75b93678bbcd7f4231e0c2028995795487db671c
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71
72 #include "libata.h"
73 #include "libata-transport.h"
74
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79
80 const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
86 };
87
88 const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
93 };
94
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
111 };
112
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117 };
118
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171
172
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 return (sstatus & 0xf) == 0x3;
176 }
177
178 /**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
186 *
187 * RETURNS:
188 * Pointer to the next link.
189 */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
192 {
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
207
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
221 }
222
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
234 return NULL;
235 }
236
237 /**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251 {
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288 }
289
290 /**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313 }
314
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
396 }
397 }
398
399 /**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
449 return;
450 }
451 }
452
453 /**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
493 }
494 }
495
496 /**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508 int atapi_cmd_type(u8 opcode)
509 {
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
529 default:
530 return ATAPI_MISC;
531 }
532 }
533
534 /**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = tf->auxiliary & 0xff;
573 fis[17] = (tf->auxiliary >> 8) & 0xff;
574 fis[18] = (tf->auxiliary >> 16) & 0xff;
575 fis[19] = (tf->auxiliary >> 24) & 0xff;
576 }
577
578 /**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605 }
606
607 static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
622 0,
623 0,
624 0,
625 0,
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
635 };
636
637 /**
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
641 *
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
644 *
645 * LOCKING:
646 * caller.
647 */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 u8 cmd;
651
652 int index, fua, lba48, write;
653
654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else {
666 tf->protocol = ATA_PROT_DMA;
667 index = 16;
668 }
669
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
676 }
677
678 /**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
701 block |= (u64)tf->hob_lbal << 24;
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
715 if (!sect) {
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 }
723
724 return block;
725 }
726
727 /**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750 {
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
778 tf->device = ATA_LBA;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848 }
849
850 /**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
868 {
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873
874 /**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894
895 static const struct ata_xfer_ent {
896 int shift, bits;
897 u8 base;
898 } ata_xfer_tbl[] = {
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 { -1, },
903 };
904
905 /**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
916 * Matching XFER_* value, 0xff if no match found.
917 */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
926 return 0xff;
927 }
928
929 /**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
949 return 0;
950 }
951
952 /**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972 }
973
974 /**
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
977 *
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
987 */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
996 "PIO5",
997 "PIO6",
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
1001 "MWDMA3",
1002 "MWDMA4",
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1012 int highbit;
1013
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1017 return "<n/a>";
1018 }
1019
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
1025 "6.0 Gbps",
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031 }
1032
1033 /**
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1036 *
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 * LOCKING:
1042 * None.
1043 *
1044 * RETURNS:
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1047 */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1053 *
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1064 *
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1070 */
1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1074 }
1075
1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1079 }
1080
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1084 }
1085
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
1089 }
1090
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1093 }
1094
1095 /**
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1101 *
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1105 *
1106 * LOCKING:
1107 * caller.
1108 */
1109
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1112 {
1113 unsigned int c;
1114
1115 BUG_ON(len & 1);
1116
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1121
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1125
1126 ofs++;
1127 len -= 2;
1128 }
1129 }
1130
1131 /**
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1137 *
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
1147 {
1148 unsigned char *p;
1149
1150 ata_id_string(id, s, ofs, len - 1);
1151
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1156 }
1157
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 else
1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 } else {
1166 if (ata_id_current_chs_valid(id))
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
1169 else
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
1172 }
1173 }
1174
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 u64 sectors = 0;
1178
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1185
1186 return sectors;
1187 }
1188
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 u64 sectors = 0;
1192
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
1198 return sectors;
1199 }
1200
1201 /**
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1205 *
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1208 *
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1212 */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 unsigned int err_mask;
1216 struct ata_taskfile tf;
1217 int lba48 = ata_id_has_lba48(dev->id);
1218
1219 ata_tf_init(dev, &tf);
1220
1221 /* always clear all address registers */
1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1229
1230 tf.protocol |= ATA_PROT_NODATA;
1231 tf.device |= ATA_LBA;
1232
1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 if (err_mask) {
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1241 }
1242
1243 if (lba48)
1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 else
1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 (*max_sectors)--;
1249 return 0;
1250 }
1251
1252 /**
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1256 *
1257 * Set max sectors of @dev to @new_sectors.
1258 *
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1263 */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 unsigned int err_mask;
1267 struct ata_taskfile tf;
1268 int lba48 = ata_id_has_lba48(dev->id);
1269
1270 new_sectors--;
1271
1272 ata_tf_init(dev, &tf);
1273
1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1279
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 } else {
1284 tf.command = ATA_CMD_SET_MAX;
1285
1286 tf.device |= (new_sectors >> 24) & 0xf;
1287 }
1288
1289 tf.protocol |= ATA_PROT_NODATA;
1290 tf.device |= ATA_LBA;
1291
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1295
1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 if (err_mask) {
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1313 *
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1317 *
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1320 */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
1328 int rc;
1329
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 return 0;
1335
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1341 */
1342 if (rc == -EACCES || !unlock_hpa) {
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1350 }
1351
1352 return rc;
1353 }
1354 dev->n_native_sectors = native_sectors;
1355
1356 /* nothing to do? */
1357 if (native_sectors <= sectors || !unlock_hpa) {
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1360
1361 if (native_sectors > sectors)
1362 ata_dev_info(dev,
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1372 }
1373
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1386
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1392 return rc;
1393 }
1394
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
1397 ata_dev_info(dev,
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1410 *
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1413 *
1414 * LOCKING:
1415 * caller.
1416 */
1417
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
1442 id[88],
1443 id[93]);
1444 }
1445
1446 /**
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1449 *
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1452 *
1453 * FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 * LOCKING:
1456 * None.
1457 *
1458 * RETURNS:
1459 * Computed xfermask
1460 */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 unsigned long pio_mask, mwdma_mask, udma_mask;
1464
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1474 */
1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 if (mode < 5) /* Valid PIO range */
1477 pio_mask = (2 << mode) - 1;
1478 else
1479 pio_mask = 1;
1480
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1486 */
1487 }
1488
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490
1491 if (ata_id_is_cfa(id)) {
1492 /*
1493 * Process compact flash extended modes
1494 */
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1506 }
1507
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 struct completion *waiting = qc->private_data;
1518
1519 complete(waiting);
1520 }
1521
1522 /**
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1531 *
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1537 *
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1543 */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
1546 int dma_dir, struct scatterlist *sgl,
1547 unsigned int n_elem, unsigned long timeout)
1548 {
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
1551 u8 command = tf->command;
1552 int auto_timeout = 0;
1553 struct ata_queued_cmd *qc;
1554 unsigned int tag, preempted_tag;
1555 u32 preempted_sactive, preempted_qc_active;
1556 int preempted_nr_active_links;
1557 DECLARE_COMPLETION_ONSTACK(wait);
1558 unsigned long flags;
1559 unsigned int err_mask;
1560 int rc;
1561
1562 spin_lock_irqsave(ap->lock, flags);
1563
1564 /* no internal command while frozen */
1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 spin_unlock_irqrestore(ap->lock, flags);
1567 return AC_ERR_SYSTEM;
1568 }
1569
1570 /* initialize internal qc */
1571
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1576 */
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1581
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
1584 qc = __ata_qc_from_tag(ap, tag);
1585
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1591
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
1594 preempted_qc_active = ap->qc_active;
1595 preempted_nr_active_links = ap->nr_active_links;
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
1598 ap->qc_active = 0;
1599 ap->nr_active_links = 0;
1600
1601 /* prepare & issue qc */
1602 qc->tf = *tf;
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605
1606 /* some SATA bridges need us to indicate data xfer direction */
1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 dma_dir == DMA_FROM_DEVICE)
1609 qc->tf.feature |= ATAPI_DMADIR;
1610
1611 qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 qc->dma_dir = dma_dir;
1613 if (dma_dir != DMA_NONE) {
1614 unsigned int i, buflen = 0;
1615 struct scatterlist *sg;
1616
1617 for_each_sg(sgl, sg, n_elem, i)
1618 buflen += sg->length;
1619
1620 ata_sg_init(qc, sgl, n_elem);
1621 qc->nbytes = buflen;
1622 }
1623
1624 qc->private_data = &wait;
1625 qc->complete_fn = ata_qc_complete_internal;
1626
1627 ata_qc_issue(qc);
1628
1629 spin_unlock_irqrestore(ap->lock, flags);
1630
1631 if (!timeout) {
1632 if (ata_probe_timeout)
1633 timeout = ata_probe_timeout * 1000;
1634 else {
1635 timeout = ata_internal_cmd_timeout(dev, command);
1636 auto_timeout = 1;
1637 }
1638 }
1639
1640 if (ap->ops->error_handler)
1641 ata_eh_release(ap);
1642
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1644
1645 if (ap->ops->error_handler)
1646 ata_eh_acquire(ap);
1647
1648 ata_sff_flush_pio_task(ap);
1649
1650 if (!rc) {
1651 spin_lock_irqsave(ap->lock, flags);
1652
1653 /* We're racing with irq here. If we lose, the
1654 * following test prevents us from completing the qc
1655 * twice. If we win, the port is frozen and will be
1656 * cleaned up by ->post_internal_cmd().
1657 */
1658 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 qc->err_mask |= AC_ERR_TIMEOUT;
1660
1661 if (ap->ops->error_handler)
1662 ata_port_freeze(ap);
1663 else
1664 ata_qc_complete(qc);
1665
1666 if (ata_msg_warn(ap))
1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 command);
1669 }
1670
1671 spin_unlock_irqrestore(ap->lock, flags);
1672 }
1673
1674 /* do post_internal_cmd */
1675 if (ap->ops->post_internal_cmd)
1676 ap->ops->post_internal_cmd(qc);
1677
1678 /* perform minimal error analysis */
1679 if (qc->flags & ATA_QCFLAG_FAILED) {
1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 qc->err_mask |= AC_ERR_DEV;
1682
1683 if (!qc->err_mask)
1684 qc->err_mask |= AC_ERR_OTHER;
1685
1686 if (qc->err_mask & ~AC_ERR_OTHER)
1687 qc->err_mask &= ~AC_ERR_OTHER;
1688 }
1689
1690 /* finish up */
1691 spin_lock_irqsave(ap->lock, flags);
1692
1693 *tf = qc->result_tf;
1694 err_mask = qc->err_mask;
1695
1696 ata_qc_free(qc);
1697 link->active_tag = preempted_tag;
1698 link->sactive = preempted_sactive;
1699 ap->qc_active = preempted_qc_active;
1700 ap->nr_active_links = preempted_nr_active_links;
1701
1702 spin_unlock_irqrestore(ap->lock, flags);
1703
1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 ata_internal_cmd_timed_out(dev, command);
1706
1707 return err_mask;
1708 }
1709
1710 /**
1711 * ata_exec_internal - execute libata internal command
1712 * @dev: Device to which the command is sent
1713 * @tf: Taskfile registers for the command and the result
1714 * @cdb: CDB for packet command
1715 * @dma_dir: Data tranfer direction of the command
1716 * @buf: Data buffer of the command
1717 * @buflen: Length of data buffer
1718 * @timeout: Timeout in msecs (0 for default)
1719 *
1720 * Wrapper around ata_exec_internal_sg() which takes simple
1721 * buffer instead of sg list.
1722 *
1723 * LOCKING:
1724 * None. Should be called with kernel context, might sleep.
1725 *
1726 * RETURNS:
1727 * Zero on success, AC_ERR_* mask on failure
1728 */
1729 unsigned ata_exec_internal(struct ata_device *dev,
1730 struct ata_taskfile *tf, const u8 *cdb,
1731 int dma_dir, void *buf, unsigned int buflen,
1732 unsigned long timeout)
1733 {
1734 struct scatterlist *psg = NULL, sg;
1735 unsigned int n_elem = 0;
1736
1737 if (dma_dir != DMA_NONE) {
1738 WARN_ON(!buf);
1739 sg_init_one(&sg, buf, buflen);
1740 psg = &sg;
1741 n_elem++;
1742 }
1743
1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 timeout);
1746 }
1747
1748 /**
1749 * ata_do_simple_cmd - execute simple internal command
1750 * @dev: Device to which the command is sent
1751 * @cmd: Opcode to execute
1752 *
1753 * Execute a 'simple' command, that only consists of the opcode
1754 * 'cmd' itself, without filling any other registers
1755 *
1756 * LOCKING:
1757 * Kernel thread context (may sleep).
1758 *
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
1761 */
1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1763 {
1764 struct ata_taskfile tf;
1765
1766 ata_tf_init(dev, &tf);
1767
1768 tf.command = cmd;
1769 tf.flags |= ATA_TFLAG_DEVICE;
1770 tf.protocol = ATA_PROT_NODATA;
1771
1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1773 }
1774
1775 /**
1776 * ata_pio_need_iordy - check if iordy needed
1777 * @adev: ATA device
1778 *
1779 * Check if the current speed of the device requires IORDY. Used
1780 * by various controllers for chip configuration.
1781 */
1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1783 {
1784 /* Don't set IORDY if we're preparing for reset. IORDY may
1785 * lead to controller lock up on certain controllers if the
1786 * port is not occupied. See bko#11703 for details.
1787 */
1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 return 0;
1790 /* Controller doesn't support IORDY. Probably a pointless
1791 * check as the caller should know this.
1792 */
1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 return 0;
1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1796 if (ata_id_is_cfa(adev->id)
1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 return 0;
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1804 return 1;
1805 return 0;
1806 }
1807
1808 /**
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1811 *
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1814 */
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816 {
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1826 }
1827 }
1828 return 3 << ATA_SHIFT_PIO;
1829 }
1830
1831 /**
1832 * ata_do_dev_read_id - default ID read method
1833 * @dev: device
1834 * @tf: proposed taskfile
1835 * @id: data buffer
1836 *
1837 * Issue the identify taskfile and hand back the buffer containing
1838 * identify data. For some RAID controllers and for pre ATA devices
1839 * this function is wrapped or replaced by the driver
1840 */
1841 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 struct ata_taskfile *tf, u16 *id)
1843 {
1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1846 }
1847
1848 /**
1849 * ata_dev_read_id - Read ID data from the specified device
1850 * @dev: target device
1851 * @p_class: pointer to class of the target device (may be changed)
1852 * @flags: ATA_READID_* flags
1853 * @id: buffer to read IDENTIFY data into
1854 *
1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 * for pre-ATA4 drives.
1859 *
1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 * now we abort if we hit that case.
1862 *
1863 * LOCKING:
1864 * Kernel thread context (may sleep)
1865 *
1866 * RETURNS:
1867 * 0 on success, -errno otherwise.
1868 */
1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 unsigned int flags, u16 *id)
1871 {
1872 struct ata_port *ap = dev->link->ap;
1873 unsigned int class = *p_class;
1874 struct ata_taskfile tf;
1875 unsigned int err_mask = 0;
1876 const char *reason;
1877 bool is_semb = class == ATA_DEV_SEMB;
1878 int may_fallback = 1, tried_spinup = 0;
1879 int rc;
1880
1881 if (ata_msg_ctl(ap))
1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1883
1884 retry:
1885 ata_tf_init(dev, &tf);
1886
1887 switch (class) {
1888 case ATA_DEV_SEMB:
1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1890 case ATA_DEV_ATA:
1891 tf.command = ATA_CMD_ID_ATA;
1892 break;
1893 case ATA_DEV_ATAPI:
1894 tf.command = ATA_CMD_ID_ATAPI;
1895 break;
1896 default:
1897 rc = -ENODEV;
1898 reason = "unsupported class";
1899 goto err_out;
1900 }
1901
1902 tf.protocol = ATA_PROT_PIO;
1903
1904 /* Some devices choke if TF registers contain garbage. Make
1905 * sure those are properly initialized.
1906 */
1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1908
1909 /* Device presence detection is unreliable on some
1910 * controllers. Always poll IDENTIFY if available.
1911 */
1912 tf.flags |= ATA_TFLAG_POLLING;
1913
1914 if (ap->ops->read_id)
1915 err_mask = ap->ops->read_id(dev, &tf, id);
1916 else
1917 err_mask = ata_do_dev_read_id(dev, &tf, id);
1918
1919 if (err_mask) {
1920 if (err_mask & AC_ERR_NODEV_HINT) {
1921 ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 return -ENOENT;
1923 }
1924
1925 if (is_semb) {
1926 ata_dev_info(dev,
1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 /* SEMB is not supported yet */
1929 *p_class = ATA_DEV_SEMB_UNSUP;
1930 return 0;
1931 }
1932
1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 /* Device or controller might have reported
1935 * the wrong device class. Give a shot at the
1936 * other IDENTIFY if the current one is
1937 * aborted by the device.
1938 */
1939 if (may_fallback) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
1949 /* Control reaches here iff the device aborted
1950 * both flavors of IDENTIFYs which happens
1951 * sometimes with phantom devices.
1952 */
1953 ata_dev_dbg(dev,
1954 "both IDENTIFYs aborted, assuming NODEV\n");
1955 return -ENOENT;
1956 }
1957
1958 rc = -EIO;
1959 reason = "I/O error";
1960 goto err_out;
1961 }
1962
1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 "class=%d may_fallback=%d tried_spinup=%d\n",
1966 class, may_fallback, tried_spinup);
1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1969 }
1970
1971 /* Falling back doesn't make sense if ID data was read
1972 * successfully at least once.
1973 */
1974 may_fallback = 0;
1975
1976 swap_buf_le16(id, ATA_ID_WORDS);
1977
1978 /* sanity check */
1979 rc = -EINVAL;
1980 reason = "device reports invalid type";
1981
1982 if (class == ATA_DEV_ATA) {
1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 goto err_out;
1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 ata_id_is_ata(id)) {
1987 ata_dev_dbg(dev,
1988 "host indicates ignore ATA devices, ignored\n");
1989 return -ENOENT;
1990 }
1991 } else {
1992 if (ata_id_is_ata(id))
1993 goto err_out;
1994 }
1995
1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 tried_spinup = 1;
1998 /*
1999 * Drive powered-up in standby mode, and requires a specific
2000 * SET_FEATURES spin-up subcommand before it will accept
2001 * anything other than the original IDENTIFY command.
2002 */
2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 if (err_mask && id[2] != 0x738c) {
2005 rc = -EIO;
2006 reason = "SPINUP failed";
2007 goto err_out;
2008 }
2009 /*
2010 * If the drive initially returned incomplete IDENTIFY info,
2011 * we now must reissue the IDENTIFY command.
2012 */
2013 if (id[2] == 0x37c8)
2014 goto retry;
2015 }
2016
2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2018 /*
2019 * The exact sequence expected by certain pre-ATA4 drives is:
2020 * SRST RESET
2021 * IDENTIFY (optional in early ATA)
2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 * anything else..
2024 * Some drives were very specific about that exact sequence.
2025 *
2026 * Note that ATA4 says lba is mandatory so the second check
2027 * should never trigger.
2028 */
2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 if (err_mask) {
2032 rc = -EIO;
2033 reason = "INIT_DEV_PARAMS failed";
2034 goto err_out;
2035 }
2036
2037 /* current CHS translation info (id[53-58]) might be
2038 * changed. reread the identify device info.
2039 */
2040 flags &= ~ATA_READID_POSTRESET;
2041 goto retry;
2042 }
2043 }
2044
2045 *p_class = class;
2046
2047 return 0;
2048
2049 err_out:
2050 if (ata_msg_warn(ap))
2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 reason, err_mask);
2053 return rc;
2054 }
2055
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2057 {
2058 struct ata_link *plink = ata_dev_phys_link(dev);
2059 u32 target, target_limit;
2060
2061 if (!sata_scr_valid(plink))
2062 return 0;
2063
2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 target = 1;
2066 else
2067 return 0;
2068
2069 target_limit = (1 << target) - 1;
2070
2071 /* if already on stricter limit, no need to push further */
2072 if (plink->sata_spd_limit <= target_limit)
2073 return 0;
2074
2075 plink->sata_spd_limit = target_limit;
2076
2077 /* Request another EH round by returning -EAGAIN if link is
2078 * going faster than the target speed. Forward progress is
2079 * guaranteed by setting sata_spd_limit to target_limit above.
2080 */
2081 if (plink->sata_spd > target) {
2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 sata_spd_string(target));
2084 return -EAGAIN;
2085 }
2086 return 0;
2087 }
2088
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2090 {
2091 struct ata_port *ap = dev->link->ap;
2092
2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 return 0;
2095
2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2097 }
2098
2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 char *desc, size_t desc_sz)
2101 {
2102 struct ata_port *ap = dev->link->ap;
2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 unsigned int err_mask;
2105 char *aa_desc = "";
2106
2107 if (!ata_id_has_ncq(dev->id)) {
2108 desc[0] = '\0';
2109 return 0;
2110 }
2111 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 snprintf(desc, desc_sz, "NCQ (not used)");
2113 return 0;
2114 }
2115 if (ap->flags & ATA_FLAG_NCQ) {
2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 dev->flags |= ATA_DFLAG_NCQ;
2118 }
2119
2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 ata_id_has_fpdma_aa(dev->id)) {
2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 SATA_FPDMA_AA);
2125 if (err_mask) {
2126 ata_dev_err(dev,
2127 "failed to enable AA (error_mask=0x%x)\n",
2128 err_mask);
2129 if (err_mask != AC_ERR_DEV) {
2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 return -EIO;
2132 }
2133 } else
2134 aa_desc = ", AA";
2135 }
2136
2137 if (hdepth >= ddepth)
2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 else
2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 ddepth, aa_desc);
2142
2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144 ata_id_has_ncq_send_and_recv(dev->id)) {
2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146 0, ap->sector_buf, 1);
2147 if (err_mask) {
2148 ata_dev_dbg(dev,
2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150 err_mask);
2151 } else {
2152 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2153 memcpy(dev->ncq_send_recv_cmds, ap->sector_buf,
2154 ATA_LOG_NCQ_SEND_RECV_SIZE);
2155 }
2156 }
2157
2158 return 0;
2159 }
2160
2161 /**
2162 * ata_dev_configure - Configure the specified ATA/ATAPI device
2163 * @dev: Target device to configure
2164 *
2165 * Configure @dev according to @dev->id. Generic and low-level
2166 * driver specific fixups are also applied.
2167 *
2168 * LOCKING:
2169 * Kernel thread context (may sleep)
2170 *
2171 * RETURNS:
2172 * 0 on success, -errno otherwise
2173 */
2174 int ata_dev_configure(struct ata_device *dev)
2175 {
2176 struct ata_port *ap = dev->link->ap;
2177 struct ata_eh_context *ehc = &dev->link->eh_context;
2178 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2179 const u16 *id = dev->id;
2180 unsigned long xfer_mask;
2181 unsigned int err_mask;
2182 char revbuf[7]; /* XYZ-99\0 */
2183 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2184 char modelbuf[ATA_ID_PROD_LEN+1];
2185 int rc;
2186
2187 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2188 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2189 return 0;
2190 }
2191
2192 if (ata_msg_probe(ap))
2193 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2194
2195 /* set horkage */
2196 dev->horkage |= ata_dev_blacklisted(dev);
2197 ata_force_horkage(dev);
2198
2199 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2200 ata_dev_info(dev, "unsupported device, disabling\n");
2201 ata_dev_disable(dev);
2202 return 0;
2203 }
2204
2205 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2206 dev->class == ATA_DEV_ATAPI) {
2207 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2208 atapi_enabled ? "not supported with this driver"
2209 : "disabled");
2210 ata_dev_disable(dev);
2211 return 0;
2212 }
2213
2214 rc = ata_do_link_spd_horkage(dev);
2215 if (rc)
2216 return rc;
2217
2218 /* let ACPI work its magic */
2219 rc = ata_acpi_on_devcfg(dev);
2220 if (rc)
2221 return rc;
2222
2223 /* massage HPA, do it early as it might change IDENTIFY data */
2224 rc = ata_hpa_resize(dev);
2225 if (rc)
2226 return rc;
2227
2228 /* print device capabilities */
2229 if (ata_msg_probe(ap))
2230 ata_dev_dbg(dev,
2231 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2232 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2233 __func__,
2234 id[49], id[82], id[83], id[84],
2235 id[85], id[86], id[87], id[88]);
2236
2237 /* initialize to-be-configured parameters */
2238 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2239 dev->max_sectors = 0;
2240 dev->cdb_len = 0;
2241 dev->n_sectors = 0;
2242 dev->cylinders = 0;
2243 dev->heads = 0;
2244 dev->sectors = 0;
2245 dev->multi_count = 0;
2246
2247 /*
2248 * common ATA, ATAPI feature tests
2249 */
2250
2251 /* find max transfer mode; for printk only */
2252 xfer_mask = ata_id_xfermask(id);
2253
2254 if (ata_msg_probe(ap))
2255 ata_dump_id(id);
2256
2257 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2258 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2259 sizeof(fwrevbuf));
2260
2261 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2262 sizeof(modelbuf));
2263
2264 /* ATA-specific feature tests */
2265 if (dev->class == ATA_DEV_ATA) {
2266 if (ata_id_is_cfa(id)) {
2267 /* CPRM may make this media unusable */
2268 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2269 ata_dev_warn(dev,
2270 "supports DRM functions and may not be fully accessible\n");
2271 snprintf(revbuf, 7, "CFA");
2272 } else {
2273 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2274 /* Warn the user if the device has TPM extensions */
2275 if (ata_id_has_tpm(id))
2276 ata_dev_warn(dev,
2277 "supports DRM functions and may not be fully accessible\n");
2278 }
2279
2280 dev->n_sectors = ata_id_n_sectors(id);
2281
2282 /* get current R/W Multiple count setting */
2283 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2284 unsigned int max = dev->id[47] & 0xff;
2285 unsigned int cnt = dev->id[59] & 0xff;
2286 /* only recognize/allow powers of two here */
2287 if (is_power_of_2(max) && is_power_of_2(cnt))
2288 if (cnt <= max)
2289 dev->multi_count = cnt;
2290 }
2291
2292 if (ata_id_has_lba(id)) {
2293 const char *lba_desc;
2294 char ncq_desc[24];
2295
2296 lba_desc = "LBA";
2297 dev->flags |= ATA_DFLAG_LBA;
2298 if (ata_id_has_lba48(id)) {
2299 dev->flags |= ATA_DFLAG_LBA48;
2300 lba_desc = "LBA48";
2301
2302 if (dev->n_sectors >= (1UL << 28) &&
2303 ata_id_has_flush_ext(id))
2304 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2305 }
2306
2307 /* config NCQ */
2308 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2309 if (rc)
2310 return rc;
2311
2312 /* print device info to dmesg */
2313 if (ata_msg_drv(ap) && print_info) {
2314 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2315 revbuf, modelbuf, fwrevbuf,
2316 ata_mode_string(xfer_mask));
2317 ata_dev_info(dev,
2318 "%llu sectors, multi %u: %s %s\n",
2319 (unsigned long long)dev->n_sectors,
2320 dev->multi_count, lba_desc, ncq_desc);
2321 }
2322 } else {
2323 /* CHS */
2324
2325 /* Default translation */
2326 dev->cylinders = id[1];
2327 dev->heads = id[3];
2328 dev->sectors = id[6];
2329
2330 if (ata_id_current_chs_valid(id)) {
2331 /* Current CHS translation is valid. */
2332 dev->cylinders = id[54];
2333 dev->heads = id[55];
2334 dev->sectors = id[56];
2335 }
2336
2337 /* print device info to dmesg */
2338 if (ata_msg_drv(ap) && print_info) {
2339 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340 revbuf, modelbuf, fwrevbuf,
2341 ata_mode_string(xfer_mask));
2342 ata_dev_info(dev,
2343 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2344 (unsigned long long)dev->n_sectors,
2345 dev->multi_count, dev->cylinders,
2346 dev->heads, dev->sectors);
2347 }
2348 }
2349
2350 /* Check and mark DevSlp capability. Get DevSlp timing variables
2351 * from SATA Settings page of Identify Device Data Log.
2352 */
2353 if (ata_id_has_devslp(dev->id)) {
2354 u8 *sata_setting = ap->sector_buf;
2355 int i, j;
2356
2357 dev->flags |= ATA_DFLAG_DEVSLP;
2358 err_mask = ata_read_log_page(dev,
2359 ATA_LOG_SATA_ID_DEV_DATA,
2360 ATA_LOG_SATA_SETTINGS,
2361 sata_setting,
2362 1);
2363 if (err_mask)
2364 ata_dev_dbg(dev,
2365 "failed to get Identify Device Data, Emask 0x%x\n",
2366 err_mask);
2367 else
2368 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2369 j = ATA_LOG_DEVSLP_OFFSET + i;
2370 dev->devslp_timing[i] = sata_setting[j];
2371 }
2372 }
2373
2374 dev->cdb_len = 16;
2375 }
2376
2377 /* ATAPI-specific feature tests */
2378 else if (dev->class == ATA_DEV_ATAPI) {
2379 const char *cdb_intr_string = "";
2380 const char *atapi_an_string = "";
2381 const char *dma_dir_string = "";
2382 u32 sntf;
2383
2384 rc = atapi_cdb_len(id);
2385 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2386 if (ata_msg_warn(ap))
2387 ata_dev_warn(dev, "unsupported CDB len\n");
2388 rc = -EINVAL;
2389 goto err_out_nosup;
2390 }
2391 dev->cdb_len = (unsigned int) rc;
2392
2393 /* Enable ATAPI AN if both the host and device have
2394 * the support. If PMP is attached, SNTF is required
2395 * to enable ATAPI AN to discern between PHY status
2396 * changed notifications and ATAPI ANs.
2397 */
2398 if (atapi_an &&
2399 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2400 (!sata_pmp_attached(ap) ||
2401 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2402 /* issue SET feature command to turn this on */
2403 err_mask = ata_dev_set_feature(dev,
2404 SETFEATURES_SATA_ENABLE, SATA_AN);
2405 if (err_mask)
2406 ata_dev_err(dev,
2407 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2408 err_mask);
2409 else {
2410 dev->flags |= ATA_DFLAG_AN;
2411 atapi_an_string = ", ATAPI AN";
2412 }
2413 }
2414
2415 if (ata_id_cdb_intr(dev->id)) {
2416 dev->flags |= ATA_DFLAG_CDB_INTR;
2417 cdb_intr_string = ", CDB intr";
2418 }
2419
2420 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2421 dev->flags |= ATA_DFLAG_DMADIR;
2422 dma_dir_string = ", DMADIR";
2423 }
2424
2425 if (ata_id_has_da(dev->id)) {
2426 dev->flags |= ATA_DFLAG_DA;
2427 zpodd_init(dev);
2428 }
2429
2430 /* print device info to dmesg */
2431 if (ata_msg_drv(ap) && print_info)
2432 ata_dev_info(dev,
2433 "ATAPI: %s, %s, max %s%s%s%s\n",
2434 modelbuf, fwrevbuf,
2435 ata_mode_string(xfer_mask),
2436 cdb_intr_string, atapi_an_string,
2437 dma_dir_string);
2438 }
2439
2440 /* determine max_sectors */
2441 dev->max_sectors = ATA_MAX_SECTORS;
2442 if (dev->flags & ATA_DFLAG_LBA48)
2443 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
2445 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446 200 sectors */
2447 if (ata_dev_knobble(dev)) {
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_info(dev, "applying bridge limits\n");
2450 dev->udma_mask &= ATA_UDMA5;
2451 dev->max_sectors = ATA_MAX_SECTORS;
2452 }
2453
2454 if ((dev->class == ATA_DEV_ATAPI) &&
2455 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2456 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2457 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2458 }
2459
2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2461 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2462 dev->max_sectors);
2463
2464 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2465 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2466
2467 if (ap->ops->dev_config)
2468 ap->ops->dev_config(dev);
2469
2470 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2471 /* Let the user know. We don't want to disallow opens for
2472 rescue purposes, or in case the vendor is just a blithering
2473 idiot. Do this after the dev_config call as some controllers
2474 with buggy firmware may want to avoid reporting false device
2475 bugs */
2476
2477 if (print_info) {
2478 ata_dev_warn(dev,
2479 "Drive reports diagnostics failure. This may indicate a drive\n");
2480 ata_dev_warn(dev,
2481 "fault or invalid emulation. Contact drive vendor for information.\n");
2482 }
2483 }
2484
2485 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2486 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2487 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2488 }
2489
2490 return 0;
2491
2492 err_out_nosup:
2493 if (ata_msg_probe(ap))
2494 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2495 return rc;
2496 }
2497
2498 /**
2499 * ata_cable_40wire - return 40 wire cable type
2500 * @ap: port
2501 *
2502 * Helper method for drivers which want to hardwire 40 wire cable
2503 * detection.
2504 */
2505
2506 int ata_cable_40wire(struct ata_port *ap)
2507 {
2508 return ATA_CBL_PATA40;
2509 }
2510
2511 /**
2512 * ata_cable_80wire - return 80 wire cable type
2513 * @ap: port
2514 *
2515 * Helper method for drivers which want to hardwire 80 wire cable
2516 * detection.
2517 */
2518
2519 int ata_cable_80wire(struct ata_port *ap)
2520 {
2521 return ATA_CBL_PATA80;
2522 }
2523
2524 /**
2525 * ata_cable_unknown - return unknown PATA cable.
2526 * @ap: port
2527 *
2528 * Helper method for drivers which have no PATA cable detection.
2529 */
2530
2531 int ata_cable_unknown(struct ata_port *ap)
2532 {
2533 return ATA_CBL_PATA_UNK;
2534 }
2535
2536 /**
2537 * ata_cable_ignore - return ignored PATA cable.
2538 * @ap: port
2539 *
2540 * Helper method for drivers which don't use cable type to limit
2541 * transfer mode.
2542 */
2543 int ata_cable_ignore(struct ata_port *ap)
2544 {
2545 return ATA_CBL_PATA_IGN;
2546 }
2547
2548 /**
2549 * ata_cable_sata - return SATA cable type
2550 * @ap: port
2551 *
2552 * Helper method for drivers which have SATA cables
2553 */
2554
2555 int ata_cable_sata(struct ata_port *ap)
2556 {
2557 return ATA_CBL_SATA;
2558 }
2559
2560 /**
2561 * ata_bus_probe - Reset and probe ATA bus
2562 * @ap: Bus to probe
2563 *
2564 * Master ATA bus probing function. Initiates a hardware-dependent
2565 * bus reset, then attempts to identify any devices found on
2566 * the bus.
2567 *
2568 * LOCKING:
2569 * PCI/etc. bus probe sem.
2570 *
2571 * RETURNS:
2572 * Zero on success, negative errno otherwise.
2573 */
2574
2575 int ata_bus_probe(struct ata_port *ap)
2576 {
2577 unsigned int classes[ATA_MAX_DEVICES];
2578 int tries[ATA_MAX_DEVICES];
2579 int rc;
2580 struct ata_device *dev;
2581
2582 ata_for_each_dev(dev, &ap->link, ALL)
2583 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2584
2585 retry:
2586 ata_for_each_dev(dev, &ap->link, ALL) {
2587 /* If we issue an SRST then an ATA drive (not ATAPI)
2588 * may change configuration and be in PIO0 timing. If
2589 * we do a hard reset (or are coming from power on)
2590 * this is true for ATA or ATAPI. Until we've set a
2591 * suitable controller mode we should not touch the
2592 * bus as we may be talking too fast.
2593 */
2594 dev->pio_mode = XFER_PIO_0;
2595 dev->dma_mode = 0xff;
2596
2597 /* If the controller has a pio mode setup function
2598 * then use it to set the chipset to rights. Don't
2599 * touch the DMA setup as that will be dealt with when
2600 * configuring devices.
2601 */
2602 if (ap->ops->set_piomode)
2603 ap->ops->set_piomode(ap, dev);
2604 }
2605
2606 /* reset and determine device classes */
2607 ap->ops->phy_reset(ap);
2608
2609 ata_for_each_dev(dev, &ap->link, ALL) {
2610 if (dev->class != ATA_DEV_UNKNOWN)
2611 classes[dev->devno] = dev->class;
2612 else
2613 classes[dev->devno] = ATA_DEV_NONE;
2614
2615 dev->class = ATA_DEV_UNKNOWN;
2616 }
2617
2618 /* read IDENTIFY page and configure devices. We have to do the identify
2619 specific sequence bass-ackwards so that PDIAG- is released by
2620 the slave device */
2621
2622 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2623 if (tries[dev->devno])
2624 dev->class = classes[dev->devno];
2625
2626 if (!ata_dev_enabled(dev))
2627 continue;
2628
2629 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2630 dev->id);
2631 if (rc)
2632 goto fail;
2633 }
2634
2635 /* Now ask for the cable type as PDIAG- should have been released */
2636 if (ap->ops->cable_detect)
2637 ap->cbl = ap->ops->cable_detect(ap);
2638
2639 /* We may have SATA bridge glue hiding here irrespective of
2640 * the reported cable types and sensed types. When SATA
2641 * drives indicate we have a bridge, we don't know which end
2642 * of the link the bridge is which is a problem.
2643 */
2644 ata_for_each_dev(dev, &ap->link, ENABLED)
2645 if (ata_id_is_sata(dev->id))
2646 ap->cbl = ATA_CBL_SATA;
2647
2648 /* After the identify sequence we can now set up the devices. We do
2649 this in the normal order so that the user doesn't get confused */
2650
2651 ata_for_each_dev(dev, &ap->link, ENABLED) {
2652 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2653 rc = ata_dev_configure(dev);
2654 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2655 if (rc)
2656 goto fail;
2657 }
2658
2659 /* configure transfer mode */
2660 rc = ata_set_mode(&ap->link, &dev);
2661 if (rc)
2662 goto fail;
2663
2664 ata_for_each_dev(dev, &ap->link, ENABLED)
2665 return 0;
2666
2667 return -ENODEV;
2668
2669 fail:
2670 tries[dev->devno]--;
2671
2672 switch (rc) {
2673 case -EINVAL:
2674 /* eeek, something went very wrong, give up */
2675 tries[dev->devno] = 0;
2676 break;
2677
2678 case -ENODEV:
2679 /* give it just one more chance */
2680 tries[dev->devno] = min(tries[dev->devno], 1);
2681 case -EIO:
2682 if (tries[dev->devno] == 1) {
2683 /* This is the last chance, better to slow
2684 * down than lose it.
2685 */
2686 sata_down_spd_limit(&ap->link, 0);
2687 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2688 }
2689 }
2690
2691 if (!tries[dev->devno])
2692 ata_dev_disable(dev);
2693
2694 goto retry;
2695 }
2696
2697 /**
2698 * sata_print_link_status - Print SATA link status
2699 * @link: SATA link to printk link status about
2700 *
2701 * This function prints link speed and status of a SATA link.
2702 *
2703 * LOCKING:
2704 * None.
2705 */
2706 static void sata_print_link_status(struct ata_link *link)
2707 {
2708 u32 sstatus, scontrol, tmp;
2709
2710 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2711 return;
2712 sata_scr_read(link, SCR_CONTROL, &scontrol);
2713
2714 if (ata_phys_link_online(link)) {
2715 tmp = (sstatus >> 4) & 0xf;
2716 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2717 sata_spd_string(tmp), sstatus, scontrol);
2718 } else {
2719 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2720 sstatus, scontrol);
2721 }
2722 }
2723
2724 /**
2725 * ata_dev_pair - return other device on cable
2726 * @adev: device
2727 *
2728 * Obtain the other device on the same cable, or if none is
2729 * present NULL is returned
2730 */
2731
2732 struct ata_device *ata_dev_pair(struct ata_device *adev)
2733 {
2734 struct ata_link *link = adev->link;
2735 struct ata_device *pair = &link->device[1 - adev->devno];
2736 if (!ata_dev_enabled(pair))
2737 return NULL;
2738 return pair;
2739 }
2740
2741 /**
2742 * sata_down_spd_limit - adjust SATA spd limit downward
2743 * @link: Link to adjust SATA spd limit for
2744 * @spd_limit: Additional limit
2745 *
2746 * Adjust SATA spd limit of @link downward. Note that this
2747 * function only adjusts the limit. The change must be applied
2748 * using sata_set_spd().
2749 *
2750 * If @spd_limit is non-zero, the speed is limited to equal to or
2751 * lower than @spd_limit if such speed is supported. If
2752 * @spd_limit is slower than any supported speed, only the lowest
2753 * supported speed is allowed.
2754 *
2755 * LOCKING:
2756 * Inherited from caller.
2757 *
2758 * RETURNS:
2759 * 0 on success, negative errno on failure
2760 */
2761 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2762 {
2763 u32 sstatus, spd, mask;
2764 int rc, bit;
2765
2766 if (!sata_scr_valid(link))
2767 return -EOPNOTSUPP;
2768
2769 /* If SCR can be read, use it to determine the current SPD.
2770 * If not, use cached value in link->sata_spd.
2771 */
2772 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2773 if (rc == 0 && ata_sstatus_online(sstatus))
2774 spd = (sstatus >> 4) & 0xf;
2775 else
2776 spd = link->sata_spd;
2777
2778 mask = link->sata_spd_limit;
2779 if (mask <= 1)
2780 return -EINVAL;
2781
2782 /* unconditionally mask off the highest bit */
2783 bit = fls(mask) - 1;
2784 mask &= ~(1 << bit);
2785
2786 /* Mask off all speeds higher than or equal to the current
2787 * one. Force 1.5Gbps if current SPD is not available.
2788 */
2789 if (spd > 1)
2790 mask &= (1 << (spd - 1)) - 1;
2791 else
2792 mask &= 1;
2793
2794 /* were we already at the bottom? */
2795 if (!mask)
2796 return -EINVAL;
2797
2798 if (spd_limit) {
2799 if (mask & ((1 << spd_limit) - 1))
2800 mask &= (1 << spd_limit) - 1;
2801 else {
2802 bit = ffs(mask) - 1;
2803 mask = 1 << bit;
2804 }
2805 }
2806
2807 link->sata_spd_limit = mask;
2808
2809 ata_link_warn(link, "limiting SATA link speed to %s\n",
2810 sata_spd_string(fls(mask)));
2811
2812 return 0;
2813 }
2814
2815 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2816 {
2817 struct ata_link *host_link = &link->ap->link;
2818 u32 limit, target, spd;
2819
2820 limit = link->sata_spd_limit;
2821
2822 /* Don't configure downstream link faster than upstream link.
2823 * It doesn't speed up anything and some PMPs choke on such
2824 * configuration.
2825 */
2826 if (!ata_is_host_link(link) && host_link->sata_spd)
2827 limit &= (1 << host_link->sata_spd) - 1;
2828
2829 if (limit == UINT_MAX)
2830 target = 0;
2831 else
2832 target = fls(limit);
2833
2834 spd = (*scontrol >> 4) & 0xf;
2835 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2836
2837 return spd != target;
2838 }
2839
2840 /**
2841 * sata_set_spd_needed - is SATA spd configuration needed
2842 * @link: Link in question
2843 *
2844 * Test whether the spd limit in SControl matches
2845 * @link->sata_spd_limit. This function is used to determine
2846 * whether hardreset is necessary to apply SATA spd
2847 * configuration.
2848 *
2849 * LOCKING:
2850 * Inherited from caller.
2851 *
2852 * RETURNS:
2853 * 1 if SATA spd configuration is needed, 0 otherwise.
2854 */
2855 static int sata_set_spd_needed(struct ata_link *link)
2856 {
2857 u32 scontrol;
2858
2859 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2860 return 1;
2861
2862 return __sata_set_spd_needed(link, &scontrol);
2863 }
2864
2865 /**
2866 * sata_set_spd - set SATA spd according to spd limit
2867 * @link: Link to set SATA spd for
2868 *
2869 * Set SATA spd of @link according to sata_spd_limit.
2870 *
2871 * LOCKING:
2872 * Inherited from caller.
2873 *
2874 * RETURNS:
2875 * 0 if spd doesn't need to be changed, 1 if spd has been
2876 * changed. Negative errno if SCR registers are inaccessible.
2877 */
2878 int sata_set_spd(struct ata_link *link)
2879 {
2880 u32 scontrol;
2881 int rc;
2882
2883 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2884 return rc;
2885
2886 if (!__sata_set_spd_needed(link, &scontrol))
2887 return 0;
2888
2889 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2890 return rc;
2891
2892 return 1;
2893 }
2894
2895 /*
2896 * This mode timing computation functionality is ported over from
2897 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2898 */
2899 /*
2900 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2901 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2902 * for UDMA6, which is currently supported only by Maxtor drives.
2903 *
2904 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2905 */
2906
2907 static const struct ata_timing ata_timing[] = {
2908 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2909 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2910 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2911 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2912 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2913 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2914 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2915 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2916
2917 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2918 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2919 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2920
2921 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2922 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2924 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2925 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2926
2927 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2928 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2929 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2930 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2931 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2932 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2933 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2934 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2935
2936 { 0xFF }
2937 };
2938
2939 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2940 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2941
2942 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2943 {
2944 q->setup = EZ(t->setup * 1000, T);
2945 q->act8b = EZ(t->act8b * 1000, T);
2946 q->rec8b = EZ(t->rec8b * 1000, T);
2947 q->cyc8b = EZ(t->cyc8b * 1000, T);
2948 q->active = EZ(t->active * 1000, T);
2949 q->recover = EZ(t->recover * 1000, T);
2950 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2951 q->cycle = EZ(t->cycle * 1000, T);
2952 q->udma = EZ(t->udma * 1000, UT);
2953 }
2954
2955 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2956 struct ata_timing *m, unsigned int what)
2957 {
2958 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2959 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2960 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2961 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2962 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2963 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2964 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2965 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2966 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2967 }
2968
2969 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2970 {
2971 const struct ata_timing *t = ata_timing;
2972
2973 while (xfer_mode > t->mode)
2974 t++;
2975
2976 if (xfer_mode == t->mode)
2977 return t;
2978
2979 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2980 __func__, xfer_mode);
2981
2982 return NULL;
2983 }
2984
2985 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2986 struct ata_timing *t, int T, int UT)
2987 {
2988 const u16 *id = adev->id;
2989 const struct ata_timing *s;
2990 struct ata_timing p;
2991
2992 /*
2993 * Find the mode.
2994 */
2995
2996 if (!(s = ata_timing_find_mode(speed)))
2997 return -EINVAL;
2998
2999 memcpy(t, s, sizeof(*s));
3000
3001 /*
3002 * If the drive is an EIDE drive, it can tell us it needs extended
3003 * PIO/MW_DMA cycle timing.
3004 */
3005
3006 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3007 memset(&p, 0, sizeof(p));
3008
3009 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3010 if (speed <= XFER_PIO_2)
3011 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3012 else if ((speed <= XFER_PIO_4) ||
3013 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3014 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3015 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3016 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3017
3018 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3019 }
3020
3021 /*
3022 * Convert the timing to bus clock counts.
3023 */
3024
3025 ata_timing_quantize(t, t, T, UT);
3026
3027 /*
3028 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3029 * S.M.A.R.T * and some other commands. We have to ensure that the
3030 * DMA cycle timing is slower/equal than the fastest PIO timing.
3031 */
3032
3033 if (speed > XFER_PIO_6) {
3034 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3035 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3036 }
3037
3038 /*
3039 * Lengthen active & recovery time so that cycle time is correct.
3040 */
3041
3042 if (t->act8b + t->rec8b < t->cyc8b) {
3043 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3044 t->rec8b = t->cyc8b - t->act8b;
3045 }
3046
3047 if (t->active + t->recover < t->cycle) {
3048 t->active += (t->cycle - (t->active + t->recover)) / 2;
3049 t->recover = t->cycle - t->active;
3050 }
3051
3052 /* In a few cases quantisation may produce enough errors to
3053 leave t->cycle too low for the sum of active and recovery
3054 if so we must correct this */
3055 if (t->active + t->recover > t->cycle)
3056 t->cycle = t->active + t->recover;
3057
3058 return 0;
3059 }
3060
3061 /**
3062 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3063 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3064 * @cycle: cycle duration in ns
3065 *
3066 * Return matching xfer mode for @cycle. The returned mode is of
3067 * the transfer type specified by @xfer_shift. If @cycle is too
3068 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3069 * than the fastest known mode, the fasted mode is returned.
3070 *
3071 * LOCKING:
3072 * None.
3073 *
3074 * RETURNS:
3075 * Matching xfer_mode, 0xff if no match found.
3076 */
3077 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3078 {
3079 u8 base_mode = 0xff, last_mode = 0xff;
3080 const struct ata_xfer_ent *ent;
3081 const struct ata_timing *t;
3082
3083 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3084 if (ent->shift == xfer_shift)
3085 base_mode = ent->base;
3086
3087 for (t = ata_timing_find_mode(base_mode);
3088 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3089 unsigned short this_cycle;
3090
3091 switch (xfer_shift) {
3092 case ATA_SHIFT_PIO:
3093 case ATA_SHIFT_MWDMA:
3094 this_cycle = t->cycle;
3095 break;
3096 case ATA_SHIFT_UDMA:
3097 this_cycle = t->udma;
3098 break;
3099 default:
3100 return 0xff;
3101 }
3102
3103 if (cycle > this_cycle)
3104 break;
3105
3106 last_mode = t->mode;
3107 }
3108
3109 return last_mode;
3110 }
3111
3112 /**
3113 * ata_down_xfermask_limit - adjust dev xfer masks downward
3114 * @dev: Device to adjust xfer masks
3115 * @sel: ATA_DNXFER_* selector
3116 *
3117 * Adjust xfer masks of @dev downward. Note that this function
3118 * does not apply the change. Invoking ata_set_mode() afterwards
3119 * will apply the limit.
3120 *
3121 * LOCKING:
3122 * Inherited from caller.
3123 *
3124 * RETURNS:
3125 * 0 on success, negative errno on failure
3126 */
3127 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3128 {
3129 char buf[32];
3130 unsigned long orig_mask, xfer_mask;
3131 unsigned long pio_mask, mwdma_mask, udma_mask;
3132 int quiet, highbit;
3133
3134 quiet = !!(sel & ATA_DNXFER_QUIET);
3135 sel &= ~ATA_DNXFER_QUIET;
3136
3137 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3138 dev->mwdma_mask,
3139 dev->udma_mask);
3140 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3141
3142 switch (sel) {
3143 case ATA_DNXFER_PIO:
3144 highbit = fls(pio_mask) - 1;
3145 pio_mask &= ~(1 << highbit);
3146 break;
3147
3148 case ATA_DNXFER_DMA:
3149 if (udma_mask) {
3150 highbit = fls(udma_mask) - 1;
3151 udma_mask &= ~(1 << highbit);
3152 if (!udma_mask)
3153 return -ENOENT;
3154 } else if (mwdma_mask) {
3155 highbit = fls(mwdma_mask) - 1;
3156 mwdma_mask &= ~(1 << highbit);
3157 if (!mwdma_mask)
3158 return -ENOENT;
3159 }
3160 break;
3161
3162 case ATA_DNXFER_40C:
3163 udma_mask &= ATA_UDMA_MASK_40C;
3164 break;
3165
3166 case ATA_DNXFER_FORCE_PIO0:
3167 pio_mask &= 1;
3168 case ATA_DNXFER_FORCE_PIO:
3169 mwdma_mask = 0;
3170 udma_mask = 0;
3171 break;
3172
3173 default:
3174 BUG();
3175 }
3176
3177 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3178
3179 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3180 return -ENOENT;
3181
3182 if (!quiet) {
3183 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3184 snprintf(buf, sizeof(buf), "%s:%s",
3185 ata_mode_string(xfer_mask),
3186 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3187 else
3188 snprintf(buf, sizeof(buf), "%s",
3189 ata_mode_string(xfer_mask));
3190
3191 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3192 }
3193
3194 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3195 &dev->udma_mask);
3196
3197 return 0;
3198 }
3199
3200 static int ata_dev_set_mode(struct ata_device *dev)
3201 {
3202 struct ata_port *ap = dev->link->ap;
3203 struct ata_eh_context *ehc = &dev->link->eh_context;
3204 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3205 const char *dev_err_whine = "";
3206 int ign_dev_err = 0;
3207 unsigned int err_mask = 0;
3208 int rc;
3209
3210 dev->flags &= ~ATA_DFLAG_PIO;
3211 if (dev->xfer_shift == ATA_SHIFT_PIO)
3212 dev->flags |= ATA_DFLAG_PIO;
3213
3214 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3215 dev_err_whine = " (SET_XFERMODE skipped)";
3216 else {
3217 if (nosetxfer)
3218 ata_dev_warn(dev,
3219 "NOSETXFER but PATA detected - can't "
3220 "skip SETXFER, might malfunction\n");
3221 err_mask = ata_dev_set_xfermode(dev);
3222 }
3223
3224 if (err_mask & ~AC_ERR_DEV)
3225 goto fail;
3226
3227 /* revalidate */
3228 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3229 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3230 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3231 if (rc)
3232 return rc;
3233
3234 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3235 /* Old CFA may refuse this command, which is just fine */
3236 if (ata_id_is_cfa(dev->id))
3237 ign_dev_err = 1;
3238 /* Catch several broken garbage emulations plus some pre
3239 ATA devices */
3240 if (ata_id_major_version(dev->id) == 0 &&
3241 dev->pio_mode <= XFER_PIO_2)
3242 ign_dev_err = 1;
3243 /* Some very old devices and some bad newer ones fail
3244 any kind of SET_XFERMODE request but support PIO0-2
3245 timings and no IORDY */
3246 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3247 ign_dev_err = 1;
3248 }
3249 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3250 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3251 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3252 dev->dma_mode == XFER_MW_DMA_0 &&
3253 (dev->id[63] >> 8) & 1)
3254 ign_dev_err = 1;
3255
3256 /* if the device is actually configured correctly, ignore dev err */
3257 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3258 ign_dev_err = 1;
3259
3260 if (err_mask & AC_ERR_DEV) {
3261 if (!ign_dev_err)
3262 goto fail;
3263 else
3264 dev_err_whine = " (device error ignored)";
3265 }
3266
3267 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3268 dev->xfer_shift, (int)dev->xfer_mode);
3269
3270 ata_dev_info(dev, "configured for %s%s\n",
3271 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3272 dev_err_whine);
3273
3274 return 0;
3275
3276 fail:
3277 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3278 return -EIO;
3279 }
3280
3281 /**
3282 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3283 * @link: link on which timings will be programmed
3284 * @r_failed_dev: out parameter for failed device
3285 *
3286 * Standard implementation of the function used to tune and set
3287 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3288 * ata_dev_set_mode() fails, pointer to the failing device is
3289 * returned in @r_failed_dev.
3290 *
3291 * LOCKING:
3292 * PCI/etc. bus probe sem.
3293 *
3294 * RETURNS:
3295 * 0 on success, negative errno otherwise
3296 */
3297
3298 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3299 {
3300 struct ata_port *ap = link->ap;
3301 struct ata_device *dev;
3302 int rc = 0, used_dma = 0, found = 0;
3303
3304 /* step 1: calculate xfer_mask */
3305 ata_for_each_dev(dev, link, ENABLED) {
3306 unsigned long pio_mask, dma_mask;
3307 unsigned int mode_mask;
3308
3309 mode_mask = ATA_DMA_MASK_ATA;
3310 if (dev->class == ATA_DEV_ATAPI)
3311 mode_mask = ATA_DMA_MASK_ATAPI;
3312 else if (ata_id_is_cfa(dev->id))
3313 mode_mask = ATA_DMA_MASK_CFA;
3314
3315 ata_dev_xfermask(dev);
3316 ata_force_xfermask(dev);
3317
3318 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3319
3320 if (libata_dma_mask & mode_mask)
3321 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3322 dev->udma_mask);
3323 else
3324 dma_mask = 0;
3325
3326 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3327 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3328
3329 found = 1;
3330 if (ata_dma_enabled(dev))
3331 used_dma = 1;
3332 }
3333 if (!found)
3334 goto out;
3335
3336 /* step 2: always set host PIO timings */
3337 ata_for_each_dev(dev, link, ENABLED) {
3338 if (dev->pio_mode == 0xff) {
3339 ata_dev_warn(dev, "no PIO support\n");
3340 rc = -EINVAL;
3341 goto out;
3342 }
3343
3344 dev->xfer_mode = dev->pio_mode;
3345 dev->xfer_shift = ATA_SHIFT_PIO;
3346 if (ap->ops->set_piomode)
3347 ap->ops->set_piomode(ap, dev);
3348 }
3349
3350 /* step 3: set host DMA timings */
3351 ata_for_each_dev(dev, link, ENABLED) {
3352 if (!ata_dma_enabled(dev))
3353 continue;
3354
3355 dev->xfer_mode = dev->dma_mode;
3356 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3357 if (ap->ops->set_dmamode)
3358 ap->ops->set_dmamode(ap, dev);
3359 }
3360
3361 /* step 4: update devices' xfer mode */
3362 ata_for_each_dev(dev, link, ENABLED) {
3363 rc = ata_dev_set_mode(dev);
3364 if (rc)
3365 goto out;
3366 }
3367
3368 /* Record simplex status. If we selected DMA then the other
3369 * host channels are not permitted to do so.
3370 */
3371 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3372 ap->host->simplex_claimed = ap;
3373
3374 out:
3375 if (rc)
3376 *r_failed_dev = dev;
3377 return rc;
3378 }
3379
3380 /**
3381 * ata_wait_ready - wait for link to become ready
3382 * @link: link to be waited on
3383 * @deadline: deadline jiffies for the operation
3384 * @check_ready: callback to check link readiness
3385 *
3386 * Wait for @link to become ready. @check_ready should return
3387 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3388 * link doesn't seem to be occupied, other errno for other error
3389 * conditions.
3390 *
3391 * Transient -ENODEV conditions are allowed for
3392 * ATA_TMOUT_FF_WAIT.
3393 *
3394 * LOCKING:
3395 * EH context.
3396 *
3397 * RETURNS:
3398 * 0 if @linke is ready before @deadline; otherwise, -errno.
3399 */
3400 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3401 int (*check_ready)(struct ata_link *link))
3402 {
3403 unsigned long start = jiffies;
3404 unsigned long nodev_deadline;
3405 int warned = 0;
3406
3407 /* choose which 0xff timeout to use, read comment in libata.h */
3408 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3409 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3410 else
3411 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3412
3413 /* Slave readiness can't be tested separately from master. On
3414 * M/S emulation configuration, this function should be called
3415 * only on the master and it will handle both master and slave.
3416 */
3417 WARN_ON(link == link->ap->slave_link);
3418
3419 if (time_after(nodev_deadline, deadline))
3420 nodev_deadline = deadline;
3421
3422 while (1) {
3423 unsigned long now = jiffies;
3424 int ready, tmp;
3425
3426 ready = tmp = check_ready(link);
3427 if (ready > 0)
3428 return 0;
3429
3430 /*
3431 * -ENODEV could be transient. Ignore -ENODEV if link
3432 * is online. Also, some SATA devices take a long
3433 * time to clear 0xff after reset. Wait for
3434 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3435 * offline.
3436 *
3437 * Note that some PATA controllers (pata_ali) explode
3438 * if status register is read more than once when
3439 * there's no device attached.
3440 */
3441 if (ready == -ENODEV) {
3442 if (ata_link_online(link))
3443 ready = 0;
3444 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3445 !ata_link_offline(link) &&
3446 time_before(now, nodev_deadline))
3447 ready = 0;
3448 }
3449
3450 if (ready)
3451 return ready;
3452 if (time_after(now, deadline))
3453 return -EBUSY;
3454
3455 if (!warned && time_after(now, start + 5 * HZ) &&
3456 (deadline - now > 3 * HZ)) {
3457 ata_link_warn(link,
3458 "link is slow to respond, please be patient "
3459 "(ready=%d)\n", tmp);
3460 warned = 1;
3461 }
3462
3463 ata_msleep(link->ap, 50);
3464 }
3465 }
3466
3467 /**
3468 * ata_wait_after_reset - wait for link to become ready after reset
3469 * @link: link to be waited on
3470 * @deadline: deadline jiffies for the operation
3471 * @check_ready: callback to check link readiness
3472 *
3473 * Wait for @link to become ready after reset.
3474 *
3475 * LOCKING:
3476 * EH context.
3477 *
3478 * RETURNS:
3479 * 0 if @linke is ready before @deadline; otherwise, -errno.
3480 */
3481 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3482 int (*check_ready)(struct ata_link *link))
3483 {
3484 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3485
3486 return ata_wait_ready(link, deadline, check_ready);
3487 }
3488
3489 /**
3490 * sata_link_debounce - debounce SATA phy status
3491 * @link: ATA link to debounce SATA phy status for
3492 * @params: timing parameters { interval, duratinon, timeout } in msec
3493 * @deadline: deadline jiffies for the operation
3494 *
3495 * Make sure SStatus of @link reaches stable state, determined by
3496 * holding the same value where DET is not 1 for @duration polled
3497 * every @interval, before @timeout. Timeout constraints the
3498 * beginning of the stable state. Because DET gets stuck at 1 on
3499 * some controllers after hot unplugging, this functions waits
3500 * until timeout then returns 0 if DET is stable at 1.
3501 *
3502 * @timeout is further limited by @deadline. The sooner of the
3503 * two is used.
3504 *
3505 * LOCKING:
3506 * Kernel thread context (may sleep)
3507 *
3508 * RETURNS:
3509 * 0 on success, -errno on failure.
3510 */
3511 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3512 unsigned long deadline)
3513 {
3514 unsigned long interval = params[0];
3515 unsigned long duration = params[1];
3516 unsigned long last_jiffies, t;
3517 u32 last, cur;
3518 int rc;
3519
3520 t = ata_deadline(jiffies, params[2]);
3521 if (time_before(t, deadline))
3522 deadline = t;
3523
3524 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3525 return rc;
3526 cur &= 0xf;
3527
3528 last = cur;
3529 last_jiffies = jiffies;
3530
3531 while (1) {
3532 ata_msleep(link->ap, interval);
3533 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3534 return rc;
3535 cur &= 0xf;
3536
3537 /* DET stable? */
3538 if (cur == last) {
3539 if (cur == 1 && time_before(jiffies, deadline))
3540 continue;
3541 if (time_after(jiffies,
3542 ata_deadline(last_jiffies, duration)))
3543 return 0;
3544 continue;
3545 }
3546
3547 /* unstable, start over */
3548 last = cur;
3549 last_jiffies = jiffies;
3550
3551 /* Check deadline. If debouncing failed, return
3552 * -EPIPE to tell upper layer to lower link speed.
3553 */
3554 if (time_after(jiffies, deadline))
3555 return -EPIPE;
3556 }
3557 }
3558
3559 /**
3560 * sata_link_resume - resume SATA link
3561 * @link: ATA link to resume SATA
3562 * @params: timing parameters { interval, duratinon, timeout } in msec
3563 * @deadline: deadline jiffies for the operation
3564 *
3565 * Resume SATA phy @link and debounce it.
3566 *
3567 * LOCKING:
3568 * Kernel thread context (may sleep)
3569 *
3570 * RETURNS:
3571 * 0 on success, -errno on failure.
3572 */
3573 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3574 unsigned long deadline)
3575 {
3576 int tries = ATA_LINK_RESUME_TRIES;
3577 u32 scontrol, serror;
3578 int rc;
3579
3580 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3581 return rc;
3582
3583 /*
3584 * Writes to SControl sometimes get ignored under certain
3585 * controllers (ata_piix SIDPR). Make sure DET actually is
3586 * cleared.
3587 */
3588 do {
3589 scontrol = (scontrol & 0x0f0) | 0x300;
3590 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3591 return rc;
3592 /*
3593 * Some PHYs react badly if SStatus is pounded
3594 * immediately after resuming. Delay 200ms before
3595 * debouncing.
3596 */
3597 ata_msleep(link->ap, 200);
3598
3599 /* is SControl restored correctly? */
3600 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3601 return rc;
3602 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3603
3604 if ((scontrol & 0xf0f) != 0x300) {
3605 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3606 scontrol);
3607 return 0;
3608 }
3609
3610 if (tries < ATA_LINK_RESUME_TRIES)
3611 ata_link_warn(link, "link resume succeeded after %d retries\n",
3612 ATA_LINK_RESUME_TRIES - tries);
3613
3614 if ((rc = sata_link_debounce(link, params, deadline)))
3615 return rc;
3616
3617 /* clear SError, some PHYs require this even for SRST to work */
3618 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3619 rc = sata_scr_write(link, SCR_ERROR, serror);
3620
3621 return rc != -EINVAL ? rc : 0;
3622 }
3623
3624 /**
3625 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3626 * @link: ATA link to manipulate SControl for
3627 * @policy: LPM policy to configure
3628 * @spm_wakeup: initiate LPM transition to active state
3629 *
3630 * Manipulate the IPM field of the SControl register of @link
3631 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3632 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3633 * the link. This function also clears PHYRDY_CHG before
3634 * returning.
3635 *
3636 * LOCKING:
3637 * EH context.
3638 *
3639 * RETURNS:
3640 * 0 on succes, -errno otherwise.
3641 */
3642 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3643 bool spm_wakeup)
3644 {
3645 struct ata_eh_context *ehc = &link->eh_context;
3646 bool woken_up = false;
3647 u32 scontrol;
3648 int rc;
3649
3650 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3651 if (rc)
3652 return rc;
3653
3654 switch (policy) {
3655 case ATA_LPM_MAX_POWER:
3656 /* disable all LPM transitions */
3657 scontrol |= (0x7 << 8);
3658 /* initiate transition to active state */
3659 if (spm_wakeup) {
3660 scontrol |= (0x4 << 12);
3661 woken_up = true;
3662 }
3663 break;
3664 case ATA_LPM_MED_POWER:
3665 /* allow LPM to PARTIAL */
3666 scontrol &= ~(0x1 << 8);
3667 scontrol |= (0x6 << 8);
3668 break;
3669 case ATA_LPM_MIN_POWER:
3670 if (ata_link_nr_enabled(link) > 0)
3671 /* no restrictions on LPM transitions */
3672 scontrol &= ~(0x7 << 8);
3673 else {
3674 /* empty port, power off */
3675 scontrol &= ~0xf;
3676 scontrol |= (0x1 << 2);
3677 }
3678 break;
3679 default:
3680 WARN_ON(1);
3681 }
3682
3683 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3684 if (rc)
3685 return rc;
3686
3687 /* give the link time to transit out of LPM state */
3688 if (woken_up)
3689 msleep(10);
3690
3691 /* clear PHYRDY_CHG from SError */
3692 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3693 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3694 }
3695
3696 /**
3697 * ata_std_prereset - prepare for reset
3698 * @link: ATA link to be reset
3699 * @deadline: deadline jiffies for the operation
3700 *
3701 * @link is about to be reset. Initialize it. Failure from
3702 * prereset makes libata abort whole reset sequence and give up
3703 * that port, so prereset should be best-effort. It does its
3704 * best to prepare for reset sequence but if things go wrong, it
3705 * should just whine, not fail.
3706 *
3707 * LOCKING:
3708 * Kernel thread context (may sleep)
3709 *
3710 * RETURNS:
3711 * 0 on success, -errno otherwise.
3712 */
3713 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3714 {
3715 struct ata_port *ap = link->ap;
3716 struct ata_eh_context *ehc = &link->eh_context;
3717 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3718 int rc;
3719
3720 /* if we're about to do hardreset, nothing more to do */
3721 if (ehc->i.action & ATA_EH_HARDRESET)
3722 return 0;
3723
3724 /* if SATA, resume link */
3725 if (ap->flags & ATA_FLAG_SATA) {
3726 rc = sata_link_resume(link, timing, deadline);
3727 /* whine about phy resume failure but proceed */
3728 if (rc && rc != -EOPNOTSUPP)
3729 ata_link_warn(link,
3730 "failed to resume link for reset (errno=%d)\n",
3731 rc);
3732 }
3733
3734 /* no point in trying softreset on offline link */
3735 if (ata_phys_link_offline(link))
3736 ehc->i.action &= ~ATA_EH_SOFTRESET;
3737
3738 return 0;
3739 }
3740
3741 /**
3742 * sata_link_hardreset - reset link via SATA phy reset
3743 * @link: link to reset
3744 * @timing: timing parameters { interval, duratinon, timeout } in msec
3745 * @deadline: deadline jiffies for the operation
3746 * @online: optional out parameter indicating link onlineness
3747 * @check_ready: optional callback to check link readiness
3748 *
3749 * SATA phy-reset @link using DET bits of SControl register.
3750 * After hardreset, link readiness is waited upon using
3751 * ata_wait_ready() if @check_ready is specified. LLDs are
3752 * allowed to not specify @check_ready and wait itself after this
3753 * function returns. Device classification is LLD's
3754 * responsibility.
3755 *
3756 * *@online is set to one iff reset succeeded and @link is online
3757 * after reset.
3758 *
3759 * LOCKING:
3760 * Kernel thread context (may sleep)
3761 *
3762 * RETURNS:
3763 * 0 on success, -errno otherwise.
3764 */
3765 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3766 unsigned long deadline,
3767 bool *online, int (*check_ready)(struct ata_link *))
3768 {
3769 u32 scontrol;
3770 int rc;
3771
3772 DPRINTK("ENTER\n");
3773
3774 if (online)
3775 *online = false;
3776
3777 if (sata_set_spd_needed(link)) {
3778 /* SATA spec says nothing about how to reconfigure
3779 * spd. To be on the safe side, turn off phy during
3780 * reconfiguration. This works for at least ICH7 AHCI
3781 * and Sil3124.
3782 */
3783 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3784 goto out;
3785
3786 scontrol = (scontrol & 0x0f0) | 0x304;
3787
3788 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3789 goto out;
3790
3791 sata_set_spd(link);
3792 }
3793
3794 /* issue phy wake/reset */
3795 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3796 goto out;
3797
3798 scontrol = (scontrol & 0x0f0) | 0x301;
3799
3800 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3801 goto out;
3802
3803 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3804 * 10.4.2 says at least 1 ms.
3805 */
3806 ata_msleep(link->ap, 1);
3807
3808 /* bring link back */
3809 rc = sata_link_resume(link, timing, deadline);
3810 if (rc)
3811 goto out;
3812 /* if link is offline nothing more to do */
3813 if (ata_phys_link_offline(link))
3814 goto out;
3815
3816 /* Link is online. From this point, -ENODEV too is an error. */
3817 if (online)
3818 *online = true;
3819
3820 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3821 /* If PMP is supported, we have to do follow-up SRST.
3822 * Some PMPs don't send D2H Reg FIS after hardreset if
3823 * the first port is empty. Wait only for
3824 * ATA_TMOUT_PMP_SRST_WAIT.
3825 */
3826 if (check_ready) {
3827 unsigned long pmp_deadline;
3828
3829 pmp_deadline = ata_deadline(jiffies,
3830 ATA_TMOUT_PMP_SRST_WAIT);
3831 if (time_after(pmp_deadline, deadline))
3832 pmp_deadline = deadline;
3833 ata_wait_ready(link, pmp_deadline, check_ready);
3834 }
3835 rc = -EAGAIN;
3836 goto out;
3837 }
3838
3839 rc = 0;
3840 if (check_ready)
3841 rc = ata_wait_ready(link, deadline, check_ready);
3842 out:
3843 if (rc && rc != -EAGAIN) {
3844 /* online is set iff link is online && reset succeeded */
3845 if (online)
3846 *online = false;
3847 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3848 }
3849 DPRINTK("EXIT, rc=%d\n", rc);
3850 return rc;
3851 }
3852
3853 /**
3854 * sata_std_hardreset - COMRESET w/o waiting or classification
3855 * @link: link to reset
3856 * @class: resulting class of attached device
3857 * @deadline: deadline jiffies for the operation
3858 *
3859 * Standard SATA COMRESET w/o waiting or classification.
3860 *
3861 * LOCKING:
3862 * Kernel thread context (may sleep)
3863 *
3864 * RETURNS:
3865 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3866 */
3867 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3868 unsigned long deadline)
3869 {
3870 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3871 bool online;
3872 int rc;
3873
3874 /* do hardreset */
3875 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3876 return online ? -EAGAIN : rc;
3877 }
3878
3879 /**
3880 * ata_std_postreset - standard postreset callback
3881 * @link: the target ata_link
3882 * @classes: classes of attached devices
3883 *
3884 * This function is invoked after a successful reset. Note that
3885 * the device might have been reset more than once using
3886 * different reset methods before postreset is invoked.
3887 *
3888 * LOCKING:
3889 * Kernel thread context (may sleep)
3890 */
3891 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3892 {
3893 u32 serror;
3894
3895 DPRINTK("ENTER\n");
3896
3897 /* reset complete, clear SError */
3898 if (!sata_scr_read(link, SCR_ERROR, &serror))
3899 sata_scr_write(link, SCR_ERROR, serror);
3900
3901 /* print link status */
3902 sata_print_link_status(link);
3903
3904 DPRINTK("EXIT\n");
3905 }
3906
3907 /**
3908 * ata_dev_same_device - Determine whether new ID matches configured device
3909 * @dev: device to compare against
3910 * @new_class: class of the new device
3911 * @new_id: IDENTIFY page of the new device
3912 *
3913 * Compare @new_class and @new_id against @dev and determine
3914 * whether @dev is the device indicated by @new_class and
3915 * @new_id.
3916 *
3917 * LOCKING:
3918 * None.
3919 *
3920 * RETURNS:
3921 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3922 */
3923 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3924 const u16 *new_id)
3925 {
3926 const u16 *old_id = dev->id;
3927 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3928 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3929
3930 if (dev->class != new_class) {
3931 ata_dev_info(dev, "class mismatch %d != %d\n",
3932 dev->class, new_class);
3933 return 0;
3934 }
3935
3936 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3937 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3938 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3939 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3940
3941 if (strcmp(model[0], model[1])) {
3942 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3943 model[0], model[1]);
3944 return 0;
3945 }
3946
3947 if (strcmp(serial[0], serial[1])) {
3948 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3949 serial[0], serial[1]);
3950 return 0;
3951 }
3952
3953 return 1;
3954 }
3955
3956 /**
3957 * ata_dev_reread_id - Re-read IDENTIFY data
3958 * @dev: target ATA device
3959 * @readid_flags: read ID flags
3960 *
3961 * Re-read IDENTIFY page and make sure @dev is still attached to
3962 * the port.
3963 *
3964 * LOCKING:
3965 * Kernel thread context (may sleep)
3966 *
3967 * RETURNS:
3968 * 0 on success, negative errno otherwise
3969 */
3970 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3971 {
3972 unsigned int class = dev->class;
3973 u16 *id = (void *)dev->link->ap->sector_buf;
3974 int rc;
3975
3976 /* read ID data */
3977 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3978 if (rc)
3979 return rc;
3980
3981 /* is the device still there? */
3982 if (!ata_dev_same_device(dev, class, id))
3983 return -ENODEV;
3984
3985 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3986 return 0;
3987 }
3988
3989 /**
3990 * ata_dev_revalidate - Revalidate ATA device
3991 * @dev: device to revalidate
3992 * @new_class: new class code
3993 * @readid_flags: read ID flags
3994 *
3995 * Re-read IDENTIFY page, make sure @dev is still attached to the
3996 * port and reconfigure it according to the new IDENTIFY page.
3997 *
3998 * LOCKING:
3999 * Kernel thread context (may sleep)
4000 *
4001 * RETURNS:
4002 * 0 on success, negative errno otherwise
4003 */
4004 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4005 unsigned int readid_flags)
4006 {
4007 u64 n_sectors = dev->n_sectors;
4008 u64 n_native_sectors = dev->n_native_sectors;
4009 int rc;
4010
4011 if (!ata_dev_enabled(dev))
4012 return -ENODEV;
4013
4014 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4015 if (ata_class_enabled(new_class) &&
4016 new_class != ATA_DEV_ATA &&
4017 new_class != ATA_DEV_ATAPI &&
4018 new_class != ATA_DEV_SEMB) {
4019 ata_dev_info(dev, "class mismatch %u != %u\n",
4020 dev->class, new_class);
4021 rc = -ENODEV;
4022 goto fail;
4023 }
4024
4025 /* re-read ID */
4026 rc = ata_dev_reread_id(dev, readid_flags);
4027 if (rc)
4028 goto fail;
4029
4030 /* configure device according to the new ID */
4031 rc = ata_dev_configure(dev);
4032 if (rc)
4033 goto fail;
4034
4035 /* verify n_sectors hasn't changed */
4036 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4037 dev->n_sectors == n_sectors)
4038 return 0;
4039
4040 /* n_sectors has changed */
4041 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4042 (unsigned long long)n_sectors,
4043 (unsigned long long)dev->n_sectors);
4044
4045 /*
4046 * Something could have caused HPA to be unlocked
4047 * involuntarily. If n_native_sectors hasn't changed and the
4048 * new size matches it, keep the device.
4049 */
4050 if (dev->n_native_sectors == n_native_sectors &&
4051 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4052 ata_dev_warn(dev,
4053 "new n_sectors matches native, probably "
4054 "late HPA unlock, n_sectors updated\n");
4055 /* use the larger n_sectors */
4056 return 0;
4057 }
4058
4059 /*
4060 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4061 * unlocking HPA in those cases.
4062 *
4063 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4064 */
4065 if (dev->n_native_sectors == n_native_sectors &&
4066 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4067 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4068 ata_dev_warn(dev,
4069 "old n_sectors matches native, probably "
4070 "late HPA lock, will try to unlock HPA\n");
4071 /* try unlocking HPA */
4072 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4073 rc = -EIO;
4074 } else
4075 rc = -ENODEV;
4076
4077 /* restore original n_[native_]sectors and fail */
4078 dev->n_native_sectors = n_native_sectors;
4079 dev->n_sectors = n_sectors;
4080 fail:
4081 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4082 return rc;
4083 }
4084
4085 struct ata_blacklist_entry {
4086 const char *model_num;
4087 const char *model_rev;
4088 unsigned long horkage;
4089 };
4090
4091 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4092 /* Devices with DMA related problems under Linux */
4093 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4094 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4095 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4096 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4097 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4098 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4099 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4100 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4101 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4102 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4103 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4104 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4105 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4106 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4107 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4108 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4109 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4110 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4111 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4112 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4113 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4114 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4115 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4116 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4117 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4118 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4119 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4120 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4121 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4122 /* Odd clown on sil3726/4726 PMPs */
4123 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4124
4125 /* Weird ATAPI devices */
4126 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4127 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4128 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4129 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4130
4131 /* Devices we expect to fail diagnostics */
4132
4133 /* Devices where NCQ should be avoided */
4134 /* NCQ is slow */
4135 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4136 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4137 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4138 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4139 /* NCQ is broken */
4140 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4141 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4142 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4143 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4144 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4145
4146 /* Seagate NCQ + FLUSH CACHE firmware bug */
4147 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4148 ATA_HORKAGE_FIRMWARE_WARN },
4149
4150 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4151 ATA_HORKAGE_FIRMWARE_WARN },
4152
4153 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4154 ATA_HORKAGE_FIRMWARE_WARN },
4155
4156 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4157 ATA_HORKAGE_FIRMWARE_WARN },
4158
4159 /* Blacklist entries taken from Silicon Image 3124/3132
4160 Windows driver .inf file - also several Linux problem reports */
4161 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4162 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4163 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4164
4165 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4166 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4167
4168 /* devices which puke on READ_NATIVE_MAX */
4169 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4170 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4171 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4172 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4173
4174 /* this one allows HPA unlocking but fails IOs on the area */
4175 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4176
4177 /* Devices which report 1 sector over size HPA */
4178 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4179 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4180 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4181
4182 /* Devices which get the IVB wrong */
4183 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4184 /* Maybe we should just blacklist TSSTcorp... */
4185 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4186
4187 /* Devices that do not need bridging limits applied */
4188 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4189 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4190
4191 /* Devices which aren't very happy with higher link speeds */
4192 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4193 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4194
4195 /*
4196 * Devices which choke on SETXFER. Applies only if both the
4197 * device and controller are SATA.
4198 */
4199 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4200 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4201 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4202 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4203 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4204
4205 /* End Marker */
4206 { }
4207 };
4208
4209 /**
4210 * glob_match - match a text string against a glob-style pattern
4211 * @text: the string to be examined
4212 * @pattern: the glob-style pattern to be matched against
4213 *
4214 * Either/both of text and pattern can be empty strings.
4215 *
4216 * Match text against a glob-style pattern, with wildcards and simple sets:
4217 *
4218 * ? matches any single character.
4219 * * matches any run of characters.
4220 * [xyz] matches a single character from the set: x, y, or z.
4221 * [a-d] matches a single character from the range: a, b, c, or d.
4222 * [a-d0-9] matches a single character from either range.
4223 *
4224 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4225 * Behaviour with malformed patterns is undefined, though generally reasonable.
4226 *
4227 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4228 *
4229 * This function uses one level of recursion per '*' in pattern.
4230 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4231 * this will not cause stack problems for any reasonable use here.
4232 *
4233 * RETURNS:
4234 * 0 on match, 1 otherwise.
4235 */
4236 static int glob_match (const char *text, const char *pattern)
4237 {
4238 do {
4239 /* Match single character or a '?' wildcard */
4240 if (*text == *pattern || *pattern == '?') {
4241 if (!*pattern++)
4242 return 0; /* End of both strings: match */
4243 } else {
4244 /* Match single char against a '[' bracketed ']' pattern set */
4245 if (!*text || *pattern != '[')
4246 break; /* Not a pattern set */
4247 while (*++pattern && *pattern != ']' && *text != *pattern) {
4248 if (*pattern == '-' && *(pattern - 1) != '[')
4249 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4250 ++pattern;
4251 break;
4252 }
4253 }
4254 if (!*pattern || *pattern == ']')
4255 return 1; /* No match */
4256 while (*pattern && *pattern++ != ']');
4257 }
4258 } while (*++text && *pattern);
4259
4260 /* Match any run of chars against a '*' wildcard */
4261 if (*pattern == '*') {
4262 if (!*++pattern)
4263 return 0; /* Match: avoid recursion at end of pattern */
4264 /* Loop to handle additional pattern chars after the wildcard */
4265 while (*text) {
4266 if (glob_match(text, pattern) == 0)
4267 return 0; /* Remainder matched */
4268 ++text; /* Absorb (match) this char and try again */
4269 }
4270 }
4271 if (!*text && !*pattern)
4272 return 0; /* End of both strings: match */
4273 return 1; /* No match */
4274 }
4275
4276 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4277 {
4278 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4279 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4280 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4281
4282 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4283 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4284
4285 while (ad->model_num) {
4286 if (!glob_match(model_num, ad->model_num)) {
4287 if (ad->model_rev == NULL)
4288 return ad->horkage;
4289 if (!glob_match(model_rev, ad->model_rev))
4290 return ad->horkage;
4291 }
4292 ad++;
4293 }
4294 return 0;
4295 }
4296
4297 static int ata_dma_blacklisted(const struct ata_device *dev)
4298 {
4299 /* We don't support polling DMA.
4300 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4301 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4302 */
4303 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4304 (dev->flags & ATA_DFLAG_CDB_INTR))
4305 return 1;
4306 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4307 }
4308
4309 /**
4310 * ata_is_40wire - check drive side detection
4311 * @dev: device
4312 *
4313 * Perform drive side detection decoding, allowing for device vendors
4314 * who can't follow the documentation.
4315 */
4316
4317 static int ata_is_40wire(struct ata_device *dev)
4318 {
4319 if (dev->horkage & ATA_HORKAGE_IVB)
4320 return ata_drive_40wire_relaxed(dev->id);
4321 return ata_drive_40wire(dev->id);
4322 }
4323
4324 /**
4325 * cable_is_40wire - 40/80/SATA decider
4326 * @ap: port to consider
4327 *
4328 * This function encapsulates the policy for speed management
4329 * in one place. At the moment we don't cache the result but
4330 * there is a good case for setting ap->cbl to the result when
4331 * we are called with unknown cables (and figuring out if it
4332 * impacts hotplug at all).
4333 *
4334 * Return 1 if the cable appears to be 40 wire.
4335 */
4336
4337 static int cable_is_40wire(struct ata_port *ap)
4338 {
4339 struct ata_link *link;
4340 struct ata_device *dev;
4341
4342 /* If the controller thinks we are 40 wire, we are. */
4343 if (ap->cbl == ATA_CBL_PATA40)
4344 return 1;
4345
4346 /* If the controller thinks we are 80 wire, we are. */
4347 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4348 return 0;
4349
4350 /* If the system is known to be 40 wire short cable (eg
4351 * laptop), then we allow 80 wire modes even if the drive
4352 * isn't sure.
4353 */
4354 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4355 return 0;
4356
4357 /* If the controller doesn't know, we scan.
4358 *
4359 * Note: We look for all 40 wire detects at this point. Any
4360 * 80 wire detect is taken to be 80 wire cable because
4361 * - in many setups only the one drive (slave if present) will
4362 * give a valid detect
4363 * - if you have a non detect capable drive you don't want it
4364 * to colour the choice
4365 */
4366 ata_for_each_link(link, ap, EDGE) {
4367 ata_for_each_dev(dev, link, ENABLED) {
4368 if (!ata_is_40wire(dev))
4369 return 0;
4370 }
4371 }
4372 return 1;
4373 }
4374
4375 /**
4376 * ata_dev_xfermask - Compute supported xfermask of the given device
4377 * @dev: Device to compute xfermask for
4378 *
4379 * Compute supported xfermask of @dev and store it in
4380 * dev->*_mask. This function is responsible for applying all
4381 * known limits including host controller limits, device
4382 * blacklist, etc...
4383 *
4384 * LOCKING:
4385 * None.
4386 */
4387 static void ata_dev_xfermask(struct ata_device *dev)
4388 {
4389 struct ata_link *link = dev->link;
4390 struct ata_port *ap = link->ap;
4391 struct ata_host *host = ap->host;
4392 unsigned long xfer_mask;
4393
4394 /* controller modes available */
4395 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4396 ap->mwdma_mask, ap->udma_mask);
4397
4398 /* drive modes available */
4399 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4400 dev->mwdma_mask, dev->udma_mask);
4401 xfer_mask &= ata_id_xfermask(dev->id);
4402
4403 /*
4404 * CFA Advanced TrueIDE timings are not allowed on a shared
4405 * cable
4406 */
4407 if (ata_dev_pair(dev)) {
4408 /* No PIO5 or PIO6 */
4409 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4410 /* No MWDMA3 or MWDMA 4 */
4411 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4412 }
4413
4414 if (ata_dma_blacklisted(dev)) {
4415 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4416 ata_dev_warn(dev,
4417 "device is on DMA blacklist, disabling DMA\n");
4418 }
4419
4420 if ((host->flags & ATA_HOST_SIMPLEX) &&
4421 host->simplex_claimed && host->simplex_claimed != ap) {
4422 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4423 ata_dev_warn(dev,
4424 "simplex DMA is claimed by other device, disabling DMA\n");
4425 }
4426
4427 if (ap->flags & ATA_FLAG_NO_IORDY)
4428 xfer_mask &= ata_pio_mask_no_iordy(dev);
4429
4430 if (ap->ops->mode_filter)
4431 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4432
4433 /* Apply cable rule here. Don't apply it early because when
4434 * we handle hot plug the cable type can itself change.
4435 * Check this last so that we know if the transfer rate was
4436 * solely limited by the cable.
4437 * Unknown or 80 wire cables reported host side are checked
4438 * drive side as well. Cases where we know a 40wire cable
4439 * is used safely for 80 are not checked here.
4440 */
4441 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4442 /* UDMA/44 or higher would be available */
4443 if (cable_is_40wire(ap)) {
4444 ata_dev_warn(dev,
4445 "limited to UDMA/33 due to 40-wire cable\n");
4446 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4447 }
4448
4449 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4450 &dev->mwdma_mask, &dev->udma_mask);
4451 }
4452
4453 /**
4454 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4455 * @dev: Device to which command will be sent
4456 *
4457 * Issue SET FEATURES - XFER MODE command to device @dev
4458 * on port @ap.
4459 *
4460 * LOCKING:
4461 * PCI/etc. bus probe sem.
4462 *
4463 * RETURNS:
4464 * 0 on success, AC_ERR_* mask otherwise.
4465 */
4466
4467 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4468 {
4469 struct ata_taskfile tf;
4470 unsigned int err_mask;
4471
4472 /* set up set-features taskfile */
4473 DPRINTK("set features - xfer mode\n");
4474
4475 /* Some controllers and ATAPI devices show flaky interrupt
4476 * behavior after setting xfer mode. Use polling instead.
4477 */
4478 ata_tf_init(dev, &tf);
4479 tf.command = ATA_CMD_SET_FEATURES;
4480 tf.feature = SETFEATURES_XFER;
4481 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4482 tf.protocol = ATA_PROT_NODATA;
4483 /* If we are using IORDY we must send the mode setting command */
4484 if (ata_pio_need_iordy(dev))
4485 tf.nsect = dev->xfer_mode;
4486 /* If the device has IORDY and the controller does not - turn it off */
4487 else if (ata_id_has_iordy(dev->id))
4488 tf.nsect = 0x01;
4489 else /* In the ancient relic department - skip all of this */
4490 return 0;
4491
4492 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4493
4494 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4495 return err_mask;
4496 }
4497
4498 /**
4499 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4500 * @dev: Device to which command will be sent
4501 * @enable: Whether to enable or disable the feature
4502 * @feature: The sector count represents the feature to set
4503 *
4504 * Issue SET FEATURES - SATA FEATURES command to device @dev
4505 * on port @ap with sector count
4506 *
4507 * LOCKING:
4508 * PCI/etc. bus probe sem.
4509 *
4510 * RETURNS:
4511 * 0 on success, AC_ERR_* mask otherwise.
4512 */
4513 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4514 {
4515 struct ata_taskfile tf;
4516 unsigned int err_mask;
4517
4518 /* set up set-features taskfile */
4519 DPRINTK("set features - SATA features\n");
4520
4521 ata_tf_init(dev, &tf);
4522 tf.command = ATA_CMD_SET_FEATURES;
4523 tf.feature = enable;
4524 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4525 tf.protocol = ATA_PROT_NODATA;
4526 tf.nsect = feature;
4527
4528 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4529
4530 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4531 return err_mask;
4532 }
4533 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4534
4535 /**
4536 * ata_dev_init_params - Issue INIT DEV PARAMS command
4537 * @dev: Device to which command will be sent
4538 * @heads: Number of heads (taskfile parameter)
4539 * @sectors: Number of sectors (taskfile parameter)
4540 *
4541 * LOCKING:
4542 * Kernel thread context (may sleep)
4543 *
4544 * RETURNS:
4545 * 0 on success, AC_ERR_* mask otherwise.
4546 */
4547 static unsigned int ata_dev_init_params(struct ata_device *dev,
4548 u16 heads, u16 sectors)
4549 {
4550 struct ata_taskfile tf;
4551 unsigned int err_mask;
4552
4553 /* Number of sectors per track 1-255. Number of heads 1-16 */
4554 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4555 return AC_ERR_INVALID;
4556
4557 /* set up init dev params taskfile */
4558 DPRINTK("init dev params \n");
4559
4560 ata_tf_init(dev, &tf);
4561 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4562 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4563 tf.protocol = ATA_PROT_NODATA;
4564 tf.nsect = sectors;
4565 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4566
4567 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4568 /* A clean abort indicates an original or just out of spec drive
4569 and we should continue as we issue the setup based on the
4570 drive reported working geometry */
4571 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4572 err_mask = 0;
4573
4574 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4575 return err_mask;
4576 }
4577
4578 /**
4579 * ata_sg_clean - Unmap DMA memory associated with command
4580 * @qc: Command containing DMA memory to be released
4581 *
4582 * Unmap all mapped DMA memory associated with this command.
4583 *
4584 * LOCKING:
4585 * spin_lock_irqsave(host lock)
4586 */
4587 void ata_sg_clean(struct ata_queued_cmd *qc)
4588 {
4589 struct ata_port *ap = qc->ap;
4590 struct scatterlist *sg = qc->sg;
4591 int dir = qc->dma_dir;
4592
4593 WARN_ON_ONCE(sg == NULL);
4594
4595 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4596
4597 if (qc->n_elem)
4598 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4599
4600 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4601 qc->sg = NULL;
4602 }
4603
4604 /**
4605 * atapi_check_dma - Check whether ATAPI DMA can be supported
4606 * @qc: Metadata associated with taskfile to check
4607 *
4608 * Allow low-level driver to filter ATA PACKET commands, returning
4609 * a status indicating whether or not it is OK to use DMA for the
4610 * supplied PACKET command.
4611 *
4612 * LOCKING:
4613 * spin_lock_irqsave(host lock)
4614 *
4615 * RETURNS: 0 when ATAPI DMA can be used
4616 * nonzero otherwise
4617 */
4618 int atapi_check_dma(struct ata_queued_cmd *qc)
4619 {
4620 struct ata_port *ap = qc->ap;
4621
4622 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4623 * few ATAPI devices choke on such DMA requests.
4624 */
4625 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4626 unlikely(qc->nbytes & 15))
4627 return 1;
4628
4629 if (ap->ops->check_atapi_dma)
4630 return ap->ops->check_atapi_dma(qc);
4631
4632 return 0;
4633 }
4634
4635 /**
4636 * ata_std_qc_defer - Check whether a qc needs to be deferred
4637 * @qc: ATA command in question
4638 *
4639 * Non-NCQ commands cannot run with any other command, NCQ or
4640 * not. As upper layer only knows the queue depth, we are
4641 * responsible for maintaining exclusion. This function checks
4642 * whether a new command @qc can be issued.
4643 *
4644 * LOCKING:
4645 * spin_lock_irqsave(host lock)
4646 *
4647 * RETURNS:
4648 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4649 */
4650 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4651 {
4652 struct ata_link *link = qc->dev->link;
4653
4654 if (qc->tf.protocol == ATA_PROT_NCQ) {
4655 if (!ata_tag_valid(link->active_tag))
4656 return 0;
4657 } else {
4658 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4659 return 0;
4660 }
4661
4662 return ATA_DEFER_LINK;
4663 }
4664
4665 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4666
4667 /**
4668 * ata_sg_init - Associate command with scatter-gather table.
4669 * @qc: Command to be associated
4670 * @sg: Scatter-gather table.
4671 * @n_elem: Number of elements in s/g table.
4672 *
4673 * Initialize the data-related elements of queued_cmd @qc
4674 * to point to a scatter-gather table @sg, containing @n_elem
4675 * elements.
4676 *
4677 * LOCKING:
4678 * spin_lock_irqsave(host lock)
4679 */
4680 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4681 unsigned int n_elem)
4682 {
4683 qc->sg = sg;
4684 qc->n_elem = n_elem;
4685 qc->cursg = qc->sg;
4686 }
4687
4688 /**
4689 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4690 * @qc: Command with scatter-gather table to be mapped.
4691 *
4692 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4693 *
4694 * LOCKING:
4695 * spin_lock_irqsave(host lock)
4696 *
4697 * RETURNS:
4698 * Zero on success, negative on error.
4699 *
4700 */
4701 static int ata_sg_setup(struct ata_queued_cmd *qc)
4702 {
4703 struct ata_port *ap = qc->ap;
4704 unsigned int n_elem;
4705
4706 VPRINTK("ENTER, ata%u\n", ap->print_id);
4707
4708 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4709 if (n_elem < 1)
4710 return -1;
4711
4712 DPRINTK("%d sg elements mapped\n", n_elem);
4713 qc->orig_n_elem = qc->n_elem;
4714 qc->n_elem = n_elem;
4715 qc->flags |= ATA_QCFLAG_DMAMAP;
4716
4717 return 0;
4718 }
4719
4720 /**
4721 * swap_buf_le16 - swap halves of 16-bit words in place
4722 * @buf: Buffer to swap
4723 * @buf_words: Number of 16-bit words in buffer.
4724 *
4725 * Swap halves of 16-bit words if needed to convert from
4726 * little-endian byte order to native cpu byte order, or
4727 * vice-versa.
4728 *
4729 * LOCKING:
4730 * Inherited from caller.
4731 */
4732 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4733 {
4734 #ifdef __BIG_ENDIAN
4735 unsigned int i;
4736
4737 for (i = 0; i < buf_words; i++)
4738 buf[i] = le16_to_cpu(buf[i]);
4739 #endif /* __BIG_ENDIAN */
4740 }
4741
4742 /**
4743 * ata_qc_new - Request an available ATA command, for queueing
4744 * @ap: target port
4745 *
4746 * LOCKING:
4747 * None.
4748 */
4749
4750 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4751 {
4752 struct ata_queued_cmd *qc = NULL;
4753 unsigned int i;
4754
4755 /* no command while frozen */
4756 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4757 return NULL;
4758
4759 /* the last tag is reserved for internal command. */
4760 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4761 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4762 qc = __ata_qc_from_tag(ap, i);
4763 break;
4764 }
4765
4766 if (qc)
4767 qc->tag = i;
4768
4769 return qc;
4770 }
4771
4772 /**
4773 * ata_qc_new_init - Request an available ATA command, and initialize it
4774 * @dev: Device from whom we request an available command structure
4775 *
4776 * LOCKING:
4777 * None.
4778 */
4779
4780 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4781 {
4782 struct ata_port *ap = dev->link->ap;
4783 struct ata_queued_cmd *qc;
4784
4785 qc = ata_qc_new(ap);
4786 if (qc) {
4787 qc->scsicmd = NULL;
4788 qc->ap = ap;
4789 qc->dev = dev;
4790
4791 ata_qc_reinit(qc);
4792 }
4793
4794 return qc;
4795 }
4796
4797 /**
4798 * ata_qc_free - free unused ata_queued_cmd
4799 * @qc: Command to complete
4800 *
4801 * Designed to free unused ata_queued_cmd object
4802 * in case something prevents using it.
4803 *
4804 * LOCKING:
4805 * spin_lock_irqsave(host lock)
4806 */
4807 void ata_qc_free(struct ata_queued_cmd *qc)
4808 {
4809 struct ata_port *ap;
4810 unsigned int tag;
4811
4812 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4813 ap = qc->ap;
4814
4815 qc->flags = 0;
4816 tag = qc->tag;
4817 if (likely(ata_tag_valid(tag))) {
4818 qc->tag = ATA_TAG_POISON;
4819 clear_bit(tag, &ap->qc_allocated);
4820 }
4821 }
4822
4823 void __ata_qc_complete(struct ata_queued_cmd *qc)
4824 {
4825 struct ata_port *ap;
4826 struct ata_link *link;
4827
4828 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4829 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4830 ap = qc->ap;
4831 link = qc->dev->link;
4832
4833 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4834 ata_sg_clean(qc);
4835
4836 /* command should be marked inactive atomically with qc completion */
4837 if (qc->tf.protocol == ATA_PROT_NCQ) {
4838 link->sactive &= ~(1 << qc->tag);
4839 if (!link->sactive)
4840 ap->nr_active_links--;
4841 } else {
4842 link->active_tag = ATA_TAG_POISON;
4843 ap->nr_active_links--;
4844 }
4845
4846 /* clear exclusive status */
4847 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4848 ap->excl_link == link))
4849 ap->excl_link = NULL;
4850
4851 /* atapi: mark qc as inactive to prevent the interrupt handler
4852 * from completing the command twice later, before the error handler
4853 * is called. (when rc != 0 and atapi request sense is needed)
4854 */
4855 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4856 ap->qc_active &= ~(1 << qc->tag);
4857
4858 /* call completion callback */
4859 qc->complete_fn(qc);
4860 }
4861
4862 static void fill_result_tf(struct ata_queued_cmd *qc)
4863 {
4864 struct ata_port *ap = qc->ap;
4865
4866 qc->result_tf.flags = qc->tf.flags;
4867 ap->ops->qc_fill_rtf(qc);
4868 }
4869
4870 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4871 {
4872 struct ata_device *dev = qc->dev;
4873
4874 if (ata_is_nodata(qc->tf.protocol))
4875 return;
4876
4877 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4878 return;
4879
4880 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4881 }
4882
4883 /**
4884 * ata_qc_complete - Complete an active ATA command
4885 * @qc: Command to complete
4886 *
4887 * Indicate to the mid and upper layers that an ATA command has
4888 * completed, with either an ok or not-ok status.
4889 *
4890 * Refrain from calling this function multiple times when
4891 * successfully completing multiple NCQ commands.
4892 * ata_qc_complete_multiple() should be used instead, which will
4893 * properly update IRQ expect state.
4894 *
4895 * LOCKING:
4896 * spin_lock_irqsave(host lock)
4897 */
4898 void ata_qc_complete(struct ata_queued_cmd *qc)
4899 {
4900 struct ata_port *ap = qc->ap;
4901
4902 /* XXX: New EH and old EH use different mechanisms to
4903 * synchronize EH with regular execution path.
4904 *
4905 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4906 * Normal execution path is responsible for not accessing a
4907 * failed qc. libata core enforces the rule by returning NULL
4908 * from ata_qc_from_tag() for failed qcs.
4909 *
4910 * Old EH depends on ata_qc_complete() nullifying completion
4911 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4912 * not synchronize with interrupt handler. Only PIO task is
4913 * taken care of.
4914 */
4915 if (ap->ops->error_handler) {
4916 struct ata_device *dev = qc->dev;
4917 struct ata_eh_info *ehi = &dev->link->eh_info;
4918
4919 if (unlikely(qc->err_mask))
4920 qc->flags |= ATA_QCFLAG_FAILED;
4921
4922 /*
4923 * Finish internal commands without any further processing
4924 * and always with the result TF filled.
4925 */
4926 if (unlikely(ata_tag_internal(qc->tag))) {
4927 fill_result_tf(qc);
4928 __ata_qc_complete(qc);
4929 return;
4930 }
4931
4932 /*
4933 * Non-internal qc has failed. Fill the result TF and
4934 * summon EH.
4935 */
4936 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4937 fill_result_tf(qc);
4938 ata_qc_schedule_eh(qc);
4939 return;
4940 }
4941
4942 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4943
4944 /* read result TF if requested */
4945 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4946 fill_result_tf(qc);
4947
4948 /* Some commands need post-processing after successful
4949 * completion.
4950 */
4951 switch (qc->tf.command) {
4952 case ATA_CMD_SET_FEATURES:
4953 if (qc->tf.feature != SETFEATURES_WC_ON &&
4954 qc->tf.feature != SETFEATURES_WC_OFF)
4955 break;
4956 /* fall through */
4957 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4958 case ATA_CMD_SET_MULTI: /* multi_count changed */
4959 /* revalidate device */
4960 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4961 ata_port_schedule_eh(ap);
4962 break;
4963
4964 case ATA_CMD_SLEEP:
4965 dev->flags |= ATA_DFLAG_SLEEPING;
4966 break;
4967 }
4968
4969 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4970 ata_verify_xfer(qc);
4971
4972 __ata_qc_complete(qc);
4973 } else {
4974 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4975 return;
4976
4977 /* read result TF if failed or requested */
4978 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4979 fill_result_tf(qc);
4980
4981 __ata_qc_complete(qc);
4982 }
4983 }
4984
4985 /**
4986 * ata_qc_complete_multiple - Complete multiple qcs successfully
4987 * @ap: port in question
4988 * @qc_active: new qc_active mask
4989 *
4990 * Complete in-flight commands. This functions is meant to be
4991 * called from low-level driver's interrupt routine to complete
4992 * requests normally. ap->qc_active and @qc_active is compared
4993 * and commands are completed accordingly.
4994 *
4995 * Always use this function when completing multiple NCQ commands
4996 * from IRQ handlers instead of calling ata_qc_complete()
4997 * multiple times to keep IRQ expect status properly in sync.
4998 *
4999 * LOCKING:
5000 * spin_lock_irqsave(host lock)
5001 *
5002 * RETURNS:
5003 * Number of completed commands on success, -errno otherwise.
5004 */
5005 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5006 {
5007 int nr_done = 0;
5008 u32 done_mask;
5009
5010 done_mask = ap->qc_active ^ qc_active;
5011
5012 if (unlikely(done_mask & qc_active)) {
5013 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5014 ap->qc_active, qc_active);
5015 return -EINVAL;
5016 }
5017
5018 while (done_mask) {
5019 struct ata_queued_cmd *qc;
5020 unsigned int tag = __ffs(done_mask);
5021
5022 qc = ata_qc_from_tag(ap, tag);
5023 if (qc) {
5024 ata_qc_complete(qc);
5025 nr_done++;
5026 }
5027 done_mask &= ~(1 << tag);
5028 }
5029
5030 return nr_done;
5031 }
5032
5033 /**
5034 * ata_qc_issue - issue taskfile to device
5035 * @qc: command to issue to device
5036 *
5037 * Prepare an ATA command to submission to device.
5038 * This includes mapping the data into a DMA-able
5039 * area, filling in the S/G table, and finally
5040 * writing the taskfile to hardware, starting the command.
5041 *
5042 * LOCKING:
5043 * spin_lock_irqsave(host lock)
5044 */
5045 void ata_qc_issue(struct ata_queued_cmd *qc)
5046 {
5047 struct ata_port *ap = qc->ap;
5048 struct ata_link *link = qc->dev->link;
5049 u8 prot = qc->tf.protocol;
5050
5051 /* Make sure only one non-NCQ command is outstanding. The
5052 * check is skipped for old EH because it reuses active qc to
5053 * request ATAPI sense.
5054 */
5055 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5056
5057 if (ata_is_ncq(prot)) {
5058 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5059
5060 if (!link->sactive)
5061 ap->nr_active_links++;
5062 link->sactive |= 1 << qc->tag;
5063 } else {
5064 WARN_ON_ONCE(link->sactive);
5065
5066 ap->nr_active_links++;
5067 link->active_tag = qc->tag;
5068 }
5069
5070 qc->flags |= ATA_QCFLAG_ACTIVE;
5071 ap->qc_active |= 1 << qc->tag;
5072
5073 /*
5074 * We guarantee to LLDs that they will have at least one
5075 * non-zero sg if the command is a data command.
5076 */
5077 if (WARN_ON_ONCE(ata_is_data(prot) &&
5078 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5079 goto sys_err;
5080
5081 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5082 (ap->flags & ATA_FLAG_PIO_DMA)))
5083 if (ata_sg_setup(qc))
5084 goto sys_err;
5085
5086 /* if device is sleeping, schedule reset and abort the link */
5087 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5088 link->eh_info.action |= ATA_EH_RESET;
5089 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5090 ata_link_abort(link);
5091 return;
5092 }
5093
5094 ap->ops->qc_prep(qc);
5095
5096 qc->err_mask |= ap->ops->qc_issue(qc);
5097 if (unlikely(qc->err_mask))
5098 goto err;
5099 return;
5100
5101 sys_err:
5102 qc->err_mask |= AC_ERR_SYSTEM;
5103 err:
5104 ata_qc_complete(qc);
5105 }
5106
5107 /**
5108 * sata_scr_valid - test whether SCRs are accessible
5109 * @link: ATA link to test SCR accessibility for
5110 *
5111 * Test whether SCRs are accessible for @link.
5112 *
5113 * LOCKING:
5114 * None.
5115 *
5116 * RETURNS:
5117 * 1 if SCRs are accessible, 0 otherwise.
5118 */
5119 int sata_scr_valid(struct ata_link *link)
5120 {
5121 struct ata_port *ap = link->ap;
5122
5123 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5124 }
5125
5126 /**
5127 * sata_scr_read - read SCR register of the specified port
5128 * @link: ATA link to read SCR for
5129 * @reg: SCR to read
5130 * @val: Place to store read value
5131 *
5132 * Read SCR register @reg of @link into *@val. This function is
5133 * guaranteed to succeed if @link is ap->link, the cable type of
5134 * the port is SATA and the port implements ->scr_read.
5135 *
5136 * LOCKING:
5137 * None if @link is ap->link. Kernel thread context otherwise.
5138 *
5139 * RETURNS:
5140 * 0 on success, negative errno on failure.
5141 */
5142 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5143 {
5144 if (ata_is_host_link(link)) {
5145 if (sata_scr_valid(link))
5146 return link->ap->ops->scr_read(link, reg, val);
5147 return -EOPNOTSUPP;
5148 }
5149
5150 return sata_pmp_scr_read(link, reg, val);
5151 }
5152
5153 /**
5154 * sata_scr_write - write SCR register of the specified port
5155 * @link: ATA link to write SCR for
5156 * @reg: SCR to write
5157 * @val: value to write
5158 *
5159 * Write @val to SCR register @reg of @link. This function is
5160 * guaranteed to succeed if @link is ap->link, the cable type of
5161 * the port is SATA and the port implements ->scr_read.
5162 *
5163 * LOCKING:
5164 * None if @link is ap->link. Kernel thread context otherwise.
5165 *
5166 * RETURNS:
5167 * 0 on success, negative errno on failure.
5168 */
5169 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5170 {
5171 if (ata_is_host_link(link)) {
5172 if (sata_scr_valid(link))
5173 return link->ap->ops->scr_write(link, reg, val);
5174 return -EOPNOTSUPP;
5175 }
5176
5177 return sata_pmp_scr_write(link, reg, val);
5178 }
5179
5180 /**
5181 * sata_scr_write_flush - write SCR register of the specified port and flush
5182 * @link: ATA link to write SCR for
5183 * @reg: SCR to write
5184 * @val: value to write
5185 *
5186 * This function is identical to sata_scr_write() except that this
5187 * function performs flush after writing to the register.
5188 *
5189 * LOCKING:
5190 * None if @link is ap->link. Kernel thread context otherwise.
5191 *
5192 * RETURNS:
5193 * 0 on success, negative errno on failure.
5194 */
5195 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5196 {
5197 if (ata_is_host_link(link)) {
5198 int rc;
5199
5200 if (sata_scr_valid(link)) {
5201 rc = link->ap->ops->scr_write(link, reg, val);
5202 if (rc == 0)
5203 rc = link->ap->ops->scr_read(link, reg, &val);
5204 return rc;
5205 }
5206 return -EOPNOTSUPP;
5207 }
5208
5209 return sata_pmp_scr_write(link, reg, val);
5210 }
5211
5212 /**
5213 * ata_phys_link_online - test whether the given link is online
5214 * @link: ATA link to test
5215 *
5216 * Test whether @link is online. Note that this function returns
5217 * 0 if online status of @link cannot be obtained, so
5218 * ata_link_online(link) != !ata_link_offline(link).
5219 *
5220 * LOCKING:
5221 * None.
5222 *
5223 * RETURNS:
5224 * True if the port online status is available and online.
5225 */
5226 bool ata_phys_link_online(struct ata_link *link)
5227 {
5228 u32 sstatus;
5229
5230 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5231 ata_sstatus_online(sstatus))
5232 return true;
5233 return false;
5234 }
5235
5236 /**
5237 * ata_phys_link_offline - test whether the given link is offline
5238 * @link: ATA link to test
5239 *
5240 * Test whether @link is offline. Note that this function
5241 * returns 0 if offline status of @link cannot be obtained, so
5242 * ata_link_online(link) != !ata_link_offline(link).
5243 *
5244 * LOCKING:
5245 * None.
5246 *
5247 * RETURNS:
5248 * True if the port offline status is available and offline.
5249 */
5250 bool ata_phys_link_offline(struct ata_link *link)
5251 {
5252 u32 sstatus;
5253
5254 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5255 !ata_sstatus_online(sstatus))
5256 return true;
5257 return false;
5258 }
5259
5260 /**
5261 * ata_link_online - test whether the given link is online
5262 * @link: ATA link to test
5263 *
5264 * Test whether @link is online. This is identical to
5265 * ata_phys_link_online() when there's no slave link. When
5266 * there's a slave link, this function should only be called on
5267 * the master link and will return true if any of M/S links is
5268 * online.
5269 *
5270 * LOCKING:
5271 * None.
5272 *
5273 * RETURNS:
5274 * True if the port online status is available and online.
5275 */
5276 bool ata_link_online(struct ata_link *link)
5277 {
5278 struct ata_link *slave = link->ap->slave_link;
5279
5280 WARN_ON(link == slave); /* shouldn't be called on slave link */
5281
5282 return ata_phys_link_online(link) ||
5283 (slave && ata_phys_link_online(slave));
5284 }
5285
5286 /**
5287 * ata_link_offline - test whether the given link is offline
5288 * @link: ATA link to test
5289 *
5290 * Test whether @link is offline. This is identical to
5291 * ata_phys_link_offline() when there's no slave link. When
5292 * there's a slave link, this function should only be called on
5293 * the master link and will return true if both M/S links are
5294 * offline.
5295 *
5296 * LOCKING:
5297 * None.
5298 *
5299 * RETURNS:
5300 * True if the port offline status is available and offline.
5301 */
5302 bool ata_link_offline(struct ata_link *link)
5303 {
5304 struct ata_link *slave = link->ap->slave_link;
5305
5306 WARN_ON(link == slave); /* shouldn't be called on slave link */
5307
5308 return ata_phys_link_offline(link) &&
5309 (!slave || ata_phys_link_offline(slave));
5310 }
5311
5312 #ifdef CONFIG_PM
5313 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5314 unsigned int action, unsigned int ehi_flags,
5315 int *async)
5316 {
5317 struct ata_link *link;
5318 unsigned long flags;
5319 int rc = 0;
5320
5321 /* Previous resume operation might still be in
5322 * progress. Wait for PM_PENDING to clear.
5323 */
5324 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5325 if (async) {
5326 *async = -EAGAIN;
5327 return 0;
5328 }
5329 ata_port_wait_eh(ap);
5330 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5331 }
5332
5333 /* request PM ops to EH */
5334 spin_lock_irqsave(ap->lock, flags);
5335
5336 ap->pm_mesg = mesg;
5337 if (async)
5338 ap->pm_result = async;
5339 else
5340 ap->pm_result = &rc;
5341
5342 ap->pflags |= ATA_PFLAG_PM_PENDING;
5343 ata_for_each_link(link, ap, HOST_FIRST) {
5344 link->eh_info.action |= action;
5345 link->eh_info.flags |= ehi_flags;
5346 }
5347
5348 ata_port_schedule_eh(ap);
5349
5350 spin_unlock_irqrestore(ap->lock, flags);
5351
5352 /* wait and check result */
5353 if (!async) {
5354 ata_port_wait_eh(ap);
5355 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5356 }
5357
5358 return rc;
5359 }
5360
5361 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5362 {
5363 /*
5364 * On some hardware, device fails to respond after spun down
5365 * for suspend. As the device won't be used before being
5366 * resumed, we don't need to touch the device. Ask EH to skip
5367 * the usual stuff and proceed directly to suspend.
5368 *
5369 * http://thread.gmane.org/gmane.linux.ide/46764
5370 */
5371 unsigned int ehi_flags = ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5372 ATA_EHI_NO_RECOVERY;
5373 return ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5374 }
5375
5376 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5377 {
5378 struct ata_port *ap = to_ata_port(dev);
5379
5380 return __ata_port_suspend_common(ap, mesg, NULL);
5381 }
5382
5383 static int ata_port_suspend(struct device *dev)
5384 {
5385 if (pm_runtime_suspended(dev))
5386 return 0;
5387
5388 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5389 }
5390
5391 static int ata_port_do_freeze(struct device *dev)
5392 {
5393 if (pm_runtime_suspended(dev))
5394 return 0;
5395
5396 return ata_port_suspend_common(dev, PMSG_FREEZE);
5397 }
5398
5399 static int ata_port_poweroff(struct device *dev)
5400 {
5401 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5402 }
5403
5404 static int __ata_port_resume_common(struct ata_port *ap, pm_message_t mesg,
5405 int *async)
5406 {
5407 int rc;
5408
5409 rc = ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5410 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5411 return rc;
5412 }
5413
5414 static int ata_port_resume_common(struct device *dev, pm_message_t mesg)
5415 {
5416 struct ata_port *ap = to_ata_port(dev);
5417
5418 return __ata_port_resume_common(ap, mesg, NULL);
5419 }
5420
5421 static int ata_port_resume(struct device *dev)
5422 {
5423 int rc;
5424
5425 rc = ata_port_resume_common(dev, PMSG_RESUME);
5426 if (!rc) {
5427 pm_runtime_disable(dev);
5428 pm_runtime_set_active(dev);
5429 pm_runtime_enable(dev);
5430 }
5431
5432 return rc;
5433 }
5434
5435 /*
5436 * For ODDs, the upper layer will poll for media change every few seconds,
5437 * which will make it enter and leave suspend state every few seconds. And
5438 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5439 * is very little and the ODD may malfunction after constantly being reset.
5440 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5441 * ODD is attached to the port.
5442 */
5443 static int ata_port_runtime_idle(struct device *dev)
5444 {
5445 struct ata_port *ap = to_ata_port(dev);
5446 struct ata_link *link;
5447 struct ata_device *adev;
5448
5449 ata_for_each_link(link, ap, HOST_FIRST) {
5450 ata_for_each_dev(adev, link, ENABLED)
5451 if (adev->class == ATA_DEV_ATAPI &&
5452 !zpodd_dev_enabled(adev))
5453 return -EBUSY;
5454 }
5455
5456 return 0;
5457 }
5458
5459 static int ata_port_runtime_suspend(struct device *dev)
5460 {
5461 return ata_port_suspend_common(dev, PMSG_AUTO_SUSPEND);
5462 }
5463
5464 static int ata_port_runtime_resume(struct device *dev)
5465 {
5466 return ata_port_resume_common(dev, PMSG_AUTO_RESUME);
5467 }
5468
5469 static const struct dev_pm_ops ata_port_pm_ops = {
5470 .suspend = ata_port_suspend,
5471 .resume = ata_port_resume,
5472 .freeze = ata_port_do_freeze,
5473 .thaw = ata_port_resume,
5474 .poweroff = ata_port_poweroff,
5475 .restore = ata_port_resume,
5476
5477 .runtime_suspend = ata_port_runtime_suspend,
5478 .runtime_resume = ata_port_runtime_resume,
5479 .runtime_idle = ata_port_runtime_idle,
5480 };
5481
5482 /* sas ports don't participate in pm runtime management of ata_ports,
5483 * and need to resume ata devices at the domain level, not the per-port
5484 * level. sas suspend/resume is async to allow parallel port recovery
5485 * since sas has multiple ata_port instances per Scsi_Host.
5486 */
5487 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5488 {
5489 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5490 }
5491 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5492
5493 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5494 {
5495 return __ata_port_resume_common(ap, PMSG_RESUME, async);
5496 }
5497 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5498
5499
5500 /**
5501 * ata_host_suspend - suspend host
5502 * @host: host to suspend
5503 * @mesg: PM message
5504 *
5505 * Suspend @host. Actual operation is performed by port suspend.
5506 */
5507 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5508 {
5509 host->dev->power.power_state = mesg;
5510 return 0;
5511 }
5512
5513 /**
5514 * ata_host_resume - resume host
5515 * @host: host to resume
5516 *
5517 * Resume @host. Actual operation is performed by port resume.
5518 */
5519 void ata_host_resume(struct ata_host *host)
5520 {
5521 host->dev->power.power_state = PMSG_ON;
5522 }
5523 #endif
5524
5525 struct device_type ata_port_type = {
5526 .name = "ata_port",
5527 #ifdef CONFIG_PM
5528 .pm = &ata_port_pm_ops,
5529 #endif
5530 };
5531
5532 /**
5533 * ata_dev_init - Initialize an ata_device structure
5534 * @dev: Device structure to initialize
5535 *
5536 * Initialize @dev in preparation for probing.
5537 *
5538 * LOCKING:
5539 * Inherited from caller.
5540 */
5541 void ata_dev_init(struct ata_device *dev)
5542 {
5543 struct ata_link *link = ata_dev_phys_link(dev);
5544 struct ata_port *ap = link->ap;
5545 unsigned long flags;
5546
5547 /* SATA spd limit is bound to the attached device, reset together */
5548 link->sata_spd_limit = link->hw_sata_spd_limit;
5549 link->sata_spd = 0;
5550
5551 /* High bits of dev->flags are used to record warm plug
5552 * requests which occur asynchronously. Synchronize using
5553 * host lock.
5554 */
5555 spin_lock_irqsave(ap->lock, flags);
5556 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5557 dev->horkage = 0;
5558 spin_unlock_irqrestore(ap->lock, flags);
5559
5560 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5561 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5562 dev->pio_mask = UINT_MAX;
5563 dev->mwdma_mask = UINT_MAX;
5564 dev->udma_mask = UINT_MAX;
5565 }
5566
5567 /**
5568 * ata_link_init - Initialize an ata_link structure
5569 * @ap: ATA port link is attached to
5570 * @link: Link structure to initialize
5571 * @pmp: Port multiplier port number
5572 *
5573 * Initialize @link.
5574 *
5575 * LOCKING:
5576 * Kernel thread context (may sleep)
5577 */
5578 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5579 {
5580 int i;
5581
5582 /* clear everything except for devices */
5583 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5584 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5585
5586 link->ap = ap;
5587 link->pmp = pmp;
5588 link->active_tag = ATA_TAG_POISON;
5589 link->hw_sata_spd_limit = UINT_MAX;
5590
5591 /* can't use iterator, ap isn't initialized yet */
5592 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5593 struct ata_device *dev = &link->device[i];
5594
5595 dev->link = link;
5596 dev->devno = dev - link->device;
5597 #ifdef CONFIG_ATA_ACPI
5598 dev->gtf_filter = ata_acpi_gtf_filter;
5599 #endif
5600 ata_dev_init(dev);
5601 }
5602 }
5603
5604 /**
5605 * sata_link_init_spd - Initialize link->sata_spd_limit
5606 * @link: Link to configure sata_spd_limit for
5607 *
5608 * Initialize @link->[hw_]sata_spd_limit to the currently
5609 * configured value.
5610 *
5611 * LOCKING:
5612 * Kernel thread context (may sleep).
5613 *
5614 * RETURNS:
5615 * 0 on success, -errno on failure.
5616 */
5617 int sata_link_init_spd(struct ata_link *link)
5618 {
5619 u8 spd;
5620 int rc;
5621
5622 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5623 if (rc)
5624 return rc;
5625
5626 spd = (link->saved_scontrol >> 4) & 0xf;
5627 if (spd)
5628 link->hw_sata_spd_limit &= (1 << spd) - 1;
5629
5630 ata_force_link_limits(link);
5631
5632 link->sata_spd_limit = link->hw_sata_spd_limit;
5633
5634 return 0;
5635 }
5636
5637 /**
5638 * ata_port_alloc - allocate and initialize basic ATA port resources
5639 * @host: ATA host this allocated port belongs to
5640 *
5641 * Allocate and initialize basic ATA port resources.
5642 *
5643 * RETURNS:
5644 * Allocate ATA port on success, NULL on failure.
5645 *
5646 * LOCKING:
5647 * Inherited from calling layer (may sleep).
5648 */
5649 struct ata_port *ata_port_alloc(struct ata_host *host)
5650 {
5651 struct ata_port *ap;
5652
5653 DPRINTK("ENTER\n");
5654
5655 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5656 if (!ap)
5657 return NULL;
5658
5659 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5660 ap->lock = &host->lock;
5661 ap->print_id = -1;
5662 ap->local_port_no = -1;
5663 ap->host = host;
5664 ap->dev = host->dev;
5665
5666 #if defined(ATA_VERBOSE_DEBUG)
5667 /* turn on all debugging levels */
5668 ap->msg_enable = 0x00FF;
5669 #elif defined(ATA_DEBUG)
5670 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5671 #else
5672 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5673 #endif
5674
5675 mutex_init(&ap->scsi_scan_mutex);
5676 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5677 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5678 INIT_LIST_HEAD(&ap->eh_done_q);
5679 init_waitqueue_head(&ap->eh_wait_q);
5680 init_completion(&ap->park_req_pending);
5681 init_timer_deferrable(&ap->fastdrain_timer);
5682 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5683 ap->fastdrain_timer.data = (unsigned long)ap;
5684
5685 ap->cbl = ATA_CBL_NONE;
5686
5687 ata_link_init(ap, &ap->link, 0);
5688
5689 #ifdef ATA_IRQ_TRAP
5690 ap->stats.unhandled_irq = 1;
5691 ap->stats.idle_irq = 1;
5692 #endif
5693 ata_sff_port_init(ap);
5694
5695 return ap;
5696 }
5697
5698 static void ata_host_release(struct device *gendev, void *res)
5699 {
5700 struct ata_host *host = dev_get_drvdata(gendev);
5701 int i;
5702
5703 for (i = 0; i < host->n_ports; i++) {
5704 struct ata_port *ap = host->ports[i];
5705
5706 if (!ap)
5707 continue;
5708
5709 if (ap->scsi_host)
5710 scsi_host_put(ap->scsi_host);
5711
5712 kfree(ap->pmp_link);
5713 kfree(ap->slave_link);
5714 kfree(ap);
5715 host->ports[i] = NULL;
5716 }
5717
5718 dev_set_drvdata(gendev, NULL);
5719 }
5720
5721 /**
5722 * ata_host_alloc - allocate and init basic ATA host resources
5723 * @dev: generic device this host is associated with
5724 * @max_ports: maximum number of ATA ports associated with this host
5725 *
5726 * Allocate and initialize basic ATA host resources. LLD calls
5727 * this function to allocate a host, initializes it fully and
5728 * attaches it using ata_host_register().
5729 *
5730 * @max_ports ports are allocated and host->n_ports is
5731 * initialized to @max_ports. The caller is allowed to decrease
5732 * host->n_ports before calling ata_host_register(). The unused
5733 * ports will be automatically freed on registration.
5734 *
5735 * RETURNS:
5736 * Allocate ATA host on success, NULL on failure.
5737 *
5738 * LOCKING:
5739 * Inherited from calling layer (may sleep).
5740 */
5741 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5742 {
5743 struct ata_host *host;
5744 size_t sz;
5745 int i;
5746
5747 DPRINTK("ENTER\n");
5748
5749 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5750 return NULL;
5751
5752 /* alloc a container for our list of ATA ports (buses) */
5753 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5754 /* alloc a container for our list of ATA ports (buses) */
5755 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5756 if (!host)
5757 goto err_out;
5758
5759 devres_add(dev, host);
5760 dev_set_drvdata(dev, host);
5761
5762 spin_lock_init(&host->lock);
5763 mutex_init(&host->eh_mutex);
5764 host->dev = dev;
5765 host->n_ports = max_ports;
5766
5767 /* allocate ports bound to this host */
5768 for (i = 0; i < max_ports; i++) {
5769 struct ata_port *ap;
5770
5771 ap = ata_port_alloc(host);
5772 if (!ap)
5773 goto err_out;
5774
5775 ap->port_no = i;
5776 host->ports[i] = ap;
5777 }
5778
5779 devres_remove_group(dev, NULL);
5780 return host;
5781
5782 err_out:
5783 devres_release_group(dev, NULL);
5784 return NULL;
5785 }
5786
5787 /**
5788 * ata_host_alloc_pinfo - alloc host and init with port_info array
5789 * @dev: generic device this host is associated with
5790 * @ppi: array of ATA port_info to initialize host with
5791 * @n_ports: number of ATA ports attached to this host
5792 *
5793 * Allocate ATA host and initialize with info from @ppi. If NULL
5794 * terminated, @ppi may contain fewer entries than @n_ports. The
5795 * last entry will be used for the remaining ports.
5796 *
5797 * RETURNS:
5798 * Allocate ATA host on success, NULL on failure.
5799 *
5800 * LOCKING:
5801 * Inherited from calling layer (may sleep).
5802 */
5803 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5804 const struct ata_port_info * const * ppi,
5805 int n_ports)
5806 {
5807 const struct ata_port_info *pi;
5808 struct ata_host *host;
5809 int i, j;
5810
5811 host = ata_host_alloc(dev, n_ports);
5812 if (!host)
5813 return NULL;
5814
5815 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5816 struct ata_port *ap = host->ports[i];
5817
5818 if (ppi[j])
5819 pi = ppi[j++];
5820
5821 ap->pio_mask = pi->pio_mask;
5822 ap->mwdma_mask = pi->mwdma_mask;
5823 ap->udma_mask = pi->udma_mask;
5824 ap->flags |= pi->flags;
5825 ap->link.flags |= pi->link_flags;
5826 ap->ops = pi->port_ops;
5827
5828 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5829 host->ops = pi->port_ops;
5830 }
5831
5832 return host;
5833 }
5834
5835 /**
5836 * ata_slave_link_init - initialize slave link
5837 * @ap: port to initialize slave link for
5838 *
5839 * Create and initialize slave link for @ap. This enables slave
5840 * link handling on the port.
5841 *
5842 * In libata, a port contains links and a link contains devices.
5843 * There is single host link but if a PMP is attached to it,
5844 * there can be multiple fan-out links. On SATA, there's usually
5845 * a single device connected to a link but PATA and SATA
5846 * controllers emulating TF based interface can have two - master
5847 * and slave.
5848 *
5849 * However, there are a few controllers which don't fit into this
5850 * abstraction too well - SATA controllers which emulate TF
5851 * interface with both master and slave devices but also have
5852 * separate SCR register sets for each device. These controllers
5853 * need separate links for physical link handling
5854 * (e.g. onlineness, link speed) but should be treated like a
5855 * traditional M/S controller for everything else (e.g. command
5856 * issue, softreset).
5857 *
5858 * slave_link is libata's way of handling this class of
5859 * controllers without impacting core layer too much. For
5860 * anything other than physical link handling, the default host
5861 * link is used for both master and slave. For physical link
5862 * handling, separate @ap->slave_link is used. All dirty details
5863 * are implemented inside libata core layer. From LLD's POV, the
5864 * only difference is that prereset, hardreset and postreset are
5865 * called once more for the slave link, so the reset sequence
5866 * looks like the following.
5867 *
5868 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5869 * softreset(M) -> postreset(M) -> postreset(S)
5870 *
5871 * Note that softreset is called only for the master. Softreset
5872 * resets both M/S by definition, so SRST on master should handle
5873 * both (the standard method will work just fine).
5874 *
5875 * LOCKING:
5876 * Should be called before host is registered.
5877 *
5878 * RETURNS:
5879 * 0 on success, -errno on failure.
5880 */
5881 int ata_slave_link_init(struct ata_port *ap)
5882 {
5883 struct ata_link *link;
5884
5885 WARN_ON(ap->slave_link);
5886 WARN_ON(ap->flags & ATA_FLAG_PMP);
5887
5888 link = kzalloc(sizeof(*link), GFP_KERNEL);
5889 if (!link)
5890 return -ENOMEM;
5891
5892 ata_link_init(ap, link, 1);
5893 ap->slave_link = link;
5894 return 0;
5895 }
5896
5897 static void ata_host_stop(struct device *gendev, void *res)
5898 {
5899 struct ata_host *host = dev_get_drvdata(gendev);
5900 int i;
5901
5902 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5903
5904 for (i = 0; i < host->n_ports; i++) {
5905 struct ata_port *ap = host->ports[i];
5906
5907 if (ap->ops->port_stop)
5908 ap->ops->port_stop(ap);
5909 }
5910
5911 if (host->ops->host_stop)
5912 host->ops->host_stop(host);
5913 }
5914
5915 /**
5916 * ata_finalize_port_ops - finalize ata_port_operations
5917 * @ops: ata_port_operations to finalize
5918 *
5919 * An ata_port_operations can inherit from another ops and that
5920 * ops can again inherit from another. This can go on as many
5921 * times as necessary as long as there is no loop in the
5922 * inheritance chain.
5923 *
5924 * Ops tables are finalized when the host is started. NULL or
5925 * unspecified entries are inherited from the closet ancestor
5926 * which has the method and the entry is populated with it.
5927 * After finalization, the ops table directly points to all the
5928 * methods and ->inherits is no longer necessary and cleared.
5929 *
5930 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5931 *
5932 * LOCKING:
5933 * None.
5934 */
5935 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5936 {
5937 static DEFINE_SPINLOCK(lock);
5938 const struct ata_port_operations *cur;
5939 void **begin = (void **)ops;
5940 void **end = (void **)&ops->inherits;
5941 void **pp;
5942
5943 if (!ops || !ops->inherits)
5944 return;
5945
5946 spin_lock(&lock);
5947
5948 for (cur = ops->inherits; cur; cur = cur->inherits) {
5949 void **inherit = (void **)cur;
5950
5951 for (pp = begin; pp < end; pp++, inherit++)
5952 if (!*pp)
5953 *pp = *inherit;
5954 }
5955
5956 for (pp = begin; pp < end; pp++)
5957 if (IS_ERR(*pp))
5958 *pp = NULL;
5959
5960 ops->inherits = NULL;
5961
5962 spin_unlock(&lock);
5963 }
5964
5965 /**
5966 * ata_host_start - start and freeze ports of an ATA host
5967 * @host: ATA host to start ports for
5968 *
5969 * Start and then freeze ports of @host. Started status is
5970 * recorded in host->flags, so this function can be called
5971 * multiple times. Ports are guaranteed to get started only
5972 * once. If host->ops isn't initialized yet, its set to the
5973 * first non-dummy port ops.
5974 *
5975 * LOCKING:
5976 * Inherited from calling layer (may sleep).
5977 *
5978 * RETURNS:
5979 * 0 if all ports are started successfully, -errno otherwise.
5980 */
5981 int ata_host_start(struct ata_host *host)
5982 {
5983 int have_stop = 0;
5984 void *start_dr = NULL;
5985 int i, rc;
5986
5987 if (host->flags & ATA_HOST_STARTED)
5988 return 0;
5989
5990 ata_finalize_port_ops(host->ops);
5991
5992 for (i = 0; i < host->n_ports; i++) {
5993 struct ata_port *ap = host->ports[i];
5994
5995 ata_finalize_port_ops(ap->ops);
5996
5997 if (!host->ops && !ata_port_is_dummy(ap))
5998 host->ops = ap->ops;
5999
6000 if (ap->ops->port_stop)
6001 have_stop = 1;
6002 }
6003
6004 if (host->ops->host_stop)
6005 have_stop = 1;
6006
6007 if (have_stop) {
6008 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6009 if (!start_dr)
6010 return -ENOMEM;
6011 }
6012
6013 for (i = 0; i < host->n_ports; i++) {
6014 struct ata_port *ap = host->ports[i];
6015
6016 if (ap->ops->port_start) {
6017 rc = ap->ops->port_start(ap);
6018 if (rc) {
6019 if (rc != -ENODEV)
6020 dev_err(host->dev,
6021 "failed to start port %d (errno=%d)\n",
6022 i, rc);
6023 goto err_out;
6024 }
6025 }
6026 ata_eh_freeze_port(ap);
6027 }
6028
6029 if (start_dr)
6030 devres_add(host->dev, start_dr);
6031 host->flags |= ATA_HOST_STARTED;
6032 return 0;
6033
6034 err_out:
6035 while (--i >= 0) {
6036 struct ata_port *ap = host->ports[i];
6037
6038 if (ap->ops->port_stop)
6039 ap->ops->port_stop(ap);
6040 }
6041 devres_free(start_dr);
6042 return rc;
6043 }
6044
6045 /**
6046 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6047 * @host: host to initialize
6048 * @dev: device host is attached to
6049 * @ops: port_ops
6050 *
6051 */
6052 void ata_host_init(struct ata_host *host, struct device *dev,
6053 struct ata_port_operations *ops)
6054 {
6055 spin_lock_init(&host->lock);
6056 mutex_init(&host->eh_mutex);
6057 host->dev = dev;
6058 host->ops = ops;
6059 }
6060
6061 void __ata_port_probe(struct ata_port *ap)
6062 {
6063 struct ata_eh_info *ehi = &ap->link.eh_info;
6064 unsigned long flags;
6065
6066 /* kick EH for boot probing */
6067 spin_lock_irqsave(ap->lock, flags);
6068
6069 ehi->probe_mask |= ATA_ALL_DEVICES;
6070 ehi->action |= ATA_EH_RESET;
6071 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6072
6073 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6074 ap->pflags |= ATA_PFLAG_LOADING;
6075 ata_port_schedule_eh(ap);
6076
6077 spin_unlock_irqrestore(ap->lock, flags);
6078 }
6079
6080 int ata_port_probe(struct ata_port *ap)
6081 {
6082 int rc = 0;
6083
6084 if (ap->ops->error_handler) {
6085 __ata_port_probe(ap);
6086 ata_port_wait_eh(ap);
6087 } else {
6088 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6089 rc = ata_bus_probe(ap);
6090 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6091 }
6092 return rc;
6093 }
6094
6095
6096 static void async_port_probe(void *data, async_cookie_t cookie)
6097 {
6098 struct ata_port *ap = data;
6099
6100 /*
6101 * If we're not allowed to scan this host in parallel,
6102 * we need to wait until all previous scans have completed
6103 * before going further.
6104 * Jeff Garzik says this is only within a controller, so we
6105 * don't need to wait for port 0, only for later ports.
6106 */
6107 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6108 async_synchronize_cookie(cookie);
6109
6110 (void)ata_port_probe(ap);
6111
6112 /* in order to keep device order, we need to synchronize at this point */
6113 async_synchronize_cookie(cookie);
6114
6115 ata_scsi_scan_host(ap, 1);
6116 }
6117
6118 /**
6119 * ata_host_register - register initialized ATA host
6120 * @host: ATA host to register
6121 * @sht: template for SCSI host
6122 *
6123 * Register initialized ATA host. @host is allocated using
6124 * ata_host_alloc() and fully initialized by LLD. This function
6125 * starts ports, registers @host with ATA and SCSI layers and
6126 * probe registered devices.
6127 *
6128 * LOCKING:
6129 * Inherited from calling layer (may sleep).
6130 *
6131 * RETURNS:
6132 * 0 on success, -errno otherwise.
6133 */
6134 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6135 {
6136 int i, rc;
6137
6138 /* host must have been started */
6139 if (!(host->flags & ATA_HOST_STARTED)) {
6140 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6141 WARN_ON(1);
6142 return -EINVAL;
6143 }
6144
6145 /* Blow away unused ports. This happens when LLD can't
6146 * determine the exact number of ports to allocate at
6147 * allocation time.
6148 */
6149 for (i = host->n_ports; host->ports[i]; i++)
6150 kfree(host->ports[i]);
6151
6152 /* give ports names and add SCSI hosts */
6153 for (i = 0; i < host->n_ports; i++) {
6154 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6155 host->ports[i]->local_port_no = i + 1;
6156 }
6157
6158 /* Create associated sysfs transport objects */
6159 for (i = 0; i < host->n_ports; i++) {
6160 rc = ata_tport_add(host->dev,host->ports[i]);
6161 if (rc) {
6162 goto err_tadd;
6163 }
6164 }
6165
6166 rc = ata_scsi_add_hosts(host, sht);
6167 if (rc)
6168 goto err_tadd;
6169
6170 /* set cable, sata_spd_limit and report */
6171 for (i = 0; i < host->n_ports; i++) {
6172 struct ata_port *ap = host->ports[i];
6173 unsigned long xfer_mask;
6174
6175 /* set SATA cable type if still unset */
6176 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6177 ap->cbl = ATA_CBL_SATA;
6178
6179 /* init sata_spd_limit to the current value */
6180 sata_link_init_spd(&ap->link);
6181 if (ap->slave_link)
6182 sata_link_init_spd(ap->slave_link);
6183
6184 /* print per-port info to dmesg */
6185 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6186 ap->udma_mask);
6187
6188 if (!ata_port_is_dummy(ap)) {
6189 ata_port_info(ap, "%cATA max %s %s\n",
6190 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6191 ata_mode_string(xfer_mask),
6192 ap->link.eh_info.desc);
6193 ata_ehi_clear_desc(&ap->link.eh_info);
6194 } else
6195 ata_port_info(ap, "DUMMY\n");
6196 }
6197
6198 /* perform each probe asynchronously */
6199 for (i = 0; i < host->n_ports; i++) {
6200 struct ata_port *ap = host->ports[i];
6201 async_schedule(async_port_probe, ap);
6202 }
6203
6204 return 0;
6205
6206 err_tadd:
6207 while (--i >= 0) {
6208 ata_tport_delete(host->ports[i]);
6209 }
6210 return rc;
6211
6212 }
6213
6214 /**
6215 * ata_host_activate - start host, request IRQ and register it
6216 * @host: target ATA host
6217 * @irq: IRQ to request
6218 * @irq_handler: irq_handler used when requesting IRQ
6219 * @irq_flags: irq_flags used when requesting IRQ
6220 * @sht: scsi_host_template to use when registering the host
6221 *
6222 * After allocating an ATA host and initializing it, most libata
6223 * LLDs perform three steps to activate the host - start host,
6224 * request IRQ and register it. This helper takes necessasry
6225 * arguments and performs the three steps in one go.
6226 *
6227 * An invalid IRQ skips the IRQ registration and expects the host to
6228 * have set polling mode on the port. In this case, @irq_handler
6229 * should be NULL.
6230 *
6231 * LOCKING:
6232 * Inherited from calling layer (may sleep).
6233 *
6234 * RETURNS:
6235 * 0 on success, -errno otherwise.
6236 */
6237 int ata_host_activate(struct ata_host *host, int irq,
6238 irq_handler_t irq_handler, unsigned long irq_flags,
6239 struct scsi_host_template *sht)
6240 {
6241 int i, rc;
6242
6243 rc = ata_host_start(host);
6244 if (rc)
6245 return rc;
6246
6247 /* Special case for polling mode */
6248 if (!irq) {
6249 WARN_ON(irq_handler);
6250 return ata_host_register(host, sht);
6251 }
6252
6253 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6254 dev_driver_string(host->dev), host);
6255 if (rc)
6256 return rc;
6257
6258 for (i = 0; i < host->n_ports; i++)
6259 ata_port_desc(host->ports[i], "irq %d", irq);
6260
6261 rc = ata_host_register(host, sht);
6262 /* if failed, just free the IRQ and leave ports alone */
6263 if (rc)
6264 devm_free_irq(host->dev, irq, host);
6265
6266 return rc;
6267 }
6268
6269 /**
6270 * ata_port_detach - Detach ATA port in prepration of device removal
6271 * @ap: ATA port to be detached
6272 *
6273 * Detach all ATA devices and the associated SCSI devices of @ap;
6274 * then, remove the associated SCSI host. @ap is guaranteed to
6275 * be quiescent on return from this function.
6276 *
6277 * LOCKING:
6278 * Kernel thread context (may sleep).
6279 */
6280 static void ata_port_detach(struct ata_port *ap)
6281 {
6282 unsigned long flags;
6283
6284 if (!ap->ops->error_handler)
6285 goto skip_eh;
6286
6287 /* tell EH we're leaving & flush EH */
6288 spin_lock_irqsave(ap->lock, flags);
6289 ap->pflags |= ATA_PFLAG_UNLOADING;
6290 ata_port_schedule_eh(ap);
6291 spin_unlock_irqrestore(ap->lock, flags);
6292
6293 /* wait till EH commits suicide */
6294 ata_port_wait_eh(ap);
6295
6296 /* it better be dead now */
6297 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6298
6299 cancel_delayed_work_sync(&ap->hotplug_task);
6300
6301 skip_eh:
6302 if (ap->pmp_link) {
6303 int i;
6304 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6305 ata_tlink_delete(&ap->pmp_link[i]);
6306 }
6307 /* remove the associated SCSI host */
6308 scsi_remove_host(ap->scsi_host);
6309 ata_tport_delete(ap);
6310 }
6311
6312 /**
6313 * ata_host_detach - Detach all ports of an ATA host
6314 * @host: Host to detach
6315 *
6316 * Detach all ports of @host.
6317 *
6318 * LOCKING:
6319 * Kernel thread context (may sleep).
6320 */
6321 void ata_host_detach(struct ata_host *host)
6322 {
6323 int i;
6324
6325 for (i = 0; i < host->n_ports; i++)
6326 ata_port_detach(host->ports[i]);
6327
6328 /* the host is dead now, dissociate ACPI */
6329 ata_acpi_dissociate(host);
6330 }
6331
6332 #ifdef CONFIG_PCI
6333
6334 /**
6335 * ata_pci_remove_one - PCI layer callback for device removal
6336 * @pdev: PCI device that was removed
6337 *
6338 * PCI layer indicates to libata via this hook that hot-unplug or
6339 * module unload event has occurred. Detach all ports. Resource
6340 * release is handled via devres.
6341 *
6342 * LOCKING:
6343 * Inherited from PCI layer (may sleep).
6344 */
6345 void ata_pci_remove_one(struct pci_dev *pdev)
6346 {
6347 struct ata_host *host = pci_get_drvdata(pdev);
6348
6349 ata_host_detach(host);
6350 }
6351
6352 /* move to PCI subsystem */
6353 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6354 {
6355 unsigned long tmp = 0;
6356
6357 switch (bits->width) {
6358 case 1: {
6359 u8 tmp8 = 0;
6360 pci_read_config_byte(pdev, bits->reg, &tmp8);
6361 tmp = tmp8;
6362 break;
6363 }
6364 case 2: {
6365 u16 tmp16 = 0;
6366 pci_read_config_word(pdev, bits->reg, &tmp16);
6367 tmp = tmp16;
6368 break;
6369 }
6370 case 4: {
6371 u32 tmp32 = 0;
6372 pci_read_config_dword(pdev, bits->reg, &tmp32);
6373 tmp = tmp32;
6374 break;
6375 }
6376
6377 default:
6378 return -EINVAL;
6379 }
6380
6381 tmp &= bits->mask;
6382
6383 return (tmp == bits->val) ? 1 : 0;
6384 }
6385
6386 #ifdef CONFIG_PM
6387 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6388 {
6389 pci_save_state(pdev);
6390 pci_disable_device(pdev);
6391
6392 if (mesg.event & PM_EVENT_SLEEP)
6393 pci_set_power_state(pdev, PCI_D3hot);
6394 }
6395
6396 int ata_pci_device_do_resume(struct pci_dev *pdev)
6397 {
6398 int rc;
6399
6400 pci_set_power_state(pdev, PCI_D0);
6401 pci_restore_state(pdev);
6402
6403 rc = pcim_enable_device(pdev);
6404 if (rc) {
6405 dev_err(&pdev->dev,
6406 "failed to enable device after resume (%d)\n", rc);
6407 return rc;
6408 }
6409
6410 pci_set_master(pdev);
6411 return 0;
6412 }
6413
6414 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6415 {
6416 struct ata_host *host = pci_get_drvdata(pdev);
6417 int rc = 0;
6418
6419 rc = ata_host_suspend(host, mesg);
6420 if (rc)
6421 return rc;
6422
6423 ata_pci_device_do_suspend(pdev, mesg);
6424
6425 return 0;
6426 }
6427
6428 int ata_pci_device_resume(struct pci_dev *pdev)
6429 {
6430 struct ata_host *host = pci_get_drvdata(pdev);
6431 int rc;
6432
6433 rc = ata_pci_device_do_resume(pdev);
6434 if (rc == 0)
6435 ata_host_resume(host);
6436 return rc;
6437 }
6438 #endif /* CONFIG_PM */
6439
6440 #endif /* CONFIG_PCI */
6441
6442 /**
6443 * ata_platform_remove_one - Platform layer callback for device removal
6444 * @pdev: Platform device that was removed
6445 *
6446 * Platform layer indicates to libata via this hook that hot-unplug or
6447 * module unload event has occurred. Detach all ports. Resource
6448 * release is handled via devres.
6449 *
6450 * LOCKING:
6451 * Inherited from platform layer (may sleep).
6452 */
6453 int ata_platform_remove_one(struct platform_device *pdev)
6454 {
6455 struct ata_host *host = platform_get_drvdata(pdev);
6456
6457 ata_host_detach(host);
6458
6459 return 0;
6460 }
6461
6462 static int __init ata_parse_force_one(char **cur,
6463 struct ata_force_ent *force_ent,
6464 const char **reason)
6465 {
6466 /* FIXME: Currently, there's no way to tag init const data and
6467 * using __initdata causes build failure on some versions of
6468 * gcc. Once __initdataconst is implemented, add const to the
6469 * following structure.
6470 */
6471 static struct ata_force_param force_tbl[] __initdata = {
6472 { "40c", .cbl = ATA_CBL_PATA40 },
6473 { "80c", .cbl = ATA_CBL_PATA80 },
6474 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6475 { "unk", .cbl = ATA_CBL_PATA_UNK },
6476 { "ign", .cbl = ATA_CBL_PATA_IGN },
6477 { "sata", .cbl = ATA_CBL_SATA },
6478 { "1.5Gbps", .spd_limit = 1 },
6479 { "3.0Gbps", .spd_limit = 2 },
6480 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6481 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6482 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6483 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6484 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6485 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6486 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6487 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6488 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6489 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6490 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6491 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6492 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6493 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6494 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6495 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6496 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6497 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6498 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6499 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6500 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6501 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6502 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6503 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6504 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6505 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6506 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6507 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6508 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6509 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6510 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6511 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6512 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6513 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6514 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6515 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6516 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6517 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6518 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6519 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6520 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6521 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6522 };
6523 char *start = *cur, *p = *cur;
6524 char *id, *val, *endp;
6525 const struct ata_force_param *match_fp = NULL;
6526 int nr_matches = 0, i;
6527
6528 /* find where this param ends and update *cur */
6529 while (*p != '\0' && *p != ',')
6530 p++;
6531
6532 if (*p == '\0')
6533 *cur = p;
6534 else
6535 *cur = p + 1;
6536
6537 *p = '\0';
6538
6539 /* parse */
6540 p = strchr(start, ':');
6541 if (!p) {
6542 val = strstrip(start);
6543 goto parse_val;
6544 }
6545 *p = '\0';
6546
6547 id = strstrip(start);
6548 val = strstrip(p + 1);
6549
6550 /* parse id */
6551 p = strchr(id, '.');
6552 if (p) {
6553 *p++ = '\0';
6554 force_ent->device = simple_strtoul(p, &endp, 10);
6555 if (p == endp || *endp != '\0') {
6556 *reason = "invalid device";
6557 return -EINVAL;
6558 }
6559 }
6560
6561 force_ent->port = simple_strtoul(id, &endp, 10);
6562 if (p == endp || *endp != '\0') {
6563 *reason = "invalid port/link";
6564 return -EINVAL;
6565 }
6566
6567 parse_val:
6568 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6569 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6570 const struct ata_force_param *fp = &force_tbl[i];
6571
6572 if (strncasecmp(val, fp->name, strlen(val)))
6573 continue;
6574
6575 nr_matches++;
6576 match_fp = fp;
6577
6578 if (strcasecmp(val, fp->name) == 0) {
6579 nr_matches = 1;
6580 break;
6581 }
6582 }
6583
6584 if (!nr_matches) {
6585 *reason = "unknown value";
6586 return -EINVAL;
6587 }
6588 if (nr_matches > 1) {
6589 *reason = "ambigious value";
6590 return -EINVAL;
6591 }
6592
6593 force_ent->param = *match_fp;
6594
6595 return 0;
6596 }
6597
6598 static void __init ata_parse_force_param(void)
6599 {
6600 int idx = 0, size = 1;
6601 int last_port = -1, last_device = -1;
6602 char *p, *cur, *next;
6603
6604 /* calculate maximum number of params and allocate force_tbl */
6605 for (p = ata_force_param_buf; *p; p++)
6606 if (*p == ',')
6607 size++;
6608
6609 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6610 if (!ata_force_tbl) {
6611 printk(KERN_WARNING "ata: failed to extend force table, "
6612 "libata.force ignored\n");
6613 return;
6614 }
6615
6616 /* parse and populate the table */
6617 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6618 const char *reason = "";
6619 struct ata_force_ent te = { .port = -1, .device = -1 };
6620
6621 next = cur;
6622 if (ata_parse_force_one(&next, &te, &reason)) {
6623 printk(KERN_WARNING "ata: failed to parse force "
6624 "parameter \"%s\" (%s)\n",
6625 cur, reason);
6626 continue;
6627 }
6628
6629 if (te.port == -1) {
6630 te.port = last_port;
6631 te.device = last_device;
6632 }
6633
6634 ata_force_tbl[idx++] = te;
6635
6636 last_port = te.port;
6637 last_device = te.device;
6638 }
6639
6640 ata_force_tbl_size = idx;
6641 }
6642
6643 static int __init ata_init(void)
6644 {
6645 int rc;
6646
6647 ata_parse_force_param();
6648
6649 rc = ata_sff_init();
6650 if (rc) {
6651 kfree(ata_force_tbl);
6652 return rc;
6653 }
6654
6655 libata_transport_init();
6656 ata_scsi_transport_template = ata_attach_transport();
6657 if (!ata_scsi_transport_template) {
6658 ata_sff_exit();
6659 rc = -ENOMEM;
6660 goto err_out;
6661 }
6662
6663 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6664 return 0;
6665
6666 err_out:
6667 return rc;
6668 }
6669
6670 static void __exit ata_exit(void)
6671 {
6672 ata_release_transport(ata_scsi_transport_template);
6673 libata_transport_exit();
6674 ata_sff_exit();
6675 kfree(ata_force_tbl);
6676 }
6677
6678 subsys_initcall(ata_init);
6679 module_exit(ata_exit);
6680
6681 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6682
6683 int ata_ratelimit(void)
6684 {
6685 return __ratelimit(&ratelimit);
6686 }
6687
6688 /**
6689 * ata_msleep - ATA EH owner aware msleep
6690 * @ap: ATA port to attribute the sleep to
6691 * @msecs: duration to sleep in milliseconds
6692 *
6693 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6694 * ownership is released before going to sleep and reacquired
6695 * after the sleep is complete. IOW, other ports sharing the
6696 * @ap->host will be allowed to own the EH while this task is
6697 * sleeping.
6698 *
6699 * LOCKING:
6700 * Might sleep.
6701 */
6702 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6703 {
6704 bool owns_eh = ap && ap->host->eh_owner == current;
6705
6706 if (owns_eh)
6707 ata_eh_release(ap);
6708
6709 msleep(msecs);
6710
6711 if (owns_eh)
6712 ata_eh_acquire(ap);
6713 }
6714
6715 /**
6716 * ata_wait_register - wait until register value changes
6717 * @ap: ATA port to wait register for, can be NULL
6718 * @reg: IO-mapped register
6719 * @mask: Mask to apply to read register value
6720 * @val: Wait condition
6721 * @interval: polling interval in milliseconds
6722 * @timeout: timeout in milliseconds
6723 *
6724 * Waiting for some bits of register to change is a common
6725 * operation for ATA controllers. This function reads 32bit LE
6726 * IO-mapped register @reg and tests for the following condition.
6727 *
6728 * (*@reg & mask) != val
6729 *
6730 * If the condition is met, it returns; otherwise, the process is
6731 * repeated after @interval_msec until timeout.
6732 *
6733 * LOCKING:
6734 * Kernel thread context (may sleep)
6735 *
6736 * RETURNS:
6737 * The final register value.
6738 */
6739 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6740 unsigned long interval, unsigned long timeout)
6741 {
6742 unsigned long deadline;
6743 u32 tmp;
6744
6745 tmp = ioread32(reg);
6746
6747 /* Calculate timeout _after_ the first read to make sure
6748 * preceding writes reach the controller before starting to
6749 * eat away the timeout.
6750 */
6751 deadline = ata_deadline(jiffies, timeout);
6752
6753 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6754 ata_msleep(ap, interval);
6755 tmp = ioread32(reg);
6756 }
6757
6758 return tmp;
6759 }
6760
6761 /*
6762 * Dummy port_ops
6763 */
6764 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6765 {
6766 return AC_ERR_SYSTEM;
6767 }
6768
6769 static void ata_dummy_error_handler(struct ata_port *ap)
6770 {
6771 /* truly dummy */
6772 }
6773
6774 struct ata_port_operations ata_dummy_port_ops = {
6775 .qc_prep = ata_noop_qc_prep,
6776 .qc_issue = ata_dummy_qc_issue,
6777 .error_handler = ata_dummy_error_handler,
6778 .sched_eh = ata_std_sched_eh,
6779 .end_eh = ata_std_end_eh,
6780 };
6781
6782 const struct ata_port_info ata_dummy_port_info = {
6783 .port_ops = &ata_dummy_port_ops,
6784 };
6785
6786 /*
6787 * Utility print functions
6788 */
6789 int ata_port_printk(const struct ata_port *ap, const char *level,
6790 const char *fmt, ...)
6791 {
6792 struct va_format vaf;
6793 va_list args;
6794 int r;
6795
6796 va_start(args, fmt);
6797
6798 vaf.fmt = fmt;
6799 vaf.va = &args;
6800
6801 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6802
6803 va_end(args);
6804
6805 return r;
6806 }
6807 EXPORT_SYMBOL(ata_port_printk);
6808
6809 int ata_link_printk(const struct ata_link *link, const char *level,
6810 const char *fmt, ...)
6811 {
6812 struct va_format vaf;
6813 va_list args;
6814 int r;
6815
6816 va_start(args, fmt);
6817
6818 vaf.fmt = fmt;
6819 vaf.va = &args;
6820
6821 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6822 r = printk("%sata%u.%02u: %pV",
6823 level, link->ap->print_id, link->pmp, &vaf);
6824 else
6825 r = printk("%sata%u: %pV",
6826 level, link->ap->print_id, &vaf);
6827
6828 va_end(args);
6829
6830 return r;
6831 }
6832 EXPORT_SYMBOL(ata_link_printk);
6833
6834 int ata_dev_printk(const struct ata_device *dev, const char *level,
6835 const char *fmt, ...)
6836 {
6837 struct va_format vaf;
6838 va_list args;
6839 int r;
6840
6841 va_start(args, fmt);
6842
6843 vaf.fmt = fmt;
6844 vaf.va = &args;
6845
6846 r = printk("%sata%u.%02u: %pV",
6847 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6848 &vaf);
6849
6850 va_end(args);
6851
6852 return r;
6853 }
6854 EXPORT_SYMBOL(ata_dev_printk);
6855
6856 void ata_print_version(const struct device *dev, const char *version)
6857 {
6858 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6859 }
6860 EXPORT_SYMBOL(ata_print_version);
6861
6862 /*
6863 * libata is essentially a library of internal helper functions for
6864 * low-level ATA host controller drivers. As such, the API/ABI is
6865 * likely to change as new drivers are added and updated.
6866 * Do not depend on ABI/API stability.
6867 */
6868 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6869 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6870 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6871 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6872 EXPORT_SYMBOL_GPL(sata_port_ops);
6873 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6874 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6875 EXPORT_SYMBOL_GPL(ata_link_next);
6876 EXPORT_SYMBOL_GPL(ata_dev_next);
6877 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6878 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6879 EXPORT_SYMBOL_GPL(ata_host_init);
6880 EXPORT_SYMBOL_GPL(ata_host_alloc);
6881 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6882 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6883 EXPORT_SYMBOL_GPL(ata_host_start);
6884 EXPORT_SYMBOL_GPL(ata_host_register);
6885 EXPORT_SYMBOL_GPL(ata_host_activate);
6886 EXPORT_SYMBOL_GPL(ata_host_detach);
6887 EXPORT_SYMBOL_GPL(ata_sg_init);
6888 EXPORT_SYMBOL_GPL(ata_qc_complete);
6889 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6890 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6891 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6892 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6893 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6894 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6895 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6896 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6897 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6898 EXPORT_SYMBOL_GPL(ata_mode_string);
6899 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6900 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6901 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6902 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6903 EXPORT_SYMBOL_GPL(ata_dev_disable);
6904 EXPORT_SYMBOL_GPL(sata_set_spd);
6905 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6906 EXPORT_SYMBOL_GPL(sata_link_debounce);
6907 EXPORT_SYMBOL_GPL(sata_link_resume);
6908 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6909 EXPORT_SYMBOL_GPL(ata_std_prereset);
6910 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6911 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6912 EXPORT_SYMBOL_GPL(ata_std_postreset);
6913 EXPORT_SYMBOL_GPL(ata_dev_classify);
6914 EXPORT_SYMBOL_GPL(ata_dev_pair);
6915 EXPORT_SYMBOL_GPL(ata_ratelimit);
6916 EXPORT_SYMBOL_GPL(ata_msleep);
6917 EXPORT_SYMBOL_GPL(ata_wait_register);
6918 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6919 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6920 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6921 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6922 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6923 EXPORT_SYMBOL_GPL(sata_scr_valid);
6924 EXPORT_SYMBOL_GPL(sata_scr_read);
6925 EXPORT_SYMBOL_GPL(sata_scr_write);
6926 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6927 EXPORT_SYMBOL_GPL(ata_link_online);
6928 EXPORT_SYMBOL_GPL(ata_link_offline);
6929 #ifdef CONFIG_PM
6930 EXPORT_SYMBOL_GPL(ata_host_suspend);
6931 EXPORT_SYMBOL_GPL(ata_host_resume);
6932 #endif /* CONFIG_PM */
6933 EXPORT_SYMBOL_GPL(ata_id_string);
6934 EXPORT_SYMBOL_GPL(ata_id_c_string);
6935 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6936 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6937
6938 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6939 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6940 EXPORT_SYMBOL_GPL(ata_timing_compute);
6941 EXPORT_SYMBOL_GPL(ata_timing_merge);
6942 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6943
6944 #ifdef CONFIG_PCI
6945 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6946 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6947 #ifdef CONFIG_PM
6948 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6949 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6950 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6951 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6952 #endif /* CONFIG_PM */
6953 #endif /* CONFIG_PCI */
6954
6955 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6956
6957 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6958 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6959 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6960 EXPORT_SYMBOL_GPL(ata_port_desc);
6961 #ifdef CONFIG_PCI
6962 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6963 #endif /* CONFIG_PCI */
6964 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6965 EXPORT_SYMBOL_GPL(ata_link_abort);
6966 EXPORT_SYMBOL_GPL(ata_port_abort);
6967 EXPORT_SYMBOL_GPL(ata_port_freeze);
6968 EXPORT_SYMBOL_GPL(sata_async_notification);
6969 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6970 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6971 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6972 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6973 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6974 EXPORT_SYMBOL_GPL(ata_do_eh);
6975 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6976
6977 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6978 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6979 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6980 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6981 EXPORT_SYMBOL_GPL(ata_cable_sata);