATA_CBL_NONE)
334 continue;
335
336 ap->cbl = fe->param.cbl;
337 ata_port_printk(ap, KERN_NOTICE,
338 "FORCE: cable set to %s\n", fe->param.name);
339 return;
340 }
341 }
342
343 /**
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
346 *
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
355 *
356 * LOCKING:
357 * EH context.
358 */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
364
365 if (ata_is_host_link(link))
366 linkno += 15;
367
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
370
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
373
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
376
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_printk(link, KERN_NOTICE,
381 "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
384 }
385
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_printk(link, KERN_NOTICE,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
392 }
393 }
394 }
395
396 /**
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
399 *
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
403 *
404 * LOCKING:
405 * EH context.
406 */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
412
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
416
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
420
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
423
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
427
428 if (!fe->param.xfer_mask)
429 continue;
430
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
442 }
443
444 ata_dev_printk(dev, KERN_NOTICE,
445 "FORCE: xfer_mask set to %s\n", fe->param.name);
446 return;
447 }
448 }
449
450 /**
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
453 *
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
457 *
458 * LOCKING:
459 * EH context.
460 */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
466
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
470
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
473
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
476
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
480
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
484
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
487
488 ata_dev_printk(dev, KERN_NOTICE,
489 "FORCE: horkage modified (%s)\n", fe->param.name);
490 }
491 }
492
493 /**
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
496 *
497 * Determine ATAPI command type from @opcode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 */
505 int atapi_cmd_type(u8 opcode)
506 {
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
511
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
516
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
520
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
528 }
529 }
530
531 /**
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
537 *
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
553
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
558
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
563
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
568
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
573 }
574
575 /**
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
579 *
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 *
582 * LOCKING:
583 * Inherited from caller.
584 */
585
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
590
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
595
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
599
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
602 }
603
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
610 0,
611 0,
612 0,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
619 0,
620 0,
621 0,
622 0,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
628 0,
629 0,
630 0,
631 ATA_CMD_WRITE_FUA_EXT
632 };
633
634 /**
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
638 *
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
641 *
642 * LOCKING:
643 * caller.
644 */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 u8 cmd;
648
649 int index, fua, lba48, write;
650
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
665 }
666
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
671 }
672 return -1;
673 }
674
675 /**
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
679 *
680 * LOCKING:
681 * None.
682 *
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
686 *
687 * RETURNS:
688 * Block address read from @tf.
689 */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 u64 block = 0;
693
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
701
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
707
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
711
712 block = (cyl * dev->heads + head) * dev->sectors + sect;
713 }
714
715 return block;
716 }
717
718 /**
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
726 *
727 * LOCKING:
728 * None.
729 *
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
732 *
733 * RETURNS:
734 *
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
737 */
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 u64 block, u32 n_block, unsigned int tf_flags,
740 unsigned int tag)
741 {
742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 tf->flags |= tf_flags;
744
745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 /* yay, NCQ */
747 if (!lba_48_ok(block, n_block))
748 return -ERANGE;
749
750 tf->protocol = ATA_PROT_NCQ;
751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752
753 if (tf->flags & ATA_TFLAG_WRITE)
754 tf->command = ATA_CMD_FPDMA_WRITE;
755 else
756 tf->command = ATA_CMD_FPDMA_READ;
757
758 tf->nsect = tag << 3;
759 tf->hob_feature = (n_block >> 8) & 0xff;
760 tf->feature = n_block & 0xff;
761
762 tf->hob_lbah = (block >> 40) & 0xff;
763 tf->hob_lbam = (block >> 32) & 0xff;
764 tf->hob_lbal = (block >> 24) & 0xff;
765 tf->lbah = (block >> 16) & 0xff;
766 tf->lbam = (block >> 8) & 0xff;
767 tf->lbal = block & 0xff;
768
769 tf->device = 1 << 6;
770 if (tf->flags & ATA_TFLAG_FUA)
771 tf->device |= 1 << 7;
772 } else if (dev->flags & ATA_DFLAG_LBA) {
773 tf->flags |= ATA_TFLAG_LBA;
774
775 if (lba_28_ok(block, n_block)) {
776 /* use LBA28 */
777 tf->device |= (block >> 24) & 0xf;
778 } else if (lba_48_ok(block, n_block)) {
779 if (!(dev->flags & ATA_DFLAG_LBA48))
780 return -ERANGE;
781
782 /* use LBA48 */
783 tf->flags |= ATA_TFLAG_LBA48;
784
785 tf->hob_nsect = (n_block >> 8) & 0xff;
786
787 tf->hob_lbah = (block >> 40) & 0xff;
788 tf->hob_lbam = (block >> 32) & 0xff;
789 tf->hob_lbal = (block >> 24) & 0xff;
790 } else
791 /* request too large even for LBA48 */
792 return -ERANGE;
793
794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 return -EINVAL;
796
797 tf->nsect = n_block & 0xff;
798
799 tf->lbah = (block >> 16) & 0xff;
800 tf->lbam = (block >> 8) & 0xff;
801 tf->lbal = block & 0xff;
802
803 tf->device |= ATA_LBA;
804 } else {
805 /* CHS */
806 u32 sect, head, cyl, track;
807
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block, n_block))
810 return -ERANGE;
811
812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 return -EINVAL;
814
815 /* Convert LBA to CHS */
816 track = (u32)block / dev->sectors;
817 cyl = track / dev->heads;
818 head = track % dev->heads;
819 sect = (u32)block % dev->sectors + 1;
820
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32)block, track, cyl, head, sect);
823
824 /* Check whether the converted CHS can fit.
825 Cylinder: 0-65535
826 Head: 0-15
827 Sector: 1-255*/
828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 return -ERANGE;
830
831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 tf->lbal = sect;
833 tf->lbam = cyl;
834 tf->lbah = cyl >> 8;
835 tf->device |= head;
836 }
837
838 return 0;
839 }
840
841 /**
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
846 *
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Packed xfer_mask.
855 */
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 unsigned long mwdma_mask,
858 unsigned long udma_mask)
859 {
860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
863 }
864
865 /**
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
871 *
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
874 */
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 {
878 if (pio_mask)
879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 if (mwdma_mask)
881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 if (udma_mask)
883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
884 }
885
886 static const struct ata_xfer_ent {
887 int shift, bits;
888 u8 base;
889 } ata_xfer_tbl[] = {
890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 { -1, },
894 };
895
896 /**
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
899 *
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
902 *
903 * LOCKING:
904 * None.
905 *
906 * RETURNS:
907 * Matching XFER_* value, 0xff if no match found.
908 */
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 {
911 int highbit = fls(xfer_mask) - 1;
912 const struct ata_xfer_ent *ent;
913
914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 return ent->base + highbit - ent->shift;
917 return 0xff;
918 }
919
920 /**
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
923 *
924 * Return matching xfer_mask for @xfer_mode.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching xfer_mask, 0 if no match found.
931 */
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 {
934 const struct ata_xfer_ent *ent;
935
936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 & ~((1 << ent->shift) - 1);
940 return 0;
941 }
942
943 /**
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_shift for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_shift, -1 if no match found.
954 */
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ent->shift;
962 return -1;
963 }
964
965 /**
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
968 *
969 * Determine string which represents the highest speed
970 * (highest bit in @modemask).
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Constant C string representing highest speed listed in
977 * @mode_mask, or the constant C string "<n/a>".
978 */
979 const char *ata_mode_string(unsigned long xfer_mask)
980 {
981 static const char * const xfer_mode_str[] = {
982 "PIO0",
983 "PIO1",
984 "PIO2",
985 "PIO3",
986 "PIO4",
987 "PIO5",
988 "PIO6",
989 "MWDMA0",
990 "MWDMA1",
991 "MWDMA2",
992 "MWDMA3",
993 "MWDMA4",
994 "UDMA/16",
995 "UDMA/25",
996 "UDMA/33",
997 "UDMA/44",
998 "UDMA/66",
999 "UDMA/100",
1000 "UDMA/133",
1001 "UDMA7",
1002 };
1003 int highbit;
1004
1005 highbit = fls(xfer_mask) - 1;
1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 return xfer_mode_str[highbit];
1008 return "<n/a>";
1009 }
1010
1011 static const char *sata_spd_string(unsigned int spd)
1012 {
1013 static const char * const spd_str[] = {
1014 "1.5 Gbps",
1015 "3.0 Gbps",
1016 "6.0 Gbps",
1017 };
1018
1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 return "<unknown>";
1021 return spd_str[spd - 1];
1022 }
1023
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 {
1026 struct ata_link *link = dev->link;
1027 struct ata_port *ap = link->ap;
1028 u32 scontrol;
1029 unsigned int err_mask;
1030 int rc;
1031
1032 /*
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1039 */
1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 ap->pm_policy = NOT_AVAILABLE;
1042 return -EINVAL;
1043 }
1044
1045 /*
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1048 *
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1054 */
1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 if (rc)
1057 return rc;
1058
1059 switch (policy) {
1060 case MIN_POWER:
1061 /* no restrictions on IPM transitions */
1062 scontrol &= ~(0x3 << 8);
1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 if (rc)
1065 return rc;
1066
1067 /* enable DIPM */
1068 if (dev->flags & ATA_DFLAG_DIPM)
1069 err_mask = ata_dev_set_feature(dev,
1070 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 break;
1072 case MEDIUM_POWER:
1073 /* allow IPM to PARTIAL */
1074 scontrol &= ~(0x1 << 8);
1075 scontrol |= (0x2 << 8);
1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 if (rc)
1078 return rc;
1079
1080 /*
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1084 */
1085 break;
1086 case NOT_AVAILABLE:
1087 case MAX_PERFORMANCE:
1088 /* disable all IPM transitions */
1089 scontrol |= (0x3 << 8);
1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 if (rc)
1092 return rc;
1093
1094 /*
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1098 */
1099 break;
1100 }
1101
1102 /* FIXME: handle SET FEATURES failure */
1103 (void) err_mask;
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * ata_dev_enable_pm - enable SATA interface power management
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
1112 *
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1117 *
1118 * Locking: Caller.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 */
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 {
1123 int rc = 0;
1124 struct ata_port *ap = dev->link->ap;
1125
1126 /* set HIPM first, then DIPM */
1127 if (ap->ops->enable_pm)
1128 rc = ap->ops->enable_pm(ap, policy);
1129 if (rc)
1130 goto enable_pm_out;
1131 rc = ata_dev_set_dipm(dev, policy);
1132
1133 enable_pm_out:
1134 if (rc)
1135 ap->pm_policy = MAX_PERFORMANCE;
1136 else
1137 ap->pm_policy = policy;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1139 }
1140
1141 #ifdef CONFIG_PM
1142 /**
1143 * ata_dev_disable_pm - disable SATA interface power management
1144 * @dev: device to disable power management
1145 *
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1150 *
1151 * Locking: Caller.
1152 * Returns: void
1153 */
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1155 {
1156 struct ata_port *ap = dev->link->ap;
1157
1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 if (ap->ops->disable_pm)
1160 ap->ops->disable_pm(ap);
1161 }
1162 #endif /* CONFIG_PM */
1163
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 {
1166 ap->pm_policy = policy;
1167 ap->link.eh_info.action |= ATA_EH_LPM;
1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 ata_port_schedule_eh(ap);
1170 }
1171
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1174 {
1175 struct ata_link *link;
1176 struct ata_port *ap;
1177 struct ata_device *dev;
1178 int i;
1179
1180 for (i = 0; i < host->n_ports; i++) {
1181 ap = host->ports[i];
1182 ata_for_each_link(link, ap, EDGE) {
1183 ata_for_each_dev(dev, link, ALL)
1184 ata_dev_disable_pm(dev);
1185 }
1186 }
1187 }
1188
1189 static void ata_lpm_disable(struct ata_host *host)
1190 {
1191 int i;
1192
1193 for (i = 0; i < host->n_ports; i++) {
1194 struct ata_port *ap = host->ports[i];
1195 ata_lpm_schedule(ap, ap->pm_policy);
1196 }
1197 }
1198 #endif /* CONFIG_PM */
1199
1200 /**
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1203 *
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1207 *
1208 * LOCKING:
1209 * None.
1210 *
1211 * RETURNS:
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1214 */
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 {
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
1220 *
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1230 * SerialATA.
1231 *
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 */
1235 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1236 DPRINTK("found ATA device by sig\n");
1237 return ATA_DEV_ATA;
1238 }
1239
1240 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1241 DPRINTK("found ATAPI device by sig\n");
1242 return ATA_DEV_ATAPI;
1243 }
1244
1245 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1246 DPRINTK("found PMP device by sig\n");
1247 return ATA_DEV_PMP;
1248 }
1249
1250 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1251 printk(KERN_INFO "ata: SEMB device ignored\n");
1252 return ATA_DEV_SEMB_UNSUP; /* not yet */
1253 }
1254
1255 DPRINTK("unknown device\n");
1256 return ATA_DEV_UNKNOWN;
1257 }
1258
1259 /**
1260 * ata_id_string - Convert IDENTIFY DEVICE page into string
1261 * @id: IDENTIFY DEVICE results we will examine
1262 * @s: string into which data is output
1263 * @ofs: offset into identify device page
1264 * @len: length of string to return. must be an even number.
1265 *
1266 * The strings in the IDENTIFY DEVICE page are broken up into
1267 * 16-bit chunks. Run through the string, and output each
1268 * 8-bit chunk linearly, regardless of platform.
1269 *
1270 * LOCKING:
1271 * caller.
1272 */
1273
1274 void ata_id_string(const u16 *id, unsigned char *s,
1275 unsigned int ofs, unsigned int len)
1276 {
1277 unsigned int c;
1278
1279 BUG_ON(len & 1);
1280
1281 while (len > 0) {
1282 c = id[ofs] >> 8;
1283 *s = c;
1284 s++;
1285
1286 c = id[ofs] & 0xff;
1287 *s = c;
1288 s++;
1289
1290 ofs++;
1291 len -= 2;
1292 }
1293 }
1294
1295 /**
1296 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1297 * @id: IDENTIFY DEVICE results we will examine
1298 * @s: string into which data is output
1299 * @ofs: offset into identify device page
1300 * @len: length of string to return. must be an odd number.
1301 *
1302 * This function is identical to ata_id_string except that it
1303 * trims trailing spaces and terminates the resulting string with
1304 * null. @len must be actual maximum length (even number) + 1.
1305 *
1306 * LOCKING:
1307 * caller.
1308 */
1309 void ata_id_c_string(const u16 *id, unsigned char *s,
1310 unsigned int ofs, unsigned int len)
1311 {
1312 unsigned char *p;
1313
1314 ata_id_string(id, s, ofs, len - 1);
1315
1316 p = s + strnlen(s, len - 1);
1317 while (p > s && p[-1] == ' ')
1318 p--;
1319 *p = '\0';
1320 }
1321
1322 static u64 ata_id_n_sectors(const u16 *id)
1323 {
1324 if (ata_id_has_lba(id)) {
1325 if (ata_id_has_lba48(id))
1326 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1327 else
1328 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1329 } else {
1330 if (ata_id_current_chs_valid(id))
1331 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1332 id[ATA_ID_CUR_SECTORS];
1333 else
1334 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1335 id[ATA_ID_SECTORS];
1336 }
1337 }
1338
1339 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1340 {
1341 u64 sectors = 0;
1342
1343 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1344 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1345 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1346 sectors |= (tf->lbah & 0xff) << 16;
1347 sectors |= (tf->lbam & 0xff) << 8;
1348 sectors |= (tf->lbal & 0xff);
1349
1350 return sectors;
1351 }
1352
1353 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1354 {
1355 u64 sectors = 0;
1356
1357 sectors |= (tf->device & 0x0f) << 24;
1358 sectors |= (tf->lbah & 0xff) << 16;
1359 sectors |= (tf->lbam & 0xff) << 8;
1360 sectors |= (tf->lbal & 0xff);
1361
1362 return sectors;
1363 }
1364
1365 /**
1366 * ata_read_native_max_address - Read native max address
1367 * @dev: target device
1368 * @max_sectors: out parameter for the result native max address
1369 *
1370 * Perform an LBA48 or LBA28 native size query upon the device in
1371 * question.
1372 *
1373 * RETURNS:
1374 * 0 on success, -EACCES if command is aborted by the drive.
1375 * -EIO on other errors.
1376 */
1377 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1378 {
1379 unsigned int err_mask;
1380 struct ata_taskfile tf;
1381 int lba48 = ata_id_has_lba48(dev->id);
1382
1383 ata_tf_init(dev, &tf);
1384
1385 /* always clear all address registers */
1386 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1387
1388 if (lba48) {
1389 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1390 tf.flags |= ATA_TFLAG_LBA48;
1391 } else
1392 tf.command = ATA_CMD_READ_NATIVE_MAX;
1393
1394 tf.protocol |= ATA_PROT_NODATA;
1395 tf.device |= ATA_LBA;
1396
1397 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1398 if (err_mask) {
1399 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1400 "max address (err_mask=0x%x)\n", err_mask);
1401 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1402 return -EACCES;
1403 return -EIO;
1404 }
1405
1406 if (lba48)
1407 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1408 else
1409 *max_sectors = ata_tf_to_lba(&tf) + 1;
1410 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1411 (*max_sectors)--;
1412 return 0;
1413 }
1414
1415 /**
1416 * ata_set_max_sectors - Set max sectors
1417 * @dev: target device
1418 * @new_sectors: new max sectors value to set for the device
1419 *
1420 * Set max sectors of @dev to @new_sectors.
1421 *
1422 * RETURNS:
1423 * 0 on success, -EACCES if command is aborted or denied (due to
1424 * previous non-volatile SET_MAX) by the drive. -EIO on other
1425 * errors.
1426 */
1427 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1428 {
1429 unsigned int err_mask;
1430 struct ata_taskfile tf;
1431 int lba48 = ata_id_has_lba48(dev->id);
1432
1433 new_sectors--;
1434
1435 ata_tf_init(dev, &tf);
1436
1437 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1438
1439 if (lba48) {
1440 tf.command = ATA_CMD_SET_MAX_EXT;
1441 tf.flags |= ATA_TFLAG_LBA48;
1442
1443 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1444 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1445 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1446 } else {
1447 tf.command = ATA_CMD_SET_MAX;
1448
1449 tf.device |= (new_sectors >> 24) & 0xf;
1450 }
1451
1452 tf.protocol |= ATA_PROT_NODATA;
1453 tf.device |= ATA_LBA;
1454
1455 tf.lbal = (new_sectors >> 0) & 0xff;
1456 tf.lbam = (new_sectors >> 8) & 0xff;
1457 tf.lbah = (new_sectors >> 16) & 0xff;
1458
1459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1460 if (err_mask) {
1461 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1462 "max address (err_mask=0x%x)\n", err_mask);
1463 if (err_mask == AC_ERR_DEV &&
1464 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1465 return -EACCES;
1466 return -EIO;
1467 }
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * ata_hpa_resize - Resize a device with an HPA set
1474 * @dev: Device to resize
1475 *
1476 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1477 * it if required to the full size of the media. The caller must check
1478 * the drive has the HPA feature set enabled.
1479 *
1480 * RETURNS:
1481 * 0 on success, -errno on failure.
1482 */
1483 static int ata_hpa_resize(struct ata_device *dev)
1484 {
1485 struct ata_eh_context *ehc = &dev->link->eh_context;
1486 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1487 u64 sectors = ata_id_n_sectors(dev->id);
1488 u64 native_sectors;
1489 int rc;
1490
1491 /* do we need to do it? */
1492 if (dev->class != ATA_DEV_ATA ||
1493 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1494 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1495 return 0;
1496
1497 /* read native max address */
1498 rc = ata_read_native_max_address(dev, &native_sectors);
1499 if (rc) {
1500 /* If device aborted the command or HPA isn't going to
1501 * be unlocked, skip HPA resizing.
1502 */
1503 if (rc == -EACCES || !ata_ignore_hpa) {
1504 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1505 "broken, skipping HPA handling\n");
1506 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1507
1508 /* we can continue if device aborted the command */
1509 if (rc == -EACCES)
1510 rc = 0;
1511 }
1512
1513 return rc;
1514 }
1515
1516 /* nothing to do? */
1517 if (native_sectors <= sectors || !ata_ignore_hpa) {
1518 if (!print_info || native_sectors == sectors)
1519 return 0;
1520
1521 if (native_sectors > sectors)
1522 ata_dev_printk(dev, KERN_INFO,
1523 "HPA detected: current %llu, native %llu\n",
1524 (unsigned long long)sectors,
1525 (unsigned long long)native_sectors);
1526 else if (native_sectors < sectors)
1527 ata_dev_printk(dev, KERN_WARNING,
1528 "native sectors (%llu) is smaller than "
1529 "sectors (%llu)\n",
1530 (unsigned long long)native_sectors,
1531 (unsigned long long)sectors);
1532 return 0;
1533 }
1534
1535 /* let's unlock HPA */
1536 rc = ata_set_max_sectors(dev, native_sectors);
1537 if (rc == -EACCES) {
1538 /* if device aborted the command, skip HPA resizing */
1539 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1540 "(%llu -> %llu), skipping HPA handling\n",
1541 (unsigned long long)sectors,
1542 (unsigned long long)native_sectors);
1543 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1544 return 0;
1545 } else if (rc)
1546 return rc;
1547
1548 /* re-read IDENTIFY data */
1549 rc = ata_dev_reread_id(dev, 0);
1550 if (rc) {
1551 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1552 "data after HPA resizing\n");
1553 return rc;
1554 }
1555
1556 if (print_info) {
1557 u64 new_sectors = ata_id_n_sectors(dev->id);
1558 ata_dev_printk(dev, KERN_INFO,
1559 "HPA unlocked: %llu -> %llu, native %llu\n",
1560 (unsigned long long)sectors,
1561 (unsigned long long)new_sectors,
1562 (unsigned long long)native_sectors);
1563 }
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * ata_dump_id - IDENTIFY DEVICE info debugging output
1570 * @id: IDENTIFY DEVICE page to dump
1571 *
1572 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1573 * page.
1574 *
1575 * LOCKING:
1576 * caller.
1577 */
1578
1579 static inline void ata_dump_id(const u16 *id)
1580 {
1581 DPRINTK("49==0x%04x "
1582 "53==0x%04x "
1583 "63==0x%04x "
1584 "64==0x%04x "
1585 "75==0x%04x \n",
1586 id[49],
1587 id[53],
1588 id[63],
1589 id[64],
1590 id[75]);
1591 DPRINTK("80==0x%04x "
1592 "81==0x%04x "
1593 "82==0x%04x "
1594 "83==0x%04x "
1595 "84==0x%04x \n",
1596 id[80],
1597 id[81],
1598 id[82],
1599 id[83],
1600 id[84]);
1601 DPRINTK("88==0x%04x "
1602 "93==0x%04x\n",
1603 id[88],
1604 id[93]);
1605 }
1606
1607 /**
1608 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1609 * @id: IDENTIFY data to compute xfer mask from
1610 *
1611 * Compute the xfermask for this device. This is not as trivial
1612 * as it seems if we must consider early devices correctly.
1613 *
1614 * FIXME: pre IDE drive timing (do we care ?).
1615 *
1616 * LOCKING:
1617 * None.
1618 *
1619 * RETURNS:
1620 * Computed xfermask
1621 */
1622 unsigned long ata_id_xfermask(const u16 *id)
1623 {
1624 unsigned long pio_mask, mwdma_mask, udma_mask;
1625
1626 /* Usual case. Word 53 indicates word 64 is valid */
1627 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1628 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1629 pio_mask <<= 3;
1630 pio_mask |= 0x7;
1631 } else {
1632 /* If word 64 isn't valid then Word 51 high byte holds
1633 * the PIO timing number for the maximum. Turn it into
1634 * a mask.
1635 */
1636 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1637 if (mode < 5) /* Valid PIO range */
1638 pio_mask = (2 << mode) - 1;
1639 else
1640 pio_mask = 1;
1641
1642 /* But wait.. there's more. Design your standards by
1643 * committee and you too can get a free iordy field to
1644 * process. However its the speeds not the modes that
1645 * are supported... Note drivers using the timing API
1646 * will get this right anyway
1647 */
1648 }
1649
1650 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1651
1652 if (ata_id_is_cfa(id)) {
1653 /*
1654 * Process compact flash extended modes
1655 */
1656 int pio = id[163] & 0x7;
1657 int dma = (id[163] >> 3) & 7;
1658
1659 if (pio)
1660 pio_mask |= (1 << 5);
1661 if (pio > 1)
1662 pio_mask |= (1 << 6);
1663 if (dma)
1664 mwdma_mask |= (1 << 3);
1665 if (dma > 1)
1666 mwdma_mask |= (1 << 4);
1667 }
1668
1669 udma_mask = 0;
1670 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1671 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1672
1673 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1674 }
1675
1676 /**
1677 * ata_pio_queue_task - Queue port_task
1678 * @ap: The ata_port to queue port_task for
1679 * @data: data for @fn to use
1680 * @delay: delay time in msecs for workqueue function
1681 *
1682 * Schedule @fn(@data) for execution after @delay jiffies using
1683 * port_task. There is one port_task per port and it's the
1684 * user(low level driver)'s responsibility to make sure that only
1685 * one task is active at any given time.
1686 *
1687 * libata core layer takes care of synchronization between
1688 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1689 * synchronization.
1690 *
1691 * LOCKING:
1692 * Inherited from caller.
1693 */
1694 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1695 {
1696 ap->port_task_data = data;
1697
1698 /* may fail if ata_port_flush_task() in progress */
1699 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1700 }
1701
1702 /**
1703 * ata_port_flush_task - Flush port_task
1704 * @ap: The ata_port to flush port_task for
1705 *
1706 * After this function completes, port_task is guranteed not to
1707 * be running or scheduled.
1708 *
1709 * LOCKING:
1710 * Kernel thread context (may sleep)
1711 */
1712 void ata_port_flush_task(struct ata_port *ap)
1713 {
1714 DPRINTK("ENTER\n");
1715
1716 cancel_rearming_delayed_work(&ap->port_task);
1717
1718 if (ata_msg_ctl(ap))
1719 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1720 }
1721
1722 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1723 {
1724 struct completion *waiting = qc->private_data;
1725
1726 complete(waiting);
1727 }
1728
1729 /**
1730 * ata_exec_internal_sg - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data tranfer direction of the command
1735 * @sgl: sg list for the data buffer of the command
1736 * @n_elem: Number of sg entries
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Executes libata internal command with timeout. @tf contains
1740 * command on entry and result on return. Timeout and error
1741 * conditions are reported via return value. No recovery action
1742 * is taken after a command times out. It's caller's duty to
1743 * clean up after timeout.
1744 *
1745 * LOCKING:
1746 * None. Should be called with kernel context, might sleep.
1747 *
1748 * RETURNS:
1749 * Zero on success, AC_ERR_* mask on failure
1750 */
1751 unsigned ata_exec_internal_sg(struct ata_device *dev,
1752 struct ata_taskfile *tf, const u8 *cdb,
1753 int dma_dir, struct scatterlist *sgl,
1754 unsigned int n_elem, unsigned long timeout)
1755 {
1756 struct ata_link *link = dev->link;
1757 struct ata_port *ap = link->ap;
1758 u8 command = tf->command;
1759 int auto_timeout = 0;
1760 struct ata_queued_cmd *qc;
1761 unsigned int tag, preempted_tag;
1762 u32 preempted_sactive, preempted_qc_active;
1763 int preempted_nr_active_links;
1764 DECLARE_COMPLETION_ONSTACK(wait);
1765 unsigned long flags;
1766 unsigned int err_mask;
1767 int rc;
1768
1769 spin_lock_irqsave(ap->lock, flags);
1770
1771 /* no internal command while frozen */
1772 if (ap->pflags & ATA_PFLAG_FROZEN) {
1773 spin_unlock_irqrestore(ap->lock, flags);
1774 return AC_ERR_SYSTEM;
1775 }
1776
1777 /* initialize internal qc */
1778
1779 /* XXX: Tag 0 is used for drivers with legacy EH as some
1780 * drivers choke if any other tag is given. This breaks
1781 * ata_tag_internal() test for those drivers. Don't use new
1782 * EH stuff without converting to it.
1783 */
1784 if (ap->ops->error_handler)
1785 tag = ATA_TAG_INTERNAL;
1786 else
1787 tag = 0;
1788
1789 if (test_and_set_bit(tag, &ap->qc_allocated))
1790 BUG();
1791 qc = __ata_qc_from_tag(ap, tag);
1792
1793 qc->tag = tag;
1794 qc->scsicmd = NULL;
1795 qc->ap = ap;
1796 qc->dev = dev;
1797 ata_qc_reinit(qc);
1798
1799 preempted_tag = link->active_tag;
1800 preempted_sactive = link->sactive;
1801 preempted_qc_active = ap->qc_active;
1802 preempted_nr_active_links = ap->nr_active_links;
1803 link->active_tag = ATA_TAG_POISON;
1804 link->sactive = 0;
1805 ap->qc_active = 0;
1806 ap->nr_active_links = 0;
1807
1808 /* prepare & issue qc */
1809 qc->tf = *tf;
1810 if (cdb)
1811 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1812 qc->flags |= ATA_QCFLAG_RESULT_TF;
1813 qc->dma_dir = dma_dir;
1814 if (dma_dir != DMA_NONE) {
1815 unsigned int i, buflen = 0;
1816 struct scatterlist *sg;
1817
1818 for_each_sg(sgl, sg, n_elem, i)
1819 buflen += sg->length;
1820
1821 ata_sg_init(qc, sgl, n_elem);
1822 qc->nbytes = buflen;
1823 }
1824
1825 qc->private_data = &wait;
1826 qc->complete_fn = ata_qc_complete_internal;
1827
1828 ata_qc_issue(qc);
1829
1830 spin_unlock_irqrestore(ap->lock, flags);
1831
1832 if (!timeout) {
1833 if (ata_probe_timeout)
1834 timeout = ata_probe_timeout * 1000;
1835 else {
1836 timeout = ata_internal_cmd_timeout(dev, command);
1837 auto_timeout = 1;
1838 }
1839 }
1840
1841 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1842
1843 ata_port_flush_task(ap);
1844
1845 if (!rc) {
1846 spin_lock_irqsave(ap->lock, flags);
1847
1848 /* We're racing with irq here. If we lose, the
1849 * following test prevents us from completing the qc
1850 * twice. If we win, the port is frozen and will be
1851 * cleaned up by ->post_internal_cmd().
1852 */
1853 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1854 qc->err_mask |= AC_ERR_TIMEOUT;
1855
1856 if (ap->ops->error_handler)
1857 ata_port_freeze(ap);
1858 else
1859 ata_qc_complete(qc);
1860
1861 if (ata_msg_warn(ap))
1862 ata_dev_printk(dev, KERN_WARNING,
1863 "qc timeout (cmd 0x%x)\n", command);
1864 }
1865
1866 spin_unlock_irqrestore(ap->lock, flags);
1867 }
1868
1869 /* do post_internal_cmd */
1870 if (ap->ops->post_internal_cmd)
1871 ap->ops->post_internal_cmd(qc);
1872
1873 /* perform minimal error analysis */
1874 if (qc->flags & ATA_QCFLAG_FAILED) {
1875 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1876 qc->err_mask |= AC_ERR_DEV;
1877
1878 if (!qc->err_mask)
1879 qc->err_mask |= AC_ERR_OTHER;
1880
1881 if (qc->err_mask & ~AC_ERR_OTHER)
1882 qc->err_mask &= ~AC_ERR_OTHER;
1883 }
1884
1885 /* finish up */
1886 spin_lock_irqsave(ap->lock, flags);
1887
1888 *tf = qc->result_tf;
1889 err_mask = qc->err_mask;
1890
1891 ata_qc_free(qc);
1892 link->active_tag = preempted_tag;
1893 link->sactive = preempted_sactive;
1894 ap->qc_active = preempted_qc_active;
1895 ap->nr_active_links = preempted_nr_active_links;
1896
1897 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1898 * Until those drivers are fixed, we detect the condition
1899 * here, fail the command with AC_ERR_SYSTEM and reenable the
1900 * port.
1901 *
1902 * Note that this doesn't change any behavior as internal
1903 * command failure results in disabling the device in the
1904 * higher layer for LLDDs without new reset/EH callbacks.
1905 *
1906 * Kill the following code as soon as those drivers are fixed.
1907 */
1908 if (ap->flags & ATA_FLAG_DISABLED) {
1909 err_mask |= AC_ERR_SYSTEM;
1910 ata_port_probe(ap);
1911 }
1912
1913 spin_unlock_irqrestore(ap->lock, flags);
1914
1915 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1916 ata_internal_cmd_timed_out(dev, command);
1917
1918 return err_mask;
1919 }
1920
1921 /**
1922 * ata_exec_internal - execute libata internal command
1923 * @dev: Device to which the command is sent
1924 * @tf: Taskfile registers for the command and the result
1925 * @cdb: CDB for packet command
1926 * @dma_dir: Data tranfer direction of the command
1927 * @buf: Data buffer of the command
1928 * @buflen: Length of data buffer
1929 * @timeout: Timeout in msecs (0 for default)
1930 *
1931 * Wrapper around ata_exec_internal_sg() which takes simple
1932 * buffer instead of sg list.
1933 *
1934 * LOCKING:
1935 * None. Should be called with kernel context, might sleep.
1936 *
1937 * RETURNS:
1938 * Zero on success, AC_ERR_* mask on failure
1939 */
1940 unsigned ata_exec_internal(struct ata_device *dev,
1941 struct ata_taskfile *tf, const u8 *cdb,
1942 int dma_dir, void *buf, unsigned int buflen,
1943 unsigned long timeout)
1944 {
1945 struct scatterlist *psg = NULL, sg;
1946 unsigned int n_elem = 0;
1947
1948 if (dma_dir != DMA_NONE) {
1949 WARN_ON(!buf);
1950 sg_init_one(&sg, buf, buflen);
1951 psg = &sg;
1952 n_elem++;
1953 }
1954
1955 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1956 timeout);
1957 }
1958
1959 /**
1960 * ata_do_simple_cmd - execute simple internal command
1961 * @dev: Device to which the command is sent
1962 * @cmd: Opcode to execute
1963 *
1964 * Execute a 'simple' command, that only consists of the opcode
1965 * 'cmd' itself, without filling any other registers
1966 *
1967 * LOCKING:
1968 * Kernel thread context (may sleep).
1969 *
1970 * RETURNS:
1971 * Zero on success, AC_ERR_* mask on failure
1972 */
1973 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1974 {
1975 struct ata_taskfile tf;
1976
1977 ata_tf_init(dev, &tf);
1978
1979 tf.command = cmd;
1980 tf.flags |= ATA_TFLAG_DEVICE;
1981 tf.protocol = ATA_PROT_NODATA;
1982
1983 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1984 }
1985
1986 /**
1987 * ata_pio_need_iordy - check if iordy needed
1988 * @adev: ATA device
1989 *
1990 * Check if the current speed of the device requires IORDY. Used
1991 * by various controllers for chip configuration.
1992 */
1993
1994 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1995 {
1996 /* Controller doesn't support IORDY. Probably a pointless check
1997 as the caller should know this */
1998 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1999 return 0;
2000 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2001 if (ata_id_is_cfa(adev->id)
2002 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2003 return 0;
2004 /* PIO3 and higher it is mandatory */
2005 if (adev->pio_mode > XFER_PIO_2)
2006 return 1;
2007 /* We turn it on when possible */
2008 if (ata_id_has_iordy(adev->id))
2009 return 1;
2010 return 0;
2011 }
2012
2013 /**
2014 * ata_pio_mask_no_iordy - Return the non IORDY mask
2015 * @adev: ATA device
2016 *
2017 * Compute the highest mode possible if we are not using iordy. Return
2018 * -1 if no iordy mode is available.
2019 */
2020
2021 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2022 {
2023 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2024 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2025 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2026 /* Is the speed faster than the drive allows non IORDY ? */
2027 if (pio) {
2028 /* This is cycle times not frequency - watch the logic! */
2029 if (pio > 240) /* PIO2 is 240nS per cycle */
2030 return 3 << ATA_SHIFT_PIO;
2031 return 7 << ATA_SHIFT_PIO;
2032 }
2033 }
2034 return 3 << ATA_SHIFT_PIO;
2035 }
2036
2037 /**
2038 * ata_do_dev_read_id - default ID read method
2039 * @dev: device
2040 * @tf: proposed taskfile
2041 * @id: data buffer
2042 *
2043 * Issue the identify taskfile and hand back the buffer containing
2044 * identify data. For some RAID controllers and for pre ATA devices
2045 * this function is wrapped or replaced by the driver
2046 */
2047 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2048 struct ata_taskfile *tf, u16 *id)
2049 {
2050 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2051 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2052 }
2053
2054 /**
2055 * ata_dev_read_id - Read ID data from the specified device
2056 * @dev: target device
2057 * @p_class: pointer to class of the target device (may be changed)
2058 * @flags: ATA_READID_* flags
2059 * @id: buffer to read IDENTIFY data into
2060 *
2061 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2062 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2063 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2064 * for pre-ATA4 drives.
2065 *
2066 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2067 * now we abort if we hit that case.
2068 *
2069 * LOCKING:
2070 * Kernel thread context (may sleep)
2071 *
2072 * RETURNS:
2073 * 0 on success, -errno otherwise.
2074 */
2075 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2076 unsigned int flags, u16 *id)
2077 {
2078 struct ata_port *ap = dev->link->ap;
2079 unsigned int class = *p_class;
2080 struct ata_taskfile tf;
2081 unsigned int err_mask = 0;
2082 const char *reason;
2083 int may_fallback = 1, tried_spinup = 0;
2084 int rc;
2085
2086 if (ata_msg_ctl(ap))
2087 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2088
2089 retry:
2090 ata_tf_init(dev, &tf);
2091
2092 switch (class) {
2093 case ATA_DEV_ATA:
2094 tf.command = ATA_CMD_ID_ATA;
2095 break;
2096 case ATA_DEV_ATAPI:
2097 tf.command = ATA_CMD_ID_ATAPI;
2098 break;
2099 default:
2100 rc = -ENODEV;
2101 reason = "unsupported class";
2102 goto err_out;
2103 }
2104
2105 tf.protocol = ATA_PROT_PIO;
2106
2107 /* Some devices choke if TF registers contain garbage. Make
2108 * sure those are properly initialized.
2109 */
2110 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2111
2112 /* Device presence detection is unreliable on some
2113 * controllers. Always poll IDENTIFY if available.
2114 */
2115 tf.flags |= ATA_TFLAG_POLLING;
2116
2117 if (ap->ops->read_id)
2118 err_mask = ap->ops->read_id(dev, &tf, id);
2119 else
2120 err_mask = ata_do_dev_read_id(dev, &tf, id);
2121
2122 if (err_mask) {
2123 if (err_mask & AC_ERR_NODEV_HINT) {
2124 ata_dev_printk(dev, KERN_DEBUG,
2125 "NODEV after polling detection\n");
2126 return -ENOENT;
2127 }
2128
2129 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2130 /* Device or controller might have reported
2131 * the wrong device class. Give a shot at the
2132 * other IDENTIFY if the current one is
2133 * aborted by the device.
2134 */
2135 if (may_fallback) {
2136 may_fallback = 0;
2137
2138 if (class == ATA_DEV_ATA)
2139 class = ATA_DEV_ATAPI;
2140 else
2141 class = ATA_DEV_ATA;
2142 goto retry;
2143 }
2144
2145 /* Control reaches here iff the device aborted
2146 * both flavors of IDENTIFYs which happens
2147 * sometimes with phantom devices.
2148 */
2149 ata_dev_printk(dev, KERN_DEBUG,
2150 "both IDENTIFYs aborted, assuming NODEV\n");
2151 return -ENOENT;
2152 }
2153
2154 rc = -EIO;
2155 reason = "I/O error";
2156 goto err_out;
2157 }
2158
2159 /* Falling back doesn't make sense if ID data was read
2160 * successfully at least once.
2161 */
2162 may_fallback = 0;
2163
2164 swap_buf_le16(id, ATA_ID_WORDS);
2165
2166 /* sanity check */
2167 rc = -EINVAL;
2168 reason = "device reports invalid type";
2169
2170 if (class == ATA_DEV_ATA) {
2171 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2172 goto err_out;
2173 } else {
2174 if (ata_id_is_ata(id))
2175 goto err_out;
2176 }
2177
2178 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2179 tried_spinup = 1;
2180 /*
2181 * Drive powered-up in standby mode, and requires a specific
2182 * SET_FEATURES spin-up subcommand before it will accept
2183 * anything other than the original IDENTIFY command.
2184 */
2185 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2186 if (err_mask && id[2] != 0x738c) {
2187 rc = -EIO;
2188 reason = "SPINUP failed";
2189 goto err_out;
2190 }
2191 /*
2192 * If the drive initially returned incomplete IDENTIFY info,
2193 * we now must reissue the IDENTIFY command.
2194 */
2195 if (id[2] == 0x37c8)
2196 goto retry;
2197 }
2198
2199 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2200 /*
2201 * The exact sequence expected by certain pre-ATA4 drives is:
2202 * SRST RESET
2203 * IDENTIFY (optional in early ATA)
2204 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2205 * anything else..
2206 * Some drives were very specific about that exact sequence.
2207 *
2208 * Note that ATA4 says lba is mandatory so the second check
2209 * shoud never trigger.
2210 */
2211 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2212 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2213 if (err_mask) {
2214 rc = -EIO;
2215 reason = "INIT_DEV_PARAMS failed";
2216 goto err_out;
2217 }
2218
2219 /* current CHS translation info (id[53-58]) might be
2220 * changed. reread the identify device info.
2221 */
2222 flags &= ~ATA_READID_POSTRESET;
2223 goto retry;
2224 }
2225 }
2226
2227 *p_class = class;
2228
2229 return 0;
2230
2231 err_out:
2232 if (ata_msg_warn(ap))
2233 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2234 "(%s, err_mask=0x%x)\n", reason, err_mask);
2235 return rc;
2236 }
2237
2238 static int ata_do_link_spd_horkage(struct ata_device *dev)
2239 {
2240 struct ata_link *plink = ata_dev_phys_link(dev);
2241 u32 target, target_limit;
2242
2243 if (!sata_scr_valid(plink))
2244 return 0;
2245
2246 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2247 target = 1;
2248 else
2249 return 0;
2250
2251 target_limit = (1 << target) - 1;
2252
2253 /* if already on stricter limit, no need to push further */
2254 if (plink->sata_spd_limit <= target_limit)
2255 return 0;
2256
2257 plink->sata_spd_limit = target_limit;
2258
2259 /* Request another EH round by returning -EAGAIN if link is
2260 * going faster than the target speed. Forward progress is
2261 * guaranteed by setting sata_spd_limit to target_limit above.
2262 */
2263 if (plink->sata_spd > target) {
2264 ata_dev_printk(dev, KERN_INFO,
2265 "applying link speed limit horkage to %s\n",
2266 sata_spd_string(target));
2267 return -EAGAIN;
2268 }
2269 return 0;
2270 }
2271
2272 static inline u8 ata_dev_knobble(struct ata_device *dev)
2273 {
2274 struct ata_port *ap = dev->link->ap;
2275
2276 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2277 return 0;
2278
2279 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2280 }
2281
2282 static void ata_dev_config_ncq(struct ata_device *dev,
2283 char *desc, size_t desc_sz)
2284 {
2285 struct ata_port *ap = dev->link->ap;
2286 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2287
2288 if (!ata_id_has_ncq(dev->id)) {
2289 desc[0] = '\0';
2290 return;
2291 }
2292 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2293 snprintf(desc, desc_sz, "NCQ (not used)");
2294 return;
2295 }
2296 if (ap->flags & ATA_FLAG_NCQ) {
2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2298 dev->flags |= ATA_DFLAG_NCQ;
2299 }
2300
2301 if (hdepth >= ddepth)
2302 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2303 else
2304 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2305 }
2306
2307 /**
2308 * ata_dev_configure - Configure the specified ATA/ATAPI device
2309 * @dev: Target device to configure
2310 *
2311 * Configure @dev according to @dev->id. Generic and low-level
2312 * driver specific fixups are also applied.
2313 *
2314 * LOCKING:
2315 * Kernel thread context (may sleep)
2316 *
2317 * RETURNS:
2318 * 0 on success, -errno otherwise
2319 */
2320 int ata_dev_configure(struct ata_device *dev)
2321 {
2322 struct ata_port *ap = dev->link->ap;
2323 struct ata_eh_context *ehc = &dev->link->eh_context;
2324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2325 const u16 *id = dev->id;
2326 unsigned long xfer_mask;
2327 char revbuf[7]; /* XYZ-99\0 */
2328 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2329 char modelbuf[ATA_ID_PROD_LEN+1];
2330 int rc;
2331
2332 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2333 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2334 __func__);
2335 return 0;
2336 }
2337
2338 if (ata_msg_probe(ap))
2339 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2340
2341 /* set horkage */
2342 dev->horkage |= ata_dev_blacklisted(dev);
2343 ata_force_horkage(dev);
2344
2345 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2346 ata_dev_printk(dev, KERN_INFO,
2347 "unsupported device, disabling\n");
2348 ata_dev_disable(dev);
2349 return 0;
2350 }
2351
2352 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2353 dev->class == ATA_DEV_ATAPI) {
2354 ata_dev_printk(dev, KERN_WARNING,
2355 "WARNING: ATAPI is %s, device ignored.\n",
2356 atapi_enabled ? "not supported with this driver"
2357 : "disabled");
2358 ata_dev_disable(dev);
2359 return 0;
2360 }
2361
2362 rc = ata_do_link_spd_horkage(dev);
2363 if (rc)
2364 return rc;
2365
2366 /* let ACPI work its magic */
2367 rc = ata_acpi_on_devcfg(dev);
2368 if (rc)
2369 return rc;
2370
2371 /* massage HPA, do it early as it might change IDENTIFY data */
2372 rc = ata_hpa_resize(dev);
2373 if (rc)
2374 return rc;
2375
2376 /* print device capabilities */
2377 if (ata_msg_probe(ap))
2378 ata_dev_printk(dev, KERN_DEBUG,
2379 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2380 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2381 __func__,
2382 id[49], id[82], id[83], id[84],
2383 id[85], id[86], id[87], id[88]);
2384
2385 /* initialize to-be-configured parameters */
2386 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2387 dev->max_sectors = 0;
2388 dev->cdb_len = 0;
2389 dev->n_sectors = 0;
2390 dev->cylinders = 0;
2391 dev->heads = 0;
2392 dev->sectors = 0;
2393 dev->multi_count = 0;
2394
2395 /*
2396 * common ATA, ATAPI feature tests
2397 */
2398
2399 /* find max transfer mode; for printk only */
2400 xfer_mask = ata_id_xfermask(id);
2401
2402 if (ata_msg_probe(ap))
2403 ata_dump_id(id);
2404
2405 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2406 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2407 sizeof(fwrevbuf));
2408
2409 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2410 sizeof(modelbuf));
2411
2412 /* ATA-specific feature tests */
2413 if (dev->class == ATA_DEV_ATA) {
2414 if (ata_id_is_cfa(id)) {
2415 if (id[162] & 1) /* CPRM may make this media unusable */
2416 ata_dev_printk(dev, KERN_WARNING,
2417 "supports DRM functions and may "
2418 "not be fully accessable.\n");
2419 snprintf(revbuf, 7, "CFA");
2420 } else {
2421 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2422 /* Warn the user if the device has TPM extensions */
2423 if (ata_id_has_tpm(id))
2424 ata_dev_printk(dev, KERN_WARNING,
2425 "supports DRM functions and may "
2426 "not be fully accessable.\n");
2427 }
2428
2429 dev->n_sectors = ata_id_n_sectors(id);
2430
2431 /* get current R/W Multiple count setting */
2432 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2433 unsigned int max = dev->id[47] & 0xff;
2434 unsigned int cnt = dev->id[59] & 0xff;
2435 /* only recognize/allow powers of two here */
2436 if (is_power_of_2(max) && is_power_of_2(cnt))
2437 if (cnt <= max)
2438 dev->multi_count = cnt;
2439 }
2440
2441 if (ata_id_has_lba(id)) {
2442 const char *lba_desc;
2443 char ncq_desc[20];
2444
2445 lba_desc = "LBA";
2446 dev->flags |= ATA_DFLAG_LBA;
2447 if (ata_id_has_lba48(id)) {
2448 dev->flags |= ATA_DFLAG_LBA48;
2449 lba_desc = "LBA48";
2450
2451 if (dev->n_sectors >= (1UL << 28) &&
2452 ata_id_has_flush_ext(id))
2453 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2454 }
2455
2456 /* config NCQ */
2457 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2458
2459 /* print device info to dmesg */
2460 if (ata_msg_drv(ap) && print_info) {
2461 ata_dev_printk(dev, KERN_INFO,
2462 "%s: %s, %s, max %s\n",
2463 revbuf, modelbuf, fwrevbuf,
2464 ata_mode_string(xfer_mask));
2465 ata_dev_printk(dev, KERN_INFO,
2466 "%Lu sectors, multi %u: %s %s\n",
2467 (unsigned long long)dev->n_sectors,
2468 dev->multi_count, lba_desc, ncq_desc);
2469 }
2470 } else {
2471 /* CHS */
2472
2473 /* Default translation */
2474 dev->cylinders = id[1];
2475 dev->heads = id[3];
2476 dev->sectors = id[6];
2477
2478 if (ata_id_current_chs_valid(id)) {
2479 /* Current CHS translation is valid. */
2480 dev->cylinders = id[54];
2481 dev->heads = id[55];
2482 dev->sectors = id[56];
2483 }
2484
2485 /* print device info to dmesg */
2486 if (ata_msg_drv(ap) && print_info) {
2487 ata_dev_printk(dev, KERN_INFO,
2488 "%s: %s, %s, max %s\n",
2489 revbuf, modelbuf, fwrevbuf,
2490 ata_mode_string(xfer_mask));
2491 ata_dev_printk(dev, KERN_INFO,
2492 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2493 (unsigned long long)dev->n_sectors,
2494 dev->multi_count, dev->cylinders,
2495 dev->heads, dev->sectors);
2496 }
2497 }
2498
2499 dev->cdb_len = 16;
2500 }
2501
2502 /* ATAPI-specific feature tests */
2503 else if (dev->class == ATA_DEV_ATAPI) {
2504 const char *cdb_intr_string = "";
2505 const char *atapi_an_string = "";
2506 const char *dma_dir_string = "";
2507 u32 sntf;
2508
2509 rc = atapi_cdb_len(id);
2510 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2511 if (ata_msg_warn(ap))
2512 ata_dev_printk(dev, KERN_WARNING,
2513 "unsupported CDB len\n");
2514 rc = -EINVAL;
2515 goto err_out_nosup;
2516 }
2517 dev->cdb_len = (unsigned int) rc;
2518
2519 /* Enable ATAPI AN if both the host and device have
2520 * the support. If PMP is attached, SNTF is required
2521 * to enable ATAPI AN to discern between PHY status
2522 * changed notifications and ATAPI ANs.
2523 */
2524 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2525 (!sata_pmp_attached(ap) ||
2526 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2527 unsigned int err_mask;
2528
2529 /* issue SET feature command to turn this on */
2530 err_mask = ata_dev_set_feature(dev,
2531 SETFEATURES_SATA_ENABLE, SATA_AN);
2532 if (err_mask)
2533 ata_dev_printk(dev, KERN_ERR,
2534 "failed to enable ATAPI AN "
2535 "(err_mask=0x%x)\n", err_mask);
2536 else {
2537 dev->flags |= ATA_DFLAG_AN;
2538 atapi_an_string = ", ATAPI AN";
2539 }
2540 }
2541
2542 if (ata_id_cdb_intr(dev->id)) {
2543 dev->flags |= ATA_DFLAG_CDB_INTR;
2544 cdb_intr_string = ", CDB intr";
2545 }
2546
2547 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2548 dev->flags |= ATA_DFLAG_DMADIR;
2549 dma_dir_string = ", DMADIR";
2550 }
2551
2552 /* print device info to dmesg */
2553 if (ata_msg_drv(ap) && print_info)
2554 ata_dev_printk(dev, KERN_INFO,
2555 "ATAPI: %s, %s, max %s%s%s%s\n",
2556 modelbuf, fwrevbuf,
2557 ata_mode_string(xfer_mask),
2558 cdb_intr_string, atapi_an_string,
2559 dma_dir_string);
2560 }
2561
2562 /* determine max_sectors */
2563 dev->max_sectors = ATA_MAX_SECTORS;
2564 if (dev->flags & ATA_DFLAG_LBA48)
2565 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2566
2567 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2568 if (ata_id_has_hipm(dev->id))
2569 dev->flags |= ATA_DFLAG_HIPM;
2570 if (ata_id_has_dipm(dev->id))
2571 dev->flags |= ATA_DFLAG_DIPM;
2572 }
2573
2574 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2575 200 sectors */
2576 if (ata_dev_knobble(dev)) {
2577 if (ata_msg_drv(ap) && print_info)
2578 ata_dev_printk(dev, KERN_INFO,
2579 "applying bridge limits\n");
2580 dev->udma_mask &= ATA_UDMA5;
2581 dev->max_sectors = ATA_MAX_SECTORS;
2582 }
2583
2584 if ((dev->class == ATA_DEV_ATAPI) &&
2585 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2586 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2587 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2588 }
2589
2590 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2591 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2592 dev->max_sectors);
2593
2594 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2595 dev->horkage |= ATA_HORKAGE_IPM;
2596
2597 /* reset link pm_policy for this port to no pm */
2598 ap->pm_policy = MAX_PERFORMANCE;
2599 }
2600
2601 if (ap->ops->dev_config)
2602 ap->ops->dev_config(dev);
2603
2604 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2605 /* Let the user know. We don't want to disallow opens for
2606 rescue purposes, or in case the vendor is just a blithering
2607 idiot. Do this after the dev_config call as some controllers
2608 with buggy firmware may want to avoid reporting false device
2609 bugs */
2610
2611 if (print_info) {
2612 ata_dev_printk(dev, KERN_WARNING,
2613 "Drive reports diagnostics failure. This may indicate a drive\n");
2614 ata_dev_printk(dev, KERN_WARNING,
2615 "fault or invalid emulation. Contact drive vendor for information.\n");
2616 }
2617 }
2618
2619 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2620 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2621 "firmware update to be fully functional.\n");
2622 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2623 "or visit http://ata.wiki.kernel.org.\n");
2624 }
2625
2626 return 0;
2627
2628 err_out_nosup:
2629 if (ata_msg_probe(ap))
2630 ata_dev_printk(dev, KERN_DEBUG,
2631 "%s: EXIT, err\n", __func__);
2632 return rc;
2633 }
2634
2635 /**
2636 * ata_cable_40wire - return 40 wire cable type
2637 * @ap: port
2638 *
2639 * Helper method for drivers which want to hardwire 40 wire cable
2640 * detection.
2641 */
2642
2643 int ata_cable_40wire(struct ata_port *ap)
2644 {
2645 return ATA_CBL_PATA40;
2646 }
2647
2648 /**
2649 * ata_cable_80wire - return 80 wire cable type
2650 * @ap: port
2651 *
2652 * Helper method for drivers which want to hardwire 80 wire cable
2653 * detection.
2654 */
2655
2656 int ata_cable_80wire(struct ata_port *ap)
2657 {
2658 return ATA_CBL_PATA80;
2659 }
2660
2661 /**
2662 * ata_cable_unknown - return unknown PATA cable.
2663 * @ap: port
2664 *
2665 * Helper method for drivers which have no PATA cable detection.
2666 */
2667
2668 int ata_cable_unknown(struct ata_port *ap)
2669 {
2670 return ATA_CBL_PATA_UNK;
2671 }
2672
2673 /**
2674 * ata_cable_ignore - return ignored PATA cable.
2675 * @ap: port
2676 *
2677 * Helper method for drivers which don't use cable type to limit
2678 * transfer mode.
2679 */
2680 int ata_cable_ignore(struct ata_port *ap)
2681 {
2682 return ATA_CBL_PATA_IGN;
2683 }
2684
2685 /**
2686 * ata_cable_sata - return SATA cable type
2687 * @ap: port
2688 *
2689 * Helper method for drivers which have SATA cables
2690 */
2691
2692 int ata_cable_sata(struct ata_port *ap)
2693 {
2694 return ATA_CBL_SATA;
2695 }
2696
2697 /**
2698 * ata_bus_probe - Reset and probe ATA bus
2699 * @ap: Bus to probe
2700 *
2701 * Master ATA bus probing function. Initiates a hardware-dependent
2702 * bus reset, then attempts to identify any devices found on
2703 * the bus.
2704 *
2705 * LOCKING:
2706 * PCI/etc. bus probe sem.
2707 *
2708 * RETURNS:
2709 * Zero on success, negative errno otherwise.
2710 */
2711
2712 int ata_bus_probe(struct ata_port *ap)
2713 {
2714 unsigned int classes[ATA_MAX_DEVICES];
2715 int tries[ATA_MAX_DEVICES];
2716 int rc;
2717 struct ata_device *dev;
2718
2719 ata_port_probe(ap);
2720
2721 ata_for_each_dev(dev, &ap->link, ALL)
2722 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2723
2724 retry:
2725 ata_for_each_dev(dev, &ap->link, ALL) {
2726 /* If we issue an SRST then an ATA drive (not ATAPI)
2727 * may change configuration and be in PIO0 timing. If
2728 * we do a hard reset (or are coming from power on)
2729 * this is true for ATA or ATAPI. Until we've set a
2730 * suitable controller mode we should not touch the
2731 * bus as we may be talking too fast.
2732 */
2733 dev->pio_mode = XFER_PIO_0;
2734
2735 /* If the controller has a pio mode setup function
2736 * then use it to set the chipset to rights. Don't
2737 * touch the DMA setup as that will be dealt with when
2738 * configuring devices.
2739 */
2740 if (ap->ops->set_piomode)
2741 ap->ops->set_piomode(ap, dev);
2742 }
2743
2744 /* reset and determine device classes */
2745 ap->ops->phy_reset(ap);
2746
2747 ata_for_each_dev(dev, &ap->link, ALL) {
2748 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2749 dev->class != ATA_DEV_UNKNOWN)
2750 classes[dev->devno] = dev->class;
2751 else
2752 classes[dev->devno] = ATA_DEV_NONE;
2753
2754 dev->class = ATA_DEV_UNKNOWN;
2755 }
2756
2757 ata_port_probe(ap);
2758
2759 /* read IDENTIFY page and configure devices. We have to do the identify
2760 specific sequence bass-ackwards so that PDIAG- is released by
2761 the slave device */
2762
2763 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2764 if (tries[dev->devno])
2765 dev->class = classes[dev->devno];
2766
2767 if (!ata_dev_enabled(dev))
2768 continue;
2769
2770 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2771 dev->id);
2772 if (rc)
2773 goto fail;
2774 }
2775
2776 /* Now ask for the cable type as PDIAG- should have been released */
2777 if (ap->ops->cable_detect)
2778 ap->cbl = ap->ops->cable_detect(ap);
2779
2780 /* We may have SATA bridge glue hiding here irrespective of
2781 * the reported cable types and sensed types. When SATA
2782 * drives indicate we have a bridge, we don't know which end
2783 * of the link the bridge is which is a problem.
2784 */
2785 ata_for_each_dev(dev, &ap->link, ENABLED)
2786 if (ata_id_is_sata(dev->id))
2787 ap->cbl = ATA_CBL_SATA;
2788
2789 /* After the identify sequence we can now set up the devices. We do
2790 this in the normal order so that the user doesn't get confused */
2791
2792 ata_for_each_dev(dev, &ap->link, ENABLED) {
2793 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2794 rc = ata_dev_configure(dev);
2795 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2796 if (rc)
2797 goto fail;
2798 }
2799
2800 /* configure transfer mode */
2801 rc = ata_set_mode(&ap->link, &dev);
2802 if (rc)
2803 goto fail;
2804
2805 ata_for_each_dev(dev, &ap->link, ENABLED)
2806 return 0;
2807
2808 /* no device present, disable port */
2809 ata_port_disable(ap);
2810 return -ENODEV;
2811
2812 fail:
2813 tries[dev->devno]--;
2814
2815 switch (rc) {
2816 case -EINVAL:
2817 /* eeek, something went very wrong, give up */
2818 tries[dev->devno] = 0;
2819 break;
2820
2821 case -ENODEV:
2822 /* give it just one more chance */
2823 tries[dev->devno] = min(tries[dev->devno], 1);
2824 case -EIO:
2825 if (tries[dev->devno] == 1) {
2826 /* This is the last chance, better to slow
2827 * down than lose it.
2828 */
2829 sata_down_spd_limit(&ap->link, 0);
2830 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2831 }
2832 }
2833
2834 if (!tries[dev->devno])
2835 ata_dev_disable(dev);
2836
2837 goto retry;
2838 }
2839
2840 /**
2841 * ata_port_probe - Mark port as enabled
2842 * @ap: Port for which we indicate enablement
2843 *
2844 * Modify @ap data structure such that the system
2845 * thinks that the entire port is enabled.
2846 *
2847 * LOCKING: host lock, or some other form of
2848 * serialization.
2849 */
2850
2851 void ata_port_probe(struct ata_port *ap)
2852 {
2853 ap->flags &= ~ATA_FLAG_DISABLED;
2854 }
2855
2856 /**
2857 * sata_print_link_status - Print SATA link status
2858 * @link: SATA link to printk link status about
2859 *
2860 * This function prints link speed and status of a SATA link.
2861 *
2862 * LOCKING:
2863 * None.
2864 */
2865 static void sata_print_link_status(struct ata_link *link)
2866 {
2867 u32 sstatus, scontrol, tmp;
2868
2869 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2870 return;
2871 sata_scr_read(link, SCR_CONTROL, &scontrol);
2872
2873 if (ata_phys_link_online(link)) {
2874 tmp = (sstatus >> 4) & 0xf;
2875 ata_link_printk(link, KERN_INFO,
2876 "SATA link up %s (SStatus %X SControl %X)\n",
2877 sata_spd_string(tmp), sstatus, scontrol);
2878 } else {
2879 ata_link_printk(link, KERN_INFO,
2880 "SATA link down (SStatus %X SControl %X)\n",
2881 sstatus, scontrol);
2882 }
2883 }
2884
2885 /**
2886 * ata_dev_pair - return other device on cable
2887 * @adev: device
2888 *
2889 * Obtain the other device on the same cable, or if none is
2890 * present NULL is returned
2891 */
2892
2893 struct ata_device *ata_dev_pair(struct ata_device *adev)
2894 {
2895 struct ata_link *link = adev->link;
2896 struct ata_device *pair = &link->device[1 - adev->devno];
2897 if (!ata_dev_enabled(pair))
2898 return NULL;
2899 return pair;
2900 }
2901
2902 /**
2903 * ata_port_disable - Disable port.
2904 * @ap: Port to be disabled.
2905 *
2906 * Modify @ap data structure such that the system
2907 * thinks that the entire port is disabled, and should
2908 * never attempt to probe or communicate with devices
2909 * on this port.
2910 *
2911 * LOCKING: host lock, or some other form of
2912 * serialization.
2913 */
2914
2915 void ata_port_disable(struct ata_port *ap)
2916 {
2917 ap->link.device[0].class = ATA_DEV_NONE;
2918 ap->link.device[1].class = ATA_DEV_NONE;
2919 ap->flags |= ATA_FLAG_DISABLED;
2920 }
2921
2922 /**
2923 * sata_down_spd_limit - adjust SATA spd limit downward
2924 * @link: Link to adjust SATA spd limit for
2925 * @spd_limit: Additional limit
2926 *
2927 * Adjust SATA spd limit of @link downward. Note that this
2928 * function only adjusts the limit. The change must be applied
2929 * using sata_set_spd().
2930 *
2931 * If @spd_limit is non-zero, the speed is limited to equal to or
2932 * lower than @spd_limit if such speed is supported. If
2933 * @spd_limit is slower than any supported speed, only the lowest
2934 * supported speed is allowed.
2935 *
2936 * LOCKING:
2937 * Inherited from caller.
2938 *
2939 * RETURNS:
2940 * 0 on success, negative errno on failure
2941 */
2942 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2943 {
2944 u32 sstatus, spd, mask;
2945 int rc, bit;
2946
2947 if (!sata_scr_valid(link))
2948 return -EOPNOTSUPP;
2949
2950 /* If SCR can be read, use it to determine the current SPD.
2951 * If not, use cached value in link->sata_spd.
2952 */
2953 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2954 if (rc == 0 && ata_sstatus_online(sstatus))
2955 spd = (sstatus >> 4) & 0xf;
2956 else
2957 spd = link->sata_spd;
2958
2959 mask = link->sata_spd_limit;
2960 if (mask <= 1)
2961 return -EINVAL;
2962
2963 /* unconditionally mask off the highest bit */
2964 bit = fls(mask) - 1;
2965 mask &= ~(1 << bit);
2966
2967 /* Mask off all speeds higher than or equal to the current
2968 * one. Force 1.5Gbps if current SPD is not available.
2969 */
2970 if (spd > 1)
2971 mask &= (1 << (spd - 1)) - 1;
2972 else
2973 mask &= 1;
2974
2975 /* were we already at the bottom? */
2976 if (!mask)
2977 return -EINVAL;
2978
2979 if (spd_limit) {
2980 if (mask & ((1 << spd_limit) - 1))
2981 mask &= (1 << spd_limit) - 1;
2982 else {
2983 bit = ffs(mask) - 1;
2984 mask = 1 << bit;
2985 }
2986 }
2987
2988 link->sata_spd_limit = mask;
2989
2990 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2991 sata_spd_string(fls(mask)));
2992
2993 return 0;
2994 }
2995
2996 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2997 {
2998 struct ata_link *host_link = &link->ap->link;
2999 u32 limit, target, spd;
3000
3001 limit = link->sata_spd_limit;
3002
3003 /* Don't configure downstream link faster than upstream link.
3004 * It doesn't speed up anything and some PMPs choke on such
3005 * configuration.
3006 */
3007 if (!ata_is_host_link(link) && host_link->sata_spd)
3008 limit &= (1 << host_link->sata_spd) - 1;
3009
3010 if (limit == UINT_MAX)
3011 target = 0;
3012 else
3013 target = fls(limit);
3014
3015 spd = (*scontrol >> 4) & 0xf;
3016 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3017
3018 return spd != target;
3019 }
3020
3021 /**
3022 * sata_set_spd_needed - is SATA spd configuration needed
3023 * @link: Link in question
3024 *
3025 * Test whether the spd limit in SControl matches
3026 * @link->sata_spd_limit. This function is used to determine
3027 * whether hardreset is necessary to apply SATA spd
3028 * configuration.
3029 *
3030 * LOCKING:
3031 * Inherited from caller.
3032 *
3033 * RETURNS:
3034 * 1 if SATA spd configuration is needed, 0 otherwise.
3035 */
3036 static int sata_set_spd_needed(struct ata_link *link)
3037 {
3038 u32 scontrol;
3039
3040 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3041 return 1;
3042
3043 return __sata_set_spd_needed(link, &scontrol);
3044 }
3045
3046 /**
3047 * sata_set_spd - set SATA spd according to spd limit
3048 * @link: Link to set SATA spd for
3049 *
3050 * Set SATA spd of @link according to sata_spd_limit.
3051 *
3052 * LOCKING:
3053 * Inherited from caller.
3054 *
3055 * RETURNS:
3056 * 0 if spd doesn't need to be changed, 1 if spd has been
3057 * changed. Negative errno if SCR registers are inaccessible.
3058 */
3059 int sata_set_spd(struct ata_link *link)
3060 {
3061 u32 scontrol;
3062 int rc;
3063
3064 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3065 return rc;
3066
3067 if (!__sata_set_spd_needed(link, &scontrol))
3068 return 0;
3069
3070 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3071 return rc;
3072
3073 return 1;
3074 }
3075
3076 /*
3077 * This mode timing computation functionality is ported over from
3078 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3079 */
3080 /*
3081 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3082 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3083 * for UDMA6, which is currently supported only by Maxtor drives.
3084 *
3085 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3086 */
3087
3088 static const struct ata_timing ata_timing[] = {
3089 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3090 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3091 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3092 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3093 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3094 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3095 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3096 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3097
3098 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3099 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3100 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3101
3102 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3103 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3104 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3105 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3106 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3107
3108 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3109 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3110 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3111 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3112 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3113 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3114 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3115 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3116
3117 { 0xFF }
3118 };
3119
3120 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3121 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3122
3123 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3124 {
3125 q->setup = EZ(t->setup * 1000, T);
3126 q->act8b = EZ(t->act8b * 1000, T);
3127 q->rec8b = EZ(t->rec8b * 1000, T);
3128 q->cyc8b = EZ(t->cyc8b * 1000, T);
3129 q->active = EZ(t->active * 1000, T);
3130 q->recover = EZ(t->recover * 1000, T);
3131 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3132 q->cycle = EZ(t->cycle * 1000, T);
3133 q->udma = EZ(t->udma * 1000, UT);
3134 }
3135
3136 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3137 struct ata_timing *m, unsigned int what)
3138 {
3139 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3140 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3141 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3142 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3143 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3144 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3145 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3146 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3147 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3148 }
3149
3150 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3151 {
3152 const struct ata_timing *t = ata_timing;
3153
3154 while (xfer_mode > t->mode)
3155 t++;
3156
3157 if (xfer_mode == t->mode)
3158 return t;
3159 return NULL;
3160 }
3161
3162 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3163 struct ata_timing *t, int T, int UT)
3164 {
3165 const struct ata_timing *s;
3166 struct ata_timing p;
3167
3168 /*
3169 * Find the mode.
3170 */
3171
3172 if (!(s = ata_timing_find_mode(speed)))
3173 return -EINVAL;
3174
3175 memcpy(t, s, sizeof(*s));
3176
3177 /*
3178 * If the drive is an EIDE drive, it can tell us it needs extended
3179 * PIO/MW_DMA cycle timing.
3180 */
3181
3182 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3183 memset(&p, 0, sizeof(p));
3184 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3185 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3186 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3187 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3188 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3189 }
3190 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3191 }
3192
3193 /*
3194 * Convert the timing to bus clock counts.
3195 */
3196
3197 ata_timing_quantize(t, t, T, UT);
3198
3199 /*
3200 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3201 * S.M.A.R.T * and some other commands. We have to ensure that the
3202 * DMA cycle timing is slower/equal than the fastest PIO timing.
3203 */
3204
3205 if (speed > XFER_PIO_6) {
3206 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3207 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3208 }
3209
3210 /*
3211 * Lengthen active & recovery time so that cycle time is correct.
3212 */
3213
3214 if (t->act8b + t->rec8b < t->cyc8b) {
3215 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3216 t->rec8b = t->cyc8b - t->act8b;
3217 }
3218
3219 if (t->active + t->recover < t->cycle) {
3220 t->active += (t->cycle - (t->active + t->recover)) / 2;
3221 t->recover = t->cycle - t->active;
3222 }
3223
3224 /* In a few cases quantisation may produce enough errors to
3225 leave t->cycle too low for the sum of active and recovery
3226 if so we must correct this */
3227 if (t->active + t->recover > t->cycle)
3228 t->cycle = t->active + t->recover;
3229
3230 return 0;
3231 }
3232
3233 /**
3234 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3235 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3236 * @cycle: cycle duration in ns
3237 *
3238 * Return matching xfer mode for @cycle. The returned mode is of
3239 * the transfer type specified by @xfer_shift. If @cycle is too
3240 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3241 * than the fastest known mode, the fasted mode is returned.
3242 *
3243 * LOCKING:
3244 * None.
3245 *
3246 * RETURNS:
3247 * Matching xfer_mode, 0xff if no match found.
3248 */
3249 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3250 {
3251 u8 base_mode = 0xff, last_mode = 0xff;
3252 const struct ata_xfer_ent *ent;
3253 const struct ata_timing *t;
3254
3255 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3256 if (ent->shift == xfer_shift)
3257 base_mode = ent->base;
3258
3259 for (t = ata_timing_find_mode(base_mode);
3260 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3261 unsigned short this_cycle;
3262
3263 switch (xfer_shift) {
3264 case ATA_SHIFT_PIO:
3265 case ATA_SHIFT_MWDMA:
3266 this_cycle = t->cycle;
3267 break;
3268 case ATA_SHIFT_UDMA:
3269 this_cycle = t->udma;
3270 break;
3271 default:
3272 return 0xff;
3273 }
3274
3275 if (cycle > this_cycle)
3276 break;
3277
3278 last_mode = t->mode;
3279 }
3280
3281 return last_mode;
3282 }
3283
3284 /**
3285 * ata_down_xfermask_limit - adjust dev xfer masks downward
3286 * @dev: Device to adjust xfer masks
3287 * @sel: ATA_DNXFER_* selector
3288 *
3289 * Adjust xfer masks of @dev downward. Note that this function
3290 * does not apply the change. Invoking ata_set_mode() afterwards
3291 * will apply the limit.
3292 *
3293 * LOCKING:
3294 * Inherited from caller.
3295 *
3296 * RETURNS:
3297 * 0 on success, negative errno on failure
3298 */
3299 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3300 {
3301 char buf[32];
3302 unsigned long orig_mask, xfer_mask;
3303 unsigned long pio_mask, mwdma_mask, udma_mask;
3304 int quiet, highbit;
3305
3306 quiet = !!(sel & ATA_DNXFER_QUIET);
3307 sel &= ~ATA_DNXFER_QUIET;
3308
3309 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3310 dev->mwdma_mask,
3311 dev->udma_mask);
3312 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3313
3314 switch (sel) {
3315 case ATA_DNXFER_PIO:
3316 highbit = fls(pio_mask) - 1;
3317 pio_mask &= ~(1 << highbit);
3318 break;
3319
3320 case ATA_DNXFER_DMA:
3321 if (udma_mask) {
3322 highbit = fls(udma_mask) - 1;
3323 udma_mask &= ~(1 << highbit);
3324 if (!udma_mask)
3325 return -ENOENT;
3326 } else if (mwdma_mask) {
3327 highbit = fls(mwdma_mask) - 1;
3328 mwdma_mask &= ~(1 << highbit);
3329 if (!mwdma_mask)
3330 return -ENOENT;
3331 }
3332 break;
3333
3334 case ATA_DNXFER_40C:
3335 udma_mask &= ATA_UDMA_MASK_40C;
3336 break;
3337
3338 case ATA_DNXFER_FORCE_PIO0:
3339 pio_mask &= 1;
3340 case ATA_DNXFER_FORCE_PIO:
3341 mwdma_mask = 0;
3342 udma_mask = 0;
3343 break;
3344
3345 default:
3346 BUG();
3347 }
3348
3349 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3350
3351 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3352 return -ENOENT;
3353
3354 if (!quiet) {
3355 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3356 snprintf(buf, sizeof(buf), "%s:%s",
3357 ata_mode_string(xfer_mask),
3358 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3359 else
3360 snprintf(buf, sizeof(buf), "%s",
3361 ata_mode_string(xfer_mask));
3362
3363 ata_dev_printk(dev, KERN_WARNING,
3364 "limiting speed to %s\n", buf);
3365 }
3366
3367 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3368 &dev->udma_mask);
3369
3370 return 0;
3371 }
3372
3373 static int ata_dev_set_mode(struct ata_device *dev)
3374 {
3375 struct ata_eh_context *ehc = &dev->link->eh_context;
3376 const char *dev_err_whine = "";
3377 int ign_dev_err = 0;
3378 unsigned int err_mask;
3379 int rc;
3380
3381 dev->flags &= ~ATA_DFLAG_PIO;
3382 if (dev->xfer_shift == ATA_SHIFT_PIO)
3383 dev->flags |= ATA_DFLAG_PIO;
3384
3385 err_mask = ata_dev_set_xfermode(dev);
3386
3387 if (err_mask & ~AC_ERR_DEV)
3388 goto fail;
3389
3390 /* revalidate */
3391 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3392 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3393 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3394 if (rc)
3395 return rc;
3396
3397 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3398 /* Old CFA may refuse this command, which is just fine */
3399 if (ata_id_is_cfa(dev->id))
3400 ign_dev_err = 1;
3401 /* Catch several broken garbage emulations plus some pre
3402 ATA devices */
3403 if (ata_id_major_version(dev->id) == 0 &&
3404 dev->pio_mode <= XFER_PIO_2)
3405 ign_dev_err = 1;
3406 /* Some very old devices and some bad newer ones fail
3407 any kind of SET_XFERMODE request but support PIO0-2
3408 timings and no IORDY */
3409 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3410 ign_dev_err = 1;
3411 }
3412 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3413 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3414 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3415 dev->dma_mode == XFER_MW_DMA_0 &&
3416 (dev->id[63] >> 8) & 1)
3417 ign_dev_err = 1;
3418
3419 /* if the device is actually configured correctly, ignore dev err */
3420 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3421 ign_dev_err = 1;
3422
3423 if (err_mask & AC_ERR_DEV) {
3424 if (!ign_dev_err)
3425 goto fail;
3426 else
3427 dev_err_whine = " (device error ignored)";
3428 }
3429
3430 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3431 dev->xfer_shift, (int)dev->xfer_mode);
3432
3433 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3434 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3435 dev_err_whine);
3436
3437 return 0;
3438
3439 fail:
3440 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3441 "(err_mask=0x%x)\n", err_mask);
3442 return -EIO;
3443 }
3444
3445 /**
3446 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3447 * @link: link on which timings will be programmed
3448 * @r_failed_dev: out parameter for failed device
3449 *
3450 * Standard implementation of the function used to tune and set
3451 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3452 * ata_dev_set_mode() fails, pointer to the failing device is
3453 * returned in @r_failed_dev.
3454 *
3455 * LOCKING:
3456 * PCI/etc. bus probe sem.
3457 *
3458 * RETURNS:
3459 * 0 on success, negative errno otherwise
3460 */
3461
3462 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3463 {
3464 struct ata_port *ap = link->ap;
3465 struct ata_device *dev;
3466 int rc = 0, used_dma = 0, found = 0;
3467
3468 /* step 1: calculate xfer_mask */
3469 ata_for_each_dev(dev, link, ENABLED) {
3470 unsigned long pio_mask, dma_mask;
3471 unsigned int mode_mask;
3472
3473 mode_mask = ATA_DMA_MASK_ATA;
3474 if (dev->class == ATA_DEV_ATAPI)
3475 mode_mask = ATA_DMA_MASK_ATAPI;
3476 else if (ata_id_is_cfa(dev->id))
3477 mode_mask = ATA_DMA_MASK_CFA;
3478
3479 ata_dev_xfermask(dev);
3480 ata_force_xfermask(dev);
3481
3482 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3483 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3484
3485 if (libata_dma_mask & mode_mask)
3486 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3487 else
3488 dma_mask = 0;
3489
3490 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3491 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3492
3493 found = 1;
3494 if (ata_dma_enabled(dev))
3495 used_dma = 1;
3496 }
3497 if (!found)
3498 goto out;
3499
3500 /* step 2: always set host PIO timings */
3501 ata_for_each_dev(dev, link, ENABLED) {
3502 if (dev->pio_mode == 0xff) {
3503 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3504 rc = -EINVAL;
3505 goto out;
3506 }
3507
3508 dev->xfer_mode = dev->pio_mode;
3509 dev->xfer_shift = ATA_SHIFT_PIO;
3510 if (ap->ops->set_piomode)
3511 ap->ops->set_piomode(ap, dev);
3512 }
3513
3514 /* step 3: set host DMA timings */
3515 ata_for_each_dev(dev, link, ENABLED) {
3516 if (!ata_dma_enabled(dev))
3517 continue;
3518
3519 dev->xfer_mode = dev->dma_mode;
3520 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3521 if (ap->ops->set_dmamode)
3522 ap->ops->set_dmamode(ap, dev);
3523 }
3524
3525 /* step 4: update devices' xfer mode */
3526 ata_for_each_dev(dev, link, ENABLED) {
3527 rc = ata_dev_set_mode(dev);
3528 if (rc)
3529 goto out;
3530 }
3531
3532 /* Record simplex status. If we selected DMA then the other
3533 * host channels are not permitted to do so.
3534 */
3535 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3536 ap->host->simplex_claimed = ap;
3537
3538 out:
3539 if (rc)
3540 *r_failed_dev = dev;
3541 return rc;
3542 }
3543
3544 /**
3545 * ata_wait_ready - wait for link to become ready
3546 * @link: link to be waited on
3547 * @deadline: deadline jiffies for the operation
3548 * @check_ready: callback to check link readiness
3549 *
3550 * Wait for @link to become ready. @check_ready should return
3551 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3552 * link doesn't seem to be occupied, other errno for other error
3553 * conditions.
3554 *
3555 * Transient -ENODEV conditions are allowed for
3556 * ATA_TMOUT_FF_WAIT.
3557 *
3558 * LOCKING:
3559 * EH context.
3560 *
3561 * RETURNS:
3562 * 0 if @linke is ready before @deadline; otherwise, -errno.
3563 */
3564 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3565 int (*check_ready)(struct ata_link *link))
3566 {
3567 unsigned long start = jiffies;
3568 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3569 int warned = 0;
3570
3571 /* Slave readiness can't be tested separately from master. On
3572 * M/S emulation configuration, this function should be called
3573 * only on the master and it will handle both master and slave.
3574 */
3575 WARN_ON(link == link->ap->slave_link);
3576
3577 if (time_after(nodev_deadline, deadline))
3578 nodev_deadline = deadline;
3579
3580 while (1) {
3581 unsigned long now = jiffies;
3582 int ready, tmp;
3583
3584 ready = tmp = check_ready(link);
3585 if (ready > 0)
3586 return 0;
3587
3588 /* -ENODEV could be transient. Ignore -ENODEV if link
3589 * is online. Also, some SATA devices take a long
3590 * time to clear 0xff after reset. For example,
3591 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3592 * GoVault needs even more than that. Wait for
3593 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3594 *
3595 * Note that some PATA controllers (pata_ali) explode
3596 * if status register is read more than once when
3597 * there's no device attached.
3598 */
3599 if (ready == -ENODEV) {
3600 if (ata_link_online(link))
3601 ready = 0;
3602 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3603 !ata_link_offline(link) &&
3604 time_before(now, nodev_deadline))
3605 ready = 0;
3606 }
3607
3608 if (ready)
3609 return ready;
3610 if (time_after(now, deadline))
3611 return -EBUSY;
3612
3613 if (!warned && time_after(now, start + 5 * HZ) &&
3614 (deadline - now > 3 * HZ)) {
3615 ata_link_printk(link, KERN_WARNING,
3616 "link is slow to respond, please be patient "
3617 "(ready=%d)\n", tmp);
3618 warned = 1;
3619 }
3620
3621 msleep(50);
3622 }
3623 }
3624
3625 /**
3626 * ata_wait_after_reset - wait for link to become ready after reset
3627 * @link: link to be waited on
3628 * @deadline: deadline jiffies for the operation
3629 * @check_ready: callback to check link readiness
3630 *
3631 * Wait for @link to become ready after reset.
3632 *
3633 * LOCKING:
3634 * EH context.
3635 *
3636 * RETURNS:
3637 * 0 if @linke is ready before @deadline; otherwise, -errno.
3638 */
3639 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3640 int (*check_ready)(struct ata_link *link))
3641 {
3642 msleep(ATA_WAIT_AFTER_RESET);
3643
3644 return ata_wait_ready(link, deadline, check_ready);
3645 }
3646
3647 /**
3648 * sata_link_debounce - debounce SATA phy status
3649 * @link: ATA link to debounce SATA phy status for
3650 * @params: timing parameters { interval, duratinon, timeout } in msec
3651 * @deadline: deadline jiffies for the operation
3652 *
3653 * Make sure SStatus of @link reaches stable state, determined by
3654 * holding the same value where DET is not 1 for @duration polled
3655 * every @interval, before @timeout. Timeout constraints the
3656 * beginning of the stable state. Because DET gets stuck at 1 on
3657 * some controllers after hot unplugging, this functions waits
3658 * until timeout then returns 0 if DET is stable at 1.
3659 *
3660 * @timeout is further limited by @deadline. The sooner of the
3661 * two is used.
3662 *
3663 * LOCKING:
3664 * Kernel thread context (may sleep)
3665 *
3666 * RETURNS:
3667 * 0 on success, -errno on failure.
3668 */
3669 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3670 unsigned long deadline)
3671 {
3672 unsigned long interval = params[0];
3673 unsigned long duration = params[1];
3674 unsigned long last_jiffies, t;
3675 u32 last, cur;
3676 int rc;
3677
3678 t = ata_deadline(jiffies, params[2]);
3679 if (time_before(t, deadline))
3680 deadline = t;
3681
3682 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3683 return rc;
3684 cur &= 0xf;
3685
3686 last = cur;
3687 last_jiffies = jiffies;
3688
3689 while (1) {
3690 msleep(interval);
3691 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3692 return rc;
3693 cur &= 0xf;
3694
3695 /* DET stable? */
3696 if (cur == last) {
3697 if (cur == 1 && time_before(jiffies, deadline))
3698 continue;
3699 if (time_after(jiffies,
3700 ata_deadline(last_jiffies, duration)))
3701 return 0;
3702 continue;
3703 }
3704
3705 /* unstable, start over */
3706 last = cur;
3707 last_jiffies = jiffies;
3708
3709 /* Check deadline. If debouncing failed, return
3710 * -EPIPE to tell upper layer to lower link speed.
3711 */
3712 if (time_after(jiffies, deadline))
3713 return -EPIPE;
3714 }
3715 }
3716
3717 /**
3718 * sata_link_resume - resume SATA link
3719 * @link: ATA link to resume SATA
3720 * @params: timing parameters { interval, duratinon, timeout } in msec
3721 * @deadline: deadline jiffies for the operation
3722 *
3723 * Resume SATA phy @link and debounce it.
3724 *
3725 * LOCKING:
3726 * Kernel thread context (may sleep)
3727 *
3728 * RETURNS:
3729 * 0 on success, -errno on failure.
3730 */
3731 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3732 unsigned long deadline)
3733 {
3734 u32 scontrol, serror;
3735 int rc;
3736
3737 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3738 return rc;
3739
3740 scontrol = (scontrol & 0x0f0) | 0x300;
3741
3742 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3743 return rc;
3744
3745 /* Some PHYs react badly if SStatus is pounded immediately
3746 * after resuming. Delay 200ms before debouncing.
3747 */
3748 msleep(200);
3749
3750 if ((rc = sata_link_debounce(link, params, deadline)))
3751 return rc;
3752
3753 /* clear SError, some PHYs require this even for SRST to work */
3754 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3755 rc = sata_scr_write(link, SCR_ERROR, serror);
3756
3757 return rc != -EINVAL ? rc : 0;
3758 }
3759
3760 /**
3761 * ata_std_prereset - prepare for reset
3762 * @link: ATA link to be reset
3763 * @deadline: deadline jiffies for the operation
3764 *
3765 * @link is about to be reset. Initialize it. Failure from
3766 * prereset makes libata abort whole reset sequence and give up
3767 * that port, so prereset should be best-effort. It does its
3768 * best to prepare for reset sequence but if things go wrong, it
3769 * should just whine, not fail.
3770 *
3771 * LOCKING:
3772 * Kernel thread context (may sleep)
3773 *
3774 * RETURNS:
3775 * 0 on success, -errno otherwise.
3776 */
3777 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3778 {
3779 struct ata_port *ap = link->ap;
3780 struct ata_eh_context *ehc = &link->eh_context;
3781 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3782 int rc;
3783
3784 /* if we're about to do hardreset, nothing more to do */
3785 if (ehc->i.action & ATA_EH_HARDRESET)
3786 return 0;
3787
3788 /* if SATA, resume link */
3789 if (ap->flags & ATA_FLAG_SATA) {
3790 rc = sata_link_resume(link, timing, deadline);
3791 /* whine about phy resume failure but proceed */
3792 if (rc && rc != -EOPNOTSUPP)
3793 ata_link_printk(link, KERN_WARNING, "failed to resume "
3794 "link for reset (errno=%d)\n", rc);
3795 }
3796
3797 /* no point in trying softreset on offline link */
3798 if (ata_phys_link_offline(link))
3799 ehc->i.action &= ~ATA_EH_SOFTRESET;
3800
3801 return 0;
3802 }
3803
3804 /**
3805 * sata_link_hardreset - reset link via SATA phy reset
3806 * @link: link to reset
3807 * @timing: timing parameters { interval, duratinon, timeout } in msec
3808 * @deadline: deadline jiffies for the operation
3809 * @online: optional out parameter indicating link onlineness
3810 * @check_ready: optional callback to check link readiness
3811 *
3812 * SATA phy-reset @link using DET bits of SControl register.
3813 * After hardreset, link readiness is waited upon using
3814 * ata_wait_ready() if @check_ready is specified. LLDs are
3815 * allowed to not specify @check_ready and wait itself after this
3816 * function returns. Device classification is LLD's
3817 * responsibility.
3818 *
3819 * *@online is set to one iff reset succeeded and @link is online
3820 * after reset.
3821 *
3822 * LOCKING:
3823 * Kernel thread context (may sleep)
3824 *
3825 * RETURNS:
3826 * 0 on success, -errno otherwise.
3827 */
3828 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3829 unsigned long deadline,
3830 bool *online, int (*check_ready)(struct ata_link *))
3831 {
3832 u32 scontrol;
3833 int rc;
3834
3835 DPRINTK("ENTER\n");
3836
3837 if (online)
3838 *online = false;
3839
3840 if (sata_set_spd_needed(link)) {
3841 /* SATA spec says nothing about how to reconfigure
3842 * spd. To be on the safe side, turn off phy during
3843 * reconfiguration. This works for at least ICH7 AHCI
3844 * and Sil3124.
3845 */
3846 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3847 goto out;
3848
3849 scontrol = (scontrol & 0x0f0) | 0x304;
3850
3851 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3852 goto out;
3853
3854 sata_set_spd(link);
3855 }
3856
3857 /* issue phy wake/reset */
3858 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3859 goto out;
3860
3861 scontrol = (scontrol & 0x0f0) | 0x301;
3862
3863 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3864 goto out;
3865
3866 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3867 * 10.4.2 says at least 1 ms.
3868 */
3869 msleep(1);
3870
3871 /* bring link back */
3872 rc = sata_link_resume(link, timing, deadline);
3873 if (rc)
3874 goto out;
3875 /* if link is offline nothing more to do */
3876 if (ata_phys_link_offline(link))
3877 goto out;
3878
3879 /* Link is online. From this point, -ENODEV too is an error. */
3880 if (online)
3881 *online = true;
3882
3883 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3884 /* If PMP is supported, we have to do follow-up SRST.
3885 * Some PMPs don't send D2H Reg FIS after hardreset if
3886 * the first port is empty. Wait only for
3887 * ATA_TMOUT_PMP_SRST_WAIT.
3888 */
3889 if (check_ready) {
3890 unsigned long pmp_deadline;
3891
3892 pmp_deadline = ata_deadline(jiffies,
3893 ATA_TMOUT_PMP_SRST_WAIT);
3894 if (time_after(pmp_deadline, deadline))
3895 pmp_deadline = deadline;
3896 ata_wait_ready(link, pmp_deadline, check_ready);
3897 }
3898 rc = -EAGAIN;
3899 goto out;
3900 }
3901
3902 rc = 0;
3903 if (check_ready)
3904 rc = ata_wait_ready(link, deadline, check_ready);
3905 out:
3906 if (rc && rc != -EAGAIN) {
3907 /* online is set iff link is online && reset succeeded */
3908 if (online)
3909 *online = false;
3910 ata_link_printk(link, KERN_ERR,
3911 "COMRESET failed (errno=%d)\n", rc);
3912 }
3913 DPRINTK("EXIT, rc=%d\n", rc);
3914 return rc;
3915 }
3916
3917 /**
3918 * sata_std_hardreset - COMRESET w/o waiting or classification
3919 * @link: link to reset
3920 * @class: resulting class of attached device
3921 * @deadline: deadline jiffies for the operation
3922 *
3923 * Standard SATA COMRESET w/o waiting or classification.
3924 *
3925 * LOCKING:
3926 * Kernel thread context (may sleep)
3927 *
3928 * RETURNS:
3929 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3930 */
3931 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3932 unsigned long deadline)
3933 {
3934 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3935 bool online;
3936 int rc;
3937
3938 /* do hardreset */
3939 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3940 return online ? -EAGAIN : rc;
3941 }
3942
3943 /**
3944 * ata_std_postreset - standard postreset callback
3945 * @link: the target ata_link
3946 * @classes: classes of attached devices
3947 *
3948 * This function is invoked after a successful reset. Note that
3949 * the device might have been reset more than once using
3950 * different reset methods before postreset is invoked.
3951 *
3952 * LOCKING:
3953 * Kernel thread context (may sleep)
3954 */
3955 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3956 {
3957 u32 serror;
3958
3959 DPRINTK("ENTER\n");
3960
3961 /* reset complete, clear SError */
3962 if (!sata_scr_read(link, SCR_ERROR, &serror))
3963 sata_scr_write(link, SCR_ERROR, serror);
3964
3965 /* print link status */
3966 sata_print_link_status(link);
3967
3968 DPRINTK("EXIT\n");
3969 }
3970
3971 /**
3972 * ata_dev_same_device - Determine whether new ID matches configured device
3973 * @dev: device to compare against
3974 * @new_class: class of the new device
3975 * @new_id: IDENTIFY page of the new device
3976 *
3977 * Compare @new_class and @new_id against @dev and determine
3978 * whether @dev is the device indicated by @new_class and
3979 * @new_id.
3980 *
3981 * LOCKING:
3982 * None.
3983 *
3984 * RETURNS:
3985 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3986 */
3987 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3988 const u16 *new_id)
3989 {
3990 const u16 *old_id = dev->id;
3991 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3992 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3993
3994 if (dev->class != new_class) {
3995 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3996 dev->class, new_class);
3997 return 0;
3998 }
3999
4000 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4001 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4002 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4003 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4004
4005 if (strcmp(model[0], model[1])) {
4006 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4007 "'%s' != '%s'\n", model[0], model[1]);
4008 return 0;
4009 }
4010
4011 if (strcmp(serial[0], serial[1])) {
4012 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4013 "'%s' != '%s'\n", serial[0], serial[1]);
4014 return 0;
4015 }
4016
4017 return 1;
4018 }
4019
4020 /**
4021 * ata_dev_reread_id - Re-read IDENTIFY data
4022 * @dev: target ATA device
4023 * @readid_flags: read ID flags
4024 *
4025 * Re-read IDENTIFY page and make sure @dev is still attached to
4026 * the port.
4027 *
4028 * LOCKING:
4029 * Kernel thread context (may sleep)
4030 *
4031 * RETURNS:
4032 * 0 on success, negative errno otherwise
4033 */
4034 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4035 {
4036 unsigned int class = dev->class;
4037 u16 *id = (void *)dev->link->ap->sector_buf;
4038 int rc;
4039
4040 /* read ID data */
4041 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4042 if (rc)
4043 return rc;
4044
4045 /* is the device still there? */
4046 if (!ata_dev_same_device(dev, class, id))
4047 return -ENODEV;
4048
4049 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4050 return 0;
4051 }
4052
4053 /**
4054 * ata_dev_revalidate - Revalidate ATA device
4055 * @dev: device to revalidate
4056 * @new_class: new class code
4057 * @readid_flags: read ID flags
4058 *
4059 * Re-read IDENTIFY page, make sure @dev is still attached to the
4060 * port and reconfigure it according to the new IDENTIFY page.
4061 *
4062 * LOCKING:
4063 * Kernel thread context (may sleep)
4064 *
4065 * RETURNS:
4066 * 0 on success, negative errno otherwise
4067 */
4068 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4069 unsigned int readid_flags)
4070 {
4071 u64 n_sectors = dev->n_sectors;
4072 int rc;
4073
4074 if (!ata_dev_enabled(dev))
4075 return -ENODEV;
4076
4077 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4078 if (ata_class_enabled(new_class) &&
4079 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4080 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4081 dev->class, new_class);
4082 rc = -ENODEV;
4083 goto fail;
4084 }
4085
4086 /* re-read ID */
4087 rc = ata_dev_reread_id(dev, readid_flags);
4088 if (rc)
4089 goto fail;
4090
4091 /* configure device according to the new ID */
4092 rc = ata_dev_configure(dev);
4093 if (rc)
4094 goto fail;
4095
4096 /* verify n_sectors hasn't changed */
4097 if (dev->class == ATA_DEV_ATA && n_sectors &&
4098 dev->n_sectors != n_sectors) {
4099 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4100 "%llu != %llu\n",
4101 (unsigned long long)n_sectors,
4102 (unsigned long long)dev->n_sectors);
4103
4104 /* restore original n_sectors */
4105 dev->n_sectors = n_sectors;
4106
4107 rc = -ENODEV;
4108 goto fail;
4109 }
4110
4111 return 0;
4112
4113 fail:
4114 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4115 return rc;
4116 }
4117
4118 struct ata_blacklist_entry {
4119 const char *model_num;
4120 const char *model_rev;
4121 unsigned long horkage;
4122 };
4123
4124 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4125 /* Devices with DMA related problems under Linux */
4126 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4127 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4128 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4129 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4130 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4131 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4132 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4133 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4134 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4135 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4136 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4137 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4138 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4139 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4140 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4141 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4142 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4143 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4144 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4145 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4146 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4147 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4148 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4149 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4150 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4151 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4152 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4153 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4154 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4155 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4156 /* Odd clown on sil3726/4726 PMPs */
4157 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4158
4159 /* Weird ATAPI devices */
4160 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4161 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4162
4163 /* Devices we expect to fail diagnostics */
4164
4165 /* Devices where NCQ should be avoided */
4166 /* NCQ is slow */
4167 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4168 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4169 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4170 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4171 /* NCQ is broken */
4172 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4173 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4174 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4175 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4176 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4177
4178 /* Seagate NCQ + FLUSH CACHE firmware bug */
4179 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4180 ATA_HORKAGE_FIRMWARE_WARN },
4181 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4182 ATA_HORKAGE_FIRMWARE_WARN },
4183 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4184 ATA_HORKAGE_FIRMWARE_WARN },
4185 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4186 ATA_HORKAGE_FIRMWARE_WARN },
4187 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4188 ATA_HORKAGE_FIRMWARE_WARN },
4189
4190 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4191 ATA_HORKAGE_FIRMWARE_WARN },
4192 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4193 ATA_HORKAGE_FIRMWARE_WARN },
4194 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4195 ATA_HORKAGE_FIRMWARE_WARN },
4196 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4197 ATA_HORKAGE_FIRMWARE_WARN },
4198 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4199 ATA_HORKAGE_FIRMWARE_WARN },
4200
4201 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4202 ATA_HORKAGE_FIRMWARE_WARN },
4203 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4204 ATA_HORKAGE_FIRMWARE_WARN },
4205 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4206 ATA_HORKAGE_FIRMWARE_WARN },
4207 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4208 ATA_HORKAGE_FIRMWARE_WARN },
4209 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4210 ATA_HORKAGE_FIRMWARE_WARN },
4211
4212 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4213 ATA_HORKAGE_FIRMWARE_WARN },
4214 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4215 ATA_HORKAGE_FIRMWARE_WARN },
4216 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4217 ATA_HORKAGE_FIRMWARE_WARN },
4218 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222
4223 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4224 ATA_HORKAGE_FIRMWARE_WARN },
4225 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4226 ATA_HORKAGE_FIRMWARE_WARN },
4227 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233
4234 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4235 ATA_HORKAGE_FIRMWARE_WARN },
4236 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4237 ATA_HORKAGE_FIRMWARE_WARN },
4238 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4239 ATA_HORKAGE_FIRMWARE_WARN },
4240 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244
4245 /* Blacklist entries taken from Silicon Image 3124/3132
4246 Windows driver .inf file - also several Linux problem reports */
4247 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4248 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4249 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4250
4251 /* devices which puke on READ_NATIVE_MAX */
4252 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4253 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4254 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4255 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4256
4257 /* Devices which report 1 sector over size HPA */
4258 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4259 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4260 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4261
4262 /* Devices which get the IVB wrong */
4263 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4264 /* Maybe we should just blacklist TSSTcorp... */
4265 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4266 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4267 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4268 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4269 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4270 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4271
4272 /* Devices that do not need bridging limits applied */
4273 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4274
4275 /* Devices which aren't very happy with higher link speeds */
4276 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4277
4278 /* End Marker */
4279 { }
4280 };
4281
4282 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4283 {
4284 const char *p;
4285 int len;
4286
4287 /*
4288 * check for trailing wildcard: *\0
4289 */
4290 p = strchr(patt, wildchar);
4291 if (p && ((*(p + 1)) == 0))
4292 len = p - patt;
4293 else {
4294 len = strlen(name);
4295 if (!len) {
4296 if (!*patt)
4297 return 0;
4298 return -1;
4299 }
4300 }
4301
4302 return strncmp(patt, name, len);
4303 }
4304
4305 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4306 {
4307 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4308 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4309 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4310
4311 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4312 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4313
4314 while (ad->model_num) {
4315 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4316 if (ad->model_rev == NULL)
4317 return ad->horkage;
4318 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4319 return ad->horkage;
4320 }
4321 ad++;
4322 }
4323 return 0;
4324 }
4325
4326 static int ata_dma_blacklisted(const struct ata_device *dev)
4327 {
4328 /* We don't support polling DMA.
4329 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4330 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4331 */
4332 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4333 (dev->flags & ATA_DFLAG_CDB_INTR))
4334 return 1;
4335 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4336 }
4337
4338 /**
4339 * ata_is_40wire - check drive side detection
4340 * @dev: device
4341 *
4342 * Perform drive side detection decoding, allowing for device vendors
4343 * who can't follow the documentation.
4344 */
4345
4346 static int ata_is_40wire(struct ata_device *dev)
4347 {
4348 if (dev->horkage & ATA_HORKAGE_IVB)
4349 return ata_drive_40wire_relaxed(dev->id);
4350 return ata_drive_40wire(dev->id);
4351 }
4352
4353 /**
4354 * cable_is_40wire - 40/80/SATA decider
4355 * @ap: port to consider
4356 *
4357 * This function encapsulates the policy for speed management
4358 * in one place. At the moment we don't cache the result but
4359 * there is a good case for setting ap->cbl to the result when
4360 * we are called with unknown cables (and figuring out if it
4361 * impacts hotplug at all).
4362 *
4363 * Return 1 if the cable appears to be 40 wire.
4364 */
4365
4366 static int cable_is_40wire(struct ata_port *ap)
4367 {
4368 struct ata_link *link;
4369 struct ata_device *dev;
4370
4371 /* If the controller thinks we are 40 wire, we are. */
4372 if (ap->cbl == ATA_CBL_PATA40)
4373 return 1;
4374
4375 /* If the controller thinks we are 80 wire, we are. */
4376 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4377 return 0;
4378
4379 /* If the system is known to be 40 wire short cable (eg
4380 * laptop), then we allow 80 wire modes even if the drive
4381 * isn't sure.
4382 */
4383 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4384 return 0;
4385
4386 /* If the controller doesn't know, we scan.
4387 *
4388 * Note: We look for all 40 wire detects at this point. Any
4389 * 80 wire detect is taken to be 80 wire cable because
4390 * - in many setups only the one drive (slave if present) will
4391 * give a valid detect
4392 * - if you have a non detect capable drive you don't want it
4393 * to colour the choice
4394 */
4395 ata_for_each_link(link, ap, EDGE) {
4396 ata_for_each_dev(dev, link, ENABLED) {
4397 if (!ata_is_40wire(dev))
4398 return 0;
4399 }
4400 }
4401 return 1;
4402 }
4403
4404 /**
4405 * ata_dev_xfermask - Compute supported xfermask of the given device
4406 * @dev: Device to compute xfermask for
4407 *
4408 * Compute supported xfermask of @dev and store it in
4409 * dev->*_mask. This function is responsible for applying all
4410 * known limits including host controller limits, device
4411 * blacklist, etc...
4412 *
4413 * LOCKING:
4414 * None.
4415 */
4416 static void ata_dev_xfermask(struct ata_device *dev)
4417 {
4418 struct ata_link *link = dev->link;
4419 struct ata_port *ap = link->ap;
4420 struct ata_host *host = ap->host;
4421 unsigned long xfer_mask;
4422
4423 /* controller modes available */
4424 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4425 ap->mwdma_mask, ap->udma_mask);
4426
4427 /* drive modes available */
4428 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4429 dev->mwdma_mask, dev->udma_mask);
4430 xfer_mask &= ata_id_xfermask(dev->id);
4431
4432 /*
4433 * CFA Advanced TrueIDE timings are not allowed on a shared
4434 * cable
4435 */
4436 if (ata_dev_pair(dev)) {
4437 /* No PIO5 or PIO6 */
4438 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4439 /* No MWDMA3 or MWDMA 4 */
4440 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4441 }
4442
4443 if (ata_dma_blacklisted(dev)) {
4444 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4445 ata_dev_printk(dev, KERN_WARNING,
4446 "device is on DMA blacklist, disabling DMA\n");
4447 }
4448
4449 if ((host->flags & ATA_HOST_SIMPLEX) &&
4450 host->simplex_claimed && host->simplex_claimed != ap) {
4451 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4452 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4453 "other device, disabling DMA\n");
4454 }
4455
4456 if (ap->flags & ATA_FLAG_NO_IORDY)
4457 xfer_mask &= ata_pio_mask_no_iordy(dev);
4458
4459 if (ap->ops->mode_filter)
4460 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4461
4462 /* Apply cable rule here. Don't apply it early because when
4463 * we handle hot plug the cable type can itself change.
4464 * Check this last so that we know if the transfer rate was
4465 * solely limited by the cable.
4466 * Unknown or 80 wire cables reported host side are checked
4467 * drive side as well. Cases where we know a 40wire cable
4468 * is used safely for 80 are not checked here.
4469 */
4470 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4471 /* UDMA/44 or higher would be available */
4472 if (cable_is_40wire(ap)) {
4473 ata_dev_printk(dev, KERN_WARNING,
4474 "limited to UDMA/33 due to 40-wire cable\n");
4475 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4476 }
4477
4478 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4479 &dev->mwdma_mask, &dev->udma_mask);
4480 }
4481
4482 /**
4483 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4484 * @dev: Device to which command will be sent
4485 *
4486 * Issue SET FEATURES - XFER MODE command to device @dev
4487 * on port @ap.
4488 *
4489 * LOCKING:
4490 * PCI/etc. bus probe sem.
4491 *
4492 * RETURNS:
4493 * 0 on success, AC_ERR_* mask otherwise.
4494 */
4495
4496 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4497 {
4498 struct ata_taskfile tf;
4499 unsigned int err_mask;
4500
4501 /* set up set-features taskfile */
4502 DPRINTK("set features - xfer mode\n");
4503
4504 /* Some controllers and ATAPI devices show flaky interrupt
4505 * behavior after setting xfer mode. Use polling instead.
4506 */
4507 ata_tf_init(dev, &tf);
4508 tf.command = ATA_CMD_SET_FEATURES;
4509 tf.feature = SETFEATURES_XFER;
4510 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4511 tf.protocol = ATA_PROT_NODATA;
4512 /* If we are using IORDY we must send the mode setting command */
4513 if (ata_pio_need_iordy(dev))
4514 tf.nsect = dev->xfer_mode;
4515 /* If the device has IORDY and the controller does not - turn it off */
4516 else if (ata_id_has_iordy(dev->id))
4517 tf.nsect = 0x01;
4518 else /* In the ancient relic department - skip all of this */
4519 return 0;
4520
4521 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4522
4523 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4524 return err_mask;
4525 }
4526 /**
4527 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4528 * @dev: Device to which command will be sent
4529 * @enable: Whether to enable or disable the feature
4530 * @feature: The sector count represents the feature to set
4531 *
4532 * Issue SET FEATURES - SATA FEATURES command to device @dev
4533 * on port @ap with sector count
4534 *
4535 * LOCKING:
4536 * PCI/etc. bus probe sem.
4537 *
4538 * RETURNS:
4539 * 0 on success, AC_ERR_* mask otherwise.
4540 */
4541 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4542 u8 feature)
4543 {
4544 struct ata_taskfile tf;
4545 unsigned int err_mask;
4546
4547 /* set up set-features taskfile */
4548 DPRINTK("set features - SATA features\n");
4549
4550 ata_tf_init(dev, &tf);
4551 tf.command = ATA_CMD_SET_FEATURES;
4552 tf.feature = enable;
4553 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4554 tf.protocol = ATA_PROT_NODATA;
4555 tf.nsect = feature;
4556
4557 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4558
4559 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4560 return err_mask;
4561 }
4562
4563 /**
4564 * ata_dev_init_params - Issue INIT DEV PARAMS command
4565 * @dev: Device to which command will be sent
4566 * @heads: Number of heads (taskfile parameter)
4567 * @sectors: Number of sectors (taskfile parameter)
4568 *
4569 * LOCKING:
4570 * Kernel thread context (may sleep)
4571 *
4572 * RETURNS:
4573 * 0 on success, AC_ERR_* mask otherwise.
4574 */
4575 static unsigned int ata_dev_init_params(struct ata_device *dev,
4576 u16 heads, u16 sectors)
4577 {
4578 struct ata_taskfile tf;
4579 unsigned int err_mask;
4580
4581 /* Number of sectors per track 1-255. Number of heads 1-16 */
4582 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4583 return AC_ERR_INVALID;
4584
4585 /* set up init dev params taskfile */
4586 DPRINTK("init dev params \n");
4587
4588 ata_tf_init(dev, &tf);
4589 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4590 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4591 tf.protocol = ATA_PROT_NODATA;
4592 tf.nsect = sectors;
4593 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4594
4595 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4596 /* A clean abort indicates an original or just out of spec drive
4597 and we should continue as we issue the setup based on the
4598 drive reported working geometry */
4599 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4600 err_mask = 0;
4601
4602 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4603 return err_mask;
4604 }
4605
4606 /**
4607 * ata_sg_clean - Unmap DMA memory associated with command
4608 * @qc: Command containing DMA memory to be released
4609 *
4610 * Unmap all mapped DMA memory associated with this command.
4611 *
4612 * LOCKING:
4613 * spin_lock_irqsave(host lock)
4614 */
4615 void ata_sg_clean(struct ata_queued_cmd *qc)
4616 {
4617 struct ata_port *ap = qc->ap;
4618 struct scatterlist *sg = qc->sg;
4619 int dir = qc->dma_dir;
4620
4621 WARN_ON_ONCE(sg == NULL);
4622
4623 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4624
4625 if (qc->n_elem)
4626 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4627
4628 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4629 qc->sg = NULL;
4630 }
4631
4632 /**
4633 * atapi_check_dma - Check whether ATAPI DMA can be supported
4634 * @qc: Metadata associated with taskfile to check
4635 *
4636 * Allow low-level driver to filter ATA PACKET commands, returning
4637 * a status indicating whether or not it is OK to use DMA for the
4638 * supplied PACKET command.
4639 *
4640 * LOCKING:
4641 * spin_lock_irqsave(host lock)
4642 *
4643 * RETURNS: 0 when ATAPI DMA can be used
4644 * nonzero otherwise
4645 */
4646 int atapi_check_dma(struct ata_queued_cmd *qc)
4647 {
4648 struct ata_port *ap = qc->ap;
4649
4650 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4651 * few ATAPI devices choke on such DMA requests.
4652 */
4653 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4654 unlikely(qc->nbytes & 15))
4655 return 1;
4656
4657 if (ap->ops->check_atapi_dma)
4658 return ap->ops->check_atapi_dma(qc);
4659
4660 return 0;
4661 }
4662
4663 /**
4664 * ata_std_qc_defer - Check whether a qc needs to be deferred
4665 * @qc: ATA command in question
4666 *
4667 * Non-NCQ commands cannot run with any other command, NCQ or
4668 * not. As upper layer only knows the queue depth, we are
4669 * responsible for maintaining exclusion. This function checks
4670 * whether a new command @qc can be issued.
4671 *
4672 * LOCKING:
4673 * spin_lock_irqsave(host lock)
4674 *
4675 * RETURNS:
4676 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4677 */
4678 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4679 {
4680 struct ata_link *link = qc->dev->link;
4681
4682 if (qc->tf.protocol == ATA_PROT_NCQ) {
4683 if (!ata_tag_valid(link->active_tag))
4684 return 0;
4685 } else {
4686 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4687 return 0;
4688 }
4689
4690 return ATA_DEFER_LINK;
4691 }
4692
4693 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4694
4695 /**
4696 * ata_sg_init - Associate command with scatter-gather table.
4697 * @qc: Command to be associated
4698 * @sg: Scatter-gather table.
4699 * @n_elem: Number of elements in s/g table.
4700 *
4701 * Initialize the data-related elements of queued_cmd @qc
4702 * to point to a scatter-gather table @sg, containing @n_elem
4703 * elements.
4704 *
4705 * LOCKING:
4706 * spin_lock_irqsave(host lock)
4707 */
4708 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4709 unsigned int n_elem)
4710 {
4711 qc->sg = sg;
4712 qc->n_elem = n_elem;
4713 qc->cursg = qc->sg;
4714 }
4715
4716 /**
4717 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4718 * @qc: Command with scatter-gather table to be mapped.
4719 *
4720 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4721 *
4722 * LOCKING:
4723 * spin_lock_irqsave(host lock)
4724 *
4725 * RETURNS:
4726 * Zero on success, negative on error.
4727 *
4728 */
4729 static int ata_sg_setup(struct ata_queued_cmd *qc)
4730 {
4731 struct ata_port *ap = qc->ap;
4732 unsigned int n_elem;
4733
4734 VPRINTK("ENTER, ata%u\n", ap->print_id);
4735
4736 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4737 if (n_elem < 1)
4738 return -1;
4739
4740 DPRINTK("%d sg elements mapped\n", n_elem);
4741 qc->orig_n_elem = qc->n_elem;
4742 qc->n_elem = n_elem;
4743 qc->flags |= ATA_QCFLAG_DMAMAP;
4744
4745 return 0;
4746 }
4747
4748 /**
4749 * swap_buf_le16 - swap halves of 16-bit words in place
4750 * @buf: Buffer to swap
4751 * @buf_words: Number of 16-bit words in buffer.
4752 *
4753 * Swap halves of 16-bit words if needed to convert from
4754 * little-endian byte order to native cpu byte order, or
4755 * vice-versa.
4756 *
4757 * LOCKING:
4758 * Inherited from caller.
4759 */
4760 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4761 {
4762 #ifdef __BIG_ENDIAN
4763 unsigned int i;
4764
4765 for (i = 0; i < buf_words; i++)
4766 buf[i] = le16_to_cpu(buf[i]);
4767 #endif /* __BIG_ENDIAN */
4768 }
4769
4770 /**
4771 * ata_qc_new - Request an available ATA command, for queueing
4772 * @ap: target port
4773 *
4774 * LOCKING:
4775 * None.
4776 */
4777
4778 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4779 {
4780 struct ata_queued_cmd *qc = NULL;
4781 unsigned int i;
4782
4783 /* no command while frozen */
4784 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4785 return NULL;
4786
4787 /* the last tag is reserved for internal command. */
4788 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4789 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4790 qc = __ata_qc_from_tag(ap, i);
4791 break;
4792 }
4793
4794 if (qc)
4795 qc->tag = i;
4796
4797 return qc;
4798 }
4799
4800 /**
4801 * ata_qc_new_init - Request an available ATA command, and initialize it
4802 * @dev: Device from whom we request an available command structure
4803 *
4804 * LOCKING:
4805 * None.
4806 */
4807
4808 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4809 {
4810 struct ata_port *ap = dev->link->ap;
4811 struct ata_queued_cmd *qc;
4812
4813 qc = ata_qc_new(ap);
4814 if (qc) {
4815 qc->scsicmd = NULL;
4816 qc->ap = ap;
4817 qc->dev = dev;
4818
4819 ata_qc_reinit(qc);
4820 }
4821
4822 return qc;
4823 }
4824
4825 /**
4826 * ata_qc_free - free unused ata_queued_cmd
4827 * @qc: Command to complete
4828 *
4829 * Designed to free unused ata_queued_cmd object
4830 * in case something prevents using it.
4831 *
4832 * LOCKING:
4833 * spin_lock_irqsave(host lock)
4834 */
4835 void ata_qc_free(struct ata_queued_cmd *qc)
4836 {
4837 struct ata_port *ap = qc->ap;
4838 unsigned int tag;
4839
4840 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4841
4842 qc->flags = 0;
4843 tag = qc->tag;
4844 if (likely(ata_tag_valid(tag))) {
4845 qc->tag = ATA_TAG_POISON;
4846 clear_bit(tag, &ap->qc_allocated);
4847 }
4848 }
4849
4850 void __ata_qc_complete(struct ata_queued_cmd *qc)
4851 {
4852 struct ata_port *ap = qc->ap;
4853 struct ata_link *link = qc->dev->link;
4854
4855 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4856 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4857
4858 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4859 ata_sg_clean(qc);
4860
4861 /* command should be marked inactive atomically with qc completion */
4862 if (qc->tf.protocol == ATA_PROT_NCQ) {
4863 link->sactive &= ~(1 << qc->tag);
4864 if (!link->sactive)
4865 ap->nr_active_links--;
4866 } else {
4867 link->active_tag = ATA_TAG_POISON;
4868 ap->nr_active_links--;
4869 }
4870
4871 /* clear exclusive status */
4872 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4873 ap->excl_link == link))
4874 ap->excl_link = NULL;
4875
4876 /* atapi: mark qc as inactive to prevent the interrupt handler
4877 * from completing the command twice later, before the error handler
4878 * is called. (when rc != 0 and atapi request sense is needed)
4879 */
4880 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4881 ap->qc_active &= ~(1 << qc->tag);
4882
4883 /* call completion callback */
4884 qc->complete_fn(qc);
4885 }
4886
4887 static void fill_result_tf(struct ata_queued_cmd *qc)
4888 {
4889 struct ata_port *ap = qc->ap;
4890
4891 qc->result_tf.flags = qc->tf.flags;
4892 ap->ops->qc_fill_rtf(qc);
4893 }
4894
4895 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4896 {
4897 struct ata_device *dev = qc->dev;
4898
4899 if (ata_tag_internal(qc->tag))
4900 return;
4901
4902 if (ata_is_nodata(qc->tf.protocol))
4903 return;
4904
4905 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4906 return;
4907
4908 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4909 }
4910
4911 /**
4912 * ata_qc_complete - Complete an active ATA command
4913 * @qc: Command to complete
4914 *
4915 * Indicate to the mid and upper layers that an ATA
4916 * command has completed, with either an ok or not-ok status.
4917 *
4918 * LOCKING:
4919 * spin_lock_irqsave(host lock)
4920 */
4921 void ata_qc_complete(struct ata_queued_cmd *qc)
4922 {
4923 struct ata_port *ap = qc->ap;
4924
4925 /* XXX: New EH and old EH use different mechanisms to
4926 * synchronize EH with regular execution path.
4927 *
4928 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4929 * Normal execution path is responsible for not accessing a
4930 * failed qc. libata core enforces the rule by returning NULL
4931 * from ata_qc_from_tag() for failed qcs.
4932 *
4933 * Old EH depends on ata_qc_complete() nullifying completion
4934 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4935 * not synchronize with interrupt handler. Only PIO task is
4936 * taken care of.
4937 */
4938 if (ap->ops->error_handler) {
4939 struct ata_device *dev = qc->dev;
4940 struct ata_eh_info *ehi = &dev->link->eh_info;
4941
4942 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4943
4944 if (unlikely(qc->err_mask))
4945 qc->flags |= ATA_QCFLAG_FAILED;
4946
4947 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4948 if (!ata_tag_internal(qc->tag)) {
4949 /* always fill result TF for failed qc */
4950 fill_result_tf(qc);
4951 ata_qc_schedule_eh(qc);
4952 return;
4953 }
4954 }
4955
4956 /* read result TF if requested */
4957 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4958 fill_result_tf(qc);
4959
4960 /* Some commands need post-processing after successful
4961 * completion.
4962 */
4963 switch (qc->tf.command) {
4964 case ATA_CMD_SET_FEATURES:
4965 if (qc->tf.feature != SETFEATURES_WC_ON &&
4966 qc->tf.feature != SETFEATURES_WC_OFF)
4967 break;
4968 /* fall through */
4969 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4970 case ATA_CMD_SET_MULTI: /* multi_count changed */
4971 /* revalidate device */
4972 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4973 ata_port_schedule_eh(ap);
4974 break;
4975
4976 case ATA_CMD_SLEEP:
4977 dev->flags |= ATA_DFLAG_SLEEPING;
4978 break;
4979 }
4980
4981 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4982 ata_verify_xfer(qc);
4983
4984 __ata_qc_complete(qc);
4985 } else {
4986 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4987 return;
4988
4989 /* read result TF if failed or requested */
4990 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4991 fill_result_tf(qc);
4992
4993 __ata_qc_complete(qc);
4994 }
4995 }
4996
4997 /**
4998 * ata_qc_complete_multiple - Complete multiple qcs successfully
4999 * @ap: port in question
5000 * @qc_active: new qc_active mask
5001 *
5002 * Complete in-flight commands. This functions is meant to be
5003 * called from low-level driver's interrupt routine to complete
5004 * requests normally. ap->qc_active and @qc_active is compared
5005 * and commands are completed accordingly.
5006 *
5007 * LOCKING:
5008 * spin_lock_irqsave(host lock)
5009 *
5010 * RETURNS:
5011 * Number of completed commands on success, -errno otherwise.
5012 */
5013 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5014 {
5015 int nr_done = 0;
5016 u32 done_mask;
5017 int i;
5018
5019 done_mask = ap->qc_active ^ qc_active;
5020
5021 if (unlikely(done_mask & qc_active)) {
5022 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5023 "(%08x->%08x)\n", ap->qc_active, qc_active);
5024 return -EINVAL;
5025 }
5026
5027 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5028 struct ata_queued_cmd *qc;
5029
5030 if (!(done_mask & (1 << i)))
5031 continue;
5032
5033 if ((qc = ata_qc_from_tag(ap, i))) {
5034 ata_qc_complete(qc);
5035 nr_done++;
5036 }
5037 }
5038
5039 return nr_done;
5040 }
5041
5042 /**
5043 * ata_qc_issue - issue taskfile to device
5044 * @qc: command to issue to device
5045 *
5046 * Prepare an ATA command to submission to device.
5047 * This includes mapping the data into a DMA-able
5048 * area, filling in the S/G table, and finally
5049 * writing the taskfile to hardware, starting the command.
5050 *
5051 * LOCKING:
5052 * spin_lock_irqsave(host lock)
5053 */
5054 void ata_qc_issue(struct ata_queued_cmd *qc)
5055 {
5056 struct ata_port *ap = qc->ap;
5057 struct ata_link *link = qc->dev->link;
5058 u8 prot = qc->tf.protocol;
5059
5060 /* Make sure only one non-NCQ command is outstanding. The
5061 * check is skipped for old EH because it reuses active qc to
5062 * request ATAPI sense.
5063 */
5064 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5065
5066 if (ata_is_ncq(prot)) {
5067 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5068
5069 if (!link->sactive)
5070 ap->nr_active_links++;
5071 link->sactive |= 1 << qc->tag;
5072 } else {
5073 WARN_ON_ONCE(link->sactive);
5074
5075 ap->nr_active_links++;
5076 link->active_tag = qc->tag;
5077 }
5078
5079 qc->flags |= ATA_QCFLAG_ACTIVE;
5080 ap->qc_active |= 1 << qc->tag;
5081
5082 /* We guarantee to LLDs that they will have at least one
5083 * non-zero sg if the command is a data command.
5084 */
5085 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5086
5087 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5088 (ap->flags & ATA_FLAG_PIO_DMA)))
5089 if (ata_sg_setup(qc))
5090 goto sg_err;
5091
5092 /* if device is sleeping, schedule reset and abort the link */
5093 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5094 link->eh_info.action |= ATA_EH_RESET;
5095 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5096 ata_link_abort(link);
5097 return;
5098 }
5099
5100 ap->ops->qc_prep(qc);
5101
5102 qc->err_mask |= ap->ops->qc_issue(qc);
5103 if (unlikely(qc->err_mask))
5104 goto err;
5105 return;
5106
5107 sg_err:
5108 qc->err_mask |= AC_ERR_SYSTEM;
5109 err:
5110 ata_qc_complete(qc);
5111 }
5112
5113 /**
5114 * sata_scr_valid - test whether SCRs are accessible
5115 * @link: ATA link to test SCR accessibility for
5116 *
5117 * Test whether SCRs are accessible for @link.
5118 *
5119 * LOCKING:
5120 * None.
5121 *
5122 * RETURNS:
5123 * 1 if SCRs are accessible, 0 otherwise.
5124 */
5125 int sata_scr_valid(struct ata_link *link)
5126 {
5127 struct ata_port *ap = link->ap;
5128
5129 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5130 }
5131
5132 /**
5133 * sata_scr_read - read SCR register of the specified port
5134 * @link: ATA link to read SCR for
5135 * @reg: SCR to read
5136 * @val: Place to store read value
5137 *
5138 * Read SCR register @reg of @link into *@val. This function is
5139 * guaranteed to succeed if @link is ap->link, the cable type of
5140 * the port is SATA and the port implements ->scr_read.
5141 *
5142 * LOCKING:
5143 * None if @link is ap->link. Kernel thread context otherwise.
5144 *
5145 * RETURNS:
5146 * 0 on success, negative errno on failure.
5147 */
5148 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5149 {
5150 if (ata_is_host_link(link)) {
5151 if (sata_scr_valid(link))
5152 return link->ap->ops->scr_read(link, reg, val);
5153 return -EOPNOTSUPP;
5154 }
5155
5156 return sata_pmp_scr_read(link, reg, val);
5157 }
5158
5159 /**
5160 * sata_scr_write - write SCR register of the specified port
5161 * @link: ATA link to write SCR for
5162 * @reg: SCR to write
5163 * @val: value to write
5164 *
5165 * Write @val to SCR register @reg of @link. This function is
5166 * guaranteed to succeed if @link is ap->link, the cable type of
5167 * the port is SATA and the port implements ->scr_read.
5168 *
5169 * LOCKING:
5170 * None if @link is ap->link. Kernel thread context otherwise.
5171 *
5172 * RETURNS:
5173 * 0 on success, negative errno on failure.
5174 */
5175 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5176 {
5177 if (ata_is_host_link(link)) {
5178 if (sata_scr_valid(link))
5179 return link->ap->ops->scr_write(link, reg, val);
5180 return -EOPNOTSUPP;
5181 }
5182
5183 return sata_pmp_scr_write(link, reg, val);
5184 }
5185
5186 /**
5187 * sata_scr_write_flush - write SCR register of the specified port and flush
5188 * @link: ATA link to write SCR for
5189 * @reg: SCR to write
5190 * @val: value to write
5191 *
5192 * This function is identical to sata_scr_write() except that this
5193 * function performs flush after writing to the register.
5194 *
5195 * LOCKING:
5196 * None if @link is ap->link. Kernel thread context otherwise.
5197 *
5198 * RETURNS:
5199 * 0 on success, negative errno on failure.
5200 */
5201 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5202 {
5203 if (ata_is_host_link(link)) {
5204 int rc;
5205
5206 if (sata_scr_valid(link)) {
5207 rc = link->ap->ops->scr_write(link, reg, val);
5208 if (rc == 0)
5209 rc = link->ap->ops->scr_read(link, reg, &val);
5210 return rc;
5211 }
5212 return -EOPNOTSUPP;
5213 }
5214
5215 return sata_pmp_scr_write(link, reg, val);
5216 }
5217
5218 /**
5219 * ata_phys_link_online - test whether the given link is online
5220 * @link: ATA link to test
5221 *
5222 * Test whether @link is online. Note that this function returns
5223 * 0 if online status of @link cannot be obtained, so
5224 * ata_link_online(link) != !ata_link_offline(link).
5225 *
5226 * LOCKING:
5227 * None.
5228 *
5229 * RETURNS:
5230 * True if the port online status is available and online.
5231 */
5232 bool ata_phys_link_online(struct ata_link *link)
5233 {
5234 u32 sstatus;
5235
5236 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5237 ata_sstatus_online(sstatus))
5238 return true;
5239 return false;
5240 }
5241
5242 /**
5243 * ata_phys_link_offline - test whether the given link is offline
5244 * @link: ATA link to test
5245 *
5246 * Test whether @link is offline. Note that this function
5247 * returns 0 if offline status of @link cannot be obtained, so
5248 * ata_link_online(link) != !ata_link_offline(link).
5249 *
5250 * LOCKING:
5251 * None.
5252 *
5253 * RETURNS:
5254 * True if the port offline status is available and offline.
5255 */
5256 bool ata_phys_link_offline(struct ata_link *link)
5257 {
5258 u32 sstatus;
5259
5260 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5261 !ata_sstatus_online(sstatus))
5262 return true;
5263 return false;
5264 }
5265
5266 /**
5267 * ata_link_online - test whether the given link is online
5268 * @link: ATA link to test
5269 *
5270 * Test whether @link is online. This is identical to
5271 * ata_phys_link_online() when there's no slave link. When
5272 * there's a slave link, this function should only be called on
5273 * the master link and will return true if any of M/S links is
5274 * online.
5275 *
5276 * LOCKING:
5277 * None.
5278 *
5279 * RETURNS:
5280 * True if the port online status is available and online.
5281 */
5282 bool ata_link_online(struct ata_link *link)
5283 {
5284 struct ata_link *slave = link->ap->slave_link;
5285
5286 WARN_ON(link == slave); /* shouldn't be called on slave link */
5287
5288 return ata_phys_link_online(link) ||
5289 (slave && ata_phys_link_online(slave));
5290 }
5291
5292 /**
5293 * ata_link_offline - test whether the given link is offline
5294 * @link: ATA link to test
5295 *
5296 * Test whether @link is offline. This is identical to
5297 * ata_phys_link_offline() when there's no slave link. When
5298 * there's a slave link, this function should only be called on
5299 * the master link and will return true if both M/S links are
5300 * offline.
5301 *
5302 * LOCKING:
5303 * None.
5304 *
5305 * RETURNS:
5306 * True if the port offline status is available and offline.
5307 */
5308 bool ata_link_offline(struct ata_link *link)
5309 {
5310 struct ata_link *slave = link->ap->slave_link;
5311
5312 WARN_ON(link == slave); /* shouldn't be called on slave link */
5313
5314 return ata_phys_link_offline(link) &&
5315 (!slave || ata_phys_link_offline(slave));
5316 }
5317
5318 #ifdef CONFIG_PM
5319 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5320 unsigned int action, unsigned int ehi_flags,
5321 int wait)
5322 {
5323 unsigned long flags;
5324 int i, rc;
5325
5326 for (i = 0; i < host->n_ports; i++) {
5327 struct ata_port *ap = host->ports[i];
5328 struct ata_link *link;
5329
5330 /* Previous resume operation might still be in
5331 * progress. Wait for PM_PENDING to clear.
5332 */
5333 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5334 ata_port_wait_eh(ap);
5335 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5336 }
5337
5338 /* request PM ops to EH */
5339 spin_lock_irqsave(ap->lock, flags);
5340
5341 ap->pm_mesg = mesg;
5342 if (wait) {
5343 rc = 0;
5344 ap->pm_result = &rc;
5345 }
5346
5347 ap->pflags |= ATA_PFLAG_PM_PENDING;
5348 ata_for_each_link(link, ap, HOST_FIRST) {
5349 link->eh_info.action |= action;
5350 link->eh_info.flags |= ehi_flags;
5351 }
5352
5353 ata_port_schedule_eh(ap);
5354
5355 spin_unlock_irqrestore(ap->lock, flags);
5356
5357 /* wait and check result */
5358 if (wait) {
5359 ata_port_wait_eh(ap);
5360 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5361 if (rc)
5362 return rc;
5363 }
5364 }
5365
5366 return 0;
5367 }
5368
5369 /**
5370 * ata_host_suspend - suspend host
5371 * @host: host to suspend
5372 * @mesg: PM message
5373 *
5374 * Suspend @host. Actual operation is performed by EH. This
5375 * function requests EH to perform PM operations and waits for EH
5376 * to finish.
5377 *
5378 * LOCKING:
5379 * Kernel thread context (may sleep).
5380 *
5381 * RETURNS:
5382 * 0 on success, -errno on failure.
5383 */
5384 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5385 {
5386 int rc;
5387
5388 /*
5389 * disable link pm on all ports before requesting
5390 * any pm activity
5391 */
5392 ata_lpm_enable(host);
5393
5394 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5395 if (rc == 0)
5396 host->dev->power.power_state = mesg;
5397 return rc;
5398 }
5399
5400 /**
5401 * ata_host_resume - resume host
5402 * @host: host to resume
5403 *
5404 * Resume @host. Actual operation is performed by EH. This
5405 * function requests EH to perform PM operations and returns.
5406 * Note that all resume operations are performed parallely.
5407 *
5408 * LOCKING:
5409 * Kernel thread context (may sleep).
5410 */
5411 void ata_host_resume(struct ata_host *host)
5412 {
5413 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5414 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5415 host->dev->power.power_state = PMSG_ON;
5416
5417 /* reenable link pm */
5418 ata_lpm_disable(host);
5419 }
5420 #endif
5421
5422 /**
5423 * ata_port_start - Set port up for dma.
5424 * @ap: Port to initialize
5425 *
5426 * Called just after data structures for each port are
5427 * initialized. Allocates space for PRD table.
5428 *
5429 * May be used as the port_start() entry in ata_port_operations.
5430 *
5431 * LOCKING:
5432 * Inherited from caller.
5433 */
5434 int ata_port_start(struct ata_port *ap)
5435 {
5436 struct device *dev = ap->dev;
5437
5438 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5439 GFP_KERNEL);
5440 if (!ap->prd)
5441 return -ENOMEM;
5442
5443 return 0;
5444 }
5445
5446 /**
5447 * ata_dev_init - Initialize an ata_device structure
5448 * @dev: Device structure to initialize
5449 *
5450 * Initialize @dev in preparation for probing.
5451 *
5452 * LOCKING:
5453 * Inherited from caller.
5454 */
5455 void ata_dev_init(struct ata_device *dev)
5456 {
5457 struct ata_link *link = ata_dev_phys_link(dev);
5458 struct ata_port *ap = link->ap;
5459 unsigned long flags;
5460
5461 /* SATA spd limit is bound to the attached device, reset together */
5462 link->sata_spd_limit = link->hw_sata_spd_limit;
5463 link->sata_spd = 0;
5464
5465 /* High bits of dev->flags are used to record warm plug
5466 * requests which occur asynchronously. Synchronize using
5467 * host lock.
5468 */
5469 spin_lock_irqsave(ap->lock, flags);
5470 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5471 dev->horkage = 0;
5472 spin_unlock_irqrestore(ap->lock, flags);
5473
5474 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5475 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5476 dev->pio_mask = UINT_MAX;
5477 dev->mwdma_mask = UINT_MAX;
5478 dev->udma_mask = UINT_MAX;
5479 }
5480
5481 /**
5482 * ata_link_init - Initialize an ata_link structure
5483 * @ap: ATA port link is attached to
5484 * @link: Link structure to initialize
5485 * @pmp: Port multiplier port number
5486 *
5487 * Initialize @link.
5488 *
5489 * LOCKING:
5490 * Kernel thread context (may sleep)
5491 */
5492 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5493 {
5494 int i;
5495
5496 /* clear everything except for devices */
5497 memset(link, 0, offsetof(struct ata_link, device[0]));
5498
5499 link->ap = ap;
5500 link->pmp = pmp;
5501 link->active_tag = ATA_TAG_POISON;
5502 link->hw_sata_spd_limit = UINT_MAX;
5503
5504 /* can't use iterator, ap isn't initialized yet */
5505 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5506 struct ata_device *dev = &link->device[i];
5507
5508 dev->link = link;
5509 dev->devno = dev - link->device;
5510 ata_dev_init(dev);
5511 }
5512 }
5513
5514 /**
5515 * sata_link_init_spd - Initialize link->sata_spd_limit
5516 * @link: Link to configure sata_spd_limit for
5517 *
5518 * Initialize @link->[hw_]sata_spd_limit to the currently
5519 * configured value.
5520 *
5521 * LOCKING:
5522 * Kernel thread context (may sleep).
5523 *
5524 * RETURNS:
5525 * 0 on success, -errno on failure.
5526 */
5527 int sata_link_init_spd(struct ata_link *link)
5528 {
5529 u8 spd;
5530 int rc;
5531
5532 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5533 if (rc)
5534 return rc;
5535
5536 spd = (link->saved_scontrol >> 4) & 0xf;
5537 if (spd)
5538 link->hw_sata_spd_limit &= (1 << spd) - 1;
5539
5540 ata_force_link_limits(link);
5541
5542 link->sata_spd_limit = link->hw_sata_spd_limit;
5543
5544 return 0;
5545 }
5546
5547 /**
5548 * ata_port_alloc - allocate and initialize basic ATA port resources
5549 * @host: ATA host this allocated port belongs to
5550 *
5551 * Allocate and initialize basic ATA port resources.
5552 *
5553 * RETURNS:
5554 * Allocate ATA port on success, NULL on failure.
5555 *
5556 * LOCKING:
5557 * Inherited from calling layer (may sleep).
5558 */
5559 struct ata_port *ata_port_alloc(struct ata_host *host)
5560 {
5561 struct ata_port *ap;
5562
5563 DPRINTK("ENTER\n");
5564
5565 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5566 if (!ap)
5567 return NULL;
5568
5569 ap->pflags |= ATA_PFLAG_INITIALIZING;
5570 ap->lock = &host->lock;
5571 ap->flags = ATA_FLAG_DISABLED;
5572 ap->print_id = -1;
5573 ap->ctl = ATA_DEVCTL_OBS;
5574 ap->host = host;
5575 ap->dev = host->dev;
5576 ap->last_ctl = 0xFF;
5577
5578 #if defined(ATA_VERBOSE_DEBUG)
5579 /* turn on all debugging levels */
5580 ap->msg_enable = 0x00FF;
5581 #elif defined(ATA_DEBUG)
5582 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5583 #else
5584 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5585 #endif
5586
5587 #ifdef CONFIG_ATA_SFF
5588 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5589 #else
5590 INIT_DELAYED_WORK(&ap->port_task, NULL);
5591 #endif
5592 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5593 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5594 INIT_LIST_HEAD(&ap->eh_done_q);
5595 init_waitqueue_head(&ap->eh_wait_q);
5596 init_completion(&ap->park_req_pending);
5597 init_timer_deferrable(&ap->fastdrain_timer);
5598 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5599 ap->fastdrain_timer.data = (unsigned long)ap;
5600
5601 ap->cbl = ATA_CBL_NONE;
5602
5603 ata_link_init(ap, &ap->link, 0);
5604
5605 #ifdef ATA_IRQ_TRAP
5606 ap->stats.unhandled_irq = 1;
5607 ap->stats.idle_irq = 1;
5608 #endif
5609 return ap;
5610 }
5611
5612 static void ata_host_release(struct device *gendev, void *res)
5613 {
5614 struct ata_host *host = dev_get_drvdata(gendev);
5615 int i;
5616
5617 for (i = 0; i < host->n_ports; i++) {
5618 struct ata_port *ap = host->ports[i];
5619
5620 if (!ap)
5621 continue;
5622
5623 if (ap->scsi_host)
5624 scsi_host_put(ap->scsi_host);
5625
5626 kfree(ap->pmp_link);
5627 kfree(ap->slave_link);
5628 kfree(ap);
5629 host->ports[i] = NULL;
5630 }
5631
5632 dev_set_drvdata(gendev, NULL);
5633 }
5634
5635 /**
5636 * ata_host_alloc - allocate and init basic ATA host resources
5637 * @dev: generic device this host is associated with
5638 * @max_ports: maximum number of ATA ports associated with this host
5639 *
5640 * Allocate and initialize basic ATA host resources. LLD calls
5641 * this function to allocate a host, initializes it fully and
5642 * attaches it using ata_host_register().
5643 *
5644 * @max_ports ports are allocated and host->n_ports is
5645 * initialized to @max_ports. The caller is allowed to decrease
5646 * host->n_ports before calling ata_host_register(). The unused
5647 * ports will be automatically freed on registration.
5648 *
5649 * RETURNS:
5650 * Allocate ATA host on success, NULL on failure.
5651 *
5652 * LOCKING:
5653 * Inherited from calling layer (may sleep).
5654 */
5655 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5656 {
5657 struct ata_host *host;
5658 size_t sz;
5659 int i;
5660
5661 DPRINTK("ENTER\n");
5662
5663 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5664 return NULL;
5665
5666 /* alloc a container for our list of ATA ports (buses) */
5667 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5668 /* alloc a container for our list of ATA ports (buses) */
5669 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5670 if (!host)
5671 goto err_out;
5672
5673 devres_add(dev, host);
5674 dev_set_drvdata(dev, host);
5675
5676 spin_lock_init(&host->lock);
5677 host->dev = dev;
5678 host->n_ports = max_ports;
5679
5680 /* allocate ports bound to this host */
5681 for (i = 0; i < max_ports; i++) {
5682 struct ata_port *ap;
5683
5684 ap = ata_port_alloc(host);
5685 if (!ap)
5686 goto err_out;
5687
5688 ap->port_no = i;
5689 host->ports[i] = ap;
5690 }
5691
5692 devres_remove_group(dev, NULL);
5693 return host;
5694
5695 err_out:
5696 devres_release_group(dev, NULL);
5697 return NULL;
5698 }
5699
5700 /**
5701 * ata_host_alloc_pinfo - alloc host and init with port_info array
5702 * @dev: generic device this host is associated with
5703 * @ppi: array of ATA port_info to initialize host with
5704 * @n_ports: number of ATA ports attached to this host
5705 *
5706 * Allocate ATA host and initialize with info from @ppi. If NULL
5707 * terminated, @ppi may contain fewer entries than @n_ports. The
5708 * last entry will be used for the remaining ports.
5709 *
5710 * RETURNS:
5711 * Allocate ATA host on success, NULL on failure.
5712 *
5713 * LOCKING:
5714 * Inherited from calling layer (may sleep).
5715 */
5716 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5717 const struct ata_port_info * const * ppi,
5718 int n_ports)
5719 {
5720 const struct ata_port_info *pi;
5721 struct ata_host *host;
5722 int i, j;
5723
5724 host = ata_host_alloc(dev, n_ports);
5725 if (!host)
5726 return NULL;
5727
5728 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5729 struct ata_port *ap = host->ports[i];
5730
5731 if (ppi[j])
5732 pi = ppi[j++];
5733
5734 ap->pio_mask = pi->pio_mask;
5735 ap->mwdma_mask = pi->mwdma_mask;
5736 ap->udma_mask = pi->udma_mask;
5737 ap->flags |= pi->flags;
5738 ap->link.flags |= pi->link_flags;
5739 ap->ops = pi->port_ops;
5740
5741 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5742 host->ops = pi->port_ops;
5743 }
5744
5745 return host;
5746 }
5747
5748 /**
5749 * ata_slave_link_init - initialize slave link
5750 * @ap: port to initialize slave link for
5751 *
5752 * Create and initialize slave link for @ap. This enables slave
5753 * link handling on the port.
5754 *
5755 * In libata, a port contains links and a link contains devices.
5756 * There is single host link but if a PMP is attached to it,
5757 * there can be multiple fan-out links. On SATA, there's usually
5758 * a single device connected to a link but PATA and SATA
5759 * controllers emulating TF based interface can have two - master
5760 * and slave.
5761 *
5762 * However, there are a few controllers which don't fit into this
5763 * abstraction too well - SATA controllers which emulate TF
5764 * interface with both master and slave devices but also have
5765 * separate SCR register sets for each device. These controllers
5766 * need separate links for physical link handling
5767 * (e.g. onlineness, link speed) but should be treated like a
5768 * traditional M/S controller for everything else (e.g. command
5769 * issue, softreset).
5770 *
5771 * slave_link is libata's way of handling this class of
5772 * controllers without impacting core layer too much. For
5773 * anything other than physical link handling, the default host
5774 * link is used for both master and slave. For physical link
5775 * handling, separate @ap->slave_link is used. All dirty details
5776 * are implemented inside libata core layer. From LLD's POV, the
5777 * only difference is that prereset, hardreset and postreset are
5778 * called once more for the slave link, so the reset sequence
5779 * looks like the following.
5780 *
5781 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5782 * softreset(M) -> postreset(M) -> postreset(S)
5783 *
5784 * Note that softreset is called only for the master. Softreset
5785 * resets both M/S by definition, so SRST on master should handle
5786 * both (the standard method will work just fine).
5787 *
5788 * LOCKING:
5789 * Should be called before host is registered.
5790 *
5791 * RETURNS:
5792 * 0 on success, -errno on failure.
5793 */
5794 int ata_slave_link_init(struct ata_port *ap)
5795 {
5796 struct ata_link *link;
5797
5798 WARN_ON(ap->slave_link);
5799 WARN_ON(ap->flags & ATA_FLAG_PMP);
5800
5801 link = kzalloc(sizeof(*link), GFP_KERNEL);
5802 if (!link)
5803 return -ENOMEM;
5804
5805 ata_link_init(ap, link, 1);
5806 ap->slave_link = link;
5807 return 0;
5808 }
5809
5810 static void ata_host_stop(struct device *gendev, void *res)
5811 {
5812 struct ata_host *host = dev_get_drvdata(gendev);
5813 int i;
5814
5815 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5816
5817 for (i = 0; i < host->n_ports; i++) {
5818 struct ata_port *ap = host->ports[i];
5819
5820 if (ap->ops->port_stop)
5821 ap->ops->port_stop(ap);
5822 }
5823
5824 if (host->ops->host_stop)
5825 host->ops->host_stop(host);
5826 }
5827
5828 /**
5829 * ata_finalize_port_ops - finalize ata_port_operations
5830 * @ops: ata_port_operations to finalize
5831 *
5832 * An ata_port_operations can inherit from another ops and that
5833 * ops can again inherit from another. This can go on as many
5834 * times as necessary as long as there is no loop in the
5835 * inheritance chain.
5836 *
5837 * Ops tables are finalized when the host is started. NULL or
5838 * unspecified entries are inherited from the closet ancestor
5839 * which has the method and the entry is populated with it.
5840 * After finalization, the ops table directly points to all the
5841 * methods and ->inherits is no longer necessary and cleared.
5842 *
5843 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5844 *
5845 * LOCKING:
5846 * None.
5847 */
5848 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5849 {
5850 static DEFINE_SPINLOCK(lock);
5851 const struct ata_port_operations *cur;
5852 void **begin = (void **)ops;
5853 void **end = (void **)&ops->inherits;
5854 void **pp;
5855
5856 if (!ops || !ops->inherits)
5857 return;
5858
5859 spin_lock(&lock);
5860
5861 for (cur = ops->inherits; cur; cur = cur->inherits) {
5862 void **inherit = (void **)cur;
5863
5864 for (pp = begin; pp < end; pp++, inherit++)
5865 if (!*pp)
5866 *pp = *inherit;
5867 }
5868
5869 for (pp = begin; pp < end; pp++)
5870 if (IS_ERR(*pp))
5871 *pp = NULL;
5872
5873 ops->inherits = NULL;
5874
5875 spin_unlock(&lock);
5876 }
5877
5878 /**
5879 * ata_host_start - start and freeze ports of an ATA host
5880 * @host: ATA host to start ports for
5881 *
5882 * Start and then freeze ports of @host. Started status is
5883 * recorded in host->flags, so this function can be called
5884 * multiple times. Ports are guaranteed to get started only
5885 * once. If host->ops isn't initialized yet, its set to the
5886 * first non-dummy port ops.
5887 *
5888 * LOCKING:
5889 * Inherited from calling layer (may sleep).
5890 *
5891 * RETURNS:
5892 * 0 if all ports are started successfully, -errno otherwise.
5893 */
5894 int ata_host_start(struct ata_host *host)
5895 {
5896 int have_stop = 0;
5897 void *start_dr = NULL;
5898 int i, rc;
5899
5900 if (host->flags & ATA_HOST_STARTED)
5901 return 0;
5902
5903 ata_finalize_port_ops(host->ops);
5904
5905 for (i = 0; i < host->n_ports; i++) {
5906 struct ata_port *ap = host->ports[i];
5907
5908 ata_finalize_port_ops(ap->ops);
5909
5910 if (!host->ops && !ata_port_is_dummy(ap))
5911 host->ops = ap->ops;
5912
5913 if (ap->ops->port_stop)
5914 have_stop = 1;
5915 }
5916
5917 if (host->ops->host_stop)
5918 have_stop = 1;
5919
5920 if (have_stop) {
5921 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5922 if (!start_dr)
5923 return -ENOMEM;
5924 }
5925
5926 for (i = 0; i < host->n_ports; i++) {
5927 struct ata_port *ap = host->ports[i];
5928
5929 if (ap->ops->port_start) {
5930 rc = ap->ops->port_start(ap);
5931 if (rc) {
5932 if (rc != -ENODEV)
5933 dev_printk(KERN_ERR, host->dev,
5934 "failed to start port %d "
5935 "(errno=%d)\n", i, rc);
5936 goto err_out;
5937 }
5938 }
5939 ata_eh_freeze_port(ap);
5940 }
5941
5942 if (start_dr)
5943 devres_add(host->dev, start_dr);
5944 host->flags |= ATA_HOST_STARTED;
5945 return 0;
5946
5947 err_out:
5948 while (--i >= 0) {
5949 struct ata_port *ap = host->ports[i];
5950
5951 if (ap->ops->port_stop)
5952 ap->ops->port_stop(ap);
5953 }
5954 devres_free(start_dr);
5955 return rc;
5956 }
5957
5958 /**
5959 * ata_sas_host_init - Initialize a host struct
5960 * @host: host to initialize
5961 * @dev: device host is attached to
5962 * @flags: host flags
5963 * @ops: port_ops
5964 *
5965 * LOCKING:
5966 * PCI/etc. bus probe sem.
5967 *
5968 */
5969 /* KILLME - the only user left is ipr */
5970 void ata_host_init(struct ata_host *host, struct device *dev,
5971 unsigned long flags, struct ata_port_operations *ops)
5972 {
5973 spin_lock_init(&host->lock);
5974 host->dev = dev;
5975 host->flags = flags;
5976 host->ops = ops;
5977 }
5978
5979
5980 static void async_port_probe(void *data, async_cookie_t cookie)
5981 {
5982 int rc;
5983 struct ata_port *ap = data;
5984
5985 /*
5986 * If we're not allowed to scan this host in parallel,
5987 * we need to wait until all previous scans have completed
5988 * before going further.
5989 * Jeff Garzik says this is only within a controller, so we
5990 * don't need to wait for port 0, only for later ports.
5991 */
5992 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5993 async_synchronize_cookie(cookie);
5994
5995 /* probe */
5996 if (ap->ops->error_handler) {
5997 struct ata_eh_info *ehi = &ap->link.eh_info;
5998 unsigned long flags;
5999
6000 ata_port_probe(ap);
6001
6002 /* kick EH for boot probing */
6003 spin_lock_irqsave(ap->lock, flags);
6004
6005 ehi->probe_mask |= ATA_ALL_DEVICES;
6006 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6007 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6008
6009 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6010 ap->pflags |= ATA_PFLAG_LOADING;
6011 ata_port_schedule_eh(ap);
6012
6013 spin_unlock_irqrestore(ap->lock, flags);
6014
6015 /* wait for EH to finish */
6016 ata_port_wait_eh(ap);
6017 } else {
6018 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6019 rc = ata_bus_probe(ap);
6020 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6021
6022 if (rc) {
6023 /* FIXME: do something useful here?
6024 * Current libata behavior will
6025 * tear down everything when
6026 * the module is removed
6027 * or the h/w is unplugged.
6028 */
6029 }
6030 }
6031
6032 /* in order to keep device order, we need to synchronize at this point */
6033 async_synchronize_cookie(cookie);
6034
6035 ata_scsi_scan_host(ap, 1);
6036
6037 }
6038 /**
6039 * ata_host_register - register initialized ATA host
6040 * @host: ATA host to register
6041 * @sht: template for SCSI host
6042 *
6043 * Register initialized ATA host. @host is allocated using
6044 * ata_host_alloc() and fully initialized by LLD. This function
6045 * starts ports, registers @host with ATA and SCSI layers and
6046 * probe registered devices.
6047 *
6048 * LOCKING:
6049 * Inherited from calling layer (may sleep).
6050 *
6051 * RETURNS:
6052 * 0 on success, -errno otherwise.
6053 */
6054 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6055 {
6056 int i, rc;
6057
6058 /* host must have been started */
6059 if (!(host->flags & ATA_HOST_STARTED)) {
6060 dev_printk(KERN_ERR, host->dev,
6061 "BUG: trying to register unstarted host\n");
6062 WARN_ON(1);
6063 return -EINVAL;
6064 }
6065
6066 /* Blow away unused ports. This happens when LLD can't
6067 * determine the exact number of ports to allocate at
6068 * allocation time.
6069 */
6070 for (i = host->n_ports; host->ports[i]; i++)
6071 kfree(host->ports[i]);
6072
6073 /* give ports names and add SCSI hosts */
6074 for (i = 0; i < host->n_ports; i++)
6075 host->ports[i]->print_id = ata_print_id++;
6076
6077 rc = ata_scsi_add_hosts(host, sht);
6078 if (rc)
6079 return rc;
6080
6081 /* associate with ACPI nodes */
6082 ata_acpi_associate(host);
6083
6084 /* set cable, sata_spd_limit and report */
6085 for (i = 0; i < host->n_ports; i++) {
6086 struct ata_port *ap = host->ports[i];
6087 unsigned long xfer_mask;
6088
6089 /* set SATA cable type if still unset */
6090 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6091 ap->cbl = ATA_CBL_SATA;
6092
6093 /* init sata_spd_limit to the current value */
6094 sata_link_init_spd(&ap->link);
6095 if (ap->slave_link)
6096 sata_link_init_spd(ap->slave_link);
6097
6098 /* print per-port info to dmesg */
6099 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6100 ap->udma_mask);
6101
6102 if (!ata_port_is_dummy(ap)) {
6103 ata_port_printk(ap, KERN_INFO,
6104 "%cATA max %s %s\n",
6105 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6106 ata_mode_string(xfer_mask),
6107 ap->link.eh_info.desc);
6108 ata_ehi_clear_desc(&ap->link.eh_info);
6109 } else
6110 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6111 }
6112
6113 /* perform each probe synchronously */
6114 DPRINTK("probe begin\n");
6115 for (i = 0; i < host->n_ports; i++) {
6116 struct ata_port *ap = host->ports[i];
6117 async_schedule(async_port_probe, ap);
6118 }
6119 DPRINTK("probe end\n");
6120
6121 return 0;
6122 }
6123
6124 /**
6125 * ata_host_activate - start host, request IRQ and register it
6126 * @host: target ATA host
6127 * @irq: IRQ to request
6128 * @irq_handler: irq_handler used when requesting IRQ
6129 * @irq_flags: irq_flags used when requesting IRQ
6130 * @sht: scsi_host_template to use when registering the host
6131 *
6132 * After allocating an ATA host and initializing it, most libata
6133 * LLDs perform three steps to activate the host - start host,
6134 * request IRQ and register it. This helper takes necessasry
6135 * arguments and performs the three steps in one go.
6136 *
6137 * An invalid IRQ skips the IRQ registration and expects the host to
6138 * have set polling mode on the port. In this case, @irq_handler
6139 * should be NULL.
6140 *
6141 * LOCKING:
6142 * Inherited from calling layer (may sleep).
6143 *
6144 * RETURNS:
6145 * 0 on success, -errno otherwise.
6146 */
6147 int ata_host_activate(struct ata_host *host, int irq,
6148 irq_handler_t irq_handler, unsigned long irq_flags,
6149 struct scsi_host_template *sht)
6150 {
6151 int i, rc;
6152
6153 rc = ata_host_start(host);
6154 if (rc)
6155 return rc;
6156
6157 /* Special case for polling mode */
6158 if (!irq) {
6159 WARN_ON(irq_handler);
6160 return ata_host_register(host, sht);
6161 }
6162
6163 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6164 dev_driver_string(host->dev), host);
6165 if (rc)
6166 return rc;
6167
6168 for (i = 0; i < host->n_ports; i++)
6169 ata_port_desc(host->ports[i], "irq %d", irq);
6170
6171 rc = ata_host_register(host, sht);
6172 /* if failed, just free the IRQ and leave ports alone */
6173 if (rc)
6174 devm_free_irq(host->dev, irq, host);
6175
6176 return rc;
6177 }
6178
6179 /**
6180 * ata_port_detach - Detach ATA port in prepration of device removal
6181 * @ap: ATA port to be detached
6182 *
6183 * Detach all ATA devices and the associated SCSI devices of @ap;
6184 * then, remove the associated SCSI host. @ap is guaranteed to
6185 * be quiescent on return from this function.
6186 *
6187 * LOCKING:
6188 * Kernel thread context (may sleep).
6189 */
6190 static void ata_port_detach(struct ata_port *ap)
6191 {
6192 unsigned long flags;
6193
6194 if (!ap->ops->error_handler)
6195 goto skip_eh;
6196
6197 /* tell EH we're leaving & flush EH */
6198 spin_lock_irqsave(ap->lock, flags);
6199 ap->pflags |= ATA_PFLAG_UNLOADING;
6200 ata_port_schedule_eh(ap);
6201 spin_unlock_irqrestore(ap->lock, flags);
6202
6203 /* wait till EH commits suicide */
6204 ata_port_wait_eh(ap);
6205
6206 /* it better be dead now */
6207 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6208
6209 cancel_rearming_delayed_work(&ap->hotplug_task);
6210
6211 skip_eh:
6212 /* remove the associated SCSI host */
6213 scsi_remove_host(ap->scsi_host);
6214 }
6215
6216 /**
6217 * ata_host_detach - Detach all ports of an ATA host
6218 * @host: Host to detach
6219 *
6220 * Detach all ports of @host.
6221 *
6222 * LOCKING:
6223 * Kernel thread context (may sleep).
6224 */
6225 void ata_host_detach(struct ata_host *host)
6226 {
6227 int i;
6228
6229 for (i = 0; i < host->n_ports; i++)
6230 ata_port_detach(host->ports[i]);
6231
6232 /* the host is dead now, dissociate ACPI */
6233 ata_acpi_dissociate(host);
6234 }
6235
6236 #ifdef CONFIG_PCI
6237
6238 /**
6239 * ata_pci_remove_one - PCI layer callback for device removal
6240 * @pdev: PCI device that was removed
6241 *
6242 * PCI layer indicates to libata via this hook that hot-unplug or
6243 * module unload event has occurred. Detach all ports. Resource
6244 * release is handled via devres.
6245 *
6246 * LOCKING:
6247 * Inherited from PCI layer (may sleep).
6248 */
6249 void ata_pci_remove_one(struct pci_dev *pdev)
6250 {
6251 struct device *dev = &pdev->dev;
6252 struct ata_host *host = dev_get_drvdata(dev);
6253
6254 ata_host_detach(host);
6255 }
6256
6257 /* move to PCI subsystem */
6258 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6259 {
6260 unsigned long tmp = 0;
6261
6262 switch (bits->width) {
6263 case 1: {
6264 u8 tmp8 = 0;
6265 pci_read_config_byte(pdev, bits->reg, &tmp8);
6266 tmp = tmp8;
6267 break;
6268 }
6269 case 2: {
6270 u16 tmp16 = 0;
6271 pci_read_config_word(pdev, bits->reg, &tmp16);
6272 tmp = tmp16;
6273 break;
6274 }
6275 case 4: {
6276 u32 tmp32 = 0;
6277 pci_read_config_dword(pdev, bits->reg, &tmp32);
6278 tmp = tmp32;
6279 break;
6280 }
6281
6282 default:
6283 return -EINVAL;
6284 }
6285
6286 tmp &= bits->mask;
6287
6288 return (tmp == bits->val) ? 1 : 0;
6289 }
6290
6291 #ifdef CONFIG_PM
6292 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6293 {
6294 pci_save_state(pdev);
6295 pci_disable_device(pdev);
6296
6297 if (mesg.event & PM_EVENT_SLEEP)
6298 pci_set_power_state(pdev, PCI_D3hot);
6299 }
6300
6301 int ata_pci_device_do_resume(struct pci_dev *pdev)
6302 {
6303 int rc;
6304
6305 pci_set_power_state(pdev, PCI_D0);
6306 pci_restore_state(pdev);
6307
6308 rc = pcim_enable_device(pdev);
6309 if (rc) {
6310 dev_printk(KERN_ERR, &pdev->dev,
6311 "failed to enable device after resume (%d)\n", rc);
6312 return rc;
6313 }
6314
6315 pci_set_master(pdev);
6316 return 0;
6317 }
6318
6319 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6320 {
6321 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6322 int rc = 0;
6323
6324 rc = ata_host_suspend(host, mesg);
6325 if (rc)
6326 return rc;
6327
6328 ata_pci_device_do_suspend(pdev, mesg);
6329
6330 return 0;
6331 }
6332
6333 int ata_pci_device_resume(struct pci_dev *pdev)
6334 {
6335 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6336 int rc;
6337
6338 rc = ata_pci_device_do_resume(pdev);
6339 if (rc == 0)
6340 ata_host_resume(host);
6341 return rc;
6342 }
6343 #endif /* CONFIG_PM */
6344
6345 #endif /* CONFIG_PCI */
6346
6347 static int __init ata_parse_force_one(char **cur,
6348 struct ata_force_ent *force_ent,
6349 const char **reason)
6350 {
6351 /* FIXME: Currently, there's no way to tag init const data and
6352 * using __initdata causes build failure on some versions of
6353 * gcc. Once __initdataconst is implemented, add const to the
6354 * following structure.
6355 */
6356 static struct ata_force_param force_tbl[] __initdata = {
6357 { "40c", .cbl = ATA_CBL_PATA40 },
6358 { "80c", .cbl = ATA_CBL_PATA80 },
6359 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6360 { "unk", .cbl = ATA_CBL_PATA_UNK },
6361 { "ign", .cbl = ATA_CBL_PATA_IGN },
6362 { "sata", .cbl = ATA_CBL_SATA },
6363 { "1.5Gbps", .spd_limit = 1 },
6364 { "3.0Gbps", .spd_limit = 2 },
6365 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6366 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6367 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6368 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6369 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6370 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6371 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6372 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6373 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6374 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6375 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6376 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6377 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6378 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6379 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6380 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6381 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6382 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6383 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6384 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6385 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6386 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6387 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6388 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6389 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6390 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6391 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6392 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6393 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6394 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6395 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6396 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6397 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6398 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6399 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6400 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6401 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6402 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6403 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6404 };
6405 char *start = *cur, *p = *cur;
6406 char *id, *val, *endp;
6407 const struct ata_force_param *match_fp = NULL;
6408 int nr_matches = 0, i;
6409
6410 /* find where this param ends and update *cur */
6411 while (*p != '\0' && *p != ',')
6412 p++;
6413
6414 if (*p == '\0')
6415 *cur = p;
6416 else
6417 *cur = p + 1;
6418
6419 *p = '\0';
6420
6421 /* parse */
6422 p = strchr(start, ':');
6423 if (!p) {
6424 val = strstrip(start);
6425 goto parse_val;
6426 }
6427 *p = '\0';
6428
6429 id = strstrip(start);
6430 val = strstrip(p + 1);
6431
6432 /* parse id */
6433 p = strchr(id, '.');
6434 if (p) {
6435 *p++ = '\0';
6436 force_ent->device = simple_strtoul(p, &endp, 10);
6437 if (p == endp || *endp != '\0') {
6438 *reason = "invalid device";
6439 return -EINVAL;
6440 }
6441 }
6442
6443 force_ent->port = simple_strtoul(id, &endp, 10);
6444 if (p == endp || *endp != '\0') {
6445 *reason = "invalid port/link";
6446 return -EINVAL;
6447 }
6448
6449 parse_val:
6450 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6451 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6452 const struct ata_force_param *fp = &force_tbl[i];
6453
6454 if (strncasecmp(val, fp->name, strlen(val)))
6455 continue;
6456
6457 nr_matches++;
6458 match_fp = fp;
6459
6460 if (strcasecmp(val, fp->name) == 0) {
6461 nr_matches = 1;
6462 break;
6463 }
6464 }
6465
6466 if (!nr_matches) {
6467 *reason = "unknown value";
6468 return -EINVAL;
6469 }
6470 if (nr_matches > 1) {
6471 *reason = "ambigious value";
6472 return -EINVAL;
6473 }
6474
6475 force_ent->param = *match_fp;
6476
6477 return 0;
6478 }
6479
6480 static void __init ata_parse_force_param(void)
6481 {
6482 int idx = 0, size = 1;
6483 int last_port = -1, last_device = -1;
6484 char *p, *cur, *next;
6485
6486 /* calculate maximum number of params and allocate force_tbl */
6487 for (p = ata_force_param_buf; *p; p++)
6488 if (*p == ',')
6489 size++;
6490
6491 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6492 if (!ata_force_tbl) {
6493 printk(KERN_WARNING "ata: failed to extend force table, "
6494 "libata.force ignored\n");
6495 return;
6496 }
6497
6498 /* parse and populate the table */
6499 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6500 const char *reason = "";
6501 struct ata_force_ent te = { .port = -1, .device = -1 };
6502
6503 next = cur;
6504 if (ata_parse_force_one(&next, &te, &reason)) {
6505 printk(KERN_WARNING "ata: failed to parse force "
6506 "parameter \"%s\" (%s)\n",
6507 cur, reason);
6508 continue;
6509 }
6510
6511 if (te.port == -1) {
6512 te.port = last_port;
6513 te.device = last_device;
6514 }
6515
6516 ata_force_tbl[idx++] = te;
6517
6518 last_port = te.port;
6519 last_device = te.device;
6520 }
6521
6522 ata_force_tbl_size = idx;
6523 }
6524
6525 static int __init ata_init(void)
6526 {
6527 ata_parse_force_param();
6528
6529 ata_wq = create_workqueue("ata");
6530 if (!ata_wq)
6531 goto free_force_tbl;
6532
6533 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6534 if (!ata_aux_wq)
6535 goto free_wq;
6536
6537 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6538 return 0;
6539
6540 free_wq:
6541 destroy_workqueue(ata_wq);
6542 free_force_tbl:
6543 kfree(ata_force_tbl);
6544 return -ENOMEM;
6545 }
6546
6547 static void __exit ata_exit(void)
6548 {
6549 kfree(ata_force_tbl);
6550 destroy_workqueue(ata_wq);
6551 destroy_workqueue(ata_aux_wq);
6552 }
6553
6554 subsys_initcall(ata_init);
6555 module_exit(ata_exit);
6556
6557 static unsigned long ratelimit_time;
6558 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6559
6560 int ata_ratelimit(void)
6561 {
6562 int rc;
6563 unsigned long flags;
6564
6565 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6566
6567 if (time_after(jiffies, ratelimit_time)) {
6568 rc = 1;
6569 ratelimit_time = jiffies + (HZ/5);
6570 } else
6571 rc = 0;
6572
6573 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6574
6575 return rc;
6576 }
6577
6578 /**
6579 * ata_wait_register - wait until register value changes
6580 * @reg: IO-mapped register
6581 * @mask: Mask to apply to read register value
6582 * @val: Wait condition
6583 * @interval: polling interval in milliseconds
6584 * @timeout: timeout in milliseconds
6585 *
6586 * Waiting for some bits of register to change is a common
6587 * operation for ATA controllers. This function reads 32bit LE
6588 * IO-mapped register @reg and tests for the following condition.
6589 *
6590 * (*@reg & mask) != val
6591 *
6592 * If the condition is met, it returns; otherwise, the process is
6593 * repeated after @interval_msec until timeout.
6594 *
6595 * LOCKING:
6596 * Kernel thread context (may sleep)
6597 *
6598 * RETURNS:
6599 * The final register value.
6600 */
6601 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6602 unsigned long interval, unsigned long timeout)
6603 {
6604 unsigned long deadline;
6605 u32 tmp;
6606
6607 tmp = ioread32(reg);
6608
6609 /* Calculate timeout _after_ the first read to make sure
6610 * preceding writes reach the controller before starting to
6611 * eat away the timeout.
6612 */
6613 deadline = ata_deadline(jiffies, timeout);
6614
6615 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6616 msleep(interval);
6617 tmp = ioread32(reg);
6618 }
6619
6620 return tmp;
6621 }
6622
6623 /*
6624 * Dummy port_ops
6625 */
6626 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6627 {
6628 return AC_ERR_SYSTEM;
6629 }
6630
6631 static void ata_dummy_error_handler(struct ata_port *ap)
6632 {
6633 /* truly dummy */
6634 }
6635
6636 struct ata_port_operations ata_dummy_port_ops = {
6637 .qc_prep = ata_noop_qc_prep,
6638 .qc_issue = ata_dummy_qc_issue,
6639 .error_handler = ata_dummy_error_handler,
6640 };
6641
6642 const struct ata_port_info ata_dummy_port_info = {
6643 .port_ops = &ata_dummy_port_ops,
6644 };
6645
6646 /*
6647 * libata is essentially a library of internal helper functions for
6648 * low-level ATA host controller drivers. As such, the API/ABI is
6649 * likely to change as new drivers are added and updated.
6650 * Do not depend on ABI/API stability.
6651 */
6652 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6653 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6654 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6655 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6656 EXPORT_SYMBOL_GPL(sata_port_ops);
6657 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6658 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6659 EXPORT_SYMBOL_GPL(ata_link_next);
6660 EXPORT_SYMBOL_GPL(ata_dev_next);
6661 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6662 EXPORT_SYMBOL_GPL(ata_host_init);
6663 EXPORT_SYMBOL_GPL(ata_host_alloc);
6664 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6665 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6666 EXPORT_SYMBOL_GPL(ata_host_start);
6667 EXPORT_SYMBOL_GPL(ata_host_register);
6668 EXPORT_SYMBOL_GPL(ata_host_activate);
6669 EXPORT_SYMBOL_GPL(ata_host_detach);
6670 EXPORT_SYMBOL_GPL(ata_sg_init);
6671 EXPORT_SYMBOL_GPL(ata_qc_complete);
6672 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6673 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6674 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6675 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6676 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6677 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6678 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6679 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6680 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6681 EXPORT_SYMBOL_GPL(ata_mode_string);
6682 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6683 EXPORT_SYMBOL_GPL(ata_port_start);
6684 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6685 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6686 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6687 EXPORT_SYMBOL_GPL(ata_port_probe);
6688 EXPORT_SYMBOL_GPL(ata_dev_disable);
6689 EXPORT_SYMBOL_GPL(sata_set_spd);
6690 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6691 EXPORT_SYMBOL_GPL(sata_link_debounce);
6692 EXPORT_SYMBOL_GPL(sata_link_resume);
6693 EXPORT_SYMBOL_GPL(ata_std_prereset);
6694 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6695 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6696 EXPORT_SYMBOL_GPL(ata_std_postreset);
6697 EXPORT_SYMBOL_GPL(ata_dev_classify);
6698 EXPORT_SYMBOL_GPL(ata_dev_pair);
6699 EXPORT_SYMBOL_GPL(ata_port_disable);
6700 EXPORT_SYMBOL_GPL(ata_ratelimit);
6701 EXPORT_SYMBOL_GPL(ata_wait_register);
6702 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6703 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6704 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6705 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6706 EXPORT_SYMBOL_GPL(sata_scr_valid);
6707 EXPORT_SYMBOL_GPL(sata_scr_read);
6708 EXPORT_SYMBOL_GPL(sata_scr_write);
6709 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6710 EXPORT_SYMBOL_GPL(ata_link_online);
6711 EXPORT_SYMBOL_GPL(ata_link_offline);
6712 #ifdef CONFIG_PM
6713 EXPORT_SYMBOL_GPL(ata_host_suspend);
6714 EXPORT_SYMBOL_GPL(ata_host_resume);
6715 #endif /* CONFIG_PM */
6716 EXPORT_SYMBOL_GPL(ata_id_string);
6717 EXPORT_SYMBOL_GPL(ata_id_c_string);
6718 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6719 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6720
6721 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6722 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6723 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6724 EXPORT_SYMBOL_GPL(ata_timing_compute);
6725 EXPORT_SYMBOL_GPL(ata_timing_merge);
6726 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6727
6728 #ifdef CONFIG_PCI
6729 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6730 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6731 #ifdef CONFIG_PM
6732 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6733 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6734 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6735 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6736 #endif /* CONFIG_PM */
6737 #endif /* CONFIG_PCI */
6738
6739 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6740 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6741 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6742 EXPORT_SYMBOL_GPL(ata_port_desc);
6743 #ifdef CONFIG_PCI
6744 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6745 #endif /* CONFIG_PCI */
6746 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6747 EXPORT_SYMBOL_GPL(ata_link_abort);
6748 EXPORT_SYMBOL_GPL(ata_port_abort);
6749 EXPORT_SYMBOL_GPL(ata_port_freeze);
6750 EXPORT_SYMBOL_GPL(sata_async_notification);
6751 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6752 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6753 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6754 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6755 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6756 EXPORT_SYMBOL_GPL(ata_do_eh);
6757 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6758
6759 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6760 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6761 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6762 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6763 EXPORT_SYMBOL_GPL(ata_cable_sata);