libata: kill ATA_LFLAG_SKIP_D2H_BSY
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68
69 #include "libata.h"
70
71
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
84
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
87
88 struct workqueue_struct *ata_aux_wq;
89
90 struct ata_force_param {
91 const char *name;
92 unsigned int cbl;
93 int spd_limit;
94 unsigned long xfer_mask;
95 unsigned int horkage_on;
96 unsigned int horkage_off;
97 };
98
99 struct ata_force_ent {
100 int port;
101 int device;
102 struct ata_force_param param;
103 };
104
105 static struct ata_force_ent *ata_force_tbl;
106 static int ata_force_tbl_size;
107
108 static char ata_force_param_buf[PAGE_SIZE] __initdata;
109 /* param_buf is thrown away after initialization, disallow read */
110 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
111 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
112
113 int atapi_enabled = 1;
114 module_param(atapi_enabled, int, 0444);
115 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
116
117 static int atapi_dmadir = 0;
118 module_param(atapi_dmadir, int, 0444);
119 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
120
121 int atapi_passthru16 = 1;
122 module_param(atapi_passthru16, int, 0444);
123 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
124
125 int libata_fua = 0;
126 module_param_named(fua, libata_fua, int, 0444);
127 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
128
129 static int ata_ignore_hpa;
130 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
131 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132
133 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
134 module_param_named(dma, libata_dma_mask, int, 0444);
135 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136
137 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
138 module_param(ata_probe_timeout, int, 0444);
139 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
140
141 int libata_noacpi = 0;
142 module_param_named(noacpi, libata_noacpi, int, 0444);
143 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
144
145 int libata_allow_tpm = 0;
146 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
147 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
148
149 MODULE_AUTHOR("Jeff Garzik");
150 MODULE_DESCRIPTION("Library module for ATA devices");
151 MODULE_LICENSE("GPL");
152 MODULE_VERSION(DRV_VERSION);
153
154
155 /**
156 * ata_force_cbl - force cable type according to libata.force
157 * @ap: ATA port of interest
158 *
159 * Force cable type according to libata.force and whine about it.
160 * The last entry which has matching port number is used, so it
161 * can be specified as part of device force parameters. For
162 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
163 * same effect.
164 *
165 * LOCKING:
166 * EH context.
167 */
168 void ata_force_cbl(struct ata_port *ap)
169 {
170 int i;
171
172 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
173 const struct ata_force_ent *fe = &ata_force_tbl[i];
174
175 if (fe->port != -1 && fe->port != ap->print_id)
176 continue;
177
178 if (fe->param.cbl == ATA_CBL_NONE)
179 continue;
180
181 ap->cbl = fe->param.cbl;
182 ata_port_printk(ap, KERN_NOTICE,
183 "FORCE: cable set to %s\n", fe->param.name);
184 return;
185 }
186 }
187
188 /**
189 * ata_force_spd_limit - force SATA spd limit according to libata.force
190 * @link: ATA link of interest
191 *
192 * Force SATA spd limit according to libata.force and whine about
193 * it. When only the port part is specified (e.g. 1:), the limit
194 * applies to all links connected to both the host link and all
195 * fan-out ports connected via PMP. If the device part is
196 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
197 * link not the host link. Device number 15 always points to the
198 * host link whether PMP is attached or not.
199 *
200 * LOCKING:
201 * EH context.
202 */
203 static void ata_force_spd_limit(struct ata_link *link)
204 {
205 int linkno, i;
206
207 if (ata_is_host_link(link))
208 linkno = 15;
209 else
210 linkno = link->pmp;
211
212 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
213 const struct ata_force_ent *fe = &ata_force_tbl[i];
214
215 if (fe->port != -1 && fe->port != link->ap->print_id)
216 continue;
217
218 if (fe->device != -1 && fe->device != linkno)
219 continue;
220
221 if (!fe->param.spd_limit)
222 continue;
223
224 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
225 ata_link_printk(link, KERN_NOTICE,
226 "FORCE: PHY spd limit set to %s\n", fe->param.name);
227 return;
228 }
229 }
230
231 /**
232 * ata_force_xfermask - force xfermask according to libata.force
233 * @dev: ATA device of interest
234 *
235 * Force xfer_mask according to libata.force and whine about it.
236 * For consistency with link selection, device number 15 selects
237 * the first device connected to the host link.
238 *
239 * LOCKING:
240 * EH context.
241 */
242 static void ata_force_xfermask(struct ata_device *dev)
243 {
244 int devno = dev->link->pmp + dev->devno;
245 int alt_devno = devno;
246 int i;
247
248 /* allow n.15 for the first device attached to host port */
249 if (ata_is_host_link(dev->link) && devno == 0)
250 alt_devno = 15;
251
252 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
253 const struct ata_force_ent *fe = &ata_force_tbl[i];
254 unsigned long pio_mask, mwdma_mask, udma_mask;
255
256 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
257 continue;
258
259 if (fe->device != -1 && fe->device != devno &&
260 fe->device != alt_devno)
261 continue;
262
263 if (!fe->param.xfer_mask)
264 continue;
265
266 ata_unpack_xfermask(fe->param.xfer_mask,
267 &pio_mask, &mwdma_mask, &udma_mask);
268 if (udma_mask)
269 dev->udma_mask = udma_mask;
270 else if (mwdma_mask) {
271 dev->udma_mask = 0;
272 dev->mwdma_mask = mwdma_mask;
273 } else {
274 dev->udma_mask = 0;
275 dev->mwdma_mask = 0;
276 dev->pio_mask = pio_mask;
277 }
278
279 ata_dev_printk(dev, KERN_NOTICE,
280 "FORCE: xfer_mask set to %s\n", fe->param.name);
281 return;
282 }
283 }
284
285 /**
286 * ata_force_horkage - force horkage according to libata.force
287 * @dev: ATA device of interest
288 *
289 * Force horkage according to libata.force and whine about it.
290 * For consistency with link selection, device number 15 selects
291 * the first device connected to the host link.
292 *
293 * LOCKING:
294 * EH context.
295 */
296 static void ata_force_horkage(struct ata_device *dev)
297 {
298 int devno = dev->link->pmp + dev->devno;
299 int alt_devno = devno;
300 int i;
301
302 /* allow n.15 for the first device attached to host port */
303 if (ata_is_host_link(dev->link) && devno == 0)
304 alt_devno = 15;
305
306 for (i = 0; i < ata_force_tbl_size; i++) {
307 const struct ata_force_ent *fe = &ata_force_tbl[i];
308
309 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
310 continue;
311
312 if (fe->device != -1 && fe->device != devno &&
313 fe->device != alt_devno)
314 continue;
315
316 if (!(~dev->horkage & fe->param.horkage_on) &&
317 !(dev->horkage & fe->param.horkage_off))
318 continue;
319
320 dev->horkage |= fe->param.horkage_on;
321 dev->horkage &= ~fe->param.horkage_off;
322
323 ata_dev_printk(dev, KERN_NOTICE,
324 "FORCE: horkage modified (%s)\n", fe->param.name);
325 }
326 }
327
328 /**
329 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
330 * @opcode: SCSI opcode
331 *
332 * Determine ATAPI command type from @opcode.
333 *
334 * LOCKING:
335 * None.
336 *
337 * RETURNS:
338 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
339 */
340 int atapi_cmd_type(u8 opcode)
341 {
342 switch (opcode) {
343 case GPCMD_READ_10:
344 case GPCMD_READ_12:
345 return ATAPI_READ;
346
347 case GPCMD_WRITE_10:
348 case GPCMD_WRITE_12:
349 case GPCMD_WRITE_AND_VERIFY_10:
350 return ATAPI_WRITE;
351
352 case GPCMD_READ_CD:
353 case GPCMD_READ_CD_MSF:
354 return ATAPI_READ_CD;
355
356 case ATA_16:
357 case ATA_12:
358 if (atapi_passthru16)
359 return ATAPI_PASS_THRU;
360 /* fall thru */
361 default:
362 return ATAPI_MISC;
363 }
364 }
365
366 /**
367 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
368 * @tf: Taskfile to convert
369 * @pmp: Port multiplier port
370 * @is_cmd: This FIS is for command
371 * @fis: Buffer into which data will output
372 *
373 * Converts a standard ATA taskfile to a Serial ATA
374 * FIS structure (Register - Host to Device).
375 *
376 * LOCKING:
377 * Inherited from caller.
378 */
379 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
380 {
381 fis[0] = 0x27; /* Register - Host to Device FIS */
382 fis[1] = pmp & 0xf; /* Port multiplier number*/
383 if (is_cmd)
384 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
385
386 fis[2] = tf->command;
387 fis[3] = tf->feature;
388
389 fis[4] = tf->lbal;
390 fis[5] = tf->lbam;
391 fis[6] = tf->lbah;
392 fis[7] = tf->device;
393
394 fis[8] = tf->hob_lbal;
395 fis[9] = tf->hob_lbam;
396 fis[10] = tf->hob_lbah;
397 fis[11] = tf->hob_feature;
398
399 fis[12] = tf->nsect;
400 fis[13] = tf->hob_nsect;
401 fis[14] = 0;
402 fis[15] = tf->ctl;
403
404 fis[16] = 0;
405 fis[17] = 0;
406 fis[18] = 0;
407 fis[19] = 0;
408 }
409
410 /**
411 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
412 * @fis: Buffer from which data will be input
413 * @tf: Taskfile to output
414 *
415 * Converts a serial ATA FIS structure to a standard ATA taskfile.
416 *
417 * LOCKING:
418 * Inherited from caller.
419 */
420
421 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
422 {
423 tf->command = fis[2]; /* status */
424 tf->feature = fis[3]; /* error */
425
426 tf->lbal = fis[4];
427 tf->lbam = fis[5];
428 tf->lbah = fis[6];
429 tf->device = fis[7];
430
431 tf->hob_lbal = fis[8];
432 tf->hob_lbam = fis[9];
433 tf->hob_lbah = fis[10];
434
435 tf->nsect = fis[12];
436 tf->hob_nsect = fis[13];
437 }
438
439 static const u8 ata_rw_cmds[] = {
440 /* pio multi */
441 ATA_CMD_READ_MULTI,
442 ATA_CMD_WRITE_MULTI,
443 ATA_CMD_READ_MULTI_EXT,
444 ATA_CMD_WRITE_MULTI_EXT,
445 0,
446 0,
447 0,
448 ATA_CMD_WRITE_MULTI_FUA_EXT,
449 /* pio */
450 ATA_CMD_PIO_READ,
451 ATA_CMD_PIO_WRITE,
452 ATA_CMD_PIO_READ_EXT,
453 ATA_CMD_PIO_WRITE_EXT,
454 0,
455 0,
456 0,
457 0,
458 /* dma */
459 ATA_CMD_READ,
460 ATA_CMD_WRITE,
461 ATA_CMD_READ_EXT,
462 ATA_CMD_WRITE_EXT,
463 0,
464 0,
465 0,
466 ATA_CMD_WRITE_FUA_EXT
467 };
468
469 /**
470 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
471 * @tf: command to examine and configure
472 * @dev: device tf belongs to
473 *
474 * Examine the device configuration and tf->flags to calculate
475 * the proper read/write commands and protocol to use.
476 *
477 * LOCKING:
478 * caller.
479 */
480 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
481 {
482 u8 cmd;
483
484 int index, fua, lba48, write;
485
486 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
487 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
488 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
489
490 if (dev->flags & ATA_DFLAG_PIO) {
491 tf->protocol = ATA_PROT_PIO;
492 index = dev->multi_count ? 0 : 8;
493 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
494 /* Unable to use DMA due to host limitation */
495 tf->protocol = ATA_PROT_PIO;
496 index = dev->multi_count ? 0 : 8;
497 } else {
498 tf->protocol = ATA_PROT_DMA;
499 index = 16;
500 }
501
502 cmd = ata_rw_cmds[index + fua + lba48 + write];
503 if (cmd) {
504 tf->command = cmd;
505 return 0;
506 }
507 return -1;
508 }
509
510 /**
511 * ata_tf_read_block - Read block address from ATA taskfile
512 * @tf: ATA taskfile of interest
513 * @dev: ATA device @tf belongs to
514 *
515 * LOCKING:
516 * None.
517 *
518 * Read block address from @tf. This function can handle all
519 * three address formats - LBA, LBA48 and CHS. tf->protocol and
520 * flags select the address format to use.
521 *
522 * RETURNS:
523 * Block address read from @tf.
524 */
525 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
526 {
527 u64 block = 0;
528
529 if (tf->flags & ATA_TFLAG_LBA) {
530 if (tf->flags & ATA_TFLAG_LBA48) {
531 block |= (u64)tf->hob_lbah << 40;
532 block |= (u64)tf->hob_lbam << 32;
533 block |= tf->hob_lbal << 24;
534 } else
535 block |= (tf->device & 0xf) << 24;
536
537 block |= tf->lbah << 16;
538 block |= tf->lbam << 8;
539 block |= tf->lbal;
540 } else {
541 u32 cyl, head, sect;
542
543 cyl = tf->lbam | (tf->lbah << 8);
544 head = tf->device & 0xf;
545 sect = tf->lbal;
546
547 block = (cyl * dev->heads + head) * dev->sectors + sect;
548 }
549
550 return block;
551 }
552
553 /**
554 * ata_build_rw_tf - Build ATA taskfile for given read/write request
555 * @tf: Target ATA taskfile
556 * @dev: ATA device @tf belongs to
557 * @block: Block address
558 * @n_block: Number of blocks
559 * @tf_flags: RW/FUA etc...
560 * @tag: tag
561 *
562 * LOCKING:
563 * None.
564 *
565 * Build ATA taskfile @tf for read/write request described by
566 * @block, @n_block, @tf_flags and @tag on @dev.
567 *
568 * RETURNS:
569 *
570 * 0 on success, -ERANGE if the request is too large for @dev,
571 * -EINVAL if the request is invalid.
572 */
573 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
574 u64 block, u32 n_block, unsigned int tf_flags,
575 unsigned int tag)
576 {
577 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
578 tf->flags |= tf_flags;
579
580 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
581 /* yay, NCQ */
582 if (!lba_48_ok(block, n_block))
583 return -ERANGE;
584
585 tf->protocol = ATA_PROT_NCQ;
586 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
587
588 if (tf->flags & ATA_TFLAG_WRITE)
589 tf->command = ATA_CMD_FPDMA_WRITE;
590 else
591 tf->command = ATA_CMD_FPDMA_READ;
592
593 tf->nsect = tag << 3;
594 tf->hob_feature = (n_block >> 8) & 0xff;
595 tf->feature = n_block & 0xff;
596
597 tf->hob_lbah = (block >> 40) & 0xff;
598 tf->hob_lbam = (block >> 32) & 0xff;
599 tf->hob_lbal = (block >> 24) & 0xff;
600 tf->lbah = (block >> 16) & 0xff;
601 tf->lbam = (block >> 8) & 0xff;
602 tf->lbal = block & 0xff;
603
604 tf->device = 1 << 6;
605 if (tf->flags & ATA_TFLAG_FUA)
606 tf->device |= 1 << 7;
607 } else if (dev->flags & ATA_DFLAG_LBA) {
608 tf->flags |= ATA_TFLAG_LBA;
609
610 if (lba_28_ok(block, n_block)) {
611 /* use LBA28 */
612 tf->device |= (block >> 24) & 0xf;
613 } else if (lba_48_ok(block, n_block)) {
614 if (!(dev->flags & ATA_DFLAG_LBA48))
615 return -ERANGE;
616
617 /* use LBA48 */
618 tf->flags |= ATA_TFLAG_LBA48;
619
620 tf->hob_nsect = (n_block >> 8) & 0xff;
621
622 tf->hob_lbah = (block >> 40) & 0xff;
623 tf->hob_lbam = (block >> 32) & 0xff;
624 tf->hob_lbal = (block >> 24) & 0xff;
625 } else
626 /* request too large even for LBA48 */
627 return -ERANGE;
628
629 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
630 return -EINVAL;
631
632 tf->nsect = n_block & 0xff;
633
634 tf->lbah = (block >> 16) & 0xff;
635 tf->lbam = (block >> 8) & 0xff;
636 tf->lbal = block & 0xff;
637
638 tf->device |= ATA_LBA;
639 } else {
640 /* CHS */
641 u32 sect, head, cyl, track;
642
643 /* The request -may- be too large for CHS addressing. */
644 if (!lba_28_ok(block, n_block))
645 return -ERANGE;
646
647 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
648 return -EINVAL;
649
650 /* Convert LBA to CHS */
651 track = (u32)block / dev->sectors;
652 cyl = track / dev->heads;
653 head = track % dev->heads;
654 sect = (u32)block % dev->sectors + 1;
655
656 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
657 (u32)block, track, cyl, head, sect);
658
659 /* Check whether the converted CHS can fit.
660 Cylinder: 0-65535
661 Head: 0-15
662 Sector: 1-255*/
663 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
664 return -ERANGE;
665
666 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
667 tf->lbal = sect;
668 tf->lbam = cyl;
669 tf->lbah = cyl >> 8;
670 tf->device |= head;
671 }
672
673 return 0;
674 }
675
676 /**
677 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
678 * @pio_mask: pio_mask
679 * @mwdma_mask: mwdma_mask
680 * @udma_mask: udma_mask
681 *
682 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
683 * unsigned int xfer_mask.
684 *
685 * LOCKING:
686 * None.
687 *
688 * RETURNS:
689 * Packed xfer_mask.
690 */
691 unsigned long ata_pack_xfermask(unsigned long pio_mask,
692 unsigned long mwdma_mask,
693 unsigned long udma_mask)
694 {
695 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
696 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
697 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
698 }
699
700 /**
701 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
702 * @xfer_mask: xfer_mask to unpack
703 * @pio_mask: resulting pio_mask
704 * @mwdma_mask: resulting mwdma_mask
705 * @udma_mask: resulting udma_mask
706 *
707 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
708 * Any NULL distination masks will be ignored.
709 */
710 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
711 unsigned long *mwdma_mask, unsigned long *udma_mask)
712 {
713 if (pio_mask)
714 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
715 if (mwdma_mask)
716 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
717 if (udma_mask)
718 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
719 }
720
721 static const struct ata_xfer_ent {
722 int shift, bits;
723 u8 base;
724 } ata_xfer_tbl[] = {
725 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
726 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
727 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
728 { -1, },
729 };
730
731 /**
732 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
733 * @xfer_mask: xfer_mask of interest
734 *
735 * Return matching XFER_* value for @xfer_mask. Only the highest
736 * bit of @xfer_mask is considered.
737 *
738 * LOCKING:
739 * None.
740 *
741 * RETURNS:
742 * Matching XFER_* value, 0xff if no match found.
743 */
744 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
745 {
746 int highbit = fls(xfer_mask) - 1;
747 const struct ata_xfer_ent *ent;
748
749 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
750 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
751 return ent->base + highbit - ent->shift;
752 return 0xff;
753 }
754
755 /**
756 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
757 * @xfer_mode: XFER_* of interest
758 *
759 * Return matching xfer_mask for @xfer_mode.
760 *
761 * LOCKING:
762 * None.
763 *
764 * RETURNS:
765 * Matching xfer_mask, 0 if no match found.
766 */
767 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
768 {
769 const struct ata_xfer_ent *ent;
770
771 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
772 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
773 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
774 & ~((1 << ent->shift) - 1);
775 return 0;
776 }
777
778 /**
779 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
780 * @xfer_mode: XFER_* of interest
781 *
782 * Return matching xfer_shift for @xfer_mode.
783 *
784 * LOCKING:
785 * None.
786 *
787 * RETURNS:
788 * Matching xfer_shift, -1 if no match found.
789 */
790 int ata_xfer_mode2shift(unsigned long xfer_mode)
791 {
792 const struct ata_xfer_ent *ent;
793
794 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
795 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
796 return ent->shift;
797 return -1;
798 }
799
800 /**
801 * ata_mode_string - convert xfer_mask to string
802 * @xfer_mask: mask of bits supported; only highest bit counts.
803 *
804 * Determine string which represents the highest speed
805 * (highest bit in @modemask).
806 *
807 * LOCKING:
808 * None.
809 *
810 * RETURNS:
811 * Constant C string representing highest speed listed in
812 * @mode_mask, or the constant C string "<n/a>".
813 */
814 const char *ata_mode_string(unsigned long xfer_mask)
815 {
816 static const char * const xfer_mode_str[] = {
817 "PIO0",
818 "PIO1",
819 "PIO2",
820 "PIO3",
821 "PIO4",
822 "PIO5",
823 "PIO6",
824 "MWDMA0",
825 "MWDMA1",
826 "MWDMA2",
827 "MWDMA3",
828 "MWDMA4",
829 "UDMA/16",
830 "UDMA/25",
831 "UDMA/33",
832 "UDMA/44",
833 "UDMA/66",
834 "UDMA/100",
835 "UDMA/133",
836 "UDMA7",
837 };
838 int highbit;
839
840 highbit = fls(xfer_mask) - 1;
841 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
842 return xfer_mode_str[highbit];
843 return "<n/a>";
844 }
845
846 static const char *sata_spd_string(unsigned int spd)
847 {
848 static const char * const spd_str[] = {
849 "1.5 Gbps",
850 "3.0 Gbps",
851 };
852
853 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
854 return "<unknown>";
855 return spd_str[spd - 1];
856 }
857
858 void ata_dev_disable(struct ata_device *dev)
859 {
860 if (ata_dev_enabled(dev)) {
861 if (ata_msg_drv(dev->link->ap))
862 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
863 ata_acpi_on_disable(dev);
864 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
865 ATA_DNXFER_QUIET);
866 dev->class++;
867 }
868 }
869
870 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
871 {
872 struct ata_link *link = dev->link;
873 struct ata_port *ap = link->ap;
874 u32 scontrol;
875 unsigned int err_mask;
876 int rc;
877
878 /*
879 * disallow DIPM for drivers which haven't set
880 * ATA_FLAG_IPM. This is because when DIPM is enabled,
881 * phy ready will be set in the interrupt status on
882 * state changes, which will cause some drivers to
883 * think there are errors - additionally drivers will
884 * need to disable hot plug.
885 */
886 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
887 ap->pm_policy = NOT_AVAILABLE;
888 return -EINVAL;
889 }
890
891 /*
892 * For DIPM, we will only enable it for the
893 * min_power setting.
894 *
895 * Why? Because Disks are too stupid to know that
896 * If the host rejects a request to go to SLUMBER
897 * they should retry at PARTIAL, and instead it
898 * just would give up. So, for medium_power to
899 * work at all, we need to only allow HIPM.
900 */
901 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
902 if (rc)
903 return rc;
904
905 switch (policy) {
906 case MIN_POWER:
907 /* no restrictions on IPM transitions */
908 scontrol &= ~(0x3 << 8);
909 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
910 if (rc)
911 return rc;
912
913 /* enable DIPM */
914 if (dev->flags & ATA_DFLAG_DIPM)
915 err_mask = ata_dev_set_feature(dev,
916 SETFEATURES_SATA_ENABLE, SATA_DIPM);
917 break;
918 case MEDIUM_POWER:
919 /* allow IPM to PARTIAL */
920 scontrol &= ~(0x1 << 8);
921 scontrol |= (0x2 << 8);
922 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
923 if (rc)
924 return rc;
925
926 /*
927 * we don't have to disable DIPM since IPM flags
928 * disallow transitions to SLUMBER, which effectively
929 * disable DIPM if it does not support PARTIAL
930 */
931 break;
932 case NOT_AVAILABLE:
933 case MAX_PERFORMANCE:
934 /* disable all IPM transitions */
935 scontrol |= (0x3 << 8);
936 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
937 if (rc)
938 return rc;
939
940 /*
941 * we don't have to disable DIPM since IPM flags
942 * disallow all transitions which effectively
943 * disable DIPM anyway.
944 */
945 break;
946 }
947
948 /* FIXME: handle SET FEATURES failure */
949 (void) err_mask;
950
951 return 0;
952 }
953
954 /**
955 * ata_dev_enable_pm - enable SATA interface power management
956 * @dev: device to enable power management
957 * @policy: the link power management policy
958 *
959 * Enable SATA Interface power management. This will enable
960 * Device Interface Power Management (DIPM) for min_power
961 * policy, and then call driver specific callbacks for
962 * enabling Host Initiated Power management.
963 *
964 * Locking: Caller.
965 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
966 */
967 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
968 {
969 int rc = 0;
970 struct ata_port *ap = dev->link->ap;
971
972 /* set HIPM first, then DIPM */
973 if (ap->ops->enable_pm)
974 rc = ap->ops->enable_pm(ap, policy);
975 if (rc)
976 goto enable_pm_out;
977 rc = ata_dev_set_dipm(dev, policy);
978
979 enable_pm_out:
980 if (rc)
981 ap->pm_policy = MAX_PERFORMANCE;
982 else
983 ap->pm_policy = policy;
984 return /* rc */; /* hopefully we can use 'rc' eventually */
985 }
986
987 #ifdef CONFIG_PM
988 /**
989 * ata_dev_disable_pm - disable SATA interface power management
990 * @dev: device to disable power management
991 *
992 * Disable SATA Interface power management. This will disable
993 * Device Interface Power Management (DIPM) without changing
994 * policy, call driver specific callbacks for disabling Host
995 * Initiated Power management.
996 *
997 * Locking: Caller.
998 * Returns: void
999 */
1000 static void ata_dev_disable_pm(struct ata_device *dev)
1001 {
1002 struct ata_port *ap = dev->link->ap;
1003
1004 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1005 if (ap->ops->disable_pm)
1006 ap->ops->disable_pm(ap);
1007 }
1008 #endif /* CONFIG_PM */
1009
1010 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1011 {
1012 ap->pm_policy = policy;
1013 ap->link.eh_info.action |= ATA_EH_LPM;
1014 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1015 ata_port_schedule_eh(ap);
1016 }
1017
1018 #ifdef CONFIG_PM
1019 static void ata_lpm_enable(struct ata_host *host)
1020 {
1021 struct ata_link *link;
1022 struct ata_port *ap;
1023 struct ata_device *dev;
1024 int i;
1025
1026 for (i = 0; i < host->n_ports; i++) {
1027 ap = host->ports[i];
1028 ata_port_for_each_link(link, ap) {
1029 ata_link_for_each_dev(dev, link)
1030 ata_dev_disable_pm(dev);
1031 }
1032 }
1033 }
1034
1035 static void ata_lpm_disable(struct ata_host *host)
1036 {
1037 int i;
1038
1039 for (i = 0; i < host->n_ports; i++) {
1040 struct ata_port *ap = host->ports[i];
1041 ata_lpm_schedule(ap, ap->pm_policy);
1042 }
1043 }
1044 #endif /* CONFIG_PM */
1045
1046
1047 /**
1048 * ata_devchk - PATA device presence detection
1049 * @ap: ATA channel to examine
1050 * @device: Device to examine (starting at zero)
1051 *
1052 * This technique was originally described in
1053 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1054 * later found its way into the ATA/ATAPI spec.
1055 *
1056 * Write a pattern to the ATA shadow registers,
1057 * and if a device is present, it will respond by
1058 * correctly storing and echoing back the
1059 * ATA shadow register contents.
1060 *
1061 * LOCKING:
1062 * caller.
1063 */
1064
1065 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1066 {
1067 struct ata_ioports *ioaddr = &ap->ioaddr;
1068 u8 nsect, lbal;
1069
1070 ap->ops->dev_select(ap, device);
1071
1072 iowrite8(0x55, ioaddr->nsect_addr);
1073 iowrite8(0xaa, ioaddr->lbal_addr);
1074
1075 iowrite8(0xaa, ioaddr->nsect_addr);
1076 iowrite8(0x55, ioaddr->lbal_addr);
1077
1078 iowrite8(0x55, ioaddr->nsect_addr);
1079 iowrite8(0xaa, ioaddr->lbal_addr);
1080
1081 nsect = ioread8(ioaddr->nsect_addr);
1082 lbal = ioread8(ioaddr->lbal_addr);
1083
1084 if ((nsect == 0x55) && (lbal == 0xaa))
1085 return 1; /* we found a device */
1086
1087 return 0; /* nothing found */
1088 }
1089
1090 /**
1091 * ata_dev_classify - determine device type based on ATA-spec signature
1092 * @tf: ATA taskfile register set for device to be identified
1093 *
1094 * Determine from taskfile register contents whether a device is
1095 * ATA or ATAPI, as per "Signature and persistence" section
1096 * of ATA/PI spec (volume 1, sect 5.14).
1097 *
1098 * LOCKING:
1099 * None.
1100 *
1101 * RETURNS:
1102 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1103 * %ATA_DEV_UNKNOWN the event of failure.
1104 */
1105 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1106 {
1107 /* Apple's open source Darwin code hints that some devices only
1108 * put a proper signature into the LBA mid/high registers,
1109 * So, we only check those. It's sufficient for uniqueness.
1110 *
1111 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1112 * signatures for ATA and ATAPI devices attached on SerialATA,
1113 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1114 * spec has never mentioned about using different signatures
1115 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1116 * Multiplier specification began to use 0x69/0x96 to identify
1117 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1118 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1119 * 0x69/0x96 shortly and described them as reserved for
1120 * SerialATA.
1121 *
1122 * We follow the current spec and consider that 0x69/0x96
1123 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1124 */
1125 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1126 DPRINTK("found ATA device by sig\n");
1127 return ATA_DEV_ATA;
1128 }
1129
1130 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1131 DPRINTK("found ATAPI device by sig\n");
1132 return ATA_DEV_ATAPI;
1133 }
1134
1135 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1136 DPRINTK("found PMP device by sig\n");
1137 return ATA_DEV_PMP;
1138 }
1139
1140 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1141 printk(KERN_INFO "ata: SEMB device ignored\n");
1142 return ATA_DEV_SEMB_UNSUP; /* not yet */
1143 }
1144
1145 DPRINTK("unknown device\n");
1146 return ATA_DEV_UNKNOWN;
1147 }
1148
1149 /**
1150 * ata_dev_try_classify - Parse returned ATA device signature
1151 * @dev: ATA device to classify (starting at zero)
1152 * @present: device seems present
1153 * @r_err: Value of error register on completion
1154 *
1155 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1156 * an ATA/ATAPI-defined set of values is placed in the ATA
1157 * shadow registers, indicating the results of device detection
1158 * and diagnostics.
1159 *
1160 * Select the ATA device, and read the values from the ATA shadow
1161 * registers. Then parse according to the Error register value,
1162 * and the spec-defined values examined by ata_dev_classify().
1163 *
1164 * LOCKING:
1165 * caller.
1166 *
1167 * RETURNS:
1168 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1169 */
1170 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1171 u8 *r_err)
1172 {
1173 struct ata_port *ap = dev->link->ap;
1174 struct ata_taskfile tf;
1175 unsigned int class;
1176 u8 err;
1177
1178 ap->ops->dev_select(ap, dev->devno);
1179
1180 memset(&tf, 0, sizeof(tf));
1181
1182 ap->ops->tf_read(ap, &tf);
1183 err = tf.feature;
1184 if (r_err)
1185 *r_err = err;
1186
1187 /* see if device passed diags: continue and warn later */
1188 if (err == 0)
1189 /* diagnostic fail : do nothing _YET_ */
1190 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1191 else if (err == 1)
1192 /* do nothing */ ;
1193 else if ((dev->devno == 0) && (err == 0x81))
1194 /* do nothing */ ;
1195 else
1196 return ATA_DEV_NONE;
1197
1198 /* determine if device is ATA or ATAPI */
1199 class = ata_dev_classify(&tf);
1200
1201 if (class == ATA_DEV_UNKNOWN) {
1202 /* If the device failed diagnostic, it's likely to
1203 * have reported incorrect device signature too.
1204 * Assume ATA device if the device seems present but
1205 * device signature is invalid with diagnostic
1206 * failure.
1207 */
1208 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1209 class = ATA_DEV_ATA;
1210 else
1211 class = ATA_DEV_NONE;
1212 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1213 class = ATA_DEV_NONE;
1214
1215 return class;
1216 }
1217
1218 /**
1219 * ata_id_string - Convert IDENTIFY DEVICE page into string
1220 * @id: IDENTIFY DEVICE results we will examine
1221 * @s: string into which data is output
1222 * @ofs: offset into identify device page
1223 * @len: length of string to return. must be an even number.
1224 *
1225 * The strings in the IDENTIFY DEVICE page are broken up into
1226 * 16-bit chunks. Run through the string, and output each
1227 * 8-bit chunk linearly, regardless of platform.
1228 *
1229 * LOCKING:
1230 * caller.
1231 */
1232
1233 void ata_id_string(const u16 *id, unsigned char *s,
1234 unsigned int ofs, unsigned int len)
1235 {
1236 unsigned int c;
1237
1238 while (len > 0) {
1239 c = id[ofs] >> 8;
1240 *s = c;
1241 s++;
1242
1243 c = id[ofs] & 0xff;
1244 *s = c;
1245 s++;
1246
1247 ofs++;
1248 len -= 2;
1249 }
1250 }
1251
1252 /**
1253 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1254 * @id: IDENTIFY DEVICE results we will examine
1255 * @s: string into which data is output
1256 * @ofs: offset into identify device page
1257 * @len: length of string to return. must be an odd number.
1258 *
1259 * This function is identical to ata_id_string except that it
1260 * trims trailing spaces and terminates the resulting string with
1261 * null. @len must be actual maximum length (even number) + 1.
1262 *
1263 * LOCKING:
1264 * caller.
1265 */
1266 void ata_id_c_string(const u16 *id, unsigned char *s,
1267 unsigned int ofs, unsigned int len)
1268 {
1269 unsigned char *p;
1270
1271 WARN_ON(!(len & 1));
1272
1273 ata_id_string(id, s, ofs, len - 1);
1274
1275 p = s + strnlen(s, len - 1);
1276 while (p > s && p[-1] == ' ')
1277 p--;
1278 *p = '\0';
1279 }
1280
1281 static u64 ata_id_n_sectors(const u16 *id)
1282 {
1283 if (ata_id_has_lba(id)) {
1284 if (ata_id_has_lba48(id))
1285 return ata_id_u64(id, 100);
1286 else
1287 return ata_id_u32(id, 60);
1288 } else {
1289 if (ata_id_current_chs_valid(id))
1290 return ata_id_u32(id, 57);
1291 else
1292 return id[1] * id[3] * id[6];
1293 }
1294 }
1295
1296 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1297 {
1298 u64 sectors = 0;
1299
1300 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1301 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1302 sectors |= (tf->hob_lbal & 0xff) << 24;
1303 sectors |= (tf->lbah & 0xff) << 16;
1304 sectors |= (tf->lbam & 0xff) << 8;
1305 sectors |= (tf->lbal & 0xff);
1306
1307 return ++sectors;
1308 }
1309
1310 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1311 {
1312 u64 sectors = 0;
1313
1314 sectors |= (tf->device & 0x0f) << 24;
1315 sectors |= (tf->lbah & 0xff) << 16;
1316 sectors |= (tf->lbam & 0xff) << 8;
1317 sectors |= (tf->lbal & 0xff);
1318
1319 return ++sectors;
1320 }
1321
1322 /**
1323 * ata_read_native_max_address - Read native max address
1324 * @dev: target device
1325 * @max_sectors: out parameter for the result native max address
1326 *
1327 * Perform an LBA48 or LBA28 native size query upon the device in
1328 * question.
1329 *
1330 * RETURNS:
1331 * 0 on success, -EACCES if command is aborted by the drive.
1332 * -EIO on other errors.
1333 */
1334 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1335 {
1336 unsigned int err_mask;
1337 struct ata_taskfile tf;
1338 int lba48 = ata_id_has_lba48(dev->id);
1339
1340 ata_tf_init(dev, &tf);
1341
1342 /* always clear all address registers */
1343 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1344
1345 if (lba48) {
1346 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1347 tf.flags |= ATA_TFLAG_LBA48;
1348 } else
1349 tf.command = ATA_CMD_READ_NATIVE_MAX;
1350
1351 tf.protocol |= ATA_PROT_NODATA;
1352 tf.device |= ATA_LBA;
1353
1354 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1355 if (err_mask) {
1356 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1357 "max address (err_mask=0x%x)\n", err_mask);
1358 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1359 return -EACCES;
1360 return -EIO;
1361 }
1362
1363 if (lba48)
1364 *max_sectors = ata_tf_to_lba48(&tf);
1365 else
1366 *max_sectors = ata_tf_to_lba(&tf);
1367 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1368 (*max_sectors)--;
1369 return 0;
1370 }
1371
1372 /**
1373 * ata_set_max_sectors - Set max sectors
1374 * @dev: target device
1375 * @new_sectors: new max sectors value to set for the device
1376 *
1377 * Set max sectors of @dev to @new_sectors.
1378 *
1379 * RETURNS:
1380 * 0 on success, -EACCES if command is aborted or denied (due to
1381 * previous non-volatile SET_MAX) by the drive. -EIO on other
1382 * errors.
1383 */
1384 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1385 {
1386 unsigned int err_mask;
1387 struct ata_taskfile tf;
1388 int lba48 = ata_id_has_lba48(dev->id);
1389
1390 new_sectors--;
1391
1392 ata_tf_init(dev, &tf);
1393
1394 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1395
1396 if (lba48) {
1397 tf.command = ATA_CMD_SET_MAX_EXT;
1398 tf.flags |= ATA_TFLAG_LBA48;
1399
1400 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1401 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1402 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1403 } else {
1404 tf.command = ATA_CMD_SET_MAX;
1405
1406 tf.device |= (new_sectors >> 24) & 0xf;
1407 }
1408
1409 tf.protocol |= ATA_PROT_NODATA;
1410 tf.device |= ATA_LBA;
1411
1412 tf.lbal = (new_sectors >> 0) & 0xff;
1413 tf.lbam = (new_sectors >> 8) & 0xff;
1414 tf.lbah = (new_sectors >> 16) & 0xff;
1415
1416 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1417 if (err_mask) {
1418 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1419 "max address (err_mask=0x%x)\n", err_mask);
1420 if (err_mask == AC_ERR_DEV &&
1421 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1422 return -EACCES;
1423 return -EIO;
1424 }
1425
1426 return 0;
1427 }
1428
1429 /**
1430 * ata_hpa_resize - Resize a device with an HPA set
1431 * @dev: Device to resize
1432 *
1433 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1434 * it if required to the full size of the media. The caller must check
1435 * the drive has the HPA feature set enabled.
1436 *
1437 * RETURNS:
1438 * 0 on success, -errno on failure.
1439 */
1440 static int ata_hpa_resize(struct ata_device *dev)
1441 {
1442 struct ata_eh_context *ehc = &dev->link->eh_context;
1443 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1444 u64 sectors = ata_id_n_sectors(dev->id);
1445 u64 native_sectors;
1446 int rc;
1447
1448 /* do we need to do it? */
1449 if (dev->class != ATA_DEV_ATA ||
1450 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1451 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1452 return 0;
1453
1454 /* read native max address */
1455 rc = ata_read_native_max_address(dev, &native_sectors);
1456 if (rc) {
1457 /* If device aborted the command or HPA isn't going to
1458 * be unlocked, skip HPA resizing.
1459 */
1460 if (rc == -EACCES || !ata_ignore_hpa) {
1461 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1462 "broken, skipping HPA handling\n");
1463 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1464
1465 /* we can continue if device aborted the command */
1466 if (rc == -EACCES)
1467 rc = 0;
1468 }
1469
1470 return rc;
1471 }
1472
1473 /* nothing to do? */
1474 if (native_sectors <= sectors || !ata_ignore_hpa) {
1475 if (!print_info || native_sectors == sectors)
1476 return 0;
1477
1478 if (native_sectors > sectors)
1479 ata_dev_printk(dev, KERN_INFO,
1480 "HPA detected: current %llu, native %llu\n",
1481 (unsigned long long)sectors,
1482 (unsigned long long)native_sectors);
1483 else if (native_sectors < sectors)
1484 ata_dev_printk(dev, KERN_WARNING,
1485 "native sectors (%llu) is smaller than "
1486 "sectors (%llu)\n",
1487 (unsigned long long)native_sectors,
1488 (unsigned long long)sectors);
1489 return 0;
1490 }
1491
1492 /* let's unlock HPA */
1493 rc = ata_set_max_sectors(dev, native_sectors);
1494 if (rc == -EACCES) {
1495 /* if device aborted the command, skip HPA resizing */
1496 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1497 "(%llu -> %llu), skipping HPA handling\n",
1498 (unsigned long long)sectors,
1499 (unsigned long long)native_sectors);
1500 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1501 return 0;
1502 } else if (rc)
1503 return rc;
1504
1505 /* re-read IDENTIFY data */
1506 rc = ata_dev_reread_id(dev, 0);
1507 if (rc) {
1508 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1509 "data after HPA resizing\n");
1510 return rc;
1511 }
1512
1513 if (print_info) {
1514 u64 new_sectors = ata_id_n_sectors(dev->id);
1515 ata_dev_printk(dev, KERN_INFO,
1516 "HPA unlocked: %llu -> %llu, native %llu\n",
1517 (unsigned long long)sectors,
1518 (unsigned long long)new_sectors,
1519 (unsigned long long)native_sectors);
1520 }
1521
1522 return 0;
1523 }
1524
1525 /**
1526 * ata_noop_dev_select - Select device 0/1 on ATA bus
1527 * @ap: ATA channel to manipulate
1528 * @device: ATA device (numbered from zero) to select
1529 *
1530 * This function performs no actual function.
1531 *
1532 * May be used as the dev_select() entry in ata_port_operations.
1533 *
1534 * LOCKING:
1535 * caller.
1536 */
1537 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1538 {
1539 }
1540
1541
1542 /**
1543 * ata_std_dev_select - Select device 0/1 on ATA bus
1544 * @ap: ATA channel to manipulate
1545 * @device: ATA device (numbered from zero) to select
1546 *
1547 * Use the method defined in the ATA specification to
1548 * make either device 0, or device 1, active on the
1549 * ATA channel. Works with both PIO and MMIO.
1550 *
1551 * May be used as the dev_select() entry in ata_port_operations.
1552 *
1553 * LOCKING:
1554 * caller.
1555 */
1556
1557 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1558 {
1559 u8 tmp;
1560
1561 if (device == 0)
1562 tmp = ATA_DEVICE_OBS;
1563 else
1564 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1565
1566 iowrite8(tmp, ap->ioaddr.device_addr);
1567 ata_pause(ap); /* needed; also flushes, for mmio */
1568 }
1569
1570 /**
1571 * ata_dev_select - Select device 0/1 on ATA bus
1572 * @ap: ATA channel to manipulate
1573 * @device: ATA device (numbered from zero) to select
1574 * @wait: non-zero to wait for Status register BSY bit to clear
1575 * @can_sleep: non-zero if context allows sleeping
1576 *
1577 * Use the method defined in the ATA specification to
1578 * make either device 0, or device 1, active on the
1579 * ATA channel.
1580 *
1581 * This is a high-level version of ata_std_dev_select(),
1582 * which additionally provides the services of inserting
1583 * the proper pauses and status polling, where needed.
1584 *
1585 * LOCKING:
1586 * caller.
1587 */
1588
1589 void ata_dev_select(struct ata_port *ap, unsigned int device,
1590 unsigned int wait, unsigned int can_sleep)
1591 {
1592 if (ata_msg_probe(ap))
1593 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1594 "device %u, wait %u\n", device, wait);
1595
1596 if (wait)
1597 ata_wait_idle(ap);
1598
1599 ap->ops->dev_select(ap, device);
1600
1601 if (wait) {
1602 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1603 msleep(150);
1604 ata_wait_idle(ap);
1605 }
1606 }
1607
1608 /**
1609 * ata_dump_id - IDENTIFY DEVICE info debugging output
1610 * @id: IDENTIFY DEVICE page to dump
1611 *
1612 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1613 * page.
1614 *
1615 * LOCKING:
1616 * caller.
1617 */
1618
1619 static inline void ata_dump_id(const u16 *id)
1620 {
1621 DPRINTK("49==0x%04x "
1622 "53==0x%04x "
1623 "63==0x%04x "
1624 "64==0x%04x "
1625 "75==0x%04x \n",
1626 id[49],
1627 id[53],
1628 id[63],
1629 id[64],
1630 id[75]);
1631 DPRINTK("80==0x%04x "
1632 "81==0x%04x "
1633 "82==0x%04x "
1634 "83==0x%04x "
1635 "84==0x%04x \n",
1636 id[80],
1637 id[81],
1638 id[82],
1639 id[83],
1640 id[84]);
1641 DPRINTK("88==0x%04x "
1642 "93==0x%04x\n",
1643 id[88],
1644 id[93]);
1645 }
1646
1647 /**
1648 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1649 * @id: IDENTIFY data to compute xfer mask from
1650 *
1651 * Compute the xfermask for this device. This is not as trivial
1652 * as it seems if we must consider early devices correctly.
1653 *
1654 * FIXME: pre IDE drive timing (do we care ?).
1655 *
1656 * LOCKING:
1657 * None.
1658 *
1659 * RETURNS:
1660 * Computed xfermask
1661 */
1662 unsigned long ata_id_xfermask(const u16 *id)
1663 {
1664 unsigned long pio_mask, mwdma_mask, udma_mask;
1665
1666 /* Usual case. Word 53 indicates word 64 is valid */
1667 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1668 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1669 pio_mask <<= 3;
1670 pio_mask |= 0x7;
1671 } else {
1672 /* If word 64 isn't valid then Word 51 high byte holds
1673 * the PIO timing number for the maximum. Turn it into
1674 * a mask.
1675 */
1676 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1677 if (mode < 5) /* Valid PIO range */
1678 pio_mask = (2 << mode) - 1;
1679 else
1680 pio_mask = 1;
1681
1682 /* But wait.. there's more. Design your standards by
1683 * committee and you too can get a free iordy field to
1684 * process. However its the speeds not the modes that
1685 * are supported... Note drivers using the timing API
1686 * will get this right anyway
1687 */
1688 }
1689
1690 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1691
1692 if (ata_id_is_cfa(id)) {
1693 /*
1694 * Process compact flash extended modes
1695 */
1696 int pio = id[163] & 0x7;
1697 int dma = (id[163] >> 3) & 7;
1698
1699 if (pio)
1700 pio_mask |= (1 << 5);
1701 if (pio > 1)
1702 pio_mask |= (1 << 6);
1703 if (dma)
1704 mwdma_mask |= (1 << 3);
1705 if (dma > 1)
1706 mwdma_mask |= (1 << 4);
1707 }
1708
1709 udma_mask = 0;
1710 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1711 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1712
1713 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1714 }
1715
1716 /**
1717 * ata_pio_queue_task - Queue port_task
1718 * @ap: The ata_port to queue port_task for
1719 * @fn: workqueue function to be scheduled
1720 * @data: data for @fn to use
1721 * @delay: delay time for workqueue function
1722 *
1723 * Schedule @fn(@data) for execution after @delay jiffies using
1724 * port_task. There is one port_task per port and it's the
1725 * user(low level driver)'s responsibility to make sure that only
1726 * one task is active at any given time.
1727 *
1728 * libata core layer takes care of synchronization between
1729 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1730 * synchronization.
1731 *
1732 * LOCKING:
1733 * Inherited from caller.
1734 */
1735 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1736 unsigned long delay)
1737 {
1738 ap->port_task_data = data;
1739
1740 /* may fail if ata_port_flush_task() in progress */
1741 queue_delayed_work(ata_wq, &ap->port_task, delay);
1742 }
1743
1744 /**
1745 * ata_port_flush_task - Flush port_task
1746 * @ap: The ata_port to flush port_task for
1747 *
1748 * After this function completes, port_task is guranteed not to
1749 * be running or scheduled.
1750 *
1751 * LOCKING:
1752 * Kernel thread context (may sleep)
1753 */
1754 void ata_port_flush_task(struct ata_port *ap)
1755 {
1756 DPRINTK("ENTER\n");
1757
1758 cancel_rearming_delayed_work(&ap->port_task);
1759
1760 if (ata_msg_ctl(ap))
1761 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1762 }
1763
1764 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1765 {
1766 struct completion *waiting = qc->private_data;
1767
1768 complete(waiting);
1769 }
1770
1771 /**
1772 * ata_exec_internal_sg - execute libata internal command
1773 * @dev: Device to which the command is sent
1774 * @tf: Taskfile registers for the command and the result
1775 * @cdb: CDB for packet command
1776 * @dma_dir: Data tranfer direction of the command
1777 * @sgl: sg list for the data buffer of the command
1778 * @n_elem: Number of sg entries
1779 * @timeout: Timeout in msecs (0 for default)
1780 *
1781 * Executes libata internal command with timeout. @tf contains
1782 * command on entry and result on return. Timeout and error
1783 * conditions are reported via return value. No recovery action
1784 * is taken after a command times out. It's caller's duty to
1785 * clean up after timeout.
1786 *
1787 * LOCKING:
1788 * None. Should be called with kernel context, might sleep.
1789 *
1790 * RETURNS:
1791 * Zero on success, AC_ERR_* mask on failure
1792 */
1793 unsigned ata_exec_internal_sg(struct ata_device *dev,
1794 struct ata_taskfile *tf, const u8 *cdb,
1795 int dma_dir, struct scatterlist *sgl,
1796 unsigned int n_elem, unsigned long timeout)
1797 {
1798 struct ata_link *link = dev->link;
1799 struct ata_port *ap = link->ap;
1800 u8 command = tf->command;
1801 struct ata_queued_cmd *qc;
1802 unsigned int tag, preempted_tag;
1803 u32 preempted_sactive, preempted_qc_active;
1804 int preempted_nr_active_links;
1805 DECLARE_COMPLETION_ONSTACK(wait);
1806 unsigned long flags;
1807 unsigned int err_mask;
1808 int rc;
1809
1810 spin_lock_irqsave(ap->lock, flags);
1811
1812 /* no internal command while frozen */
1813 if (ap->pflags & ATA_PFLAG_FROZEN) {
1814 spin_unlock_irqrestore(ap->lock, flags);
1815 return AC_ERR_SYSTEM;
1816 }
1817
1818 /* initialize internal qc */
1819
1820 /* XXX: Tag 0 is used for drivers with legacy EH as some
1821 * drivers choke if any other tag is given. This breaks
1822 * ata_tag_internal() test for those drivers. Don't use new
1823 * EH stuff without converting to it.
1824 */
1825 if (ap->ops->error_handler)
1826 tag = ATA_TAG_INTERNAL;
1827 else
1828 tag = 0;
1829
1830 if (test_and_set_bit(tag, &ap->qc_allocated))
1831 BUG();
1832 qc = __ata_qc_from_tag(ap, tag);
1833
1834 qc->tag = tag;
1835 qc->scsicmd = NULL;
1836 qc->ap = ap;
1837 qc->dev = dev;
1838 ata_qc_reinit(qc);
1839
1840 preempted_tag = link->active_tag;
1841 preempted_sactive = link->sactive;
1842 preempted_qc_active = ap->qc_active;
1843 preempted_nr_active_links = ap->nr_active_links;
1844 link->active_tag = ATA_TAG_POISON;
1845 link->sactive = 0;
1846 ap->qc_active = 0;
1847 ap->nr_active_links = 0;
1848
1849 /* prepare & issue qc */
1850 qc->tf = *tf;
1851 if (cdb)
1852 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1853 qc->flags |= ATA_QCFLAG_RESULT_TF;
1854 qc->dma_dir = dma_dir;
1855 if (dma_dir != DMA_NONE) {
1856 unsigned int i, buflen = 0;
1857 struct scatterlist *sg;
1858
1859 for_each_sg(sgl, sg, n_elem, i)
1860 buflen += sg->length;
1861
1862 ata_sg_init(qc, sgl, n_elem);
1863 qc->nbytes = buflen;
1864 }
1865
1866 qc->private_data = &wait;
1867 qc->complete_fn = ata_qc_complete_internal;
1868
1869 ata_qc_issue(qc);
1870
1871 spin_unlock_irqrestore(ap->lock, flags);
1872
1873 if (!timeout)
1874 timeout = ata_probe_timeout * 1000 / HZ;
1875
1876 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1877
1878 ata_port_flush_task(ap);
1879
1880 if (!rc) {
1881 spin_lock_irqsave(ap->lock, flags);
1882
1883 /* We're racing with irq here. If we lose, the
1884 * following test prevents us from completing the qc
1885 * twice. If we win, the port is frozen and will be
1886 * cleaned up by ->post_internal_cmd().
1887 */
1888 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1889 qc->err_mask |= AC_ERR_TIMEOUT;
1890
1891 if (ap->ops->error_handler)
1892 ata_port_freeze(ap);
1893 else
1894 ata_qc_complete(qc);
1895
1896 if (ata_msg_warn(ap))
1897 ata_dev_printk(dev, KERN_WARNING,
1898 "qc timeout (cmd 0x%x)\n", command);
1899 }
1900
1901 spin_unlock_irqrestore(ap->lock, flags);
1902 }
1903
1904 /* do post_internal_cmd */
1905 if (ap->ops->post_internal_cmd)
1906 ap->ops->post_internal_cmd(qc);
1907
1908 /* perform minimal error analysis */
1909 if (qc->flags & ATA_QCFLAG_FAILED) {
1910 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1911 qc->err_mask |= AC_ERR_DEV;
1912
1913 if (!qc->err_mask)
1914 qc->err_mask |= AC_ERR_OTHER;
1915
1916 if (qc->err_mask & ~AC_ERR_OTHER)
1917 qc->err_mask &= ~AC_ERR_OTHER;
1918 }
1919
1920 /* finish up */
1921 spin_lock_irqsave(ap->lock, flags);
1922
1923 *tf = qc->result_tf;
1924 err_mask = qc->err_mask;
1925
1926 ata_qc_free(qc);
1927 link->active_tag = preempted_tag;
1928 link->sactive = preempted_sactive;
1929 ap->qc_active = preempted_qc_active;
1930 ap->nr_active_links = preempted_nr_active_links;
1931
1932 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1933 * Until those drivers are fixed, we detect the condition
1934 * here, fail the command with AC_ERR_SYSTEM and reenable the
1935 * port.
1936 *
1937 * Note that this doesn't change any behavior as internal
1938 * command failure results in disabling the device in the
1939 * higher layer for LLDDs without new reset/EH callbacks.
1940 *
1941 * Kill the following code as soon as those drivers are fixed.
1942 */
1943 if (ap->flags & ATA_FLAG_DISABLED) {
1944 err_mask |= AC_ERR_SYSTEM;
1945 ata_port_probe(ap);
1946 }
1947
1948 spin_unlock_irqrestore(ap->lock, flags);
1949
1950 return err_mask;
1951 }
1952
1953 /**
1954 * ata_exec_internal - execute libata internal command
1955 * @dev: Device to which the command is sent
1956 * @tf: Taskfile registers for the command and the result
1957 * @cdb: CDB for packet command
1958 * @dma_dir: Data tranfer direction of the command
1959 * @buf: Data buffer of the command
1960 * @buflen: Length of data buffer
1961 * @timeout: Timeout in msecs (0 for default)
1962 *
1963 * Wrapper around ata_exec_internal_sg() which takes simple
1964 * buffer instead of sg list.
1965 *
1966 * LOCKING:
1967 * None. Should be called with kernel context, might sleep.
1968 *
1969 * RETURNS:
1970 * Zero on success, AC_ERR_* mask on failure
1971 */
1972 unsigned ata_exec_internal(struct ata_device *dev,
1973 struct ata_taskfile *tf, const u8 *cdb,
1974 int dma_dir, void *buf, unsigned int buflen,
1975 unsigned long timeout)
1976 {
1977 struct scatterlist *psg = NULL, sg;
1978 unsigned int n_elem = 0;
1979
1980 if (dma_dir != DMA_NONE) {
1981 WARN_ON(!buf);
1982 sg_init_one(&sg, buf, buflen);
1983 psg = &sg;
1984 n_elem++;
1985 }
1986
1987 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1988 timeout);
1989 }
1990
1991 /**
1992 * ata_do_simple_cmd - execute simple internal command
1993 * @dev: Device to which the command is sent
1994 * @cmd: Opcode to execute
1995 *
1996 * Execute a 'simple' command, that only consists of the opcode
1997 * 'cmd' itself, without filling any other registers
1998 *
1999 * LOCKING:
2000 * Kernel thread context (may sleep).
2001 *
2002 * RETURNS:
2003 * Zero on success, AC_ERR_* mask on failure
2004 */
2005 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
2006 {
2007 struct ata_taskfile tf;
2008
2009 ata_tf_init(dev, &tf);
2010
2011 tf.command = cmd;
2012 tf.flags |= ATA_TFLAG_DEVICE;
2013 tf.protocol = ATA_PROT_NODATA;
2014
2015 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2016 }
2017
2018 /**
2019 * ata_pio_need_iordy - check if iordy needed
2020 * @adev: ATA device
2021 *
2022 * Check if the current speed of the device requires IORDY. Used
2023 * by various controllers for chip configuration.
2024 */
2025
2026 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2027 {
2028 /* Controller doesn't support IORDY. Probably a pointless check
2029 as the caller should know this */
2030 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2031 return 0;
2032 /* PIO3 and higher it is mandatory */
2033 if (adev->pio_mode > XFER_PIO_2)
2034 return 1;
2035 /* We turn it on when possible */
2036 if (ata_id_has_iordy(adev->id))
2037 return 1;
2038 return 0;
2039 }
2040
2041 /**
2042 * ata_pio_mask_no_iordy - Return the non IORDY mask
2043 * @adev: ATA device
2044 *
2045 * Compute the highest mode possible if we are not using iordy. Return
2046 * -1 if no iordy mode is available.
2047 */
2048
2049 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2050 {
2051 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2052 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2053 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2054 /* Is the speed faster than the drive allows non IORDY ? */
2055 if (pio) {
2056 /* This is cycle times not frequency - watch the logic! */
2057 if (pio > 240) /* PIO2 is 240nS per cycle */
2058 return 3 << ATA_SHIFT_PIO;
2059 return 7 << ATA_SHIFT_PIO;
2060 }
2061 }
2062 return 3 << ATA_SHIFT_PIO;
2063 }
2064
2065 /**
2066 * ata_dev_read_id - Read ID data from the specified device
2067 * @dev: target device
2068 * @p_class: pointer to class of the target device (may be changed)
2069 * @flags: ATA_READID_* flags
2070 * @id: buffer to read IDENTIFY data into
2071 *
2072 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2073 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2074 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2075 * for pre-ATA4 drives.
2076 *
2077 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2078 * now we abort if we hit that case.
2079 *
2080 * LOCKING:
2081 * Kernel thread context (may sleep)
2082 *
2083 * RETURNS:
2084 * 0 on success, -errno otherwise.
2085 */
2086 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2087 unsigned int flags, u16 *id)
2088 {
2089 struct ata_port *ap = dev->link->ap;
2090 unsigned int class = *p_class;
2091 struct ata_taskfile tf;
2092 unsigned int err_mask = 0;
2093 const char *reason;
2094 int may_fallback = 1, tried_spinup = 0;
2095 int rc;
2096
2097 if (ata_msg_ctl(ap))
2098 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2099
2100 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
2101 retry:
2102 ata_tf_init(dev, &tf);
2103
2104 switch (class) {
2105 case ATA_DEV_ATA:
2106 tf.command = ATA_CMD_ID_ATA;
2107 break;
2108 case ATA_DEV_ATAPI:
2109 tf.command = ATA_CMD_ID_ATAPI;
2110 break;
2111 default:
2112 rc = -ENODEV;
2113 reason = "unsupported class";
2114 goto err_out;
2115 }
2116
2117 tf.protocol = ATA_PROT_PIO;
2118
2119 /* Some devices choke if TF registers contain garbage. Make
2120 * sure those are properly initialized.
2121 */
2122 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2123
2124 /* Device presence detection is unreliable on some
2125 * controllers. Always poll IDENTIFY if available.
2126 */
2127 tf.flags |= ATA_TFLAG_POLLING;
2128
2129 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2130 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2131 if (err_mask) {
2132 if (err_mask & AC_ERR_NODEV_HINT) {
2133 ata_dev_printk(dev, KERN_DEBUG,
2134 "NODEV after polling detection\n");
2135 return -ENOENT;
2136 }
2137
2138 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2139 /* Device or controller might have reported
2140 * the wrong device class. Give a shot at the
2141 * other IDENTIFY if the current one is
2142 * aborted by the device.
2143 */
2144 if (may_fallback) {
2145 may_fallback = 0;
2146
2147 if (class == ATA_DEV_ATA)
2148 class = ATA_DEV_ATAPI;
2149 else
2150 class = ATA_DEV_ATA;
2151 goto retry;
2152 }
2153
2154 /* Control reaches here iff the device aborted
2155 * both flavors of IDENTIFYs which happens
2156 * sometimes with phantom devices.
2157 */
2158 ata_dev_printk(dev, KERN_DEBUG,
2159 "both IDENTIFYs aborted, assuming NODEV\n");
2160 return -ENOENT;
2161 }
2162
2163 rc = -EIO;
2164 reason = "I/O error";
2165 goto err_out;
2166 }
2167
2168 /* Falling back doesn't make sense if ID data was read
2169 * successfully at least once.
2170 */
2171 may_fallback = 0;
2172
2173 swap_buf_le16(id, ATA_ID_WORDS);
2174
2175 /* sanity check */
2176 rc = -EINVAL;
2177 reason = "device reports invalid type";
2178
2179 if (class == ATA_DEV_ATA) {
2180 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2181 goto err_out;
2182 } else {
2183 if (ata_id_is_ata(id))
2184 goto err_out;
2185 }
2186
2187 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2188 tried_spinup = 1;
2189 /*
2190 * Drive powered-up in standby mode, and requires a specific
2191 * SET_FEATURES spin-up subcommand before it will accept
2192 * anything other than the original IDENTIFY command.
2193 */
2194 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2195 if (err_mask && id[2] != 0x738c) {
2196 rc = -EIO;
2197 reason = "SPINUP failed";
2198 goto err_out;
2199 }
2200 /*
2201 * If the drive initially returned incomplete IDENTIFY info,
2202 * we now must reissue the IDENTIFY command.
2203 */
2204 if (id[2] == 0x37c8)
2205 goto retry;
2206 }
2207
2208 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2209 /*
2210 * The exact sequence expected by certain pre-ATA4 drives is:
2211 * SRST RESET
2212 * IDENTIFY (optional in early ATA)
2213 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2214 * anything else..
2215 * Some drives were very specific about that exact sequence.
2216 *
2217 * Note that ATA4 says lba is mandatory so the second check
2218 * shoud never trigger.
2219 */
2220 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2221 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2222 if (err_mask) {
2223 rc = -EIO;
2224 reason = "INIT_DEV_PARAMS failed";
2225 goto err_out;
2226 }
2227
2228 /* current CHS translation info (id[53-58]) might be
2229 * changed. reread the identify device info.
2230 */
2231 flags &= ~ATA_READID_POSTRESET;
2232 goto retry;
2233 }
2234 }
2235
2236 *p_class = class;
2237
2238 return 0;
2239
2240 err_out:
2241 if (ata_msg_warn(ap))
2242 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2243 "(%s, err_mask=0x%x)\n", reason, err_mask);
2244 return rc;
2245 }
2246
2247 static inline u8 ata_dev_knobble(struct ata_device *dev)
2248 {
2249 struct ata_port *ap = dev->link->ap;
2250 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2251 }
2252
2253 static void ata_dev_config_ncq(struct ata_device *dev,
2254 char *desc, size_t desc_sz)
2255 {
2256 struct ata_port *ap = dev->link->ap;
2257 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2258
2259 if (!ata_id_has_ncq(dev->id)) {
2260 desc[0] = '\0';
2261 return;
2262 }
2263 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2264 snprintf(desc, desc_sz, "NCQ (not used)");
2265 return;
2266 }
2267 if (ap->flags & ATA_FLAG_NCQ) {
2268 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2269 dev->flags |= ATA_DFLAG_NCQ;
2270 }
2271
2272 if (hdepth >= ddepth)
2273 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2274 else
2275 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2276 }
2277
2278 /**
2279 * ata_dev_configure - Configure the specified ATA/ATAPI device
2280 * @dev: Target device to configure
2281 *
2282 * Configure @dev according to @dev->id. Generic and low-level
2283 * driver specific fixups are also applied.
2284 *
2285 * LOCKING:
2286 * Kernel thread context (may sleep)
2287 *
2288 * RETURNS:
2289 * 0 on success, -errno otherwise
2290 */
2291 int ata_dev_configure(struct ata_device *dev)
2292 {
2293 struct ata_port *ap = dev->link->ap;
2294 struct ata_eh_context *ehc = &dev->link->eh_context;
2295 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2296 const u16 *id = dev->id;
2297 unsigned long xfer_mask;
2298 char revbuf[7]; /* XYZ-99\0 */
2299 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2300 char modelbuf[ATA_ID_PROD_LEN+1];
2301 int rc;
2302
2303 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2304 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2305 __func__);
2306 return 0;
2307 }
2308
2309 if (ata_msg_probe(ap))
2310 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2311
2312 /* set horkage */
2313 dev->horkage |= ata_dev_blacklisted(dev);
2314 ata_force_horkage(dev);
2315
2316 /* let ACPI work its magic */
2317 rc = ata_acpi_on_devcfg(dev);
2318 if (rc)
2319 return rc;
2320
2321 /* massage HPA, do it early as it might change IDENTIFY data */
2322 rc = ata_hpa_resize(dev);
2323 if (rc)
2324 return rc;
2325
2326 /* print device capabilities */
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG,
2329 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2330 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2331 __func__,
2332 id[49], id[82], id[83], id[84],
2333 id[85], id[86], id[87], id[88]);
2334
2335 /* initialize to-be-configured parameters */
2336 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2337 dev->max_sectors = 0;
2338 dev->cdb_len = 0;
2339 dev->n_sectors = 0;
2340 dev->cylinders = 0;
2341 dev->heads = 0;
2342 dev->sectors = 0;
2343
2344 /*
2345 * common ATA, ATAPI feature tests
2346 */
2347
2348 /* find max transfer mode; for printk only */
2349 xfer_mask = ata_id_xfermask(id);
2350
2351 if (ata_msg_probe(ap))
2352 ata_dump_id(id);
2353
2354 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2355 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2356 sizeof(fwrevbuf));
2357
2358 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2359 sizeof(modelbuf));
2360
2361 /* ATA-specific feature tests */
2362 if (dev->class == ATA_DEV_ATA) {
2363 if (ata_id_is_cfa(id)) {
2364 if (id[162] & 1) /* CPRM may make this media unusable */
2365 ata_dev_printk(dev, KERN_WARNING,
2366 "supports DRM functions and may "
2367 "not be fully accessable.\n");
2368 snprintf(revbuf, 7, "CFA");
2369 } else {
2370 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2371 /* Warn the user if the device has TPM extensions */
2372 if (ata_id_has_tpm(id))
2373 ata_dev_printk(dev, KERN_WARNING,
2374 "supports DRM functions and may "
2375 "not be fully accessable.\n");
2376 }
2377
2378 dev->n_sectors = ata_id_n_sectors(id);
2379
2380 if (dev->id[59] & 0x100)
2381 dev->multi_count = dev->id[59] & 0xff;
2382
2383 if (ata_id_has_lba(id)) {
2384 const char *lba_desc;
2385 char ncq_desc[20];
2386
2387 lba_desc = "LBA";
2388 dev->flags |= ATA_DFLAG_LBA;
2389 if (ata_id_has_lba48(id)) {
2390 dev->flags |= ATA_DFLAG_LBA48;
2391 lba_desc = "LBA48";
2392
2393 if (dev->n_sectors >= (1UL << 28) &&
2394 ata_id_has_flush_ext(id))
2395 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2396 }
2397
2398 /* config NCQ */
2399 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2400
2401 /* print device info to dmesg */
2402 if (ata_msg_drv(ap) && print_info) {
2403 ata_dev_printk(dev, KERN_INFO,
2404 "%s: %s, %s, max %s\n",
2405 revbuf, modelbuf, fwrevbuf,
2406 ata_mode_string(xfer_mask));
2407 ata_dev_printk(dev, KERN_INFO,
2408 "%Lu sectors, multi %u: %s %s\n",
2409 (unsigned long long)dev->n_sectors,
2410 dev->multi_count, lba_desc, ncq_desc);
2411 }
2412 } else {
2413 /* CHS */
2414
2415 /* Default translation */
2416 dev->cylinders = id[1];
2417 dev->heads = id[3];
2418 dev->sectors = id[6];
2419
2420 if (ata_id_current_chs_valid(id)) {
2421 /* Current CHS translation is valid. */
2422 dev->cylinders = id[54];
2423 dev->heads = id[55];
2424 dev->sectors = id[56];
2425 }
2426
2427 /* print device info to dmesg */
2428 if (ata_msg_drv(ap) && print_info) {
2429 ata_dev_printk(dev, KERN_INFO,
2430 "%s: %s, %s, max %s\n",
2431 revbuf, modelbuf, fwrevbuf,
2432 ata_mode_string(xfer_mask));
2433 ata_dev_printk(dev, KERN_INFO,
2434 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2435 (unsigned long long)dev->n_sectors,
2436 dev->multi_count, dev->cylinders,
2437 dev->heads, dev->sectors);
2438 }
2439 }
2440
2441 dev->cdb_len = 16;
2442 }
2443
2444 /* ATAPI-specific feature tests */
2445 else if (dev->class == ATA_DEV_ATAPI) {
2446 const char *cdb_intr_string = "";
2447 const char *atapi_an_string = "";
2448 const char *dma_dir_string = "";
2449 u32 sntf;
2450
2451 rc = atapi_cdb_len(id);
2452 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2453 if (ata_msg_warn(ap))
2454 ata_dev_printk(dev, KERN_WARNING,
2455 "unsupported CDB len\n");
2456 rc = -EINVAL;
2457 goto err_out_nosup;
2458 }
2459 dev->cdb_len = (unsigned int) rc;
2460
2461 /* Enable ATAPI AN if both the host and device have
2462 * the support. If PMP is attached, SNTF is required
2463 * to enable ATAPI AN to discern between PHY status
2464 * changed notifications and ATAPI ANs.
2465 */
2466 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2467 (!ap->nr_pmp_links ||
2468 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2469 unsigned int err_mask;
2470
2471 /* issue SET feature command to turn this on */
2472 err_mask = ata_dev_set_feature(dev,
2473 SETFEATURES_SATA_ENABLE, SATA_AN);
2474 if (err_mask)
2475 ata_dev_printk(dev, KERN_ERR,
2476 "failed to enable ATAPI AN "
2477 "(err_mask=0x%x)\n", err_mask);
2478 else {
2479 dev->flags |= ATA_DFLAG_AN;
2480 atapi_an_string = ", ATAPI AN";
2481 }
2482 }
2483
2484 if (ata_id_cdb_intr(dev->id)) {
2485 dev->flags |= ATA_DFLAG_CDB_INTR;
2486 cdb_intr_string = ", CDB intr";
2487 }
2488
2489 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2490 dev->flags |= ATA_DFLAG_DMADIR;
2491 dma_dir_string = ", DMADIR";
2492 }
2493
2494 /* print device info to dmesg */
2495 if (ata_msg_drv(ap) && print_info)
2496 ata_dev_printk(dev, KERN_INFO,
2497 "ATAPI: %s, %s, max %s%s%s%s\n",
2498 modelbuf, fwrevbuf,
2499 ata_mode_string(xfer_mask),
2500 cdb_intr_string, atapi_an_string,
2501 dma_dir_string);
2502 }
2503
2504 /* determine max_sectors */
2505 dev->max_sectors = ATA_MAX_SECTORS;
2506 if (dev->flags & ATA_DFLAG_LBA48)
2507 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2508
2509 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2510 if (ata_id_has_hipm(dev->id))
2511 dev->flags |= ATA_DFLAG_HIPM;
2512 if (ata_id_has_dipm(dev->id))
2513 dev->flags |= ATA_DFLAG_DIPM;
2514 }
2515
2516 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2517 200 sectors */
2518 if (ata_dev_knobble(dev)) {
2519 if (ata_msg_drv(ap) && print_info)
2520 ata_dev_printk(dev, KERN_INFO,
2521 "applying bridge limits\n");
2522 dev->udma_mask &= ATA_UDMA5;
2523 dev->max_sectors = ATA_MAX_SECTORS;
2524 }
2525
2526 if ((dev->class == ATA_DEV_ATAPI) &&
2527 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2528 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2529 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2530 }
2531
2532 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2533 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2534 dev->max_sectors);
2535
2536 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2537 dev->horkage |= ATA_HORKAGE_IPM;
2538
2539 /* reset link pm_policy for this port to no pm */
2540 ap->pm_policy = MAX_PERFORMANCE;
2541 }
2542
2543 if (ap->ops->dev_config)
2544 ap->ops->dev_config(dev);
2545
2546 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2547 /* Let the user know. We don't want to disallow opens for
2548 rescue purposes, or in case the vendor is just a blithering
2549 idiot. Do this after the dev_config call as some controllers
2550 with buggy firmware may want to avoid reporting false device
2551 bugs */
2552
2553 if (print_info) {
2554 ata_dev_printk(dev, KERN_WARNING,
2555 "Drive reports diagnostics failure. This may indicate a drive\n");
2556 ata_dev_printk(dev, KERN_WARNING,
2557 "fault or invalid emulation. Contact drive vendor for information.\n");
2558 }
2559 }
2560
2561 if (ata_msg_probe(ap))
2562 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2563 __func__, ata_chk_status(ap));
2564 return 0;
2565
2566 err_out_nosup:
2567 if (ata_msg_probe(ap))
2568 ata_dev_printk(dev, KERN_DEBUG,
2569 "%s: EXIT, err\n", __func__);
2570 return rc;
2571 }
2572
2573 /**
2574 * ata_cable_40wire - return 40 wire cable type
2575 * @ap: port
2576 *
2577 * Helper method for drivers which want to hardwire 40 wire cable
2578 * detection.
2579 */
2580
2581 int ata_cable_40wire(struct ata_port *ap)
2582 {
2583 return ATA_CBL_PATA40;
2584 }
2585
2586 /**
2587 * ata_cable_80wire - return 80 wire cable type
2588 * @ap: port
2589 *
2590 * Helper method for drivers which want to hardwire 80 wire cable
2591 * detection.
2592 */
2593
2594 int ata_cable_80wire(struct ata_port *ap)
2595 {
2596 return ATA_CBL_PATA80;
2597 }
2598
2599 /**
2600 * ata_cable_unknown - return unknown PATA cable.
2601 * @ap: port
2602 *
2603 * Helper method for drivers which have no PATA cable detection.
2604 */
2605
2606 int ata_cable_unknown(struct ata_port *ap)
2607 {
2608 return ATA_CBL_PATA_UNK;
2609 }
2610
2611 /**
2612 * ata_cable_ignore - return ignored PATA cable.
2613 * @ap: port
2614 *
2615 * Helper method for drivers which don't use cable type to limit
2616 * transfer mode.
2617 */
2618 int ata_cable_ignore(struct ata_port *ap)
2619 {
2620 return ATA_CBL_PATA_IGN;
2621 }
2622
2623 /**
2624 * ata_cable_sata - return SATA cable type
2625 * @ap: port
2626 *
2627 * Helper method for drivers which have SATA cables
2628 */
2629
2630 int ata_cable_sata(struct ata_port *ap)
2631 {
2632 return ATA_CBL_SATA;
2633 }
2634
2635 /**
2636 * ata_bus_probe - Reset and probe ATA bus
2637 * @ap: Bus to probe
2638 *
2639 * Master ATA bus probing function. Initiates a hardware-dependent
2640 * bus reset, then attempts to identify any devices found on
2641 * the bus.
2642 *
2643 * LOCKING:
2644 * PCI/etc. bus probe sem.
2645 *
2646 * RETURNS:
2647 * Zero on success, negative errno otherwise.
2648 */
2649
2650 int ata_bus_probe(struct ata_port *ap)
2651 {
2652 unsigned int classes[ATA_MAX_DEVICES];
2653 int tries[ATA_MAX_DEVICES];
2654 int rc;
2655 struct ata_device *dev;
2656
2657 ata_port_probe(ap);
2658
2659 ata_link_for_each_dev(dev, &ap->link)
2660 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2661
2662 retry:
2663 ata_link_for_each_dev(dev, &ap->link) {
2664 /* If we issue an SRST then an ATA drive (not ATAPI)
2665 * may change configuration and be in PIO0 timing. If
2666 * we do a hard reset (or are coming from power on)
2667 * this is true for ATA or ATAPI. Until we've set a
2668 * suitable controller mode we should not touch the
2669 * bus as we may be talking too fast.
2670 */
2671 dev->pio_mode = XFER_PIO_0;
2672
2673 /* If the controller has a pio mode setup function
2674 * then use it to set the chipset to rights. Don't
2675 * touch the DMA setup as that will be dealt with when
2676 * configuring devices.
2677 */
2678 if (ap->ops->set_piomode)
2679 ap->ops->set_piomode(ap, dev);
2680 }
2681
2682 /* reset and determine device classes */
2683 ap->ops->phy_reset(ap);
2684
2685 ata_link_for_each_dev(dev, &ap->link) {
2686 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2687 dev->class != ATA_DEV_UNKNOWN)
2688 classes[dev->devno] = dev->class;
2689 else
2690 classes[dev->devno] = ATA_DEV_NONE;
2691
2692 dev->class = ATA_DEV_UNKNOWN;
2693 }
2694
2695 ata_port_probe(ap);
2696
2697 /* read IDENTIFY page and configure devices. We have to do the identify
2698 specific sequence bass-ackwards so that PDIAG- is released by
2699 the slave device */
2700
2701 ata_link_for_each_dev_reverse(dev, &ap->link) {
2702 if (tries[dev->devno])
2703 dev->class = classes[dev->devno];
2704
2705 if (!ata_dev_enabled(dev))
2706 continue;
2707
2708 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2709 dev->id);
2710 if (rc)
2711 goto fail;
2712 }
2713
2714 /* Now ask for the cable type as PDIAG- should have been released */
2715 if (ap->ops->cable_detect)
2716 ap->cbl = ap->ops->cable_detect(ap);
2717
2718 /* We may have SATA bridge glue hiding here irrespective of the
2719 reported cable types and sensed types */
2720 ata_link_for_each_dev(dev, &ap->link) {
2721 if (!ata_dev_enabled(dev))
2722 continue;
2723 /* SATA drives indicate we have a bridge. We don't know which
2724 end of the link the bridge is which is a problem */
2725 if (ata_id_is_sata(dev->id))
2726 ap->cbl = ATA_CBL_SATA;
2727 }
2728
2729 /* After the identify sequence we can now set up the devices. We do
2730 this in the normal order so that the user doesn't get confused */
2731
2732 ata_link_for_each_dev(dev, &ap->link) {
2733 if (!ata_dev_enabled(dev))
2734 continue;
2735
2736 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2737 rc = ata_dev_configure(dev);
2738 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2739 if (rc)
2740 goto fail;
2741 }
2742
2743 /* configure transfer mode */
2744 rc = ata_set_mode(&ap->link, &dev);
2745 if (rc)
2746 goto fail;
2747
2748 ata_link_for_each_dev(dev, &ap->link)
2749 if (ata_dev_enabled(dev))
2750 return 0;
2751
2752 /* no device present, disable port */
2753 ata_port_disable(ap);
2754 return -ENODEV;
2755
2756 fail:
2757 tries[dev->devno]--;
2758
2759 switch (rc) {
2760 case -EINVAL:
2761 /* eeek, something went very wrong, give up */
2762 tries[dev->devno] = 0;
2763 break;
2764
2765 case -ENODEV:
2766 /* give it just one more chance */
2767 tries[dev->devno] = min(tries[dev->devno], 1);
2768 case -EIO:
2769 if (tries[dev->devno] == 1) {
2770 /* This is the last chance, better to slow
2771 * down than lose it.
2772 */
2773 sata_down_spd_limit(&ap->link);
2774 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2775 }
2776 }
2777
2778 if (!tries[dev->devno])
2779 ata_dev_disable(dev);
2780
2781 goto retry;
2782 }
2783
2784 /**
2785 * ata_port_probe - Mark port as enabled
2786 * @ap: Port for which we indicate enablement
2787 *
2788 * Modify @ap data structure such that the system
2789 * thinks that the entire port is enabled.
2790 *
2791 * LOCKING: host lock, or some other form of
2792 * serialization.
2793 */
2794
2795 void ata_port_probe(struct ata_port *ap)
2796 {
2797 ap->flags &= ~ATA_FLAG_DISABLED;
2798 }
2799
2800 /**
2801 * sata_print_link_status - Print SATA link status
2802 * @link: SATA link to printk link status about
2803 *
2804 * This function prints link speed and status of a SATA link.
2805 *
2806 * LOCKING:
2807 * None.
2808 */
2809 void sata_print_link_status(struct ata_link *link)
2810 {
2811 u32 sstatus, scontrol, tmp;
2812
2813 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2814 return;
2815 sata_scr_read(link, SCR_CONTROL, &scontrol);
2816
2817 if (ata_link_online(link)) {
2818 tmp = (sstatus >> 4) & 0xf;
2819 ata_link_printk(link, KERN_INFO,
2820 "SATA link up %s (SStatus %X SControl %X)\n",
2821 sata_spd_string(tmp), sstatus, scontrol);
2822 } else {
2823 ata_link_printk(link, KERN_INFO,
2824 "SATA link down (SStatus %X SControl %X)\n",
2825 sstatus, scontrol);
2826 }
2827 }
2828
2829 /**
2830 * ata_dev_pair - return other device on cable
2831 * @adev: device
2832 *
2833 * Obtain the other device on the same cable, or if none is
2834 * present NULL is returned
2835 */
2836
2837 struct ata_device *ata_dev_pair(struct ata_device *adev)
2838 {
2839 struct ata_link *link = adev->link;
2840 struct ata_device *pair = &link->device[1 - adev->devno];
2841 if (!ata_dev_enabled(pair))
2842 return NULL;
2843 return pair;
2844 }
2845
2846 /**
2847 * ata_port_disable - Disable port.
2848 * @ap: Port to be disabled.
2849 *
2850 * Modify @ap data structure such that the system
2851 * thinks that the entire port is disabled, and should
2852 * never attempt to probe or communicate with devices
2853 * on this port.
2854 *
2855 * LOCKING: host lock, or some other form of
2856 * serialization.
2857 */
2858
2859 void ata_port_disable(struct ata_port *ap)
2860 {
2861 ap->link.device[0].class = ATA_DEV_NONE;
2862 ap->link.device[1].class = ATA_DEV_NONE;
2863 ap->flags |= ATA_FLAG_DISABLED;
2864 }
2865
2866 /**
2867 * sata_down_spd_limit - adjust SATA spd limit downward
2868 * @link: Link to adjust SATA spd limit for
2869 *
2870 * Adjust SATA spd limit of @link downward. Note that this
2871 * function only adjusts the limit. The change must be applied
2872 * using sata_set_spd().
2873 *
2874 * LOCKING:
2875 * Inherited from caller.
2876 *
2877 * RETURNS:
2878 * 0 on success, negative errno on failure
2879 */
2880 int sata_down_spd_limit(struct ata_link *link)
2881 {
2882 u32 sstatus, spd, mask;
2883 int rc, highbit;
2884
2885 if (!sata_scr_valid(link))
2886 return -EOPNOTSUPP;
2887
2888 /* If SCR can be read, use it to determine the current SPD.
2889 * If not, use cached value in link->sata_spd.
2890 */
2891 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2892 if (rc == 0)
2893 spd = (sstatus >> 4) & 0xf;
2894 else
2895 spd = link->sata_spd;
2896
2897 mask = link->sata_spd_limit;
2898 if (mask <= 1)
2899 return -EINVAL;
2900
2901 /* unconditionally mask off the highest bit */
2902 highbit = fls(mask) - 1;
2903 mask &= ~(1 << highbit);
2904
2905 /* Mask off all speeds higher than or equal to the current
2906 * one. Force 1.5Gbps if current SPD is not available.
2907 */
2908 if (spd > 1)
2909 mask &= (1 << (spd - 1)) - 1;
2910 else
2911 mask &= 1;
2912
2913 /* were we already at the bottom? */
2914 if (!mask)
2915 return -EINVAL;
2916
2917 link->sata_spd_limit = mask;
2918
2919 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2920 sata_spd_string(fls(mask)));
2921
2922 return 0;
2923 }
2924
2925 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2926 {
2927 struct ata_link *host_link = &link->ap->link;
2928 u32 limit, target, spd;
2929
2930 limit = link->sata_spd_limit;
2931
2932 /* Don't configure downstream link faster than upstream link.
2933 * It doesn't speed up anything and some PMPs choke on such
2934 * configuration.
2935 */
2936 if (!ata_is_host_link(link) && host_link->sata_spd)
2937 limit &= (1 << host_link->sata_spd) - 1;
2938
2939 if (limit == UINT_MAX)
2940 target = 0;
2941 else
2942 target = fls(limit);
2943
2944 spd = (*scontrol >> 4) & 0xf;
2945 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2946
2947 return spd != target;
2948 }
2949
2950 /**
2951 * sata_set_spd_needed - is SATA spd configuration needed
2952 * @link: Link in question
2953 *
2954 * Test whether the spd limit in SControl matches
2955 * @link->sata_spd_limit. This function is used to determine
2956 * whether hardreset is necessary to apply SATA spd
2957 * configuration.
2958 *
2959 * LOCKING:
2960 * Inherited from caller.
2961 *
2962 * RETURNS:
2963 * 1 if SATA spd configuration is needed, 0 otherwise.
2964 */
2965 int sata_set_spd_needed(struct ata_link *link)
2966 {
2967 u32 scontrol;
2968
2969 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2970 return 1;
2971
2972 return __sata_set_spd_needed(link, &scontrol);
2973 }
2974
2975 /**
2976 * sata_set_spd - set SATA spd according to spd limit
2977 * @link: Link to set SATA spd for
2978 *
2979 * Set SATA spd of @link according to sata_spd_limit.
2980 *
2981 * LOCKING:
2982 * Inherited from caller.
2983 *
2984 * RETURNS:
2985 * 0 if spd doesn't need to be changed, 1 if spd has been
2986 * changed. Negative errno if SCR registers are inaccessible.
2987 */
2988 int sata_set_spd(struct ata_link *link)
2989 {
2990 u32 scontrol;
2991 int rc;
2992
2993 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2994 return rc;
2995
2996 if (!__sata_set_spd_needed(link, &scontrol))
2997 return 0;
2998
2999 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3000 return rc;
3001
3002 return 1;
3003 }
3004
3005 /*
3006 * This mode timing computation functionality is ported over from
3007 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3008 */
3009 /*
3010 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3011 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3012 * for UDMA6, which is currently supported only by Maxtor drives.
3013 *
3014 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3015 */
3016
3017 static const struct ata_timing ata_timing[] = {
3018 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
3019 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
3020 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
3021 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
3022 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
3023 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
3024 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
3025 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
3026
3027 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
3028 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
3029 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
3030
3031 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
3032 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
3033 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
3034 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
3035 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
3036
3037 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3038 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
3039 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
3040 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
3041 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
3042 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
3043 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
3044 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
3045
3046 { 0xFF }
3047 };
3048
3049 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3050 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3051
3052 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3053 {
3054 q->setup = EZ(t->setup * 1000, T);
3055 q->act8b = EZ(t->act8b * 1000, T);
3056 q->rec8b = EZ(t->rec8b * 1000, T);
3057 q->cyc8b = EZ(t->cyc8b * 1000, T);
3058 q->active = EZ(t->active * 1000, T);
3059 q->recover = EZ(t->recover * 1000, T);
3060 q->cycle = EZ(t->cycle * 1000, T);
3061 q->udma = EZ(t->udma * 1000, UT);
3062 }
3063
3064 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3065 struct ata_timing *m, unsigned int what)
3066 {
3067 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3068 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3069 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3070 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3071 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3072 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3073 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3074 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3075 }
3076
3077 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3078 {
3079 const struct ata_timing *t = ata_timing;
3080
3081 while (xfer_mode > t->mode)
3082 t++;
3083
3084 if (xfer_mode == t->mode)
3085 return t;
3086 return NULL;
3087 }
3088
3089 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3090 struct ata_timing *t, int T, int UT)
3091 {
3092 const struct ata_timing *s;
3093 struct ata_timing p;
3094
3095 /*
3096 * Find the mode.
3097 */
3098
3099 if (!(s = ata_timing_find_mode(speed)))
3100 return -EINVAL;
3101
3102 memcpy(t, s, sizeof(*s));
3103
3104 /*
3105 * If the drive is an EIDE drive, it can tell us it needs extended
3106 * PIO/MW_DMA cycle timing.
3107 */
3108
3109 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3110 memset(&p, 0, sizeof(p));
3111 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3112 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3113 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3114 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3115 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3116 }
3117 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3118 }
3119
3120 /*
3121 * Convert the timing to bus clock counts.
3122 */
3123
3124 ata_timing_quantize(t, t, T, UT);
3125
3126 /*
3127 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3128 * S.M.A.R.T * and some other commands. We have to ensure that the
3129 * DMA cycle timing is slower/equal than the fastest PIO timing.
3130 */
3131
3132 if (speed > XFER_PIO_6) {
3133 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3134 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3135 }
3136
3137 /*
3138 * Lengthen active & recovery time so that cycle time is correct.
3139 */
3140
3141 if (t->act8b + t->rec8b < t->cyc8b) {
3142 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3143 t->rec8b = t->cyc8b - t->act8b;
3144 }
3145
3146 if (t->active + t->recover < t->cycle) {
3147 t->active += (t->cycle - (t->active + t->recover)) / 2;
3148 t->recover = t->cycle - t->active;
3149 }
3150
3151 /* In a few cases quantisation may produce enough errors to
3152 leave t->cycle too low for the sum of active and recovery
3153 if so we must correct this */
3154 if (t->active + t->recover > t->cycle)
3155 t->cycle = t->active + t->recover;
3156
3157 return 0;
3158 }
3159
3160 /**
3161 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3162 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3163 * @cycle: cycle duration in ns
3164 *
3165 * Return matching xfer mode for @cycle. The returned mode is of
3166 * the transfer type specified by @xfer_shift. If @cycle is too
3167 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3168 * than the fastest known mode, the fasted mode is returned.
3169 *
3170 * LOCKING:
3171 * None.
3172 *
3173 * RETURNS:
3174 * Matching xfer_mode, 0xff if no match found.
3175 */
3176 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3177 {
3178 u8 base_mode = 0xff, last_mode = 0xff;
3179 const struct ata_xfer_ent *ent;
3180 const struct ata_timing *t;
3181
3182 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3183 if (ent->shift == xfer_shift)
3184 base_mode = ent->base;
3185
3186 for (t = ata_timing_find_mode(base_mode);
3187 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3188 unsigned short this_cycle;
3189
3190 switch (xfer_shift) {
3191 case ATA_SHIFT_PIO:
3192 case ATA_SHIFT_MWDMA:
3193 this_cycle = t->cycle;
3194 break;
3195 case ATA_SHIFT_UDMA:
3196 this_cycle = t->udma;
3197 break;
3198 default:
3199 return 0xff;
3200 }
3201
3202 if (cycle > this_cycle)
3203 break;
3204
3205 last_mode = t->mode;
3206 }
3207
3208 return last_mode;
3209 }
3210
3211 /**
3212 * ata_down_xfermask_limit - adjust dev xfer masks downward
3213 * @dev: Device to adjust xfer masks
3214 * @sel: ATA_DNXFER_* selector
3215 *
3216 * Adjust xfer masks of @dev downward. Note that this function
3217 * does not apply the change. Invoking ata_set_mode() afterwards
3218 * will apply the limit.
3219 *
3220 * LOCKING:
3221 * Inherited from caller.
3222 *
3223 * RETURNS:
3224 * 0 on success, negative errno on failure
3225 */
3226 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3227 {
3228 char buf[32];
3229 unsigned long orig_mask, xfer_mask;
3230 unsigned long pio_mask, mwdma_mask, udma_mask;
3231 int quiet, highbit;
3232
3233 quiet = !!(sel & ATA_DNXFER_QUIET);
3234 sel &= ~ATA_DNXFER_QUIET;
3235
3236 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3237 dev->mwdma_mask,
3238 dev->udma_mask);
3239 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3240
3241 switch (sel) {
3242 case ATA_DNXFER_PIO:
3243 highbit = fls(pio_mask) - 1;
3244 pio_mask &= ~(1 << highbit);
3245 break;
3246
3247 case ATA_DNXFER_DMA:
3248 if (udma_mask) {
3249 highbit = fls(udma_mask) - 1;
3250 udma_mask &= ~(1 << highbit);
3251 if (!udma_mask)
3252 return -ENOENT;
3253 } else if (mwdma_mask) {
3254 highbit = fls(mwdma_mask) - 1;
3255 mwdma_mask &= ~(1 << highbit);
3256 if (!mwdma_mask)
3257 return -ENOENT;
3258 }
3259 break;
3260
3261 case ATA_DNXFER_40C:
3262 udma_mask &= ATA_UDMA_MASK_40C;
3263 break;
3264
3265 case ATA_DNXFER_FORCE_PIO0:
3266 pio_mask &= 1;
3267 case ATA_DNXFER_FORCE_PIO:
3268 mwdma_mask = 0;
3269 udma_mask = 0;
3270 break;
3271
3272 default:
3273 BUG();
3274 }
3275
3276 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3277
3278 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3279 return -ENOENT;
3280
3281 if (!quiet) {
3282 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3283 snprintf(buf, sizeof(buf), "%s:%s",
3284 ata_mode_string(xfer_mask),
3285 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3286 else
3287 snprintf(buf, sizeof(buf), "%s",
3288 ata_mode_string(xfer_mask));
3289
3290 ata_dev_printk(dev, KERN_WARNING,
3291 "limiting speed to %s\n", buf);
3292 }
3293
3294 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3295 &dev->udma_mask);
3296
3297 return 0;
3298 }
3299
3300 static int ata_dev_set_mode(struct ata_device *dev)
3301 {
3302 struct ata_eh_context *ehc = &dev->link->eh_context;
3303 const char *dev_err_whine = "";
3304 int ign_dev_err = 0;
3305 unsigned int err_mask;
3306 int rc;
3307
3308 dev->flags &= ~ATA_DFLAG_PIO;
3309 if (dev->xfer_shift == ATA_SHIFT_PIO)
3310 dev->flags |= ATA_DFLAG_PIO;
3311
3312 err_mask = ata_dev_set_xfermode(dev);
3313
3314 if (err_mask & ~AC_ERR_DEV)
3315 goto fail;
3316
3317 /* revalidate */
3318 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3319 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3320 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3321 if (rc)
3322 return rc;
3323
3324 /* Old CFA may refuse this command, which is just fine */
3325 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3326 ign_dev_err = 1;
3327
3328 /* Some very old devices and some bad newer ones fail any kind of
3329 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3330 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3331 dev->pio_mode <= XFER_PIO_2)
3332 ign_dev_err = 1;
3333
3334 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3335 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3336 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3337 dev->dma_mode == XFER_MW_DMA_0 &&
3338 (dev->id[63] >> 8) & 1)
3339 ign_dev_err = 1;
3340
3341 /* if the device is actually configured correctly, ignore dev err */
3342 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3343 ign_dev_err = 1;
3344
3345 if (err_mask & AC_ERR_DEV) {
3346 if (!ign_dev_err)
3347 goto fail;
3348 else
3349 dev_err_whine = " (device error ignored)";
3350 }
3351
3352 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3353 dev->xfer_shift, (int)dev->xfer_mode);
3354
3355 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3356 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3357 dev_err_whine);
3358
3359 return 0;
3360
3361 fail:
3362 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3363 "(err_mask=0x%x)\n", err_mask);
3364 return -EIO;
3365 }
3366
3367 /**
3368 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3369 * @link: link on which timings will be programmed
3370 * @r_failed_dev: out parameter for failed device
3371 *
3372 * Standard implementation of the function used to tune and set
3373 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3374 * ata_dev_set_mode() fails, pointer to the failing device is
3375 * returned in @r_failed_dev.
3376 *
3377 * LOCKING:
3378 * PCI/etc. bus probe sem.
3379 *
3380 * RETURNS:
3381 * 0 on success, negative errno otherwise
3382 */
3383
3384 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3385 {
3386 struct ata_port *ap = link->ap;
3387 struct ata_device *dev;
3388 int rc = 0, used_dma = 0, found = 0;
3389
3390 /* step 1: calculate xfer_mask */
3391 ata_link_for_each_dev(dev, link) {
3392 unsigned long pio_mask, dma_mask;
3393 unsigned int mode_mask;
3394
3395 if (!ata_dev_enabled(dev))
3396 continue;
3397
3398 mode_mask = ATA_DMA_MASK_ATA;
3399 if (dev->class == ATA_DEV_ATAPI)
3400 mode_mask = ATA_DMA_MASK_ATAPI;
3401 else if (ata_id_is_cfa(dev->id))
3402 mode_mask = ATA_DMA_MASK_CFA;
3403
3404 ata_dev_xfermask(dev);
3405 ata_force_xfermask(dev);
3406
3407 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3408 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3409
3410 if (libata_dma_mask & mode_mask)
3411 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3412 else
3413 dma_mask = 0;
3414
3415 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3416 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3417
3418 found = 1;
3419 if (dev->dma_mode != 0xff)
3420 used_dma = 1;
3421 }
3422 if (!found)
3423 goto out;
3424
3425 /* step 2: always set host PIO timings */
3426 ata_link_for_each_dev(dev, link) {
3427 if (!ata_dev_enabled(dev))
3428 continue;
3429
3430 if (dev->pio_mode == 0xff) {
3431 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3432 rc = -EINVAL;
3433 goto out;
3434 }
3435
3436 dev->xfer_mode = dev->pio_mode;
3437 dev->xfer_shift = ATA_SHIFT_PIO;
3438 if (ap->ops->set_piomode)
3439 ap->ops->set_piomode(ap, dev);
3440 }
3441
3442 /* step 3: set host DMA timings */
3443 ata_link_for_each_dev(dev, link) {
3444 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3445 continue;
3446
3447 dev->xfer_mode = dev->dma_mode;
3448 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3449 if (ap->ops->set_dmamode)
3450 ap->ops->set_dmamode(ap, dev);
3451 }
3452
3453 /* step 4: update devices' xfer mode */
3454 ata_link_for_each_dev(dev, link) {
3455 /* don't update suspended devices' xfer mode */
3456 if (!ata_dev_enabled(dev))
3457 continue;
3458
3459 rc = ata_dev_set_mode(dev);
3460 if (rc)
3461 goto out;
3462 }
3463
3464 /* Record simplex status. If we selected DMA then the other
3465 * host channels are not permitted to do so.
3466 */
3467 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3468 ap->host->simplex_claimed = ap;
3469
3470 out:
3471 if (rc)
3472 *r_failed_dev = dev;
3473 return rc;
3474 }
3475
3476 /**
3477 * ata_tf_to_host - issue ATA taskfile to host controller
3478 * @ap: port to which command is being issued
3479 * @tf: ATA taskfile register set
3480 *
3481 * Issues ATA taskfile register set to ATA host controller,
3482 * with proper synchronization with interrupt handler and
3483 * other threads.
3484 *
3485 * LOCKING:
3486 * spin_lock_irqsave(host lock)
3487 */
3488
3489 static inline void ata_tf_to_host(struct ata_port *ap,
3490 const struct ata_taskfile *tf)
3491 {
3492 ap->ops->tf_load(ap, tf);
3493 ap->ops->exec_command(ap, tf);
3494 }
3495
3496 /**
3497 * ata_busy_sleep - sleep until BSY clears, or timeout
3498 * @ap: port containing status register to be polled
3499 * @tmout_pat: impatience timeout
3500 * @tmout: overall timeout
3501 *
3502 * Sleep until ATA Status register bit BSY clears,
3503 * or a timeout occurs.
3504 *
3505 * LOCKING:
3506 * Kernel thread context (may sleep).
3507 *
3508 * RETURNS:
3509 * 0 on success, -errno otherwise.
3510 */
3511 int ata_busy_sleep(struct ata_port *ap,
3512 unsigned long tmout_pat, unsigned long tmout)
3513 {
3514 unsigned long timer_start, timeout;
3515 u8 status;
3516
3517 status = ata_busy_wait(ap, ATA_BUSY, 300);
3518 timer_start = jiffies;
3519 timeout = timer_start + tmout_pat;
3520 while (status != 0xff && (status & ATA_BUSY) &&
3521 time_before(jiffies, timeout)) {
3522 msleep(50);
3523 status = ata_busy_wait(ap, ATA_BUSY, 3);
3524 }
3525
3526 if (status != 0xff && (status & ATA_BUSY))
3527 ata_port_printk(ap, KERN_WARNING,
3528 "port is slow to respond, please be patient "
3529 "(Status 0x%x)\n", status);
3530
3531 timeout = timer_start + tmout;
3532 while (status != 0xff && (status & ATA_BUSY) &&
3533 time_before(jiffies, timeout)) {
3534 msleep(50);
3535 status = ata_chk_status(ap);
3536 }
3537
3538 if (status == 0xff)
3539 return -ENODEV;
3540
3541 if (status & ATA_BUSY) {
3542 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3543 "(%lu secs, Status 0x%x)\n",
3544 tmout / HZ, status);
3545 return -EBUSY;
3546 }
3547
3548 return 0;
3549 }
3550
3551 /**
3552 * ata_wait_after_reset - wait before checking status after reset
3553 * @ap: port containing status register to be polled
3554 * @deadline: deadline jiffies for the operation
3555 *
3556 * After reset, we need to pause a while before reading status.
3557 * Also, certain combination of controller and device report 0xff
3558 * for some duration (e.g. until SATA PHY is up and running)
3559 * which is interpreted as empty port in ATA world. This
3560 * function also waits for such devices to get out of 0xff
3561 * status.
3562 *
3563 * LOCKING:
3564 * Kernel thread context (may sleep).
3565 */
3566 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3567 {
3568 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3569
3570 if (time_before(until, deadline))
3571 deadline = until;
3572
3573 /* Spec mandates ">= 2ms" before checking status. We wait
3574 * 150ms, because that was the magic delay used for ATAPI
3575 * devices in Hale Landis's ATADRVR, for the period of time
3576 * between when the ATA command register is written, and then
3577 * status is checked. Because waiting for "a while" before
3578 * checking status is fine, post SRST, we perform this magic
3579 * delay here as well.
3580 *
3581 * Old drivers/ide uses the 2mS rule and then waits for ready.
3582 */
3583 msleep(150);
3584
3585 /* Wait for 0xff to clear. Some SATA devices take a long time
3586 * to clear 0xff after reset. For example, HHD424020F7SV00
3587 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3588 * than that.
3589 *
3590 * Note that some PATA controllers (pata_ali) explode if
3591 * status register is read more than once when there's no
3592 * device attached.
3593 */
3594 if (ap->flags & ATA_FLAG_SATA) {
3595 while (1) {
3596 u8 status = ata_chk_status(ap);
3597
3598 if (status != 0xff || time_after(jiffies, deadline))
3599 return;
3600
3601 msleep(50);
3602 }
3603 }
3604 }
3605
3606 /**
3607 * ata_wait_ready - sleep until BSY clears, or timeout
3608 * @ap: port containing status register to be polled
3609 * @deadline: deadline jiffies for the operation
3610 *
3611 * Sleep until ATA Status register bit BSY clears, or timeout
3612 * occurs.
3613 *
3614 * LOCKING:
3615 * Kernel thread context (may sleep).
3616 *
3617 * RETURNS:
3618 * 0 on success, -errno otherwise.
3619 */
3620 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3621 {
3622 unsigned long start = jiffies;
3623 int warned = 0;
3624
3625 while (1) {
3626 u8 status = ata_chk_status(ap);
3627 unsigned long now = jiffies;
3628
3629 if (!(status & ATA_BUSY))
3630 return 0;
3631 if (!ata_link_online(&ap->link) && status == 0xff)
3632 return -ENODEV;
3633 if (time_after(now, deadline))
3634 return -EBUSY;
3635
3636 if (!warned && time_after(now, start + 5 * HZ) &&
3637 (deadline - now > 3 * HZ)) {
3638 ata_port_printk(ap, KERN_WARNING,
3639 "port is slow to respond, please be patient "
3640 "(Status 0x%x)\n", status);
3641 warned = 1;
3642 }
3643
3644 msleep(50);
3645 }
3646 }
3647
3648 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3649 unsigned long deadline)
3650 {
3651 struct ata_ioports *ioaddr = &ap->ioaddr;
3652 unsigned int dev0 = devmask & (1 << 0);
3653 unsigned int dev1 = devmask & (1 << 1);
3654 int rc, ret = 0;
3655
3656 /* if device 0 was found in ata_devchk, wait for its
3657 * BSY bit to clear
3658 */
3659 if (dev0) {
3660 rc = ata_wait_ready(ap, deadline);
3661 if (rc) {
3662 if (rc != -ENODEV)
3663 return rc;
3664 ret = rc;
3665 }
3666 }
3667
3668 /* if device 1 was found in ata_devchk, wait for register
3669 * access briefly, then wait for BSY to clear.
3670 */
3671 if (dev1) {
3672 int i;
3673
3674 ap->ops->dev_select(ap, 1);
3675
3676 /* Wait for register access. Some ATAPI devices fail
3677 * to set nsect/lbal after reset, so don't waste too
3678 * much time on it. We're gonna wait for !BSY anyway.
3679 */
3680 for (i = 0; i < 2; i++) {
3681 u8 nsect, lbal;
3682
3683 nsect = ioread8(ioaddr->nsect_addr);
3684 lbal = ioread8(ioaddr->lbal_addr);
3685 if ((nsect == 1) && (lbal == 1))
3686 break;
3687 msleep(50); /* give drive a breather */
3688 }
3689
3690 rc = ata_wait_ready(ap, deadline);
3691 if (rc) {
3692 if (rc != -ENODEV)
3693 return rc;
3694 ret = rc;
3695 }
3696 }
3697
3698 /* is all this really necessary? */
3699 ap->ops->dev_select(ap, 0);
3700 if (dev1)
3701 ap->ops->dev_select(ap, 1);
3702 if (dev0)
3703 ap->ops->dev_select(ap, 0);
3704
3705 return ret;
3706 }
3707
3708 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3709 unsigned long deadline)
3710 {
3711 struct ata_ioports *ioaddr = &ap->ioaddr;
3712
3713 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3714
3715 /* software reset. causes dev0 to be selected */
3716 iowrite8(ap->ctl, ioaddr->ctl_addr);
3717 udelay(20); /* FIXME: flush */
3718 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3719 udelay(20); /* FIXME: flush */
3720 iowrite8(ap->ctl, ioaddr->ctl_addr);
3721
3722 /* wait a while before checking status */
3723 ata_wait_after_reset(ap, deadline);
3724
3725 /* Before we perform post reset processing we want to see if
3726 * the bus shows 0xFF because the odd clown forgets the D7
3727 * pulldown resistor.
3728 */
3729 if (ata_chk_status(ap) == 0xFF)
3730 return -ENODEV;
3731
3732 return ata_bus_post_reset(ap, devmask, deadline);
3733 }
3734
3735 /**
3736 * ata_bus_reset - reset host port and associated ATA channel
3737 * @ap: port to reset
3738 *
3739 * This is typically the first time we actually start issuing
3740 * commands to the ATA channel. We wait for BSY to clear, then
3741 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3742 * result. Determine what devices, if any, are on the channel
3743 * by looking at the device 0/1 error register. Look at the signature
3744 * stored in each device's taskfile registers, to determine if
3745 * the device is ATA or ATAPI.
3746 *
3747 * LOCKING:
3748 * PCI/etc. bus probe sem.
3749 * Obtains host lock.
3750 *
3751 * SIDE EFFECTS:
3752 * Sets ATA_FLAG_DISABLED if bus reset fails.
3753 */
3754
3755 void ata_bus_reset(struct ata_port *ap)
3756 {
3757 struct ata_device *device = ap->link.device;
3758 struct ata_ioports *ioaddr = &ap->ioaddr;
3759 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3760 u8 err;
3761 unsigned int dev0, dev1 = 0, devmask = 0;
3762 int rc;
3763
3764 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3765
3766 /* determine if device 0/1 are present */
3767 if (ap->flags & ATA_FLAG_SATA_RESET)
3768 dev0 = 1;
3769 else {
3770 dev0 = ata_devchk(ap, 0);
3771 if (slave_possible)
3772 dev1 = ata_devchk(ap, 1);
3773 }
3774
3775 if (dev0)
3776 devmask |= (1 << 0);
3777 if (dev1)
3778 devmask |= (1 << 1);
3779
3780 /* select device 0 again */
3781 ap->ops->dev_select(ap, 0);
3782
3783 /* issue bus reset */
3784 if (ap->flags & ATA_FLAG_SRST) {
3785 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3786 if (rc && rc != -ENODEV)
3787 goto err_out;
3788 }
3789
3790 /*
3791 * determine by signature whether we have ATA or ATAPI devices
3792 */
3793 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3794 if ((slave_possible) && (err != 0x81))
3795 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3796
3797 /* is double-select really necessary? */
3798 if (device[1].class != ATA_DEV_NONE)
3799 ap->ops->dev_select(ap, 1);
3800 if (device[0].class != ATA_DEV_NONE)
3801 ap->ops->dev_select(ap, 0);
3802
3803 /* if no devices were detected, disable this port */
3804 if ((device[0].class == ATA_DEV_NONE) &&
3805 (device[1].class == ATA_DEV_NONE))
3806 goto err_out;
3807
3808 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3809 /* set up device control for ATA_FLAG_SATA_RESET */
3810 iowrite8(ap->ctl, ioaddr->ctl_addr);
3811 }
3812
3813 DPRINTK("EXIT\n");
3814 return;
3815
3816 err_out:
3817 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3818 ata_port_disable(ap);
3819
3820 DPRINTK("EXIT\n");
3821 }
3822
3823 /**
3824 * sata_link_debounce - debounce SATA phy status
3825 * @link: ATA link to debounce SATA phy status for
3826 * @params: timing parameters { interval, duratinon, timeout } in msec
3827 * @deadline: deadline jiffies for the operation
3828 *
3829 * Make sure SStatus of @link reaches stable state, determined by
3830 * holding the same value where DET is not 1 for @duration polled
3831 * every @interval, before @timeout. Timeout constraints the
3832 * beginning of the stable state. Because DET gets stuck at 1 on
3833 * some controllers after hot unplugging, this functions waits
3834 * until timeout then returns 0 if DET is stable at 1.
3835 *
3836 * @timeout is further limited by @deadline. The sooner of the
3837 * two is used.
3838 *
3839 * LOCKING:
3840 * Kernel thread context (may sleep)
3841 *
3842 * RETURNS:
3843 * 0 on success, -errno on failure.
3844 */
3845 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3846 unsigned long deadline)
3847 {
3848 unsigned long interval_msec = params[0];
3849 unsigned long duration = msecs_to_jiffies(params[1]);
3850 unsigned long last_jiffies, t;
3851 u32 last, cur;
3852 int rc;
3853
3854 t = jiffies + msecs_to_jiffies(params[2]);
3855 if (time_before(t, deadline))
3856 deadline = t;
3857
3858 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3859 return rc;
3860 cur &= 0xf;
3861
3862 last = cur;
3863 last_jiffies = jiffies;
3864
3865 while (1) {
3866 msleep(interval_msec);
3867 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3868 return rc;
3869 cur &= 0xf;
3870
3871 /* DET stable? */
3872 if (cur == last) {
3873 if (cur == 1 && time_before(jiffies, deadline))
3874 continue;
3875 if (time_after(jiffies, last_jiffies + duration))
3876 return 0;
3877 continue;
3878 }
3879
3880 /* unstable, start over */
3881 last = cur;
3882 last_jiffies = jiffies;
3883
3884 /* Check deadline. If debouncing failed, return
3885 * -EPIPE to tell upper layer to lower link speed.
3886 */
3887 if (time_after(jiffies, deadline))
3888 return -EPIPE;
3889 }
3890 }
3891
3892 /**
3893 * sata_link_resume - resume SATA link
3894 * @link: ATA link to resume SATA
3895 * @params: timing parameters { interval, duratinon, timeout } in msec
3896 * @deadline: deadline jiffies for the operation
3897 *
3898 * Resume SATA phy @link and debounce it.
3899 *
3900 * LOCKING:
3901 * Kernel thread context (may sleep)
3902 *
3903 * RETURNS:
3904 * 0 on success, -errno on failure.
3905 */
3906 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3907 unsigned long deadline)
3908 {
3909 u32 scontrol;
3910 int rc;
3911
3912 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3913 return rc;
3914
3915 scontrol = (scontrol & 0x0f0) | 0x300;
3916
3917 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3918 return rc;
3919
3920 /* Some PHYs react badly if SStatus is pounded immediately
3921 * after resuming. Delay 200ms before debouncing.
3922 */
3923 msleep(200);
3924
3925 return sata_link_debounce(link, params, deadline);
3926 }
3927
3928 /**
3929 * ata_std_prereset - prepare for reset
3930 * @link: ATA link to be reset
3931 * @deadline: deadline jiffies for the operation
3932 *
3933 * @link is about to be reset. Initialize it. Failure from
3934 * prereset makes libata abort whole reset sequence and give up
3935 * that port, so prereset should be best-effort. It does its
3936 * best to prepare for reset sequence but if things go wrong, it
3937 * should just whine, not fail.
3938 *
3939 * LOCKING:
3940 * Kernel thread context (may sleep)
3941 *
3942 * RETURNS:
3943 * 0 on success, -errno otherwise.
3944 */
3945 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3946 {
3947 struct ata_port *ap = link->ap;
3948 struct ata_eh_context *ehc = &link->eh_context;
3949 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3950 int rc;
3951
3952 /* if we're about to do hardreset, nothing more to do */
3953 if (ehc->i.action & ATA_EH_HARDRESET)
3954 return 0;
3955
3956 /* if SATA, resume link */
3957 if (ap->flags & ATA_FLAG_SATA) {
3958 rc = sata_link_resume(link, timing, deadline);
3959 /* whine about phy resume failure but proceed */
3960 if (rc && rc != -EOPNOTSUPP)
3961 ata_link_printk(link, KERN_WARNING, "failed to resume "
3962 "link for reset (errno=%d)\n", rc);
3963 }
3964
3965 /* wait for !BSY if we don't know that no device is attached */
3966 if (!ata_link_offline(link)) {
3967 rc = ata_wait_ready(ap, deadline);
3968 if (rc && rc != -ENODEV) {
3969 ata_link_printk(link, KERN_WARNING, "device not ready "
3970 "(errno=%d), forcing hardreset\n", rc);
3971 ehc->i.action |= ATA_EH_HARDRESET;
3972 }
3973 }
3974
3975 return 0;
3976 }
3977
3978 /**
3979 * ata_std_softreset - reset host port via ATA SRST
3980 * @link: ATA link to reset
3981 * @classes: resulting classes of attached devices
3982 * @deadline: deadline jiffies for the operation
3983 *
3984 * Reset host port using ATA SRST.
3985 *
3986 * LOCKING:
3987 * Kernel thread context (may sleep)
3988 *
3989 * RETURNS:
3990 * 0 on success, -errno otherwise.
3991 */
3992 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3993 unsigned long deadline)
3994 {
3995 struct ata_port *ap = link->ap;
3996 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3997 unsigned int devmask = 0;
3998 int rc;
3999 u8 err;
4000
4001 DPRINTK("ENTER\n");
4002
4003 if (ata_link_offline(link)) {
4004 classes[0] = ATA_DEV_NONE;
4005 goto out;
4006 }
4007
4008 /* determine if device 0/1 are present */
4009 if (ata_devchk(ap, 0))
4010 devmask |= (1 << 0);
4011 if (slave_possible && ata_devchk(ap, 1))
4012 devmask |= (1 << 1);
4013
4014 /* select device 0 again */
4015 ap->ops->dev_select(ap, 0);
4016
4017 /* issue bus reset */
4018 DPRINTK("about to softreset, devmask=%x\n", devmask);
4019 rc = ata_bus_softreset(ap, devmask, deadline);
4020 /* if link is occupied, -ENODEV too is an error */
4021 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
4022 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
4023 return rc;
4024 }
4025
4026 /* determine by signature whether we have ATA or ATAPI devices */
4027 classes[0] = ata_dev_try_classify(&link->device[0],
4028 devmask & (1 << 0), &err);
4029 if (slave_possible && err != 0x81)
4030 classes[1] = ata_dev_try_classify(&link->device[1],
4031 devmask & (1 << 1), &err);
4032
4033 out:
4034 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
4035 return 0;
4036 }
4037
4038 /**
4039 * sata_link_hardreset - reset link via SATA phy reset
4040 * @link: link to reset
4041 * @timing: timing parameters { interval, duratinon, timeout } in msec
4042 * @deadline: deadline jiffies for the operation
4043 *
4044 * SATA phy-reset @link using DET bits of SControl register.
4045 *
4046 * LOCKING:
4047 * Kernel thread context (may sleep)
4048 *
4049 * RETURNS:
4050 * 0 on success, -errno otherwise.
4051 */
4052 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4053 unsigned long deadline)
4054 {
4055 u32 scontrol;
4056 int rc;
4057
4058 DPRINTK("ENTER\n");
4059
4060 if (sata_set_spd_needed(link)) {
4061 /* SATA spec says nothing about how to reconfigure
4062 * spd. To be on the safe side, turn off phy during
4063 * reconfiguration. This works for at least ICH7 AHCI
4064 * and Sil3124.
4065 */
4066 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4067 goto out;
4068
4069 scontrol = (scontrol & 0x0f0) | 0x304;
4070
4071 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4072 goto out;
4073
4074 sata_set_spd(link);
4075 }
4076
4077 /* issue phy wake/reset */
4078 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4079 goto out;
4080
4081 scontrol = (scontrol & 0x0f0) | 0x301;
4082
4083 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4084 goto out;
4085
4086 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4087 * 10.4.2 says at least 1 ms.
4088 */
4089 msleep(1);
4090
4091 /* bring link back */
4092 rc = sata_link_resume(link, timing, deadline);
4093 out:
4094 DPRINTK("EXIT, rc=%d\n", rc);
4095 return rc;
4096 }
4097
4098 /**
4099 * sata_std_hardreset - reset host port via SATA phy reset
4100 * @link: link to reset
4101 * @class: resulting class of attached device
4102 * @deadline: deadline jiffies for the operation
4103 *
4104 * SATA phy-reset host port using DET bits of SControl register,
4105 * wait for !BSY and classify the attached device.
4106 *
4107 * LOCKING:
4108 * Kernel thread context (may sleep)
4109 *
4110 * RETURNS:
4111 * 0 on success, -errno otherwise.
4112 */
4113 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4114 unsigned long deadline)
4115 {
4116 struct ata_port *ap = link->ap;
4117 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4118 int rc;
4119
4120 DPRINTK("ENTER\n");
4121
4122 /* do hardreset */
4123 rc = sata_link_hardreset(link, timing, deadline);
4124 if (rc) {
4125 ata_link_printk(link, KERN_ERR,
4126 "COMRESET failed (errno=%d)\n", rc);
4127 return rc;
4128 }
4129
4130 /* TODO: phy layer with polling, timeouts, etc. */
4131 if (ata_link_offline(link)) {
4132 *class = ATA_DEV_NONE;
4133 DPRINTK("EXIT, link offline\n");
4134 return 0;
4135 }
4136
4137 /* wait a while before checking status */
4138 ata_wait_after_reset(ap, deadline);
4139
4140 /* If PMP is supported, we have to do follow-up SRST. Note
4141 * that some PMPs don't send D2H Reg FIS after hardreset at
4142 * all if the first port is empty. Wait for it just for a
4143 * second and request follow-up SRST.
4144 */
4145 if (ap->flags & ATA_FLAG_PMP) {
4146 ata_wait_ready(ap, jiffies + HZ);
4147 return -EAGAIN;
4148 }
4149
4150 rc = ata_wait_ready(ap, deadline);
4151 /* link occupied, -ENODEV too is an error */
4152 if (rc) {
4153 ata_link_printk(link, KERN_ERR,
4154 "COMRESET failed (errno=%d)\n", rc);
4155 return rc;
4156 }
4157
4158 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4159
4160 *class = ata_dev_try_classify(link->device, 1, NULL);
4161
4162 DPRINTK("EXIT, class=%u\n", *class);
4163 return 0;
4164 }
4165
4166 /**
4167 * ata_std_postreset - standard postreset callback
4168 * @link: the target ata_link
4169 * @classes: classes of attached devices
4170 *
4171 * This function is invoked after a successful reset. Note that
4172 * the device might have been reset more than once using
4173 * different reset methods before postreset is invoked.
4174 *
4175 * LOCKING:
4176 * Kernel thread context (may sleep)
4177 */
4178 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4179 {
4180 struct ata_port *ap = link->ap;
4181 u32 serror;
4182
4183 DPRINTK("ENTER\n");
4184
4185 /* print link status */
4186 sata_print_link_status(link);
4187
4188 /* clear SError */
4189 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4190 sata_scr_write(link, SCR_ERROR, serror);
4191 link->eh_info.serror = 0;
4192
4193 /* is double-select really necessary? */
4194 if (classes[0] != ATA_DEV_NONE)
4195 ap->ops->dev_select(ap, 1);
4196 if (classes[1] != ATA_DEV_NONE)
4197 ap->ops->dev_select(ap, 0);
4198
4199 /* bail out if no device is present */
4200 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4201 DPRINTK("EXIT, no device\n");
4202 return;
4203 }
4204
4205 /* set up device control */
4206 if (ap->ioaddr.ctl_addr)
4207 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4208
4209 DPRINTK("EXIT\n");
4210 }
4211
4212 /**
4213 * ata_dev_same_device - Determine whether new ID matches configured device
4214 * @dev: device to compare against
4215 * @new_class: class of the new device
4216 * @new_id: IDENTIFY page of the new device
4217 *
4218 * Compare @new_class and @new_id against @dev and determine
4219 * whether @dev is the device indicated by @new_class and
4220 * @new_id.
4221 *
4222 * LOCKING:
4223 * None.
4224 *
4225 * RETURNS:
4226 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4227 */
4228 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4229 const u16 *new_id)
4230 {
4231 const u16 *old_id = dev->id;
4232 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4233 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4234
4235 if (dev->class != new_class) {
4236 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4237 dev->class, new_class);
4238 return 0;
4239 }
4240
4241 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4242 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4243 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4244 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4245
4246 if (strcmp(model[0], model[1])) {
4247 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4248 "'%s' != '%s'\n", model[0], model[1]);
4249 return 0;
4250 }
4251
4252 if (strcmp(serial[0], serial[1])) {
4253 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4254 "'%s' != '%s'\n", serial[0], serial[1]);
4255 return 0;
4256 }
4257
4258 return 1;
4259 }
4260
4261 /**
4262 * ata_dev_reread_id - Re-read IDENTIFY data
4263 * @dev: target ATA device
4264 * @readid_flags: read ID flags
4265 *
4266 * Re-read IDENTIFY page and make sure @dev is still attached to
4267 * the port.
4268 *
4269 * LOCKING:
4270 * Kernel thread context (may sleep)
4271 *
4272 * RETURNS:
4273 * 0 on success, negative errno otherwise
4274 */
4275 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4276 {
4277 unsigned int class = dev->class;
4278 u16 *id = (void *)dev->link->ap->sector_buf;
4279 int rc;
4280
4281 /* read ID data */
4282 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4283 if (rc)
4284 return rc;
4285
4286 /* is the device still there? */
4287 if (!ata_dev_same_device(dev, class, id))
4288 return -ENODEV;
4289
4290 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4291 return 0;
4292 }
4293
4294 /**
4295 * ata_dev_revalidate - Revalidate ATA device
4296 * @dev: device to revalidate
4297 * @new_class: new class code
4298 * @readid_flags: read ID flags
4299 *
4300 * Re-read IDENTIFY page, make sure @dev is still attached to the
4301 * port and reconfigure it according to the new IDENTIFY page.
4302 *
4303 * LOCKING:
4304 * Kernel thread context (may sleep)
4305 *
4306 * RETURNS:
4307 * 0 on success, negative errno otherwise
4308 */
4309 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4310 unsigned int readid_flags)
4311 {
4312 u64 n_sectors = dev->n_sectors;
4313 int rc;
4314
4315 if (!ata_dev_enabled(dev))
4316 return -ENODEV;
4317
4318 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4319 if (ata_class_enabled(new_class) &&
4320 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4321 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4322 dev->class, new_class);
4323 rc = -ENODEV;
4324 goto fail;
4325 }
4326
4327 /* re-read ID */
4328 rc = ata_dev_reread_id(dev, readid_flags);
4329 if (rc)
4330 goto fail;
4331
4332 /* configure device according to the new ID */
4333 rc = ata_dev_configure(dev);
4334 if (rc)
4335 goto fail;
4336
4337 /* verify n_sectors hasn't changed */
4338 if (dev->class == ATA_DEV_ATA && n_sectors &&
4339 dev->n_sectors != n_sectors) {
4340 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4341 "%llu != %llu\n",
4342 (unsigned long long)n_sectors,
4343 (unsigned long long)dev->n_sectors);
4344
4345 /* restore original n_sectors */
4346 dev->n_sectors = n_sectors;
4347
4348 rc = -ENODEV;
4349 goto fail;
4350 }
4351
4352 return 0;
4353
4354 fail:
4355 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4356 return rc;
4357 }
4358
4359 struct ata_blacklist_entry {
4360 const char *model_num;
4361 const char *model_rev;
4362 unsigned long horkage;
4363 };
4364
4365 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4366 /* Devices with DMA related problems under Linux */
4367 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4368 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4369 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4370 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4371 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4372 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4373 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4374 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4375 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4376 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4377 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4378 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4379 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4380 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4381 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4382 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4383 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4384 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4385 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4386 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4387 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4388 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4389 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4390 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4391 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4392 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4393 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4394 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4395 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4396 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4397 /* Odd clown on sil3726/4726 PMPs */
4398 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4399 ATA_HORKAGE_SKIP_PM },
4400
4401 /* Weird ATAPI devices */
4402 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4403
4404 /* Devices we expect to fail diagnostics */
4405
4406 /* Devices where NCQ should be avoided */
4407 /* NCQ is slow */
4408 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4409 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4410 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4411 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4412 /* NCQ is broken */
4413 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4414 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4415 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4416 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4417
4418 /* Blacklist entries taken from Silicon Image 3124/3132
4419 Windows driver .inf file - also several Linux problem reports */
4420 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4421 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4422 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4423
4424 /* devices which puke on READ_NATIVE_MAX */
4425 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4426 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4427 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4428 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4429
4430 /* Devices which report 1 sector over size HPA */
4431 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4432 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4433 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4434
4435 /* Devices which get the IVB wrong */
4436 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4437 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4438 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4439 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4440 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4441
4442 /* End Marker */
4443 { }
4444 };
4445
4446 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4447 {
4448 const char *p;
4449 int len;
4450
4451 /*
4452 * check for trailing wildcard: *\0
4453 */
4454 p = strchr(patt, wildchar);
4455 if (p && ((*(p + 1)) == 0))
4456 len = p - patt;
4457 else {
4458 len = strlen(name);
4459 if (!len) {
4460 if (!*patt)
4461 return 0;
4462 return -1;
4463 }
4464 }
4465
4466 return strncmp(patt, name, len);
4467 }
4468
4469 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4470 {
4471 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4472 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4473 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4474
4475 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4476 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4477
4478 while (ad->model_num) {
4479 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4480 if (ad->model_rev == NULL)
4481 return ad->horkage;
4482 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4483 return ad->horkage;
4484 }
4485 ad++;
4486 }
4487 return 0;
4488 }
4489
4490 static int ata_dma_blacklisted(const struct ata_device *dev)
4491 {
4492 /* We don't support polling DMA.
4493 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4494 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4495 */
4496 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4497 (dev->flags & ATA_DFLAG_CDB_INTR))
4498 return 1;
4499 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4500 }
4501
4502 /**
4503 * ata_is_40wire - check drive side detection
4504 * @dev: device
4505 *
4506 * Perform drive side detection decoding, allowing for device vendors
4507 * who can't follow the documentation.
4508 */
4509
4510 static int ata_is_40wire(struct ata_device *dev)
4511 {
4512 if (dev->horkage & ATA_HORKAGE_IVB)
4513 return ata_drive_40wire_relaxed(dev->id);
4514 return ata_drive_40wire(dev->id);
4515 }
4516
4517 /**
4518 * ata_dev_xfermask - Compute supported xfermask of the given device
4519 * @dev: Device to compute xfermask for
4520 *
4521 * Compute supported xfermask of @dev and store it in
4522 * dev->*_mask. This function is responsible for applying all
4523 * known limits including host controller limits, device
4524 * blacklist, etc...
4525 *
4526 * LOCKING:
4527 * None.
4528 */
4529 static void ata_dev_xfermask(struct ata_device *dev)
4530 {
4531 struct ata_link *link = dev->link;
4532 struct ata_port *ap = link->ap;
4533 struct ata_host *host = ap->host;
4534 unsigned long xfer_mask;
4535
4536 /* controller modes available */
4537 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4538 ap->mwdma_mask, ap->udma_mask);
4539
4540 /* drive modes available */
4541 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4542 dev->mwdma_mask, dev->udma_mask);
4543 xfer_mask &= ata_id_xfermask(dev->id);
4544
4545 /*
4546 * CFA Advanced TrueIDE timings are not allowed on a shared
4547 * cable
4548 */
4549 if (ata_dev_pair(dev)) {
4550 /* No PIO5 or PIO6 */
4551 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4552 /* No MWDMA3 or MWDMA 4 */
4553 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4554 }
4555
4556 if (ata_dma_blacklisted(dev)) {
4557 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4558 ata_dev_printk(dev, KERN_WARNING,
4559 "device is on DMA blacklist, disabling DMA\n");
4560 }
4561
4562 if ((host->flags & ATA_HOST_SIMPLEX) &&
4563 host->simplex_claimed && host->simplex_claimed != ap) {
4564 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4565 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4566 "other device, disabling DMA\n");
4567 }
4568
4569 if (ap->flags & ATA_FLAG_NO_IORDY)
4570 xfer_mask &= ata_pio_mask_no_iordy(dev);
4571
4572 if (ap->ops->mode_filter)
4573 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4574
4575 /* Apply cable rule here. Don't apply it early because when
4576 * we handle hot plug the cable type can itself change.
4577 * Check this last so that we know if the transfer rate was
4578 * solely limited by the cable.
4579 * Unknown or 80 wire cables reported host side are checked
4580 * drive side as well. Cases where we know a 40wire cable
4581 * is used safely for 80 are not checked here.
4582 */
4583 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4584 /* UDMA/44 or higher would be available */
4585 if ((ap->cbl == ATA_CBL_PATA40) ||
4586 (ata_is_40wire(dev) &&
4587 (ap->cbl == ATA_CBL_PATA_UNK ||
4588 ap->cbl == ATA_CBL_PATA80))) {
4589 ata_dev_printk(dev, KERN_WARNING,
4590 "limited to UDMA/33 due to 40-wire cable\n");
4591 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4592 }
4593
4594 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4595 &dev->mwdma_mask, &dev->udma_mask);
4596 }
4597
4598 /**
4599 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4600 * @dev: Device to which command will be sent
4601 *
4602 * Issue SET FEATURES - XFER MODE command to device @dev
4603 * on port @ap.
4604 *
4605 * LOCKING:
4606 * PCI/etc. bus probe sem.
4607 *
4608 * RETURNS:
4609 * 0 on success, AC_ERR_* mask otherwise.
4610 */
4611
4612 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4613 {
4614 struct ata_taskfile tf;
4615 unsigned int err_mask;
4616
4617 /* set up set-features taskfile */
4618 DPRINTK("set features - xfer mode\n");
4619
4620 /* Some controllers and ATAPI devices show flaky interrupt
4621 * behavior after setting xfer mode. Use polling instead.
4622 */
4623 ata_tf_init(dev, &tf);
4624 tf.command = ATA_CMD_SET_FEATURES;
4625 tf.feature = SETFEATURES_XFER;
4626 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4627 tf.protocol = ATA_PROT_NODATA;
4628 /* If we are using IORDY we must send the mode setting command */
4629 if (ata_pio_need_iordy(dev))
4630 tf.nsect = dev->xfer_mode;
4631 /* If the device has IORDY and the controller does not - turn it off */
4632 else if (ata_id_has_iordy(dev->id))
4633 tf.nsect = 0x01;
4634 else /* In the ancient relic department - skip all of this */
4635 return 0;
4636
4637 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4638
4639 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4640 return err_mask;
4641 }
4642 /**
4643 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4644 * @dev: Device to which command will be sent
4645 * @enable: Whether to enable or disable the feature
4646 * @feature: The sector count represents the feature to set
4647 *
4648 * Issue SET FEATURES - SATA FEATURES command to device @dev
4649 * on port @ap with sector count
4650 *
4651 * LOCKING:
4652 * PCI/etc. bus probe sem.
4653 *
4654 * RETURNS:
4655 * 0 on success, AC_ERR_* mask otherwise.
4656 */
4657 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4658 u8 feature)
4659 {
4660 struct ata_taskfile tf;
4661 unsigned int err_mask;
4662
4663 /* set up set-features taskfile */
4664 DPRINTK("set features - SATA features\n");
4665
4666 ata_tf_init(dev, &tf);
4667 tf.command = ATA_CMD_SET_FEATURES;
4668 tf.feature = enable;
4669 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4670 tf.protocol = ATA_PROT_NODATA;
4671 tf.nsect = feature;
4672
4673 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4674
4675 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4676 return err_mask;
4677 }
4678
4679 /**
4680 * ata_dev_init_params - Issue INIT DEV PARAMS command
4681 * @dev: Device to which command will be sent
4682 * @heads: Number of heads (taskfile parameter)
4683 * @sectors: Number of sectors (taskfile parameter)
4684 *
4685 * LOCKING:
4686 * Kernel thread context (may sleep)
4687 *
4688 * RETURNS:
4689 * 0 on success, AC_ERR_* mask otherwise.
4690 */
4691 static unsigned int ata_dev_init_params(struct ata_device *dev,
4692 u16 heads, u16 sectors)
4693 {
4694 struct ata_taskfile tf;
4695 unsigned int err_mask;
4696
4697 /* Number of sectors per track 1-255. Number of heads 1-16 */
4698 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4699 return AC_ERR_INVALID;
4700
4701 /* set up init dev params taskfile */
4702 DPRINTK("init dev params \n");
4703
4704 ata_tf_init(dev, &tf);
4705 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4706 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4707 tf.protocol = ATA_PROT_NODATA;
4708 tf.nsect = sectors;
4709 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4710
4711 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4712 /* A clean abort indicates an original or just out of spec drive
4713 and we should continue as we issue the setup based on the
4714 drive reported working geometry */
4715 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4716 err_mask = 0;
4717
4718 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4719 return err_mask;
4720 }
4721
4722 /**
4723 * ata_sg_clean - Unmap DMA memory associated with command
4724 * @qc: Command containing DMA memory to be released
4725 *
4726 * Unmap all mapped DMA memory associated with this command.
4727 *
4728 * LOCKING:
4729 * spin_lock_irqsave(host lock)
4730 */
4731 void ata_sg_clean(struct ata_queued_cmd *qc)
4732 {
4733 struct ata_port *ap = qc->ap;
4734 struct scatterlist *sg = qc->sg;
4735 int dir = qc->dma_dir;
4736
4737 WARN_ON(sg == NULL);
4738
4739 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4740
4741 if (qc->n_elem)
4742 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4743
4744 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4745 qc->sg = NULL;
4746 }
4747
4748 /**
4749 * ata_fill_sg - Fill PCI IDE PRD table
4750 * @qc: Metadata associated with taskfile to be transferred
4751 *
4752 * Fill PCI IDE PRD (scatter-gather) table with segments
4753 * associated with the current disk command.
4754 *
4755 * LOCKING:
4756 * spin_lock_irqsave(host lock)
4757 *
4758 */
4759 static void ata_fill_sg(struct ata_queued_cmd *qc)
4760 {
4761 struct ata_port *ap = qc->ap;
4762 struct scatterlist *sg;
4763 unsigned int si, pi;
4764
4765 pi = 0;
4766 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4767 u32 addr, offset;
4768 u32 sg_len, len;
4769
4770 /* determine if physical DMA addr spans 64K boundary.
4771 * Note h/w doesn't support 64-bit, so we unconditionally
4772 * truncate dma_addr_t to u32.
4773 */
4774 addr = (u32) sg_dma_address(sg);
4775 sg_len = sg_dma_len(sg);
4776
4777 while (sg_len) {
4778 offset = addr & 0xffff;
4779 len = sg_len;
4780 if ((offset + sg_len) > 0x10000)
4781 len = 0x10000 - offset;
4782
4783 ap->prd[pi].addr = cpu_to_le32(addr);
4784 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4785 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4786
4787 pi++;
4788 sg_len -= len;
4789 addr += len;
4790 }
4791 }
4792
4793 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4794 }
4795
4796 /**
4797 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4798 * @qc: Metadata associated with taskfile to be transferred
4799 *
4800 * Fill PCI IDE PRD (scatter-gather) table with segments
4801 * associated with the current disk command. Perform the fill
4802 * so that we avoid writing any length 64K records for
4803 * controllers that don't follow the spec.
4804 *
4805 * LOCKING:
4806 * spin_lock_irqsave(host lock)
4807 *
4808 */
4809 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4810 {
4811 struct ata_port *ap = qc->ap;
4812 struct scatterlist *sg;
4813 unsigned int si, pi;
4814
4815 pi = 0;
4816 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4817 u32 addr, offset;
4818 u32 sg_len, len, blen;
4819
4820 /* determine if physical DMA addr spans 64K boundary.
4821 * Note h/w doesn't support 64-bit, so we unconditionally
4822 * truncate dma_addr_t to u32.
4823 */
4824 addr = (u32) sg_dma_address(sg);
4825 sg_len = sg_dma_len(sg);
4826
4827 while (sg_len) {
4828 offset = addr & 0xffff;
4829 len = sg_len;
4830 if ((offset + sg_len) > 0x10000)
4831 len = 0x10000 - offset;
4832
4833 blen = len & 0xffff;
4834 ap->prd[pi].addr = cpu_to_le32(addr);
4835 if (blen == 0) {
4836 /* Some PATA chipsets like the CS5530 can't
4837 cope with 0x0000 meaning 64K as the spec says */
4838 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4839 blen = 0x8000;
4840 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4841 }
4842 ap->prd[pi].flags_len = cpu_to_le32(blen);
4843 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4844
4845 pi++;
4846 sg_len -= len;
4847 addr += len;
4848 }
4849 }
4850
4851 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4852 }
4853
4854 /**
4855 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4856 * @qc: Metadata associated with taskfile to check
4857 *
4858 * Allow low-level driver to filter ATA PACKET commands, returning
4859 * a status indicating whether or not it is OK to use DMA for the
4860 * supplied PACKET command.
4861 *
4862 * LOCKING:
4863 * spin_lock_irqsave(host lock)
4864 *
4865 * RETURNS: 0 when ATAPI DMA can be used
4866 * nonzero otherwise
4867 */
4868 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4869 {
4870 struct ata_port *ap = qc->ap;
4871
4872 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4873 * few ATAPI devices choke on such DMA requests.
4874 */
4875 if (unlikely(qc->nbytes & 15))
4876 return 1;
4877
4878 if (ap->ops->check_atapi_dma)
4879 return ap->ops->check_atapi_dma(qc);
4880
4881 return 0;
4882 }
4883
4884 /**
4885 * ata_std_qc_defer - Check whether a qc needs to be deferred
4886 * @qc: ATA command in question
4887 *
4888 * Non-NCQ commands cannot run with any other command, NCQ or
4889 * not. As upper layer only knows the queue depth, we are
4890 * responsible for maintaining exclusion. This function checks
4891 * whether a new command @qc can be issued.
4892 *
4893 * LOCKING:
4894 * spin_lock_irqsave(host lock)
4895 *
4896 * RETURNS:
4897 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4898 */
4899 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4900 {
4901 struct ata_link *link = qc->dev->link;
4902
4903 if (qc->tf.protocol == ATA_PROT_NCQ) {
4904 if (!ata_tag_valid(link->active_tag))
4905 return 0;
4906 } else {
4907 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4908 return 0;
4909 }
4910
4911 return ATA_DEFER_LINK;
4912 }
4913
4914 /**
4915 * ata_qc_prep - Prepare taskfile for submission
4916 * @qc: Metadata associated with taskfile to be prepared
4917 *
4918 * Prepare ATA taskfile for submission.
4919 *
4920 * LOCKING:
4921 * spin_lock_irqsave(host lock)
4922 */
4923 void ata_qc_prep(struct ata_queued_cmd *qc)
4924 {
4925 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4926 return;
4927
4928 ata_fill_sg(qc);
4929 }
4930
4931 /**
4932 * ata_dumb_qc_prep - Prepare taskfile for submission
4933 * @qc: Metadata associated with taskfile to be prepared
4934 *
4935 * Prepare ATA taskfile for submission.
4936 *
4937 * LOCKING:
4938 * spin_lock_irqsave(host lock)
4939 */
4940 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4941 {
4942 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4943 return;
4944
4945 ata_fill_sg_dumb(qc);
4946 }
4947
4948 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4949
4950 /**
4951 * ata_sg_init - Associate command with scatter-gather table.
4952 * @qc: Command to be associated
4953 * @sg: Scatter-gather table.
4954 * @n_elem: Number of elements in s/g table.
4955 *
4956 * Initialize the data-related elements of queued_cmd @qc
4957 * to point to a scatter-gather table @sg, containing @n_elem
4958 * elements.
4959 *
4960 * LOCKING:
4961 * spin_lock_irqsave(host lock)
4962 */
4963 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4964 unsigned int n_elem)
4965 {
4966 qc->sg = sg;
4967 qc->n_elem = n_elem;
4968 qc->cursg = qc->sg;
4969 }
4970
4971 /**
4972 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4973 * @qc: Command with scatter-gather table to be mapped.
4974 *
4975 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4976 *
4977 * LOCKING:
4978 * spin_lock_irqsave(host lock)
4979 *
4980 * RETURNS:
4981 * Zero on success, negative on error.
4982 *
4983 */
4984 static int ata_sg_setup(struct ata_queued_cmd *qc)
4985 {
4986 struct ata_port *ap = qc->ap;
4987 unsigned int n_elem;
4988
4989 VPRINTK("ENTER, ata%u\n", ap->print_id);
4990
4991 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4992 if (n_elem < 1)
4993 return -1;
4994
4995 DPRINTK("%d sg elements mapped\n", n_elem);
4996
4997 qc->n_elem = n_elem;
4998 qc->flags |= ATA_QCFLAG_DMAMAP;
4999
5000 return 0;
5001 }
5002
5003 /**
5004 * swap_buf_le16 - swap halves of 16-bit words in place
5005 * @buf: Buffer to swap
5006 * @buf_words: Number of 16-bit words in buffer.
5007 *
5008 * Swap halves of 16-bit words if needed to convert from
5009 * little-endian byte order to native cpu byte order, or
5010 * vice-versa.
5011 *
5012 * LOCKING:
5013 * Inherited from caller.
5014 */
5015 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5016 {
5017 #ifdef __BIG_ENDIAN
5018 unsigned int i;
5019
5020 for (i = 0; i < buf_words; i++)
5021 buf[i] = le16_to_cpu(buf[i]);
5022 #endif /* __BIG_ENDIAN */
5023 }
5024
5025 /**
5026 * ata_data_xfer - Transfer data by PIO
5027 * @dev: device to target
5028 * @buf: data buffer
5029 * @buflen: buffer length
5030 * @rw: read/write
5031 *
5032 * Transfer data from/to the device data register by PIO.
5033 *
5034 * LOCKING:
5035 * Inherited from caller.
5036 *
5037 * RETURNS:
5038 * Bytes consumed.
5039 */
5040 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5041 unsigned int buflen, int rw)
5042 {
5043 struct ata_port *ap = dev->link->ap;
5044 void __iomem *data_addr = ap->ioaddr.data_addr;
5045 unsigned int words = buflen >> 1;
5046
5047 /* Transfer multiple of 2 bytes */
5048 if (rw == READ)
5049 ioread16_rep(data_addr, buf, words);
5050 else
5051 iowrite16_rep(data_addr, buf, words);
5052
5053 /* Transfer trailing 1 byte, if any. */
5054 if (unlikely(buflen & 0x01)) {
5055 __le16 align_buf[1] = { 0 };
5056 unsigned char *trailing_buf = buf + buflen - 1;
5057
5058 if (rw == READ) {
5059 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5060 memcpy(trailing_buf, align_buf, 1);
5061 } else {
5062 memcpy(align_buf, trailing_buf, 1);
5063 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5064 }
5065 words++;
5066 }
5067
5068 return words << 1;
5069 }
5070
5071 /**
5072 * ata_data_xfer_noirq - Transfer data by PIO
5073 * @dev: device to target
5074 * @buf: data buffer
5075 * @buflen: buffer length
5076 * @rw: read/write
5077 *
5078 * Transfer data from/to the device data register by PIO. Do the
5079 * transfer with interrupts disabled.
5080 *
5081 * LOCKING:
5082 * Inherited from caller.
5083 *
5084 * RETURNS:
5085 * Bytes consumed.
5086 */
5087 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5088 unsigned int buflen, int rw)
5089 {
5090 unsigned long flags;
5091 unsigned int consumed;
5092
5093 local_irq_save(flags);
5094 consumed = ata_data_xfer(dev, buf, buflen, rw);
5095 local_irq_restore(flags);
5096
5097 return consumed;
5098 }
5099
5100
5101 /**
5102 * ata_pio_sector - Transfer a sector of data.
5103 * @qc: Command on going
5104 *
5105 * Transfer qc->sect_size bytes of data from/to the ATA device.
5106 *
5107 * LOCKING:
5108 * Inherited from caller.
5109 */
5110
5111 static void ata_pio_sector(struct ata_queued_cmd *qc)
5112 {
5113 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5114 struct ata_port *ap = qc->ap;
5115 struct page *page;
5116 unsigned int offset;
5117 unsigned char *buf;
5118
5119 if (qc->curbytes == qc->nbytes - qc->sect_size)
5120 ap->hsm_task_state = HSM_ST_LAST;
5121
5122 page = sg_page(qc->cursg);
5123 offset = qc->cursg->offset + qc->cursg_ofs;
5124
5125 /* get the current page and offset */
5126 page = nth_page(page, (offset >> PAGE_SHIFT));
5127 offset %= PAGE_SIZE;
5128
5129 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5130
5131 if (PageHighMem(page)) {
5132 unsigned long flags;
5133
5134 /* FIXME: use a bounce buffer */
5135 local_irq_save(flags);
5136 buf = kmap_atomic(page, KM_IRQ0);
5137
5138 /* do the actual data transfer */
5139 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5140
5141 kunmap_atomic(buf, KM_IRQ0);
5142 local_irq_restore(flags);
5143 } else {
5144 buf = page_address(page);
5145 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5146 }
5147
5148 qc->curbytes += qc->sect_size;
5149 qc->cursg_ofs += qc->sect_size;
5150
5151 if (qc->cursg_ofs == qc->cursg->length) {
5152 qc->cursg = sg_next(qc->cursg);
5153 qc->cursg_ofs = 0;
5154 }
5155 }
5156
5157 /**
5158 * ata_pio_sectors - Transfer one or many sectors.
5159 * @qc: Command on going
5160 *
5161 * Transfer one or many sectors of data from/to the
5162 * ATA device for the DRQ request.
5163 *
5164 * LOCKING:
5165 * Inherited from caller.
5166 */
5167
5168 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5169 {
5170 if (is_multi_taskfile(&qc->tf)) {
5171 /* READ/WRITE MULTIPLE */
5172 unsigned int nsect;
5173
5174 WARN_ON(qc->dev->multi_count == 0);
5175
5176 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5177 qc->dev->multi_count);
5178 while (nsect--)
5179 ata_pio_sector(qc);
5180 } else
5181 ata_pio_sector(qc);
5182
5183 ata_altstatus(qc->ap); /* flush */
5184 }
5185
5186 /**
5187 * atapi_send_cdb - Write CDB bytes to hardware
5188 * @ap: Port to which ATAPI device is attached.
5189 * @qc: Taskfile currently active
5190 *
5191 * When device has indicated its readiness to accept
5192 * a CDB, this function is called. Send the CDB.
5193 *
5194 * LOCKING:
5195 * caller.
5196 */
5197
5198 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5199 {
5200 /* send SCSI cdb */
5201 DPRINTK("send cdb\n");
5202 WARN_ON(qc->dev->cdb_len < 12);
5203
5204 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5205 ata_altstatus(ap); /* flush */
5206
5207 switch (qc->tf.protocol) {
5208 case ATAPI_PROT_PIO:
5209 ap->hsm_task_state = HSM_ST;
5210 break;
5211 case ATAPI_PROT_NODATA:
5212 ap->hsm_task_state = HSM_ST_LAST;
5213 break;
5214 case ATAPI_PROT_DMA:
5215 ap->hsm_task_state = HSM_ST_LAST;
5216 /* initiate bmdma */
5217 ap->ops->bmdma_start(qc);
5218 break;
5219 }
5220 }
5221
5222 /**
5223 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5224 * @qc: Command on going
5225 * @bytes: number of bytes
5226 *
5227 * Transfer Transfer data from/to the ATAPI device.
5228 *
5229 * LOCKING:
5230 * Inherited from caller.
5231 *
5232 */
5233 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5234 {
5235 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
5236 struct ata_port *ap = qc->ap;
5237 struct ata_device *dev = qc->dev;
5238 struct ata_eh_info *ehi = &dev->link->eh_info;
5239 struct scatterlist *sg;
5240 struct page *page;
5241 unsigned char *buf;
5242 unsigned int offset, count, consumed;
5243
5244 next_sg:
5245 sg = qc->cursg;
5246 if (unlikely(!sg)) {
5247 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5248 "buf=%u cur=%u bytes=%u",
5249 qc->nbytes, qc->curbytes, bytes);
5250 return -1;
5251 }
5252
5253 page = sg_page(sg);
5254 offset = sg->offset + qc->cursg_ofs;
5255
5256 /* get the current page and offset */
5257 page = nth_page(page, (offset >> PAGE_SHIFT));
5258 offset %= PAGE_SIZE;
5259
5260 /* don't overrun current sg */
5261 count = min(sg->length - qc->cursg_ofs, bytes);
5262
5263 /* don't cross page boundaries */
5264 count = min(count, (unsigned int)PAGE_SIZE - offset);
5265
5266 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5267
5268 if (PageHighMem(page)) {
5269 unsigned long flags;
5270
5271 /* FIXME: use bounce buffer */
5272 local_irq_save(flags);
5273 buf = kmap_atomic(page, KM_IRQ0);
5274
5275 /* do the actual data transfer */
5276 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5277
5278 kunmap_atomic(buf, KM_IRQ0);
5279 local_irq_restore(flags);
5280 } else {
5281 buf = page_address(page);
5282 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5283 }
5284
5285 bytes -= min(bytes, consumed);
5286 qc->curbytes += count;
5287 qc->cursg_ofs += count;
5288
5289 if (qc->cursg_ofs == sg->length) {
5290 qc->cursg = sg_next(qc->cursg);
5291 qc->cursg_ofs = 0;
5292 }
5293
5294 /* consumed can be larger than count only for the last transfer */
5295 WARN_ON(qc->cursg && count != consumed);
5296
5297 if (bytes)
5298 goto next_sg;
5299 return 0;
5300 }
5301
5302 /**
5303 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5304 * @qc: Command on going
5305 *
5306 * Transfer Transfer data from/to the ATAPI device.
5307 *
5308 * LOCKING:
5309 * Inherited from caller.
5310 */
5311
5312 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5313 {
5314 struct ata_port *ap = qc->ap;
5315 struct ata_device *dev = qc->dev;
5316 struct ata_eh_info *ehi = &dev->link->eh_info;
5317 unsigned int ireason, bc_lo, bc_hi, bytes;
5318 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5319
5320 /* Abuse qc->result_tf for temp storage of intermediate TF
5321 * here to save some kernel stack usage.
5322 * For normal completion, qc->result_tf is not relevant. For
5323 * error, qc->result_tf is later overwritten by ata_qc_complete().
5324 * So, the correctness of qc->result_tf is not affected.
5325 */
5326 ap->ops->tf_read(ap, &qc->result_tf);
5327 ireason = qc->result_tf.nsect;
5328 bc_lo = qc->result_tf.lbam;
5329 bc_hi = qc->result_tf.lbah;
5330 bytes = (bc_hi << 8) | bc_lo;
5331
5332 /* shall be cleared to zero, indicating xfer of data */
5333 if (unlikely(ireason & (1 << 0)))
5334 goto atapi_check;
5335
5336 /* make sure transfer direction matches expected */
5337 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5338 if (unlikely(do_write != i_write))
5339 goto atapi_check;
5340
5341 if (unlikely(!bytes))
5342 goto atapi_check;
5343
5344 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5345
5346 if (unlikely(__atapi_pio_bytes(qc, bytes)))
5347 goto err_out;
5348 ata_altstatus(ap); /* flush */
5349
5350 return;
5351
5352 atapi_check:
5353 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5354 ireason, bytes);
5355 err_out:
5356 qc->err_mask |= AC_ERR_HSM;
5357 ap->hsm_task_state = HSM_ST_ERR;
5358 }
5359
5360 /**
5361 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5362 * @ap: the target ata_port
5363 * @qc: qc on going
5364 *
5365 * RETURNS:
5366 * 1 if ok in workqueue, 0 otherwise.
5367 */
5368
5369 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5370 {
5371 if (qc->tf.flags & ATA_TFLAG_POLLING)
5372 return 1;
5373
5374 if (ap->hsm_task_state == HSM_ST_FIRST) {
5375 if (qc->tf.protocol == ATA_PROT_PIO &&
5376 (qc->tf.flags & ATA_TFLAG_WRITE))
5377 return 1;
5378
5379 if (ata_is_atapi(qc->tf.protocol) &&
5380 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5381 return 1;
5382 }
5383
5384 return 0;
5385 }
5386
5387 /**
5388 * ata_hsm_qc_complete - finish a qc running on standard HSM
5389 * @qc: Command to complete
5390 * @in_wq: 1 if called from workqueue, 0 otherwise
5391 *
5392 * Finish @qc which is running on standard HSM.
5393 *
5394 * LOCKING:
5395 * If @in_wq is zero, spin_lock_irqsave(host lock).
5396 * Otherwise, none on entry and grabs host lock.
5397 */
5398 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5399 {
5400 struct ata_port *ap = qc->ap;
5401 unsigned long flags;
5402
5403 if (ap->ops->error_handler) {
5404 if (in_wq) {
5405 spin_lock_irqsave(ap->lock, flags);
5406
5407 /* EH might have kicked in while host lock is
5408 * released.
5409 */
5410 qc = ata_qc_from_tag(ap, qc->tag);
5411 if (qc) {
5412 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5413 ap->ops->irq_on(ap);
5414 ata_qc_complete(qc);
5415 } else
5416 ata_port_freeze(ap);
5417 }
5418
5419 spin_unlock_irqrestore(ap->lock, flags);
5420 } else {
5421 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5422 ata_qc_complete(qc);
5423 else
5424 ata_port_freeze(ap);
5425 }
5426 } else {
5427 if (in_wq) {
5428 spin_lock_irqsave(ap->lock, flags);
5429 ap->ops->irq_on(ap);
5430 ata_qc_complete(qc);
5431 spin_unlock_irqrestore(ap->lock, flags);
5432 } else
5433 ata_qc_complete(qc);
5434 }
5435 }
5436
5437 /**
5438 * ata_hsm_move - move the HSM to the next state.
5439 * @ap: the target ata_port
5440 * @qc: qc on going
5441 * @status: current device status
5442 * @in_wq: 1 if called from workqueue, 0 otherwise
5443 *
5444 * RETURNS:
5445 * 1 when poll next status needed, 0 otherwise.
5446 */
5447 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5448 u8 status, int in_wq)
5449 {
5450 unsigned long flags = 0;
5451 int poll_next;
5452
5453 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5454
5455 /* Make sure ata_qc_issue_prot() does not throw things
5456 * like DMA polling into the workqueue. Notice that
5457 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5458 */
5459 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5460
5461 fsm_start:
5462 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5463 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5464
5465 switch (ap->hsm_task_state) {
5466 case HSM_ST_FIRST:
5467 /* Send first data block or PACKET CDB */
5468
5469 /* If polling, we will stay in the work queue after
5470 * sending the data. Otherwise, interrupt handler
5471 * takes over after sending the data.
5472 */
5473 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5474
5475 /* check device status */
5476 if (unlikely((status & ATA_DRQ) == 0)) {
5477 /* handle BSY=0, DRQ=0 as error */
5478 if (likely(status & (ATA_ERR | ATA_DF)))
5479 /* device stops HSM for abort/error */
5480 qc->err_mask |= AC_ERR_DEV;
5481 else
5482 /* HSM violation. Let EH handle this */
5483 qc->err_mask |= AC_ERR_HSM;
5484
5485 ap->hsm_task_state = HSM_ST_ERR;
5486 goto fsm_start;
5487 }
5488
5489 /* Device should not ask for data transfer (DRQ=1)
5490 * when it finds something wrong.
5491 * We ignore DRQ here and stop the HSM by
5492 * changing hsm_task_state to HSM_ST_ERR and
5493 * let the EH abort the command or reset the device.
5494 */
5495 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5496 /* Some ATAPI tape drives forget to clear the ERR bit
5497 * when doing the next command (mostly request sense).
5498 * We ignore ERR here to workaround and proceed sending
5499 * the CDB.
5500 */
5501 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5502 ata_port_printk(ap, KERN_WARNING,
5503 "DRQ=1 with device error, "
5504 "dev_stat 0x%X\n", status);
5505 qc->err_mask |= AC_ERR_HSM;
5506 ap->hsm_task_state = HSM_ST_ERR;
5507 goto fsm_start;
5508 }
5509 }
5510
5511 /* Send the CDB (atapi) or the first data block (ata pio out).
5512 * During the state transition, interrupt handler shouldn't
5513 * be invoked before the data transfer is complete and
5514 * hsm_task_state is changed. Hence, the following locking.
5515 */
5516 if (in_wq)
5517 spin_lock_irqsave(ap->lock, flags);
5518
5519 if (qc->tf.protocol == ATA_PROT_PIO) {
5520 /* PIO data out protocol.
5521 * send first data block.
5522 */
5523
5524 /* ata_pio_sectors() might change the state
5525 * to HSM_ST_LAST. so, the state is changed here
5526 * before ata_pio_sectors().
5527 */
5528 ap->hsm_task_state = HSM_ST;
5529 ata_pio_sectors(qc);
5530 } else
5531 /* send CDB */
5532 atapi_send_cdb(ap, qc);
5533
5534 if (in_wq)
5535 spin_unlock_irqrestore(ap->lock, flags);
5536
5537 /* if polling, ata_pio_task() handles the rest.
5538 * otherwise, interrupt handler takes over from here.
5539 */
5540 break;
5541
5542 case HSM_ST:
5543 /* complete command or read/write the data register */
5544 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5545 /* ATAPI PIO protocol */
5546 if ((status & ATA_DRQ) == 0) {
5547 /* No more data to transfer or device error.
5548 * Device error will be tagged in HSM_ST_LAST.
5549 */
5550 ap->hsm_task_state = HSM_ST_LAST;
5551 goto fsm_start;
5552 }
5553
5554 /* Device should not ask for data transfer (DRQ=1)
5555 * when it finds something wrong.
5556 * We ignore DRQ here and stop the HSM by
5557 * changing hsm_task_state to HSM_ST_ERR and
5558 * let the EH abort the command or reset the device.
5559 */
5560 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5561 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5562 "device error, dev_stat 0x%X\n",
5563 status);
5564 qc->err_mask |= AC_ERR_HSM;
5565 ap->hsm_task_state = HSM_ST_ERR;
5566 goto fsm_start;
5567 }
5568
5569 atapi_pio_bytes(qc);
5570
5571 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5572 /* bad ireason reported by device */
5573 goto fsm_start;
5574
5575 } else {
5576 /* ATA PIO protocol */
5577 if (unlikely((status & ATA_DRQ) == 0)) {
5578 /* handle BSY=0, DRQ=0 as error */
5579 if (likely(status & (ATA_ERR | ATA_DF)))
5580 /* device stops HSM for abort/error */
5581 qc->err_mask |= AC_ERR_DEV;
5582 else
5583 /* HSM violation. Let EH handle this.
5584 * Phantom devices also trigger this
5585 * condition. Mark hint.
5586 */
5587 qc->err_mask |= AC_ERR_HSM |
5588 AC_ERR_NODEV_HINT;
5589
5590 ap->hsm_task_state = HSM_ST_ERR;
5591 goto fsm_start;
5592 }
5593
5594 /* For PIO reads, some devices may ask for
5595 * data transfer (DRQ=1) alone with ERR=1.
5596 * We respect DRQ here and transfer one
5597 * block of junk data before changing the
5598 * hsm_task_state to HSM_ST_ERR.
5599 *
5600 * For PIO writes, ERR=1 DRQ=1 doesn't make
5601 * sense since the data block has been
5602 * transferred to the device.
5603 */
5604 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5605 /* data might be corrputed */
5606 qc->err_mask |= AC_ERR_DEV;
5607
5608 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5609 ata_pio_sectors(qc);
5610 status = ata_wait_idle(ap);
5611 }
5612
5613 if (status & (ATA_BUSY | ATA_DRQ))
5614 qc->err_mask |= AC_ERR_HSM;
5615
5616 /* ata_pio_sectors() might change the
5617 * state to HSM_ST_LAST. so, the state
5618 * is changed after ata_pio_sectors().
5619 */
5620 ap->hsm_task_state = HSM_ST_ERR;
5621 goto fsm_start;
5622 }
5623
5624 ata_pio_sectors(qc);
5625
5626 if (ap->hsm_task_state == HSM_ST_LAST &&
5627 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5628 /* all data read */
5629 status = ata_wait_idle(ap);
5630 goto fsm_start;
5631 }
5632 }
5633
5634 poll_next = 1;
5635 break;
5636
5637 case HSM_ST_LAST:
5638 if (unlikely(!ata_ok(status))) {
5639 qc->err_mask |= __ac_err_mask(status);
5640 ap->hsm_task_state = HSM_ST_ERR;
5641 goto fsm_start;
5642 }
5643
5644 /* no more data to transfer */
5645 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5646 ap->print_id, qc->dev->devno, status);
5647
5648 WARN_ON(qc->err_mask);
5649
5650 ap->hsm_task_state = HSM_ST_IDLE;
5651
5652 /* complete taskfile transaction */
5653 ata_hsm_qc_complete(qc, in_wq);
5654
5655 poll_next = 0;
5656 break;
5657
5658 case HSM_ST_ERR:
5659 /* make sure qc->err_mask is available to
5660 * know what's wrong and recover
5661 */
5662 WARN_ON(qc->err_mask == 0);
5663
5664 ap->hsm_task_state = HSM_ST_IDLE;
5665
5666 /* complete taskfile transaction */
5667 ata_hsm_qc_complete(qc, in_wq);
5668
5669 poll_next = 0;
5670 break;
5671 default:
5672 poll_next = 0;
5673 BUG();
5674 }
5675
5676 return poll_next;
5677 }
5678
5679 static void ata_pio_task(struct work_struct *work)
5680 {
5681 struct ata_port *ap =
5682 container_of(work, struct ata_port, port_task.work);
5683 struct ata_queued_cmd *qc = ap->port_task_data;
5684 u8 status;
5685 int poll_next;
5686
5687 fsm_start:
5688 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5689
5690 /*
5691 * This is purely heuristic. This is a fast path.
5692 * Sometimes when we enter, BSY will be cleared in
5693 * a chk-status or two. If not, the drive is probably seeking
5694 * or something. Snooze for a couple msecs, then
5695 * chk-status again. If still busy, queue delayed work.
5696 */
5697 status = ata_busy_wait(ap, ATA_BUSY, 5);
5698 if (status & ATA_BUSY) {
5699 msleep(2);
5700 status = ata_busy_wait(ap, ATA_BUSY, 10);
5701 if (status & ATA_BUSY) {
5702 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5703 return;
5704 }
5705 }
5706
5707 /* move the HSM */
5708 poll_next = ata_hsm_move(ap, qc, status, 1);
5709
5710 /* another command or interrupt handler
5711 * may be running at this point.
5712 */
5713 if (poll_next)
5714 goto fsm_start;
5715 }
5716
5717 /**
5718 * ata_qc_new - Request an available ATA command, for queueing
5719 * @ap: Port associated with device @dev
5720 * @dev: Device from whom we request an available command structure
5721 *
5722 * LOCKING:
5723 * None.
5724 */
5725
5726 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5727 {
5728 struct ata_queued_cmd *qc = NULL;
5729 unsigned int i;
5730
5731 /* no command while frozen */
5732 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5733 return NULL;
5734
5735 /* the last tag is reserved for internal command. */
5736 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5737 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5738 qc = __ata_qc_from_tag(ap, i);
5739 break;
5740 }
5741
5742 if (qc)
5743 qc->tag = i;
5744
5745 return qc;
5746 }
5747
5748 /**
5749 * ata_qc_new_init - Request an available ATA command, and initialize it
5750 * @dev: Device from whom we request an available command structure
5751 *
5752 * LOCKING:
5753 * None.
5754 */
5755
5756 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5757 {
5758 struct ata_port *ap = dev->link->ap;
5759 struct ata_queued_cmd *qc;
5760
5761 qc = ata_qc_new(ap);
5762 if (qc) {
5763 qc->scsicmd = NULL;
5764 qc->ap = ap;
5765 qc->dev = dev;
5766
5767 ata_qc_reinit(qc);
5768 }
5769
5770 return qc;
5771 }
5772
5773 /**
5774 * ata_qc_free - free unused ata_queued_cmd
5775 * @qc: Command to complete
5776 *
5777 * Designed to free unused ata_queued_cmd object
5778 * in case something prevents using it.
5779 *
5780 * LOCKING:
5781 * spin_lock_irqsave(host lock)
5782 */
5783 void ata_qc_free(struct ata_queued_cmd *qc)
5784 {
5785 struct ata_port *ap = qc->ap;
5786 unsigned int tag;
5787
5788 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5789
5790 qc->flags = 0;
5791 tag = qc->tag;
5792 if (likely(ata_tag_valid(tag))) {
5793 qc->tag = ATA_TAG_POISON;
5794 clear_bit(tag, &ap->qc_allocated);
5795 }
5796 }
5797
5798 void __ata_qc_complete(struct ata_queued_cmd *qc)
5799 {
5800 struct ata_port *ap = qc->ap;
5801 struct ata_link *link = qc->dev->link;
5802
5803 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5804 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5805
5806 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5807 ata_sg_clean(qc);
5808
5809 /* command should be marked inactive atomically with qc completion */
5810 if (qc->tf.protocol == ATA_PROT_NCQ) {
5811 link->sactive &= ~(1 << qc->tag);
5812 if (!link->sactive)
5813 ap->nr_active_links--;
5814 } else {
5815 link->active_tag = ATA_TAG_POISON;
5816 ap->nr_active_links--;
5817 }
5818
5819 /* clear exclusive status */
5820 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5821 ap->excl_link == link))
5822 ap->excl_link = NULL;
5823
5824 /* atapi: mark qc as inactive to prevent the interrupt handler
5825 * from completing the command twice later, before the error handler
5826 * is called. (when rc != 0 and atapi request sense is needed)
5827 */
5828 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5829 ap->qc_active &= ~(1 << qc->tag);
5830
5831 /* call completion callback */
5832 qc->complete_fn(qc);
5833 }
5834
5835 static void fill_result_tf(struct ata_queued_cmd *qc)
5836 {
5837 struct ata_port *ap = qc->ap;
5838
5839 qc->result_tf.flags = qc->tf.flags;
5840 ap->ops->tf_read(ap, &qc->result_tf);
5841 }
5842
5843 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5844 {
5845 struct ata_device *dev = qc->dev;
5846
5847 if (ata_tag_internal(qc->tag))
5848 return;
5849
5850 if (ata_is_nodata(qc->tf.protocol))
5851 return;
5852
5853 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5854 return;
5855
5856 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5857 }
5858
5859 /**
5860 * ata_qc_complete - Complete an active ATA command
5861 * @qc: Command to complete
5862 * @err_mask: ATA Status register contents
5863 *
5864 * Indicate to the mid and upper layers that an ATA
5865 * command has completed, with either an ok or not-ok status.
5866 *
5867 * LOCKING:
5868 * spin_lock_irqsave(host lock)
5869 */
5870 void ata_qc_complete(struct ata_queued_cmd *qc)
5871 {
5872 struct ata_port *ap = qc->ap;
5873
5874 /* XXX: New EH and old EH use different mechanisms to
5875 * synchronize EH with regular execution path.
5876 *
5877 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5878 * Normal execution path is responsible for not accessing a
5879 * failed qc. libata core enforces the rule by returning NULL
5880 * from ata_qc_from_tag() for failed qcs.
5881 *
5882 * Old EH depends on ata_qc_complete() nullifying completion
5883 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5884 * not synchronize with interrupt handler. Only PIO task is
5885 * taken care of.
5886 */
5887 if (ap->ops->error_handler) {
5888 struct ata_device *dev = qc->dev;
5889 struct ata_eh_info *ehi = &dev->link->eh_info;
5890
5891 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5892
5893 if (unlikely(qc->err_mask))
5894 qc->flags |= ATA_QCFLAG_FAILED;
5895
5896 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5897 if (!ata_tag_internal(qc->tag)) {
5898 /* always fill result TF for failed qc */
5899 fill_result_tf(qc);
5900 ata_qc_schedule_eh(qc);
5901 return;
5902 }
5903 }
5904
5905 /* read result TF if requested */
5906 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5907 fill_result_tf(qc);
5908
5909 /* Some commands need post-processing after successful
5910 * completion.
5911 */
5912 switch (qc->tf.command) {
5913 case ATA_CMD_SET_FEATURES:
5914 if (qc->tf.feature != SETFEATURES_WC_ON &&
5915 qc->tf.feature != SETFEATURES_WC_OFF)
5916 break;
5917 /* fall through */
5918 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5919 case ATA_CMD_SET_MULTI: /* multi_count changed */
5920 /* revalidate device */
5921 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5922 ata_port_schedule_eh(ap);
5923 break;
5924
5925 case ATA_CMD_SLEEP:
5926 dev->flags |= ATA_DFLAG_SLEEPING;
5927 break;
5928 }
5929
5930 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5931 ata_verify_xfer(qc);
5932
5933 __ata_qc_complete(qc);
5934 } else {
5935 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5936 return;
5937
5938 /* read result TF if failed or requested */
5939 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5940 fill_result_tf(qc);
5941
5942 __ata_qc_complete(qc);
5943 }
5944 }
5945
5946 /**
5947 * ata_qc_complete_multiple - Complete multiple qcs successfully
5948 * @ap: port in question
5949 * @qc_active: new qc_active mask
5950 * @finish_qc: LLDD callback invoked before completing a qc
5951 *
5952 * Complete in-flight commands. This functions is meant to be
5953 * called from low-level driver's interrupt routine to complete
5954 * requests normally. ap->qc_active and @qc_active is compared
5955 * and commands are completed accordingly.
5956 *
5957 * LOCKING:
5958 * spin_lock_irqsave(host lock)
5959 *
5960 * RETURNS:
5961 * Number of completed commands on success, -errno otherwise.
5962 */
5963 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5964 void (*finish_qc)(struct ata_queued_cmd *))
5965 {
5966 int nr_done = 0;
5967 u32 done_mask;
5968 int i;
5969
5970 done_mask = ap->qc_active ^ qc_active;
5971
5972 if (unlikely(done_mask & qc_active)) {
5973 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5974 "(%08x->%08x)\n", ap->qc_active, qc_active);
5975 return -EINVAL;
5976 }
5977
5978 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5979 struct ata_queued_cmd *qc;
5980
5981 if (!(done_mask & (1 << i)))
5982 continue;
5983
5984 if ((qc = ata_qc_from_tag(ap, i))) {
5985 if (finish_qc)
5986 finish_qc(qc);
5987 ata_qc_complete(qc);
5988 nr_done++;
5989 }
5990 }
5991
5992 return nr_done;
5993 }
5994
5995 /**
5996 * ata_qc_issue - issue taskfile to device
5997 * @qc: command to issue to device
5998 *
5999 * Prepare an ATA command to submission to device.
6000 * This includes mapping the data into a DMA-able
6001 * area, filling in the S/G table, and finally
6002 * writing the taskfile to hardware, starting the command.
6003 *
6004 * LOCKING:
6005 * spin_lock_irqsave(host lock)
6006 */
6007 void ata_qc_issue(struct ata_queued_cmd *qc)
6008 {
6009 struct ata_port *ap = qc->ap;
6010 struct ata_link *link = qc->dev->link;
6011 u8 prot = qc->tf.protocol;
6012
6013 /* Make sure only one non-NCQ command is outstanding. The
6014 * check is skipped for old EH because it reuses active qc to
6015 * request ATAPI sense.
6016 */
6017 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
6018
6019 if (ata_is_ncq(prot)) {
6020 WARN_ON(link->sactive & (1 << qc->tag));
6021
6022 if (!link->sactive)
6023 ap->nr_active_links++;
6024 link->sactive |= 1 << qc->tag;
6025 } else {
6026 WARN_ON(link->sactive);
6027
6028 ap->nr_active_links++;
6029 link->active_tag = qc->tag;
6030 }
6031
6032 qc->flags |= ATA_QCFLAG_ACTIVE;
6033 ap->qc_active |= 1 << qc->tag;
6034
6035 /* We guarantee to LLDs that they will have at least one
6036 * non-zero sg if the command is a data command.
6037 */
6038 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
6039
6040 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
6041 (ap->flags & ATA_FLAG_PIO_DMA)))
6042 if (ata_sg_setup(qc))
6043 goto sg_err;
6044
6045 /* if device is sleeping, schedule reset and abort the link */
6046 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6047 link->eh_info.action |= ATA_EH_RESET;
6048 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6049 ata_link_abort(link);
6050 return;
6051 }
6052
6053 ap->ops->qc_prep(qc);
6054
6055 qc->err_mask |= ap->ops->qc_issue(qc);
6056 if (unlikely(qc->err_mask))
6057 goto err;
6058 return;
6059
6060 sg_err:
6061 qc->err_mask |= AC_ERR_SYSTEM;
6062 err:
6063 ata_qc_complete(qc);
6064 }
6065
6066 /**
6067 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6068 * @qc: command to issue to device
6069 *
6070 * Using various libata functions and hooks, this function
6071 * starts an ATA command. ATA commands are grouped into
6072 * classes called "protocols", and issuing each type of protocol
6073 * is slightly different.
6074 *
6075 * May be used as the qc_issue() entry in ata_port_operations.
6076 *
6077 * LOCKING:
6078 * spin_lock_irqsave(host lock)
6079 *
6080 * RETURNS:
6081 * Zero on success, AC_ERR_* mask on failure
6082 */
6083
6084 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6085 {
6086 struct ata_port *ap = qc->ap;
6087
6088 /* Use polling pio if the LLD doesn't handle
6089 * interrupt driven pio and atapi CDB interrupt.
6090 */
6091 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6092 switch (qc->tf.protocol) {
6093 case ATA_PROT_PIO:
6094 case ATA_PROT_NODATA:
6095 case ATAPI_PROT_PIO:
6096 case ATAPI_PROT_NODATA:
6097 qc->tf.flags |= ATA_TFLAG_POLLING;
6098 break;
6099 case ATAPI_PROT_DMA:
6100 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6101 /* see ata_dma_blacklisted() */
6102 BUG();
6103 break;
6104 default:
6105 break;
6106 }
6107 }
6108
6109 /* select the device */
6110 ata_dev_select(ap, qc->dev->devno, 1, 0);
6111
6112 /* start the command */
6113 switch (qc->tf.protocol) {
6114 case ATA_PROT_NODATA:
6115 if (qc->tf.flags & ATA_TFLAG_POLLING)
6116 ata_qc_set_polling(qc);
6117
6118 ata_tf_to_host(ap, &qc->tf);
6119 ap->hsm_task_state = HSM_ST_LAST;
6120
6121 if (qc->tf.flags & ATA_TFLAG_POLLING)
6122 ata_pio_queue_task(ap, qc, 0);
6123
6124 break;
6125
6126 case ATA_PROT_DMA:
6127 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6128
6129 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6130 ap->ops->bmdma_setup(qc); /* set up bmdma */
6131 ap->ops->bmdma_start(qc); /* initiate bmdma */
6132 ap->hsm_task_state = HSM_ST_LAST;
6133 break;
6134
6135 case ATA_PROT_PIO:
6136 if (qc->tf.flags & ATA_TFLAG_POLLING)
6137 ata_qc_set_polling(qc);
6138
6139 ata_tf_to_host(ap, &qc->tf);
6140
6141 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6142 /* PIO data out protocol */
6143 ap->hsm_task_state = HSM_ST_FIRST;
6144 ata_pio_queue_task(ap, qc, 0);
6145
6146 /* always send first data block using
6147 * the ata_pio_task() codepath.
6148 */
6149 } else {
6150 /* PIO data in protocol */
6151 ap->hsm_task_state = HSM_ST;
6152
6153 if (qc->tf.flags & ATA_TFLAG_POLLING)
6154 ata_pio_queue_task(ap, qc, 0);
6155
6156 /* if polling, ata_pio_task() handles the rest.
6157 * otherwise, interrupt handler takes over from here.
6158 */
6159 }
6160
6161 break;
6162
6163 case ATAPI_PROT_PIO:
6164 case ATAPI_PROT_NODATA:
6165 if (qc->tf.flags & ATA_TFLAG_POLLING)
6166 ata_qc_set_polling(qc);
6167
6168 ata_tf_to_host(ap, &qc->tf);
6169
6170 ap->hsm_task_state = HSM_ST_FIRST;
6171
6172 /* send cdb by polling if no cdb interrupt */
6173 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6174 (qc->tf.flags & ATA_TFLAG_POLLING))
6175 ata_pio_queue_task(ap, qc, 0);
6176 break;
6177
6178 case ATAPI_PROT_DMA:
6179 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6180
6181 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6182 ap->ops->bmdma_setup(qc); /* set up bmdma */
6183 ap->hsm_task_state = HSM_ST_FIRST;
6184
6185 /* send cdb by polling if no cdb interrupt */
6186 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6187 ata_pio_queue_task(ap, qc, 0);
6188 break;
6189
6190 default:
6191 WARN_ON(1);
6192 return AC_ERR_SYSTEM;
6193 }
6194
6195 return 0;
6196 }
6197
6198 /**
6199 * ata_host_intr - Handle host interrupt for given (port, task)
6200 * @ap: Port on which interrupt arrived (possibly...)
6201 * @qc: Taskfile currently active in engine
6202 *
6203 * Handle host interrupt for given queued command. Currently,
6204 * only DMA interrupts are handled. All other commands are
6205 * handled via polling with interrupts disabled (nIEN bit).
6206 *
6207 * LOCKING:
6208 * spin_lock_irqsave(host lock)
6209 *
6210 * RETURNS:
6211 * One if interrupt was handled, zero if not (shared irq).
6212 */
6213
6214 inline unsigned int ata_host_intr(struct ata_port *ap,
6215 struct ata_queued_cmd *qc)
6216 {
6217 struct ata_eh_info *ehi = &ap->link.eh_info;
6218 u8 status, host_stat = 0;
6219
6220 VPRINTK("ata%u: protocol %d task_state %d\n",
6221 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6222
6223 /* Check whether we are expecting interrupt in this state */
6224 switch (ap->hsm_task_state) {
6225 case HSM_ST_FIRST:
6226 /* Some pre-ATAPI-4 devices assert INTRQ
6227 * at this state when ready to receive CDB.
6228 */
6229
6230 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6231 * The flag was turned on only for atapi devices. No
6232 * need to check ata_is_atapi(qc->tf.protocol) again.
6233 */
6234 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6235 goto idle_irq;
6236 break;
6237 case HSM_ST_LAST:
6238 if (qc->tf.protocol == ATA_PROT_DMA ||
6239 qc->tf.protocol == ATAPI_PROT_DMA) {
6240 /* check status of DMA engine */
6241 host_stat = ap->ops->bmdma_status(ap);
6242 VPRINTK("ata%u: host_stat 0x%X\n",
6243 ap->print_id, host_stat);
6244
6245 /* if it's not our irq... */
6246 if (!(host_stat & ATA_DMA_INTR))
6247 goto idle_irq;
6248
6249 /* before we do anything else, clear DMA-Start bit */
6250 ap->ops->bmdma_stop(qc);
6251
6252 if (unlikely(host_stat & ATA_DMA_ERR)) {
6253 /* error when transfering data to/from memory */
6254 qc->err_mask |= AC_ERR_HOST_BUS;
6255 ap->hsm_task_state = HSM_ST_ERR;
6256 }
6257 }
6258 break;
6259 case HSM_ST:
6260 break;
6261 default:
6262 goto idle_irq;
6263 }
6264
6265 /* check altstatus */
6266 status = ata_altstatus(ap);
6267 if (status & ATA_BUSY)
6268 goto idle_irq;
6269
6270 /* check main status, clearing INTRQ */
6271 status = ata_chk_status(ap);
6272 if (unlikely(status & ATA_BUSY))
6273 goto idle_irq;
6274
6275 /* ack bmdma irq events */
6276 ap->ops->irq_clear(ap);
6277
6278 ata_hsm_move(ap, qc, status, 0);
6279
6280 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6281 qc->tf.protocol == ATAPI_PROT_DMA))
6282 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6283
6284 return 1; /* irq handled */
6285
6286 idle_irq:
6287 ap->stats.idle_irq++;
6288
6289 #ifdef ATA_IRQ_TRAP
6290 if ((ap->stats.idle_irq % 1000) == 0) {
6291 ata_chk_status(ap);
6292 ap->ops->irq_clear(ap);
6293 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6294 return 1;
6295 }
6296 #endif
6297 return 0; /* irq not handled */
6298 }
6299
6300 /**
6301 * ata_interrupt - Default ATA host interrupt handler
6302 * @irq: irq line (unused)
6303 * @dev_instance: pointer to our ata_host information structure
6304 *
6305 * Default interrupt handler for PCI IDE devices. Calls
6306 * ata_host_intr() for each port that is not disabled.
6307 *
6308 * LOCKING:
6309 * Obtains host lock during operation.
6310 *
6311 * RETURNS:
6312 * IRQ_NONE or IRQ_HANDLED.
6313 */
6314
6315 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6316 {
6317 struct ata_host *host = dev_instance;
6318 unsigned int i;
6319 unsigned int handled = 0;
6320 unsigned long flags;
6321
6322 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6323 spin_lock_irqsave(&host->lock, flags);
6324
6325 for (i = 0; i < host->n_ports; i++) {
6326 struct ata_port *ap;
6327
6328 ap = host->ports[i];
6329 if (ap &&
6330 !(ap->flags & ATA_FLAG_DISABLED)) {
6331 struct ata_queued_cmd *qc;
6332
6333 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6334 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6335 (qc->flags & ATA_QCFLAG_ACTIVE))
6336 handled |= ata_host_intr(ap, qc);
6337 }
6338 }
6339
6340 spin_unlock_irqrestore(&host->lock, flags);
6341
6342 return IRQ_RETVAL(handled);
6343 }
6344
6345 /**
6346 * sata_scr_valid - test whether SCRs are accessible
6347 * @link: ATA link to test SCR accessibility for
6348 *
6349 * Test whether SCRs are accessible for @link.
6350 *
6351 * LOCKING:
6352 * None.
6353 *
6354 * RETURNS:
6355 * 1 if SCRs are accessible, 0 otherwise.
6356 */
6357 int sata_scr_valid(struct ata_link *link)
6358 {
6359 struct ata_port *ap = link->ap;
6360
6361 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6362 }
6363
6364 /**
6365 * sata_scr_read - read SCR register of the specified port
6366 * @link: ATA link to read SCR for
6367 * @reg: SCR to read
6368 * @val: Place to store read value
6369 *
6370 * Read SCR register @reg of @link into *@val. This function is
6371 * guaranteed to succeed if @link is ap->link, the cable type of
6372 * the port is SATA and the port implements ->scr_read.
6373 *
6374 * LOCKING:
6375 * None if @link is ap->link. Kernel thread context otherwise.
6376 *
6377 * RETURNS:
6378 * 0 on success, negative errno on failure.
6379 */
6380 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6381 {
6382 if (ata_is_host_link(link)) {
6383 struct ata_port *ap = link->ap;
6384
6385 if (sata_scr_valid(link))
6386 return ap->ops->scr_read(ap, reg, val);
6387 return -EOPNOTSUPP;
6388 }
6389
6390 return sata_pmp_scr_read(link, reg, val);
6391 }
6392
6393 /**
6394 * sata_scr_write - write SCR register of the specified port
6395 * @link: ATA link to write SCR for
6396 * @reg: SCR to write
6397 * @val: value to write
6398 *
6399 * Write @val to SCR register @reg of @link. This function is
6400 * guaranteed to succeed if @link is ap->link, the cable type of
6401 * the port is SATA and the port implements ->scr_read.
6402 *
6403 * LOCKING:
6404 * None if @link is ap->link. Kernel thread context otherwise.
6405 *
6406 * RETURNS:
6407 * 0 on success, negative errno on failure.
6408 */
6409 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6410 {
6411 if (ata_is_host_link(link)) {
6412 struct ata_port *ap = link->ap;
6413
6414 if (sata_scr_valid(link))
6415 return ap->ops->scr_write(ap, reg, val);
6416 return -EOPNOTSUPP;
6417 }
6418
6419 return sata_pmp_scr_write(link, reg, val);
6420 }
6421
6422 /**
6423 * sata_scr_write_flush - write SCR register of the specified port and flush
6424 * @link: ATA link to write SCR for
6425 * @reg: SCR to write
6426 * @val: value to write
6427 *
6428 * This function is identical to sata_scr_write() except that this
6429 * function performs flush after writing to the register.
6430 *
6431 * LOCKING:
6432 * None if @link is ap->link. Kernel thread context otherwise.
6433 *
6434 * RETURNS:
6435 * 0 on success, negative errno on failure.
6436 */
6437 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6438 {
6439 if (ata_is_host_link(link)) {
6440 struct ata_port *ap = link->ap;
6441 int rc;
6442
6443 if (sata_scr_valid(link)) {
6444 rc = ap->ops->scr_write(ap, reg, val);
6445 if (rc == 0)
6446 rc = ap->ops->scr_read(ap, reg, &val);
6447 return rc;
6448 }
6449 return -EOPNOTSUPP;
6450 }
6451
6452 return sata_pmp_scr_write(link, reg, val);
6453 }
6454
6455 /**
6456 * ata_link_online - test whether the given link is online
6457 * @link: ATA link to test
6458 *
6459 * Test whether @link is online. Note that this function returns
6460 * 0 if online status of @link cannot be obtained, so
6461 * ata_link_online(link) != !ata_link_offline(link).
6462 *
6463 * LOCKING:
6464 * None.
6465 *
6466 * RETURNS:
6467 * 1 if the port online status is available and online.
6468 */
6469 int ata_link_online(struct ata_link *link)
6470 {
6471 u32 sstatus;
6472
6473 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6474 (sstatus & 0xf) == 0x3)
6475 return 1;
6476 return 0;
6477 }
6478
6479 /**
6480 * ata_link_offline - test whether the given link is offline
6481 * @link: ATA link to test
6482 *
6483 * Test whether @link is offline. Note that this function
6484 * returns 0 if offline status of @link cannot be obtained, so
6485 * ata_link_online(link) != !ata_link_offline(link).
6486 *
6487 * LOCKING:
6488 * None.
6489 *
6490 * RETURNS:
6491 * 1 if the port offline status is available and offline.
6492 */
6493 int ata_link_offline(struct ata_link *link)
6494 {
6495 u32 sstatus;
6496
6497 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6498 (sstatus & 0xf) != 0x3)
6499 return 1;
6500 return 0;
6501 }
6502
6503 int ata_flush_cache(struct ata_device *dev)
6504 {
6505 unsigned int err_mask;
6506 u8 cmd;
6507
6508 if (!ata_try_flush_cache(dev))
6509 return 0;
6510
6511 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6512 cmd = ATA_CMD_FLUSH_EXT;
6513 else
6514 cmd = ATA_CMD_FLUSH;
6515
6516 /* This is wrong. On a failed flush we get back the LBA of the lost
6517 sector and we should (assuming it wasn't aborted as unknown) issue
6518 a further flush command to continue the writeback until it
6519 does not error */
6520 err_mask = ata_do_simple_cmd(dev, cmd);
6521 if (err_mask) {
6522 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6523 return -EIO;
6524 }
6525
6526 return 0;
6527 }
6528
6529 #ifdef CONFIG_PM
6530 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6531 unsigned int action, unsigned int ehi_flags,
6532 int wait)
6533 {
6534 unsigned long flags;
6535 int i, rc;
6536
6537 for (i = 0; i < host->n_ports; i++) {
6538 struct ata_port *ap = host->ports[i];
6539 struct ata_link *link;
6540
6541 /* Previous resume operation might still be in
6542 * progress. Wait for PM_PENDING to clear.
6543 */
6544 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6545 ata_port_wait_eh(ap);
6546 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6547 }
6548
6549 /* request PM ops to EH */
6550 spin_lock_irqsave(ap->lock, flags);
6551
6552 ap->pm_mesg = mesg;
6553 if (wait) {
6554 rc = 0;
6555 ap->pm_result = &rc;
6556 }
6557
6558 ap->pflags |= ATA_PFLAG_PM_PENDING;
6559 __ata_port_for_each_link(link, ap) {
6560 link->eh_info.action |= action;
6561 link->eh_info.flags |= ehi_flags;
6562 }
6563
6564 ata_port_schedule_eh(ap);
6565
6566 spin_unlock_irqrestore(ap->lock, flags);
6567
6568 /* wait and check result */
6569 if (wait) {
6570 ata_port_wait_eh(ap);
6571 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6572 if (rc)
6573 return rc;
6574 }
6575 }
6576
6577 return 0;
6578 }
6579
6580 /**
6581 * ata_host_suspend - suspend host
6582 * @host: host to suspend
6583 * @mesg: PM message
6584 *
6585 * Suspend @host. Actual operation is performed by EH. This
6586 * function requests EH to perform PM operations and waits for EH
6587 * to finish.
6588 *
6589 * LOCKING:
6590 * Kernel thread context (may sleep).
6591 *
6592 * RETURNS:
6593 * 0 on success, -errno on failure.
6594 */
6595 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6596 {
6597 int rc;
6598
6599 /*
6600 * disable link pm on all ports before requesting
6601 * any pm activity
6602 */
6603 ata_lpm_enable(host);
6604
6605 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6606 if (rc == 0)
6607 host->dev->power.power_state = mesg;
6608 return rc;
6609 }
6610
6611 /**
6612 * ata_host_resume - resume host
6613 * @host: host to resume
6614 *
6615 * Resume @host. Actual operation is performed by EH. This
6616 * function requests EH to perform PM operations and returns.
6617 * Note that all resume operations are performed parallely.
6618 *
6619 * LOCKING:
6620 * Kernel thread context (may sleep).
6621 */
6622 void ata_host_resume(struct ata_host *host)
6623 {
6624 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
6625 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6626 host->dev->power.power_state = PMSG_ON;
6627
6628 /* reenable link pm */
6629 ata_lpm_disable(host);
6630 }
6631 #endif
6632
6633 /**
6634 * ata_port_start - Set port up for dma.
6635 * @ap: Port to initialize
6636 *
6637 * Called just after data structures for each port are
6638 * initialized. Allocates space for PRD table.
6639 *
6640 * May be used as the port_start() entry in ata_port_operations.
6641 *
6642 * LOCKING:
6643 * Inherited from caller.
6644 */
6645 int ata_port_start(struct ata_port *ap)
6646 {
6647 struct device *dev = ap->dev;
6648
6649 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6650 GFP_KERNEL);
6651 if (!ap->prd)
6652 return -ENOMEM;
6653
6654 return 0;
6655 }
6656
6657 /**
6658 * ata_dev_init - Initialize an ata_device structure
6659 * @dev: Device structure to initialize
6660 *
6661 * Initialize @dev in preparation for probing.
6662 *
6663 * LOCKING:
6664 * Inherited from caller.
6665 */
6666 void ata_dev_init(struct ata_device *dev)
6667 {
6668 struct ata_link *link = dev->link;
6669 struct ata_port *ap = link->ap;
6670 unsigned long flags;
6671
6672 /* SATA spd limit is bound to the first device */
6673 link->sata_spd_limit = link->hw_sata_spd_limit;
6674 link->sata_spd = 0;
6675
6676 /* High bits of dev->flags are used to record warm plug
6677 * requests which occur asynchronously. Synchronize using
6678 * host lock.
6679 */
6680 spin_lock_irqsave(ap->lock, flags);
6681 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6682 dev->horkage = 0;
6683 spin_unlock_irqrestore(ap->lock, flags);
6684
6685 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6686 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6687 dev->pio_mask = UINT_MAX;
6688 dev->mwdma_mask = UINT_MAX;
6689 dev->udma_mask = UINT_MAX;
6690 }
6691
6692 /**
6693 * ata_link_init - Initialize an ata_link structure
6694 * @ap: ATA port link is attached to
6695 * @link: Link structure to initialize
6696 * @pmp: Port multiplier port number
6697 *
6698 * Initialize @link.
6699 *
6700 * LOCKING:
6701 * Kernel thread context (may sleep)
6702 */
6703 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6704 {
6705 int i;
6706
6707 /* clear everything except for devices */
6708 memset(link, 0, offsetof(struct ata_link, device[0]));
6709
6710 link->ap = ap;
6711 link->pmp = pmp;
6712 link->active_tag = ATA_TAG_POISON;
6713 link->hw_sata_spd_limit = UINT_MAX;
6714
6715 /* can't use iterator, ap isn't initialized yet */
6716 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6717 struct ata_device *dev = &link->device[i];
6718
6719 dev->link = link;
6720 dev->devno = dev - link->device;
6721 ata_dev_init(dev);
6722 }
6723 }
6724
6725 /**
6726 * sata_link_init_spd - Initialize link->sata_spd_limit
6727 * @link: Link to configure sata_spd_limit for
6728 *
6729 * Initialize @link->[hw_]sata_spd_limit to the currently
6730 * configured value.
6731 *
6732 * LOCKING:
6733 * Kernel thread context (may sleep).
6734 *
6735 * RETURNS:
6736 * 0 on success, -errno on failure.
6737 */
6738 int sata_link_init_spd(struct ata_link *link)
6739 {
6740 u32 scontrol;
6741 u8 spd;
6742 int rc;
6743
6744 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6745 if (rc)
6746 return rc;
6747
6748 spd = (scontrol >> 4) & 0xf;
6749 if (spd)
6750 link->hw_sata_spd_limit &= (1 << spd) - 1;
6751
6752 ata_force_spd_limit(link);
6753
6754 link->sata_spd_limit = link->hw_sata_spd_limit;
6755
6756 return 0;
6757 }
6758
6759 /**
6760 * ata_port_alloc - allocate and initialize basic ATA port resources
6761 * @host: ATA host this allocated port belongs to
6762 *
6763 * Allocate and initialize basic ATA port resources.
6764 *
6765 * RETURNS:
6766 * Allocate ATA port on success, NULL on failure.
6767 *
6768 * LOCKING:
6769 * Inherited from calling layer (may sleep).
6770 */
6771 struct ata_port *ata_port_alloc(struct ata_host *host)
6772 {
6773 struct ata_port *ap;
6774
6775 DPRINTK("ENTER\n");
6776
6777 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6778 if (!ap)
6779 return NULL;
6780
6781 ap->pflags |= ATA_PFLAG_INITIALIZING;
6782 ap->lock = &host->lock;
6783 ap->flags = ATA_FLAG_DISABLED;
6784 ap->print_id = -1;
6785 ap->ctl = ATA_DEVCTL_OBS;
6786 ap->host = host;
6787 ap->dev = host->dev;
6788 ap->last_ctl = 0xFF;
6789
6790 #if defined(ATA_VERBOSE_DEBUG)
6791 /* turn on all debugging levels */
6792 ap->msg_enable = 0x00FF;
6793 #elif defined(ATA_DEBUG)
6794 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6795 #else
6796 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6797 #endif
6798
6799 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6800 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6801 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6802 INIT_LIST_HEAD(&ap->eh_done_q);
6803 init_waitqueue_head(&ap->eh_wait_q);
6804 init_timer_deferrable(&ap->fastdrain_timer);
6805 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6806 ap->fastdrain_timer.data = (unsigned long)ap;
6807
6808 ap->cbl = ATA_CBL_NONE;
6809
6810 ata_link_init(ap, &ap->link, 0);
6811
6812 #ifdef ATA_IRQ_TRAP
6813 ap->stats.unhandled_irq = 1;
6814 ap->stats.idle_irq = 1;
6815 #endif
6816 return ap;
6817 }
6818
6819 static void ata_host_release(struct device *gendev, void *res)
6820 {
6821 struct ata_host *host = dev_get_drvdata(gendev);
6822 int i;
6823
6824 for (i = 0; i < host->n_ports; i++) {
6825 struct ata_port *ap = host->ports[i];
6826
6827 if (!ap)
6828 continue;
6829
6830 if (ap->scsi_host)
6831 scsi_host_put(ap->scsi_host);
6832
6833 kfree(ap->pmp_link);
6834 kfree(ap);
6835 host->ports[i] = NULL;
6836 }
6837
6838 dev_set_drvdata(gendev, NULL);
6839 }
6840
6841 /**
6842 * ata_host_alloc - allocate and init basic ATA host resources
6843 * @dev: generic device this host is associated with
6844 * @max_ports: maximum number of ATA ports associated with this host
6845 *
6846 * Allocate and initialize basic ATA host resources. LLD calls
6847 * this function to allocate a host, initializes it fully and
6848 * attaches it using ata_host_register().
6849 *
6850 * @max_ports ports are allocated and host->n_ports is
6851 * initialized to @max_ports. The caller is allowed to decrease
6852 * host->n_ports before calling ata_host_register(). The unused
6853 * ports will be automatically freed on registration.
6854 *
6855 * RETURNS:
6856 * Allocate ATA host on success, NULL on failure.
6857 *
6858 * LOCKING:
6859 * Inherited from calling layer (may sleep).
6860 */
6861 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6862 {
6863 struct ata_host *host;
6864 size_t sz;
6865 int i;
6866
6867 DPRINTK("ENTER\n");
6868
6869 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6870 return NULL;
6871
6872 /* alloc a container for our list of ATA ports (buses) */
6873 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6874 /* alloc a container for our list of ATA ports (buses) */
6875 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6876 if (!host)
6877 goto err_out;
6878
6879 devres_add(dev, host);
6880 dev_set_drvdata(dev, host);
6881
6882 spin_lock_init(&host->lock);
6883 host->dev = dev;
6884 host->n_ports = max_ports;
6885
6886 /* allocate ports bound to this host */
6887 for (i = 0; i < max_ports; i++) {
6888 struct ata_port *ap;
6889
6890 ap = ata_port_alloc(host);
6891 if (!ap)
6892 goto err_out;
6893
6894 ap->port_no = i;
6895 host->ports[i] = ap;
6896 }
6897
6898 devres_remove_group(dev, NULL);
6899 return host;
6900
6901 err_out:
6902 devres_release_group(dev, NULL);
6903 return NULL;
6904 }
6905
6906 /**
6907 * ata_host_alloc_pinfo - alloc host and init with port_info array
6908 * @dev: generic device this host is associated with
6909 * @ppi: array of ATA port_info to initialize host with
6910 * @n_ports: number of ATA ports attached to this host
6911 *
6912 * Allocate ATA host and initialize with info from @ppi. If NULL
6913 * terminated, @ppi may contain fewer entries than @n_ports. The
6914 * last entry will be used for the remaining ports.
6915 *
6916 * RETURNS:
6917 * Allocate ATA host on success, NULL on failure.
6918 *
6919 * LOCKING:
6920 * Inherited from calling layer (may sleep).
6921 */
6922 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6923 const struct ata_port_info * const * ppi,
6924 int n_ports)
6925 {
6926 const struct ata_port_info *pi;
6927 struct ata_host *host;
6928 int i, j;
6929
6930 host = ata_host_alloc(dev, n_ports);
6931 if (!host)
6932 return NULL;
6933
6934 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6935 struct ata_port *ap = host->ports[i];
6936
6937 if (ppi[j])
6938 pi = ppi[j++];
6939
6940 ap->pio_mask = pi->pio_mask;
6941 ap->mwdma_mask = pi->mwdma_mask;
6942 ap->udma_mask = pi->udma_mask;
6943 ap->flags |= pi->flags;
6944 ap->link.flags |= pi->link_flags;
6945 ap->ops = pi->port_ops;
6946
6947 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6948 host->ops = pi->port_ops;
6949 if (!host->private_data && pi->private_data)
6950 host->private_data = pi->private_data;
6951 }
6952
6953 return host;
6954 }
6955
6956 static void ata_host_stop(struct device *gendev, void *res)
6957 {
6958 struct ata_host *host = dev_get_drvdata(gendev);
6959 int i;
6960
6961 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6962
6963 for (i = 0; i < host->n_ports; i++) {
6964 struct ata_port *ap = host->ports[i];
6965
6966 if (ap->ops->port_stop)
6967 ap->ops->port_stop(ap);
6968 }
6969
6970 if (host->ops->host_stop)
6971 host->ops->host_stop(host);
6972 }
6973
6974 /**
6975 * ata_host_start - start and freeze ports of an ATA host
6976 * @host: ATA host to start ports for
6977 *
6978 * Start and then freeze ports of @host. Started status is
6979 * recorded in host->flags, so this function can be called
6980 * multiple times. Ports are guaranteed to get started only
6981 * once. If host->ops isn't initialized yet, its set to the
6982 * first non-dummy port ops.
6983 *
6984 * LOCKING:
6985 * Inherited from calling layer (may sleep).
6986 *
6987 * RETURNS:
6988 * 0 if all ports are started successfully, -errno otherwise.
6989 */
6990 int ata_host_start(struct ata_host *host)
6991 {
6992 int have_stop = 0;
6993 void *start_dr = NULL;
6994 int i, rc;
6995
6996 if (host->flags & ATA_HOST_STARTED)
6997 return 0;
6998
6999 for (i = 0; i < host->n_ports; i++) {
7000 struct ata_port *ap = host->ports[i];
7001
7002 if (!host->ops && !ata_port_is_dummy(ap))
7003 host->ops = ap->ops;
7004
7005 if (ap->ops->port_stop)
7006 have_stop = 1;
7007 }
7008
7009 if (host->ops->host_stop)
7010 have_stop = 1;
7011
7012 if (have_stop) {
7013 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
7014 if (!start_dr)
7015 return -ENOMEM;
7016 }
7017
7018 for (i = 0; i < host->n_ports; i++) {
7019 struct ata_port *ap = host->ports[i];
7020
7021 if (ap->ops->port_start) {
7022 rc = ap->ops->port_start(ap);
7023 if (rc) {
7024 if (rc != -ENODEV)
7025 dev_printk(KERN_ERR, host->dev,
7026 "failed to start port %d "
7027 "(errno=%d)\n", i, rc);
7028 goto err_out;
7029 }
7030 }
7031 ata_eh_freeze_port(ap);
7032 }
7033
7034 if (start_dr)
7035 devres_add(host->dev, start_dr);
7036 host->flags |= ATA_HOST_STARTED;
7037 return 0;
7038
7039 err_out:
7040 while (--i >= 0) {
7041 struct ata_port *ap = host->ports[i];
7042
7043 if (ap->ops->port_stop)
7044 ap->ops->port_stop(ap);
7045 }
7046 devres_free(start_dr);
7047 return rc;
7048 }
7049
7050 /**
7051 * ata_sas_host_init - Initialize a host struct
7052 * @host: host to initialize
7053 * @dev: device host is attached to
7054 * @flags: host flags
7055 * @ops: port_ops
7056 *
7057 * LOCKING:
7058 * PCI/etc. bus probe sem.
7059 *
7060 */
7061 /* KILLME - the only user left is ipr */
7062 void ata_host_init(struct ata_host *host, struct device *dev,
7063 unsigned long flags, const struct ata_port_operations *ops)
7064 {
7065 spin_lock_init(&host->lock);
7066 host->dev = dev;
7067 host->flags = flags;
7068 host->ops = ops;
7069 }
7070
7071 /**
7072 * ata_host_register - register initialized ATA host
7073 * @host: ATA host to register
7074 * @sht: template for SCSI host
7075 *
7076 * Register initialized ATA host. @host is allocated using
7077 * ata_host_alloc() and fully initialized by LLD. This function
7078 * starts ports, registers @host with ATA and SCSI layers and
7079 * probe registered devices.
7080 *
7081 * LOCKING:
7082 * Inherited from calling layer (may sleep).
7083 *
7084 * RETURNS:
7085 * 0 on success, -errno otherwise.
7086 */
7087 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7088 {
7089 int i, rc;
7090
7091 /* host must have been started */
7092 if (!(host->flags & ATA_HOST_STARTED)) {
7093 dev_printk(KERN_ERR, host->dev,
7094 "BUG: trying to register unstarted host\n");
7095 WARN_ON(1);
7096 return -EINVAL;
7097 }
7098
7099 /* Blow away unused ports. This happens when LLD can't
7100 * determine the exact number of ports to allocate at
7101 * allocation time.
7102 */
7103 for (i = host->n_ports; host->ports[i]; i++)
7104 kfree(host->ports[i]);
7105
7106 /* give ports names and add SCSI hosts */
7107 for (i = 0; i < host->n_ports; i++)
7108 host->ports[i]->print_id = ata_print_id++;
7109
7110 rc = ata_scsi_add_hosts(host, sht);
7111 if (rc)
7112 return rc;
7113
7114 /* associate with ACPI nodes */
7115 ata_acpi_associate(host);
7116
7117 /* set cable, sata_spd_limit and report */
7118 for (i = 0; i < host->n_ports; i++) {
7119 struct ata_port *ap = host->ports[i];
7120 unsigned long xfer_mask;
7121
7122 /* set SATA cable type if still unset */
7123 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7124 ap->cbl = ATA_CBL_SATA;
7125
7126 /* init sata_spd_limit to the current value */
7127 sata_link_init_spd(&ap->link);
7128
7129 /* print per-port info to dmesg */
7130 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7131 ap->udma_mask);
7132
7133 if (!ata_port_is_dummy(ap)) {
7134 ata_port_printk(ap, KERN_INFO,
7135 "%cATA max %s %s\n",
7136 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7137 ata_mode_string(xfer_mask),
7138 ap->link.eh_info.desc);
7139 ata_ehi_clear_desc(&ap->link.eh_info);
7140 } else
7141 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7142 }
7143
7144 /* perform each probe synchronously */
7145 DPRINTK("probe begin\n");
7146 for (i = 0; i < host->n_ports; i++) {
7147 struct ata_port *ap = host->ports[i];
7148
7149 /* probe */
7150 if (ap->ops->error_handler) {
7151 struct ata_eh_info *ehi = &ap->link.eh_info;
7152 unsigned long flags;
7153
7154 ata_port_probe(ap);
7155
7156 /* kick EH for boot probing */
7157 spin_lock_irqsave(ap->lock, flags);
7158
7159 ehi->probe_mask =
7160 (1 << ata_link_max_devices(&ap->link)) - 1;
7161 ehi->action |= ATA_EH_RESET;
7162 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7163
7164 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7165 ap->pflags |= ATA_PFLAG_LOADING;
7166 ata_port_schedule_eh(ap);
7167
7168 spin_unlock_irqrestore(ap->lock, flags);
7169
7170 /* wait for EH to finish */
7171 ata_port_wait_eh(ap);
7172 } else {
7173 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7174 rc = ata_bus_probe(ap);
7175 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7176
7177 if (rc) {
7178 /* FIXME: do something useful here?
7179 * Current libata behavior will
7180 * tear down everything when
7181 * the module is removed
7182 * or the h/w is unplugged.
7183 */
7184 }
7185 }
7186 }
7187
7188 /* probes are done, now scan each port's disk(s) */
7189 DPRINTK("host probe begin\n");
7190 for (i = 0; i < host->n_ports; i++) {
7191 struct ata_port *ap = host->ports[i];
7192
7193 ata_scsi_scan_host(ap, 1);
7194 ata_lpm_schedule(ap, ap->pm_policy);
7195 }
7196
7197 return 0;
7198 }
7199
7200 /**
7201 * ata_host_activate - start host, request IRQ and register it
7202 * @host: target ATA host
7203 * @irq: IRQ to request
7204 * @irq_handler: irq_handler used when requesting IRQ
7205 * @irq_flags: irq_flags used when requesting IRQ
7206 * @sht: scsi_host_template to use when registering the host
7207 *
7208 * After allocating an ATA host and initializing it, most libata
7209 * LLDs perform three steps to activate the host - start host,
7210 * request IRQ and register it. This helper takes necessasry
7211 * arguments and performs the three steps in one go.
7212 *
7213 * An invalid IRQ skips the IRQ registration and expects the host to
7214 * have set polling mode on the port. In this case, @irq_handler
7215 * should be NULL.
7216 *
7217 * LOCKING:
7218 * Inherited from calling layer (may sleep).
7219 *
7220 * RETURNS:
7221 * 0 on success, -errno otherwise.
7222 */
7223 int ata_host_activate(struct ata_host *host, int irq,
7224 irq_handler_t irq_handler, unsigned long irq_flags,
7225 struct scsi_host_template *sht)
7226 {
7227 int i, rc;
7228
7229 rc = ata_host_start(host);
7230 if (rc)
7231 return rc;
7232
7233 /* Special case for polling mode */
7234 if (!irq) {
7235 WARN_ON(irq_handler);
7236 return ata_host_register(host, sht);
7237 }
7238
7239 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7240 dev_driver_string(host->dev), host);
7241 if (rc)
7242 return rc;
7243
7244 for (i = 0; i < host->n_ports; i++)
7245 ata_port_desc(host->ports[i], "irq %d", irq);
7246
7247 rc = ata_host_register(host, sht);
7248 /* if failed, just free the IRQ and leave ports alone */
7249 if (rc)
7250 devm_free_irq(host->dev, irq, host);
7251
7252 return rc;
7253 }
7254
7255 /**
7256 * ata_port_detach - Detach ATA port in prepration of device removal
7257 * @ap: ATA port to be detached
7258 *
7259 * Detach all ATA devices and the associated SCSI devices of @ap;
7260 * then, remove the associated SCSI host. @ap is guaranteed to
7261 * be quiescent on return from this function.
7262 *
7263 * LOCKING:
7264 * Kernel thread context (may sleep).
7265 */
7266 static void ata_port_detach(struct ata_port *ap)
7267 {
7268 unsigned long flags;
7269 struct ata_link *link;
7270 struct ata_device *dev;
7271
7272 if (!ap->ops->error_handler)
7273 goto skip_eh;
7274
7275 /* tell EH we're leaving & flush EH */
7276 spin_lock_irqsave(ap->lock, flags);
7277 ap->pflags |= ATA_PFLAG_UNLOADING;
7278 spin_unlock_irqrestore(ap->lock, flags);
7279
7280 ata_port_wait_eh(ap);
7281
7282 /* EH is now guaranteed to see UNLOADING - EH context belongs
7283 * to us. Disable all existing devices.
7284 */
7285 ata_port_for_each_link(link, ap) {
7286 ata_link_for_each_dev(dev, link)
7287 ata_dev_disable(dev);
7288 }
7289
7290 /* Final freeze & EH. All in-flight commands are aborted. EH
7291 * will be skipped and retrials will be terminated with bad
7292 * target.
7293 */
7294 spin_lock_irqsave(ap->lock, flags);
7295 ata_port_freeze(ap); /* won't be thawed */
7296 spin_unlock_irqrestore(ap->lock, flags);
7297
7298 ata_port_wait_eh(ap);
7299 cancel_rearming_delayed_work(&ap->hotplug_task);
7300
7301 skip_eh:
7302 /* remove the associated SCSI host */
7303 scsi_remove_host(ap->scsi_host);
7304 }
7305
7306 /**
7307 * ata_host_detach - Detach all ports of an ATA host
7308 * @host: Host to detach
7309 *
7310 * Detach all ports of @host.
7311 *
7312 * LOCKING:
7313 * Kernel thread context (may sleep).
7314 */
7315 void ata_host_detach(struct ata_host *host)
7316 {
7317 int i;
7318
7319 for (i = 0; i < host->n_ports; i++)
7320 ata_port_detach(host->ports[i]);
7321
7322 /* the host is dead now, dissociate ACPI */
7323 ata_acpi_dissociate(host);
7324 }
7325
7326 /**
7327 * ata_std_ports - initialize ioaddr with standard port offsets.
7328 * @ioaddr: IO address structure to be initialized
7329 *
7330 * Utility function which initializes data_addr, error_addr,
7331 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7332 * device_addr, status_addr, and command_addr to standard offsets
7333 * relative to cmd_addr.
7334 *
7335 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7336 */
7337
7338 void ata_std_ports(struct ata_ioports *ioaddr)
7339 {
7340 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7341 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7342 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7343 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7344 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7345 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7346 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7347 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7348 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7349 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7350 }
7351
7352
7353 #ifdef CONFIG_PCI
7354
7355 /**
7356 * ata_pci_remove_one - PCI layer callback for device removal
7357 * @pdev: PCI device that was removed
7358 *
7359 * PCI layer indicates to libata via this hook that hot-unplug or
7360 * module unload event has occurred. Detach all ports. Resource
7361 * release is handled via devres.
7362 *
7363 * LOCKING:
7364 * Inherited from PCI layer (may sleep).
7365 */
7366 void ata_pci_remove_one(struct pci_dev *pdev)
7367 {
7368 struct device *dev = &pdev->dev;
7369 struct ata_host *host = dev_get_drvdata(dev);
7370
7371 ata_host_detach(host);
7372 }
7373
7374 /* move to PCI subsystem */
7375 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7376 {
7377 unsigned long tmp = 0;
7378
7379 switch (bits->width) {
7380 case 1: {
7381 u8 tmp8 = 0;
7382 pci_read_config_byte(pdev, bits->reg, &tmp8);
7383 tmp = tmp8;
7384 break;
7385 }
7386 case 2: {
7387 u16 tmp16 = 0;
7388 pci_read_config_word(pdev, bits->reg, &tmp16);
7389 tmp = tmp16;
7390 break;
7391 }
7392 case 4: {
7393 u32 tmp32 = 0;
7394 pci_read_config_dword(pdev, bits->reg, &tmp32);
7395 tmp = tmp32;
7396 break;
7397 }
7398
7399 default:
7400 return -EINVAL;
7401 }
7402
7403 tmp &= bits->mask;
7404
7405 return (tmp == bits->val) ? 1 : 0;
7406 }
7407
7408 #ifdef CONFIG_PM
7409 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7410 {
7411 pci_save_state(pdev);
7412 pci_disable_device(pdev);
7413
7414 if (mesg.event & PM_EVENT_SLEEP)
7415 pci_set_power_state(pdev, PCI_D3hot);
7416 }
7417
7418 int ata_pci_device_do_resume(struct pci_dev *pdev)
7419 {
7420 int rc;
7421
7422 pci_set_power_state(pdev, PCI_D0);
7423 pci_restore_state(pdev);
7424
7425 rc = pcim_enable_device(pdev);
7426 if (rc) {
7427 dev_printk(KERN_ERR, &pdev->dev,
7428 "failed to enable device after resume (%d)\n", rc);
7429 return rc;
7430 }
7431
7432 pci_set_master(pdev);
7433 return 0;
7434 }
7435
7436 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7437 {
7438 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7439 int rc = 0;
7440
7441 rc = ata_host_suspend(host, mesg);
7442 if (rc)
7443 return rc;
7444
7445 ata_pci_device_do_suspend(pdev, mesg);
7446
7447 return 0;
7448 }
7449
7450 int ata_pci_device_resume(struct pci_dev *pdev)
7451 {
7452 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7453 int rc;
7454
7455 rc = ata_pci_device_do_resume(pdev);
7456 if (rc == 0)
7457 ata_host_resume(host);
7458 return rc;
7459 }
7460 #endif /* CONFIG_PM */
7461
7462 #endif /* CONFIG_PCI */
7463
7464 static int __init ata_parse_force_one(char **cur,
7465 struct ata_force_ent *force_ent,
7466 const char **reason)
7467 {
7468 /* FIXME: Currently, there's no way to tag init const data and
7469 * using __initdata causes build failure on some versions of
7470 * gcc. Once __initdataconst is implemented, add const to the
7471 * following structure.
7472 */
7473 static struct ata_force_param force_tbl[] __initdata = {
7474 { "40c", .cbl = ATA_CBL_PATA40 },
7475 { "80c", .cbl = ATA_CBL_PATA80 },
7476 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7477 { "unk", .cbl = ATA_CBL_PATA_UNK },
7478 { "ign", .cbl = ATA_CBL_PATA_IGN },
7479 { "sata", .cbl = ATA_CBL_SATA },
7480 { "1.5Gbps", .spd_limit = 1 },
7481 { "3.0Gbps", .spd_limit = 2 },
7482 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7483 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7484 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7485 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7486 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7487 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7488 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7489 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7490 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7491 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7492 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7493 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7494 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7495 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7496 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7497 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7498 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7499 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7500 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7501 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7502 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7503 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7504 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7505 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7506 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7507 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7508 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7509 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7510 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7511 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7512 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7513 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7514 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7515 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7516 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7517 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7518 };
7519 char *start = *cur, *p = *cur;
7520 char *id, *val, *endp;
7521 const struct ata_force_param *match_fp = NULL;
7522 int nr_matches = 0, i;
7523
7524 /* find where this param ends and update *cur */
7525 while (*p != '\0' && *p != ',')
7526 p++;
7527
7528 if (*p == '\0')
7529 *cur = p;
7530 else
7531 *cur = p + 1;
7532
7533 *p = '\0';
7534
7535 /* parse */
7536 p = strchr(start, ':');
7537 if (!p) {
7538 val = strstrip(start);
7539 goto parse_val;
7540 }
7541 *p = '\0';
7542
7543 id = strstrip(start);
7544 val = strstrip(p + 1);
7545
7546 /* parse id */
7547 p = strchr(id, '.');
7548 if (p) {
7549 *p++ = '\0';
7550 force_ent->device = simple_strtoul(p, &endp, 10);
7551 if (p == endp || *endp != '\0') {
7552 *reason = "invalid device";
7553 return -EINVAL;
7554 }
7555 }
7556
7557 force_ent->port = simple_strtoul(id, &endp, 10);
7558 if (p == endp || *endp != '\0') {
7559 *reason = "invalid port/link";
7560 return -EINVAL;
7561 }
7562
7563 parse_val:
7564 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7565 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7566 const struct ata_force_param *fp = &force_tbl[i];
7567
7568 if (strncasecmp(val, fp->name, strlen(val)))
7569 continue;
7570
7571 nr_matches++;
7572 match_fp = fp;
7573
7574 if (strcasecmp(val, fp->name) == 0) {
7575 nr_matches = 1;
7576 break;
7577 }
7578 }
7579
7580 if (!nr_matches) {
7581 *reason = "unknown value";
7582 return -EINVAL;
7583 }
7584 if (nr_matches > 1) {
7585 *reason = "ambigious value";
7586 return -EINVAL;
7587 }
7588
7589 force_ent->param = *match_fp;
7590
7591 return 0;
7592 }
7593
7594 static void __init ata_parse_force_param(void)
7595 {
7596 int idx = 0, size = 1;
7597 int last_port = -1, last_device = -1;
7598 char *p, *cur, *next;
7599
7600 /* calculate maximum number of params and allocate force_tbl */
7601 for (p = ata_force_param_buf; *p; p++)
7602 if (*p == ',')
7603 size++;
7604
7605 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7606 if (!ata_force_tbl) {
7607 printk(KERN_WARNING "ata: failed to extend force table, "
7608 "libata.force ignored\n");
7609 return;
7610 }
7611
7612 /* parse and populate the table */
7613 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7614 const char *reason = "";
7615 struct ata_force_ent te = { .port = -1, .device = -1 };
7616
7617 next = cur;
7618 if (ata_parse_force_one(&next, &te, &reason)) {
7619 printk(KERN_WARNING "ata: failed to parse force "
7620 "parameter \"%s\" (%s)\n",
7621 cur, reason);
7622 continue;
7623 }
7624
7625 if (te.port == -1) {
7626 te.port = last_port;
7627 te.device = last_device;
7628 }
7629
7630 ata_force_tbl[idx++] = te;
7631
7632 last_port = te.port;
7633 last_device = te.device;
7634 }
7635
7636 ata_force_tbl_size = idx;
7637 }
7638
7639 static int __init ata_init(void)
7640 {
7641 ata_probe_timeout *= HZ;
7642
7643 ata_parse_force_param();
7644
7645 ata_wq = create_workqueue("ata");
7646 if (!ata_wq)
7647 return -ENOMEM;
7648
7649 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7650 if (!ata_aux_wq) {
7651 destroy_workqueue(ata_wq);
7652 return -ENOMEM;
7653 }
7654
7655 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7656 return 0;
7657 }
7658
7659 static void __exit ata_exit(void)
7660 {
7661 kfree(ata_force_tbl);
7662 destroy_workqueue(ata_wq);
7663 destroy_workqueue(ata_aux_wq);
7664 }
7665
7666 subsys_initcall(ata_init);
7667 module_exit(ata_exit);
7668
7669 static unsigned long ratelimit_time;
7670 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7671
7672 int ata_ratelimit(void)
7673 {
7674 int rc;
7675 unsigned long flags;
7676
7677 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7678
7679 if (time_after(jiffies, ratelimit_time)) {
7680 rc = 1;
7681 ratelimit_time = jiffies + (HZ/5);
7682 } else
7683 rc = 0;
7684
7685 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7686
7687 return rc;
7688 }
7689
7690 /**
7691 * ata_wait_register - wait until register value changes
7692 * @reg: IO-mapped register
7693 * @mask: Mask to apply to read register value
7694 * @val: Wait condition
7695 * @interval_msec: polling interval in milliseconds
7696 * @timeout_msec: timeout in milliseconds
7697 *
7698 * Waiting for some bits of register to change is a common
7699 * operation for ATA controllers. This function reads 32bit LE
7700 * IO-mapped register @reg and tests for the following condition.
7701 *
7702 * (*@reg & mask) != val
7703 *
7704 * If the condition is met, it returns; otherwise, the process is
7705 * repeated after @interval_msec until timeout.
7706 *
7707 * LOCKING:
7708 * Kernel thread context (may sleep)
7709 *
7710 * RETURNS:
7711 * The final register value.
7712 */
7713 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7714 unsigned long interval_msec,
7715 unsigned long timeout_msec)
7716 {
7717 unsigned long timeout;
7718 u32 tmp;
7719
7720 tmp = ioread32(reg);
7721
7722 /* Calculate timeout _after_ the first read to make sure
7723 * preceding writes reach the controller before starting to
7724 * eat away the timeout.
7725 */
7726 timeout = jiffies + (timeout_msec * HZ) / 1000;
7727
7728 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7729 msleep(interval_msec);
7730 tmp = ioread32(reg);
7731 }
7732
7733 return tmp;
7734 }
7735
7736 /*
7737 * Dummy port_ops
7738 */
7739 static void ata_dummy_noret(struct ata_port *ap) { }
7740 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7741 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7742
7743 static u8 ata_dummy_check_status(struct ata_port *ap)
7744 {
7745 return ATA_DRDY;
7746 }
7747
7748 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7749 {
7750 return AC_ERR_SYSTEM;
7751 }
7752
7753 const struct ata_port_operations ata_dummy_port_ops = {
7754 .check_status = ata_dummy_check_status,
7755 .check_altstatus = ata_dummy_check_status,
7756 .dev_select = ata_noop_dev_select,
7757 .qc_prep = ata_noop_qc_prep,
7758 .qc_issue = ata_dummy_qc_issue,
7759 .freeze = ata_dummy_noret,
7760 .thaw = ata_dummy_noret,
7761 .error_handler = ata_dummy_noret,
7762 .post_internal_cmd = ata_dummy_qc_noret,
7763 .irq_clear = ata_dummy_noret,
7764 .port_start = ata_dummy_ret0,
7765 .port_stop = ata_dummy_noret,
7766 };
7767
7768 const struct ata_port_info ata_dummy_port_info = {
7769 .port_ops = &ata_dummy_port_ops,
7770 };
7771
7772 /*
7773 * libata is essentially a library of internal helper functions for
7774 * low-level ATA host controller drivers. As such, the API/ABI is
7775 * likely to change as new drivers are added and updated.
7776 * Do not depend on ABI/API stability.
7777 */
7778 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7779 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7780 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7781 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7782 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7783 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7784 EXPORT_SYMBOL_GPL(ata_std_ports);
7785 EXPORT_SYMBOL_GPL(ata_host_init);
7786 EXPORT_SYMBOL_GPL(ata_host_alloc);
7787 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7788 EXPORT_SYMBOL_GPL(ata_host_start);
7789 EXPORT_SYMBOL_GPL(ata_host_register);
7790 EXPORT_SYMBOL_GPL(ata_host_activate);
7791 EXPORT_SYMBOL_GPL(ata_host_detach);
7792 EXPORT_SYMBOL_GPL(ata_sg_init);
7793 EXPORT_SYMBOL_GPL(ata_hsm_move);
7794 EXPORT_SYMBOL_GPL(ata_qc_complete);
7795 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7796 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7797 EXPORT_SYMBOL_GPL(ata_tf_load);
7798 EXPORT_SYMBOL_GPL(ata_tf_read);
7799 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7800 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7801 EXPORT_SYMBOL_GPL(sata_print_link_status);
7802 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7803 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7804 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7805 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7806 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7807 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7808 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7809 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7810 EXPORT_SYMBOL_GPL(ata_mode_string);
7811 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7812 EXPORT_SYMBOL_GPL(ata_check_status);
7813 EXPORT_SYMBOL_GPL(ata_altstatus);
7814 EXPORT_SYMBOL_GPL(ata_exec_command);
7815 EXPORT_SYMBOL_GPL(ata_port_start);
7816 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7817 EXPORT_SYMBOL_GPL(ata_interrupt);
7818 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7819 EXPORT_SYMBOL_GPL(ata_data_xfer);
7820 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7821 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7822 EXPORT_SYMBOL_GPL(ata_qc_prep);
7823 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7824 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7825 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7826 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7827 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7828 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7829 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7830 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7831 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7832 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7833 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7834 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7835 EXPORT_SYMBOL_GPL(ata_port_probe);
7836 EXPORT_SYMBOL_GPL(ata_dev_disable);
7837 EXPORT_SYMBOL_GPL(sata_set_spd);
7838 EXPORT_SYMBOL_GPL(sata_link_debounce);
7839 EXPORT_SYMBOL_GPL(sata_link_resume);
7840 EXPORT_SYMBOL_GPL(ata_bus_reset);
7841 EXPORT_SYMBOL_GPL(ata_std_prereset);
7842 EXPORT_SYMBOL_GPL(ata_std_softreset);
7843 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7844 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7845 EXPORT_SYMBOL_GPL(ata_std_postreset);
7846 EXPORT_SYMBOL_GPL(ata_dev_classify);
7847 EXPORT_SYMBOL_GPL(ata_dev_pair);
7848 EXPORT_SYMBOL_GPL(ata_port_disable);
7849 EXPORT_SYMBOL_GPL(ata_ratelimit);
7850 EXPORT_SYMBOL_GPL(ata_wait_register);
7851 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7852 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7853 EXPORT_SYMBOL_GPL(ata_wait_ready);
7854 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7855 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7856 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7857 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7858 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7859 EXPORT_SYMBOL_GPL(ata_host_intr);
7860 EXPORT_SYMBOL_GPL(sata_scr_valid);
7861 EXPORT_SYMBOL_GPL(sata_scr_read);
7862 EXPORT_SYMBOL_GPL(sata_scr_write);
7863 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7864 EXPORT_SYMBOL_GPL(ata_link_online);
7865 EXPORT_SYMBOL_GPL(ata_link_offline);
7866 #ifdef CONFIG_PM
7867 EXPORT_SYMBOL_GPL(ata_host_suspend);
7868 EXPORT_SYMBOL_GPL(ata_host_resume);
7869 #endif /* CONFIG_PM */
7870 EXPORT_SYMBOL_GPL(ata_id_string);
7871 EXPORT_SYMBOL_GPL(ata_id_c_string);
7872 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7873
7874 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7875 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7876 EXPORT_SYMBOL_GPL(ata_timing_compute);
7877 EXPORT_SYMBOL_GPL(ata_timing_merge);
7878 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7879
7880 #ifdef CONFIG_PCI
7881 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7882 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7883 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7884 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7885 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7886 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7887 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7888 #ifdef CONFIG_PM
7889 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7890 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7891 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7892 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7893 #endif /* CONFIG_PM */
7894 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7895 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7896 #endif /* CONFIG_PCI */
7897
7898 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7899 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7900 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7901 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7902 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7903
7904 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7905 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7906 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7907 EXPORT_SYMBOL_GPL(ata_port_desc);
7908 #ifdef CONFIG_PCI
7909 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7910 #endif /* CONFIG_PCI */
7911 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7912 EXPORT_SYMBOL_GPL(ata_link_abort);
7913 EXPORT_SYMBOL_GPL(ata_port_abort);
7914 EXPORT_SYMBOL_GPL(ata_port_freeze);
7915 EXPORT_SYMBOL_GPL(sata_async_notification);
7916 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7917 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7918 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7919 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7920 EXPORT_SYMBOL_GPL(ata_do_eh);
7921 EXPORT_SYMBOL_GPL(ata_irq_on);
7922 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7923
7924 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7925 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7926 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7927 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7928 EXPORT_SYMBOL_GPL(ata_cable_sata);