libata: implement and use ata_port_desc() to report port configuration
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
74 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76
77 unsigned int ata_print_id = 1;
78 static struct workqueue_struct *ata_wq;
79
80 struct workqueue_struct *ata_aux_wq;
81
82 int atapi_enabled = 1;
83 module_param(atapi_enabled, int, 0444);
84 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85
86 int atapi_dmadir = 0;
87 module_param(atapi_dmadir, int, 0444);
88 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89
90 int atapi_passthru16 = 1;
91 module_param(atapi_passthru16, int, 0444);
92 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
93
94 int libata_fua = 0;
95 module_param_named(fua, libata_fua, int, 0444);
96 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97
98 static int ata_ignore_hpa = 0;
99 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
100 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101
102 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
103 module_param(ata_probe_timeout, int, 0444);
104 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
105
106 int libata_noacpi = 1;
107 module_param_named(noacpi, libata_noacpi, int, 0444);
108 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
109
110 MODULE_AUTHOR("Jeff Garzik");
111 MODULE_DESCRIPTION("Library module for ATA devices");
112 MODULE_LICENSE("GPL");
113 MODULE_VERSION(DRV_VERSION);
114
115
116 /**
117 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
118 * @tf: Taskfile to convert
119 * @pmp: Port multiplier port
120 * @is_cmd: This FIS is for command
121 * @fis: Buffer into which data will output
122 *
123 * Converts a standard ATA taskfile to a Serial ATA
124 * FIS structure (Register - Host to Device).
125 *
126 * LOCKING:
127 * Inherited from caller.
128 */
129 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
130 {
131 fis[0] = 0x27; /* Register - Host to Device FIS */
132 fis[1] = pmp & 0xf; /* Port multiplier number*/
133 if (is_cmd)
134 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
135
136 fis[2] = tf->command;
137 fis[3] = tf->feature;
138
139 fis[4] = tf->lbal;
140 fis[5] = tf->lbam;
141 fis[6] = tf->lbah;
142 fis[7] = tf->device;
143
144 fis[8] = tf->hob_lbal;
145 fis[9] = tf->hob_lbam;
146 fis[10] = tf->hob_lbah;
147 fis[11] = tf->hob_feature;
148
149 fis[12] = tf->nsect;
150 fis[13] = tf->hob_nsect;
151 fis[14] = 0;
152 fis[15] = tf->ctl;
153
154 fis[16] = 0;
155 fis[17] = 0;
156 fis[18] = 0;
157 fis[19] = 0;
158 }
159
160 /**
161 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
162 * @fis: Buffer from which data will be input
163 * @tf: Taskfile to output
164 *
165 * Converts a serial ATA FIS structure to a standard ATA taskfile.
166 *
167 * LOCKING:
168 * Inherited from caller.
169 */
170
171 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
172 {
173 tf->command = fis[2]; /* status */
174 tf->feature = fis[3]; /* error */
175
176 tf->lbal = fis[4];
177 tf->lbam = fis[5];
178 tf->lbah = fis[6];
179 tf->device = fis[7];
180
181 tf->hob_lbal = fis[8];
182 tf->hob_lbam = fis[9];
183 tf->hob_lbah = fis[10];
184
185 tf->nsect = fis[12];
186 tf->hob_nsect = fis[13];
187 }
188
189 static const u8 ata_rw_cmds[] = {
190 /* pio multi */
191 ATA_CMD_READ_MULTI,
192 ATA_CMD_WRITE_MULTI,
193 ATA_CMD_READ_MULTI_EXT,
194 ATA_CMD_WRITE_MULTI_EXT,
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_MULTI_FUA_EXT,
199 /* pio */
200 ATA_CMD_PIO_READ,
201 ATA_CMD_PIO_WRITE,
202 ATA_CMD_PIO_READ_EXT,
203 ATA_CMD_PIO_WRITE_EXT,
204 0,
205 0,
206 0,
207 0,
208 /* dma */
209 ATA_CMD_READ,
210 ATA_CMD_WRITE,
211 ATA_CMD_READ_EXT,
212 ATA_CMD_WRITE_EXT,
213 0,
214 0,
215 0,
216 ATA_CMD_WRITE_FUA_EXT
217 };
218
219 /**
220 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
221 * @tf: command to examine and configure
222 * @dev: device tf belongs to
223 *
224 * Examine the device configuration and tf->flags to calculate
225 * the proper read/write commands and protocol to use.
226 *
227 * LOCKING:
228 * caller.
229 */
230 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
231 {
232 u8 cmd;
233
234 int index, fua, lba48, write;
235
236 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
237 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
238 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
239
240 if (dev->flags & ATA_DFLAG_PIO) {
241 tf->protocol = ATA_PROT_PIO;
242 index = dev->multi_count ? 0 : 8;
243 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
244 /* Unable to use DMA due to host limitation */
245 tf->protocol = ATA_PROT_PIO;
246 index = dev->multi_count ? 0 : 8;
247 } else {
248 tf->protocol = ATA_PROT_DMA;
249 index = 16;
250 }
251
252 cmd = ata_rw_cmds[index + fua + lba48 + write];
253 if (cmd) {
254 tf->command = cmd;
255 return 0;
256 }
257 return -1;
258 }
259
260 /**
261 * ata_tf_read_block - Read block address from ATA taskfile
262 * @tf: ATA taskfile of interest
263 * @dev: ATA device @tf belongs to
264 *
265 * LOCKING:
266 * None.
267 *
268 * Read block address from @tf. This function can handle all
269 * three address formats - LBA, LBA48 and CHS. tf->protocol and
270 * flags select the address format to use.
271 *
272 * RETURNS:
273 * Block address read from @tf.
274 */
275 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
276 {
277 u64 block = 0;
278
279 if (tf->flags & ATA_TFLAG_LBA) {
280 if (tf->flags & ATA_TFLAG_LBA48) {
281 block |= (u64)tf->hob_lbah << 40;
282 block |= (u64)tf->hob_lbam << 32;
283 block |= tf->hob_lbal << 24;
284 } else
285 block |= (tf->device & 0xf) << 24;
286
287 block |= tf->lbah << 16;
288 block |= tf->lbam << 8;
289 block |= tf->lbal;
290 } else {
291 u32 cyl, head, sect;
292
293 cyl = tf->lbam | (tf->lbah << 8);
294 head = tf->device & 0xf;
295 sect = tf->lbal;
296
297 block = (cyl * dev->heads + head) * dev->sectors + sect;
298 }
299
300 return block;
301 }
302
303 /**
304 * ata_build_rw_tf - Build ATA taskfile for given read/write request
305 * @tf: Target ATA taskfile
306 * @dev: ATA device @tf belongs to
307 * @block: Block address
308 * @n_block: Number of blocks
309 * @tf_flags: RW/FUA etc...
310 * @tag: tag
311 *
312 * LOCKING:
313 * None.
314 *
315 * Build ATA taskfile @tf for read/write request described by
316 * @block, @n_block, @tf_flags and @tag on @dev.
317 *
318 * RETURNS:
319 *
320 * 0 on success, -ERANGE if the request is too large for @dev,
321 * -EINVAL if the request is invalid.
322 */
323 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
324 u64 block, u32 n_block, unsigned int tf_flags,
325 unsigned int tag)
326 {
327 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
328 tf->flags |= tf_flags;
329
330 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
331 /* yay, NCQ */
332 if (!lba_48_ok(block, n_block))
333 return -ERANGE;
334
335 tf->protocol = ATA_PROT_NCQ;
336 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
337
338 if (tf->flags & ATA_TFLAG_WRITE)
339 tf->command = ATA_CMD_FPDMA_WRITE;
340 else
341 tf->command = ATA_CMD_FPDMA_READ;
342
343 tf->nsect = tag << 3;
344 tf->hob_feature = (n_block >> 8) & 0xff;
345 tf->feature = n_block & 0xff;
346
347 tf->hob_lbah = (block >> 40) & 0xff;
348 tf->hob_lbam = (block >> 32) & 0xff;
349 tf->hob_lbal = (block >> 24) & 0xff;
350 tf->lbah = (block >> 16) & 0xff;
351 tf->lbam = (block >> 8) & 0xff;
352 tf->lbal = block & 0xff;
353
354 tf->device = 1 << 6;
355 if (tf->flags & ATA_TFLAG_FUA)
356 tf->device |= 1 << 7;
357 } else if (dev->flags & ATA_DFLAG_LBA) {
358 tf->flags |= ATA_TFLAG_LBA;
359
360 if (lba_28_ok(block, n_block)) {
361 /* use LBA28 */
362 tf->device |= (block >> 24) & 0xf;
363 } else if (lba_48_ok(block, n_block)) {
364 if (!(dev->flags & ATA_DFLAG_LBA48))
365 return -ERANGE;
366
367 /* use LBA48 */
368 tf->flags |= ATA_TFLAG_LBA48;
369
370 tf->hob_nsect = (n_block >> 8) & 0xff;
371
372 tf->hob_lbah = (block >> 40) & 0xff;
373 tf->hob_lbam = (block >> 32) & 0xff;
374 tf->hob_lbal = (block >> 24) & 0xff;
375 } else
376 /* request too large even for LBA48 */
377 return -ERANGE;
378
379 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
380 return -EINVAL;
381
382 tf->nsect = n_block & 0xff;
383
384 tf->lbah = (block >> 16) & 0xff;
385 tf->lbam = (block >> 8) & 0xff;
386 tf->lbal = block & 0xff;
387
388 tf->device |= ATA_LBA;
389 } else {
390 /* CHS */
391 u32 sect, head, cyl, track;
392
393 /* The request -may- be too large for CHS addressing. */
394 if (!lba_28_ok(block, n_block))
395 return -ERANGE;
396
397 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
398 return -EINVAL;
399
400 /* Convert LBA to CHS */
401 track = (u32)block / dev->sectors;
402 cyl = track / dev->heads;
403 head = track % dev->heads;
404 sect = (u32)block % dev->sectors + 1;
405
406 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
407 (u32)block, track, cyl, head, sect);
408
409 /* Check whether the converted CHS can fit.
410 Cylinder: 0-65535
411 Head: 0-15
412 Sector: 1-255*/
413 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
414 return -ERANGE;
415
416 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
417 tf->lbal = sect;
418 tf->lbam = cyl;
419 tf->lbah = cyl >> 8;
420 tf->device |= head;
421 }
422
423 return 0;
424 }
425
426 /**
427 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
428 * @pio_mask: pio_mask
429 * @mwdma_mask: mwdma_mask
430 * @udma_mask: udma_mask
431 *
432 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
433 * unsigned int xfer_mask.
434 *
435 * LOCKING:
436 * None.
437 *
438 * RETURNS:
439 * Packed xfer_mask.
440 */
441 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
442 unsigned int mwdma_mask,
443 unsigned int udma_mask)
444 {
445 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
446 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
447 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
448 }
449
450 /**
451 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
452 * @xfer_mask: xfer_mask to unpack
453 * @pio_mask: resulting pio_mask
454 * @mwdma_mask: resulting mwdma_mask
455 * @udma_mask: resulting udma_mask
456 *
457 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
458 * Any NULL distination masks will be ignored.
459 */
460 static void ata_unpack_xfermask(unsigned int xfer_mask,
461 unsigned int *pio_mask,
462 unsigned int *mwdma_mask,
463 unsigned int *udma_mask)
464 {
465 if (pio_mask)
466 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
467 if (mwdma_mask)
468 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
469 if (udma_mask)
470 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
471 }
472
473 static const struct ata_xfer_ent {
474 int shift, bits;
475 u8 base;
476 } ata_xfer_tbl[] = {
477 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
478 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
479 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
480 { -1, },
481 };
482
483 /**
484 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
485 * @xfer_mask: xfer_mask of interest
486 *
487 * Return matching XFER_* value for @xfer_mask. Only the highest
488 * bit of @xfer_mask is considered.
489 *
490 * LOCKING:
491 * None.
492 *
493 * RETURNS:
494 * Matching XFER_* value, 0 if no match found.
495 */
496 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
497 {
498 int highbit = fls(xfer_mask) - 1;
499 const struct ata_xfer_ent *ent;
500
501 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
502 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
503 return ent->base + highbit - ent->shift;
504 return 0;
505 }
506
507 /**
508 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
509 * @xfer_mode: XFER_* of interest
510 *
511 * Return matching xfer_mask for @xfer_mode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * Matching xfer_mask, 0 if no match found.
518 */
519 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
520 {
521 const struct ata_xfer_ent *ent;
522
523 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
524 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
525 return 1 << (ent->shift + xfer_mode - ent->base);
526 return 0;
527 }
528
529 /**
530 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
531 * @xfer_mode: XFER_* of interest
532 *
533 * Return matching xfer_shift for @xfer_mode.
534 *
535 * LOCKING:
536 * None.
537 *
538 * RETURNS:
539 * Matching xfer_shift, -1 if no match found.
540 */
541 static int ata_xfer_mode2shift(unsigned int xfer_mode)
542 {
543 const struct ata_xfer_ent *ent;
544
545 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
546 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
547 return ent->shift;
548 return -1;
549 }
550
551 /**
552 * ata_mode_string - convert xfer_mask to string
553 * @xfer_mask: mask of bits supported; only highest bit counts.
554 *
555 * Determine string which represents the highest speed
556 * (highest bit in @modemask).
557 *
558 * LOCKING:
559 * None.
560 *
561 * RETURNS:
562 * Constant C string representing highest speed listed in
563 * @mode_mask, or the constant C string "<n/a>".
564 */
565 static const char *ata_mode_string(unsigned int xfer_mask)
566 {
567 static const char * const xfer_mode_str[] = {
568 "PIO0",
569 "PIO1",
570 "PIO2",
571 "PIO3",
572 "PIO4",
573 "PIO5",
574 "PIO6",
575 "MWDMA0",
576 "MWDMA1",
577 "MWDMA2",
578 "MWDMA3",
579 "MWDMA4",
580 "UDMA/16",
581 "UDMA/25",
582 "UDMA/33",
583 "UDMA/44",
584 "UDMA/66",
585 "UDMA/100",
586 "UDMA/133",
587 "UDMA7",
588 };
589 int highbit;
590
591 highbit = fls(xfer_mask) - 1;
592 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
593 return xfer_mode_str[highbit];
594 return "<n/a>";
595 }
596
597 static const char *sata_spd_string(unsigned int spd)
598 {
599 static const char * const spd_str[] = {
600 "1.5 Gbps",
601 "3.0 Gbps",
602 };
603
604 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
605 return "<unknown>";
606 return spd_str[spd - 1];
607 }
608
609 void ata_dev_disable(struct ata_device *dev)
610 {
611 if (ata_dev_enabled(dev)) {
612 if (ata_msg_drv(dev->link->ap))
613 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
614 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
615 ATA_DNXFER_QUIET);
616 dev->class++;
617 }
618 }
619
620 /**
621 * ata_devchk - PATA device presence detection
622 * @ap: ATA channel to examine
623 * @device: Device to examine (starting at zero)
624 *
625 * This technique was originally described in
626 * Hale Landis's ATADRVR (www.ata-atapi.com), and
627 * later found its way into the ATA/ATAPI spec.
628 *
629 * Write a pattern to the ATA shadow registers,
630 * and if a device is present, it will respond by
631 * correctly storing and echoing back the
632 * ATA shadow register contents.
633 *
634 * LOCKING:
635 * caller.
636 */
637
638 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
639 {
640 struct ata_ioports *ioaddr = &ap->ioaddr;
641 u8 nsect, lbal;
642
643 ap->ops->dev_select(ap, device);
644
645 iowrite8(0x55, ioaddr->nsect_addr);
646 iowrite8(0xaa, ioaddr->lbal_addr);
647
648 iowrite8(0xaa, ioaddr->nsect_addr);
649 iowrite8(0x55, ioaddr->lbal_addr);
650
651 iowrite8(0x55, ioaddr->nsect_addr);
652 iowrite8(0xaa, ioaddr->lbal_addr);
653
654 nsect = ioread8(ioaddr->nsect_addr);
655 lbal = ioread8(ioaddr->lbal_addr);
656
657 if ((nsect == 0x55) && (lbal == 0xaa))
658 return 1; /* we found a device */
659
660 return 0; /* nothing found */
661 }
662
663 /**
664 * ata_dev_classify - determine device type based on ATA-spec signature
665 * @tf: ATA taskfile register set for device to be identified
666 *
667 * Determine from taskfile register contents whether a device is
668 * ATA or ATAPI, as per "Signature and persistence" section
669 * of ATA/PI spec (volume 1, sect 5.14).
670 *
671 * LOCKING:
672 * None.
673 *
674 * RETURNS:
675 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
676 * the event of failure.
677 */
678
679 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
680 {
681 /* Apple's open source Darwin code hints that some devices only
682 * put a proper signature into the LBA mid/high registers,
683 * So, we only check those. It's sufficient for uniqueness.
684 */
685
686 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
687 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
688 DPRINTK("found ATA device by sig\n");
689 return ATA_DEV_ATA;
690 }
691
692 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
693 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
694 DPRINTK("found ATAPI device by sig\n");
695 return ATA_DEV_ATAPI;
696 }
697
698 DPRINTK("unknown device\n");
699 return ATA_DEV_UNKNOWN;
700 }
701
702 /**
703 * ata_dev_try_classify - Parse returned ATA device signature
704 * @ap: ATA channel to examine
705 * @device: Device to examine (starting at zero)
706 * @r_err: Value of error register on completion
707 *
708 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
709 * an ATA/ATAPI-defined set of values is placed in the ATA
710 * shadow registers, indicating the results of device detection
711 * and diagnostics.
712 *
713 * Select the ATA device, and read the values from the ATA shadow
714 * registers. Then parse according to the Error register value,
715 * and the spec-defined values examined by ata_dev_classify().
716 *
717 * LOCKING:
718 * caller.
719 *
720 * RETURNS:
721 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
722 */
723
724 unsigned int
725 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
726 {
727 struct ata_taskfile tf;
728 unsigned int class;
729 u8 err;
730
731 ap->ops->dev_select(ap, device);
732
733 memset(&tf, 0, sizeof(tf));
734
735 ap->ops->tf_read(ap, &tf);
736 err = tf.feature;
737 if (r_err)
738 *r_err = err;
739
740 /* see if device passed diags: if master then continue and warn later */
741 if (err == 0 && device == 0)
742 /* diagnostic fail : do nothing _YET_ */
743 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
744 else if (err == 1)
745 /* do nothing */ ;
746 else if ((device == 0) && (err == 0x81))
747 /* do nothing */ ;
748 else
749 return ATA_DEV_NONE;
750
751 /* determine if device is ATA or ATAPI */
752 class = ata_dev_classify(&tf);
753
754 if (class == ATA_DEV_UNKNOWN)
755 return ATA_DEV_NONE;
756 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
757 return ATA_DEV_NONE;
758 return class;
759 }
760
761 /**
762 * ata_id_string - Convert IDENTIFY DEVICE page into string
763 * @id: IDENTIFY DEVICE results we will examine
764 * @s: string into which data is output
765 * @ofs: offset into identify device page
766 * @len: length of string to return. must be an even number.
767 *
768 * The strings in the IDENTIFY DEVICE page are broken up into
769 * 16-bit chunks. Run through the string, and output each
770 * 8-bit chunk linearly, regardless of platform.
771 *
772 * LOCKING:
773 * caller.
774 */
775
776 void ata_id_string(const u16 *id, unsigned char *s,
777 unsigned int ofs, unsigned int len)
778 {
779 unsigned int c;
780
781 while (len > 0) {
782 c = id[ofs] >> 8;
783 *s = c;
784 s++;
785
786 c = id[ofs] & 0xff;
787 *s = c;
788 s++;
789
790 ofs++;
791 len -= 2;
792 }
793 }
794
795 /**
796 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
797 * @id: IDENTIFY DEVICE results we will examine
798 * @s: string into which data is output
799 * @ofs: offset into identify device page
800 * @len: length of string to return. must be an odd number.
801 *
802 * This function is identical to ata_id_string except that it
803 * trims trailing spaces and terminates the resulting string with
804 * null. @len must be actual maximum length (even number) + 1.
805 *
806 * LOCKING:
807 * caller.
808 */
809 void ata_id_c_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
811 {
812 unsigned char *p;
813
814 WARN_ON(!(len & 1));
815
816 ata_id_string(id, s, ofs, len - 1);
817
818 p = s + strnlen(s, len - 1);
819 while (p > s && p[-1] == ' ')
820 p--;
821 *p = '\0';
822 }
823
824 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
825 {
826 u64 sectors = 0;
827
828 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
829 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
830 sectors |= (tf->hob_lbal & 0xff) << 24;
831 sectors |= (tf->lbah & 0xff) << 16;
832 sectors |= (tf->lbam & 0xff) << 8;
833 sectors |= (tf->lbal & 0xff);
834
835 return ++sectors;
836 }
837
838 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
839 {
840 u64 sectors = 0;
841
842 sectors |= (tf->device & 0x0f) << 24;
843 sectors |= (tf->lbah & 0xff) << 16;
844 sectors |= (tf->lbam & 0xff) << 8;
845 sectors |= (tf->lbal & 0xff);
846
847 return ++sectors;
848 }
849
850 /**
851 * ata_read_native_max_address_ext - LBA48 native max query
852 * @dev: Device to query
853 *
854 * Perform an LBA48 size query upon the device in question. Return the
855 * actual LBA48 size or zero if the command fails.
856 */
857
858 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
859 {
860 unsigned int err;
861 struct ata_taskfile tf;
862
863 ata_tf_init(dev, &tf);
864
865 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
866 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
867 tf.protocol |= ATA_PROT_NODATA;
868 tf.device |= 0x40;
869
870 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
871 if (err)
872 return 0;
873
874 return ata_tf_to_lba48(&tf);
875 }
876
877 /**
878 * ata_read_native_max_address - LBA28 native max query
879 * @dev: Device to query
880 *
881 * Performa an LBA28 size query upon the device in question. Return the
882 * actual LBA28 size or zero if the command fails.
883 */
884
885 static u64 ata_read_native_max_address(struct ata_device *dev)
886 {
887 unsigned int err;
888 struct ata_taskfile tf;
889
890 ata_tf_init(dev, &tf);
891
892 tf.command = ATA_CMD_READ_NATIVE_MAX;
893 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
894 tf.protocol |= ATA_PROT_NODATA;
895 tf.device |= 0x40;
896
897 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
898 if (err)
899 return 0;
900
901 return ata_tf_to_lba(&tf);
902 }
903
904 /**
905 * ata_set_native_max_address_ext - LBA48 native max set
906 * @dev: Device to query
907 * @new_sectors: new max sectors value to set for the device
908 *
909 * Perform an LBA48 size set max upon the device in question. Return the
910 * actual LBA48 size or zero if the command fails.
911 */
912
913 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
914 {
915 unsigned int err;
916 struct ata_taskfile tf;
917
918 new_sectors--;
919
920 ata_tf_init(dev, &tf);
921
922 tf.command = ATA_CMD_SET_MAX_EXT;
923 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
924 tf.protocol |= ATA_PROT_NODATA;
925 tf.device |= 0x40;
926
927 tf.lbal = (new_sectors >> 0) & 0xff;
928 tf.lbam = (new_sectors >> 8) & 0xff;
929 tf.lbah = (new_sectors >> 16) & 0xff;
930
931 tf.hob_lbal = (new_sectors >> 24) & 0xff;
932 tf.hob_lbam = (new_sectors >> 32) & 0xff;
933 tf.hob_lbah = (new_sectors >> 40) & 0xff;
934
935 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
936 if (err)
937 return 0;
938
939 return ata_tf_to_lba48(&tf);
940 }
941
942 /**
943 * ata_set_native_max_address - LBA28 native max set
944 * @dev: Device to query
945 * @new_sectors: new max sectors value to set for the device
946 *
947 * Perform an LBA28 size set max upon the device in question. Return the
948 * actual LBA28 size or zero if the command fails.
949 */
950
951 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
952 {
953 unsigned int err;
954 struct ata_taskfile tf;
955
956 new_sectors--;
957
958 ata_tf_init(dev, &tf);
959
960 tf.command = ATA_CMD_SET_MAX;
961 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
962 tf.protocol |= ATA_PROT_NODATA;
963
964 tf.lbal = (new_sectors >> 0) & 0xff;
965 tf.lbam = (new_sectors >> 8) & 0xff;
966 tf.lbah = (new_sectors >> 16) & 0xff;
967 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
968
969 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
970 if (err)
971 return 0;
972
973 return ata_tf_to_lba(&tf);
974 }
975
976 /**
977 * ata_hpa_resize - Resize a device with an HPA set
978 * @dev: Device to resize
979 *
980 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
981 * it if required to the full size of the media. The caller must check
982 * the drive has the HPA feature set enabled.
983 */
984
985 static u64 ata_hpa_resize(struct ata_device *dev)
986 {
987 u64 sectors = dev->n_sectors;
988 u64 hpa_sectors;
989
990 if (ata_id_has_lba48(dev->id))
991 hpa_sectors = ata_read_native_max_address_ext(dev);
992 else
993 hpa_sectors = ata_read_native_max_address(dev);
994
995 if (hpa_sectors > sectors) {
996 ata_dev_printk(dev, KERN_INFO,
997 "Host Protected Area detected:\n"
998 "\tcurrent size: %lld sectors\n"
999 "\tnative size: %lld sectors\n",
1000 (long long)sectors, (long long)hpa_sectors);
1001
1002 if (ata_ignore_hpa) {
1003 if (ata_id_has_lba48(dev->id))
1004 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1005 else
1006 hpa_sectors = ata_set_native_max_address(dev,
1007 hpa_sectors);
1008
1009 if (hpa_sectors) {
1010 ata_dev_printk(dev, KERN_INFO, "native size "
1011 "increased to %lld sectors\n",
1012 (long long)hpa_sectors);
1013 return hpa_sectors;
1014 }
1015 }
1016 } else if (hpa_sectors < sectors)
1017 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1018 "is smaller than sectors (%lld)\n", __FUNCTION__,
1019 (long long)hpa_sectors, (long long)sectors);
1020
1021 return sectors;
1022 }
1023
1024 static u64 ata_id_n_sectors(const u16 *id)
1025 {
1026 if (ata_id_has_lba(id)) {
1027 if (ata_id_has_lba48(id))
1028 return ata_id_u64(id, 100);
1029 else
1030 return ata_id_u32(id, 60);
1031 } else {
1032 if (ata_id_current_chs_valid(id))
1033 return ata_id_u32(id, 57);
1034 else
1035 return id[1] * id[3] * id[6];
1036 }
1037 }
1038
1039 /**
1040 * ata_id_to_dma_mode - Identify DMA mode from id block
1041 * @dev: device to identify
1042 * @unknown: mode to assume if we cannot tell
1043 *
1044 * Set up the timing values for the device based upon the identify
1045 * reported values for the DMA mode. This function is used by drivers
1046 * which rely upon firmware configured modes, but wish to report the
1047 * mode correctly when possible.
1048 *
1049 * In addition we emit similarly formatted messages to the default
1050 * ata_dev_set_mode handler, in order to provide consistency of
1051 * presentation.
1052 */
1053
1054 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1055 {
1056 unsigned int mask;
1057 u8 mode;
1058
1059 /* Pack the DMA modes */
1060 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1061 if (dev->id[53] & 0x04)
1062 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1063
1064 /* Select the mode in use */
1065 mode = ata_xfer_mask2mode(mask);
1066
1067 if (mode != 0) {
1068 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1069 ata_mode_string(mask));
1070 } else {
1071 /* SWDMA perhaps ? */
1072 mode = unknown;
1073 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1074 }
1075
1076 /* Configure the device reporting */
1077 dev->xfer_mode = mode;
1078 dev->xfer_shift = ata_xfer_mode2shift(mode);
1079 }
1080
1081 /**
1082 * ata_noop_dev_select - Select device 0/1 on ATA bus
1083 * @ap: ATA channel to manipulate
1084 * @device: ATA device (numbered from zero) to select
1085 *
1086 * This function performs no actual function.
1087 *
1088 * May be used as the dev_select() entry in ata_port_operations.
1089 *
1090 * LOCKING:
1091 * caller.
1092 */
1093 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1094 {
1095 }
1096
1097
1098 /**
1099 * ata_std_dev_select - Select device 0/1 on ATA bus
1100 * @ap: ATA channel to manipulate
1101 * @device: ATA device (numbered from zero) to select
1102 *
1103 * Use the method defined in the ATA specification to
1104 * make either device 0, or device 1, active on the
1105 * ATA channel. Works with both PIO and MMIO.
1106 *
1107 * May be used as the dev_select() entry in ata_port_operations.
1108 *
1109 * LOCKING:
1110 * caller.
1111 */
1112
1113 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1114 {
1115 u8 tmp;
1116
1117 if (device == 0)
1118 tmp = ATA_DEVICE_OBS;
1119 else
1120 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1121
1122 iowrite8(tmp, ap->ioaddr.device_addr);
1123 ata_pause(ap); /* needed; also flushes, for mmio */
1124 }
1125
1126 /**
1127 * ata_dev_select - Select device 0/1 on ATA bus
1128 * @ap: ATA channel to manipulate
1129 * @device: ATA device (numbered from zero) to select
1130 * @wait: non-zero to wait for Status register BSY bit to clear
1131 * @can_sleep: non-zero if context allows sleeping
1132 *
1133 * Use the method defined in the ATA specification to
1134 * make either device 0, or device 1, active on the
1135 * ATA channel.
1136 *
1137 * This is a high-level version of ata_std_dev_select(),
1138 * which additionally provides the services of inserting
1139 * the proper pauses and status polling, where needed.
1140 *
1141 * LOCKING:
1142 * caller.
1143 */
1144
1145 void ata_dev_select(struct ata_port *ap, unsigned int device,
1146 unsigned int wait, unsigned int can_sleep)
1147 {
1148 if (ata_msg_probe(ap))
1149 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1150 "device %u, wait %u\n", device, wait);
1151
1152 if (wait)
1153 ata_wait_idle(ap);
1154
1155 ap->ops->dev_select(ap, device);
1156
1157 if (wait) {
1158 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1159 msleep(150);
1160 ata_wait_idle(ap);
1161 }
1162 }
1163
1164 /**
1165 * ata_dump_id - IDENTIFY DEVICE info debugging output
1166 * @id: IDENTIFY DEVICE page to dump
1167 *
1168 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1169 * page.
1170 *
1171 * LOCKING:
1172 * caller.
1173 */
1174
1175 static inline void ata_dump_id(const u16 *id)
1176 {
1177 DPRINTK("49==0x%04x "
1178 "53==0x%04x "
1179 "63==0x%04x "
1180 "64==0x%04x "
1181 "75==0x%04x \n",
1182 id[49],
1183 id[53],
1184 id[63],
1185 id[64],
1186 id[75]);
1187 DPRINTK("80==0x%04x "
1188 "81==0x%04x "
1189 "82==0x%04x "
1190 "83==0x%04x "
1191 "84==0x%04x \n",
1192 id[80],
1193 id[81],
1194 id[82],
1195 id[83],
1196 id[84]);
1197 DPRINTK("88==0x%04x "
1198 "93==0x%04x\n",
1199 id[88],
1200 id[93]);
1201 }
1202
1203 /**
1204 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1205 * @id: IDENTIFY data to compute xfer mask from
1206 *
1207 * Compute the xfermask for this device. This is not as trivial
1208 * as it seems if we must consider early devices correctly.
1209 *
1210 * FIXME: pre IDE drive timing (do we care ?).
1211 *
1212 * LOCKING:
1213 * None.
1214 *
1215 * RETURNS:
1216 * Computed xfermask
1217 */
1218 static unsigned int ata_id_xfermask(const u16 *id)
1219 {
1220 unsigned int pio_mask, mwdma_mask, udma_mask;
1221
1222 /* Usual case. Word 53 indicates word 64 is valid */
1223 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1224 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1225 pio_mask <<= 3;
1226 pio_mask |= 0x7;
1227 } else {
1228 /* If word 64 isn't valid then Word 51 high byte holds
1229 * the PIO timing number for the maximum. Turn it into
1230 * a mask.
1231 */
1232 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1233 if (mode < 5) /* Valid PIO range */
1234 pio_mask = (2 << mode) - 1;
1235 else
1236 pio_mask = 1;
1237
1238 /* But wait.. there's more. Design your standards by
1239 * committee and you too can get a free iordy field to
1240 * process. However its the speeds not the modes that
1241 * are supported... Note drivers using the timing API
1242 * will get this right anyway
1243 */
1244 }
1245
1246 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1247
1248 if (ata_id_is_cfa(id)) {
1249 /*
1250 * Process compact flash extended modes
1251 */
1252 int pio = id[163] & 0x7;
1253 int dma = (id[163] >> 3) & 7;
1254
1255 if (pio)
1256 pio_mask |= (1 << 5);
1257 if (pio > 1)
1258 pio_mask |= (1 << 6);
1259 if (dma)
1260 mwdma_mask |= (1 << 3);
1261 if (dma > 1)
1262 mwdma_mask |= (1 << 4);
1263 }
1264
1265 udma_mask = 0;
1266 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1267 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1268
1269 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1270 }
1271
1272 /**
1273 * ata_port_queue_task - Queue port_task
1274 * @ap: The ata_port to queue port_task for
1275 * @fn: workqueue function to be scheduled
1276 * @data: data for @fn to use
1277 * @delay: delay time for workqueue function
1278 *
1279 * Schedule @fn(@data) for execution after @delay jiffies using
1280 * port_task. There is one port_task per port and it's the
1281 * user(low level driver)'s responsibility to make sure that only
1282 * one task is active at any given time.
1283 *
1284 * libata core layer takes care of synchronization between
1285 * port_task and EH. ata_port_queue_task() may be ignored for EH
1286 * synchronization.
1287 *
1288 * LOCKING:
1289 * Inherited from caller.
1290 */
1291 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1292 unsigned long delay)
1293 {
1294 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1295 ap->port_task_data = data;
1296
1297 /* may fail if ata_port_flush_task() in progress */
1298 queue_delayed_work(ata_wq, &ap->port_task, delay);
1299 }
1300
1301 /**
1302 * ata_port_flush_task - Flush port_task
1303 * @ap: The ata_port to flush port_task for
1304 *
1305 * After this function completes, port_task is guranteed not to
1306 * be running or scheduled.
1307 *
1308 * LOCKING:
1309 * Kernel thread context (may sleep)
1310 */
1311 void ata_port_flush_task(struct ata_port *ap)
1312 {
1313 DPRINTK("ENTER\n");
1314
1315 cancel_rearming_delayed_work(&ap->port_task);
1316
1317 if (ata_msg_ctl(ap))
1318 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1319 }
1320
1321 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1322 {
1323 struct completion *waiting = qc->private_data;
1324
1325 complete(waiting);
1326 }
1327
1328 /**
1329 * ata_exec_internal_sg - execute libata internal command
1330 * @dev: Device to which the command is sent
1331 * @tf: Taskfile registers for the command and the result
1332 * @cdb: CDB for packet command
1333 * @dma_dir: Data tranfer direction of the command
1334 * @sg: sg list for the data buffer of the command
1335 * @n_elem: Number of sg entries
1336 *
1337 * Executes libata internal command with timeout. @tf contains
1338 * command on entry and result on return. Timeout and error
1339 * conditions are reported via return value. No recovery action
1340 * is taken after a command times out. It's caller's duty to
1341 * clean up after timeout.
1342 *
1343 * LOCKING:
1344 * None. Should be called with kernel context, might sleep.
1345 *
1346 * RETURNS:
1347 * Zero on success, AC_ERR_* mask on failure
1348 */
1349 unsigned ata_exec_internal_sg(struct ata_device *dev,
1350 struct ata_taskfile *tf, const u8 *cdb,
1351 int dma_dir, struct scatterlist *sg,
1352 unsigned int n_elem)
1353 {
1354 struct ata_link *link = dev->link;
1355 struct ata_port *ap = link->ap;
1356 u8 command = tf->command;
1357 struct ata_queued_cmd *qc;
1358 unsigned int tag, preempted_tag;
1359 u32 preempted_sactive, preempted_qc_active;
1360 DECLARE_COMPLETION_ONSTACK(wait);
1361 unsigned long flags;
1362 unsigned int err_mask;
1363 int rc;
1364
1365 spin_lock_irqsave(ap->lock, flags);
1366
1367 /* no internal command while frozen */
1368 if (ap->pflags & ATA_PFLAG_FROZEN) {
1369 spin_unlock_irqrestore(ap->lock, flags);
1370 return AC_ERR_SYSTEM;
1371 }
1372
1373 /* initialize internal qc */
1374
1375 /* XXX: Tag 0 is used for drivers with legacy EH as some
1376 * drivers choke if any other tag is given. This breaks
1377 * ata_tag_internal() test for those drivers. Don't use new
1378 * EH stuff without converting to it.
1379 */
1380 if (ap->ops->error_handler)
1381 tag = ATA_TAG_INTERNAL;
1382 else
1383 tag = 0;
1384
1385 if (test_and_set_bit(tag, &ap->qc_allocated))
1386 BUG();
1387 qc = __ata_qc_from_tag(ap, tag);
1388
1389 qc->tag = tag;
1390 qc->scsicmd = NULL;
1391 qc->ap = ap;
1392 qc->dev = dev;
1393 ata_qc_reinit(qc);
1394
1395 preempted_tag = link->active_tag;
1396 preempted_sactive = link->sactive;
1397 preempted_qc_active = ap->qc_active;
1398 link->active_tag = ATA_TAG_POISON;
1399 link->sactive = 0;
1400 ap->qc_active = 0;
1401
1402 /* prepare & issue qc */
1403 qc->tf = *tf;
1404 if (cdb)
1405 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1406 qc->flags |= ATA_QCFLAG_RESULT_TF;
1407 qc->dma_dir = dma_dir;
1408 if (dma_dir != DMA_NONE) {
1409 unsigned int i, buflen = 0;
1410
1411 for (i = 0; i < n_elem; i++)
1412 buflen += sg[i].length;
1413
1414 ata_sg_init(qc, sg, n_elem);
1415 qc->nbytes = buflen;
1416 }
1417
1418 qc->private_data = &wait;
1419 qc->complete_fn = ata_qc_complete_internal;
1420
1421 ata_qc_issue(qc);
1422
1423 spin_unlock_irqrestore(ap->lock, flags);
1424
1425 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1426
1427 ata_port_flush_task(ap);
1428
1429 if (!rc) {
1430 spin_lock_irqsave(ap->lock, flags);
1431
1432 /* We're racing with irq here. If we lose, the
1433 * following test prevents us from completing the qc
1434 * twice. If we win, the port is frozen and will be
1435 * cleaned up by ->post_internal_cmd().
1436 */
1437 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1438 qc->err_mask |= AC_ERR_TIMEOUT;
1439
1440 if (ap->ops->error_handler)
1441 ata_port_freeze(ap);
1442 else
1443 ata_qc_complete(qc);
1444
1445 if (ata_msg_warn(ap))
1446 ata_dev_printk(dev, KERN_WARNING,
1447 "qc timeout (cmd 0x%x)\n", command);
1448 }
1449
1450 spin_unlock_irqrestore(ap->lock, flags);
1451 }
1452
1453 /* do post_internal_cmd */
1454 if (ap->ops->post_internal_cmd)
1455 ap->ops->post_internal_cmd(qc);
1456
1457 /* perform minimal error analysis */
1458 if (qc->flags & ATA_QCFLAG_FAILED) {
1459 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1460 qc->err_mask |= AC_ERR_DEV;
1461
1462 if (!qc->err_mask)
1463 qc->err_mask |= AC_ERR_OTHER;
1464
1465 if (qc->err_mask & ~AC_ERR_OTHER)
1466 qc->err_mask &= ~AC_ERR_OTHER;
1467 }
1468
1469 /* finish up */
1470 spin_lock_irqsave(ap->lock, flags);
1471
1472 *tf = qc->result_tf;
1473 err_mask = qc->err_mask;
1474
1475 ata_qc_free(qc);
1476 link->active_tag = preempted_tag;
1477 link->sactive = preempted_sactive;
1478 ap->qc_active = preempted_qc_active;
1479
1480 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1481 * Until those drivers are fixed, we detect the condition
1482 * here, fail the command with AC_ERR_SYSTEM and reenable the
1483 * port.
1484 *
1485 * Note that this doesn't change any behavior as internal
1486 * command failure results in disabling the device in the
1487 * higher layer for LLDDs without new reset/EH callbacks.
1488 *
1489 * Kill the following code as soon as those drivers are fixed.
1490 */
1491 if (ap->flags & ATA_FLAG_DISABLED) {
1492 err_mask |= AC_ERR_SYSTEM;
1493 ata_port_probe(ap);
1494 }
1495
1496 spin_unlock_irqrestore(ap->lock, flags);
1497
1498 return err_mask;
1499 }
1500
1501 /**
1502 * ata_exec_internal - execute libata internal command
1503 * @dev: Device to which the command is sent
1504 * @tf: Taskfile registers for the command and the result
1505 * @cdb: CDB for packet command
1506 * @dma_dir: Data tranfer direction of the command
1507 * @buf: Data buffer of the command
1508 * @buflen: Length of data buffer
1509 *
1510 * Wrapper around ata_exec_internal_sg() which takes simple
1511 * buffer instead of sg list.
1512 *
1513 * LOCKING:
1514 * None. Should be called with kernel context, might sleep.
1515 *
1516 * RETURNS:
1517 * Zero on success, AC_ERR_* mask on failure
1518 */
1519 unsigned ata_exec_internal(struct ata_device *dev,
1520 struct ata_taskfile *tf, const u8 *cdb,
1521 int dma_dir, void *buf, unsigned int buflen)
1522 {
1523 struct scatterlist *psg = NULL, sg;
1524 unsigned int n_elem = 0;
1525
1526 if (dma_dir != DMA_NONE) {
1527 WARN_ON(!buf);
1528 sg_init_one(&sg, buf, buflen);
1529 psg = &sg;
1530 n_elem++;
1531 }
1532
1533 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1534 }
1535
1536 /**
1537 * ata_do_simple_cmd - execute simple internal command
1538 * @dev: Device to which the command is sent
1539 * @cmd: Opcode to execute
1540 *
1541 * Execute a 'simple' command, that only consists of the opcode
1542 * 'cmd' itself, without filling any other registers
1543 *
1544 * LOCKING:
1545 * Kernel thread context (may sleep).
1546 *
1547 * RETURNS:
1548 * Zero on success, AC_ERR_* mask on failure
1549 */
1550 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1551 {
1552 struct ata_taskfile tf;
1553
1554 ata_tf_init(dev, &tf);
1555
1556 tf.command = cmd;
1557 tf.flags |= ATA_TFLAG_DEVICE;
1558 tf.protocol = ATA_PROT_NODATA;
1559
1560 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1561 }
1562
1563 /**
1564 * ata_pio_need_iordy - check if iordy needed
1565 * @adev: ATA device
1566 *
1567 * Check if the current speed of the device requires IORDY. Used
1568 * by various controllers for chip configuration.
1569 */
1570
1571 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1572 {
1573 /* Controller doesn't support IORDY. Probably a pointless check
1574 as the caller should know this */
1575 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1576 return 0;
1577 /* PIO3 and higher it is mandatory */
1578 if (adev->pio_mode > XFER_PIO_2)
1579 return 1;
1580 /* We turn it on when possible */
1581 if (ata_id_has_iordy(adev->id))
1582 return 1;
1583 return 0;
1584 }
1585
1586 /**
1587 * ata_pio_mask_no_iordy - Return the non IORDY mask
1588 * @adev: ATA device
1589 *
1590 * Compute the highest mode possible if we are not using iordy. Return
1591 * -1 if no iordy mode is available.
1592 */
1593
1594 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1595 {
1596 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1597 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1598 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1599 /* Is the speed faster than the drive allows non IORDY ? */
1600 if (pio) {
1601 /* This is cycle times not frequency - watch the logic! */
1602 if (pio > 240) /* PIO2 is 240nS per cycle */
1603 return 3 << ATA_SHIFT_PIO;
1604 return 7 << ATA_SHIFT_PIO;
1605 }
1606 }
1607 return 3 << ATA_SHIFT_PIO;
1608 }
1609
1610 /**
1611 * ata_dev_read_id - Read ID data from the specified device
1612 * @dev: target device
1613 * @p_class: pointer to class of the target device (may be changed)
1614 * @flags: ATA_READID_* flags
1615 * @id: buffer to read IDENTIFY data into
1616 *
1617 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1618 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1619 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1620 * for pre-ATA4 drives.
1621 *
1622 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1623 * now we abort if we hit that case.
1624 *
1625 * LOCKING:
1626 * Kernel thread context (may sleep)
1627 *
1628 * RETURNS:
1629 * 0 on success, -errno otherwise.
1630 */
1631 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1632 unsigned int flags, u16 *id)
1633 {
1634 struct ata_port *ap = dev->link->ap;
1635 unsigned int class = *p_class;
1636 struct ata_taskfile tf;
1637 unsigned int err_mask = 0;
1638 const char *reason;
1639 int may_fallback = 1, tried_spinup = 0;
1640 int rc;
1641
1642 if (ata_msg_ctl(ap))
1643 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1644
1645 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1646 retry:
1647 ata_tf_init(dev, &tf);
1648
1649 switch (class) {
1650 case ATA_DEV_ATA:
1651 tf.command = ATA_CMD_ID_ATA;
1652 break;
1653 case ATA_DEV_ATAPI:
1654 tf.command = ATA_CMD_ID_ATAPI;
1655 break;
1656 default:
1657 rc = -ENODEV;
1658 reason = "unsupported class";
1659 goto err_out;
1660 }
1661
1662 tf.protocol = ATA_PROT_PIO;
1663
1664 /* Some devices choke if TF registers contain garbage. Make
1665 * sure those are properly initialized.
1666 */
1667 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1668
1669 /* Device presence detection is unreliable on some
1670 * controllers. Always poll IDENTIFY if available.
1671 */
1672 tf.flags |= ATA_TFLAG_POLLING;
1673
1674 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1675 id, sizeof(id[0]) * ATA_ID_WORDS);
1676 if (err_mask) {
1677 if (err_mask & AC_ERR_NODEV_HINT) {
1678 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1679 ap->print_id, dev->devno);
1680 return -ENOENT;
1681 }
1682
1683 /* Device or controller might have reported the wrong
1684 * device class. Give a shot at the other IDENTIFY if
1685 * the current one is aborted by the device.
1686 */
1687 if (may_fallback &&
1688 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1689 may_fallback = 0;
1690
1691 if (class == ATA_DEV_ATA)
1692 class = ATA_DEV_ATAPI;
1693 else
1694 class = ATA_DEV_ATA;
1695 goto retry;
1696 }
1697
1698 rc = -EIO;
1699 reason = "I/O error";
1700 goto err_out;
1701 }
1702
1703 /* Falling back doesn't make sense if ID data was read
1704 * successfully at least once.
1705 */
1706 may_fallback = 0;
1707
1708 swap_buf_le16(id, ATA_ID_WORDS);
1709
1710 /* sanity check */
1711 rc = -EINVAL;
1712 reason = "device reports invalid type";
1713
1714 if (class == ATA_DEV_ATA) {
1715 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1716 goto err_out;
1717 } else {
1718 if (ata_id_is_ata(id))
1719 goto err_out;
1720 }
1721
1722 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1723 tried_spinup = 1;
1724 /*
1725 * Drive powered-up in standby mode, and requires a specific
1726 * SET_FEATURES spin-up subcommand before it will accept
1727 * anything other than the original IDENTIFY command.
1728 */
1729 ata_tf_init(dev, &tf);
1730 tf.command = ATA_CMD_SET_FEATURES;
1731 tf.feature = SETFEATURES_SPINUP;
1732 tf.protocol = ATA_PROT_NODATA;
1733 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1734 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1735 if (err_mask && id[2] != 0x738c) {
1736 rc = -EIO;
1737 reason = "SPINUP failed";
1738 goto err_out;
1739 }
1740 /*
1741 * If the drive initially returned incomplete IDENTIFY info,
1742 * we now must reissue the IDENTIFY command.
1743 */
1744 if (id[2] == 0x37c8)
1745 goto retry;
1746 }
1747
1748 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1749 /*
1750 * The exact sequence expected by certain pre-ATA4 drives is:
1751 * SRST RESET
1752 * IDENTIFY (optional in early ATA)
1753 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1754 * anything else..
1755 * Some drives were very specific about that exact sequence.
1756 *
1757 * Note that ATA4 says lba is mandatory so the second check
1758 * shoud never trigger.
1759 */
1760 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1761 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1762 if (err_mask) {
1763 rc = -EIO;
1764 reason = "INIT_DEV_PARAMS failed";
1765 goto err_out;
1766 }
1767
1768 /* current CHS translation info (id[53-58]) might be
1769 * changed. reread the identify device info.
1770 */
1771 flags &= ~ATA_READID_POSTRESET;
1772 goto retry;
1773 }
1774 }
1775
1776 *p_class = class;
1777
1778 return 0;
1779
1780 err_out:
1781 if (ata_msg_warn(ap))
1782 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1783 "(%s, err_mask=0x%x)\n", reason, err_mask);
1784 return rc;
1785 }
1786
1787 static inline u8 ata_dev_knobble(struct ata_device *dev)
1788 {
1789 struct ata_port *ap = dev->link->ap;
1790 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1791 }
1792
1793 static void ata_dev_config_ncq(struct ata_device *dev,
1794 char *desc, size_t desc_sz)
1795 {
1796 struct ata_port *ap = dev->link->ap;
1797 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1798
1799 if (!ata_id_has_ncq(dev->id)) {
1800 desc[0] = '\0';
1801 return;
1802 }
1803 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1804 snprintf(desc, desc_sz, "NCQ (not used)");
1805 return;
1806 }
1807 if (ap->flags & ATA_FLAG_NCQ) {
1808 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1809 dev->flags |= ATA_DFLAG_NCQ;
1810 }
1811
1812 if (hdepth >= ddepth)
1813 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1814 else
1815 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1816 }
1817
1818 /**
1819 * ata_dev_configure - Configure the specified ATA/ATAPI device
1820 * @dev: Target device to configure
1821 *
1822 * Configure @dev according to @dev->id. Generic and low-level
1823 * driver specific fixups are also applied.
1824 *
1825 * LOCKING:
1826 * Kernel thread context (may sleep)
1827 *
1828 * RETURNS:
1829 * 0 on success, -errno otherwise
1830 */
1831 int ata_dev_configure(struct ata_device *dev)
1832 {
1833 struct ata_port *ap = dev->link->ap;
1834 struct ata_eh_context *ehc = &dev->link->eh_context;
1835 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1836 const u16 *id = dev->id;
1837 unsigned int xfer_mask;
1838 char revbuf[7]; /* XYZ-99\0 */
1839 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1840 char modelbuf[ATA_ID_PROD_LEN+1];
1841 int rc;
1842
1843 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1844 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1845 __FUNCTION__);
1846 return 0;
1847 }
1848
1849 if (ata_msg_probe(ap))
1850 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1851
1852 /* set horkage */
1853 dev->horkage |= ata_dev_blacklisted(dev);
1854
1855 /* let ACPI work its magic */
1856 rc = ata_acpi_on_devcfg(dev);
1857 if (rc)
1858 return rc;
1859
1860 /* print device capabilities */
1861 if (ata_msg_probe(ap))
1862 ata_dev_printk(dev, KERN_DEBUG,
1863 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1864 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1865 __FUNCTION__,
1866 id[49], id[82], id[83], id[84],
1867 id[85], id[86], id[87], id[88]);
1868
1869 /* initialize to-be-configured parameters */
1870 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1871 dev->max_sectors = 0;
1872 dev->cdb_len = 0;
1873 dev->n_sectors = 0;
1874 dev->cylinders = 0;
1875 dev->heads = 0;
1876 dev->sectors = 0;
1877
1878 /*
1879 * common ATA, ATAPI feature tests
1880 */
1881
1882 /* find max transfer mode; for printk only */
1883 xfer_mask = ata_id_xfermask(id);
1884
1885 if (ata_msg_probe(ap))
1886 ata_dump_id(id);
1887
1888 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1889 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1890 sizeof(fwrevbuf));
1891
1892 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1893 sizeof(modelbuf));
1894
1895 /* ATA-specific feature tests */
1896 if (dev->class == ATA_DEV_ATA) {
1897 if (ata_id_is_cfa(id)) {
1898 if (id[162] & 1) /* CPRM may make this media unusable */
1899 ata_dev_printk(dev, KERN_WARNING,
1900 "supports DRM functions and may "
1901 "not be fully accessable.\n");
1902 snprintf(revbuf, 7, "CFA");
1903 }
1904 else
1905 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1906
1907 dev->n_sectors = ata_id_n_sectors(id);
1908
1909 if (dev->id[59] & 0x100)
1910 dev->multi_count = dev->id[59] & 0xff;
1911
1912 if (ata_id_has_lba(id)) {
1913 const char *lba_desc;
1914 char ncq_desc[20];
1915
1916 lba_desc = "LBA";
1917 dev->flags |= ATA_DFLAG_LBA;
1918 if (ata_id_has_lba48(id)) {
1919 dev->flags |= ATA_DFLAG_LBA48;
1920 lba_desc = "LBA48";
1921
1922 if (dev->n_sectors >= (1UL << 28) &&
1923 ata_id_has_flush_ext(id))
1924 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1925 }
1926
1927 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1928 ata_id_hpa_enabled(dev->id))
1929 dev->n_sectors = ata_hpa_resize(dev);
1930
1931 /* config NCQ */
1932 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1933
1934 /* print device info to dmesg */
1935 if (ata_msg_drv(ap) && print_info) {
1936 ata_dev_printk(dev, KERN_INFO,
1937 "%s: %s, %s, max %s\n",
1938 revbuf, modelbuf, fwrevbuf,
1939 ata_mode_string(xfer_mask));
1940 ata_dev_printk(dev, KERN_INFO,
1941 "%Lu sectors, multi %u: %s %s\n",
1942 (unsigned long long)dev->n_sectors,
1943 dev->multi_count, lba_desc, ncq_desc);
1944 }
1945 } else {
1946 /* CHS */
1947
1948 /* Default translation */
1949 dev->cylinders = id[1];
1950 dev->heads = id[3];
1951 dev->sectors = id[6];
1952
1953 if (ata_id_current_chs_valid(id)) {
1954 /* Current CHS translation is valid. */
1955 dev->cylinders = id[54];
1956 dev->heads = id[55];
1957 dev->sectors = id[56];
1958 }
1959
1960 /* print device info to dmesg */
1961 if (ata_msg_drv(ap) && print_info) {
1962 ata_dev_printk(dev, KERN_INFO,
1963 "%s: %s, %s, max %s\n",
1964 revbuf, modelbuf, fwrevbuf,
1965 ata_mode_string(xfer_mask));
1966 ata_dev_printk(dev, KERN_INFO,
1967 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1968 (unsigned long long)dev->n_sectors,
1969 dev->multi_count, dev->cylinders,
1970 dev->heads, dev->sectors);
1971 }
1972 }
1973
1974 dev->cdb_len = 16;
1975 }
1976
1977 /* ATAPI-specific feature tests */
1978 else if (dev->class == ATA_DEV_ATAPI) {
1979 char *cdb_intr_string = "";
1980
1981 rc = atapi_cdb_len(id);
1982 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1983 if (ata_msg_warn(ap))
1984 ata_dev_printk(dev, KERN_WARNING,
1985 "unsupported CDB len\n");
1986 rc = -EINVAL;
1987 goto err_out_nosup;
1988 }
1989 dev->cdb_len = (unsigned int) rc;
1990
1991 /*
1992 * check to see if this ATAPI device supports
1993 * Asynchronous Notification
1994 */
1995 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_AN(id)) {
1996 int err;
1997 /* issue SET feature command to turn this on */
1998 err = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
1999 if (err)
2000 ata_dev_printk(dev, KERN_ERR,
2001 "unable to set AN, err %x\n",
2002 err);
2003 else
2004 dev->flags |= ATA_DFLAG_AN;
2005 }
2006
2007 if (ata_id_cdb_intr(dev->id)) {
2008 dev->flags |= ATA_DFLAG_CDB_INTR;
2009 cdb_intr_string = ", CDB intr";
2010 }
2011
2012 /* print device info to dmesg */
2013 if (ata_msg_drv(ap) && print_info)
2014 ata_dev_printk(dev, KERN_INFO,
2015 "ATAPI: %s, %s, max %s%s\n",
2016 modelbuf, fwrevbuf,
2017 ata_mode_string(xfer_mask),
2018 cdb_intr_string);
2019 }
2020
2021 /* determine max_sectors */
2022 dev->max_sectors = ATA_MAX_SECTORS;
2023 if (dev->flags & ATA_DFLAG_LBA48)
2024 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2025
2026 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2027 /* Let the user know. We don't want to disallow opens for
2028 rescue purposes, or in case the vendor is just a blithering
2029 idiot */
2030 if (print_info) {
2031 ata_dev_printk(dev, KERN_WARNING,
2032 "Drive reports diagnostics failure. This may indicate a drive\n");
2033 ata_dev_printk(dev, KERN_WARNING,
2034 "fault or invalid emulation. Contact drive vendor for information.\n");
2035 }
2036 }
2037
2038 /* limit bridge transfers to udma5, 200 sectors */
2039 if (ata_dev_knobble(dev)) {
2040 if (ata_msg_drv(ap) && print_info)
2041 ata_dev_printk(dev, KERN_INFO,
2042 "applying bridge limits\n");
2043 dev->udma_mask &= ATA_UDMA5;
2044 dev->max_sectors = ATA_MAX_SECTORS;
2045 }
2046
2047 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2048 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2049 dev->max_sectors);
2050
2051 if (ap->ops->dev_config)
2052 ap->ops->dev_config(dev);
2053
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2056 __FUNCTION__, ata_chk_status(ap));
2057 return 0;
2058
2059 err_out_nosup:
2060 if (ata_msg_probe(ap))
2061 ata_dev_printk(dev, KERN_DEBUG,
2062 "%s: EXIT, err\n", __FUNCTION__);
2063 return rc;
2064 }
2065
2066 /**
2067 * ata_cable_40wire - return 40 wire cable type
2068 * @ap: port
2069 *
2070 * Helper method for drivers which want to hardwire 40 wire cable
2071 * detection.
2072 */
2073
2074 int ata_cable_40wire(struct ata_port *ap)
2075 {
2076 return ATA_CBL_PATA40;
2077 }
2078
2079 /**
2080 * ata_cable_80wire - return 80 wire cable type
2081 * @ap: port
2082 *
2083 * Helper method for drivers which want to hardwire 80 wire cable
2084 * detection.
2085 */
2086
2087 int ata_cable_80wire(struct ata_port *ap)
2088 {
2089 return ATA_CBL_PATA80;
2090 }
2091
2092 /**
2093 * ata_cable_unknown - return unknown PATA cable.
2094 * @ap: port
2095 *
2096 * Helper method for drivers which have no PATA cable detection.
2097 */
2098
2099 int ata_cable_unknown(struct ata_port *ap)
2100 {
2101 return ATA_CBL_PATA_UNK;
2102 }
2103
2104 /**
2105 * ata_cable_sata - return SATA cable type
2106 * @ap: port
2107 *
2108 * Helper method for drivers which have SATA cables
2109 */
2110
2111 int ata_cable_sata(struct ata_port *ap)
2112 {
2113 return ATA_CBL_SATA;
2114 }
2115
2116 /**
2117 * ata_bus_probe - Reset and probe ATA bus
2118 * @ap: Bus to probe
2119 *
2120 * Master ATA bus probing function. Initiates a hardware-dependent
2121 * bus reset, then attempts to identify any devices found on
2122 * the bus.
2123 *
2124 * LOCKING:
2125 * PCI/etc. bus probe sem.
2126 *
2127 * RETURNS:
2128 * Zero on success, negative errno otherwise.
2129 */
2130
2131 int ata_bus_probe(struct ata_port *ap)
2132 {
2133 unsigned int classes[ATA_MAX_DEVICES];
2134 int tries[ATA_MAX_DEVICES];
2135 int rc;
2136 struct ata_device *dev;
2137
2138 ata_port_probe(ap);
2139
2140 ata_link_for_each_dev(dev, &ap->link)
2141 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2142
2143 retry:
2144 /* reset and determine device classes */
2145 ap->ops->phy_reset(ap);
2146
2147 ata_link_for_each_dev(dev, &ap->link) {
2148 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2149 dev->class != ATA_DEV_UNKNOWN)
2150 classes[dev->devno] = dev->class;
2151 else
2152 classes[dev->devno] = ATA_DEV_NONE;
2153
2154 dev->class = ATA_DEV_UNKNOWN;
2155 }
2156
2157 ata_port_probe(ap);
2158
2159 /* after the reset the device state is PIO 0 and the controller
2160 state is undefined. Record the mode */
2161
2162 ata_link_for_each_dev(dev, &ap->link)
2163 dev->pio_mode = XFER_PIO_0;
2164
2165 /* read IDENTIFY page and configure devices. We have to do the identify
2166 specific sequence bass-ackwards so that PDIAG- is released by
2167 the slave device */
2168
2169 ata_link_for_each_dev(dev, &ap->link) {
2170 if (tries[dev->devno])
2171 dev->class = classes[dev->devno];
2172
2173 if (!ata_dev_enabled(dev))
2174 continue;
2175
2176 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2177 dev->id);
2178 if (rc)
2179 goto fail;
2180 }
2181
2182 /* Now ask for the cable type as PDIAG- should have been released */
2183 if (ap->ops->cable_detect)
2184 ap->cbl = ap->ops->cable_detect(ap);
2185
2186 /* We may have SATA bridge glue hiding here irrespective of the
2187 reported cable types and sensed types */
2188 ata_link_for_each_dev(dev, &ap->link) {
2189 if (!ata_dev_enabled(dev))
2190 continue;
2191 /* SATA drives indicate we have a bridge. We don't know which
2192 end of the link the bridge is which is a problem */
2193 if (ata_id_is_sata(dev->id))
2194 ap->cbl = ATA_CBL_SATA;
2195 }
2196
2197 /* After the identify sequence we can now set up the devices. We do
2198 this in the normal order so that the user doesn't get confused */
2199
2200 ata_link_for_each_dev(dev, &ap->link) {
2201 if (!ata_dev_enabled(dev))
2202 continue;
2203
2204 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2205 rc = ata_dev_configure(dev);
2206 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2207 if (rc)
2208 goto fail;
2209 }
2210
2211 /* configure transfer mode */
2212 rc = ata_set_mode(&ap->link, &dev);
2213 if (rc)
2214 goto fail;
2215
2216 ata_link_for_each_dev(dev, &ap->link)
2217 if (ata_dev_enabled(dev))
2218 return 0;
2219
2220 /* no device present, disable port */
2221 ata_port_disable(ap);
2222 return -ENODEV;
2223
2224 fail:
2225 tries[dev->devno]--;
2226
2227 switch (rc) {
2228 case -EINVAL:
2229 /* eeek, something went very wrong, give up */
2230 tries[dev->devno] = 0;
2231 break;
2232
2233 case -ENODEV:
2234 /* give it just one more chance */
2235 tries[dev->devno] = min(tries[dev->devno], 1);
2236 case -EIO:
2237 if (tries[dev->devno] == 1) {
2238 /* This is the last chance, better to slow
2239 * down than lose it.
2240 */
2241 sata_down_spd_limit(&ap->link);
2242 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2243 }
2244 }
2245
2246 if (!tries[dev->devno])
2247 ata_dev_disable(dev);
2248
2249 goto retry;
2250 }
2251
2252 /**
2253 * ata_port_probe - Mark port as enabled
2254 * @ap: Port for which we indicate enablement
2255 *
2256 * Modify @ap data structure such that the system
2257 * thinks that the entire port is enabled.
2258 *
2259 * LOCKING: host lock, or some other form of
2260 * serialization.
2261 */
2262
2263 void ata_port_probe(struct ata_port *ap)
2264 {
2265 ap->flags &= ~ATA_FLAG_DISABLED;
2266 }
2267
2268 /**
2269 * sata_print_link_status - Print SATA link status
2270 * @link: SATA link to printk link status about
2271 *
2272 * This function prints link speed and status of a SATA link.
2273 *
2274 * LOCKING:
2275 * None.
2276 */
2277 void sata_print_link_status(struct ata_link *link)
2278 {
2279 u32 sstatus, scontrol, tmp;
2280
2281 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2282 return;
2283 sata_scr_read(link, SCR_CONTROL, &scontrol);
2284
2285 if (ata_link_online(link)) {
2286 tmp = (sstatus >> 4) & 0xf;
2287 ata_link_printk(link, KERN_INFO,
2288 "SATA link up %s (SStatus %X SControl %X)\n",
2289 sata_spd_string(tmp), sstatus, scontrol);
2290 } else {
2291 ata_link_printk(link, KERN_INFO,
2292 "SATA link down (SStatus %X SControl %X)\n",
2293 sstatus, scontrol);
2294 }
2295 }
2296
2297 /**
2298 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2299 * @ap: SATA port associated with target SATA PHY.
2300 *
2301 * This function issues commands to standard SATA Sxxx
2302 * PHY registers, to wake up the phy (and device), and
2303 * clear any reset condition.
2304 *
2305 * LOCKING:
2306 * PCI/etc. bus probe sem.
2307 *
2308 */
2309 void __sata_phy_reset(struct ata_port *ap)
2310 {
2311 struct ata_link *link = &ap->link;
2312 unsigned long timeout = jiffies + (HZ * 5);
2313 u32 sstatus;
2314
2315 if (ap->flags & ATA_FLAG_SATA_RESET) {
2316 /* issue phy wake/reset */
2317 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2318 /* Couldn't find anything in SATA I/II specs, but
2319 * AHCI-1.1 10.4.2 says at least 1 ms. */
2320 mdelay(1);
2321 }
2322 /* phy wake/clear reset */
2323 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2324
2325 /* wait for phy to become ready, if necessary */
2326 do {
2327 msleep(200);
2328 sata_scr_read(link, SCR_STATUS, &sstatus);
2329 if ((sstatus & 0xf) != 1)
2330 break;
2331 } while (time_before(jiffies, timeout));
2332
2333 /* print link status */
2334 sata_print_link_status(link);
2335
2336 /* TODO: phy layer with polling, timeouts, etc. */
2337 if (!ata_link_offline(link))
2338 ata_port_probe(ap);
2339 else
2340 ata_port_disable(ap);
2341
2342 if (ap->flags & ATA_FLAG_DISABLED)
2343 return;
2344
2345 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2346 ata_port_disable(ap);
2347 return;
2348 }
2349
2350 ap->cbl = ATA_CBL_SATA;
2351 }
2352
2353 /**
2354 * sata_phy_reset - Reset SATA bus.
2355 * @ap: SATA port associated with target SATA PHY.
2356 *
2357 * This function resets the SATA bus, and then probes
2358 * the bus for devices.
2359 *
2360 * LOCKING:
2361 * PCI/etc. bus probe sem.
2362 *
2363 */
2364 void sata_phy_reset(struct ata_port *ap)
2365 {
2366 __sata_phy_reset(ap);
2367 if (ap->flags & ATA_FLAG_DISABLED)
2368 return;
2369 ata_bus_reset(ap);
2370 }
2371
2372 /**
2373 * ata_dev_pair - return other device on cable
2374 * @adev: device
2375 *
2376 * Obtain the other device on the same cable, or if none is
2377 * present NULL is returned
2378 */
2379
2380 struct ata_device *ata_dev_pair(struct ata_device *adev)
2381 {
2382 struct ata_link *link = adev->link;
2383 struct ata_device *pair = &link->device[1 - adev->devno];
2384 if (!ata_dev_enabled(pair))
2385 return NULL;
2386 return pair;
2387 }
2388
2389 /**
2390 * ata_port_disable - Disable port.
2391 * @ap: Port to be disabled.
2392 *
2393 * Modify @ap data structure such that the system
2394 * thinks that the entire port is disabled, and should
2395 * never attempt to probe or communicate with devices
2396 * on this port.
2397 *
2398 * LOCKING: host lock, or some other form of
2399 * serialization.
2400 */
2401
2402 void ata_port_disable(struct ata_port *ap)
2403 {
2404 ap->link.device[0].class = ATA_DEV_NONE;
2405 ap->link.device[1].class = ATA_DEV_NONE;
2406 ap->flags |= ATA_FLAG_DISABLED;
2407 }
2408
2409 /**
2410 * sata_down_spd_limit - adjust SATA spd limit downward
2411 * @link: Link to adjust SATA spd limit for
2412 *
2413 * Adjust SATA spd limit of @link downward. Note that this
2414 * function only adjusts the limit. The change must be applied
2415 * using sata_set_spd().
2416 *
2417 * LOCKING:
2418 * Inherited from caller.
2419 *
2420 * RETURNS:
2421 * 0 on success, negative errno on failure
2422 */
2423 int sata_down_spd_limit(struct ata_link *link)
2424 {
2425 u32 sstatus, spd, mask;
2426 int rc, highbit;
2427
2428 if (!sata_scr_valid(link))
2429 return -EOPNOTSUPP;
2430
2431 /* If SCR can be read, use it to determine the current SPD.
2432 * If not, use cached value in link->sata_spd.
2433 */
2434 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2435 if (rc == 0)
2436 spd = (sstatus >> 4) & 0xf;
2437 else
2438 spd = link->sata_spd;
2439
2440 mask = link->sata_spd_limit;
2441 if (mask <= 1)
2442 return -EINVAL;
2443
2444 /* unconditionally mask off the highest bit */
2445 highbit = fls(mask) - 1;
2446 mask &= ~(1 << highbit);
2447
2448 /* Mask off all speeds higher than or equal to the current
2449 * one. Force 1.5Gbps if current SPD is not available.
2450 */
2451 if (spd > 1)
2452 mask &= (1 << (spd - 1)) - 1;
2453 else
2454 mask &= 1;
2455
2456 /* were we already at the bottom? */
2457 if (!mask)
2458 return -EINVAL;
2459
2460 link->sata_spd_limit = mask;
2461
2462 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2463 sata_spd_string(fls(mask)));
2464
2465 return 0;
2466 }
2467
2468 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2469 {
2470 u32 spd, limit;
2471
2472 if (link->sata_spd_limit == UINT_MAX)
2473 limit = 0;
2474 else
2475 limit = fls(link->sata_spd_limit);
2476
2477 spd = (*scontrol >> 4) & 0xf;
2478 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2479
2480 return spd != limit;
2481 }
2482
2483 /**
2484 * sata_set_spd_needed - is SATA spd configuration needed
2485 * @link: Link in question
2486 *
2487 * Test whether the spd limit in SControl matches
2488 * @link->sata_spd_limit. This function is used to determine
2489 * whether hardreset is necessary to apply SATA spd
2490 * configuration.
2491 *
2492 * LOCKING:
2493 * Inherited from caller.
2494 *
2495 * RETURNS:
2496 * 1 if SATA spd configuration is needed, 0 otherwise.
2497 */
2498 int sata_set_spd_needed(struct ata_link *link)
2499 {
2500 u32 scontrol;
2501
2502 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2503 return 0;
2504
2505 return __sata_set_spd_needed(link, &scontrol);
2506 }
2507
2508 /**
2509 * sata_set_spd - set SATA spd according to spd limit
2510 * @link: Link to set SATA spd for
2511 *
2512 * Set SATA spd of @link according to sata_spd_limit.
2513 *
2514 * LOCKING:
2515 * Inherited from caller.
2516 *
2517 * RETURNS:
2518 * 0 if spd doesn't need to be changed, 1 if spd has been
2519 * changed. Negative errno if SCR registers are inaccessible.
2520 */
2521 int sata_set_spd(struct ata_link *link)
2522 {
2523 u32 scontrol;
2524 int rc;
2525
2526 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2527 return rc;
2528
2529 if (!__sata_set_spd_needed(link, &scontrol))
2530 return 0;
2531
2532 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2533 return rc;
2534
2535 return 1;
2536 }
2537
2538 /*
2539 * This mode timing computation functionality is ported over from
2540 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2541 */
2542 /*
2543 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2544 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2545 * for UDMA6, which is currently supported only by Maxtor drives.
2546 *
2547 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2548 */
2549
2550 static const struct ata_timing ata_timing[] = {
2551
2552 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2553 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2554 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2555 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2556
2557 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2558 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2559 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2560 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2561 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2562
2563 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2564
2565 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2566 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2567 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2568
2569 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2570 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2571 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2572
2573 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2574 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2575 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2576 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2577
2578 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2579 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2580 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2581
2582 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2583
2584 { 0xFF }
2585 };
2586
2587 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2588 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2589
2590 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2591 {
2592 q->setup = EZ(t->setup * 1000, T);
2593 q->act8b = EZ(t->act8b * 1000, T);
2594 q->rec8b = EZ(t->rec8b * 1000, T);
2595 q->cyc8b = EZ(t->cyc8b * 1000, T);
2596 q->active = EZ(t->active * 1000, T);
2597 q->recover = EZ(t->recover * 1000, T);
2598 q->cycle = EZ(t->cycle * 1000, T);
2599 q->udma = EZ(t->udma * 1000, UT);
2600 }
2601
2602 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2603 struct ata_timing *m, unsigned int what)
2604 {
2605 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2606 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2607 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2608 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2609 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2610 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2611 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2612 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2613 }
2614
2615 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2616 {
2617 const struct ata_timing *t;
2618
2619 for (t = ata_timing; t->mode != speed; t++)
2620 if (t->mode == 0xFF)
2621 return NULL;
2622 return t;
2623 }
2624
2625 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2626 struct ata_timing *t, int T, int UT)
2627 {
2628 const struct ata_timing *s;
2629 struct ata_timing p;
2630
2631 /*
2632 * Find the mode.
2633 */
2634
2635 if (!(s = ata_timing_find_mode(speed)))
2636 return -EINVAL;
2637
2638 memcpy(t, s, sizeof(*s));
2639
2640 /*
2641 * If the drive is an EIDE drive, it can tell us it needs extended
2642 * PIO/MW_DMA cycle timing.
2643 */
2644
2645 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2646 memset(&p, 0, sizeof(p));
2647 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2648 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2649 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2650 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2651 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2652 }
2653 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2654 }
2655
2656 /*
2657 * Convert the timing to bus clock counts.
2658 */
2659
2660 ata_timing_quantize(t, t, T, UT);
2661
2662 /*
2663 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2664 * S.M.A.R.T * and some other commands. We have to ensure that the
2665 * DMA cycle timing is slower/equal than the fastest PIO timing.
2666 */
2667
2668 if (speed > XFER_PIO_6) {
2669 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2670 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2671 }
2672
2673 /*
2674 * Lengthen active & recovery time so that cycle time is correct.
2675 */
2676
2677 if (t->act8b + t->rec8b < t->cyc8b) {
2678 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2679 t->rec8b = t->cyc8b - t->act8b;
2680 }
2681
2682 if (t->active + t->recover < t->cycle) {
2683 t->active += (t->cycle - (t->active + t->recover)) / 2;
2684 t->recover = t->cycle - t->active;
2685 }
2686
2687 /* In a few cases quantisation may produce enough errors to
2688 leave t->cycle too low for the sum of active and recovery
2689 if so we must correct this */
2690 if (t->active + t->recover > t->cycle)
2691 t->cycle = t->active + t->recover;
2692
2693 return 0;
2694 }
2695
2696 /**
2697 * ata_down_xfermask_limit - adjust dev xfer masks downward
2698 * @dev: Device to adjust xfer masks
2699 * @sel: ATA_DNXFER_* selector
2700 *
2701 * Adjust xfer masks of @dev downward. Note that this function
2702 * does not apply the change. Invoking ata_set_mode() afterwards
2703 * will apply the limit.
2704 *
2705 * LOCKING:
2706 * Inherited from caller.
2707 *
2708 * RETURNS:
2709 * 0 on success, negative errno on failure
2710 */
2711 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2712 {
2713 char buf[32];
2714 unsigned int orig_mask, xfer_mask;
2715 unsigned int pio_mask, mwdma_mask, udma_mask;
2716 int quiet, highbit;
2717
2718 quiet = !!(sel & ATA_DNXFER_QUIET);
2719 sel &= ~ATA_DNXFER_QUIET;
2720
2721 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2722 dev->mwdma_mask,
2723 dev->udma_mask);
2724 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2725
2726 switch (sel) {
2727 case ATA_DNXFER_PIO:
2728 highbit = fls(pio_mask) - 1;
2729 pio_mask &= ~(1 << highbit);
2730 break;
2731
2732 case ATA_DNXFER_DMA:
2733 if (udma_mask) {
2734 highbit = fls(udma_mask) - 1;
2735 udma_mask &= ~(1 << highbit);
2736 if (!udma_mask)
2737 return -ENOENT;
2738 } else if (mwdma_mask) {
2739 highbit = fls(mwdma_mask) - 1;
2740 mwdma_mask &= ~(1 << highbit);
2741 if (!mwdma_mask)
2742 return -ENOENT;
2743 }
2744 break;
2745
2746 case ATA_DNXFER_40C:
2747 udma_mask &= ATA_UDMA_MASK_40C;
2748 break;
2749
2750 case ATA_DNXFER_FORCE_PIO0:
2751 pio_mask &= 1;
2752 case ATA_DNXFER_FORCE_PIO:
2753 mwdma_mask = 0;
2754 udma_mask = 0;
2755 break;
2756
2757 default:
2758 BUG();
2759 }
2760
2761 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2762
2763 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2764 return -ENOENT;
2765
2766 if (!quiet) {
2767 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2768 snprintf(buf, sizeof(buf), "%s:%s",
2769 ata_mode_string(xfer_mask),
2770 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2771 else
2772 snprintf(buf, sizeof(buf), "%s",
2773 ata_mode_string(xfer_mask));
2774
2775 ata_dev_printk(dev, KERN_WARNING,
2776 "limiting speed to %s\n", buf);
2777 }
2778
2779 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2780 &dev->udma_mask);
2781
2782 return 0;
2783 }
2784
2785 static int ata_dev_set_mode(struct ata_device *dev)
2786 {
2787 struct ata_eh_context *ehc = &dev->link->eh_context;
2788 unsigned int err_mask;
2789 int rc;
2790
2791 dev->flags &= ~ATA_DFLAG_PIO;
2792 if (dev->xfer_shift == ATA_SHIFT_PIO)
2793 dev->flags |= ATA_DFLAG_PIO;
2794
2795 err_mask = ata_dev_set_xfermode(dev);
2796 /* Old CFA may refuse this command, which is just fine */
2797 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2798 err_mask &= ~AC_ERR_DEV;
2799 /* Some very old devices and some bad newer ones fail any kind of
2800 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2801 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2802 dev->pio_mode <= XFER_PIO_2)
2803 err_mask &= ~AC_ERR_DEV;
2804 if (err_mask) {
2805 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2806 "(err_mask=0x%x)\n", err_mask);
2807 return -EIO;
2808 }
2809
2810 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2811 rc = ata_dev_revalidate(dev, 0);
2812 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2813 if (rc)
2814 return rc;
2815
2816 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2817 dev->xfer_shift, (int)dev->xfer_mode);
2818
2819 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2820 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2821 return 0;
2822 }
2823
2824 /**
2825 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2826 * @link: link on which timings will be programmed
2827 * @r_failed_dev: out paramter for failed device
2828 *
2829 * Standard implementation of the function used to tune and set
2830 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2831 * ata_dev_set_mode() fails, pointer to the failing device is
2832 * returned in @r_failed_dev.
2833 *
2834 * LOCKING:
2835 * PCI/etc. bus probe sem.
2836 *
2837 * RETURNS:
2838 * 0 on success, negative errno otherwise
2839 */
2840
2841 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2842 {
2843 struct ata_port *ap = link->ap;
2844 struct ata_device *dev;
2845 int rc = 0, used_dma = 0, found = 0;
2846
2847 /* step 1: calculate xfer_mask */
2848 ata_link_for_each_dev(dev, link) {
2849 unsigned int pio_mask, dma_mask;
2850
2851 if (!ata_dev_enabled(dev))
2852 continue;
2853
2854 ata_dev_xfermask(dev);
2855
2856 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2857 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2858 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2859 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2860
2861 found = 1;
2862 if (dev->dma_mode)
2863 used_dma = 1;
2864 }
2865 if (!found)
2866 goto out;
2867
2868 /* step 2: always set host PIO timings */
2869 ata_link_for_each_dev(dev, link) {
2870 if (!ata_dev_enabled(dev))
2871 continue;
2872
2873 if (!dev->pio_mode) {
2874 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2875 rc = -EINVAL;
2876 goto out;
2877 }
2878
2879 dev->xfer_mode = dev->pio_mode;
2880 dev->xfer_shift = ATA_SHIFT_PIO;
2881 if (ap->ops->set_piomode)
2882 ap->ops->set_piomode(ap, dev);
2883 }
2884
2885 /* step 3: set host DMA timings */
2886 ata_link_for_each_dev(dev, link) {
2887 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2888 continue;
2889
2890 dev->xfer_mode = dev->dma_mode;
2891 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2892 if (ap->ops->set_dmamode)
2893 ap->ops->set_dmamode(ap, dev);
2894 }
2895
2896 /* step 4: update devices' xfer mode */
2897 ata_link_for_each_dev(dev, link) {
2898 /* don't update suspended devices' xfer mode */
2899 if (!ata_dev_enabled(dev))
2900 continue;
2901
2902 rc = ata_dev_set_mode(dev);
2903 if (rc)
2904 goto out;
2905 }
2906
2907 /* Record simplex status. If we selected DMA then the other
2908 * host channels are not permitted to do so.
2909 */
2910 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2911 ap->host->simplex_claimed = ap;
2912
2913 out:
2914 if (rc)
2915 *r_failed_dev = dev;
2916 return rc;
2917 }
2918
2919 /**
2920 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2921 * @link: link on which timings will be programmed
2922 * @r_failed_dev: out paramter for failed device
2923 *
2924 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2925 * ata_set_mode() fails, pointer to the failing device is
2926 * returned in @r_failed_dev.
2927 *
2928 * LOCKING:
2929 * PCI/etc. bus probe sem.
2930 *
2931 * RETURNS:
2932 * 0 on success, negative errno otherwise
2933 */
2934 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2935 {
2936 struct ata_port *ap = link->ap;
2937
2938 /* has private set_mode? */
2939 if (ap->ops->set_mode)
2940 return ap->ops->set_mode(link, r_failed_dev);
2941 return ata_do_set_mode(link, r_failed_dev);
2942 }
2943
2944 /**
2945 * ata_tf_to_host - issue ATA taskfile to host controller
2946 * @ap: port to which command is being issued
2947 * @tf: ATA taskfile register set
2948 *
2949 * Issues ATA taskfile register set to ATA host controller,
2950 * with proper synchronization with interrupt handler and
2951 * other threads.
2952 *
2953 * LOCKING:
2954 * spin_lock_irqsave(host lock)
2955 */
2956
2957 static inline void ata_tf_to_host(struct ata_port *ap,
2958 const struct ata_taskfile *tf)
2959 {
2960 ap->ops->tf_load(ap, tf);
2961 ap->ops->exec_command(ap, tf);
2962 }
2963
2964 /**
2965 * ata_busy_sleep - sleep until BSY clears, or timeout
2966 * @ap: port containing status register to be polled
2967 * @tmout_pat: impatience timeout
2968 * @tmout: overall timeout
2969 *
2970 * Sleep until ATA Status register bit BSY clears,
2971 * or a timeout occurs.
2972 *
2973 * LOCKING:
2974 * Kernel thread context (may sleep).
2975 *
2976 * RETURNS:
2977 * 0 on success, -errno otherwise.
2978 */
2979 int ata_busy_sleep(struct ata_port *ap,
2980 unsigned long tmout_pat, unsigned long tmout)
2981 {
2982 unsigned long timer_start, timeout;
2983 u8 status;
2984
2985 status = ata_busy_wait(ap, ATA_BUSY, 300);
2986 timer_start = jiffies;
2987 timeout = timer_start + tmout_pat;
2988 while (status != 0xff && (status & ATA_BUSY) &&
2989 time_before(jiffies, timeout)) {
2990 msleep(50);
2991 status = ata_busy_wait(ap, ATA_BUSY, 3);
2992 }
2993
2994 if (status != 0xff && (status & ATA_BUSY))
2995 ata_port_printk(ap, KERN_WARNING,
2996 "port is slow to respond, please be patient "
2997 "(Status 0x%x)\n", status);
2998
2999 timeout = timer_start + tmout;
3000 while (status != 0xff && (status & ATA_BUSY) &&
3001 time_before(jiffies, timeout)) {
3002 msleep(50);
3003 status = ata_chk_status(ap);
3004 }
3005
3006 if (status == 0xff)
3007 return -ENODEV;
3008
3009 if (status & ATA_BUSY) {
3010 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3011 "(%lu secs, Status 0x%x)\n",
3012 tmout / HZ, status);
3013 return -EBUSY;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /**
3020 * ata_wait_ready - sleep until BSY clears, or timeout
3021 * @ap: port containing status register to be polled
3022 * @deadline: deadline jiffies for the operation
3023 *
3024 * Sleep until ATA Status register bit BSY clears, or timeout
3025 * occurs.
3026 *
3027 * LOCKING:
3028 * Kernel thread context (may sleep).
3029 *
3030 * RETURNS:
3031 * 0 on success, -errno otherwise.
3032 */
3033 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3034 {
3035 unsigned long start = jiffies;
3036 int warned = 0;
3037
3038 while (1) {
3039 u8 status = ata_chk_status(ap);
3040 unsigned long now = jiffies;
3041
3042 if (!(status & ATA_BUSY))
3043 return 0;
3044 if (!ata_link_online(&ap->link) && status == 0xff)
3045 return -ENODEV;
3046 if (time_after(now, deadline))
3047 return -EBUSY;
3048
3049 if (!warned && time_after(now, start + 5 * HZ) &&
3050 (deadline - now > 3 * HZ)) {
3051 ata_port_printk(ap, KERN_WARNING,
3052 "port is slow to respond, please be patient "
3053 "(Status 0x%x)\n", status);
3054 warned = 1;
3055 }
3056
3057 msleep(50);
3058 }
3059 }
3060
3061 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3062 unsigned long deadline)
3063 {
3064 struct ata_ioports *ioaddr = &ap->ioaddr;
3065 unsigned int dev0 = devmask & (1 << 0);
3066 unsigned int dev1 = devmask & (1 << 1);
3067 int rc, ret = 0;
3068
3069 /* if device 0 was found in ata_devchk, wait for its
3070 * BSY bit to clear
3071 */
3072 if (dev0) {
3073 rc = ata_wait_ready(ap, deadline);
3074 if (rc) {
3075 if (rc != -ENODEV)
3076 return rc;
3077 ret = rc;
3078 }
3079 }
3080
3081 /* if device 1 was found in ata_devchk, wait for register
3082 * access briefly, then wait for BSY to clear.
3083 */
3084 if (dev1) {
3085 int i;
3086
3087 ap->ops->dev_select(ap, 1);
3088
3089 /* Wait for register access. Some ATAPI devices fail
3090 * to set nsect/lbal after reset, so don't waste too
3091 * much time on it. We're gonna wait for !BSY anyway.
3092 */
3093 for (i = 0; i < 2; i++) {
3094 u8 nsect, lbal;
3095
3096 nsect = ioread8(ioaddr->nsect_addr);
3097 lbal = ioread8(ioaddr->lbal_addr);
3098 if ((nsect == 1) && (lbal == 1))
3099 break;
3100 msleep(50); /* give drive a breather */
3101 }
3102
3103 rc = ata_wait_ready(ap, deadline);
3104 if (rc) {
3105 if (rc != -ENODEV)
3106 return rc;
3107 ret = rc;
3108 }
3109 }
3110
3111 /* is all this really necessary? */
3112 ap->ops->dev_select(ap, 0);
3113 if (dev1)
3114 ap->ops->dev_select(ap, 1);
3115 if (dev0)
3116 ap->ops->dev_select(ap, 0);
3117
3118 return ret;
3119 }
3120
3121 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3122 unsigned long deadline)
3123 {
3124 struct ata_ioports *ioaddr = &ap->ioaddr;
3125
3126 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3127
3128 /* software reset. causes dev0 to be selected */
3129 iowrite8(ap->ctl, ioaddr->ctl_addr);
3130 udelay(20); /* FIXME: flush */
3131 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3132 udelay(20); /* FIXME: flush */
3133 iowrite8(ap->ctl, ioaddr->ctl_addr);
3134
3135 /* spec mandates ">= 2ms" before checking status.
3136 * We wait 150ms, because that was the magic delay used for
3137 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3138 * between when the ATA command register is written, and then
3139 * status is checked. Because waiting for "a while" before
3140 * checking status is fine, post SRST, we perform this magic
3141 * delay here as well.
3142 *
3143 * Old drivers/ide uses the 2mS rule and then waits for ready
3144 */
3145 msleep(150);
3146
3147 /* Before we perform post reset processing we want to see if
3148 * the bus shows 0xFF because the odd clown forgets the D7
3149 * pulldown resistor.
3150 */
3151 if (ata_check_status(ap) == 0xFF)
3152 return -ENODEV;
3153
3154 return ata_bus_post_reset(ap, devmask, deadline);
3155 }
3156
3157 /**
3158 * ata_bus_reset - reset host port and associated ATA channel
3159 * @ap: port to reset
3160 *
3161 * This is typically the first time we actually start issuing
3162 * commands to the ATA channel. We wait for BSY to clear, then
3163 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3164 * result. Determine what devices, if any, are on the channel
3165 * by looking at the device 0/1 error register. Look at the signature
3166 * stored in each device's taskfile registers, to determine if
3167 * the device is ATA or ATAPI.
3168 *
3169 * LOCKING:
3170 * PCI/etc. bus probe sem.
3171 * Obtains host lock.
3172 *
3173 * SIDE EFFECTS:
3174 * Sets ATA_FLAG_DISABLED if bus reset fails.
3175 */
3176
3177 void ata_bus_reset(struct ata_port *ap)
3178 {
3179 struct ata_device *device = ap->link.device;
3180 struct ata_ioports *ioaddr = &ap->ioaddr;
3181 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3182 u8 err;
3183 unsigned int dev0, dev1 = 0, devmask = 0;
3184 int rc;
3185
3186 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3187
3188 /* determine if device 0/1 are present */
3189 if (ap->flags & ATA_FLAG_SATA_RESET)
3190 dev0 = 1;
3191 else {
3192 dev0 = ata_devchk(ap, 0);
3193 if (slave_possible)
3194 dev1 = ata_devchk(ap, 1);
3195 }
3196
3197 if (dev0)
3198 devmask |= (1 << 0);
3199 if (dev1)
3200 devmask |= (1 << 1);
3201
3202 /* select device 0 again */
3203 ap->ops->dev_select(ap, 0);
3204
3205 /* issue bus reset */
3206 if (ap->flags & ATA_FLAG_SRST) {
3207 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3208 if (rc && rc != -ENODEV)
3209 goto err_out;
3210 }
3211
3212 /*
3213 * determine by signature whether we have ATA or ATAPI devices
3214 */
3215 device[0].class = ata_dev_try_classify(ap, 0, &err);
3216 if ((slave_possible) && (err != 0x81))
3217 device[1].class = ata_dev_try_classify(ap, 1, &err);
3218
3219 /* is double-select really necessary? */
3220 if (device[1].class != ATA_DEV_NONE)
3221 ap->ops->dev_select(ap, 1);
3222 if (device[0].class != ATA_DEV_NONE)
3223 ap->ops->dev_select(ap, 0);
3224
3225 /* if no devices were detected, disable this port */
3226 if ((device[0].class == ATA_DEV_NONE) &&
3227 (device[1].class == ATA_DEV_NONE))
3228 goto err_out;
3229
3230 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3231 /* set up device control for ATA_FLAG_SATA_RESET */
3232 iowrite8(ap->ctl, ioaddr->ctl_addr);
3233 }
3234
3235 DPRINTK("EXIT\n");
3236 return;
3237
3238 err_out:
3239 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3240 ata_port_disable(ap);
3241
3242 DPRINTK("EXIT\n");
3243 }
3244
3245 /**
3246 * sata_link_debounce - debounce SATA phy status
3247 * @link: ATA link to debounce SATA phy status for
3248 * @params: timing parameters { interval, duratinon, timeout } in msec
3249 * @deadline: deadline jiffies for the operation
3250 *
3251 * Make sure SStatus of @link reaches stable state, determined by
3252 * holding the same value where DET is not 1 for @duration polled
3253 * every @interval, before @timeout. Timeout constraints the
3254 * beginning of the stable state. Because DET gets stuck at 1 on
3255 * some controllers after hot unplugging, this functions waits
3256 * until timeout then returns 0 if DET is stable at 1.
3257 *
3258 * @timeout is further limited by @deadline. The sooner of the
3259 * two is used.
3260 *
3261 * LOCKING:
3262 * Kernel thread context (may sleep)
3263 *
3264 * RETURNS:
3265 * 0 on success, -errno on failure.
3266 */
3267 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3268 unsigned long deadline)
3269 {
3270 unsigned long interval_msec = params[0];
3271 unsigned long duration = msecs_to_jiffies(params[1]);
3272 unsigned long last_jiffies, t;
3273 u32 last, cur;
3274 int rc;
3275
3276 t = jiffies + msecs_to_jiffies(params[2]);
3277 if (time_before(t, deadline))
3278 deadline = t;
3279
3280 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3281 return rc;
3282 cur &= 0xf;
3283
3284 last = cur;
3285 last_jiffies = jiffies;
3286
3287 while (1) {
3288 msleep(interval_msec);
3289 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3290 return rc;
3291 cur &= 0xf;
3292
3293 /* DET stable? */
3294 if (cur == last) {
3295 if (cur == 1 && time_before(jiffies, deadline))
3296 continue;
3297 if (time_after(jiffies, last_jiffies + duration))
3298 return 0;
3299 continue;
3300 }
3301
3302 /* unstable, start over */
3303 last = cur;
3304 last_jiffies = jiffies;
3305
3306 /* Check deadline. If debouncing failed, return
3307 * -EPIPE to tell upper layer to lower link speed.
3308 */
3309 if (time_after(jiffies, deadline))
3310 return -EPIPE;
3311 }
3312 }
3313
3314 /**
3315 * sata_link_resume - resume SATA link
3316 * @link: ATA link to resume SATA
3317 * @params: timing parameters { interval, duratinon, timeout } in msec
3318 * @deadline: deadline jiffies for the operation
3319 *
3320 * Resume SATA phy @link and debounce it.
3321 *
3322 * LOCKING:
3323 * Kernel thread context (may sleep)
3324 *
3325 * RETURNS:
3326 * 0 on success, -errno on failure.
3327 */
3328 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3329 unsigned long deadline)
3330 {
3331 u32 scontrol;
3332 int rc;
3333
3334 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3335 return rc;
3336
3337 scontrol = (scontrol & 0x0f0) | 0x300;
3338
3339 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3340 return rc;
3341
3342 /* Some PHYs react badly if SStatus is pounded immediately
3343 * after resuming. Delay 200ms before debouncing.
3344 */
3345 msleep(200);
3346
3347 return sata_link_debounce(link, params, deadline);
3348 }
3349
3350 /**
3351 * ata_std_prereset - prepare for reset
3352 * @link: ATA link to be reset
3353 * @deadline: deadline jiffies for the operation
3354 *
3355 * @link is about to be reset. Initialize it. Failure from
3356 * prereset makes libata abort whole reset sequence and give up
3357 * that port, so prereset should be best-effort. It does its
3358 * best to prepare for reset sequence but if things go wrong, it
3359 * should just whine, not fail.
3360 *
3361 * LOCKING:
3362 * Kernel thread context (may sleep)
3363 *
3364 * RETURNS:
3365 * 0 on success, -errno otherwise.
3366 */
3367 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3368 {
3369 struct ata_port *ap = link->ap;
3370 struct ata_eh_context *ehc = &link->eh_context;
3371 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3372 int rc;
3373
3374 /* handle link resume */
3375 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3376 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3377 ehc->i.action |= ATA_EH_HARDRESET;
3378
3379 /* if we're about to do hardreset, nothing more to do */
3380 if (ehc->i.action & ATA_EH_HARDRESET)
3381 return 0;
3382
3383 /* if SATA, resume link */
3384 if (ap->flags & ATA_FLAG_SATA) {
3385 rc = sata_link_resume(link, timing, deadline);
3386 /* whine about phy resume failure but proceed */
3387 if (rc && rc != -EOPNOTSUPP)
3388 ata_link_printk(link, KERN_WARNING, "failed to resume "
3389 "link for reset (errno=%d)\n", rc);
3390 }
3391
3392 /* Wait for !BSY if the controller can wait for the first D2H
3393 * Reg FIS and we don't know that no device is attached.
3394 */
3395 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3396 rc = ata_wait_ready(ap, deadline);
3397 if (rc && rc != -ENODEV) {
3398 ata_link_printk(link, KERN_WARNING, "device not ready "
3399 "(errno=%d), forcing hardreset\n", rc);
3400 ehc->i.action |= ATA_EH_HARDRESET;
3401 }
3402 }
3403
3404 return 0;
3405 }
3406
3407 /**
3408 * ata_std_softreset - reset host port via ATA SRST
3409 * @link: ATA link to reset
3410 * @classes: resulting classes of attached devices
3411 * @deadline: deadline jiffies for the operation
3412 *
3413 * Reset host port using ATA SRST.
3414 *
3415 * LOCKING:
3416 * Kernel thread context (may sleep)
3417 *
3418 * RETURNS:
3419 * 0 on success, -errno otherwise.
3420 */
3421 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3422 unsigned long deadline)
3423 {
3424 struct ata_port *ap = link->ap;
3425 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3426 unsigned int devmask = 0;
3427 int rc;
3428 u8 err;
3429
3430 DPRINTK("ENTER\n");
3431
3432 if (ata_link_offline(link)) {
3433 classes[0] = ATA_DEV_NONE;
3434 goto out;
3435 }
3436
3437 /* determine if device 0/1 are present */
3438 if (ata_devchk(ap, 0))
3439 devmask |= (1 << 0);
3440 if (slave_possible && ata_devchk(ap, 1))
3441 devmask |= (1 << 1);
3442
3443 /* select device 0 again */
3444 ap->ops->dev_select(ap, 0);
3445
3446 /* issue bus reset */
3447 DPRINTK("about to softreset, devmask=%x\n", devmask);
3448 rc = ata_bus_softreset(ap, devmask, deadline);
3449 /* if link is occupied, -ENODEV too is an error */
3450 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3451 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3452 return rc;
3453 }
3454
3455 /* determine by signature whether we have ATA or ATAPI devices */
3456 classes[0] = ata_dev_try_classify(ap, 0, &err);
3457 if (slave_possible && err != 0x81)
3458 classes[1] = ata_dev_try_classify(ap, 1, &err);
3459
3460 out:
3461 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3462 return 0;
3463 }
3464
3465 /**
3466 * sata_link_hardreset - reset link via SATA phy reset
3467 * @link: link to reset
3468 * @timing: timing parameters { interval, duratinon, timeout } in msec
3469 * @deadline: deadline jiffies for the operation
3470 *
3471 * SATA phy-reset @link using DET bits of SControl register.
3472 *
3473 * LOCKING:
3474 * Kernel thread context (may sleep)
3475 *
3476 * RETURNS:
3477 * 0 on success, -errno otherwise.
3478 */
3479 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3480 unsigned long deadline)
3481 {
3482 u32 scontrol;
3483 int rc;
3484
3485 DPRINTK("ENTER\n");
3486
3487 if (sata_set_spd_needed(link)) {
3488 /* SATA spec says nothing about how to reconfigure
3489 * spd. To be on the safe side, turn off phy during
3490 * reconfiguration. This works for at least ICH7 AHCI
3491 * and Sil3124.
3492 */
3493 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3494 goto out;
3495
3496 scontrol = (scontrol & 0x0f0) | 0x304;
3497
3498 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3499 goto out;
3500
3501 sata_set_spd(link);
3502 }
3503
3504 /* issue phy wake/reset */
3505 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3506 goto out;
3507
3508 scontrol = (scontrol & 0x0f0) | 0x301;
3509
3510 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3511 goto out;
3512
3513 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3514 * 10.4.2 says at least 1 ms.
3515 */
3516 msleep(1);
3517
3518 /* bring link back */
3519 rc = sata_link_resume(link, timing, deadline);
3520 out:
3521 DPRINTK("EXIT, rc=%d\n", rc);
3522 return rc;
3523 }
3524
3525 /**
3526 * sata_std_hardreset - reset host port via SATA phy reset
3527 * @link: link to reset
3528 * @class: resulting class of attached device
3529 * @deadline: deadline jiffies for the operation
3530 *
3531 * SATA phy-reset host port using DET bits of SControl register,
3532 * wait for !BSY and classify the attached device.
3533 *
3534 * LOCKING:
3535 * Kernel thread context (may sleep)
3536 *
3537 * RETURNS:
3538 * 0 on success, -errno otherwise.
3539 */
3540 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3541 unsigned long deadline)
3542 {
3543 struct ata_port *ap = link->ap;
3544 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3545 int rc;
3546
3547 DPRINTK("ENTER\n");
3548
3549 /* do hardreset */
3550 rc = sata_link_hardreset(link, timing, deadline);
3551 if (rc) {
3552 ata_link_printk(link, KERN_ERR,
3553 "COMRESET failed (errno=%d)\n", rc);
3554 return rc;
3555 }
3556
3557 /* TODO: phy layer with polling, timeouts, etc. */
3558 if (ata_link_offline(link)) {
3559 *class = ATA_DEV_NONE;
3560 DPRINTK("EXIT, link offline\n");
3561 return 0;
3562 }
3563
3564 /* wait a while before checking status, see SRST for more info */
3565 msleep(150);
3566
3567 rc = ata_wait_ready(ap, deadline);
3568 /* link occupied, -ENODEV too is an error */
3569 if (rc) {
3570 ata_link_printk(link, KERN_ERR,
3571 "COMRESET failed (errno=%d)\n", rc);
3572 return rc;
3573 }
3574
3575 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3576
3577 *class = ata_dev_try_classify(ap, 0, NULL);
3578
3579 DPRINTK("EXIT, class=%u\n", *class);
3580 return 0;
3581 }
3582
3583 /**
3584 * ata_std_postreset - standard postreset callback
3585 * @link: the target ata_link
3586 * @classes: classes of attached devices
3587 *
3588 * This function is invoked after a successful reset. Note that
3589 * the device might have been reset more than once using
3590 * different reset methods before postreset is invoked.
3591 *
3592 * LOCKING:
3593 * Kernel thread context (may sleep)
3594 */
3595 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3596 {
3597 struct ata_port *ap = link->ap;
3598 u32 serror;
3599
3600 DPRINTK("ENTER\n");
3601
3602 /* print link status */
3603 sata_print_link_status(link);
3604
3605 /* clear SError */
3606 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3607 sata_scr_write(link, SCR_ERROR, serror);
3608
3609 /* is double-select really necessary? */
3610 if (classes[0] != ATA_DEV_NONE)
3611 ap->ops->dev_select(ap, 1);
3612 if (classes[1] != ATA_DEV_NONE)
3613 ap->ops->dev_select(ap, 0);
3614
3615 /* bail out if no device is present */
3616 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3617 DPRINTK("EXIT, no device\n");
3618 return;
3619 }
3620
3621 /* set up device control */
3622 if (ap->ioaddr.ctl_addr)
3623 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3624
3625 DPRINTK("EXIT\n");
3626 }
3627
3628 /**
3629 * ata_dev_same_device - Determine whether new ID matches configured device
3630 * @dev: device to compare against
3631 * @new_class: class of the new device
3632 * @new_id: IDENTIFY page of the new device
3633 *
3634 * Compare @new_class and @new_id against @dev and determine
3635 * whether @dev is the device indicated by @new_class and
3636 * @new_id.
3637 *
3638 * LOCKING:
3639 * None.
3640 *
3641 * RETURNS:
3642 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3643 */
3644 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3645 const u16 *new_id)
3646 {
3647 const u16 *old_id = dev->id;
3648 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3649 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3650
3651 if (dev->class != new_class) {
3652 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3653 dev->class, new_class);
3654 return 0;
3655 }
3656
3657 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3658 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3659 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3660 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3661
3662 if (strcmp(model[0], model[1])) {
3663 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3664 "'%s' != '%s'\n", model[0], model[1]);
3665 return 0;
3666 }
3667
3668 if (strcmp(serial[0], serial[1])) {
3669 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3670 "'%s' != '%s'\n", serial[0], serial[1]);
3671 return 0;
3672 }
3673
3674 return 1;
3675 }
3676
3677 /**
3678 * ata_dev_reread_id - Re-read IDENTIFY data
3679 * @dev: target ATA device
3680 * @readid_flags: read ID flags
3681 *
3682 * Re-read IDENTIFY page and make sure @dev is still attached to
3683 * the port.
3684 *
3685 * LOCKING:
3686 * Kernel thread context (may sleep)
3687 *
3688 * RETURNS:
3689 * 0 on success, negative errno otherwise
3690 */
3691 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3692 {
3693 unsigned int class = dev->class;
3694 u16 *id = (void *)dev->link->ap->sector_buf;
3695 int rc;
3696
3697 /* read ID data */
3698 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3699 if (rc)
3700 return rc;
3701
3702 /* is the device still there? */
3703 if (!ata_dev_same_device(dev, class, id))
3704 return -ENODEV;
3705
3706 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3707 return 0;
3708 }
3709
3710 /**
3711 * ata_dev_revalidate - Revalidate ATA device
3712 * @dev: device to revalidate
3713 * @readid_flags: read ID flags
3714 *
3715 * Re-read IDENTIFY page, make sure @dev is still attached to the
3716 * port and reconfigure it according to the new IDENTIFY page.
3717 *
3718 * LOCKING:
3719 * Kernel thread context (may sleep)
3720 *
3721 * RETURNS:
3722 * 0 on success, negative errno otherwise
3723 */
3724 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3725 {
3726 u64 n_sectors = dev->n_sectors;
3727 int rc;
3728
3729 if (!ata_dev_enabled(dev))
3730 return -ENODEV;
3731
3732 /* re-read ID */
3733 rc = ata_dev_reread_id(dev, readid_flags);
3734 if (rc)
3735 goto fail;
3736
3737 /* configure device according to the new ID */
3738 rc = ata_dev_configure(dev);
3739 if (rc)
3740 goto fail;
3741
3742 /* verify n_sectors hasn't changed */
3743 if (dev->class == ATA_DEV_ATA && n_sectors &&
3744 dev->n_sectors != n_sectors) {
3745 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3746 "%llu != %llu\n",
3747 (unsigned long long)n_sectors,
3748 (unsigned long long)dev->n_sectors);
3749
3750 /* restore original n_sectors */
3751 dev->n_sectors = n_sectors;
3752
3753 rc = -ENODEV;
3754 goto fail;
3755 }
3756
3757 return 0;
3758
3759 fail:
3760 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3761 return rc;
3762 }
3763
3764 struct ata_blacklist_entry {
3765 const char *model_num;
3766 const char *model_rev;
3767 unsigned long horkage;
3768 };
3769
3770 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3771 /* Devices with DMA related problems under Linux */
3772 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3773 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3774 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3775 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3776 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3777 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3778 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3779 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3780 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3781 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3782 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3783 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3784 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3785 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3786 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3787 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3788 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3789 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3790 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3791 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3792 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3793 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3794 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3795 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3796 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3797 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3798 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3799 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3800 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3801 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3802 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3803 { "IOMEGA ZIP 250 ATAPI Floppy",
3804 NULL, ATA_HORKAGE_NODMA },
3805
3806 /* Weird ATAPI devices */
3807 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3808
3809 /* Devices we expect to fail diagnostics */
3810
3811 /* Devices where NCQ should be avoided */
3812 /* NCQ is slow */
3813 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3814 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3815 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3816 /* NCQ is broken */
3817 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3818 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3819 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3820 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3821 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3822 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3823 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3824 ATA_HORKAGE_NONCQ },
3825 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3826 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3827 /* Blacklist entries taken from Silicon Image 3124/3132
3828 Windows driver .inf file - also several Linux problem reports */
3829 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3830 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3831 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3832 /* Drives which do spurious command completion */
3833 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3834 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3835 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3836 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3837 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3838 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3839 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
3840 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3841
3842 /* devices which puke on READ_NATIVE_MAX */
3843 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3844 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3845 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3846 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3847
3848 /* End Marker */
3849 { }
3850 };
3851
3852 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3853 {
3854 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3855 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3856 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3857
3858 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3859 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3860
3861 while (ad->model_num) {
3862 if (!strcmp(ad->model_num, model_num)) {
3863 if (ad->model_rev == NULL)
3864 return ad->horkage;
3865 if (!strcmp(ad->model_rev, model_rev))
3866 return ad->horkage;
3867 }
3868 ad++;
3869 }
3870 return 0;
3871 }
3872
3873 static int ata_dma_blacklisted(const struct ata_device *dev)
3874 {
3875 /* We don't support polling DMA.
3876 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3877 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3878 */
3879 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3880 (dev->flags & ATA_DFLAG_CDB_INTR))
3881 return 1;
3882 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3883 }
3884
3885 /**
3886 * ata_dev_xfermask - Compute supported xfermask of the given device
3887 * @dev: Device to compute xfermask for
3888 *
3889 * Compute supported xfermask of @dev and store it in
3890 * dev->*_mask. This function is responsible for applying all
3891 * known limits including host controller limits, device
3892 * blacklist, etc...
3893 *
3894 * LOCKING:
3895 * None.
3896 */
3897 static void ata_dev_xfermask(struct ata_device *dev)
3898 {
3899 struct ata_link *link = dev->link;
3900 struct ata_port *ap = link->ap;
3901 struct ata_host *host = ap->host;
3902 unsigned long xfer_mask;
3903
3904 /* controller modes available */
3905 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3906 ap->mwdma_mask, ap->udma_mask);
3907
3908 /* drive modes available */
3909 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3910 dev->mwdma_mask, dev->udma_mask);
3911 xfer_mask &= ata_id_xfermask(dev->id);
3912
3913 /*
3914 * CFA Advanced TrueIDE timings are not allowed on a shared
3915 * cable
3916 */
3917 if (ata_dev_pair(dev)) {
3918 /* No PIO5 or PIO6 */
3919 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3920 /* No MWDMA3 or MWDMA 4 */
3921 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3922 }
3923
3924 if (ata_dma_blacklisted(dev)) {
3925 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3926 ata_dev_printk(dev, KERN_WARNING,
3927 "device is on DMA blacklist, disabling DMA\n");
3928 }
3929
3930 if ((host->flags & ATA_HOST_SIMPLEX) &&
3931 host->simplex_claimed && host->simplex_claimed != ap) {
3932 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3933 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3934 "other device, disabling DMA\n");
3935 }
3936
3937 if (ap->flags & ATA_FLAG_NO_IORDY)
3938 xfer_mask &= ata_pio_mask_no_iordy(dev);
3939
3940 if (ap->ops->mode_filter)
3941 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3942
3943 /* Apply cable rule here. Don't apply it early because when
3944 * we handle hot plug the cable type can itself change.
3945 * Check this last so that we know if the transfer rate was
3946 * solely limited by the cable.
3947 * Unknown or 80 wire cables reported host side are checked
3948 * drive side as well. Cases where we know a 40wire cable
3949 * is used safely for 80 are not checked here.
3950 */
3951 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3952 /* UDMA/44 or higher would be available */
3953 if((ap->cbl == ATA_CBL_PATA40) ||
3954 (ata_drive_40wire(dev->id) &&
3955 (ap->cbl == ATA_CBL_PATA_UNK ||
3956 ap->cbl == ATA_CBL_PATA80))) {
3957 ata_dev_printk(dev, KERN_WARNING,
3958 "limited to UDMA/33 due to 40-wire cable\n");
3959 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3960 }
3961
3962 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3963 &dev->mwdma_mask, &dev->udma_mask);
3964 }
3965
3966 /**
3967 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3968 * @dev: Device to which command will be sent
3969 *
3970 * Issue SET FEATURES - XFER MODE command to device @dev
3971 * on port @ap.
3972 *
3973 * LOCKING:
3974 * PCI/etc. bus probe sem.
3975 *
3976 * RETURNS:
3977 * 0 on success, AC_ERR_* mask otherwise.
3978 */
3979
3980 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3981 {
3982 struct ata_taskfile tf;
3983 unsigned int err_mask;
3984
3985 /* set up set-features taskfile */
3986 DPRINTK("set features - xfer mode\n");
3987
3988 /* Some controllers and ATAPI devices show flaky interrupt
3989 * behavior after setting xfer mode. Use polling instead.
3990 */
3991 ata_tf_init(dev, &tf);
3992 tf.command = ATA_CMD_SET_FEATURES;
3993 tf.feature = SETFEATURES_XFER;
3994 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3995 tf.protocol = ATA_PROT_NODATA;
3996 tf.nsect = dev->xfer_mode;
3997
3998 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3999
4000 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4001 return err_mask;
4002 }
4003
4004 /**
4005 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4006 * @dev: Device to which command will be sent
4007 * @enable: Whether to enable or disable the feature
4008 *
4009 * Issue SET FEATURES - SATA FEATURES command to device @dev
4010 * on port @ap with sector count set to indicate Asynchronous
4011 * Notification feature
4012 *
4013 * LOCKING:
4014 * PCI/etc. bus probe sem.
4015 *
4016 * RETURNS:
4017 * 0 on success, AC_ERR_* mask otherwise.
4018 */
4019 static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4020 {
4021 struct ata_taskfile tf;
4022 unsigned int err_mask;
4023
4024 /* set up set-features taskfile */
4025 DPRINTK("set features - SATA features\n");
4026
4027 ata_tf_init(dev, &tf);
4028 tf.command = ATA_CMD_SET_FEATURES;
4029 tf.feature = enable;
4030 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4031 tf.protocol = ATA_PROT_NODATA;
4032 tf.nsect = SATA_AN;
4033
4034 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4035
4036 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4037 return err_mask;
4038 }
4039
4040 /**
4041 * ata_dev_init_params - Issue INIT DEV PARAMS command
4042 * @dev: Device to which command will be sent
4043 * @heads: Number of heads (taskfile parameter)
4044 * @sectors: Number of sectors (taskfile parameter)
4045 *
4046 * LOCKING:
4047 * Kernel thread context (may sleep)
4048 *
4049 * RETURNS:
4050 * 0 on success, AC_ERR_* mask otherwise.
4051 */
4052 static unsigned int ata_dev_init_params(struct ata_device *dev,
4053 u16 heads, u16 sectors)
4054 {
4055 struct ata_taskfile tf;
4056 unsigned int err_mask;
4057
4058 /* Number of sectors per track 1-255. Number of heads 1-16 */
4059 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4060 return AC_ERR_INVALID;
4061
4062 /* set up init dev params taskfile */
4063 DPRINTK("init dev params \n");
4064
4065 ata_tf_init(dev, &tf);
4066 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4067 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4068 tf.protocol = ATA_PROT_NODATA;
4069 tf.nsect = sectors;
4070 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4071
4072 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4073 /* A clean abort indicates an original or just out of spec drive
4074 and we should continue as we issue the setup based on the
4075 drive reported working geometry */
4076 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4077 err_mask = 0;
4078
4079 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4080 return err_mask;
4081 }
4082
4083 /**
4084 * ata_sg_clean - Unmap DMA memory associated with command
4085 * @qc: Command containing DMA memory to be released
4086 *
4087 * Unmap all mapped DMA memory associated with this command.
4088 *
4089 * LOCKING:
4090 * spin_lock_irqsave(host lock)
4091 */
4092 void ata_sg_clean(struct ata_queued_cmd *qc)
4093 {
4094 struct ata_port *ap = qc->ap;
4095 struct scatterlist *sg = qc->__sg;
4096 int dir = qc->dma_dir;
4097 void *pad_buf = NULL;
4098
4099 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4100 WARN_ON(sg == NULL);
4101
4102 if (qc->flags & ATA_QCFLAG_SINGLE)
4103 WARN_ON(qc->n_elem > 1);
4104
4105 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4106
4107 /* if we padded the buffer out to 32-bit bound, and data
4108 * xfer direction is from-device, we must copy from the
4109 * pad buffer back into the supplied buffer
4110 */
4111 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4112 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4113
4114 if (qc->flags & ATA_QCFLAG_SG) {
4115 if (qc->n_elem)
4116 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4117 /* restore last sg */
4118 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4119 if (pad_buf) {
4120 struct scatterlist *psg = &qc->pad_sgent;
4121 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4122 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4123 kunmap_atomic(addr, KM_IRQ0);
4124 }
4125 } else {
4126 if (qc->n_elem)
4127 dma_unmap_single(ap->dev,
4128 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4129 dir);
4130 /* restore sg */
4131 sg->length += qc->pad_len;
4132 if (pad_buf)
4133 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4134 pad_buf, qc->pad_len);
4135 }
4136
4137 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4138 qc->__sg = NULL;
4139 }
4140
4141 /**
4142 * ata_fill_sg - Fill PCI IDE PRD table
4143 * @qc: Metadata associated with taskfile to be transferred
4144 *
4145 * Fill PCI IDE PRD (scatter-gather) table with segments
4146 * associated with the current disk command.
4147 *
4148 * LOCKING:
4149 * spin_lock_irqsave(host lock)
4150 *
4151 */
4152 static void ata_fill_sg(struct ata_queued_cmd *qc)
4153 {
4154 struct ata_port *ap = qc->ap;
4155 struct scatterlist *sg;
4156 unsigned int idx;
4157
4158 WARN_ON(qc->__sg == NULL);
4159 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4160
4161 idx = 0;
4162 ata_for_each_sg(sg, qc) {
4163 u32 addr, offset;
4164 u32 sg_len, len;
4165
4166 /* determine if physical DMA addr spans 64K boundary.
4167 * Note h/w doesn't support 64-bit, so we unconditionally
4168 * truncate dma_addr_t to u32.
4169 */
4170 addr = (u32) sg_dma_address(sg);
4171 sg_len = sg_dma_len(sg);
4172
4173 while (sg_len) {
4174 offset = addr & 0xffff;
4175 len = sg_len;
4176 if ((offset + sg_len) > 0x10000)
4177 len = 0x10000 - offset;
4178
4179 ap->prd[idx].addr = cpu_to_le32(addr);
4180 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4181 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4182
4183 idx++;
4184 sg_len -= len;
4185 addr += len;
4186 }
4187 }
4188
4189 if (idx)
4190 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4191 }
4192
4193 /**
4194 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4195 * @qc: Metadata associated with taskfile to be transferred
4196 *
4197 * Fill PCI IDE PRD (scatter-gather) table with segments
4198 * associated with the current disk command. Perform the fill
4199 * so that we avoid writing any length 64K records for
4200 * controllers that don't follow the spec.
4201 *
4202 * LOCKING:
4203 * spin_lock_irqsave(host lock)
4204 *
4205 */
4206 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4207 {
4208 struct ata_port *ap = qc->ap;
4209 struct scatterlist *sg;
4210 unsigned int idx;
4211
4212 WARN_ON(qc->__sg == NULL);
4213 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4214
4215 idx = 0;
4216 ata_for_each_sg(sg, qc) {
4217 u32 addr, offset;
4218 u32 sg_len, len, blen;
4219
4220 /* determine if physical DMA addr spans 64K boundary.
4221 * Note h/w doesn't support 64-bit, so we unconditionally
4222 * truncate dma_addr_t to u32.
4223 */
4224 addr = (u32) sg_dma_address(sg);
4225 sg_len = sg_dma_len(sg);
4226
4227 while (sg_len) {
4228 offset = addr & 0xffff;
4229 len = sg_len;
4230 if ((offset + sg_len) > 0x10000)
4231 len = 0x10000 - offset;
4232
4233 blen = len & 0xffff;
4234 ap->prd[idx].addr = cpu_to_le32(addr);
4235 if (blen == 0) {
4236 /* Some PATA chipsets like the CS5530 can't
4237 cope with 0x0000 meaning 64K as the spec says */
4238 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4239 blen = 0x8000;
4240 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4241 }
4242 ap->prd[idx].flags_len = cpu_to_le32(blen);
4243 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4244
4245 idx++;
4246 sg_len -= len;
4247 addr += len;
4248 }
4249 }
4250
4251 if (idx)
4252 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4253 }
4254
4255 /**
4256 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4257 * @qc: Metadata associated with taskfile to check
4258 *
4259 * Allow low-level driver to filter ATA PACKET commands, returning
4260 * a status indicating whether or not it is OK to use DMA for the
4261 * supplied PACKET command.
4262 *
4263 * LOCKING:
4264 * spin_lock_irqsave(host lock)
4265 *
4266 * RETURNS: 0 when ATAPI DMA can be used
4267 * nonzero otherwise
4268 */
4269 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4270 {
4271 struct ata_port *ap = qc->ap;
4272
4273 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4274 * few ATAPI devices choke on such DMA requests.
4275 */
4276 if (unlikely(qc->nbytes & 15))
4277 return 1;
4278
4279 if (ap->ops->check_atapi_dma)
4280 return ap->ops->check_atapi_dma(qc);
4281
4282 return 0;
4283 }
4284
4285 /**
4286 * ata_qc_prep - Prepare taskfile for submission
4287 * @qc: Metadata associated with taskfile to be prepared
4288 *
4289 * Prepare ATA taskfile for submission.
4290 *
4291 * LOCKING:
4292 * spin_lock_irqsave(host lock)
4293 */
4294 void ata_qc_prep(struct ata_queued_cmd *qc)
4295 {
4296 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4297 return;
4298
4299 ata_fill_sg(qc);
4300 }
4301
4302 /**
4303 * ata_dumb_qc_prep - Prepare taskfile for submission
4304 * @qc: Metadata associated with taskfile to be prepared
4305 *
4306 * Prepare ATA taskfile for submission.
4307 *
4308 * LOCKING:
4309 * spin_lock_irqsave(host lock)
4310 */
4311 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4312 {
4313 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4314 return;
4315
4316 ata_fill_sg_dumb(qc);
4317 }
4318
4319 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4320
4321 /**
4322 * ata_sg_init_one - Associate command with memory buffer
4323 * @qc: Command to be associated
4324 * @buf: Memory buffer
4325 * @buflen: Length of memory buffer, in bytes.
4326 *
4327 * Initialize the data-related elements of queued_cmd @qc
4328 * to point to a single memory buffer, @buf of byte length @buflen.
4329 *
4330 * LOCKING:
4331 * spin_lock_irqsave(host lock)
4332 */
4333
4334 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4335 {
4336 qc->flags |= ATA_QCFLAG_SINGLE;
4337
4338 qc->__sg = &qc->sgent;
4339 qc->n_elem = 1;
4340 qc->orig_n_elem = 1;
4341 qc->buf_virt = buf;
4342 qc->nbytes = buflen;
4343
4344 sg_init_one(&qc->sgent, buf, buflen);
4345 }
4346
4347 /**
4348 * ata_sg_init - Associate command with scatter-gather table.
4349 * @qc: Command to be associated
4350 * @sg: Scatter-gather table.
4351 * @n_elem: Number of elements in s/g table.
4352 *
4353 * Initialize the data-related elements of queued_cmd @qc
4354 * to point to a scatter-gather table @sg, containing @n_elem
4355 * elements.
4356 *
4357 * LOCKING:
4358 * spin_lock_irqsave(host lock)
4359 */
4360
4361 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4362 unsigned int n_elem)
4363 {
4364 qc->flags |= ATA_QCFLAG_SG;
4365 qc->__sg = sg;
4366 qc->n_elem = n_elem;
4367 qc->orig_n_elem = n_elem;
4368 }
4369
4370 /**
4371 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4372 * @qc: Command with memory buffer to be mapped.
4373 *
4374 * DMA-map the memory buffer associated with queued_cmd @qc.
4375 *
4376 * LOCKING:
4377 * spin_lock_irqsave(host lock)
4378 *
4379 * RETURNS:
4380 * Zero on success, negative on error.
4381 */
4382
4383 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4384 {
4385 struct ata_port *ap = qc->ap;
4386 int dir = qc->dma_dir;
4387 struct scatterlist *sg = qc->__sg;
4388 dma_addr_t dma_address;
4389 int trim_sg = 0;
4390
4391 /* we must lengthen transfers to end on a 32-bit boundary */
4392 qc->pad_len = sg->length & 3;
4393 if (qc->pad_len) {
4394 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4395 struct scatterlist *psg = &qc->pad_sgent;
4396
4397 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4398
4399 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4400
4401 if (qc->tf.flags & ATA_TFLAG_WRITE)
4402 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4403 qc->pad_len);
4404
4405 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4406 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4407 /* trim sg */
4408 sg->length -= qc->pad_len;
4409 if (sg->length == 0)
4410 trim_sg = 1;
4411
4412 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4413 sg->length, qc->pad_len);
4414 }
4415
4416 if (trim_sg) {
4417 qc->n_elem--;
4418 goto skip_map;
4419 }
4420
4421 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4422 sg->length, dir);
4423 if (dma_mapping_error(dma_address)) {
4424 /* restore sg */
4425 sg->length += qc->pad_len;
4426 return -1;
4427 }
4428
4429 sg_dma_address(sg) = dma_address;
4430 sg_dma_len(sg) = sg->length;
4431
4432 skip_map:
4433 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4434 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4435
4436 return 0;
4437 }
4438
4439 /**
4440 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4441 * @qc: Command with scatter-gather table to be mapped.
4442 *
4443 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4444 *
4445 * LOCKING:
4446 * spin_lock_irqsave(host lock)
4447 *
4448 * RETURNS:
4449 * Zero on success, negative on error.
4450 *
4451 */
4452
4453 static int ata_sg_setup(struct ata_queued_cmd *qc)
4454 {
4455 struct ata_port *ap = qc->ap;
4456 struct scatterlist *sg = qc->__sg;
4457 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4458 int n_elem, pre_n_elem, dir, trim_sg = 0;
4459
4460 VPRINTK("ENTER, ata%u\n", ap->print_id);
4461 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4462
4463 /* we must lengthen transfers to end on a 32-bit boundary */
4464 qc->pad_len = lsg->length & 3;
4465 if (qc->pad_len) {
4466 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4467 struct scatterlist *psg = &qc->pad_sgent;
4468 unsigned int offset;
4469
4470 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4471
4472 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4473
4474 /*
4475 * psg->page/offset are used to copy to-be-written
4476 * data in this function or read data in ata_sg_clean.
4477 */
4478 offset = lsg->offset + lsg->length - qc->pad_len;
4479 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4480 psg->offset = offset_in_page(offset);
4481
4482 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4483 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4484 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4485 kunmap_atomic(addr, KM_IRQ0);
4486 }
4487
4488 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4489 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4490 /* trim last sg */
4491 lsg->length -= qc->pad_len;
4492 if (lsg->length == 0)
4493 trim_sg = 1;
4494
4495 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4496 qc->n_elem - 1, lsg->length, qc->pad_len);
4497 }
4498
4499 pre_n_elem = qc->n_elem;
4500 if (trim_sg && pre_n_elem)
4501 pre_n_elem--;
4502
4503 if (!pre_n_elem) {
4504 n_elem = 0;
4505 goto skip_map;
4506 }
4507
4508 dir = qc->dma_dir;
4509 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4510 if (n_elem < 1) {
4511 /* restore last sg */
4512 lsg->length += qc->pad_len;
4513 return -1;
4514 }
4515
4516 DPRINTK("%d sg elements mapped\n", n_elem);
4517
4518 skip_map:
4519 qc->n_elem = n_elem;
4520
4521 return 0;
4522 }
4523
4524 /**
4525 * swap_buf_le16 - swap halves of 16-bit words in place
4526 * @buf: Buffer to swap
4527 * @buf_words: Number of 16-bit words in buffer.
4528 *
4529 * Swap halves of 16-bit words if needed to convert from
4530 * little-endian byte order to native cpu byte order, or
4531 * vice-versa.
4532 *
4533 * LOCKING:
4534 * Inherited from caller.
4535 */
4536 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4537 {
4538 #ifdef __BIG_ENDIAN
4539 unsigned int i;
4540
4541 for (i = 0; i < buf_words; i++)
4542 buf[i] = le16_to_cpu(buf[i]);
4543 #endif /* __BIG_ENDIAN */
4544 }
4545
4546 /**
4547 * ata_data_xfer - Transfer data by PIO
4548 * @adev: device to target
4549 * @buf: data buffer
4550 * @buflen: buffer length
4551 * @write_data: read/write
4552 *
4553 * Transfer data from/to the device data register by PIO.
4554 *
4555 * LOCKING:
4556 * Inherited from caller.
4557 */
4558 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4559 unsigned int buflen, int write_data)
4560 {
4561 struct ata_port *ap = adev->link->ap;
4562 unsigned int words = buflen >> 1;
4563
4564 /* Transfer multiple of 2 bytes */
4565 if (write_data)
4566 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4567 else
4568 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4569
4570 /* Transfer trailing 1 byte, if any. */
4571 if (unlikely(buflen & 0x01)) {
4572 u16 align_buf[1] = { 0 };
4573 unsigned char *trailing_buf = buf + buflen - 1;
4574
4575 if (write_data) {
4576 memcpy(align_buf, trailing_buf, 1);
4577 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4578 } else {
4579 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4580 memcpy(trailing_buf, align_buf, 1);
4581 }
4582 }
4583 }
4584
4585 /**
4586 * ata_data_xfer_noirq - Transfer data by PIO
4587 * @adev: device to target
4588 * @buf: data buffer
4589 * @buflen: buffer length
4590 * @write_data: read/write
4591 *
4592 * Transfer data from/to the device data register by PIO. Do the
4593 * transfer with interrupts disabled.
4594 *
4595 * LOCKING:
4596 * Inherited from caller.
4597 */
4598 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4599 unsigned int buflen, int write_data)
4600 {
4601 unsigned long flags;
4602 local_irq_save(flags);
4603 ata_data_xfer(adev, buf, buflen, write_data);
4604 local_irq_restore(flags);
4605 }
4606
4607
4608 /**
4609 * ata_pio_sector - Transfer a sector of data.
4610 * @qc: Command on going
4611 *
4612 * Transfer qc->sect_size bytes of data from/to the ATA device.
4613 *
4614 * LOCKING:
4615 * Inherited from caller.
4616 */
4617
4618 static void ata_pio_sector(struct ata_queued_cmd *qc)
4619 {
4620 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4621 struct scatterlist *sg = qc->__sg;
4622 struct ata_port *ap = qc->ap;
4623 struct page *page;
4624 unsigned int offset;
4625 unsigned char *buf;
4626
4627 if (qc->curbytes == qc->nbytes - qc->sect_size)
4628 ap->hsm_task_state = HSM_ST_LAST;
4629
4630 page = sg[qc->cursg].page;
4631 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4632
4633 /* get the current page and offset */
4634 page = nth_page(page, (offset >> PAGE_SHIFT));
4635 offset %= PAGE_SIZE;
4636
4637 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4638
4639 if (PageHighMem(page)) {
4640 unsigned long flags;
4641
4642 /* FIXME: use a bounce buffer */
4643 local_irq_save(flags);
4644 buf = kmap_atomic(page, KM_IRQ0);
4645
4646 /* do the actual data transfer */
4647 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4648
4649 kunmap_atomic(buf, KM_IRQ0);
4650 local_irq_restore(flags);
4651 } else {
4652 buf = page_address(page);
4653 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4654 }
4655
4656 qc->curbytes += qc->sect_size;
4657 qc->cursg_ofs += qc->sect_size;
4658
4659 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4660 qc->cursg++;
4661 qc->cursg_ofs = 0;
4662 }
4663 }
4664
4665 /**
4666 * ata_pio_sectors - Transfer one or many sectors.
4667 * @qc: Command on going
4668 *
4669 * Transfer one or many sectors of data from/to the
4670 * ATA device for the DRQ request.
4671 *
4672 * LOCKING:
4673 * Inherited from caller.
4674 */
4675
4676 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4677 {
4678 if (is_multi_taskfile(&qc->tf)) {
4679 /* READ/WRITE MULTIPLE */
4680 unsigned int nsect;
4681
4682 WARN_ON(qc->dev->multi_count == 0);
4683
4684 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4685 qc->dev->multi_count);
4686 while (nsect--)
4687 ata_pio_sector(qc);
4688 } else
4689 ata_pio_sector(qc);
4690
4691 ata_altstatus(qc->ap); /* flush */
4692 }
4693
4694 /**
4695 * atapi_send_cdb - Write CDB bytes to hardware
4696 * @ap: Port to which ATAPI device is attached.
4697 * @qc: Taskfile currently active
4698 *
4699 * When device has indicated its readiness to accept
4700 * a CDB, this function is called. Send the CDB.
4701 *
4702 * LOCKING:
4703 * caller.
4704 */
4705
4706 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4707 {
4708 /* send SCSI cdb */
4709 DPRINTK("send cdb\n");
4710 WARN_ON(qc->dev->cdb_len < 12);
4711
4712 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4713 ata_altstatus(ap); /* flush */
4714
4715 switch (qc->tf.protocol) {
4716 case ATA_PROT_ATAPI:
4717 ap->hsm_task_state = HSM_ST;
4718 break;
4719 case ATA_PROT_ATAPI_NODATA:
4720 ap->hsm_task_state = HSM_ST_LAST;
4721 break;
4722 case ATA_PROT_ATAPI_DMA:
4723 ap->hsm_task_state = HSM_ST_LAST;
4724 /* initiate bmdma */
4725 ap->ops->bmdma_start(qc);
4726 break;
4727 }
4728 }
4729
4730 /**
4731 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4732 * @qc: Command on going
4733 * @bytes: number of bytes
4734 *
4735 * Transfer Transfer data from/to the ATAPI device.
4736 *
4737 * LOCKING:
4738 * Inherited from caller.
4739 *
4740 */
4741
4742 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4743 {
4744 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4745 struct scatterlist *sg = qc->__sg;
4746 struct ata_port *ap = qc->ap;
4747 struct page *page;
4748 unsigned char *buf;
4749 unsigned int offset, count;
4750
4751 if (qc->curbytes + bytes >= qc->nbytes)
4752 ap->hsm_task_state = HSM_ST_LAST;
4753
4754 next_sg:
4755 if (unlikely(qc->cursg >= qc->n_elem)) {
4756 /*
4757 * The end of qc->sg is reached and the device expects
4758 * more data to transfer. In order not to overrun qc->sg
4759 * and fulfill length specified in the byte count register,
4760 * - for read case, discard trailing data from the device
4761 * - for write case, padding zero data to the device
4762 */
4763 u16 pad_buf[1] = { 0 };
4764 unsigned int words = bytes >> 1;
4765 unsigned int i;
4766
4767 if (words) /* warning if bytes > 1 */
4768 ata_dev_printk(qc->dev, KERN_WARNING,
4769 "%u bytes trailing data\n", bytes);
4770
4771 for (i = 0; i < words; i++)
4772 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4773
4774 ap->hsm_task_state = HSM_ST_LAST;
4775 return;
4776 }
4777
4778 sg = &qc->__sg[qc->cursg];
4779
4780 page = sg->page;
4781 offset = sg->offset + qc->cursg_ofs;
4782
4783 /* get the current page and offset */
4784 page = nth_page(page, (offset >> PAGE_SHIFT));
4785 offset %= PAGE_SIZE;
4786
4787 /* don't overrun current sg */
4788 count = min(sg->length - qc->cursg_ofs, bytes);
4789
4790 /* don't cross page boundaries */
4791 count = min(count, (unsigned int)PAGE_SIZE - offset);
4792
4793 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4794
4795 if (PageHighMem(page)) {
4796 unsigned long flags;
4797
4798 /* FIXME: use bounce buffer */
4799 local_irq_save(flags);
4800 buf = kmap_atomic(page, KM_IRQ0);
4801
4802 /* do the actual data transfer */
4803 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4804
4805 kunmap_atomic(buf, KM_IRQ0);
4806 local_irq_restore(flags);
4807 } else {
4808 buf = page_address(page);
4809 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4810 }
4811
4812 bytes -= count;
4813 qc->curbytes += count;
4814 qc->cursg_ofs += count;
4815
4816 if (qc->cursg_ofs == sg->length) {
4817 qc->cursg++;
4818 qc->cursg_ofs = 0;
4819 }
4820
4821 if (bytes)
4822 goto next_sg;
4823 }
4824
4825 /**
4826 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4827 * @qc: Command on going
4828 *
4829 * Transfer Transfer data from/to the ATAPI device.
4830 *
4831 * LOCKING:
4832 * Inherited from caller.
4833 */
4834
4835 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4836 {
4837 struct ata_port *ap = qc->ap;
4838 struct ata_device *dev = qc->dev;
4839 unsigned int ireason, bc_lo, bc_hi, bytes;
4840 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4841
4842 /* Abuse qc->result_tf for temp storage of intermediate TF
4843 * here to save some kernel stack usage.
4844 * For normal completion, qc->result_tf is not relevant. For
4845 * error, qc->result_tf is later overwritten by ata_qc_complete().
4846 * So, the correctness of qc->result_tf is not affected.
4847 */
4848 ap->ops->tf_read(ap, &qc->result_tf);
4849 ireason = qc->result_tf.nsect;
4850 bc_lo = qc->result_tf.lbam;
4851 bc_hi = qc->result_tf.lbah;
4852 bytes = (bc_hi << 8) | bc_lo;
4853
4854 /* shall be cleared to zero, indicating xfer of data */
4855 if (ireason & (1 << 0))
4856 goto err_out;
4857
4858 /* make sure transfer direction matches expected */
4859 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4860 if (do_write != i_write)
4861 goto err_out;
4862
4863 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4864
4865 __atapi_pio_bytes(qc, bytes);
4866 ata_altstatus(ap); /* flush */
4867
4868 return;
4869
4870 err_out:
4871 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4872 qc->err_mask |= AC_ERR_HSM;
4873 ap->hsm_task_state = HSM_ST_ERR;
4874 }
4875
4876 /**
4877 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4878 * @ap: the target ata_port
4879 * @qc: qc on going
4880 *
4881 * RETURNS:
4882 * 1 if ok in workqueue, 0 otherwise.
4883 */
4884
4885 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4886 {
4887 if (qc->tf.flags & ATA_TFLAG_POLLING)
4888 return 1;
4889
4890 if (ap->hsm_task_state == HSM_ST_FIRST) {
4891 if (qc->tf.protocol == ATA_PROT_PIO &&
4892 (qc->tf.flags & ATA_TFLAG_WRITE))
4893 return 1;
4894
4895 if (is_atapi_taskfile(&qc->tf) &&
4896 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4897 return 1;
4898 }
4899
4900 return 0;
4901 }
4902
4903 /**
4904 * ata_hsm_qc_complete - finish a qc running on standard HSM
4905 * @qc: Command to complete
4906 * @in_wq: 1 if called from workqueue, 0 otherwise
4907 *
4908 * Finish @qc which is running on standard HSM.
4909 *
4910 * LOCKING:
4911 * If @in_wq is zero, spin_lock_irqsave(host lock).
4912 * Otherwise, none on entry and grabs host lock.
4913 */
4914 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4915 {
4916 struct ata_port *ap = qc->ap;
4917 unsigned long flags;
4918
4919 if (ap->ops->error_handler) {
4920 if (in_wq) {
4921 spin_lock_irqsave(ap->lock, flags);
4922
4923 /* EH might have kicked in while host lock is
4924 * released.
4925 */
4926 qc = ata_qc_from_tag(ap, qc->tag);
4927 if (qc) {
4928 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4929 ap->ops->irq_on(ap);
4930 ata_qc_complete(qc);
4931 } else
4932 ata_port_freeze(ap);
4933 }
4934
4935 spin_unlock_irqrestore(ap->lock, flags);
4936 } else {
4937 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4938 ata_qc_complete(qc);
4939 else
4940 ata_port_freeze(ap);
4941 }
4942 } else {
4943 if (in_wq) {
4944 spin_lock_irqsave(ap->lock, flags);
4945 ap->ops->irq_on(ap);
4946 ata_qc_complete(qc);
4947 spin_unlock_irqrestore(ap->lock, flags);
4948 } else
4949 ata_qc_complete(qc);
4950 }
4951 }
4952
4953 /**
4954 * ata_hsm_move - move the HSM to the next state.
4955 * @ap: the target ata_port
4956 * @qc: qc on going
4957 * @status: current device status
4958 * @in_wq: 1 if called from workqueue, 0 otherwise
4959 *
4960 * RETURNS:
4961 * 1 when poll next status needed, 0 otherwise.
4962 */
4963 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4964 u8 status, int in_wq)
4965 {
4966 unsigned long flags = 0;
4967 int poll_next;
4968
4969 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4970
4971 /* Make sure ata_qc_issue_prot() does not throw things
4972 * like DMA polling into the workqueue. Notice that
4973 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4974 */
4975 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4976
4977 fsm_start:
4978 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4979 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4980
4981 switch (ap->hsm_task_state) {
4982 case HSM_ST_FIRST:
4983 /* Send first data block or PACKET CDB */
4984
4985 /* If polling, we will stay in the work queue after
4986 * sending the data. Otherwise, interrupt handler
4987 * takes over after sending the data.
4988 */
4989 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4990
4991 /* check device status */
4992 if (unlikely((status & ATA_DRQ) == 0)) {
4993 /* handle BSY=0, DRQ=0 as error */
4994 if (likely(status & (ATA_ERR | ATA_DF)))
4995 /* device stops HSM for abort/error */
4996 qc->err_mask |= AC_ERR_DEV;
4997 else
4998 /* HSM violation. Let EH handle this */
4999 qc->err_mask |= AC_ERR_HSM;
5000
5001 ap->hsm_task_state = HSM_ST_ERR;
5002 goto fsm_start;
5003 }
5004
5005 /* Device should not ask for data transfer (DRQ=1)
5006 * when it finds something wrong.
5007 * We ignore DRQ here and stop the HSM by
5008 * changing hsm_task_state to HSM_ST_ERR and
5009 * let the EH abort the command or reset the device.
5010 */
5011 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5012 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5013 "error, dev_stat 0x%X\n", status);
5014 qc->err_mask |= AC_ERR_HSM;
5015 ap->hsm_task_state = HSM_ST_ERR;
5016 goto fsm_start;
5017 }
5018
5019 /* Send the CDB (atapi) or the first data block (ata pio out).
5020 * During the state transition, interrupt handler shouldn't
5021 * be invoked before the data transfer is complete and
5022 * hsm_task_state is changed. Hence, the following locking.
5023 */
5024 if (in_wq)
5025 spin_lock_irqsave(ap->lock, flags);
5026
5027 if (qc->tf.protocol == ATA_PROT_PIO) {
5028 /* PIO data out protocol.
5029 * send first data block.
5030 */
5031
5032 /* ata_pio_sectors() might change the state
5033 * to HSM_ST_LAST. so, the state is changed here
5034 * before ata_pio_sectors().
5035 */
5036 ap->hsm_task_state = HSM_ST;
5037 ata_pio_sectors(qc);
5038 } else
5039 /* send CDB */
5040 atapi_send_cdb(ap, qc);
5041
5042 if (in_wq)
5043 spin_unlock_irqrestore(ap->lock, flags);
5044
5045 /* if polling, ata_pio_task() handles the rest.
5046 * otherwise, interrupt handler takes over from here.
5047 */
5048 break;
5049
5050 case HSM_ST:
5051 /* complete command or read/write the data register */
5052 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5053 /* ATAPI PIO protocol */
5054 if ((status & ATA_DRQ) == 0) {
5055 /* No more data to transfer or device error.
5056 * Device error will be tagged in HSM_ST_LAST.
5057 */
5058 ap->hsm_task_state = HSM_ST_LAST;
5059 goto fsm_start;
5060 }
5061
5062 /* Device should not ask for data transfer (DRQ=1)
5063 * when it finds something wrong.
5064 * We ignore DRQ here and stop the HSM by
5065 * changing hsm_task_state to HSM_ST_ERR and
5066 * let the EH abort the command or reset the device.
5067 */
5068 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5069 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5070 "device error, dev_stat 0x%X\n",
5071 status);
5072 qc->err_mask |= AC_ERR_HSM;
5073 ap->hsm_task_state = HSM_ST_ERR;
5074 goto fsm_start;
5075 }
5076
5077 atapi_pio_bytes(qc);
5078
5079 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5080 /* bad ireason reported by device */
5081 goto fsm_start;
5082
5083 } else {
5084 /* ATA PIO protocol */
5085 if (unlikely((status & ATA_DRQ) == 0)) {
5086 /* handle BSY=0, DRQ=0 as error */
5087 if (likely(status & (ATA_ERR | ATA_DF)))
5088 /* device stops HSM for abort/error */
5089 qc->err_mask |= AC_ERR_DEV;
5090 else
5091 /* HSM violation. Let EH handle this.
5092 * Phantom devices also trigger this
5093 * condition. Mark hint.
5094 */
5095 qc->err_mask |= AC_ERR_HSM |
5096 AC_ERR_NODEV_HINT;
5097
5098 ap->hsm_task_state = HSM_ST_ERR;
5099 goto fsm_start;
5100 }
5101
5102 /* For PIO reads, some devices may ask for
5103 * data transfer (DRQ=1) alone with ERR=1.
5104 * We respect DRQ here and transfer one
5105 * block of junk data before changing the
5106 * hsm_task_state to HSM_ST_ERR.
5107 *
5108 * For PIO writes, ERR=1 DRQ=1 doesn't make
5109 * sense since the data block has been
5110 * transferred to the device.
5111 */
5112 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5113 /* data might be corrputed */
5114 qc->err_mask |= AC_ERR_DEV;
5115
5116 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5117 ata_pio_sectors(qc);
5118 status = ata_wait_idle(ap);
5119 }
5120
5121 if (status & (ATA_BUSY | ATA_DRQ))
5122 qc->err_mask |= AC_ERR_HSM;
5123
5124 /* ata_pio_sectors() might change the
5125 * state to HSM_ST_LAST. so, the state
5126 * is changed after ata_pio_sectors().
5127 */
5128 ap->hsm_task_state = HSM_ST_ERR;
5129 goto fsm_start;
5130 }
5131
5132 ata_pio_sectors(qc);
5133
5134 if (ap->hsm_task_state == HSM_ST_LAST &&
5135 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5136 /* all data read */
5137 status = ata_wait_idle(ap);
5138 goto fsm_start;
5139 }
5140 }
5141
5142 poll_next = 1;
5143 break;
5144
5145 case HSM_ST_LAST:
5146 if (unlikely(!ata_ok(status))) {
5147 qc->err_mask |= __ac_err_mask(status);
5148 ap->hsm_task_state = HSM_ST_ERR;
5149 goto fsm_start;
5150 }
5151
5152 /* no more data to transfer */
5153 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5154 ap->print_id, qc->dev->devno, status);
5155
5156 WARN_ON(qc->err_mask);
5157
5158 ap->hsm_task_state = HSM_ST_IDLE;
5159
5160 /* complete taskfile transaction */
5161 ata_hsm_qc_complete(qc, in_wq);
5162
5163 poll_next = 0;
5164 break;
5165
5166 case HSM_ST_ERR:
5167 /* make sure qc->err_mask is available to
5168 * know what's wrong and recover
5169 */
5170 WARN_ON(qc->err_mask == 0);
5171
5172 ap->hsm_task_state = HSM_ST_IDLE;
5173
5174 /* complete taskfile transaction */
5175 ata_hsm_qc_complete(qc, in_wq);
5176
5177 poll_next = 0;
5178 break;
5179 default:
5180 poll_next = 0;
5181 BUG();
5182 }
5183
5184 return poll_next;
5185 }
5186
5187 static void ata_pio_task(struct work_struct *work)
5188 {
5189 struct ata_port *ap =
5190 container_of(work, struct ata_port, port_task.work);
5191 struct ata_queued_cmd *qc = ap->port_task_data;
5192 u8 status;
5193 int poll_next;
5194
5195 fsm_start:
5196 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5197
5198 /*
5199 * This is purely heuristic. This is a fast path.
5200 * Sometimes when we enter, BSY will be cleared in
5201 * a chk-status or two. If not, the drive is probably seeking
5202 * or something. Snooze for a couple msecs, then
5203 * chk-status again. If still busy, queue delayed work.
5204 */
5205 status = ata_busy_wait(ap, ATA_BUSY, 5);
5206 if (status & ATA_BUSY) {
5207 msleep(2);
5208 status = ata_busy_wait(ap, ATA_BUSY, 10);
5209 if (status & ATA_BUSY) {
5210 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5211 return;
5212 }
5213 }
5214
5215 /* move the HSM */
5216 poll_next = ata_hsm_move(ap, qc, status, 1);
5217
5218 /* another command or interrupt handler
5219 * may be running at this point.
5220 */
5221 if (poll_next)
5222 goto fsm_start;
5223 }
5224
5225 /**
5226 * ata_qc_new - Request an available ATA command, for queueing
5227 * @ap: Port associated with device @dev
5228 * @dev: Device from whom we request an available command structure
5229 *
5230 * LOCKING:
5231 * None.
5232 */
5233
5234 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5235 {
5236 struct ata_queued_cmd *qc = NULL;
5237 unsigned int i;
5238
5239 /* no command while frozen */
5240 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5241 return NULL;
5242
5243 /* the last tag is reserved for internal command. */
5244 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5245 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5246 qc = __ata_qc_from_tag(ap, i);
5247 break;
5248 }
5249
5250 if (qc)
5251 qc->tag = i;
5252
5253 return qc;
5254 }
5255
5256 /**
5257 * ata_qc_new_init - Request an available ATA command, and initialize it
5258 * @dev: Device from whom we request an available command structure
5259 *
5260 * LOCKING:
5261 * None.
5262 */
5263
5264 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5265 {
5266 struct ata_port *ap = dev->link->ap;
5267 struct ata_queued_cmd *qc;
5268
5269 qc = ata_qc_new(ap);
5270 if (qc) {
5271 qc->scsicmd = NULL;
5272 qc->ap = ap;
5273 qc->dev = dev;
5274
5275 ata_qc_reinit(qc);
5276 }
5277
5278 return qc;
5279 }
5280
5281 /**
5282 * ata_qc_free - free unused ata_queued_cmd
5283 * @qc: Command to complete
5284 *
5285 * Designed to free unused ata_queued_cmd object
5286 * in case something prevents using it.
5287 *
5288 * LOCKING:
5289 * spin_lock_irqsave(host lock)
5290 */
5291 void ata_qc_free(struct ata_queued_cmd *qc)
5292 {
5293 struct ata_port *ap = qc->ap;
5294 unsigned int tag;
5295
5296 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5297
5298 qc->flags = 0;
5299 tag = qc->tag;
5300 if (likely(ata_tag_valid(tag))) {
5301 qc->tag = ATA_TAG_POISON;
5302 clear_bit(tag, &ap->qc_allocated);
5303 }
5304 }
5305
5306 void __ata_qc_complete(struct ata_queued_cmd *qc)
5307 {
5308 struct ata_port *ap = qc->ap;
5309 struct ata_link *link = qc->dev->link;
5310
5311 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5312 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5313
5314 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5315 ata_sg_clean(qc);
5316
5317 /* command should be marked inactive atomically with qc completion */
5318 if (qc->tf.protocol == ATA_PROT_NCQ)
5319 link->sactive &= ~(1 << qc->tag);
5320 else
5321 link->active_tag = ATA_TAG_POISON;
5322
5323 /* atapi: mark qc as inactive to prevent the interrupt handler
5324 * from completing the command twice later, before the error handler
5325 * is called. (when rc != 0 and atapi request sense is needed)
5326 */
5327 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5328 ap->qc_active &= ~(1 << qc->tag);
5329
5330 /* call completion callback */
5331 qc->complete_fn(qc);
5332 }
5333
5334 static void fill_result_tf(struct ata_queued_cmd *qc)
5335 {
5336 struct ata_port *ap = qc->ap;
5337
5338 qc->result_tf.flags = qc->tf.flags;
5339 ap->ops->tf_read(ap, &qc->result_tf);
5340 }
5341
5342 /**
5343 * ata_qc_complete - Complete an active ATA command
5344 * @qc: Command to complete
5345 * @err_mask: ATA Status register contents
5346 *
5347 * Indicate to the mid and upper layers that an ATA
5348 * command has completed, with either an ok or not-ok status.
5349 *
5350 * LOCKING:
5351 * spin_lock_irqsave(host lock)
5352 */
5353 void ata_qc_complete(struct ata_queued_cmd *qc)
5354 {
5355 struct ata_port *ap = qc->ap;
5356
5357 /* XXX: New EH and old EH use different mechanisms to
5358 * synchronize EH with regular execution path.
5359 *
5360 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5361 * Normal execution path is responsible for not accessing a
5362 * failed qc. libata core enforces the rule by returning NULL
5363 * from ata_qc_from_tag() for failed qcs.
5364 *
5365 * Old EH depends on ata_qc_complete() nullifying completion
5366 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5367 * not synchronize with interrupt handler. Only PIO task is
5368 * taken care of.
5369 */
5370 if (ap->ops->error_handler) {
5371 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5372
5373 if (unlikely(qc->err_mask))
5374 qc->flags |= ATA_QCFLAG_FAILED;
5375
5376 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5377 if (!ata_tag_internal(qc->tag)) {
5378 /* always fill result TF for failed qc */
5379 fill_result_tf(qc);
5380 ata_qc_schedule_eh(qc);
5381 return;
5382 }
5383 }
5384
5385 /* read result TF if requested */
5386 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5387 fill_result_tf(qc);
5388
5389 __ata_qc_complete(qc);
5390 } else {
5391 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5392 return;
5393
5394 /* read result TF if failed or requested */
5395 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5396 fill_result_tf(qc);
5397
5398 __ata_qc_complete(qc);
5399 }
5400 }
5401
5402 /**
5403 * ata_qc_complete_multiple - Complete multiple qcs successfully
5404 * @ap: port in question
5405 * @qc_active: new qc_active mask
5406 * @finish_qc: LLDD callback invoked before completing a qc
5407 *
5408 * Complete in-flight commands. This functions is meant to be
5409 * called from low-level driver's interrupt routine to complete
5410 * requests normally. ap->qc_active and @qc_active is compared
5411 * and commands are completed accordingly.
5412 *
5413 * LOCKING:
5414 * spin_lock_irqsave(host lock)
5415 *
5416 * RETURNS:
5417 * Number of completed commands on success, -errno otherwise.
5418 */
5419 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5420 void (*finish_qc)(struct ata_queued_cmd *))
5421 {
5422 int nr_done = 0;
5423 u32 done_mask;
5424 int i;
5425
5426 done_mask = ap->qc_active ^ qc_active;
5427
5428 if (unlikely(done_mask & qc_active)) {
5429 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5430 "(%08x->%08x)\n", ap->qc_active, qc_active);
5431 return -EINVAL;
5432 }
5433
5434 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5435 struct ata_queued_cmd *qc;
5436
5437 if (!(done_mask & (1 << i)))
5438 continue;
5439
5440 if ((qc = ata_qc_from_tag(ap, i))) {
5441 if (finish_qc)
5442 finish_qc(qc);
5443 ata_qc_complete(qc);
5444 nr_done++;
5445 }
5446 }
5447
5448 return nr_done;
5449 }
5450
5451 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5452 {
5453 struct ata_port *ap = qc->ap;
5454
5455 switch (qc->tf.protocol) {
5456 case ATA_PROT_NCQ:
5457 case ATA_PROT_DMA:
5458 case ATA_PROT_ATAPI_DMA:
5459 return 1;
5460
5461 case ATA_PROT_ATAPI:
5462 case ATA_PROT_PIO:
5463 if (ap->flags & ATA_FLAG_PIO_DMA)
5464 return 1;
5465
5466 /* fall through */
5467
5468 default:
5469 return 0;
5470 }
5471
5472 /* never reached */
5473 }
5474
5475 /**
5476 * ata_qc_issue - issue taskfile to device
5477 * @qc: command to issue to device
5478 *
5479 * Prepare an ATA command to submission to device.
5480 * This includes mapping the data into a DMA-able
5481 * area, filling in the S/G table, and finally
5482 * writing the taskfile to hardware, starting the command.
5483 *
5484 * LOCKING:
5485 * spin_lock_irqsave(host lock)
5486 */
5487 void ata_qc_issue(struct ata_queued_cmd *qc)
5488 {
5489 struct ata_port *ap = qc->ap;
5490 struct ata_link *link = qc->dev->link;
5491
5492 /* Make sure only one non-NCQ command is outstanding. The
5493 * check is skipped for old EH because it reuses active qc to
5494 * request ATAPI sense.
5495 */
5496 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5497
5498 if (qc->tf.protocol == ATA_PROT_NCQ) {
5499 WARN_ON(link->sactive & (1 << qc->tag));
5500 link->sactive |= 1 << qc->tag;
5501 } else {
5502 WARN_ON(link->sactive);
5503 link->active_tag = qc->tag;
5504 }
5505
5506 qc->flags |= ATA_QCFLAG_ACTIVE;
5507 ap->qc_active |= 1 << qc->tag;
5508
5509 if (ata_should_dma_map(qc)) {
5510 if (qc->flags & ATA_QCFLAG_SG) {
5511 if (ata_sg_setup(qc))
5512 goto sg_err;
5513 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5514 if (ata_sg_setup_one(qc))
5515 goto sg_err;
5516 }
5517 } else {
5518 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5519 }
5520
5521 ap->ops->qc_prep(qc);
5522
5523 qc->err_mask |= ap->ops->qc_issue(qc);
5524 if (unlikely(qc->err_mask))
5525 goto err;
5526 return;
5527
5528 sg_err:
5529 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5530 qc->err_mask |= AC_ERR_SYSTEM;
5531 err:
5532 ata_qc_complete(qc);
5533 }
5534
5535 /**
5536 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5537 * @qc: command to issue to device
5538 *
5539 * Using various libata functions and hooks, this function
5540 * starts an ATA command. ATA commands are grouped into
5541 * classes called "protocols", and issuing each type of protocol
5542 * is slightly different.
5543 *
5544 * May be used as the qc_issue() entry in ata_port_operations.
5545 *
5546 * LOCKING:
5547 * spin_lock_irqsave(host lock)
5548 *
5549 * RETURNS:
5550 * Zero on success, AC_ERR_* mask on failure
5551 */
5552
5553 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5554 {
5555 struct ata_port *ap = qc->ap;
5556
5557 /* Use polling pio if the LLD doesn't handle
5558 * interrupt driven pio and atapi CDB interrupt.
5559 */
5560 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5561 switch (qc->tf.protocol) {
5562 case ATA_PROT_PIO:
5563 case ATA_PROT_NODATA:
5564 case ATA_PROT_ATAPI:
5565 case ATA_PROT_ATAPI_NODATA:
5566 qc->tf.flags |= ATA_TFLAG_POLLING;
5567 break;
5568 case ATA_PROT_ATAPI_DMA:
5569 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5570 /* see ata_dma_blacklisted() */
5571 BUG();
5572 break;
5573 default:
5574 break;
5575 }
5576 }
5577
5578 /* select the device */
5579 ata_dev_select(ap, qc->dev->devno, 1, 0);
5580
5581 /* start the command */
5582 switch (qc->tf.protocol) {
5583 case ATA_PROT_NODATA:
5584 if (qc->tf.flags & ATA_TFLAG_POLLING)
5585 ata_qc_set_polling(qc);
5586
5587 ata_tf_to_host(ap, &qc->tf);
5588 ap->hsm_task_state = HSM_ST_LAST;
5589
5590 if (qc->tf.flags & ATA_TFLAG_POLLING)
5591 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5592
5593 break;
5594
5595 case ATA_PROT_DMA:
5596 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5597
5598 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5599 ap->ops->bmdma_setup(qc); /* set up bmdma */
5600 ap->ops->bmdma_start(qc); /* initiate bmdma */
5601 ap->hsm_task_state = HSM_ST_LAST;
5602 break;
5603
5604 case ATA_PROT_PIO:
5605 if (qc->tf.flags & ATA_TFLAG_POLLING)
5606 ata_qc_set_polling(qc);
5607
5608 ata_tf_to_host(ap, &qc->tf);
5609
5610 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5611 /* PIO data out protocol */
5612 ap->hsm_task_state = HSM_ST_FIRST;
5613 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5614
5615 /* always send first data block using
5616 * the ata_pio_task() codepath.
5617 */
5618 } else {
5619 /* PIO data in protocol */
5620 ap->hsm_task_state = HSM_ST;
5621
5622 if (qc->tf.flags & ATA_TFLAG_POLLING)
5623 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5624
5625 /* if polling, ata_pio_task() handles the rest.
5626 * otherwise, interrupt handler takes over from here.
5627 */
5628 }
5629
5630 break;
5631
5632 case ATA_PROT_ATAPI:
5633 case ATA_PROT_ATAPI_NODATA:
5634 if (qc->tf.flags & ATA_TFLAG_POLLING)
5635 ata_qc_set_polling(qc);
5636
5637 ata_tf_to_host(ap, &qc->tf);
5638
5639 ap->hsm_task_state = HSM_ST_FIRST;
5640
5641 /* send cdb by polling if no cdb interrupt */
5642 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5643 (qc->tf.flags & ATA_TFLAG_POLLING))
5644 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5645 break;
5646
5647 case ATA_PROT_ATAPI_DMA:
5648 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5649
5650 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5651 ap->ops->bmdma_setup(qc); /* set up bmdma */
5652 ap->hsm_task_state = HSM_ST_FIRST;
5653
5654 /* send cdb by polling if no cdb interrupt */
5655 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5656 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5657 break;
5658
5659 default:
5660 WARN_ON(1);
5661 return AC_ERR_SYSTEM;
5662 }
5663
5664 return 0;
5665 }
5666
5667 /**
5668 * ata_host_intr - Handle host interrupt for given (port, task)
5669 * @ap: Port on which interrupt arrived (possibly...)
5670 * @qc: Taskfile currently active in engine
5671 *
5672 * Handle host interrupt for given queued command. Currently,
5673 * only DMA interrupts are handled. All other commands are
5674 * handled via polling with interrupts disabled (nIEN bit).
5675 *
5676 * LOCKING:
5677 * spin_lock_irqsave(host lock)
5678 *
5679 * RETURNS:
5680 * One if interrupt was handled, zero if not (shared irq).
5681 */
5682
5683 inline unsigned int ata_host_intr (struct ata_port *ap,
5684 struct ata_queued_cmd *qc)
5685 {
5686 struct ata_eh_info *ehi = &ap->link.eh_info;
5687 u8 status, host_stat = 0;
5688
5689 VPRINTK("ata%u: protocol %d task_state %d\n",
5690 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5691
5692 /* Check whether we are expecting interrupt in this state */
5693 switch (ap->hsm_task_state) {
5694 case HSM_ST_FIRST:
5695 /* Some pre-ATAPI-4 devices assert INTRQ
5696 * at this state when ready to receive CDB.
5697 */
5698
5699 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5700 * The flag was turned on only for atapi devices.
5701 * No need to check is_atapi_taskfile(&qc->tf) again.
5702 */
5703 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5704 goto idle_irq;
5705 break;
5706 case HSM_ST_LAST:
5707 if (qc->tf.protocol == ATA_PROT_DMA ||
5708 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5709 /* check status of DMA engine */
5710 host_stat = ap->ops->bmdma_status(ap);
5711 VPRINTK("ata%u: host_stat 0x%X\n",
5712 ap->print_id, host_stat);
5713
5714 /* if it's not our irq... */
5715 if (!(host_stat & ATA_DMA_INTR))
5716 goto idle_irq;
5717
5718 /* before we do anything else, clear DMA-Start bit */
5719 ap->ops->bmdma_stop(qc);
5720
5721 if (unlikely(host_stat & ATA_DMA_ERR)) {
5722 /* error when transfering data to/from memory */
5723 qc->err_mask |= AC_ERR_HOST_BUS;
5724 ap->hsm_task_state = HSM_ST_ERR;
5725 }
5726 }
5727 break;
5728 case HSM_ST:
5729 break;
5730 default:
5731 goto idle_irq;
5732 }
5733
5734 /* check altstatus */
5735 status = ata_altstatus(ap);
5736 if (status & ATA_BUSY)
5737 goto idle_irq;
5738
5739 /* check main status, clearing INTRQ */
5740 status = ata_chk_status(ap);
5741 if (unlikely(status & ATA_BUSY))
5742 goto idle_irq;
5743
5744 /* ack bmdma irq events */
5745 ap->ops->irq_clear(ap);
5746
5747 ata_hsm_move(ap, qc, status, 0);
5748
5749 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5750 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5751 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5752
5753 return 1; /* irq handled */
5754
5755 idle_irq:
5756 ap->stats.idle_irq++;
5757
5758 #ifdef ATA_IRQ_TRAP
5759 if ((ap->stats.idle_irq % 1000) == 0) {
5760 ata_chk_status(ap);
5761 ap->ops->irq_clear(ap);
5762 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5763 return 1;
5764 }
5765 #endif
5766 return 0; /* irq not handled */
5767 }
5768
5769 /**
5770 * ata_interrupt - Default ATA host interrupt handler
5771 * @irq: irq line (unused)
5772 * @dev_instance: pointer to our ata_host information structure
5773 *
5774 * Default interrupt handler for PCI IDE devices. Calls
5775 * ata_host_intr() for each port that is not disabled.
5776 *
5777 * LOCKING:
5778 * Obtains host lock during operation.
5779 *
5780 * RETURNS:
5781 * IRQ_NONE or IRQ_HANDLED.
5782 */
5783
5784 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5785 {
5786 struct ata_host *host = dev_instance;
5787 unsigned int i;
5788 unsigned int handled = 0;
5789 unsigned long flags;
5790
5791 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5792 spin_lock_irqsave(&host->lock, flags);
5793
5794 for (i = 0; i < host->n_ports; i++) {
5795 struct ata_port *ap;
5796
5797 ap = host->ports[i];
5798 if (ap &&
5799 !(ap->flags & ATA_FLAG_DISABLED)) {
5800 struct ata_queued_cmd *qc;
5801
5802 qc = ata_qc_from_tag(ap, ap->link.active_tag);
5803 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5804 (qc->flags & ATA_QCFLAG_ACTIVE))
5805 handled |= ata_host_intr(ap, qc);
5806 }
5807 }
5808
5809 spin_unlock_irqrestore(&host->lock, flags);
5810
5811 return IRQ_RETVAL(handled);
5812 }
5813
5814 /**
5815 * sata_scr_valid - test whether SCRs are accessible
5816 * @link: ATA link to test SCR accessibility for
5817 *
5818 * Test whether SCRs are accessible for @link.
5819 *
5820 * LOCKING:
5821 * None.
5822 *
5823 * RETURNS:
5824 * 1 if SCRs are accessible, 0 otherwise.
5825 */
5826 int sata_scr_valid(struct ata_link *link)
5827 {
5828 struct ata_port *ap = link->ap;
5829
5830 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5831 }
5832
5833 /**
5834 * sata_scr_read - read SCR register of the specified port
5835 * @link: ATA link to read SCR for
5836 * @reg: SCR to read
5837 * @val: Place to store read value
5838 *
5839 * Read SCR register @reg of @link into *@val. This function is
5840 * guaranteed to succeed if the cable type of the port is SATA
5841 * and the port implements ->scr_read.
5842 *
5843 * LOCKING:
5844 * None.
5845 *
5846 * RETURNS:
5847 * 0 on success, negative errno on failure.
5848 */
5849 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5850 {
5851 struct ata_port *ap = link->ap;
5852
5853 if (sata_scr_valid(link))
5854 return ap->ops->scr_read(ap, reg, val);
5855 return -EOPNOTSUPP;
5856 }
5857
5858 /**
5859 * sata_scr_write - write SCR register of the specified port
5860 * @link: ATA link to write SCR for
5861 * @reg: SCR to write
5862 * @val: value to write
5863 *
5864 * Write @val to SCR register @reg of @link. This function is
5865 * guaranteed to succeed if the cable type of the port is SATA
5866 * and the port implements ->scr_read.
5867 *
5868 * LOCKING:
5869 * None.
5870 *
5871 * RETURNS:
5872 * 0 on success, negative errno on failure.
5873 */
5874 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5875 {
5876 struct ata_port *ap = link->ap;
5877
5878 if (sata_scr_valid(link))
5879 return ap->ops->scr_write(ap, reg, val);
5880 return -EOPNOTSUPP;
5881 }
5882
5883 /**
5884 * sata_scr_write_flush - write SCR register of the specified port and flush
5885 * @link: ATA link to write SCR for
5886 * @reg: SCR to write
5887 * @val: value to write
5888 *
5889 * This function is identical to sata_scr_write() except that this
5890 * function performs flush after writing to the register.
5891 *
5892 * LOCKING:
5893 * None.
5894 *
5895 * RETURNS:
5896 * 0 on success, negative errno on failure.
5897 */
5898 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5899 {
5900 struct ata_port *ap = link->ap;
5901 int rc;
5902
5903 if (sata_scr_valid(link)) {
5904 rc = ap->ops->scr_write(ap, reg, val);
5905 if (rc == 0)
5906 rc = ap->ops->scr_read(ap, reg, &val);
5907 return rc;
5908 }
5909 return -EOPNOTSUPP;
5910 }
5911
5912 /**
5913 * ata_link_online - test whether the given link is online
5914 * @link: ATA link to test
5915 *
5916 * Test whether @link is online. Note that this function returns
5917 * 0 if online status of @link cannot be obtained, so
5918 * ata_link_online(link) != !ata_link_offline(link).
5919 *
5920 * LOCKING:
5921 * None.
5922 *
5923 * RETURNS:
5924 * 1 if the port online status is available and online.
5925 */
5926 int ata_link_online(struct ata_link *link)
5927 {
5928 u32 sstatus;
5929
5930 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5931 (sstatus & 0xf) == 0x3)
5932 return 1;
5933 return 0;
5934 }
5935
5936 /**
5937 * ata_link_offline - test whether the given link is offline
5938 * @link: ATA link to test
5939 *
5940 * Test whether @link is offline. Note that this function
5941 * returns 0 if offline status of @link cannot be obtained, so
5942 * ata_link_online(link) != !ata_link_offline(link).
5943 *
5944 * LOCKING:
5945 * None.
5946 *
5947 * RETURNS:
5948 * 1 if the port offline status is available and offline.
5949 */
5950 int ata_link_offline(struct ata_link *link)
5951 {
5952 u32 sstatus;
5953
5954 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5955 (sstatus & 0xf) != 0x3)
5956 return 1;
5957 return 0;
5958 }
5959
5960 int ata_flush_cache(struct ata_device *dev)
5961 {
5962 unsigned int err_mask;
5963 u8 cmd;
5964
5965 if (!ata_try_flush_cache(dev))
5966 return 0;
5967
5968 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5969 cmd = ATA_CMD_FLUSH_EXT;
5970 else
5971 cmd = ATA_CMD_FLUSH;
5972
5973 /* This is wrong. On a failed flush we get back the LBA of the lost
5974 sector and we should (assuming it wasn't aborted as unknown) issue
5975 a further flush command to continue the writeback until it
5976 does not error */
5977 err_mask = ata_do_simple_cmd(dev, cmd);
5978 if (err_mask) {
5979 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5980 return -EIO;
5981 }
5982
5983 return 0;
5984 }
5985
5986 #ifdef CONFIG_PM
5987 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5988 unsigned int action, unsigned int ehi_flags,
5989 int wait)
5990 {
5991 unsigned long flags;
5992 int i, rc;
5993
5994 for (i = 0; i < host->n_ports; i++) {
5995 struct ata_port *ap = host->ports[i];
5996 struct ata_link *link;
5997
5998 /* Previous resume operation might still be in
5999 * progress. Wait for PM_PENDING to clear.
6000 */
6001 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6002 ata_port_wait_eh(ap);
6003 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6004 }
6005
6006 /* request PM ops to EH */
6007 spin_lock_irqsave(ap->lock, flags);
6008
6009 ap->pm_mesg = mesg;
6010 if (wait) {
6011 rc = 0;
6012 ap->pm_result = &rc;
6013 }
6014
6015 ap->pflags |= ATA_PFLAG_PM_PENDING;
6016 __ata_port_for_each_link(link, ap) {
6017 link->eh_info.action |= action;
6018 link->eh_info.flags |= ehi_flags;
6019 }
6020
6021 ata_port_schedule_eh(ap);
6022
6023 spin_unlock_irqrestore(ap->lock, flags);
6024
6025 /* wait and check result */
6026 if (wait) {
6027 ata_port_wait_eh(ap);
6028 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6029 if (rc)
6030 return rc;
6031 }
6032 }
6033
6034 return 0;
6035 }
6036
6037 /**
6038 * ata_host_suspend - suspend host
6039 * @host: host to suspend
6040 * @mesg: PM message
6041 *
6042 * Suspend @host. Actual operation is performed by EH. This
6043 * function requests EH to perform PM operations and waits for EH
6044 * to finish.
6045 *
6046 * LOCKING:
6047 * Kernel thread context (may sleep).
6048 *
6049 * RETURNS:
6050 * 0 on success, -errno on failure.
6051 */
6052 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6053 {
6054 int rc;
6055
6056 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6057 if (rc == 0)
6058 host->dev->power.power_state = mesg;
6059 return rc;
6060 }
6061
6062 /**
6063 * ata_host_resume - resume host
6064 * @host: host to resume
6065 *
6066 * Resume @host. Actual operation is performed by EH. This
6067 * function requests EH to perform PM operations and returns.
6068 * Note that all resume operations are performed parallely.
6069 *
6070 * LOCKING:
6071 * Kernel thread context (may sleep).
6072 */
6073 void ata_host_resume(struct ata_host *host)
6074 {
6075 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6076 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6077 host->dev->power.power_state = PMSG_ON;
6078 }
6079 #endif
6080
6081 /**
6082 * ata_port_start - Set port up for dma.
6083 * @ap: Port to initialize
6084 *
6085 * Called just after data structures for each port are
6086 * initialized. Allocates space for PRD table.
6087 *
6088 * May be used as the port_start() entry in ata_port_operations.
6089 *
6090 * LOCKING:
6091 * Inherited from caller.
6092 */
6093 int ata_port_start(struct ata_port *ap)
6094 {
6095 struct device *dev = ap->dev;
6096 int rc;
6097
6098 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6099 GFP_KERNEL);
6100 if (!ap->prd)
6101 return -ENOMEM;
6102
6103 rc = ata_pad_alloc(ap, dev);
6104 if (rc)
6105 return rc;
6106
6107 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6108 (unsigned long long)ap->prd_dma);
6109 return 0;
6110 }
6111
6112 /**
6113 * ata_dev_init - Initialize an ata_device structure
6114 * @dev: Device structure to initialize
6115 *
6116 * Initialize @dev in preparation for probing.
6117 *
6118 * LOCKING:
6119 * Inherited from caller.
6120 */
6121 void ata_dev_init(struct ata_device *dev)
6122 {
6123 struct ata_link *link = dev->link;
6124 struct ata_port *ap = link->ap;
6125 unsigned long flags;
6126
6127 /* SATA spd limit is bound to the first device */
6128 link->sata_spd_limit = link->hw_sata_spd_limit;
6129 link->sata_spd = 0;
6130
6131 /* High bits of dev->flags are used to record warm plug
6132 * requests which occur asynchronously. Synchronize using
6133 * host lock.
6134 */
6135 spin_lock_irqsave(ap->lock, flags);
6136 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6137 dev->horkage = 0;
6138 spin_unlock_irqrestore(ap->lock, flags);
6139
6140 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6141 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6142 dev->pio_mask = UINT_MAX;
6143 dev->mwdma_mask = UINT_MAX;
6144 dev->udma_mask = UINT_MAX;
6145 }
6146
6147 /**
6148 * ata_link_init - Initialize an ata_link structure
6149 * @ap: ATA port link is attached to
6150 * @link: Link structure to initialize
6151 * @pmp: Port multiplier port number
6152 *
6153 * Initialize @link.
6154 *
6155 * LOCKING:
6156 * Kernel thread context (may sleep)
6157 */
6158 static void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6159 {
6160 int i;
6161
6162 /* clear everything except for devices */
6163 memset(link, 0, offsetof(struct ata_link, device[0]));
6164
6165 link->ap = ap;
6166 link->pmp = pmp;
6167 link->active_tag = ATA_TAG_POISON;
6168 link->hw_sata_spd_limit = UINT_MAX;
6169
6170 /* can't use iterator, ap isn't initialized yet */
6171 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6172 struct ata_device *dev = &link->device[i];
6173
6174 dev->link = link;
6175 dev->devno = dev - link->device;
6176 ata_dev_init(dev);
6177 }
6178 }
6179
6180 /**
6181 * sata_link_init_spd - Initialize link->sata_spd_limit
6182 * @link: Link to configure sata_spd_limit for
6183 *
6184 * Initialize @link->[hw_]sata_spd_limit to the currently
6185 * configured value.
6186 *
6187 * LOCKING:
6188 * Kernel thread context (may sleep).
6189 *
6190 * RETURNS:
6191 * 0 on success, -errno on failure.
6192 */
6193 static int sata_link_init_spd(struct ata_link *link)
6194 {
6195 u32 scontrol, spd;
6196 int rc;
6197
6198 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6199 if (rc)
6200 return rc;
6201
6202 spd = (scontrol >> 4) & 0xf;
6203 if (spd)
6204 link->hw_sata_spd_limit &= (1 << spd) - 1;
6205
6206 link->sata_spd_limit = link->hw_sata_spd_limit;
6207
6208 return 0;
6209 }
6210
6211 /**
6212 * ata_port_alloc - allocate and initialize basic ATA port resources
6213 * @host: ATA host this allocated port belongs to
6214 *
6215 * Allocate and initialize basic ATA port resources.
6216 *
6217 * RETURNS:
6218 * Allocate ATA port on success, NULL on failure.
6219 *
6220 * LOCKING:
6221 * Inherited from calling layer (may sleep).
6222 */
6223 struct ata_port *ata_port_alloc(struct ata_host *host)
6224 {
6225 struct ata_port *ap;
6226
6227 DPRINTK("ENTER\n");
6228
6229 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6230 if (!ap)
6231 return NULL;
6232
6233 ap->pflags |= ATA_PFLAG_INITIALIZING;
6234 ap->lock = &host->lock;
6235 ap->flags = ATA_FLAG_DISABLED;
6236 ap->print_id = -1;
6237 ap->ctl = ATA_DEVCTL_OBS;
6238 ap->host = host;
6239 ap->dev = host->dev;
6240 ap->last_ctl = 0xFF;
6241
6242 #if defined(ATA_VERBOSE_DEBUG)
6243 /* turn on all debugging levels */
6244 ap->msg_enable = 0x00FF;
6245 #elif defined(ATA_DEBUG)
6246 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6247 #else
6248 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6249 #endif
6250
6251 INIT_DELAYED_WORK(&ap->port_task, NULL);
6252 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6253 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6254 INIT_LIST_HEAD(&ap->eh_done_q);
6255 init_waitqueue_head(&ap->eh_wait_q);
6256 init_timer_deferrable(&ap->fastdrain_timer);
6257 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6258 ap->fastdrain_timer.data = (unsigned long)ap;
6259
6260 ap->cbl = ATA_CBL_NONE;
6261
6262 ata_link_init(ap, &ap->link, 0);
6263
6264 #ifdef ATA_IRQ_TRAP
6265 ap->stats.unhandled_irq = 1;
6266 ap->stats.idle_irq = 1;
6267 #endif
6268 return ap;
6269 }
6270
6271 static void ata_host_release(struct device *gendev, void *res)
6272 {
6273 struct ata_host *host = dev_get_drvdata(gendev);
6274 int i;
6275
6276 for (i = 0; i < host->n_ports; i++) {
6277 struct ata_port *ap = host->ports[i];
6278
6279 if (!ap)
6280 continue;
6281
6282 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6283 ap->ops->port_stop(ap);
6284 }
6285
6286 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6287 host->ops->host_stop(host);
6288
6289 for (i = 0; i < host->n_ports; i++) {
6290 struct ata_port *ap = host->ports[i];
6291
6292 if (!ap)
6293 continue;
6294
6295 if (ap->scsi_host)
6296 scsi_host_put(ap->scsi_host);
6297
6298 kfree(ap);
6299 host->ports[i] = NULL;
6300 }
6301
6302 dev_set_drvdata(gendev, NULL);
6303 }
6304
6305 /**
6306 * ata_host_alloc - allocate and init basic ATA host resources
6307 * @dev: generic device this host is associated with
6308 * @max_ports: maximum number of ATA ports associated with this host
6309 *
6310 * Allocate and initialize basic ATA host resources. LLD calls
6311 * this function to allocate a host, initializes it fully and
6312 * attaches it using ata_host_register().
6313 *
6314 * @max_ports ports are allocated and host->n_ports is
6315 * initialized to @max_ports. The caller is allowed to decrease
6316 * host->n_ports before calling ata_host_register(). The unused
6317 * ports will be automatically freed on registration.
6318 *
6319 * RETURNS:
6320 * Allocate ATA host on success, NULL on failure.
6321 *
6322 * LOCKING:
6323 * Inherited from calling layer (may sleep).
6324 */
6325 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6326 {
6327 struct ata_host *host;
6328 size_t sz;
6329 int i;
6330
6331 DPRINTK("ENTER\n");
6332
6333 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6334 return NULL;
6335
6336 /* alloc a container for our list of ATA ports (buses) */
6337 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6338 /* alloc a container for our list of ATA ports (buses) */
6339 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6340 if (!host)
6341 goto err_out;
6342
6343 devres_add(dev, host);
6344 dev_set_drvdata(dev, host);
6345
6346 spin_lock_init(&host->lock);
6347 host->dev = dev;
6348 host->n_ports = max_ports;
6349
6350 /* allocate ports bound to this host */
6351 for (i = 0; i < max_ports; i++) {
6352 struct ata_port *ap;
6353
6354 ap = ata_port_alloc(host);
6355 if (!ap)
6356 goto err_out;
6357
6358 ap->port_no = i;
6359 host->ports[i] = ap;
6360 }
6361
6362 devres_remove_group(dev, NULL);
6363 return host;
6364
6365 err_out:
6366 devres_release_group(dev, NULL);
6367 return NULL;
6368 }
6369
6370 /**
6371 * ata_host_alloc_pinfo - alloc host and init with port_info array
6372 * @dev: generic device this host is associated with
6373 * @ppi: array of ATA port_info to initialize host with
6374 * @n_ports: number of ATA ports attached to this host
6375 *
6376 * Allocate ATA host and initialize with info from @ppi. If NULL
6377 * terminated, @ppi may contain fewer entries than @n_ports. The
6378 * last entry will be used for the remaining ports.
6379 *
6380 * RETURNS:
6381 * Allocate ATA host on success, NULL on failure.
6382 *
6383 * LOCKING:
6384 * Inherited from calling layer (may sleep).
6385 */
6386 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6387 const struct ata_port_info * const * ppi,
6388 int n_ports)
6389 {
6390 const struct ata_port_info *pi;
6391 struct ata_host *host;
6392 int i, j;
6393
6394 host = ata_host_alloc(dev, n_ports);
6395 if (!host)
6396 return NULL;
6397
6398 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6399 struct ata_port *ap = host->ports[i];
6400
6401 if (ppi[j])
6402 pi = ppi[j++];
6403
6404 ap->pio_mask = pi->pio_mask;
6405 ap->mwdma_mask = pi->mwdma_mask;
6406 ap->udma_mask = pi->udma_mask;
6407 ap->flags |= pi->flags;
6408 ap->link.flags |= pi->link_flags;
6409 ap->ops = pi->port_ops;
6410
6411 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6412 host->ops = pi->port_ops;
6413 if (!host->private_data && pi->private_data)
6414 host->private_data = pi->private_data;
6415 }
6416
6417 return host;
6418 }
6419
6420 /**
6421 * ata_host_start - start and freeze ports of an ATA host
6422 * @host: ATA host to start ports for
6423 *
6424 * Start and then freeze ports of @host. Started status is
6425 * recorded in host->flags, so this function can be called
6426 * multiple times. Ports are guaranteed to get started only
6427 * once. If host->ops isn't initialized yet, its set to the
6428 * first non-dummy port ops.
6429 *
6430 * LOCKING:
6431 * Inherited from calling layer (may sleep).
6432 *
6433 * RETURNS:
6434 * 0 if all ports are started successfully, -errno otherwise.
6435 */
6436 int ata_host_start(struct ata_host *host)
6437 {
6438 int i, rc;
6439
6440 if (host->flags & ATA_HOST_STARTED)
6441 return 0;
6442
6443 for (i = 0; i < host->n_ports; i++) {
6444 struct ata_port *ap = host->ports[i];
6445
6446 if (!host->ops && !ata_port_is_dummy(ap))
6447 host->ops = ap->ops;
6448
6449 if (ap->ops->port_start) {
6450 rc = ap->ops->port_start(ap);
6451 if (rc) {
6452 ata_port_printk(ap, KERN_ERR, "failed to "
6453 "start port (errno=%d)\n", rc);
6454 goto err_out;
6455 }
6456 }
6457
6458 ata_eh_freeze_port(ap);
6459 }
6460
6461 host->flags |= ATA_HOST_STARTED;
6462 return 0;
6463
6464 err_out:
6465 while (--i >= 0) {
6466 struct ata_port *ap = host->ports[i];
6467
6468 if (ap->ops->port_stop)
6469 ap->ops->port_stop(ap);
6470 }
6471 return rc;
6472 }
6473
6474 /**
6475 * ata_sas_host_init - Initialize a host struct
6476 * @host: host to initialize
6477 * @dev: device host is attached to
6478 * @flags: host flags
6479 * @ops: port_ops
6480 *
6481 * LOCKING:
6482 * PCI/etc. bus probe sem.
6483 *
6484 */
6485 /* KILLME - the only user left is ipr */
6486 void ata_host_init(struct ata_host *host, struct device *dev,
6487 unsigned long flags, const struct ata_port_operations *ops)
6488 {
6489 spin_lock_init(&host->lock);
6490 host->dev = dev;
6491 host->flags = flags;
6492 host->ops = ops;
6493 }
6494
6495 /**
6496 * ata_host_register - register initialized ATA host
6497 * @host: ATA host to register
6498 * @sht: template for SCSI host
6499 *
6500 * Register initialized ATA host. @host is allocated using
6501 * ata_host_alloc() and fully initialized by LLD. This function
6502 * starts ports, registers @host with ATA and SCSI layers and
6503 * probe registered devices.
6504 *
6505 * LOCKING:
6506 * Inherited from calling layer (may sleep).
6507 *
6508 * RETURNS:
6509 * 0 on success, -errno otherwise.
6510 */
6511 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6512 {
6513 int i, rc;
6514
6515 /* host must have been started */
6516 if (!(host->flags & ATA_HOST_STARTED)) {
6517 dev_printk(KERN_ERR, host->dev,
6518 "BUG: trying to register unstarted host\n");
6519 WARN_ON(1);
6520 return -EINVAL;
6521 }
6522
6523 /* Blow away unused ports. This happens when LLD can't
6524 * determine the exact number of ports to allocate at
6525 * allocation time.
6526 */
6527 for (i = host->n_ports; host->ports[i]; i++)
6528 kfree(host->ports[i]);
6529
6530 /* give ports names and add SCSI hosts */
6531 for (i = 0; i < host->n_ports; i++)
6532 host->ports[i]->print_id = ata_print_id++;
6533
6534 rc = ata_scsi_add_hosts(host, sht);
6535 if (rc)
6536 return rc;
6537
6538 /* associate with ACPI nodes */
6539 ata_acpi_associate(host);
6540
6541 /* set cable, sata_spd_limit and report */
6542 for (i = 0; i < host->n_ports; i++) {
6543 struct ata_port *ap = host->ports[i];
6544 unsigned long xfer_mask;
6545
6546 /* set SATA cable type if still unset */
6547 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6548 ap->cbl = ATA_CBL_SATA;
6549
6550 /* init sata_spd_limit to the current value */
6551 sata_link_init_spd(&ap->link);
6552
6553 /* print per-port info to dmesg */
6554 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6555 ap->udma_mask);
6556
6557 if (!ata_port_is_dummy(ap))
6558 ata_port_printk(ap, KERN_INFO,
6559 "%cATA max %s %s\n",
6560 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6561 ata_mode_string(xfer_mask),
6562 ap->link.eh_info.desc);
6563 else
6564 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6565 }
6566
6567 /* perform each probe synchronously */
6568 DPRINTK("probe begin\n");
6569 for (i = 0; i < host->n_ports; i++) {
6570 struct ata_port *ap = host->ports[i];
6571 int rc;
6572
6573 /* probe */
6574 if (ap->ops->error_handler) {
6575 struct ata_eh_info *ehi = &ap->link.eh_info;
6576 unsigned long flags;
6577
6578 ata_port_probe(ap);
6579
6580 /* kick EH for boot probing */
6581 spin_lock_irqsave(ap->lock, flags);
6582
6583 ehi->probe_mask =
6584 (1 << ata_link_max_devices(&ap->link)) - 1;
6585 ehi->action |= ATA_EH_SOFTRESET;
6586 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6587
6588 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6589 ap->pflags |= ATA_PFLAG_LOADING;
6590 ata_port_schedule_eh(ap);
6591
6592 spin_unlock_irqrestore(ap->lock, flags);
6593
6594 /* wait for EH to finish */
6595 ata_port_wait_eh(ap);
6596 } else {
6597 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6598 rc = ata_bus_probe(ap);
6599 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6600
6601 if (rc) {
6602 /* FIXME: do something useful here?
6603 * Current libata behavior will
6604 * tear down everything when
6605 * the module is removed
6606 * or the h/w is unplugged.
6607 */
6608 }
6609 }
6610 }
6611
6612 /* probes are done, now scan each port's disk(s) */
6613 DPRINTK("host probe begin\n");
6614 for (i = 0; i < host->n_ports; i++) {
6615 struct ata_port *ap = host->ports[i];
6616
6617 ata_scsi_scan_host(ap, 1);
6618 }
6619
6620 return 0;
6621 }
6622
6623 /**
6624 * ata_host_activate - start host, request IRQ and register it
6625 * @host: target ATA host
6626 * @irq: IRQ to request
6627 * @irq_handler: irq_handler used when requesting IRQ
6628 * @irq_flags: irq_flags used when requesting IRQ
6629 * @sht: scsi_host_template to use when registering the host
6630 *
6631 * After allocating an ATA host and initializing it, most libata
6632 * LLDs perform three steps to activate the host - start host,
6633 * request IRQ and register it. This helper takes necessasry
6634 * arguments and performs the three steps in one go.
6635 *
6636 * LOCKING:
6637 * Inherited from calling layer (may sleep).
6638 *
6639 * RETURNS:
6640 * 0 on success, -errno otherwise.
6641 */
6642 int ata_host_activate(struct ata_host *host, int irq,
6643 irq_handler_t irq_handler, unsigned long irq_flags,
6644 struct scsi_host_template *sht)
6645 {
6646 int i, rc;
6647
6648 rc = ata_host_start(host);
6649 if (rc)
6650 return rc;
6651
6652 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6653 dev_driver_string(host->dev), host);
6654 if (rc)
6655 return rc;
6656
6657 for (i = 0; i < host->n_ports; i++)
6658 ata_port_desc(host->ports[i], "irq %d", irq);
6659
6660 rc = ata_host_register(host, sht);
6661 /* if failed, just free the IRQ and leave ports alone */
6662 if (rc)
6663 devm_free_irq(host->dev, irq, host);
6664
6665 return rc;
6666 }
6667
6668 /**
6669 * ata_port_detach - Detach ATA port in prepration of device removal
6670 * @ap: ATA port to be detached
6671 *
6672 * Detach all ATA devices and the associated SCSI devices of @ap;
6673 * then, remove the associated SCSI host. @ap is guaranteed to
6674 * be quiescent on return from this function.
6675 *
6676 * LOCKING:
6677 * Kernel thread context (may sleep).
6678 */
6679 void ata_port_detach(struct ata_port *ap)
6680 {
6681 unsigned long flags;
6682 struct ata_link *link;
6683 struct ata_device *dev;
6684
6685 if (!ap->ops->error_handler)
6686 goto skip_eh;
6687
6688 /* tell EH we're leaving & flush EH */
6689 spin_lock_irqsave(ap->lock, flags);
6690 ap->pflags |= ATA_PFLAG_UNLOADING;
6691 spin_unlock_irqrestore(ap->lock, flags);
6692
6693 ata_port_wait_eh(ap);
6694
6695 /* EH is now guaranteed to see UNLOADING, so no new device
6696 * will be attached. Disable all existing devices.
6697 */
6698 spin_lock_irqsave(ap->lock, flags);
6699
6700 ata_port_for_each_link(link, ap) {
6701 ata_link_for_each_dev(dev, link)
6702 ata_dev_disable(dev);
6703 }
6704
6705 spin_unlock_irqrestore(ap->lock, flags);
6706
6707 /* Final freeze & EH. All in-flight commands are aborted. EH
6708 * will be skipped and retrials will be terminated with bad
6709 * target.
6710 */
6711 spin_lock_irqsave(ap->lock, flags);
6712 ata_port_freeze(ap); /* won't be thawed */
6713 spin_unlock_irqrestore(ap->lock, flags);
6714
6715 ata_port_wait_eh(ap);
6716 cancel_rearming_delayed_work(&ap->hotplug_task);
6717
6718 skip_eh:
6719 /* remove the associated SCSI host */
6720 scsi_remove_host(ap->scsi_host);
6721 }
6722
6723 /**
6724 * ata_host_detach - Detach all ports of an ATA host
6725 * @host: Host to detach
6726 *
6727 * Detach all ports of @host.
6728 *
6729 * LOCKING:
6730 * Kernel thread context (may sleep).
6731 */
6732 void ata_host_detach(struct ata_host *host)
6733 {
6734 int i;
6735
6736 for (i = 0; i < host->n_ports; i++)
6737 ata_port_detach(host->ports[i]);
6738 }
6739
6740 /**
6741 * ata_std_ports - initialize ioaddr with standard port offsets.
6742 * @ioaddr: IO address structure to be initialized
6743 *
6744 * Utility function which initializes data_addr, error_addr,
6745 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6746 * device_addr, status_addr, and command_addr to standard offsets
6747 * relative to cmd_addr.
6748 *
6749 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6750 */
6751
6752 void ata_std_ports(struct ata_ioports *ioaddr)
6753 {
6754 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6755 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6756 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6757 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6758 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6759 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6760 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6761 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6762 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6763 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6764 }
6765
6766
6767 #ifdef CONFIG_PCI
6768
6769 /**
6770 * ata_pci_remove_one - PCI layer callback for device removal
6771 * @pdev: PCI device that was removed
6772 *
6773 * PCI layer indicates to libata via this hook that hot-unplug or
6774 * module unload event has occurred. Detach all ports. Resource
6775 * release is handled via devres.
6776 *
6777 * LOCKING:
6778 * Inherited from PCI layer (may sleep).
6779 */
6780 void ata_pci_remove_one(struct pci_dev *pdev)
6781 {
6782 struct device *dev = pci_dev_to_dev(pdev);
6783 struct ata_host *host = dev_get_drvdata(dev);
6784
6785 ata_host_detach(host);
6786 }
6787
6788 /* move to PCI subsystem */
6789 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6790 {
6791 unsigned long tmp = 0;
6792
6793 switch (bits->width) {
6794 case 1: {
6795 u8 tmp8 = 0;
6796 pci_read_config_byte(pdev, bits->reg, &tmp8);
6797 tmp = tmp8;
6798 break;
6799 }
6800 case 2: {
6801 u16 tmp16 = 0;
6802 pci_read_config_word(pdev, bits->reg, &tmp16);
6803 tmp = tmp16;
6804 break;
6805 }
6806 case 4: {
6807 u32 tmp32 = 0;
6808 pci_read_config_dword(pdev, bits->reg, &tmp32);
6809 tmp = tmp32;
6810 break;
6811 }
6812
6813 default:
6814 return -EINVAL;
6815 }
6816
6817 tmp &= bits->mask;
6818
6819 return (tmp == bits->val) ? 1 : 0;
6820 }
6821
6822 #ifdef CONFIG_PM
6823 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6824 {
6825 pci_save_state(pdev);
6826 pci_disable_device(pdev);
6827
6828 if (mesg.event == PM_EVENT_SUSPEND)
6829 pci_set_power_state(pdev, PCI_D3hot);
6830 }
6831
6832 int ata_pci_device_do_resume(struct pci_dev *pdev)
6833 {
6834 int rc;
6835
6836 pci_set_power_state(pdev, PCI_D0);
6837 pci_restore_state(pdev);
6838
6839 rc = pcim_enable_device(pdev);
6840 if (rc) {
6841 dev_printk(KERN_ERR, &pdev->dev,
6842 "failed to enable device after resume (%d)\n", rc);
6843 return rc;
6844 }
6845
6846 pci_set_master(pdev);
6847 return 0;
6848 }
6849
6850 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6851 {
6852 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6853 int rc = 0;
6854
6855 rc = ata_host_suspend(host, mesg);
6856 if (rc)
6857 return rc;
6858
6859 ata_pci_device_do_suspend(pdev, mesg);
6860
6861 return 0;
6862 }
6863
6864 int ata_pci_device_resume(struct pci_dev *pdev)
6865 {
6866 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6867 int rc;
6868
6869 rc = ata_pci_device_do_resume(pdev);
6870 if (rc == 0)
6871 ata_host_resume(host);
6872 return rc;
6873 }
6874 #endif /* CONFIG_PM */
6875
6876 #endif /* CONFIG_PCI */
6877
6878
6879 static int __init ata_init(void)
6880 {
6881 ata_probe_timeout *= HZ;
6882 ata_wq = create_workqueue("ata");
6883 if (!ata_wq)
6884 return -ENOMEM;
6885
6886 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6887 if (!ata_aux_wq) {
6888 destroy_workqueue(ata_wq);
6889 return -ENOMEM;
6890 }
6891
6892 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6893 return 0;
6894 }
6895
6896 static void __exit ata_exit(void)
6897 {
6898 destroy_workqueue(ata_wq);
6899 destroy_workqueue(ata_aux_wq);
6900 }
6901
6902 subsys_initcall(ata_init);
6903 module_exit(ata_exit);
6904
6905 static unsigned long ratelimit_time;
6906 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6907
6908 int ata_ratelimit(void)
6909 {
6910 int rc;
6911 unsigned long flags;
6912
6913 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6914
6915 if (time_after(jiffies, ratelimit_time)) {
6916 rc = 1;
6917 ratelimit_time = jiffies + (HZ/5);
6918 } else
6919 rc = 0;
6920
6921 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6922
6923 return rc;
6924 }
6925
6926 /**
6927 * ata_wait_register - wait until register value changes
6928 * @reg: IO-mapped register
6929 * @mask: Mask to apply to read register value
6930 * @val: Wait condition
6931 * @interval_msec: polling interval in milliseconds
6932 * @timeout_msec: timeout in milliseconds
6933 *
6934 * Waiting for some bits of register to change is a common
6935 * operation for ATA controllers. This function reads 32bit LE
6936 * IO-mapped register @reg and tests for the following condition.
6937 *
6938 * (*@reg & mask) != val
6939 *
6940 * If the condition is met, it returns; otherwise, the process is
6941 * repeated after @interval_msec until timeout.
6942 *
6943 * LOCKING:
6944 * Kernel thread context (may sleep)
6945 *
6946 * RETURNS:
6947 * The final register value.
6948 */
6949 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6950 unsigned long interval_msec,
6951 unsigned long timeout_msec)
6952 {
6953 unsigned long timeout;
6954 u32 tmp;
6955
6956 tmp = ioread32(reg);
6957
6958 /* Calculate timeout _after_ the first read to make sure
6959 * preceding writes reach the controller before starting to
6960 * eat away the timeout.
6961 */
6962 timeout = jiffies + (timeout_msec * HZ) / 1000;
6963
6964 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6965 msleep(interval_msec);
6966 tmp = ioread32(reg);
6967 }
6968
6969 return tmp;
6970 }
6971
6972 /*
6973 * Dummy port_ops
6974 */
6975 static void ata_dummy_noret(struct ata_port *ap) { }
6976 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6977 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6978
6979 static u8 ata_dummy_check_status(struct ata_port *ap)
6980 {
6981 return ATA_DRDY;
6982 }
6983
6984 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6985 {
6986 return AC_ERR_SYSTEM;
6987 }
6988
6989 const struct ata_port_operations ata_dummy_port_ops = {
6990 .check_status = ata_dummy_check_status,
6991 .check_altstatus = ata_dummy_check_status,
6992 .dev_select = ata_noop_dev_select,
6993 .qc_prep = ata_noop_qc_prep,
6994 .qc_issue = ata_dummy_qc_issue,
6995 .freeze = ata_dummy_noret,
6996 .thaw = ata_dummy_noret,
6997 .error_handler = ata_dummy_noret,
6998 .post_internal_cmd = ata_dummy_qc_noret,
6999 .irq_clear = ata_dummy_noret,
7000 .port_start = ata_dummy_ret0,
7001 .port_stop = ata_dummy_noret,
7002 };
7003
7004 const struct ata_port_info ata_dummy_port_info = {
7005 .port_ops = &ata_dummy_port_ops,
7006 };
7007
7008 /*
7009 * libata is essentially a library of internal helper functions for
7010 * low-level ATA host controller drivers. As such, the API/ABI is
7011 * likely to change as new drivers are added and updated.
7012 * Do not depend on ABI/API stability.
7013 */
7014
7015 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7016 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7017 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7018 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7019 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7020 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7021 EXPORT_SYMBOL_GPL(ata_std_ports);
7022 EXPORT_SYMBOL_GPL(ata_host_init);
7023 EXPORT_SYMBOL_GPL(ata_host_alloc);
7024 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7025 EXPORT_SYMBOL_GPL(ata_host_start);
7026 EXPORT_SYMBOL_GPL(ata_host_register);
7027 EXPORT_SYMBOL_GPL(ata_host_activate);
7028 EXPORT_SYMBOL_GPL(ata_host_detach);
7029 EXPORT_SYMBOL_GPL(ata_sg_init);
7030 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7031 EXPORT_SYMBOL_GPL(ata_hsm_move);
7032 EXPORT_SYMBOL_GPL(ata_qc_complete);
7033 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7034 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7035 EXPORT_SYMBOL_GPL(ata_tf_load);
7036 EXPORT_SYMBOL_GPL(ata_tf_read);
7037 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7038 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7039 EXPORT_SYMBOL_GPL(sata_print_link_status);
7040 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7041 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7042 EXPORT_SYMBOL_GPL(ata_check_status);
7043 EXPORT_SYMBOL_GPL(ata_altstatus);
7044 EXPORT_SYMBOL_GPL(ata_exec_command);
7045 EXPORT_SYMBOL_GPL(ata_port_start);
7046 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7047 EXPORT_SYMBOL_GPL(ata_interrupt);
7048 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7049 EXPORT_SYMBOL_GPL(ata_data_xfer);
7050 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7051 EXPORT_SYMBOL_GPL(ata_qc_prep);
7052 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7053 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7054 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7055 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7056 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7057 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7058 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7059 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7060 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7061 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7062 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7063 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7064 EXPORT_SYMBOL_GPL(ata_port_probe);
7065 EXPORT_SYMBOL_GPL(ata_dev_disable);
7066 EXPORT_SYMBOL_GPL(sata_set_spd);
7067 EXPORT_SYMBOL_GPL(sata_link_debounce);
7068 EXPORT_SYMBOL_GPL(sata_link_resume);
7069 EXPORT_SYMBOL_GPL(sata_phy_reset);
7070 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7071 EXPORT_SYMBOL_GPL(ata_bus_reset);
7072 EXPORT_SYMBOL_GPL(ata_std_prereset);
7073 EXPORT_SYMBOL_GPL(ata_std_softreset);
7074 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7075 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7076 EXPORT_SYMBOL_GPL(ata_std_postreset);
7077 EXPORT_SYMBOL_GPL(ata_dev_classify);
7078 EXPORT_SYMBOL_GPL(ata_dev_pair);
7079 EXPORT_SYMBOL_GPL(ata_port_disable);
7080 EXPORT_SYMBOL_GPL(ata_ratelimit);
7081 EXPORT_SYMBOL_GPL(ata_wait_register);
7082 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7083 EXPORT_SYMBOL_GPL(ata_wait_ready);
7084 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7085 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7086 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7087 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7088 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7089 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7090 EXPORT_SYMBOL_GPL(ata_host_intr);
7091 EXPORT_SYMBOL_GPL(sata_scr_valid);
7092 EXPORT_SYMBOL_GPL(sata_scr_read);
7093 EXPORT_SYMBOL_GPL(sata_scr_write);
7094 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7095 EXPORT_SYMBOL_GPL(ata_link_online);
7096 EXPORT_SYMBOL_GPL(ata_link_offline);
7097 #ifdef CONFIG_PM
7098 EXPORT_SYMBOL_GPL(ata_host_suspend);
7099 EXPORT_SYMBOL_GPL(ata_host_resume);
7100 #endif /* CONFIG_PM */
7101 EXPORT_SYMBOL_GPL(ata_id_string);
7102 EXPORT_SYMBOL_GPL(ata_id_c_string);
7103 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7104 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7105
7106 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7107 EXPORT_SYMBOL_GPL(ata_timing_compute);
7108 EXPORT_SYMBOL_GPL(ata_timing_merge);
7109
7110 #ifdef CONFIG_PCI
7111 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7112 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7113 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7114 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7115 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7116 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7117 #ifdef CONFIG_PM
7118 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7119 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7120 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7121 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7122 #endif /* CONFIG_PM */
7123 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7124 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7125 #endif /* CONFIG_PCI */
7126
7127 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7128 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7129 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7130 EXPORT_SYMBOL_GPL(ata_port_desc);
7131 #ifdef CONFIG_PCI
7132 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7133 #endif /* CONFIG_PCI */
7134 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7135 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7136 EXPORT_SYMBOL_GPL(ata_link_abort);
7137 EXPORT_SYMBOL_GPL(ata_port_abort);
7138 EXPORT_SYMBOL_GPL(ata_port_freeze);
7139 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7140 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7141 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7142 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7143 EXPORT_SYMBOL_GPL(ata_do_eh);
7144 EXPORT_SYMBOL_GPL(ata_irq_on);
7145 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7146
7147 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7148 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7149 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7150 EXPORT_SYMBOL_GPL(ata_cable_sata);