libata: export host controller number thru /sys
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71
72 #include "libata.h"
73 #include "libata-transport.h"
74
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79
80 const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
86 };
87
88 const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
93 };
94
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102 atomic_t host_print_id = ATOMIC_INIT(0);
103
104 struct ata_force_param {
105 const char *name;
106 unsigned int cbl;
107 int spd_limit;
108 unsigned long xfer_mask;
109 unsigned int horkage_on;
110 unsigned int horkage_off;
111 unsigned int lflags;
112 };
113
114 struct ata_force_ent {
115 int port;
116 int device;
117 struct ata_force_param param;
118 };
119
120 static struct ata_force_ent *ata_force_tbl;
121 static int ata_force_tbl_size;
122
123 static char ata_force_param_buf[PAGE_SIZE] __initdata;
124 /* param_buf is thrown away after initialization, disallow read */
125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127
128 static int atapi_enabled = 1;
129 module_param(atapi_enabled, int, 0444);
130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131
132 static int atapi_dmadir = 0;
133 module_param(atapi_dmadir, int, 0444);
134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135
136 int atapi_passthru16 = 1;
137 module_param(atapi_passthru16, int, 0444);
138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139
140 int libata_fua = 0;
141 module_param_named(fua, libata_fua, int, 0444);
142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143
144 static int ata_ignore_hpa;
145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147
148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149 module_param_named(dma, libata_dma_mask, int, 0444);
150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151
152 static int ata_probe_timeout;
153 module_param(ata_probe_timeout, int, 0444);
154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155
156 int libata_noacpi = 0;
157 module_param_named(noacpi, libata_noacpi, int, 0444);
158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159
160 int libata_allow_tpm = 0;
161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163
164 static int atapi_an;
165 module_param(atapi_an, int, 0444);
166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167
168 MODULE_AUTHOR("Jeff Garzik");
169 MODULE_DESCRIPTION("Library module for ATA devices");
170 MODULE_LICENSE("GPL");
171 MODULE_VERSION(DRV_VERSION);
172
173
174 static bool ata_sstatus_online(u32 sstatus)
175 {
176 return (sstatus & 0xf) == 0x3;
177 }
178
179 /**
180 * ata_link_next - link iteration helper
181 * @link: the previous link, NULL to start
182 * @ap: ATA port containing links to iterate
183 * @mode: iteration mode, one of ATA_LITER_*
184 *
185 * LOCKING:
186 * Host lock or EH context.
187 *
188 * RETURNS:
189 * Pointer to the next link.
190 */
191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 enum ata_link_iter_mode mode)
193 {
194 BUG_ON(mode != ATA_LITER_EDGE &&
195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196
197 /* NULL link indicates start of iteration */
198 if (!link)
199 switch (mode) {
200 case ATA_LITER_EDGE:
201 case ATA_LITER_PMP_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 /* fall through */
205 case ATA_LITER_HOST_FIRST:
206 return &ap->link;
207 }
208
209 /* we just iterated over the host link, what's next? */
210 if (link == &ap->link)
211 switch (mode) {
212 case ATA_LITER_HOST_FIRST:
213 if (sata_pmp_attached(ap))
214 return ap->pmp_link;
215 /* fall through */
216 case ATA_LITER_PMP_FIRST:
217 if (unlikely(ap->slave_link))
218 return ap->slave_link;
219 /* fall through */
220 case ATA_LITER_EDGE:
221 return NULL;
222 }
223
224 /* slave_link excludes PMP */
225 if (unlikely(link == ap->slave_link))
226 return NULL;
227
228 /* we were over a PMP link */
229 if (++link < ap->pmp_link + ap->nr_pmp_links)
230 return link;
231
232 if (mode == ATA_LITER_PMP_FIRST)
233 return &ap->link;
234
235 return NULL;
236 }
237
238 /**
239 * ata_dev_next - device iteration helper
240 * @dev: the previous device, NULL to start
241 * @link: ATA link containing devices to iterate
242 * @mode: iteration mode, one of ATA_DITER_*
243 *
244 * LOCKING:
245 * Host lock or EH context.
246 *
247 * RETURNS:
248 * Pointer to the next device.
249 */
250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 enum ata_dev_iter_mode mode)
252 {
253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255
256 /* NULL dev indicates start of iteration */
257 if (!dev)
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 dev = link->device;
262 goto check;
263 case ATA_DITER_ENABLED_REVERSE:
264 case ATA_DITER_ALL_REVERSE:
265 dev = link->device + ata_link_max_devices(link) - 1;
266 goto check;
267 }
268
269 next:
270 /* move to the next one */
271 switch (mode) {
272 case ATA_DITER_ENABLED:
273 case ATA_DITER_ALL:
274 if (++dev < link->device + ata_link_max_devices(link))
275 goto check;
276 return NULL;
277 case ATA_DITER_ENABLED_REVERSE:
278 case ATA_DITER_ALL_REVERSE:
279 if (--dev >= link->device)
280 goto check;
281 return NULL;
282 }
283
284 check:
285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 !ata_dev_enabled(dev))
287 goto next;
288 return dev;
289 }
290
291 /**
292 * ata_dev_phys_link - find physical link for a device
293 * @dev: ATA device to look up physical link for
294 *
295 * Look up physical link which @dev is attached to. Note that
296 * this is different from @dev->link only when @dev is on slave
297 * link. For all other cases, it's the same as @dev->link.
298 *
299 * LOCKING:
300 * Don't care.
301 *
302 * RETURNS:
303 * Pointer to the found physical link.
304 */
305 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 {
307 struct ata_port *ap = dev->link->ap;
308
309 if (!ap->slave_link)
310 return dev->link;
311 if (!dev->devno)
312 return &ap->link;
313 return ap->slave_link;
314 }
315
316 /**
317 * ata_force_cbl - force cable type according to libata.force
318 * @ap: ATA port of interest
319 *
320 * Force cable type according to libata.force and whine about it.
321 * The last entry which has matching port number is used, so it
322 * can be specified as part of device force parameters. For
323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324 * same effect.
325 *
326 * LOCKING:
327 * EH context.
328 */
329 void ata_force_cbl(struct ata_port *ap)
330 {
331 int i;
332
333 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 const struct ata_force_ent *fe = &ata_force_tbl[i];
335
336 if (fe->port != -1 && fe->port != ap->print_id)
337 continue;
338
339 if (fe->param.cbl == ATA_CBL_NONE)
340 continue;
341
342 ap->cbl = fe->param.cbl;
343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346 }
347
348 /**
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
351 *
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
360 *
361 * LOCKING:
362 * EH context.
363 */
364 static void ata_force_link_limits(struct ata_link *link)
365 {
366 bool did_spd = false;
367 int linkno = link->pmp;
368 int i;
369
370 if (ata_is_host_link(link))
371 linkno += 15;
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 fe->param.name);
387 did_spd = true;
388 }
389
390 /* let lflags stack */
391 if (fe->param.lflags) {
392 link->flags |= fe->param.lflags;
393 ata_link_notice(link,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe->param.lflags, link->flags);
396 }
397 }
398 }
399
400 /**
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
403 *
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
407 *
408 * LOCKING:
409 * EH context.
410 */
411 static void ata_force_xfermask(struct ata_device *dev)
412 {
413 int devno = dev->link->pmp + dev->devno;
414 int alt_devno = devno;
415 int i;
416
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev->link))
419 alt_devno += 15;
420
421 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 const struct ata_force_ent *fe = &ata_force_tbl[i];
423 unsigned long pio_mask, mwdma_mask, udma_mask;
424
425 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 continue;
427
428 if (fe->device != -1 && fe->device != devno &&
429 fe->device != alt_devno)
430 continue;
431
432 if (!fe->param.xfer_mask)
433 continue;
434
435 ata_unpack_xfermask(fe->param.xfer_mask,
436 &pio_mask, &mwdma_mask, &udma_mask);
437 if (udma_mask)
438 dev->udma_mask = udma_mask;
439 else if (mwdma_mask) {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = mwdma_mask;
442 } else {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = 0;
445 dev->pio_mask = pio_mask;
446 }
447
448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 fe->param.name);
450 return;
451 }
452 }
453
454 /**
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
457 *
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
461 *
462 * LOCKING:
463 * EH context.
464 */
465 static void ata_force_horkage(struct ata_device *dev)
466 {
467 int devno = dev->link->pmp + dev->devno;
468 int alt_devno = devno;
469 int i;
470
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev->link))
473 alt_devno += 15;
474
475 for (i = 0; i < ata_force_tbl_size; i++) {
476 const struct ata_force_ent *fe = &ata_force_tbl[i];
477
478 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 continue;
480
481 if (fe->device != -1 && fe->device != devno &&
482 fe->device != alt_devno)
483 continue;
484
485 if (!(~dev->horkage & fe->param.horkage_on) &&
486 !(dev->horkage & fe->param.horkage_off))
487 continue;
488
489 dev->horkage |= fe->param.horkage_on;
490 dev->horkage &= ~fe->param.horkage_off;
491
492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 fe->param.name);
494 }
495 }
496
497 /**
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
500 *
501 * Determine ATAPI command type from @opcode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508 */
509 int atapi_cmd_type(u8 opcode)
510 {
511 switch (opcode) {
512 case GPCMD_READ_10:
513 case GPCMD_READ_12:
514 return ATAPI_READ;
515
516 case GPCMD_WRITE_10:
517 case GPCMD_WRITE_12:
518 case GPCMD_WRITE_AND_VERIFY_10:
519 return ATAPI_WRITE;
520
521 case GPCMD_READ_CD:
522 case GPCMD_READ_CD_MSF:
523 return ATAPI_READ_CD;
524
525 case ATA_16:
526 case ATA_12:
527 if (atapi_passthru16)
528 return ATAPI_PASS_THRU;
529 /* fall thru */
530 default:
531 return ATAPI_MISC;
532 }
533 }
534
535 /**
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
541 *
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
544 *
545 * LOCKING:
546 * Inherited from caller.
547 */
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 {
550 fis[0] = 0x27; /* Register - Host to Device FIS */
551 fis[1] = pmp & 0xf; /* Port multiplier number*/
552 if (is_cmd)
553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
554
555 fis[2] = tf->command;
556 fis[3] = tf->feature;
557
558 fis[4] = tf->lbal;
559 fis[5] = tf->lbam;
560 fis[6] = tf->lbah;
561 fis[7] = tf->device;
562
563 fis[8] = tf->hob_lbal;
564 fis[9] = tf->hob_lbam;
565 fis[10] = tf->hob_lbah;
566 fis[11] = tf->hob_feature;
567
568 fis[12] = tf->nsect;
569 fis[13] = tf->hob_nsect;
570 fis[14] = 0;
571 fis[15] = tf->ctl;
572
573 fis[16] = 0;
574 fis[17] = 0;
575 fis[18] = 0;
576 fis[19] = 0;
577 }
578
579 /**
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
583 *
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
585 *
586 * LOCKING:
587 * Inherited from caller.
588 */
589
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 {
592 tf->command = fis[2]; /* status */
593 tf->feature = fis[3]; /* error */
594
595 tf->lbal = fis[4];
596 tf->lbam = fis[5];
597 tf->lbah = fis[6];
598 tf->device = fis[7];
599
600 tf->hob_lbal = fis[8];
601 tf->hob_lbam = fis[9];
602 tf->hob_lbah = fis[10];
603
604 tf->nsect = fis[12];
605 tf->hob_nsect = fis[13];
606 }
607
608 static const u8 ata_rw_cmds[] = {
609 /* pio multi */
610 ATA_CMD_READ_MULTI,
611 ATA_CMD_WRITE_MULTI,
612 ATA_CMD_READ_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_EXT,
614 0,
615 0,
616 0,
617 ATA_CMD_WRITE_MULTI_FUA_EXT,
618 /* pio */
619 ATA_CMD_PIO_READ,
620 ATA_CMD_PIO_WRITE,
621 ATA_CMD_PIO_READ_EXT,
622 ATA_CMD_PIO_WRITE_EXT,
623 0,
624 0,
625 0,
626 0,
627 /* dma */
628 ATA_CMD_READ,
629 ATA_CMD_WRITE,
630 ATA_CMD_READ_EXT,
631 ATA_CMD_WRITE_EXT,
632 0,
633 0,
634 0,
635 ATA_CMD_WRITE_FUA_EXT
636 };
637
638 /**
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
642 *
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
645 *
646 * LOCKING:
647 * caller.
648 */
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 {
651 u8 cmd;
652
653 int index, fua, lba48, write;
654
655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658
659 if (dev->flags & ATA_DFLAG_PIO) {
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 /* Unable to use DMA due to host limitation */
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else {
667 tf->protocol = ATA_PROT_DMA;
668 index = 16;
669 }
670
671 cmd = ata_rw_cmds[index + fua + lba48 + write];
672 if (cmd) {
673 tf->command = cmd;
674 return 0;
675 }
676 return -1;
677 }
678
679 /**
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
683 *
684 * LOCKING:
685 * None.
686 *
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
690 *
691 * RETURNS:
692 * Block address read from @tf.
693 */
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 {
696 u64 block = 0;
697
698 if (tf->flags & ATA_TFLAG_LBA) {
699 if (tf->flags & ATA_TFLAG_LBA48) {
700 block |= (u64)tf->hob_lbah << 40;
701 block |= (u64)tf->hob_lbam << 32;
702 block |= (u64)tf->hob_lbal << 24;
703 } else
704 block |= (tf->device & 0xf) << 24;
705
706 block |= tf->lbah << 16;
707 block |= tf->lbam << 8;
708 block |= tf->lbal;
709 } else {
710 u32 cyl, head, sect;
711
712 cyl = tf->lbam | (tf->lbah << 8);
713 head = tf->device & 0xf;
714 sect = tf->lbal;
715
716 if (!sect) {
717 ata_dev_warn(dev,
718 "device reported invalid CHS sector 0\n");
719 sect = 1; /* oh well */
720 }
721
722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 }
724
725 return block;
726 }
727
728 /**
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
735 * @tag: tag
736 *
737 * LOCKING:
738 * None.
739 *
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
742 *
743 * RETURNS:
744 *
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
747 */
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 u64 block, u32 n_block, unsigned int tf_flags,
750 unsigned int tag)
751 {
752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 tf->flags |= tf_flags;
754
755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 /* yay, NCQ */
757 if (!lba_48_ok(block, n_block))
758 return -ERANGE;
759
760 tf->protocol = ATA_PROT_NCQ;
761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762
763 if (tf->flags & ATA_TFLAG_WRITE)
764 tf->command = ATA_CMD_FPDMA_WRITE;
765 else
766 tf->command = ATA_CMD_FPDMA_READ;
767
768 tf->nsect = tag << 3;
769 tf->hob_feature = (n_block >> 8) & 0xff;
770 tf->feature = n_block & 0xff;
771
772 tf->hob_lbah = (block >> 40) & 0xff;
773 tf->hob_lbam = (block >> 32) & 0xff;
774 tf->hob_lbal = (block >> 24) & 0xff;
775 tf->lbah = (block >> 16) & 0xff;
776 tf->lbam = (block >> 8) & 0xff;
777 tf->lbal = block & 0xff;
778
779 tf->device = ATA_LBA;
780 if (tf->flags & ATA_TFLAG_FUA)
781 tf->device |= 1 << 7;
782 } else if (dev->flags & ATA_DFLAG_LBA) {
783 tf->flags |= ATA_TFLAG_LBA;
784
785 if (lba_28_ok(block, n_block)) {
786 /* use LBA28 */
787 tf->device |= (block >> 24) & 0xf;
788 } else if (lba_48_ok(block, n_block)) {
789 if (!(dev->flags & ATA_DFLAG_LBA48))
790 return -ERANGE;
791
792 /* use LBA48 */
793 tf->flags |= ATA_TFLAG_LBA48;
794
795 tf->hob_nsect = (n_block >> 8) & 0xff;
796
797 tf->hob_lbah = (block >> 40) & 0xff;
798 tf->hob_lbam = (block >> 32) & 0xff;
799 tf->hob_lbal = (block >> 24) & 0xff;
800 } else
801 /* request too large even for LBA48 */
802 return -ERANGE;
803
804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 return -EINVAL;
806
807 tf->nsect = n_block & 0xff;
808
809 tf->lbah = (block >> 16) & 0xff;
810 tf->lbam = (block >> 8) & 0xff;
811 tf->lbal = block & 0xff;
812
813 tf->device |= ATA_LBA;
814 } else {
815 /* CHS */
816 u32 sect, head, cyl, track;
817
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block, n_block))
820 return -ERANGE;
821
822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 return -EINVAL;
824
825 /* Convert LBA to CHS */
826 track = (u32)block / dev->sectors;
827 cyl = track / dev->heads;
828 head = track % dev->heads;
829 sect = (u32)block % dev->sectors + 1;
830
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32)block, track, cyl, head, sect);
833
834 /* Check whether the converted CHS can fit.
835 Cylinder: 0-65535
836 Head: 0-15
837 Sector: 1-255*/
838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 return -ERANGE;
840
841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 tf->lbal = sect;
843 tf->lbam = cyl;
844 tf->lbah = cyl >> 8;
845 tf->device |= head;
846 }
847
848 return 0;
849 }
850
851 /**
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
856 *
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
859 *
860 * LOCKING:
861 * None.
862 *
863 * RETURNS:
864 * Packed xfer_mask.
865 */
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 unsigned long mwdma_mask,
868 unsigned long udma_mask)
869 {
870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 }
874
875 /**
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
881 *
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
884 */
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 {
888 if (pio_mask)
889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 if (mwdma_mask)
891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 if (udma_mask)
893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894 }
895
896 static const struct ata_xfer_ent {
897 int shift, bits;
898 u8 base;
899 } ata_xfer_tbl[] = {
900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 { -1, },
904 };
905
906 /**
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
909 *
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
912 *
913 * LOCKING:
914 * None.
915 *
916 * RETURNS:
917 * Matching XFER_* value, 0xff if no match found.
918 */
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 {
921 int highbit = fls(xfer_mask) - 1;
922 const struct ata_xfer_ent *ent;
923
924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 return ent->base + highbit - ent->shift;
927 return 0xff;
928 }
929
930 /**
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_mask for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_mask, 0 if no match found.
941 */
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 {
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 & ~((1 << ent->shift) - 1);
950 return 0;
951 }
952
953 /**
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
956 *
957 * Return matching xfer_shift for @xfer_mode.
958 *
959 * LOCKING:
960 * None.
961 *
962 * RETURNS:
963 * Matching xfer_shift, -1 if no match found.
964 */
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 {
967 const struct ata_xfer_ent *ent;
968
969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 return ent->shift;
972 return -1;
973 }
974
975 /**
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
978 *
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
981 *
982 * LOCKING:
983 * None.
984 *
985 * RETURNS:
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
988 */
989 const char *ata_mode_string(unsigned long xfer_mask)
990 {
991 static const char * const xfer_mode_str[] = {
992 "PIO0",
993 "PIO1",
994 "PIO2",
995 "PIO3",
996 "PIO4",
997 "PIO5",
998 "PIO6",
999 "MWDMA0",
1000 "MWDMA1",
1001 "MWDMA2",
1002 "MWDMA3",
1003 "MWDMA4",
1004 "UDMA/16",
1005 "UDMA/25",
1006 "UDMA/33",
1007 "UDMA/44",
1008 "UDMA/66",
1009 "UDMA/100",
1010 "UDMA/133",
1011 "UDMA7",
1012 };
1013 int highbit;
1014
1015 highbit = fls(xfer_mask) - 1;
1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 return xfer_mode_str[highbit];
1018 return "<n/a>";
1019 }
1020
1021 const char *sata_spd_string(unsigned int spd)
1022 {
1023 static const char * const spd_str[] = {
1024 "1.5 Gbps",
1025 "3.0 Gbps",
1026 "6.0 Gbps",
1027 };
1028
1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 return "<unknown>";
1031 return spd_str[spd - 1];
1032 }
1033
1034 /**
1035 * ata_dev_classify - determine device type based on ATA-spec signature
1036 * @tf: ATA taskfile register set for device to be identified
1037 *
1038 * Determine from taskfile register contents whether a device is
1039 * ATA or ATAPI, as per "Signature and persistence" section
1040 * of ATA/PI spec (volume 1, sect 5.14).
1041 *
1042 * LOCKING:
1043 * None.
1044 *
1045 * RETURNS:
1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1047 * %ATA_DEV_UNKNOWN the event of failure.
1048 */
1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 {
1051 /* Apple's open source Darwin code hints that some devices only
1052 * put a proper signature into the LBA mid/high registers,
1053 * So, we only check those. It's sufficient for uniqueness.
1054 *
1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1058 * spec has never mentioned about using different signatures
1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1060 * Multiplier specification began to use 0x69/0x96 to identify
1061 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 * 0x69/0x96 shortly and described them as reserved for
1064 * SerialATA.
1065 *
1066 * We follow the current spec and consider that 0x69/0x96
1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 * SEMB signature. This is worked around in
1070 * ata_dev_read_id().
1071 */
1072 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 DPRINTK("found ATA device by sig\n");
1074 return ATA_DEV_ATA;
1075 }
1076
1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 DPRINTK("found ATAPI device by sig\n");
1079 return ATA_DEV_ATAPI;
1080 }
1081
1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 DPRINTK("found PMP device by sig\n");
1084 return ATA_DEV_PMP;
1085 }
1086
1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 return ATA_DEV_SEMB;
1090 }
1091
1092 DPRINTK("unknown device\n");
1093 return ATA_DEV_UNKNOWN;
1094 }
1095
1096 /**
1097 * ata_id_string - Convert IDENTIFY DEVICE page into string
1098 * @id: IDENTIFY DEVICE results we will examine
1099 * @s: string into which data is output
1100 * @ofs: offset into identify device page
1101 * @len: length of string to return. must be an even number.
1102 *
1103 * The strings in the IDENTIFY DEVICE page are broken up into
1104 * 16-bit chunks. Run through the string, and output each
1105 * 8-bit chunk linearly, regardless of platform.
1106 *
1107 * LOCKING:
1108 * caller.
1109 */
1110
1111 void ata_id_string(const u16 *id, unsigned char *s,
1112 unsigned int ofs, unsigned int len)
1113 {
1114 unsigned int c;
1115
1116 BUG_ON(len & 1);
1117
1118 while (len > 0) {
1119 c = id[ofs] >> 8;
1120 *s = c;
1121 s++;
1122
1123 c = id[ofs] & 0xff;
1124 *s = c;
1125 s++;
1126
1127 ofs++;
1128 len -= 2;
1129 }
1130 }
1131
1132 /**
1133 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1134 * @id: IDENTIFY DEVICE results we will examine
1135 * @s: string into which data is output
1136 * @ofs: offset into identify device page
1137 * @len: length of string to return. must be an odd number.
1138 *
1139 * This function is identical to ata_id_string except that it
1140 * trims trailing spaces and terminates the resulting string with
1141 * null. @len must be actual maximum length (even number) + 1.
1142 *
1143 * LOCKING:
1144 * caller.
1145 */
1146 void ata_id_c_string(const u16 *id, unsigned char *s,
1147 unsigned int ofs, unsigned int len)
1148 {
1149 unsigned char *p;
1150
1151 ata_id_string(id, s, ofs, len - 1);
1152
1153 p = s + strnlen(s, len - 1);
1154 while (p > s && p[-1] == ' ')
1155 p--;
1156 *p = '\0';
1157 }
1158
1159 static u64 ata_id_n_sectors(const u16 *id)
1160 {
1161 if (ata_id_has_lba(id)) {
1162 if (ata_id_has_lba48(id))
1163 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1164 else
1165 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1166 } else {
1167 if (ata_id_current_chs_valid(id))
1168 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1169 id[ATA_ID_CUR_SECTORS];
1170 else
1171 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1172 id[ATA_ID_SECTORS];
1173 }
1174 }
1175
1176 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1177 {
1178 u64 sectors = 0;
1179
1180 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1181 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1182 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1183 sectors |= (tf->lbah & 0xff) << 16;
1184 sectors |= (tf->lbam & 0xff) << 8;
1185 sectors |= (tf->lbal & 0xff);
1186
1187 return sectors;
1188 }
1189
1190 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1191 {
1192 u64 sectors = 0;
1193
1194 sectors |= (tf->device & 0x0f) << 24;
1195 sectors |= (tf->lbah & 0xff) << 16;
1196 sectors |= (tf->lbam & 0xff) << 8;
1197 sectors |= (tf->lbal & 0xff);
1198
1199 return sectors;
1200 }
1201
1202 /**
1203 * ata_read_native_max_address - Read native max address
1204 * @dev: target device
1205 * @max_sectors: out parameter for the result native max address
1206 *
1207 * Perform an LBA48 or LBA28 native size query upon the device in
1208 * question.
1209 *
1210 * RETURNS:
1211 * 0 on success, -EACCES if command is aborted by the drive.
1212 * -EIO on other errors.
1213 */
1214 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1215 {
1216 unsigned int err_mask;
1217 struct ata_taskfile tf;
1218 int lba48 = ata_id_has_lba48(dev->id);
1219
1220 ata_tf_init(dev, &tf);
1221
1222 /* always clear all address registers */
1223 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1224
1225 if (lba48) {
1226 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1227 tf.flags |= ATA_TFLAG_LBA48;
1228 } else
1229 tf.command = ATA_CMD_READ_NATIVE_MAX;
1230
1231 tf.protocol |= ATA_PROT_NODATA;
1232 tf.device |= ATA_LBA;
1233
1234 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1235 if (err_mask) {
1236 ata_dev_warn(dev,
1237 "failed to read native max address (err_mask=0x%x)\n",
1238 err_mask);
1239 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1240 return -EACCES;
1241 return -EIO;
1242 }
1243
1244 if (lba48)
1245 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1246 else
1247 *max_sectors = ata_tf_to_lba(&tf) + 1;
1248 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1249 (*max_sectors)--;
1250 return 0;
1251 }
1252
1253 /**
1254 * ata_set_max_sectors - Set max sectors
1255 * @dev: target device
1256 * @new_sectors: new max sectors value to set for the device
1257 *
1258 * Set max sectors of @dev to @new_sectors.
1259 *
1260 * RETURNS:
1261 * 0 on success, -EACCES if command is aborted or denied (due to
1262 * previous non-volatile SET_MAX) by the drive. -EIO on other
1263 * errors.
1264 */
1265 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1266 {
1267 unsigned int err_mask;
1268 struct ata_taskfile tf;
1269 int lba48 = ata_id_has_lba48(dev->id);
1270
1271 new_sectors--;
1272
1273 ata_tf_init(dev, &tf);
1274
1275 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1276
1277 if (lba48) {
1278 tf.command = ATA_CMD_SET_MAX_EXT;
1279 tf.flags |= ATA_TFLAG_LBA48;
1280
1281 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1282 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1283 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1284 } else {
1285 tf.command = ATA_CMD_SET_MAX;
1286
1287 tf.device |= (new_sectors >> 24) & 0xf;
1288 }
1289
1290 tf.protocol |= ATA_PROT_NODATA;
1291 tf.device |= ATA_LBA;
1292
1293 tf.lbal = (new_sectors >> 0) & 0xff;
1294 tf.lbam = (new_sectors >> 8) & 0xff;
1295 tf.lbah = (new_sectors >> 16) & 0xff;
1296
1297 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1298 if (err_mask) {
1299 ata_dev_warn(dev,
1300 "failed to set max address (err_mask=0x%x)\n",
1301 err_mask);
1302 if (err_mask == AC_ERR_DEV &&
1303 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1304 return -EACCES;
1305 return -EIO;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * ata_hpa_resize - Resize a device with an HPA set
1313 * @dev: Device to resize
1314 *
1315 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1316 * it if required to the full size of the media. The caller must check
1317 * the drive has the HPA feature set enabled.
1318 *
1319 * RETURNS:
1320 * 0 on success, -errno on failure.
1321 */
1322 static int ata_hpa_resize(struct ata_device *dev)
1323 {
1324 struct ata_eh_context *ehc = &dev->link->eh_context;
1325 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1326 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1327 u64 sectors = ata_id_n_sectors(dev->id);
1328 u64 native_sectors;
1329 int rc;
1330
1331 /* do we need to do it? */
1332 if (dev->class != ATA_DEV_ATA ||
1333 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1334 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1335 return 0;
1336
1337 /* read native max address */
1338 rc = ata_read_native_max_address(dev, &native_sectors);
1339 if (rc) {
1340 /* If device aborted the command or HPA isn't going to
1341 * be unlocked, skip HPA resizing.
1342 */
1343 if (rc == -EACCES || !unlock_hpa) {
1344 ata_dev_warn(dev,
1345 "HPA support seems broken, skipping HPA handling\n");
1346 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1347
1348 /* we can continue if device aborted the command */
1349 if (rc == -EACCES)
1350 rc = 0;
1351 }
1352
1353 return rc;
1354 }
1355 dev->n_native_sectors = native_sectors;
1356
1357 /* nothing to do? */
1358 if (native_sectors <= sectors || !unlock_hpa) {
1359 if (!print_info || native_sectors == sectors)
1360 return 0;
1361
1362 if (native_sectors > sectors)
1363 ata_dev_info(dev,
1364 "HPA detected: current %llu, native %llu\n",
1365 (unsigned long long)sectors,
1366 (unsigned long long)native_sectors);
1367 else if (native_sectors < sectors)
1368 ata_dev_warn(dev,
1369 "native sectors (%llu) is smaller than sectors (%llu)\n",
1370 (unsigned long long)native_sectors,
1371 (unsigned long long)sectors);
1372 return 0;
1373 }
1374
1375 /* let's unlock HPA */
1376 rc = ata_set_max_sectors(dev, native_sectors);
1377 if (rc == -EACCES) {
1378 /* if device aborted the command, skip HPA resizing */
1379 ata_dev_warn(dev,
1380 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1381 (unsigned long long)sectors,
1382 (unsigned long long)native_sectors);
1383 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1384 return 0;
1385 } else if (rc)
1386 return rc;
1387
1388 /* re-read IDENTIFY data */
1389 rc = ata_dev_reread_id(dev, 0);
1390 if (rc) {
1391 ata_dev_err(dev,
1392 "failed to re-read IDENTIFY data after HPA resizing\n");
1393 return rc;
1394 }
1395
1396 if (print_info) {
1397 u64 new_sectors = ata_id_n_sectors(dev->id);
1398 ata_dev_info(dev,
1399 "HPA unlocked: %llu -> %llu, native %llu\n",
1400 (unsigned long long)sectors,
1401 (unsigned long long)new_sectors,
1402 (unsigned long long)native_sectors);
1403 }
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * ata_dump_id - IDENTIFY DEVICE info debugging output
1410 * @id: IDENTIFY DEVICE page to dump
1411 *
1412 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1413 * page.
1414 *
1415 * LOCKING:
1416 * caller.
1417 */
1418
1419 static inline void ata_dump_id(const u16 *id)
1420 {
1421 DPRINTK("49==0x%04x "
1422 "53==0x%04x "
1423 "63==0x%04x "
1424 "64==0x%04x "
1425 "75==0x%04x \n",
1426 id[49],
1427 id[53],
1428 id[63],
1429 id[64],
1430 id[75]);
1431 DPRINTK("80==0x%04x "
1432 "81==0x%04x "
1433 "82==0x%04x "
1434 "83==0x%04x "
1435 "84==0x%04x \n",
1436 id[80],
1437 id[81],
1438 id[82],
1439 id[83],
1440 id[84]);
1441 DPRINTK("88==0x%04x "
1442 "93==0x%04x\n",
1443 id[88],
1444 id[93]);
1445 }
1446
1447 /**
1448 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1449 * @id: IDENTIFY data to compute xfer mask from
1450 *
1451 * Compute the xfermask for this device. This is not as trivial
1452 * as it seems if we must consider early devices correctly.
1453 *
1454 * FIXME: pre IDE drive timing (do we care ?).
1455 *
1456 * LOCKING:
1457 * None.
1458 *
1459 * RETURNS:
1460 * Computed xfermask
1461 */
1462 unsigned long ata_id_xfermask(const u16 *id)
1463 {
1464 unsigned long pio_mask, mwdma_mask, udma_mask;
1465
1466 /* Usual case. Word 53 indicates word 64 is valid */
1467 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1468 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1469 pio_mask <<= 3;
1470 pio_mask |= 0x7;
1471 } else {
1472 /* If word 64 isn't valid then Word 51 high byte holds
1473 * the PIO timing number for the maximum. Turn it into
1474 * a mask.
1475 */
1476 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1477 if (mode < 5) /* Valid PIO range */
1478 pio_mask = (2 << mode) - 1;
1479 else
1480 pio_mask = 1;
1481
1482 /* But wait.. there's more. Design your standards by
1483 * committee and you too can get a free iordy field to
1484 * process. However its the speeds not the modes that
1485 * are supported... Note drivers using the timing API
1486 * will get this right anyway
1487 */
1488 }
1489
1490 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1491
1492 if (ata_id_is_cfa(id)) {
1493 /*
1494 * Process compact flash extended modes
1495 */
1496 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1497 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1498
1499 if (pio)
1500 pio_mask |= (1 << 5);
1501 if (pio > 1)
1502 pio_mask |= (1 << 6);
1503 if (dma)
1504 mwdma_mask |= (1 << 3);
1505 if (dma > 1)
1506 mwdma_mask |= (1 << 4);
1507 }
1508
1509 udma_mask = 0;
1510 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1511 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1512
1513 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1514 }
1515
1516 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1517 {
1518 struct completion *waiting = qc->private_data;
1519
1520 complete(waiting);
1521 }
1522
1523 /**
1524 * ata_exec_internal_sg - execute libata internal command
1525 * @dev: Device to which the command is sent
1526 * @tf: Taskfile registers for the command and the result
1527 * @cdb: CDB for packet command
1528 * @dma_dir: Data tranfer direction of the command
1529 * @sgl: sg list for the data buffer of the command
1530 * @n_elem: Number of sg entries
1531 * @timeout: Timeout in msecs (0 for default)
1532 *
1533 * Executes libata internal command with timeout. @tf contains
1534 * command on entry and result on return. Timeout and error
1535 * conditions are reported via return value. No recovery action
1536 * is taken after a command times out. It's caller's duty to
1537 * clean up after timeout.
1538 *
1539 * LOCKING:
1540 * None. Should be called with kernel context, might sleep.
1541 *
1542 * RETURNS:
1543 * Zero on success, AC_ERR_* mask on failure
1544 */
1545 unsigned ata_exec_internal_sg(struct ata_device *dev,
1546 struct ata_taskfile *tf, const u8 *cdb,
1547 int dma_dir, struct scatterlist *sgl,
1548 unsigned int n_elem, unsigned long timeout)
1549 {
1550 struct ata_link *link = dev->link;
1551 struct ata_port *ap = link->ap;
1552 u8 command = tf->command;
1553 int auto_timeout = 0;
1554 struct ata_queued_cmd *qc;
1555 unsigned int tag, preempted_tag;
1556 u32 preempted_sactive, preempted_qc_active;
1557 int preempted_nr_active_links;
1558 DECLARE_COMPLETION_ONSTACK(wait);
1559 unsigned long flags;
1560 unsigned int err_mask;
1561 int rc;
1562
1563 spin_lock_irqsave(ap->lock, flags);
1564
1565 /* no internal command while frozen */
1566 if (ap->pflags & ATA_PFLAG_FROZEN) {
1567 spin_unlock_irqrestore(ap->lock, flags);
1568 return AC_ERR_SYSTEM;
1569 }
1570
1571 /* initialize internal qc */
1572
1573 /* XXX: Tag 0 is used for drivers with legacy EH as some
1574 * drivers choke if any other tag is given. This breaks
1575 * ata_tag_internal() test for those drivers. Don't use new
1576 * EH stuff without converting to it.
1577 */
1578 if (ap->ops->error_handler)
1579 tag = ATA_TAG_INTERNAL;
1580 else
1581 tag = 0;
1582
1583 if (test_and_set_bit(tag, &ap->qc_allocated))
1584 BUG();
1585 qc = __ata_qc_from_tag(ap, tag);
1586
1587 qc->tag = tag;
1588 qc->scsicmd = NULL;
1589 qc->ap = ap;
1590 qc->dev = dev;
1591 ata_qc_reinit(qc);
1592
1593 preempted_tag = link->active_tag;
1594 preempted_sactive = link->sactive;
1595 preempted_qc_active = ap->qc_active;
1596 preempted_nr_active_links = ap->nr_active_links;
1597 link->active_tag = ATA_TAG_POISON;
1598 link->sactive = 0;
1599 ap->qc_active = 0;
1600 ap->nr_active_links = 0;
1601
1602 /* prepare & issue qc */
1603 qc->tf = *tf;
1604 if (cdb)
1605 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1606 qc->flags |= ATA_QCFLAG_RESULT_TF;
1607 qc->dma_dir = dma_dir;
1608 if (dma_dir != DMA_NONE) {
1609 unsigned int i, buflen = 0;
1610 struct scatterlist *sg;
1611
1612 for_each_sg(sgl, sg, n_elem, i)
1613 buflen += sg->length;
1614
1615 ata_sg_init(qc, sgl, n_elem);
1616 qc->nbytes = buflen;
1617 }
1618
1619 qc->private_data = &wait;
1620 qc->complete_fn = ata_qc_complete_internal;
1621
1622 ata_qc_issue(qc);
1623
1624 spin_unlock_irqrestore(ap->lock, flags);
1625
1626 if (!timeout) {
1627 if (ata_probe_timeout)
1628 timeout = ata_probe_timeout * 1000;
1629 else {
1630 timeout = ata_internal_cmd_timeout(dev, command);
1631 auto_timeout = 1;
1632 }
1633 }
1634
1635 if (ap->ops->error_handler)
1636 ata_eh_release(ap);
1637
1638 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1639
1640 if (ap->ops->error_handler)
1641 ata_eh_acquire(ap);
1642
1643 ata_sff_flush_pio_task(ap);
1644
1645 if (!rc) {
1646 spin_lock_irqsave(ap->lock, flags);
1647
1648 /* We're racing with irq here. If we lose, the
1649 * following test prevents us from completing the qc
1650 * twice. If we win, the port is frozen and will be
1651 * cleaned up by ->post_internal_cmd().
1652 */
1653 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1654 qc->err_mask |= AC_ERR_TIMEOUT;
1655
1656 if (ap->ops->error_handler)
1657 ata_port_freeze(ap);
1658 else
1659 ata_qc_complete(qc);
1660
1661 if (ata_msg_warn(ap))
1662 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1663 command);
1664 }
1665
1666 spin_unlock_irqrestore(ap->lock, flags);
1667 }
1668
1669 /* do post_internal_cmd */
1670 if (ap->ops->post_internal_cmd)
1671 ap->ops->post_internal_cmd(qc);
1672
1673 /* perform minimal error analysis */
1674 if (qc->flags & ATA_QCFLAG_FAILED) {
1675 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1676 qc->err_mask |= AC_ERR_DEV;
1677
1678 if (!qc->err_mask)
1679 qc->err_mask |= AC_ERR_OTHER;
1680
1681 if (qc->err_mask & ~AC_ERR_OTHER)
1682 qc->err_mask &= ~AC_ERR_OTHER;
1683 }
1684
1685 /* finish up */
1686 spin_lock_irqsave(ap->lock, flags);
1687
1688 *tf = qc->result_tf;
1689 err_mask = qc->err_mask;
1690
1691 ata_qc_free(qc);
1692 link->active_tag = preempted_tag;
1693 link->sactive = preempted_sactive;
1694 ap->qc_active = preempted_qc_active;
1695 ap->nr_active_links = preempted_nr_active_links;
1696
1697 spin_unlock_irqrestore(ap->lock, flags);
1698
1699 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1700 ata_internal_cmd_timed_out(dev, command);
1701
1702 return err_mask;
1703 }
1704
1705 /**
1706 * ata_exec_internal - execute libata internal command
1707 * @dev: Device to which the command is sent
1708 * @tf: Taskfile registers for the command and the result
1709 * @cdb: CDB for packet command
1710 * @dma_dir: Data tranfer direction of the command
1711 * @buf: Data buffer of the command
1712 * @buflen: Length of data buffer
1713 * @timeout: Timeout in msecs (0 for default)
1714 *
1715 * Wrapper around ata_exec_internal_sg() which takes simple
1716 * buffer instead of sg list.
1717 *
1718 * LOCKING:
1719 * None. Should be called with kernel context, might sleep.
1720 *
1721 * RETURNS:
1722 * Zero on success, AC_ERR_* mask on failure
1723 */
1724 unsigned ata_exec_internal(struct ata_device *dev,
1725 struct ata_taskfile *tf, const u8 *cdb,
1726 int dma_dir, void *buf, unsigned int buflen,
1727 unsigned long timeout)
1728 {
1729 struct scatterlist *psg = NULL, sg;
1730 unsigned int n_elem = 0;
1731
1732 if (dma_dir != DMA_NONE) {
1733 WARN_ON(!buf);
1734 sg_init_one(&sg, buf, buflen);
1735 psg = &sg;
1736 n_elem++;
1737 }
1738
1739 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1740 timeout);
1741 }
1742
1743 /**
1744 * ata_do_simple_cmd - execute simple internal command
1745 * @dev: Device to which the command is sent
1746 * @cmd: Opcode to execute
1747 *
1748 * Execute a 'simple' command, that only consists of the opcode
1749 * 'cmd' itself, without filling any other registers
1750 *
1751 * LOCKING:
1752 * Kernel thread context (may sleep).
1753 *
1754 * RETURNS:
1755 * Zero on success, AC_ERR_* mask on failure
1756 */
1757 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1758 {
1759 struct ata_taskfile tf;
1760
1761 ata_tf_init(dev, &tf);
1762
1763 tf.command = cmd;
1764 tf.flags |= ATA_TFLAG_DEVICE;
1765 tf.protocol = ATA_PROT_NODATA;
1766
1767 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1768 }
1769
1770 /**
1771 * ata_pio_need_iordy - check if iordy needed
1772 * @adev: ATA device
1773 *
1774 * Check if the current speed of the device requires IORDY. Used
1775 * by various controllers for chip configuration.
1776 */
1777 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1778 {
1779 /* Don't set IORDY if we're preparing for reset. IORDY may
1780 * lead to controller lock up on certain controllers if the
1781 * port is not occupied. See bko#11703 for details.
1782 */
1783 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1784 return 0;
1785 /* Controller doesn't support IORDY. Probably a pointless
1786 * check as the caller should know this.
1787 */
1788 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1789 return 0;
1790 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1791 if (ata_id_is_cfa(adev->id)
1792 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1793 return 0;
1794 /* PIO3 and higher it is mandatory */
1795 if (adev->pio_mode > XFER_PIO_2)
1796 return 1;
1797 /* We turn it on when possible */
1798 if (ata_id_has_iordy(adev->id))
1799 return 1;
1800 return 0;
1801 }
1802
1803 /**
1804 * ata_pio_mask_no_iordy - Return the non IORDY mask
1805 * @adev: ATA device
1806 *
1807 * Compute the highest mode possible if we are not using iordy. Return
1808 * -1 if no iordy mode is available.
1809 */
1810 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1811 {
1812 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1813 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1814 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1815 /* Is the speed faster than the drive allows non IORDY ? */
1816 if (pio) {
1817 /* This is cycle times not frequency - watch the logic! */
1818 if (pio > 240) /* PIO2 is 240nS per cycle */
1819 return 3 << ATA_SHIFT_PIO;
1820 return 7 << ATA_SHIFT_PIO;
1821 }
1822 }
1823 return 3 << ATA_SHIFT_PIO;
1824 }
1825
1826 /**
1827 * ata_do_dev_read_id - default ID read method
1828 * @dev: device
1829 * @tf: proposed taskfile
1830 * @id: data buffer
1831 *
1832 * Issue the identify taskfile and hand back the buffer containing
1833 * identify data. For some RAID controllers and for pre ATA devices
1834 * this function is wrapped or replaced by the driver
1835 */
1836 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1837 struct ata_taskfile *tf, u16 *id)
1838 {
1839 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1840 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1841 }
1842
1843 /**
1844 * ata_dev_read_id - Read ID data from the specified device
1845 * @dev: target device
1846 * @p_class: pointer to class of the target device (may be changed)
1847 * @flags: ATA_READID_* flags
1848 * @id: buffer to read IDENTIFY data into
1849 *
1850 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1851 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1852 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1853 * for pre-ATA4 drives.
1854 *
1855 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1856 * now we abort if we hit that case.
1857 *
1858 * LOCKING:
1859 * Kernel thread context (may sleep)
1860 *
1861 * RETURNS:
1862 * 0 on success, -errno otherwise.
1863 */
1864 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1865 unsigned int flags, u16 *id)
1866 {
1867 struct ata_port *ap = dev->link->ap;
1868 unsigned int class = *p_class;
1869 struct ata_taskfile tf;
1870 unsigned int err_mask = 0;
1871 const char *reason;
1872 bool is_semb = class == ATA_DEV_SEMB;
1873 int may_fallback = 1, tried_spinup = 0;
1874 int rc;
1875
1876 if (ata_msg_ctl(ap))
1877 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1878
1879 retry:
1880 ata_tf_init(dev, &tf);
1881
1882 switch (class) {
1883 case ATA_DEV_SEMB:
1884 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1885 case ATA_DEV_ATA:
1886 tf.command = ATA_CMD_ID_ATA;
1887 break;
1888 case ATA_DEV_ATAPI:
1889 tf.command = ATA_CMD_ID_ATAPI;
1890 break;
1891 default:
1892 rc = -ENODEV;
1893 reason = "unsupported class";
1894 goto err_out;
1895 }
1896
1897 tf.protocol = ATA_PROT_PIO;
1898
1899 /* Some devices choke if TF registers contain garbage. Make
1900 * sure those are properly initialized.
1901 */
1902 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1903
1904 /* Device presence detection is unreliable on some
1905 * controllers. Always poll IDENTIFY if available.
1906 */
1907 tf.flags |= ATA_TFLAG_POLLING;
1908
1909 if (ap->ops->read_id)
1910 err_mask = ap->ops->read_id(dev, &tf, id);
1911 else
1912 err_mask = ata_do_dev_read_id(dev, &tf, id);
1913
1914 if (err_mask) {
1915 if (err_mask & AC_ERR_NODEV_HINT) {
1916 ata_dev_dbg(dev, "NODEV after polling detection\n");
1917 return -ENOENT;
1918 }
1919
1920 if (is_semb) {
1921 ata_dev_info(dev,
1922 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1923 /* SEMB is not supported yet */
1924 *p_class = ATA_DEV_SEMB_UNSUP;
1925 return 0;
1926 }
1927
1928 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1929 /* Device or controller might have reported
1930 * the wrong device class. Give a shot at the
1931 * other IDENTIFY if the current one is
1932 * aborted by the device.
1933 */
1934 if (may_fallback) {
1935 may_fallback = 0;
1936
1937 if (class == ATA_DEV_ATA)
1938 class = ATA_DEV_ATAPI;
1939 else
1940 class = ATA_DEV_ATA;
1941 goto retry;
1942 }
1943
1944 /* Control reaches here iff the device aborted
1945 * both flavors of IDENTIFYs which happens
1946 * sometimes with phantom devices.
1947 */
1948 ata_dev_dbg(dev,
1949 "both IDENTIFYs aborted, assuming NODEV\n");
1950 return -ENOENT;
1951 }
1952
1953 rc = -EIO;
1954 reason = "I/O error";
1955 goto err_out;
1956 }
1957
1958 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1959 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1960 "class=%d may_fallback=%d tried_spinup=%d\n",
1961 class, may_fallback, tried_spinup);
1962 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1963 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1964 }
1965
1966 /* Falling back doesn't make sense if ID data was read
1967 * successfully at least once.
1968 */
1969 may_fallback = 0;
1970
1971 swap_buf_le16(id, ATA_ID_WORDS);
1972
1973 /* sanity check */
1974 rc = -EINVAL;
1975 reason = "device reports invalid type";
1976
1977 if (class == ATA_DEV_ATA) {
1978 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1979 goto err_out;
1980 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1981 ata_id_is_ata(id)) {
1982 ata_dev_dbg(dev,
1983 "host indicates ignore ATA devices, ignored\n");
1984 return -ENOENT;
1985 }
1986 } else {
1987 if (ata_id_is_ata(id))
1988 goto err_out;
1989 }
1990
1991 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1992 tried_spinup = 1;
1993 /*
1994 * Drive powered-up in standby mode, and requires a specific
1995 * SET_FEATURES spin-up subcommand before it will accept
1996 * anything other than the original IDENTIFY command.
1997 */
1998 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1999 if (err_mask && id[2] != 0x738c) {
2000 rc = -EIO;
2001 reason = "SPINUP failed";
2002 goto err_out;
2003 }
2004 /*
2005 * If the drive initially returned incomplete IDENTIFY info,
2006 * we now must reissue the IDENTIFY command.
2007 */
2008 if (id[2] == 0x37c8)
2009 goto retry;
2010 }
2011
2012 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2013 /*
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2015 * SRST RESET
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 * anything else..
2019 * Some drives were very specific about that exact sequence.
2020 *
2021 * Note that ATA4 says lba is mandatory so the second check
2022 * should never trigger.
2023 */
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 if (err_mask) {
2027 rc = -EIO;
2028 reason = "INIT_DEV_PARAMS failed";
2029 goto err_out;
2030 }
2031
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2034 */
2035 flags &= ~ATA_READID_POSTRESET;
2036 goto retry;
2037 }
2038 }
2039
2040 *p_class = class;
2041
2042 return 0;
2043
2044 err_out:
2045 if (ata_msg_warn(ap))
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 reason, err_mask);
2048 return rc;
2049 }
2050
2051 static int ata_do_link_spd_horkage(struct ata_device *dev)
2052 {
2053 struct ata_link *plink = ata_dev_phys_link(dev);
2054 u32 target, target_limit;
2055
2056 if (!sata_scr_valid(plink))
2057 return 0;
2058
2059 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2060 target = 1;
2061 else
2062 return 0;
2063
2064 target_limit = (1 << target) - 1;
2065
2066 /* if already on stricter limit, no need to push further */
2067 if (plink->sata_spd_limit <= target_limit)
2068 return 0;
2069
2070 plink->sata_spd_limit = target_limit;
2071
2072 /* Request another EH round by returning -EAGAIN if link is
2073 * going faster than the target speed. Forward progress is
2074 * guaranteed by setting sata_spd_limit to target_limit above.
2075 */
2076 if (plink->sata_spd > target) {
2077 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2078 sata_spd_string(target));
2079 return -EAGAIN;
2080 }
2081 return 0;
2082 }
2083
2084 static inline u8 ata_dev_knobble(struct ata_device *dev)
2085 {
2086 struct ata_port *ap = dev->link->ap;
2087
2088 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2089 return 0;
2090
2091 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2092 }
2093
2094 static int ata_dev_config_ncq(struct ata_device *dev,
2095 char *desc, size_t desc_sz)
2096 {
2097 struct ata_port *ap = dev->link->ap;
2098 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2099 unsigned int err_mask;
2100 char *aa_desc = "";
2101
2102 if (!ata_id_has_ncq(dev->id)) {
2103 desc[0] = '\0';
2104 return 0;
2105 }
2106 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2107 snprintf(desc, desc_sz, "NCQ (not used)");
2108 return 0;
2109 }
2110 if (ap->flags & ATA_FLAG_NCQ) {
2111 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2112 dev->flags |= ATA_DFLAG_NCQ;
2113 }
2114
2115 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2116 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2117 ata_id_has_fpdma_aa(dev->id)) {
2118 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2119 SATA_FPDMA_AA);
2120 if (err_mask) {
2121 ata_dev_err(dev,
2122 "failed to enable AA (error_mask=0x%x)\n",
2123 err_mask);
2124 if (err_mask != AC_ERR_DEV) {
2125 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2126 return -EIO;
2127 }
2128 } else
2129 aa_desc = ", AA";
2130 }
2131
2132 if (hdepth >= ddepth)
2133 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2134 else
2135 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2136 ddepth, aa_desc);
2137 return 0;
2138 }
2139
2140 /**
2141 * ata_dev_configure - Configure the specified ATA/ATAPI device
2142 * @dev: Target device to configure
2143 *
2144 * Configure @dev according to @dev->id. Generic and low-level
2145 * driver specific fixups are also applied.
2146 *
2147 * LOCKING:
2148 * Kernel thread context (may sleep)
2149 *
2150 * RETURNS:
2151 * 0 on success, -errno otherwise
2152 */
2153 int ata_dev_configure(struct ata_device *dev)
2154 {
2155 struct ata_port *ap = dev->link->ap;
2156 struct ata_eh_context *ehc = &dev->link->eh_context;
2157 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2158 const u16 *id = dev->id;
2159 unsigned long xfer_mask;
2160 unsigned int err_mask;
2161 char revbuf[7]; /* XYZ-99\0 */
2162 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2163 char modelbuf[ATA_ID_PROD_LEN+1];
2164 int rc;
2165
2166 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2167 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2168 return 0;
2169 }
2170
2171 if (ata_msg_probe(ap))
2172 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2173
2174 /* set horkage */
2175 dev->horkage |= ata_dev_blacklisted(dev);
2176 ata_force_horkage(dev);
2177
2178 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2179 ata_dev_info(dev, "unsupported device, disabling\n");
2180 ata_dev_disable(dev);
2181 return 0;
2182 }
2183
2184 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2185 dev->class == ATA_DEV_ATAPI) {
2186 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2187 atapi_enabled ? "not supported with this driver"
2188 : "disabled");
2189 ata_dev_disable(dev);
2190 return 0;
2191 }
2192
2193 rc = ata_do_link_spd_horkage(dev);
2194 if (rc)
2195 return rc;
2196
2197 /* let ACPI work its magic */
2198 rc = ata_acpi_on_devcfg(dev);
2199 if (rc)
2200 return rc;
2201
2202 /* massage HPA, do it early as it might change IDENTIFY data */
2203 rc = ata_hpa_resize(dev);
2204 if (rc)
2205 return rc;
2206
2207 /* print device capabilities */
2208 if (ata_msg_probe(ap))
2209 ata_dev_dbg(dev,
2210 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2211 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2212 __func__,
2213 id[49], id[82], id[83], id[84],
2214 id[85], id[86], id[87], id[88]);
2215
2216 /* initialize to-be-configured parameters */
2217 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2218 dev->max_sectors = 0;
2219 dev->cdb_len = 0;
2220 dev->n_sectors = 0;
2221 dev->cylinders = 0;
2222 dev->heads = 0;
2223 dev->sectors = 0;
2224 dev->multi_count = 0;
2225
2226 /*
2227 * common ATA, ATAPI feature tests
2228 */
2229
2230 /* find max transfer mode; for printk only */
2231 xfer_mask = ata_id_xfermask(id);
2232
2233 if (ata_msg_probe(ap))
2234 ata_dump_id(id);
2235
2236 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2237 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2238 sizeof(fwrevbuf));
2239
2240 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2241 sizeof(modelbuf));
2242
2243 /* ATA-specific feature tests */
2244 if (dev->class == ATA_DEV_ATA) {
2245 if (ata_id_is_cfa(id)) {
2246 /* CPRM may make this media unusable */
2247 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2248 ata_dev_warn(dev,
2249 "supports DRM functions and may not be fully accessible\n");
2250 snprintf(revbuf, 7, "CFA");
2251 } else {
2252 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2253 /* Warn the user if the device has TPM extensions */
2254 if (ata_id_has_tpm(id))
2255 ata_dev_warn(dev,
2256 "supports DRM functions and may not be fully accessible\n");
2257 }
2258
2259 dev->n_sectors = ata_id_n_sectors(id);
2260
2261 /* get current R/W Multiple count setting */
2262 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2263 unsigned int max = dev->id[47] & 0xff;
2264 unsigned int cnt = dev->id[59] & 0xff;
2265 /* only recognize/allow powers of two here */
2266 if (is_power_of_2(max) && is_power_of_2(cnt))
2267 if (cnt <= max)
2268 dev->multi_count = cnt;
2269 }
2270
2271 if (ata_id_has_lba(id)) {
2272 const char *lba_desc;
2273 char ncq_desc[24];
2274
2275 lba_desc = "LBA";
2276 dev->flags |= ATA_DFLAG_LBA;
2277 if (ata_id_has_lba48(id)) {
2278 dev->flags |= ATA_DFLAG_LBA48;
2279 lba_desc = "LBA48";
2280
2281 if (dev->n_sectors >= (1UL << 28) &&
2282 ata_id_has_flush_ext(id))
2283 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2284 }
2285
2286 /* config NCQ */
2287 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2288 if (rc)
2289 return rc;
2290
2291 /* print device info to dmesg */
2292 if (ata_msg_drv(ap) && print_info) {
2293 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2294 revbuf, modelbuf, fwrevbuf,
2295 ata_mode_string(xfer_mask));
2296 ata_dev_info(dev,
2297 "%llu sectors, multi %u: %s %s\n",
2298 (unsigned long long)dev->n_sectors,
2299 dev->multi_count, lba_desc, ncq_desc);
2300 }
2301 } else {
2302 /* CHS */
2303
2304 /* Default translation */
2305 dev->cylinders = id[1];
2306 dev->heads = id[3];
2307 dev->sectors = id[6];
2308
2309 if (ata_id_current_chs_valid(id)) {
2310 /* Current CHS translation is valid. */
2311 dev->cylinders = id[54];
2312 dev->heads = id[55];
2313 dev->sectors = id[56];
2314 }
2315
2316 /* print device info to dmesg */
2317 if (ata_msg_drv(ap) && print_info) {
2318 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2319 revbuf, modelbuf, fwrevbuf,
2320 ata_mode_string(xfer_mask));
2321 ata_dev_info(dev,
2322 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2323 (unsigned long long)dev->n_sectors,
2324 dev->multi_count, dev->cylinders,
2325 dev->heads, dev->sectors);
2326 }
2327 }
2328
2329 /* Check and mark DevSlp capability. Get DevSlp timing variables
2330 * from SATA Settings page of Identify Device Data Log.
2331 */
2332 if (ata_id_has_devslp(dev->id)) {
2333 u8 sata_setting[ATA_SECT_SIZE];
2334 int i, j;
2335
2336 dev->flags |= ATA_DFLAG_DEVSLP;
2337 err_mask = ata_read_log_page(dev,
2338 ATA_LOG_SATA_ID_DEV_DATA,
2339 ATA_LOG_SATA_SETTINGS,
2340 sata_setting,
2341 1);
2342 if (err_mask)
2343 ata_dev_dbg(dev,
2344 "failed to get Identify Device Data, Emask 0x%x\n",
2345 err_mask);
2346 else
2347 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2348 j = ATA_LOG_DEVSLP_OFFSET + i;
2349 dev->devslp_timing[i] = sata_setting[j];
2350 }
2351 }
2352
2353 dev->cdb_len = 16;
2354 }
2355
2356 /* ATAPI-specific feature tests */
2357 else if (dev->class == ATA_DEV_ATAPI) {
2358 const char *cdb_intr_string = "";
2359 const char *atapi_an_string = "";
2360 const char *dma_dir_string = "";
2361 u32 sntf;
2362
2363 rc = atapi_cdb_len(id);
2364 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2365 if (ata_msg_warn(ap))
2366 ata_dev_warn(dev, "unsupported CDB len\n");
2367 rc = -EINVAL;
2368 goto err_out_nosup;
2369 }
2370 dev->cdb_len = (unsigned int) rc;
2371
2372 /* Enable ATAPI AN if both the host and device have
2373 * the support. If PMP is attached, SNTF is required
2374 * to enable ATAPI AN to discern between PHY status
2375 * changed notifications and ATAPI ANs.
2376 */
2377 if (atapi_an &&
2378 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2379 (!sata_pmp_attached(ap) ||
2380 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2381 /* issue SET feature command to turn this on */
2382 err_mask = ata_dev_set_feature(dev,
2383 SETFEATURES_SATA_ENABLE, SATA_AN);
2384 if (err_mask)
2385 ata_dev_err(dev,
2386 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2387 err_mask);
2388 else {
2389 dev->flags |= ATA_DFLAG_AN;
2390 atapi_an_string = ", ATAPI AN";
2391 }
2392 }
2393
2394 if (ata_id_cdb_intr(dev->id)) {
2395 dev->flags |= ATA_DFLAG_CDB_INTR;
2396 cdb_intr_string = ", CDB intr";
2397 }
2398
2399 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2400 dev->flags |= ATA_DFLAG_DMADIR;
2401 dma_dir_string = ", DMADIR";
2402 }
2403
2404 if (ata_id_has_da(dev->id))
2405 dev->flags |= ATA_DFLAG_DA;
2406
2407 /* print device info to dmesg */
2408 if (ata_msg_drv(ap) && print_info)
2409 ata_dev_info(dev,
2410 "ATAPI: %s, %s, max %s%s%s%s\n",
2411 modelbuf, fwrevbuf,
2412 ata_mode_string(xfer_mask),
2413 cdb_intr_string, atapi_an_string,
2414 dma_dir_string);
2415 }
2416
2417 /* determine max_sectors */
2418 dev->max_sectors = ATA_MAX_SECTORS;
2419 if (dev->flags & ATA_DFLAG_LBA48)
2420 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2421
2422 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2423 200 sectors */
2424 if (ata_dev_knobble(dev)) {
2425 if (ata_msg_drv(ap) && print_info)
2426 ata_dev_info(dev, "applying bridge limits\n");
2427 dev->udma_mask &= ATA_UDMA5;
2428 dev->max_sectors = ATA_MAX_SECTORS;
2429 }
2430
2431 if ((dev->class == ATA_DEV_ATAPI) &&
2432 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2433 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2434 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2435 }
2436
2437 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2438 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2439 dev->max_sectors);
2440
2441 if (ap->ops->dev_config)
2442 ap->ops->dev_config(dev);
2443
2444 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2445 /* Let the user know. We don't want to disallow opens for
2446 rescue purposes, or in case the vendor is just a blithering
2447 idiot. Do this after the dev_config call as some controllers
2448 with buggy firmware may want to avoid reporting false device
2449 bugs */
2450
2451 if (print_info) {
2452 ata_dev_warn(dev,
2453 "Drive reports diagnostics failure. This may indicate a drive\n");
2454 ata_dev_warn(dev,
2455 "fault or invalid emulation. Contact drive vendor for information.\n");
2456 }
2457 }
2458
2459 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2460 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2461 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2462 }
2463
2464 return 0;
2465
2466 err_out_nosup:
2467 if (ata_msg_probe(ap))
2468 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2469 return rc;
2470 }
2471
2472 /**
2473 * ata_cable_40wire - return 40 wire cable type
2474 * @ap: port
2475 *
2476 * Helper method for drivers which want to hardwire 40 wire cable
2477 * detection.
2478 */
2479
2480 int ata_cable_40wire(struct ata_port *ap)
2481 {
2482 return ATA_CBL_PATA40;
2483 }
2484
2485 /**
2486 * ata_cable_80wire - return 80 wire cable type
2487 * @ap: port
2488 *
2489 * Helper method for drivers which want to hardwire 80 wire cable
2490 * detection.
2491 */
2492
2493 int ata_cable_80wire(struct ata_port *ap)
2494 {
2495 return ATA_CBL_PATA80;
2496 }
2497
2498 /**
2499 * ata_cable_unknown - return unknown PATA cable.
2500 * @ap: port
2501 *
2502 * Helper method for drivers which have no PATA cable detection.
2503 */
2504
2505 int ata_cable_unknown(struct ata_port *ap)
2506 {
2507 return ATA_CBL_PATA_UNK;
2508 }
2509
2510 /**
2511 * ata_cable_ignore - return ignored PATA cable.
2512 * @ap: port
2513 *
2514 * Helper method for drivers which don't use cable type to limit
2515 * transfer mode.
2516 */
2517 int ata_cable_ignore(struct ata_port *ap)
2518 {
2519 return ATA_CBL_PATA_IGN;
2520 }
2521
2522 /**
2523 * ata_cable_sata - return SATA cable type
2524 * @ap: port
2525 *
2526 * Helper method for drivers which have SATA cables
2527 */
2528
2529 int ata_cable_sata(struct ata_port *ap)
2530 {
2531 return ATA_CBL_SATA;
2532 }
2533
2534 /**
2535 * ata_bus_probe - Reset and probe ATA bus
2536 * @ap: Bus to probe
2537 *
2538 * Master ATA bus probing function. Initiates a hardware-dependent
2539 * bus reset, then attempts to identify any devices found on
2540 * the bus.
2541 *
2542 * LOCKING:
2543 * PCI/etc. bus probe sem.
2544 *
2545 * RETURNS:
2546 * Zero on success, negative errno otherwise.
2547 */
2548
2549 int ata_bus_probe(struct ata_port *ap)
2550 {
2551 unsigned int classes[ATA_MAX_DEVICES];
2552 int tries[ATA_MAX_DEVICES];
2553 int rc;
2554 struct ata_device *dev;
2555
2556 ata_for_each_dev(dev, &ap->link, ALL)
2557 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2558
2559 retry:
2560 ata_for_each_dev(dev, &ap->link, ALL) {
2561 /* If we issue an SRST then an ATA drive (not ATAPI)
2562 * may change configuration and be in PIO0 timing. If
2563 * we do a hard reset (or are coming from power on)
2564 * this is true for ATA or ATAPI. Until we've set a
2565 * suitable controller mode we should not touch the
2566 * bus as we may be talking too fast.
2567 */
2568 dev->pio_mode = XFER_PIO_0;
2569 dev->dma_mode = 0xff;
2570
2571 /* If the controller has a pio mode setup function
2572 * then use it to set the chipset to rights. Don't
2573 * touch the DMA setup as that will be dealt with when
2574 * configuring devices.
2575 */
2576 if (ap->ops->set_piomode)
2577 ap->ops->set_piomode(ap, dev);
2578 }
2579
2580 /* reset and determine device classes */
2581 ap->ops->phy_reset(ap);
2582
2583 ata_for_each_dev(dev, &ap->link, ALL) {
2584 if (dev->class != ATA_DEV_UNKNOWN)
2585 classes[dev->devno] = dev->class;
2586 else
2587 classes[dev->devno] = ATA_DEV_NONE;
2588
2589 dev->class = ATA_DEV_UNKNOWN;
2590 }
2591
2592 /* read IDENTIFY page and configure devices. We have to do the identify
2593 specific sequence bass-ackwards so that PDIAG- is released by
2594 the slave device */
2595
2596 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2597 if (tries[dev->devno])
2598 dev->class = classes[dev->devno];
2599
2600 if (!ata_dev_enabled(dev))
2601 continue;
2602
2603 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2604 dev->id);
2605 if (rc)
2606 goto fail;
2607 }
2608
2609 /* Now ask for the cable type as PDIAG- should have been released */
2610 if (ap->ops->cable_detect)
2611 ap->cbl = ap->ops->cable_detect(ap);
2612
2613 /* We may have SATA bridge glue hiding here irrespective of
2614 * the reported cable types and sensed types. When SATA
2615 * drives indicate we have a bridge, we don't know which end
2616 * of the link the bridge is which is a problem.
2617 */
2618 ata_for_each_dev(dev, &ap->link, ENABLED)
2619 if (ata_id_is_sata(dev->id))
2620 ap->cbl = ATA_CBL_SATA;
2621
2622 /* After the identify sequence we can now set up the devices. We do
2623 this in the normal order so that the user doesn't get confused */
2624
2625 ata_for_each_dev(dev, &ap->link, ENABLED) {
2626 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2627 rc = ata_dev_configure(dev);
2628 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2629 if (rc)
2630 goto fail;
2631 }
2632
2633 /* configure transfer mode */
2634 rc = ata_set_mode(&ap->link, &dev);
2635 if (rc)
2636 goto fail;
2637
2638 ata_for_each_dev(dev, &ap->link, ENABLED)
2639 return 0;
2640
2641 return -ENODEV;
2642
2643 fail:
2644 tries[dev->devno]--;
2645
2646 switch (rc) {
2647 case -EINVAL:
2648 /* eeek, something went very wrong, give up */
2649 tries[dev->devno] = 0;
2650 break;
2651
2652 case -ENODEV:
2653 /* give it just one more chance */
2654 tries[dev->devno] = min(tries[dev->devno], 1);
2655 case -EIO:
2656 if (tries[dev->devno] == 1) {
2657 /* This is the last chance, better to slow
2658 * down than lose it.
2659 */
2660 sata_down_spd_limit(&ap->link, 0);
2661 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2662 }
2663 }
2664
2665 if (!tries[dev->devno])
2666 ata_dev_disable(dev);
2667
2668 goto retry;
2669 }
2670
2671 /**
2672 * sata_print_link_status - Print SATA link status
2673 * @link: SATA link to printk link status about
2674 *
2675 * This function prints link speed and status of a SATA link.
2676 *
2677 * LOCKING:
2678 * None.
2679 */
2680 static void sata_print_link_status(struct ata_link *link)
2681 {
2682 u32 sstatus, scontrol, tmp;
2683
2684 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2685 return;
2686 sata_scr_read(link, SCR_CONTROL, &scontrol);
2687
2688 if (ata_phys_link_online(link)) {
2689 tmp = (sstatus >> 4) & 0xf;
2690 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2691 sata_spd_string(tmp), sstatus, scontrol);
2692 } else {
2693 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2694 sstatus, scontrol);
2695 }
2696 }
2697
2698 /**
2699 * ata_dev_pair - return other device on cable
2700 * @adev: device
2701 *
2702 * Obtain the other device on the same cable, or if none is
2703 * present NULL is returned
2704 */
2705
2706 struct ata_device *ata_dev_pair(struct ata_device *adev)
2707 {
2708 struct ata_link *link = adev->link;
2709 struct ata_device *pair = &link->device[1 - adev->devno];
2710 if (!ata_dev_enabled(pair))
2711 return NULL;
2712 return pair;
2713 }
2714
2715 /**
2716 * sata_down_spd_limit - adjust SATA spd limit downward
2717 * @link: Link to adjust SATA spd limit for
2718 * @spd_limit: Additional limit
2719 *
2720 * Adjust SATA spd limit of @link downward. Note that this
2721 * function only adjusts the limit. The change must be applied
2722 * using sata_set_spd().
2723 *
2724 * If @spd_limit is non-zero, the speed is limited to equal to or
2725 * lower than @spd_limit if such speed is supported. If
2726 * @spd_limit is slower than any supported speed, only the lowest
2727 * supported speed is allowed.
2728 *
2729 * LOCKING:
2730 * Inherited from caller.
2731 *
2732 * RETURNS:
2733 * 0 on success, negative errno on failure
2734 */
2735 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2736 {
2737 u32 sstatus, spd, mask;
2738 int rc, bit;
2739
2740 if (!sata_scr_valid(link))
2741 return -EOPNOTSUPP;
2742
2743 /* If SCR can be read, use it to determine the current SPD.
2744 * If not, use cached value in link->sata_spd.
2745 */
2746 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2747 if (rc == 0 && ata_sstatus_online(sstatus))
2748 spd = (sstatus >> 4) & 0xf;
2749 else
2750 spd = link->sata_spd;
2751
2752 mask = link->sata_spd_limit;
2753 if (mask <= 1)
2754 return -EINVAL;
2755
2756 /* unconditionally mask off the highest bit */
2757 bit = fls(mask) - 1;
2758 mask &= ~(1 << bit);
2759
2760 /* Mask off all speeds higher than or equal to the current
2761 * one. Force 1.5Gbps if current SPD is not available.
2762 */
2763 if (spd > 1)
2764 mask &= (1 << (spd - 1)) - 1;
2765 else
2766 mask &= 1;
2767
2768 /* were we already at the bottom? */
2769 if (!mask)
2770 return -EINVAL;
2771
2772 if (spd_limit) {
2773 if (mask & ((1 << spd_limit) - 1))
2774 mask &= (1 << spd_limit) - 1;
2775 else {
2776 bit = ffs(mask) - 1;
2777 mask = 1 << bit;
2778 }
2779 }
2780
2781 link->sata_spd_limit = mask;
2782
2783 ata_link_warn(link, "limiting SATA link speed to %s\n",
2784 sata_spd_string(fls(mask)));
2785
2786 return 0;
2787 }
2788
2789 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2790 {
2791 struct ata_link *host_link = &link->ap->link;
2792 u32 limit, target, spd;
2793
2794 limit = link->sata_spd_limit;
2795
2796 /* Don't configure downstream link faster than upstream link.
2797 * It doesn't speed up anything and some PMPs choke on such
2798 * configuration.
2799 */
2800 if (!ata_is_host_link(link) && host_link->sata_spd)
2801 limit &= (1 << host_link->sata_spd) - 1;
2802
2803 if (limit == UINT_MAX)
2804 target = 0;
2805 else
2806 target = fls(limit);
2807
2808 spd = (*scontrol >> 4) & 0xf;
2809 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2810
2811 return spd != target;
2812 }
2813
2814 /**
2815 * sata_set_spd_needed - is SATA spd configuration needed
2816 * @link: Link in question
2817 *
2818 * Test whether the spd limit in SControl matches
2819 * @link->sata_spd_limit. This function is used to determine
2820 * whether hardreset is necessary to apply SATA spd
2821 * configuration.
2822 *
2823 * LOCKING:
2824 * Inherited from caller.
2825 *
2826 * RETURNS:
2827 * 1 if SATA spd configuration is needed, 0 otherwise.
2828 */
2829 static int sata_set_spd_needed(struct ata_link *link)
2830 {
2831 u32 scontrol;
2832
2833 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2834 return 1;
2835
2836 return __sata_set_spd_needed(link, &scontrol);
2837 }
2838
2839 /**
2840 * sata_set_spd - set SATA spd according to spd limit
2841 * @link: Link to set SATA spd for
2842 *
2843 * Set SATA spd of @link according to sata_spd_limit.
2844 *
2845 * LOCKING:
2846 * Inherited from caller.
2847 *
2848 * RETURNS:
2849 * 0 if spd doesn't need to be changed, 1 if spd has been
2850 * changed. Negative errno if SCR registers are inaccessible.
2851 */
2852 int sata_set_spd(struct ata_link *link)
2853 {
2854 u32 scontrol;
2855 int rc;
2856
2857 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2858 return rc;
2859
2860 if (!__sata_set_spd_needed(link, &scontrol))
2861 return 0;
2862
2863 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2864 return rc;
2865
2866 return 1;
2867 }
2868
2869 /*
2870 * This mode timing computation functionality is ported over from
2871 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2872 */
2873 /*
2874 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2875 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2876 * for UDMA6, which is currently supported only by Maxtor drives.
2877 *
2878 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2879 */
2880
2881 static const struct ata_timing ata_timing[] = {
2882 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2883 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2884 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2885 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2886 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2887 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2888 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2889 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2890
2891 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2892 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2893 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2894
2895 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2896 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2897 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2898 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2899 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2900
2901 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2902 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2903 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2904 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2905 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2906 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2907 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2908 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2909
2910 { 0xFF }
2911 };
2912
2913 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2914 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2915
2916 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2917 {
2918 q->setup = EZ(t->setup * 1000, T);
2919 q->act8b = EZ(t->act8b * 1000, T);
2920 q->rec8b = EZ(t->rec8b * 1000, T);
2921 q->cyc8b = EZ(t->cyc8b * 1000, T);
2922 q->active = EZ(t->active * 1000, T);
2923 q->recover = EZ(t->recover * 1000, T);
2924 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2925 q->cycle = EZ(t->cycle * 1000, T);
2926 q->udma = EZ(t->udma * 1000, UT);
2927 }
2928
2929 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2930 struct ata_timing *m, unsigned int what)
2931 {
2932 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2933 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2934 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2935 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2936 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2937 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2938 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2939 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2940 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2941 }
2942
2943 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2944 {
2945 const struct ata_timing *t = ata_timing;
2946
2947 while (xfer_mode > t->mode)
2948 t++;
2949
2950 if (xfer_mode == t->mode)
2951 return t;
2952
2953 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2954 __func__, xfer_mode);
2955
2956 return NULL;
2957 }
2958
2959 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2960 struct ata_timing *t, int T, int UT)
2961 {
2962 const u16 *id = adev->id;
2963 const struct ata_timing *s;
2964 struct ata_timing p;
2965
2966 /*
2967 * Find the mode.
2968 */
2969
2970 if (!(s = ata_timing_find_mode(speed)))
2971 return -EINVAL;
2972
2973 memcpy(t, s, sizeof(*s));
2974
2975 /*
2976 * If the drive is an EIDE drive, it can tell us it needs extended
2977 * PIO/MW_DMA cycle timing.
2978 */
2979
2980 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2981 memset(&p, 0, sizeof(p));
2982
2983 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2984 if (speed <= XFER_PIO_2)
2985 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2986 else if ((speed <= XFER_PIO_4) ||
2987 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2988 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2989 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2990 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2991
2992 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2993 }
2994
2995 /*
2996 * Convert the timing to bus clock counts.
2997 */
2998
2999 ata_timing_quantize(t, t, T, UT);
3000
3001 /*
3002 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3003 * S.M.A.R.T * and some other commands. We have to ensure that the
3004 * DMA cycle timing is slower/equal than the fastest PIO timing.
3005 */
3006
3007 if (speed > XFER_PIO_6) {
3008 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3009 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3010 }
3011
3012 /*
3013 * Lengthen active & recovery time so that cycle time is correct.
3014 */
3015
3016 if (t->act8b + t->rec8b < t->cyc8b) {
3017 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3018 t->rec8b = t->cyc8b - t->act8b;
3019 }
3020
3021 if (t->active + t->recover < t->cycle) {
3022 t->active += (t->cycle - (t->active + t->recover)) / 2;
3023 t->recover = t->cycle - t->active;
3024 }
3025
3026 /* In a few cases quantisation may produce enough errors to
3027 leave t->cycle too low for the sum of active and recovery
3028 if so we must correct this */
3029 if (t->active + t->recover > t->cycle)
3030 t->cycle = t->active + t->recover;
3031
3032 return 0;
3033 }
3034
3035 /**
3036 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3037 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3038 * @cycle: cycle duration in ns
3039 *
3040 * Return matching xfer mode for @cycle. The returned mode is of
3041 * the transfer type specified by @xfer_shift. If @cycle is too
3042 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3043 * than the fastest known mode, the fasted mode is returned.
3044 *
3045 * LOCKING:
3046 * None.
3047 *
3048 * RETURNS:
3049 * Matching xfer_mode, 0xff if no match found.
3050 */
3051 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3052 {
3053 u8 base_mode = 0xff, last_mode = 0xff;
3054 const struct ata_xfer_ent *ent;
3055 const struct ata_timing *t;
3056
3057 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3058 if (ent->shift == xfer_shift)
3059 base_mode = ent->base;
3060
3061 for (t = ata_timing_find_mode(base_mode);
3062 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3063 unsigned short this_cycle;
3064
3065 switch (xfer_shift) {
3066 case ATA_SHIFT_PIO:
3067 case ATA_SHIFT_MWDMA:
3068 this_cycle = t->cycle;
3069 break;
3070 case ATA_SHIFT_UDMA:
3071 this_cycle = t->udma;
3072 break;
3073 default:
3074 return 0xff;
3075 }
3076
3077 if (cycle > this_cycle)
3078 break;
3079
3080 last_mode = t->mode;
3081 }
3082
3083 return last_mode;
3084 }
3085
3086 /**
3087 * ata_down_xfermask_limit - adjust dev xfer masks downward
3088 * @dev: Device to adjust xfer masks
3089 * @sel: ATA_DNXFER_* selector
3090 *
3091 * Adjust xfer masks of @dev downward. Note that this function
3092 * does not apply the change. Invoking ata_set_mode() afterwards
3093 * will apply the limit.
3094 *
3095 * LOCKING:
3096 * Inherited from caller.
3097 *
3098 * RETURNS:
3099 * 0 on success, negative errno on failure
3100 */
3101 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3102 {
3103 char buf[32];
3104 unsigned long orig_mask, xfer_mask;
3105 unsigned long pio_mask, mwdma_mask, udma_mask;
3106 int quiet, highbit;
3107
3108 quiet = !!(sel & ATA_DNXFER_QUIET);
3109 sel &= ~ATA_DNXFER_QUIET;
3110
3111 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3112 dev->mwdma_mask,
3113 dev->udma_mask);
3114 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3115
3116 switch (sel) {
3117 case ATA_DNXFER_PIO:
3118 highbit = fls(pio_mask) - 1;
3119 pio_mask &= ~(1 << highbit);
3120 break;
3121
3122 case ATA_DNXFER_DMA:
3123 if (udma_mask) {
3124 highbit = fls(udma_mask) - 1;
3125 udma_mask &= ~(1 << highbit);
3126 if (!udma_mask)
3127 return -ENOENT;
3128 } else if (mwdma_mask) {
3129 highbit = fls(mwdma_mask) - 1;
3130 mwdma_mask &= ~(1 << highbit);
3131 if (!mwdma_mask)
3132 return -ENOENT;
3133 }
3134 break;
3135
3136 case ATA_DNXFER_40C:
3137 udma_mask &= ATA_UDMA_MASK_40C;
3138 break;
3139
3140 case ATA_DNXFER_FORCE_PIO0:
3141 pio_mask &= 1;
3142 case ATA_DNXFER_FORCE_PIO:
3143 mwdma_mask = 0;
3144 udma_mask = 0;
3145 break;
3146
3147 default:
3148 BUG();
3149 }
3150
3151 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3152
3153 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3154 return -ENOENT;
3155
3156 if (!quiet) {
3157 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3158 snprintf(buf, sizeof(buf), "%s:%s",
3159 ata_mode_string(xfer_mask),
3160 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3161 else
3162 snprintf(buf, sizeof(buf), "%s",
3163 ata_mode_string(xfer_mask));
3164
3165 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3166 }
3167
3168 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3169 &dev->udma_mask);
3170
3171 return 0;
3172 }
3173
3174 static int ata_dev_set_mode(struct ata_device *dev)
3175 {
3176 struct ata_port *ap = dev->link->ap;
3177 struct ata_eh_context *ehc = &dev->link->eh_context;
3178 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3179 const char *dev_err_whine = "";
3180 int ign_dev_err = 0;
3181 unsigned int err_mask = 0;
3182 int rc;
3183
3184 dev->flags &= ~ATA_DFLAG_PIO;
3185 if (dev->xfer_shift == ATA_SHIFT_PIO)
3186 dev->flags |= ATA_DFLAG_PIO;
3187
3188 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3189 dev_err_whine = " (SET_XFERMODE skipped)";
3190 else {
3191 if (nosetxfer)
3192 ata_dev_warn(dev,
3193 "NOSETXFER but PATA detected - can't "
3194 "skip SETXFER, might malfunction\n");
3195 err_mask = ata_dev_set_xfermode(dev);
3196 }
3197
3198 if (err_mask & ~AC_ERR_DEV)
3199 goto fail;
3200
3201 /* revalidate */
3202 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3203 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3204 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3205 if (rc)
3206 return rc;
3207
3208 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3209 /* Old CFA may refuse this command, which is just fine */
3210 if (ata_id_is_cfa(dev->id))
3211 ign_dev_err = 1;
3212 /* Catch several broken garbage emulations plus some pre
3213 ATA devices */
3214 if (ata_id_major_version(dev->id) == 0 &&
3215 dev->pio_mode <= XFER_PIO_2)
3216 ign_dev_err = 1;
3217 /* Some very old devices and some bad newer ones fail
3218 any kind of SET_XFERMODE request but support PIO0-2
3219 timings and no IORDY */
3220 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3221 ign_dev_err = 1;
3222 }
3223 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3224 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3225 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3226 dev->dma_mode == XFER_MW_DMA_0 &&
3227 (dev->id[63] >> 8) & 1)
3228 ign_dev_err = 1;
3229
3230 /* if the device is actually configured correctly, ignore dev err */
3231 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3232 ign_dev_err = 1;
3233
3234 if (err_mask & AC_ERR_DEV) {
3235 if (!ign_dev_err)
3236 goto fail;
3237 else
3238 dev_err_whine = " (device error ignored)";
3239 }
3240
3241 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3242 dev->xfer_shift, (int)dev->xfer_mode);
3243
3244 ata_dev_info(dev, "configured for %s%s\n",
3245 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3246 dev_err_whine);
3247
3248 return 0;
3249
3250 fail:
3251 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3252 return -EIO;
3253 }
3254
3255 /**
3256 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3257 * @link: link on which timings will be programmed
3258 * @r_failed_dev: out parameter for failed device
3259 *
3260 * Standard implementation of the function used to tune and set
3261 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3262 * ata_dev_set_mode() fails, pointer to the failing device is
3263 * returned in @r_failed_dev.
3264 *
3265 * LOCKING:
3266 * PCI/etc. bus probe sem.
3267 *
3268 * RETURNS:
3269 * 0 on success, negative errno otherwise
3270 */
3271
3272 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3273 {
3274 struct ata_port *ap = link->ap;
3275 struct ata_device *dev;
3276 int rc = 0, used_dma = 0, found = 0;
3277
3278 /* step 1: calculate xfer_mask */
3279 ata_for_each_dev(dev, link, ENABLED) {
3280 unsigned long pio_mask, dma_mask;
3281 unsigned int mode_mask;
3282
3283 mode_mask = ATA_DMA_MASK_ATA;
3284 if (dev->class == ATA_DEV_ATAPI)
3285 mode_mask = ATA_DMA_MASK_ATAPI;
3286 else if (ata_id_is_cfa(dev->id))
3287 mode_mask = ATA_DMA_MASK_CFA;
3288
3289 ata_dev_xfermask(dev);
3290 ata_force_xfermask(dev);
3291
3292 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3293
3294 if (libata_dma_mask & mode_mask)
3295 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3296 dev->udma_mask);
3297 else
3298 dma_mask = 0;
3299
3300 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3301 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3302
3303 found = 1;
3304 if (ata_dma_enabled(dev))
3305 used_dma = 1;
3306 }
3307 if (!found)
3308 goto out;
3309
3310 /* step 2: always set host PIO timings */
3311 ata_for_each_dev(dev, link, ENABLED) {
3312 if (dev->pio_mode == 0xff) {
3313 ata_dev_warn(dev, "no PIO support\n");
3314 rc = -EINVAL;
3315 goto out;
3316 }
3317
3318 dev->xfer_mode = dev->pio_mode;
3319 dev->xfer_shift = ATA_SHIFT_PIO;
3320 if (ap->ops->set_piomode)
3321 ap->ops->set_piomode(ap, dev);
3322 }
3323
3324 /* step 3: set host DMA timings */
3325 ata_for_each_dev(dev, link, ENABLED) {
3326 if (!ata_dma_enabled(dev))
3327 continue;
3328
3329 dev->xfer_mode = dev->dma_mode;
3330 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3331 if (ap->ops->set_dmamode)
3332 ap->ops->set_dmamode(ap, dev);
3333 }
3334
3335 /* step 4: update devices' xfer mode */
3336 ata_for_each_dev(dev, link, ENABLED) {
3337 rc = ata_dev_set_mode(dev);
3338 if (rc)
3339 goto out;
3340 }
3341
3342 /* Record simplex status. If we selected DMA then the other
3343 * host channels are not permitted to do so.
3344 */
3345 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3346 ap->host->simplex_claimed = ap;
3347
3348 out:
3349 if (rc)
3350 *r_failed_dev = dev;
3351 return rc;
3352 }
3353
3354 /**
3355 * ata_wait_ready - wait for link to become ready
3356 * @link: link to be waited on
3357 * @deadline: deadline jiffies for the operation
3358 * @check_ready: callback to check link readiness
3359 *
3360 * Wait for @link to become ready. @check_ready should return
3361 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3362 * link doesn't seem to be occupied, other errno for other error
3363 * conditions.
3364 *
3365 * Transient -ENODEV conditions are allowed for
3366 * ATA_TMOUT_FF_WAIT.
3367 *
3368 * LOCKING:
3369 * EH context.
3370 *
3371 * RETURNS:
3372 * 0 if @linke is ready before @deadline; otherwise, -errno.
3373 */
3374 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3375 int (*check_ready)(struct ata_link *link))
3376 {
3377 unsigned long start = jiffies;
3378 unsigned long nodev_deadline;
3379 int warned = 0;
3380
3381 /* choose which 0xff timeout to use, read comment in libata.h */
3382 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3383 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3384 else
3385 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3386
3387 /* Slave readiness can't be tested separately from master. On
3388 * M/S emulation configuration, this function should be called
3389 * only on the master and it will handle both master and slave.
3390 */
3391 WARN_ON(link == link->ap->slave_link);
3392
3393 if (time_after(nodev_deadline, deadline))
3394 nodev_deadline = deadline;
3395
3396 while (1) {
3397 unsigned long now = jiffies;
3398 int ready, tmp;
3399
3400 ready = tmp = check_ready(link);
3401 if (ready > 0)
3402 return 0;
3403
3404 /*
3405 * -ENODEV could be transient. Ignore -ENODEV if link
3406 * is online. Also, some SATA devices take a long
3407 * time to clear 0xff after reset. Wait for
3408 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3409 * offline.
3410 *
3411 * Note that some PATA controllers (pata_ali) explode
3412 * if status register is read more than once when
3413 * there's no device attached.
3414 */
3415 if (ready == -ENODEV) {
3416 if (ata_link_online(link))
3417 ready = 0;
3418 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3419 !ata_link_offline(link) &&
3420 time_before(now, nodev_deadline))
3421 ready = 0;
3422 }
3423
3424 if (ready)
3425 return ready;
3426 if (time_after(now, deadline))
3427 return -EBUSY;
3428
3429 if (!warned && time_after(now, start + 5 * HZ) &&
3430 (deadline - now > 3 * HZ)) {
3431 ata_link_warn(link,
3432 "link is slow to respond, please be patient "
3433 "(ready=%d)\n", tmp);
3434 warned = 1;
3435 }
3436
3437 ata_msleep(link->ap, 50);
3438 }
3439 }
3440
3441 /**
3442 * ata_wait_after_reset - wait for link to become ready after reset
3443 * @link: link to be waited on
3444 * @deadline: deadline jiffies for the operation
3445 * @check_ready: callback to check link readiness
3446 *
3447 * Wait for @link to become ready after reset.
3448 *
3449 * LOCKING:
3450 * EH context.
3451 *
3452 * RETURNS:
3453 * 0 if @linke is ready before @deadline; otherwise, -errno.
3454 */
3455 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3456 int (*check_ready)(struct ata_link *link))
3457 {
3458 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3459
3460 return ata_wait_ready(link, deadline, check_ready);
3461 }
3462
3463 /**
3464 * sata_link_debounce - debounce SATA phy status
3465 * @link: ATA link to debounce SATA phy status for
3466 * @params: timing parameters { interval, duratinon, timeout } in msec
3467 * @deadline: deadline jiffies for the operation
3468 *
3469 * Make sure SStatus of @link reaches stable state, determined by
3470 * holding the same value where DET is not 1 for @duration polled
3471 * every @interval, before @timeout. Timeout constraints the
3472 * beginning of the stable state. Because DET gets stuck at 1 on
3473 * some controllers after hot unplugging, this functions waits
3474 * until timeout then returns 0 if DET is stable at 1.
3475 *
3476 * @timeout is further limited by @deadline. The sooner of the
3477 * two is used.
3478 *
3479 * LOCKING:
3480 * Kernel thread context (may sleep)
3481 *
3482 * RETURNS:
3483 * 0 on success, -errno on failure.
3484 */
3485 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3486 unsigned long deadline)
3487 {
3488 unsigned long interval = params[0];
3489 unsigned long duration = params[1];
3490 unsigned long last_jiffies, t;
3491 u32 last, cur;
3492 int rc;
3493
3494 t = ata_deadline(jiffies, params[2]);
3495 if (time_before(t, deadline))
3496 deadline = t;
3497
3498 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3499 return rc;
3500 cur &= 0xf;
3501
3502 last = cur;
3503 last_jiffies = jiffies;
3504
3505 while (1) {
3506 ata_msleep(link->ap, interval);
3507 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3508 return rc;
3509 cur &= 0xf;
3510
3511 /* DET stable? */
3512 if (cur == last) {
3513 if (cur == 1 && time_before(jiffies, deadline))
3514 continue;
3515 if (time_after(jiffies,
3516 ata_deadline(last_jiffies, duration)))
3517 return 0;
3518 continue;
3519 }
3520
3521 /* unstable, start over */
3522 last = cur;
3523 last_jiffies = jiffies;
3524
3525 /* Check deadline. If debouncing failed, return
3526 * -EPIPE to tell upper layer to lower link speed.
3527 */
3528 if (time_after(jiffies, deadline))
3529 return -EPIPE;
3530 }
3531 }
3532
3533 /**
3534 * sata_link_resume - resume SATA link
3535 * @link: ATA link to resume SATA
3536 * @params: timing parameters { interval, duratinon, timeout } in msec
3537 * @deadline: deadline jiffies for the operation
3538 *
3539 * Resume SATA phy @link and debounce it.
3540 *
3541 * LOCKING:
3542 * Kernel thread context (may sleep)
3543 *
3544 * RETURNS:
3545 * 0 on success, -errno on failure.
3546 */
3547 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3548 unsigned long deadline)
3549 {
3550 int tries = ATA_LINK_RESUME_TRIES;
3551 u32 scontrol, serror;
3552 int rc;
3553
3554 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3555 return rc;
3556
3557 /*
3558 * Writes to SControl sometimes get ignored under certain
3559 * controllers (ata_piix SIDPR). Make sure DET actually is
3560 * cleared.
3561 */
3562 do {
3563 scontrol = (scontrol & 0x0f0) | 0x300;
3564 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3565 return rc;
3566 /*
3567 * Some PHYs react badly if SStatus is pounded
3568 * immediately after resuming. Delay 200ms before
3569 * debouncing.
3570 */
3571 ata_msleep(link->ap, 200);
3572
3573 /* is SControl restored correctly? */
3574 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3575 return rc;
3576 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3577
3578 if ((scontrol & 0xf0f) != 0x300) {
3579 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3580 scontrol);
3581 return 0;
3582 }
3583
3584 if (tries < ATA_LINK_RESUME_TRIES)
3585 ata_link_warn(link, "link resume succeeded after %d retries\n",
3586 ATA_LINK_RESUME_TRIES - tries);
3587
3588 if ((rc = sata_link_debounce(link, params, deadline)))
3589 return rc;
3590
3591 /* clear SError, some PHYs require this even for SRST to work */
3592 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3593 rc = sata_scr_write(link, SCR_ERROR, serror);
3594
3595 return rc != -EINVAL ? rc : 0;
3596 }
3597
3598 /**
3599 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3600 * @link: ATA link to manipulate SControl for
3601 * @policy: LPM policy to configure
3602 * @spm_wakeup: initiate LPM transition to active state
3603 *
3604 * Manipulate the IPM field of the SControl register of @link
3605 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3606 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3607 * the link. This function also clears PHYRDY_CHG before
3608 * returning.
3609 *
3610 * LOCKING:
3611 * EH context.
3612 *
3613 * RETURNS:
3614 * 0 on succes, -errno otherwise.
3615 */
3616 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3617 bool spm_wakeup)
3618 {
3619 struct ata_eh_context *ehc = &link->eh_context;
3620 bool woken_up = false;
3621 u32 scontrol;
3622 int rc;
3623
3624 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3625 if (rc)
3626 return rc;
3627
3628 switch (policy) {
3629 case ATA_LPM_MAX_POWER:
3630 /* disable all LPM transitions */
3631 scontrol |= (0x7 << 8);
3632 /* initiate transition to active state */
3633 if (spm_wakeup) {
3634 scontrol |= (0x4 << 12);
3635 woken_up = true;
3636 }
3637 break;
3638 case ATA_LPM_MED_POWER:
3639 /* allow LPM to PARTIAL */
3640 scontrol &= ~(0x1 << 8);
3641 scontrol |= (0x6 << 8);
3642 break;
3643 case ATA_LPM_MIN_POWER:
3644 if (ata_link_nr_enabled(link) > 0)
3645 /* no restrictions on LPM transitions */
3646 scontrol &= ~(0x7 << 8);
3647 else {
3648 /* empty port, power off */
3649 scontrol &= ~0xf;
3650 scontrol |= (0x1 << 2);
3651 }
3652 break;
3653 default:
3654 WARN_ON(1);
3655 }
3656
3657 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3658 if (rc)
3659 return rc;
3660
3661 /* give the link time to transit out of LPM state */
3662 if (woken_up)
3663 msleep(10);
3664
3665 /* clear PHYRDY_CHG from SError */
3666 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3667 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3668 }
3669
3670 /**
3671 * ata_std_prereset - prepare for reset
3672 * @link: ATA link to be reset
3673 * @deadline: deadline jiffies for the operation
3674 *
3675 * @link is about to be reset. Initialize it. Failure from
3676 * prereset makes libata abort whole reset sequence and give up
3677 * that port, so prereset should be best-effort. It does its
3678 * best to prepare for reset sequence but if things go wrong, it
3679 * should just whine, not fail.
3680 *
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3683 *
3684 * RETURNS:
3685 * 0 on success, -errno otherwise.
3686 */
3687 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3688 {
3689 struct ata_port *ap = link->ap;
3690 struct ata_eh_context *ehc = &link->eh_context;
3691 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3692 int rc;
3693
3694 /* if we're about to do hardreset, nothing more to do */
3695 if (ehc->i.action & ATA_EH_HARDRESET)
3696 return 0;
3697
3698 /* if SATA, resume link */
3699 if (ap->flags & ATA_FLAG_SATA) {
3700 rc = sata_link_resume(link, timing, deadline);
3701 /* whine about phy resume failure but proceed */
3702 if (rc && rc != -EOPNOTSUPP)
3703 ata_link_warn(link,
3704 "failed to resume link for reset (errno=%d)\n",
3705 rc);
3706 }
3707
3708 /* no point in trying softreset on offline link */
3709 if (ata_phys_link_offline(link))
3710 ehc->i.action &= ~ATA_EH_SOFTRESET;
3711
3712 return 0;
3713 }
3714
3715 /**
3716 * sata_link_hardreset - reset link via SATA phy reset
3717 * @link: link to reset
3718 * @timing: timing parameters { interval, duratinon, timeout } in msec
3719 * @deadline: deadline jiffies for the operation
3720 * @online: optional out parameter indicating link onlineness
3721 * @check_ready: optional callback to check link readiness
3722 *
3723 * SATA phy-reset @link using DET bits of SControl register.
3724 * After hardreset, link readiness is waited upon using
3725 * ata_wait_ready() if @check_ready is specified. LLDs are
3726 * allowed to not specify @check_ready and wait itself after this
3727 * function returns. Device classification is LLD's
3728 * responsibility.
3729 *
3730 * *@online is set to one iff reset succeeded and @link is online
3731 * after reset.
3732 *
3733 * LOCKING:
3734 * Kernel thread context (may sleep)
3735 *
3736 * RETURNS:
3737 * 0 on success, -errno otherwise.
3738 */
3739 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3740 unsigned long deadline,
3741 bool *online, int (*check_ready)(struct ata_link *))
3742 {
3743 u32 scontrol;
3744 int rc;
3745
3746 DPRINTK("ENTER\n");
3747
3748 if (online)
3749 *online = false;
3750
3751 if (sata_set_spd_needed(link)) {
3752 /* SATA spec says nothing about how to reconfigure
3753 * spd. To be on the safe side, turn off phy during
3754 * reconfiguration. This works for at least ICH7 AHCI
3755 * and Sil3124.
3756 */
3757 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3758 goto out;
3759
3760 scontrol = (scontrol & 0x0f0) | 0x304;
3761
3762 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3763 goto out;
3764
3765 sata_set_spd(link);
3766 }
3767
3768 /* issue phy wake/reset */
3769 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3770 goto out;
3771
3772 scontrol = (scontrol & 0x0f0) | 0x301;
3773
3774 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3775 goto out;
3776
3777 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3778 * 10.4.2 says at least 1 ms.
3779 */
3780 ata_msleep(link->ap, 1);
3781
3782 /* bring link back */
3783 rc = sata_link_resume(link, timing, deadline);
3784 if (rc)
3785 goto out;
3786 /* if link is offline nothing more to do */
3787 if (ata_phys_link_offline(link))
3788 goto out;
3789
3790 /* Link is online. From this point, -ENODEV too is an error. */
3791 if (online)
3792 *online = true;
3793
3794 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3795 /* If PMP is supported, we have to do follow-up SRST.
3796 * Some PMPs don't send D2H Reg FIS after hardreset if
3797 * the first port is empty. Wait only for
3798 * ATA_TMOUT_PMP_SRST_WAIT.
3799 */
3800 if (check_ready) {
3801 unsigned long pmp_deadline;
3802
3803 pmp_deadline = ata_deadline(jiffies,
3804 ATA_TMOUT_PMP_SRST_WAIT);
3805 if (time_after(pmp_deadline, deadline))
3806 pmp_deadline = deadline;
3807 ata_wait_ready(link, pmp_deadline, check_ready);
3808 }
3809 rc = -EAGAIN;
3810 goto out;
3811 }
3812
3813 rc = 0;
3814 if (check_ready)
3815 rc = ata_wait_ready(link, deadline, check_ready);
3816 out:
3817 if (rc && rc != -EAGAIN) {
3818 /* online is set iff link is online && reset succeeded */
3819 if (online)
3820 *online = false;
3821 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3822 }
3823 DPRINTK("EXIT, rc=%d\n", rc);
3824 return rc;
3825 }
3826
3827 /**
3828 * sata_std_hardreset - COMRESET w/o waiting or classification
3829 * @link: link to reset
3830 * @class: resulting class of attached device
3831 * @deadline: deadline jiffies for the operation
3832 *
3833 * Standard SATA COMRESET w/o waiting or classification.
3834 *
3835 * LOCKING:
3836 * Kernel thread context (may sleep)
3837 *
3838 * RETURNS:
3839 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3840 */
3841 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3842 unsigned long deadline)
3843 {
3844 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3845 bool online;
3846 int rc;
3847
3848 /* do hardreset */
3849 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3850 return online ? -EAGAIN : rc;
3851 }
3852
3853 /**
3854 * ata_std_postreset - standard postreset callback
3855 * @link: the target ata_link
3856 * @classes: classes of attached devices
3857 *
3858 * This function is invoked after a successful reset. Note that
3859 * the device might have been reset more than once using
3860 * different reset methods before postreset is invoked.
3861 *
3862 * LOCKING:
3863 * Kernel thread context (may sleep)
3864 */
3865 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3866 {
3867 u32 serror;
3868
3869 DPRINTK("ENTER\n");
3870
3871 /* reset complete, clear SError */
3872 if (!sata_scr_read(link, SCR_ERROR, &serror))
3873 sata_scr_write(link, SCR_ERROR, serror);
3874
3875 /* print link status */
3876 sata_print_link_status(link);
3877
3878 DPRINTK("EXIT\n");
3879 }
3880
3881 /**
3882 * ata_dev_same_device - Determine whether new ID matches configured device
3883 * @dev: device to compare against
3884 * @new_class: class of the new device
3885 * @new_id: IDENTIFY page of the new device
3886 *
3887 * Compare @new_class and @new_id against @dev and determine
3888 * whether @dev is the device indicated by @new_class and
3889 * @new_id.
3890 *
3891 * LOCKING:
3892 * None.
3893 *
3894 * RETURNS:
3895 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3896 */
3897 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3898 const u16 *new_id)
3899 {
3900 const u16 *old_id = dev->id;
3901 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3902 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3903
3904 if (dev->class != new_class) {
3905 ata_dev_info(dev, "class mismatch %d != %d\n",
3906 dev->class, new_class);
3907 return 0;
3908 }
3909
3910 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3911 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3912 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3913 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3914
3915 if (strcmp(model[0], model[1])) {
3916 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3917 model[0], model[1]);
3918 return 0;
3919 }
3920
3921 if (strcmp(serial[0], serial[1])) {
3922 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3923 serial[0], serial[1]);
3924 return 0;
3925 }
3926
3927 return 1;
3928 }
3929
3930 /**
3931 * ata_dev_reread_id - Re-read IDENTIFY data
3932 * @dev: target ATA device
3933 * @readid_flags: read ID flags
3934 *
3935 * Re-read IDENTIFY page and make sure @dev is still attached to
3936 * the port.
3937 *
3938 * LOCKING:
3939 * Kernel thread context (may sleep)
3940 *
3941 * RETURNS:
3942 * 0 on success, negative errno otherwise
3943 */
3944 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3945 {
3946 unsigned int class = dev->class;
3947 u16 *id = (void *)dev->link->ap->sector_buf;
3948 int rc;
3949
3950 /* read ID data */
3951 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3952 if (rc)
3953 return rc;
3954
3955 /* is the device still there? */
3956 if (!ata_dev_same_device(dev, class, id))
3957 return -ENODEV;
3958
3959 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3960 return 0;
3961 }
3962
3963 /**
3964 * ata_dev_revalidate - Revalidate ATA device
3965 * @dev: device to revalidate
3966 * @new_class: new class code
3967 * @readid_flags: read ID flags
3968 *
3969 * Re-read IDENTIFY page, make sure @dev is still attached to the
3970 * port and reconfigure it according to the new IDENTIFY page.
3971 *
3972 * LOCKING:
3973 * Kernel thread context (may sleep)
3974 *
3975 * RETURNS:
3976 * 0 on success, negative errno otherwise
3977 */
3978 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3979 unsigned int readid_flags)
3980 {
3981 u64 n_sectors = dev->n_sectors;
3982 u64 n_native_sectors = dev->n_native_sectors;
3983 int rc;
3984
3985 if (!ata_dev_enabled(dev))
3986 return -ENODEV;
3987
3988 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3989 if (ata_class_enabled(new_class) &&
3990 new_class != ATA_DEV_ATA &&
3991 new_class != ATA_DEV_ATAPI &&
3992 new_class != ATA_DEV_SEMB) {
3993 ata_dev_info(dev, "class mismatch %u != %u\n",
3994 dev->class, new_class);
3995 rc = -ENODEV;
3996 goto fail;
3997 }
3998
3999 /* re-read ID */
4000 rc = ata_dev_reread_id(dev, readid_flags);
4001 if (rc)
4002 goto fail;
4003
4004 /* configure device according to the new ID */
4005 rc = ata_dev_configure(dev);
4006 if (rc)
4007 goto fail;
4008
4009 /* verify n_sectors hasn't changed */
4010 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4011 dev->n_sectors == n_sectors)
4012 return 0;
4013
4014 /* n_sectors has changed */
4015 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4016 (unsigned long long)n_sectors,
4017 (unsigned long long)dev->n_sectors);
4018
4019 /*
4020 * Something could have caused HPA to be unlocked
4021 * involuntarily. If n_native_sectors hasn't changed and the
4022 * new size matches it, keep the device.
4023 */
4024 if (dev->n_native_sectors == n_native_sectors &&
4025 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4026 ata_dev_warn(dev,
4027 "new n_sectors matches native, probably "
4028 "late HPA unlock, n_sectors updated\n");
4029 /* use the larger n_sectors */
4030 return 0;
4031 }
4032
4033 /*
4034 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4035 * unlocking HPA in those cases.
4036 *
4037 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4038 */
4039 if (dev->n_native_sectors == n_native_sectors &&
4040 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4041 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4042 ata_dev_warn(dev,
4043 "old n_sectors matches native, probably "
4044 "late HPA lock, will try to unlock HPA\n");
4045 /* try unlocking HPA */
4046 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4047 rc = -EIO;
4048 } else
4049 rc = -ENODEV;
4050
4051 /* restore original n_[native_]sectors and fail */
4052 dev->n_native_sectors = n_native_sectors;
4053 dev->n_sectors = n_sectors;
4054 fail:
4055 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4056 return rc;
4057 }
4058
4059 struct ata_blacklist_entry {
4060 const char *model_num;
4061 const char *model_rev;
4062 unsigned long horkage;
4063 };
4064
4065 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4066 /* Devices with DMA related problems under Linux */
4067 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4068 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4069 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4070 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4071 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4072 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4073 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4074 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4075 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4076 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4077 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4078 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4079 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4080 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4081 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4082 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4083 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4084 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4085 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4086 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4087 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4088 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4089 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4090 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4091 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4092 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4093 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4094 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4095 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4096 /* Odd clown on sil3726/4726 PMPs */
4097 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4098
4099 /* Weird ATAPI devices */
4100 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4101 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4102
4103 /* Devices we expect to fail diagnostics */
4104
4105 /* Devices where NCQ should be avoided */
4106 /* NCQ is slow */
4107 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4108 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4109 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4110 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4111 /* NCQ is broken */
4112 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4113 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4114 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4115 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4116 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4117
4118 /* Seagate NCQ + FLUSH CACHE firmware bug */
4119 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4120 ATA_HORKAGE_FIRMWARE_WARN },
4121
4122 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4123 ATA_HORKAGE_FIRMWARE_WARN },
4124
4125 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4126 ATA_HORKAGE_FIRMWARE_WARN },
4127
4128 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4129 ATA_HORKAGE_FIRMWARE_WARN },
4130
4131 /* Blacklist entries taken from Silicon Image 3124/3132
4132 Windows driver .inf file - also several Linux problem reports */
4133 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4134 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4135 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4136
4137 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4138 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4139
4140 /* devices which puke on READ_NATIVE_MAX */
4141 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4142 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4143 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4144 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4145
4146 /* this one allows HPA unlocking but fails IOs on the area */
4147 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4148
4149 /* Devices which report 1 sector over size HPA */
4150 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4151 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4152 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4153
4154 /* Devices which get the IVB wrong */
4155 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4156 /* Maybe we should just blacklist TSSTcorp... */
4157 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4158
4159 /* Devices that do not need bridging limits applied */
4160 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4161 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4162
4163 /* Devices which aren't very happy with higher link speeds */
4164 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4165 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4166
4167 /*
4168 * Devices which choke on SETXFER. Applies only if both the
4169 * device and controller are SATA.
4170 */
4171 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4172 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4173 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4174 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4175 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4176
4177 /* End Marker */
4178 { }
4179 };
4180
4181 /**
4182 * glob_match - match a text string against a glob-style pattern
4183 * @text: the string to be examined
4184 * @pattern: the glob-style pattern to be matched against
4185 *
4186 * Either/both of text and pattern can be empty strings.
4187 *
4188 * Match text against a glob-style pattern, with wildcards and simple sets:
4189 *
4190 * ? matches any single character.
4191 * * matches any run of characters.
4192 * [xyz] matches a single character from the set: x, y, or z.
4193 * [a-d] matches a single character from the range: a, b, c, or d.
4194 * [a-d0-9] matches a single character from either range.
4195 *
4196 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4197 * Behaviour with malformed patterns is undefined, though generally reasonable.
4198 *
4199 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4200 *
4201 * This function uses one level of recursion per '*' in pattern.
4202 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4203 * this will not cause stack problems for any reasonable use here.
4204 *
4205 * RETURNS:
4206 * 0 on match, 1 otherwise.
4207 */
4208 static int glob_match (const char *text, const char *pattern)
4209 {
4210 do {
4211 /* Match single character or a '?' wildcard */
4212 if (*text == *pattern || *pattern == '?') {
4213 if (!*pattern++)
4214 return 0; /* End of both strings: match */
4215 } else {
4216 /* Match single char against a '[' bracketed ']' pattern set */
4217 if (!*text || *pattern != '[')
4218 break; /* Not a pattern set */
4219 while (*++pattern && *pattern != ']' && *text != *pattern) {
4220 if (*pattern == '-' && *(pattern - 1) != '[')
4221 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4222 ++pattern;
4223 break;
4224 }
4225 }
4226 if (!*pattern || *pattern == ']')
4227 return 1; /* No match */
4228 while (*pattern && *pattern++ != ']');
4229 }
4230 } while (*++text && *pattern);
4231
4232 /* Match any run of chars against a '*' wildcard */
4233 if (*pattern == '*') {
4234 if (!*++pattern)
4235 return 0; /* Match: avoid recursion at end of pattern */
4236 /* Loop to handle additional pattern chars after the wildcard */
4237 while (*text) {
4238 if (glob_match(text, pattern) == 0)
4239 return 0; /* Remainder matched */
4240 ++text; /* Absorb (match) this char and try again */
4241 }
4242 }
4243 if (!*text && !*pattern)
4244 return 0; /* End of both strings: match */
4245 return 1; /* No match */
4246 }
4247
4248 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4249 {
4250 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4251 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4252 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4253
4254 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4255 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4256
4257 while (ad->model_num) {
4258 if (!glob_match(model_num, ad->model_num)) {
4259 if (ad->model_rev == NULL)
4260 return ad->horkage;
4261 if (!glob_match(model_rev, ad->model_rev))
4262 return ad->horkage;
4263 }
4264 ad++;
4265 }
4266 return 0;
4267 }
4268
4269 static int ata_dma_blacklisted(const struct ata_device *dev)
4270 {
4271 /* We don't support polling DMA.
4272 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4273 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4274 */
4275 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4276 (dev->flags & ATA_DFLAG_CDB_INTR))
4277 return 1;
4278 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4279 }
4280
4281 /**
4282 * ata_is_40wire - check drive side detection
4283 * @dev: device
4284 *
4285 * Perform drive side detection decoding, allowing for device vendors
4286 * who can't follow the documentation.
4287 */
4288
4289 static int ata_is_40wire(struct ata_device *dev)
4290 {
4291 if (dev->horkage & ATA_HORKAGE_IVB)
4292 return ata_drive_40wire_relaxed(dev->id);
4293 return ata_drive_40wire(dev->id);
4294 }
4295
4296 /**
4297 * cable_is_40wire - 40/80/SATA decider
4298 * @ap: port to consider
4299 *
4300 * This function encapsulates the policy for speed management
4301 * in one place. At the moment we don't cache the result but
4302 * there is a good case for setting ap->cbl to the result when
4303 * we are called with unknown cables (and figuring out if it
4304 * impacts hotplug at all).
4305 *
4306 * Return 1 if the cable appears to be 40 wire.
4307 */
4308
4309 static int cable_is_40wire(struct ata_port *ap)
4310 {
4311 struct ata_link *link;
4312 struct ata_device *dev;
4313
4314 /* If the controller thinks we are 40 wire, we are. */
4315 if (ap->cbl == ATA_CBL_PATA40)
4316 return 1;
4317
4318 /* If the controller thinks we are 80 wire, we are. */
4319 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4320 return 0;
4321
4322 /* If the system is known to be 40 wire short cable (eg
4323 * laptop), then we allow 80 wire modes even if the drive
4324 * isn't sure.
4325 */
4326 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4327 return 0;
4328
4329 /* If the controller doesn't know, we scan.
4330 *
4331 * Note: We look for all 40 wire detects at this point. Any
4332 * 80 wire detect is taken to be 80 wire cable because
4333 * - in many setups only the one drive (slave if present) will
4334 * give a valid detect
4335 * - if you have a non detect capable drive you don't want it
4336 * to colour the choice
4337 */
4338 ata_for_each_link(link, ap, EDGE) {
4339 ata_for_each_dev(dev, link, ENABLED) {
4340 if (!ata_is_40wire(dev))
4341 return 0;
4342 }
4343 }
4344 return 1;
4345 }
4346
4347 /**
4348 * ata_dev_xfermask - Compute supported xfermask of the given device
4349 * @dev: Device to compute xfermask for
4350 *
4351 * Compute supported xfermask of @dev and store it in
4352 * dev->*_mask. This function is responsible for applying all
4353 * known limits including host controller limits, device
4354 * blacklist, etc...
4355 *
4356 * LOCKING:
4357 * None.
4358 */
4359 static void ata_dev_xfermask(struct ata_device *dev)
4360 {
4361 struct ata_link *link = dev->link;
4362 struct ata_port *ap = link->ap;
4363 struct ata_host *host = ap->host;
4364 unsigned long xfer_mask;
4365
4366 /* controller modes available */
4367 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4368 ap->mwdma_mask, ap->udma_mask);
4369
4370 /* drive modes available */
4371 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4372 dev->mwdma_mask, dev->udma_mask);
4373 xfer_mask &= ata_id_xfermask(dev->id);
4374
4375 /*
4376 * CFA Advanced TrueIDE timings are not allowed on a shared
4377 * cable
4378 */
4379 if (ata_dev_pair(dev)) {
4380 /* No PIO5 or PIO6 */
4381 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4382 /* No MWDMA3 or MWDMA 4 */
4383 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4384 }
4385
4386 if (ata_dma_blacklisted(dev)) {
4387 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4388 ata_dev_warn(dev,
4389 "device is on DMA blacklist, disabling DMA\n");
4390 }
4391
4392 if ((host->flags & ATA_HOST_SIMPLEX) &&
4393 host->simplex_claimed && host->simplex_claimed != ap) {
4394 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4395 ata_dev_warn(dev,
4396 "simplex DMA is claimed by other device, disabling DMA\n");
4397 }
4398
4399 if (ap->flags & ATA_FLAG_NO_IORDY)
4400 xfer_mask &= ata_pio_mask_no_iordy(dev);
4401
4402 if (ap->ops->mode_filter)
4403 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4404
4405 /* Apply cable rule here. Don't apply it early because when
4406 * we handle hot plug the cable type can itself change.
4407 * Check this last so that we know if the transfer rate was
4408 * solely limited by the cable.
4409 * Unknown or 80 wire cables reported host side are checked
4410 * drive side as well. Cases where we know a 40wire cable
4411 * is used safely for 80 are not checked here.
4412 */
4413 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4414 /* UDMA/44 or higher would be available */
4415 if (cable_is_40wire(ap)) {
4416 ata_dev_warn(dev,
4417 "limited to UDMA/33 due to 40-wire cable\n");
4418 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4419 }
4420
4421 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4422 &dev->mwdma_mask, &dev->udma_mask);
4423 }
4424
4425 /**
4426 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4427 * @dev: Device to which command will be sent
4428 *
4429 * Issue SET FEATURES - XFER MODE command to device @dev
4430 * on port @ap.
4431 *
4432 * LOCKING:
4433 * PCI/etc. bus probe sem.
4434 *
4435 * RETURNS:
4436 * 0 on success, AC_ERR_* mask otherwise.
4437 */
4438
4439 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4440 {
4441 struct ata_taskfile tf;
4442 unsigned int err_mask;
4443
4444 /* set up set-features taskfile */
4445 DPRINTK("set features - xfer mode\n");
4446
4447 /* Some controllers and ATAPI devices show flaky interrupt
4448 * behavior after setting xfer mode. Use polling instead.
4449 */
4450 ata_tf_init(dev, &tf);
4451 tf.command = ATA_CMD_SET_FEATURES;
4452 tf.feature = SETFEATURES_XFER;
4453 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4454 tf.protocol = ATA_PROT_NODATA;
4455 /* If we are using IORDY we must send the mode setting command */
4456 if (ata_pio_need_iordy(dev))
4457 tf.nsect = dev->xfer_mode;
4458 /* If the device has IORDY and the controller does not - turn it off */
4459 else if (ata_id_has_iordy(dev->id))
4460 tf.nsect = 0x01;
4461 else /* In the ancient relic department - skip all of this */
4462 return 0;
4463
4464 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4465
4466 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4467 return err_mask;
4468 }
4469
4470 /**
4471 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4472 * @dev: Device to which command will be sent
4473 * @enable: Whether to enable or disable the feature
4474 * @feature: The sector count represents the feature to set
4475 *
4476 * Issue SET FEATURES - SATA FEATURES command to device @dev
4477 * on port @ap with sector count
4478 *
4479 * LOCKING:
4480 * PCI/etc. bus probe sem.
4481 *
4482 * RETURNS:
4483 * 0 on success, AC_ERR_* mask otherwise.
4484 */
4485 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4486 {
4487 struct ata_taskfile tf;
4488 unsigned int err_mask;
4489
4490 /* set up set-features taskfile */
4491 DPRINTK("set features - SATA features\n");
4492
4493 ata_tf_init(dev, &tf);
4494 tf.command = ATA_CMD_SET_FEATURES;
4495 tf.feature = enable;
4496 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4497 tf.protocol = ATA_PROT_NODATA;
4498 tf.nsect = feature;
4499
4500 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4501
4502 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4503 return err_mask;
4504 }
4505 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4506
4507 /**
4508 * ata_dev_init_params - Issue INIT DEV PARAMS command
4509 * @dev: Device to which command will be sent
4510 * @heads: Number of heads (taskfile parameter)
4511 * @sectors: Number of sectors (taskfile parameter)
4512 *
4513 * LOCKING:
4514 * Kernel thread context (may sleep)
4515 *
4516 * RETURNS:
4517 * 0 on success, AC_ERR_* mask otherwise.
4518 */
4519 static unsigned int ata_dev_init_params(struct ata_device *dev,
4520 u16 heads, u16 sectors)
4521 {
4522 struct ata_taskfile tf;
4523 unsigned int err_mask;
4524
4525 /* Number of sectors per track 1-255. Number of heads 1-16 */
4526 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4527 return AC_ERR_INVALID;
4528
4529 /* set up init dev params taskfile */
4530 DPRINTK("init dev params \n");
4531
4532 ata_tf_init(dev, &tf);
4533 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4534 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4535 tf.protocol = ATA_PROT_NODATA;
4536 tf.nsect = sectors;
4537 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4538
4539 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4540 /* A clean abort indicates an original or just out of spec drive
4541 and we should continue as we issue the setup based on the
4542 drive reported working geometry */
4543 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4544 err_mask = 0;
4545
4546 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4547 return err_mask;
4548 }
4549
4550 /**
4551 * ata_sg_clean - Unmap DMA memory associated with command
4552 * @qc: Command containing DMA memory to be released
4553 *
4554 * Unmap all mapped DMA memory associated with this command.
4555 *
4556 * LOCKING:
4557 * spin_lock_irqsave(host lock)
4558 */
4559 void ata_sg_clean(struct ata_queued_cmd *qc)
4560 {
4561 struct ata_port *ap = qc->ap;
4562 struct scatterlist *sg = qc->sg;
4563 int dir = qc->dma_dir;
4564
4565 WARN_ON_ONCE(sg == NULL);
4566
4567 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4568
4569 if (qc->n_elem)
4570 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4571
4572 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4573 qc->sg = NULL;
4574 }
4575
4576 /**
4577 * atapi_check_dma - Check whether ATAPI DMA can be supported
4578 * @qc: Metadata associated with taskfile to check
4579 *
4580 * Allow low-level driver to filter ATA PACKET commands, returning
4581 * a status indicating whether or not it is OK to use DMA for the
4582 * supplied PACKET command.
4583 *
4584 * LOCKING:
4585 * spin_lock_irqsave(host lock)
4586 *
4587 * RETURNS: 0 when ATAPI DMA can be used
4588 * nonzero otherwise
4589 */
4590 int atapi_check_dma(struct ata_queued_cmd *qc)
4591 {
4592 struct ata_port *ap = qc->ap;
4593
4594 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4595 * few ATAPI devices choke on such DMA requests.
4596 */
4597 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4598 unlikely(qc->nbytes & 15))
4599 return 1;
4600
4601 if (ap->ops->check_atapi_dma)
4602 return ap->ops->check_atapi_dma(qc);
4603
4604 return 0;
4605 }
4606
4607 /**
4608 * ata_std_qc_defer - Check whether a qc needs to be deferred
4609 * @qc: ATA command in question
4610 *
4611 * Non-NCQ commands cannot run with any other command, NCQ or
4612 * not. As upper layer only knows the queue depth, we are
4613 * responsible for maintaining exclusion. This function checks
4614 * whether a new command @qc can be issued.
4615 *
4616 * LOCKING:
4617 * spin_lock_irqsave(host lock)
4618 *
4619 * RETURNS:
4620 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4621 */
4622 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4623 {
4624 struct ata_link *link = qc->dev->link;
4625
4626 if (qc->tf.protocol == ATA_PROT_NCQ) {
4627 if (!ata_tag_valid(link->active_tag))
4628 return 0;
4629 } else {
4630 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4631 return 0;
4632 }
4633
4634 return ATA_DEFER_LINK;
4635 }
4636
4637 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4638
4639 /**
4640 * ata_sg_init - Associate command with scatter-gather table.
4641 * @qc: Command to be associated
4642 * @sg: Scatter-gather table.
4643 * @n_elem: Number of elements in s/g table.
4644 *
4645 * Initialize the data-related elements of queued_cmd @qc
4646 * to point to a scatter-gather table @sg, containing @n_elem
4647 * elements.
4648 *
4649 * LOCKING:
4650 * spin_lock_irqsave(host lock)
4651 */
4652 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4653 unsigned int n_elem)
4654 {
4655 qc->sg = sg;
4656 qc->n_elem = n_elem;
4657 qc->cursg = qc->sg;
4658 }
4659
4660 /**
4661 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4662 * @qc: Command with scatter-gather table to be mapped.
4663 *
4664 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4665 *
4666 * LOCKING:
4667 * spin_lock_irqsave(host lock)
4668 *
4669 * RETURNS:
4670 * Zero on success, negative on error.
4671 *
4672 */
4673 static int ata_sg_setup(struct ata_queued_cmd *qc)
4674 {
4675 struct ata_port *ap = qc->ap;
4676 unsigned int n_elem;
4677
4678 VPRINTK("ENTER, ata%u\n", ap->print_id);
4679
4680 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4681 if (n_elem < 1)
4682 return -1;
4683
4684 DPRINTK("%d sg elements mapped\n", n_elem);
4685 qc->orig_n_elem = qc->n_elem;
4686 qc->n_elem = n_elem;
4687 qc->flags |= ATA_QCFLAG_DMAMAP;
4688
4689 return 0;
4690 }
4691
4692 /**
4693 * swap_buf_le16 - swap halves of 16-bit words in place
4694 * @buf: Buffer to swap
4695 * @buf_words: Number of 16-bit words in buffer.
4696 *
4697 * Swap halves of 16-bit words if needed to convert from
4698 * little-endian byte order to native cpu byte order, or
4699 * vice-versa.
4700 *
4701 * LOCKING:
4702 * Inherited from caller.
4703 */
4704 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4705 {
4706 #ifdef __BIG_ENDIAN
4707 unsigned int i;
4708
4709 for (i = 0; i < buf_words; i++)
4710 buf[i] = le16_to_cpu(buf[i]);
4711 #endif /* __BIG_ENDIAN */
4712 }
4713
4714 /**
4715 * ata_qc_new - Request an available ATA command, for queueing
4716 * @ap: target port
4717 *
4718 * LOCKING:
4719 * None.
4720 */
4721
4722 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4723 {
4724 struct ata_queued_cmd *qc = NULL;
4725 unsigned int i;
4726
4727 /* no command while frozen */
4728 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4729 return NULL;
4730
4731 /* the last tag is reserved for internal command. */
4732 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4733 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4734 qc = __ata_qc_from_tag(ap, i);
4735 break;
4736 }
4737
4738 if (qc)
4739 qc->tag = i;
4740
4741 return qc;
4742 }
4743
4744 /**
4745 * ata_qc_new_init - Request an available ATA command, and initialize it
4746 * @dev: Device from whom we request an available command structure
4747 *
4748 * LOCKING:
4749 * None.
4750 */
4751
4752 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4753 {
4754 struct ata_port *ap = dev->link->ap;
4755 struct ata_queued_cmd *qc;
4756
4757 qc = ata_qc_new(ap);
4758 if (qc) {
4759 qc->scsicmd = NULL;
4760 qc->ap = ap;
4761 qc->dev = dev;
4762
4763 ata_qc_reinit(qc);
4764 }
4765
4766 return qc;
4767 }
4768
4769 /**
4770 * ata_qc_free - free unused ata_queued_cmd
4771 * @qc: Command to complete
4772 *
4773 * Designed to free unused ata_queued_cmd object
4774 * in case something prevents using it.
4775 *
4776 * LOCKING:
4777 * spin_lock_irqsave(host lock)
4778 */
4779 void ata_qc_free(struct ata_queued_cmd *qc)
4780 {
4781 struct ata_port *ap;
4782 unsigned int tag;
4783
4784 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4785 ap = qc->ap;
4786
4787 qc->flags = 0;
4788 tag = qc->tag;
4789 if (likely(ata_tag_valid(tag))) {
4790 qc->tag = ATA_TAG_POISON;
4791 clear_bit(tag, &ap->qc_allocated);
4792 }
4793 }
4794
4795 void __ata_qc_complete(struct ata_queued_cmd *qc)
4796 {
4797 struct ata_port *ap;
4798 struct ata_link *link;
4799
4800 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4801 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4802 ap = qc->ap;
4803 link = qc->dev->link;
4804
4805 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4806 ata_sg_clean(qc);
4807
4808 /* command should be marked inactive atomically with qc completion */
4809 if (qc->tf.protocol == ATA_PROT_NCQ) {
4810 link->sactive &= ~(1 << qc->tag);
4811 if (!link->sactive)
4812 ap->nr_active_links--;
4813 } else {
4814 link->active_tag = ATA_TAG_POISON;
4815 ap->nr_active_links--;
4816 }
4817
4818 /* clear exclusive status */
4819 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4820 ap->excl_link == link))
4821 ap->excl_link = NULL;
4822
4823 /* atapi: mark qc as inactive to prevent the interrupt handler
4824 * from completing the command twice later, before the error handler
4825 * is called. (when rc != 0 and atapi request sense is needed)
4826 */
4827 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4828 ap->qc_active &= ~(1 << qc->tag);
4829
4830 /* call completion callback */
4831 qc->complete_fn(qc);
4832 }
4833
4834 static void fill_result_tf(struct ata_queued_cmd *qc)
4835 {
4836 struct ata_port *ap = qc->ap;
4837
4838 qc->result_tf.flags = qc->tf.flags;
4839 ap->ops->qc_fill_rtf(qc);
4840 }
4841
4842 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4843 {
4844 struct ata_device *dev = qc->dev;
4845
4846 if (ata_is_nodata(qc->tf.protocol))
4847 return;
4848
4849 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4850 return;
4851
4852 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4853 }
4854
4855 /**
4856 * ata_qc_complete - Complete an active ATA command
4857 * @qc: Command to complete
4858 *
4859 * Indicate to the mid and upper layers that an ATA command has
4860 * completed, with either an ok or not-ok status.
4861 *
4862 * Refrain from calling this function multiple times when
4863 * successfully completing multiple NCQ commands.
4864 * ata_qc_complete_multiple() should be used instead, which will
4865 * properly update IRQ expect state.
4866 *
4867 * LOCKING:
4868 * spin_lock_irqsave(host lock)
4869 */
4870 void ata_qc_complete(struct ata_queued_cmd *qc)
4871 {
4872 struct ata_port *ap = qc->ap;
4873
4874 /* XXX: New EH and old EH use different mechanisms to
4875 * synchronize EH with regular execution path.
4876 *
4877 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4878 * Normal execution path is responsible for not accessing a
4879 * failed qc. libata core enforces the rule by returning NULL
4880 * from ata_qc_from_tag() for failed qcs.
4881 *
4882 * Old EH depends on ata_qc_complete() nullifying completion
4883 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4884 * not synchronize with interrupt handler. Only PIO task is
4885 * taken care of.
4886 */
4887 if (ap->ops->error_handler) {
4888 struct ata_device *dev = qc->dev;
4889 struct ata_eh_info *ehi = &dev->link->eh_info;
4890
4891 if (unlikely(qc->err_mask))
4892 qc->flags |= ATA_QCFLAG_FAILED;
4893
4894 /*
4895 * Finish internal commands without any further processing
4896 * and always with the result TF filled.
4897 */
4898 if (unlikely(ata_tag_internal(qc->tag))) {
4899 fill_result_tf(qc);
4900 __ata_qc_complete(qc);
4901 return;
4902 }
4903
4904 /*
4905 * Non-internal qc has failed. Fill the result TF and
4906 * summon EH.
4907 */
4908 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4909 fill_result_tf(qc);
4910 ata_qc_schedule_eh(qc);
4911 return;
4912 }
4913
4914 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4915
4916 /* read result TF if requested */
4917 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4918 fill_result_tf(qc);
4919
4920 /* Some commands need post-processing after successful
4921 * completion.
4922 */
4923 switch (qc->tf.command) {
4924 case ATA_CMD_SET_FEATURES:
4925 if (qc->tf.feature != SETFEATURES_WC_ON &&
4926 qc->tf.feature != SETFEATURES_WC_OFF)
4927 break;
4928 /* fall through */
4929 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4930 case ATA_CMD_SET_MULTI: /* multi_count changed */
4931 /* revalidate device */
4932 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4933 ata_port_schedule_eh(ap);
4934 break;
4935
4936 case ATA_CMD_SLEEP:
4937 dev->flags |= ATA_DFLAG_SLEEPING;
4938 break;
4939 }
4940
4941 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4942 ata_verify_xfer(qc);
4943
4944 __ata_qc_complete(qc);
4945 } else {
4946 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4947 return;
4948
4949 /* read result TF if failed or requested */
4950 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4951 fill_result_tf(qc);
4952
4953 __ata_qc_complete(qc);
4954 }
4955 }
4956
4957 /**
4958 * ata_qc_complete_multiple - Complete multiple qcs successfully
4959 * @ap: port in question
4960 * @qc_active: new qc_active mask
4961 *
4962 * Complete in-flight commands. This functions is meant to be
4963 * called from low-level driver's interrupt routine to complete
4964 * requests normally. ap->qc_active and @qc_active is compared
4965 * and commands are completed accordingly.
4966 *
4967 * Always use this function when completing multiple NCQ commands
4968 * from IRQ handlers instead of calling ata_qc_complete()
4969 * multiple times to keep IRQ expect status properly in sync.
4970 *
4971 * LOCKING:
4972 * spin_lock_irqsave(host lock)
4973 *
4974 * RETURNS:
4975 * Number of completed commands on success, -errno otherwise.
4976 */
4977 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4978 {
4979 int nr_done = 0;
4980 u32 done_mask;
4981
4982 done_mask = ap->qc_active ^ qc_active;
4983
4984 if (unlikely(done_mask & qc_active)) {
4985 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4986 ap->qc_active, qc_active);
4987 return -EINVAL;
4988 }
4989
4990 while (done_mask) {
4991 struct ata_queued_cmd *qc;
4992 unsigned int tag = __ffs(done_mask);
4993
4994 qc = ata_qc_from_tag(ap, tag);
4995 if (qc) {
4996 ata_qc_complete(qc);
4997 nr_done++;
4998 }
4999 done_mask &= ~(1 << tag);
5000 }
5001
5002 return nr_done;
5003 }
5004
5005 /**
5006 * ata_qc_issue - issue taskfile to device
5007 * @qc: command to issue to device
5008 *
5009 * Prepare an ATA command to submission to device.
5010 * This includes mapping the data into a DMA-able
5011 * area, filling in the S/G table, and finally
5012 * writing the taskfile to hardware, starting the command.
5013 *
5014 * LOCKING:
5015 * spin_lock_irqsave(host lock)
5016 */
5017 void ata_qc_issue(struct ata_queued_cmd *qc)
5018 {
5019 struct ata_port *ap = qc->ap;
5020 struct ata_link *link = qc->dev->link;
5021 u8 prot = qc->tf.protocol;
5022
5023 /* Make sure only one non-NCQ command is outstanding. The
5024 * check is skipped for old EH because it reuses active qc to
5025 * request ATAPI sense.
5026 */
5027 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5028
5029 if (ata_is_ncq(prot)) {
5030 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5031
5032 if (!link->sactive)
5033 ap->nr_active_links++;
5034 link->sactive |= 1 << qc->tag;
5035 } else {
5036 WARN_ON_ONCE(link->sactive);
5037
5038 ap->nr_active_links++;
5039 link->active_tag = qc->tag;
5040 }
5041
5042 qc->flags |= ATA_QCFLAG_ACTIVE;
5043 ap->qc_active |= 1 << qc->tag;
5044
5045 /*
5046 * We guarantee to LLDs that they will have at least one
5047 * non-zero sg if the command is a data command.
5048 */
5049 if (WARN_ON_ONCE(ata_is_data(prot) &&
5050 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5051 goto sys_err;
5052
5053 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5054 (ap->flags & ATA_FLAG_PIO_DMA)))
5055 if (ata_sg_setup(qc))
5056 goto sys_err;
5057
5058 /* if device is sleeping, schedule reset and abort the link */
5059 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5060 link->eh_info.action |= ATA_EH_RESET;
5061 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5062 ata_link_abort(link);
5063 return;
5064 }
5065
5066 ap->ops->qc_prep(qc);
5067
5068 qc->err_mask |= ap->ops->qc_issue(qc);
5069 if (unlikely(qc->err_mask))
5070 goto err;
5071 return;
5072
5073 sys_err:
5074 qc->err_mask |= AC_ERR_SYSTEM;
5075 err:
5076 ata_qc_complete(qc);
5077 }
5078
5079 /**
5080 * sata_scr_valid - test whether SCRs are accessible
5081 * @link: ATA link to test SCR accessibility for
5082 *
5083 * Test whether SCRs are accessible for @link.
5084 *
5085 * LOCKING:
5086 * None.
5087 *
5088 * RETURNS:
5089 * 1 if SCRs are accessible, 0 otherwise.
5090 */
5091 int sata_scr_valid(struct ata_link *link)
5092 {
5093 struct ata_port *ap = link->ap;
5094
5095 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5096 }
5097
5098 /**
5099 * sata_scr_read - read SCR register of the specified port
5100 * @link: ATA link to read SCR for
5101 * @reg: SCR to read
5102 * @val: Place to store read value
5103 *
5104 * Read SCR register @reg of @link into *@val. This function is
5105 * guaranteed to succeed if @link is ap->link, the cable type of
5106 * the port is SATA and the port implements ->scr_read.
5107 *
5108 * LOCKING:
5109 * None if @link is ap->link. Kernel thread context otherwise.
5110 *
5111 * RETURNS:
5112 * 0 on success, negative errno on failure.
5113 */
5114 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5115 {
5116 if (ata_is_host_link(link)) {
5117 if (sata_scr_valid(link))
5118 return link->ap->ops->scr_read(link, reg, val);
5119 return -EOPNOTSUPP;
5120 }
5121
5122 return sata_pmp_scr_read(link, reg, val);
5123 }
5124
5125 /**
5126 * sata_scr_write - write SCR register of the specified port
5127 * @link: ATA link to write SCR for
5128 * @reg: SCR to write
5129 * @val: value to write
5130 *
5131 * Write @val to SCR register @reg of @link. This function is
5132 * guaranteed to succeed if @link is ap->link, the cable type of
5133 * the port is SATA and the port implements ->scr_read.
5134 *
5135 * LOCKING:
5136 * None if @link is ap->link. Kernel thread context otherwise.
5137 *
5138 * RETURNS:
5139 * 0 on success, negative errno on failure.
5140 */
5141 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5142 {
5143 if (ata_is_host_link(link)) {
5144 if (sata_scr_valid(link))
5145 return link->ap->ops->scr_write(link, reg, val);
5146 return -EOPNOTSUPP;
5147 }
5148
5149 return sata_pmp_scr_write(link, reg, val);
5150 }
5151
5152 /**
5153 * sata_scr_write_flush - write SCR register of the specified port and flush
5154 * @link: ATA link to write SCR for
5155 * @reg: SCR to write
5156 * @val: value to write
5157 *
5158 * This function is identical to sata_scr_write() except that this
5159 * function performs flush after writing to the register.
5160 *
5161 * LOCKING:
5162 * None if @link is ap->link. Kernel thread context otherwise.
5163 *
5164 * RETURNS:
5165 * 0 on success, negative errno on failure.
5166 */
5167 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5168 {
5169 if (ata_is_host_link(link)) {
5170 int rc;
5171
5172 if (sata_scr_valid(link)) {
5173 rc = link->ap->ops->scr_write(link, reg, val);
5174 if (rc == 0)
5175 rc = link->ap->ops->scr_read(link, reg, &val);
5176 return rc;
5177 }
5178 return -EOPNOTSUPP;
5179 }
5180
5181 return sata_pmp_scr_write(link, reg, val);
5182 }
5183
5184 /**
5185 * ata_phys_link_online - test whether the given link is online
5186 * @link: ATA link to test
5187 *
5188 * Test whether @link is online. Note that this function returns
5189 * 0 if online status of @link cannot be obtained, so
5190 * ata_link_online(link) != !ata_link_offline(link).
5191 *
5192 * LOCKING:
5193 * None.
5194 *
5195 * RETURNS:
5196 * True if the port online status is available and online.
5197 */
5198 bool ata_phys_link_online(struct ata_link *link)
5199 {
5200 u32 sstatus;
5201
5202 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5203 ata_sstatus_online(sstatus))
5204 return true;
5205 return false;
5206 }
5207
5208 /**
5209 * ata_phys_link_offline - test whether the given link is offline
5210 * @link: ATA link to test
5211 *
5212 * Test whether @link is offline. Note that this function
5213 * returns 0 if offline status of @link cannot be obtained, so
5214 * ata_link_online(link) != !ata_link_offline(link).
5215 *
5216 * LOCKING:
5217 * None.
5218 *
5219 * RETURNS:
5220 * True if the port offline status is available and offline.
5221 */
5222 bool ata_phys_link_offline(struct ata_link *link)
5223 {
5224 u32 sstatus;
5225
5226 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5227 !ata_sstatus_online(sstatus))
5228 return true;
5229 return false;
5230 }
5231
5232 /**
5233 * ata_link_online - test whether the given link is online
5234 * @link: ATA link to test
5235 *
5236 * Test whether @link is online. This is identical to
5237 * ata_phys_link_online() when there's no slave link. When
5238 * there's a slave link, this function should only be called on
5239 * the master link and will return true if any of M/S links is
5240 * online.
5241 *
5242 * LOCKING:
5243 * None.
5244 *
5245 * RETURNS:
5246 * True if the port online status is available and online.
5247 */
5248 bool ata_link_online(struct ata_link *link)
5249 {
5250 struct ata_link *slave = link->ap->slave_link;
5251
5252 WARN_ON(link == slave); /* shouldn't be called on slave link */
5253
5254 return ata_phys_link_online(link) ||
5255 (slave && ata_phys_link_online(slave));
5256 }
5257
5258 /**
5259 * ata_link_offline - test whether the given link is offline
5260 * @link: ATA link to test
5261 *
5262 * Test whether @link is offline. This is identical to
5263 * ata_phys_link_offline() when there's no slave link. When
5264 * there's a slave link, this function should only be called on
5265 * the master link and will return true if both M/S links are
5266 * offline.
5267 *
5268 * LOCKING:
5269 * None.
5270 *
5271 * RETURNS:
5272 * True if the port offline status is available and offline.
5273 */
5274 bool ata_link_offline(struct ata_link *link)
5275 {
5276 struct ata_link *slave = link->ap->slave_link;
5277
5278 WARN_ON(link == slave); /* shouldn't be called on slave link */
5279
5280 return ata_phys_link_offline(link) &&
5281 (!slave || ata_phys_link_offline(slave));
5282 }
5283
5284 #ifdef CONFIG_PM
5285 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5286 unsigned int action, unsigned int ehi_flags,
5287 int *async)
5288 {
5289 struct ata_link *link;
5290 unsigned long flags;
5291 int rc = 0;
5292
5293 /* Previous resume operation might still be in
5294 * progress. Wait for PM_PENDING to clear.
5295 */
5296 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5297 if (async) {
5298 *async = -EAGAIN;
5299 return 0;
5300 }
5301 ata_port_wait_eh(ap);
5302 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5303 }
5304
5305 /* request PM ops to EH */
5306 spin_lock_irqsave(ap->lock, flags);
5307
5308 ap->pm_mesg = mesg;
5309 if (async)
5310 ap->pm_result = async;
5311 else
5312 ap->pm_result = &rc;
5313
5314 ap->pflags |= ATA_PFLAG_PM_PENDING;
5315 ata_for_each_link(link, ap, HOST_FIRST) {
5316 link->eh_info.action |= action;
5317 link->eh_info.flags |= ehi_flags;
5318 }
5319
5320 ata_port_schedule_eh(ap);
5321
5322 spin_unlock_irqrestore(ap->lock, flags);
5323
5324 /* wait and check result */
5325 if (!async) {
5326 ata_port_wait_eh(ap);
5327 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5328 }
5329
5330 return rc;
5331 }
5332
5333 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5334 {
5335 unsigned int ehi_flags = ATA_EHI_QUIET;
5336 int rc;
5337
5338 /*
5339 * On some hardware, device fails to respond after spun down
5340 * for suspend. As the device won't be used before being
5341 * resumed, we don't need to touch the device. Ask EH to skip
5342 * the usual stuff and proceed directly to suspend.
5343 *
5344 * http://thread.gmane.org/gmane.linux.ide/46764
5345 */
5346 if (mesg.event == PM_EVENT_SUSPEND)
5347 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5348
5349 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5350 return rc;
5351 }
5352
5353 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5354 {
5355 struct ata_port *ap = to_ata_port(dev);
5356
5357 return __ata_port_suspend_common(ap, mesg, NULL);
5358 }
5359
5360 static int ata_port_suspend(struct device *dev)
5361 {
5362 if (pm_runtime_suspended(dev))
5363 return 0;
5364
5365 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5366 }
5367
5368 static int ata_port_do_freeze(struct device *dev)
5369 {
5370 if (pm_runtime_suspended(dev))
5371 pm_runtime_resume(dev);
5372
5373 return ata_port_suspend_common(dev, PMSG_FREEZE);
5374 }
5375
5376 static int ata_port_poweroff(struct device *dev)
5377 {
5378 if (pm_runtime_suspended(dev))
5379 return 0;
5380
5381 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5382 }
5383
5384 static int __ata_port_resume_common(struct ata_port *ap, int *async)
5385 {
5386 int rc;
5387
5388 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5389 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5390 return rc;
5391 }
5392
5393 static int ata_port_resume_common(struct device *dev)
5394 {
5395 struct ata_port *ap = to_ata_port(dev);
5396
5397 return __ata_port_resume_common(ap, NULL);
5398 }
5399
5400 static int ata_port_resume(struct device *dev)
5401 {
5402 int rc;
5403
5404 rc = ata_port_resume_common(dev);
5405 if (!rc) {
5406 pm_runtime_disable(dev);
5407 pm_runtime_set_active(dev);
5408 pm_runtime_enable(dev);
5409 }
5410
5411 return rc;
5412 }
5413
5414 static int ata_port_runtime_idle(struct device *dev)
5415 {
5416 return pm_runtime_suspend(dev);
5417 }
5418
5419 static const struct dev_pm_ops ata_port_pm_ops = {
5420 .suspend = ata_port_suspend,
5421 .resume = ata_port_resume,
5422 .freeze = ata_port_do_freeze,
5423 .thaw = ata_port_resume,
5424 .poweroff = ata_port_poweroff,
5425 .restore = ata_port_resume,
5426
5427 .runtime_suspend = ata_port_suspend,
5428 .runtime_resume = ata_port_resume_common,
5429 .runtime_idle = ata_port_runtime_idle,
5430 };
5431
5432 /* sas ports don't participate in pm runtime management of ata_ports,
5433 * and need to resume ata devices at the domain level, not the per-port
5434 * level. sas suspend/resume is async to allow parallel port recovery
5435 * since sas has multiple ata_port instances per Scsi_Host.
5436 */
5437 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5438 {
5439 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5440 }
5441 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5442
5443 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5444 {
5445 return __ata_port_resume_common(ap, async);
5446 }
5447 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5448
5449
5450 /**
5451 * ata_host_suspend - suspend host
5452 * @host: host to suspend
5453 * @mesg: PM message
5454 *
5455 * Suspend @host. Actual operation is performed by port suspend.
5456 */
5457 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5458 {
5459 host->dev->power.power_state = mesg;
5460 return 0;
5461 }
5462
5463 /**
5464 * ata_host_resume - resume host
5465 * @host: host to resume
5466 *
5467 * Resume @host. Actual operation is performed by port resume.
5468 */
5469 void ata_host_resume(struct ata_host *host)
5470 {
5471 host->dev->power.power_state = PMSG_ON;
5472 }
5473 #endif
5474
5475 struct device_type ata_port_type = {
5476 .name = "ata_port",
5477 #ifdef CONFIG_PM
5478 .pm = &ata_port_pm_ops,
5479 #endif
5480 };
5481
5482 /**
5483 * ata_dev_init - Initialize an ata_device structure
5484 * @dev: Device structure to initialize
5485 *
5486 * Initialize @dev in preparation for probing.
5487 *
5488 * LOCKING:
5489 * Inherited from caller.
5490 */
5491 void ata_dev_init(struct ata_device *dev)
5492 {
5493 struct ata_link *link = ata_dev_phys_link(dev);
5494 struct ata_port *ap = link->ap;
5495 unsigned long flags;
5496
5497 /* SATA spd limit is bound to the attached device, reset together */
5498 link->sata_spd_limit = link->hw_sata_spd_limit;
5499 link->sata_spd = 0;
5500
5501 /* High bits of dev->flags are used to record warm plug
5502 * requests which occur asynchronously. Synchronize using
5503 * host lock.
5504 */
5505 spin_lock_irqsave(ap->lock, flags);
5506 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5507 dev->horkage = 0;
5508 spin_unlock_irqrestore(ap->lock, flags);
5509
5510 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5511 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5512 dev->pio_mask = UINT_MAX;
5513 dev->mwdma_mask = UINT_MAX;
5514 dev->udma_mask = UINT_MAX;
5515 }
5516
5517 /**
5518 * ata_link_init - Initialize an ata_link structure
5519 * @ap: ATA port link is attached to
5520 * @link: Link structure to initialize
5521 * @pmp: Port multiplier port number
5522 *
5523 * Initialize @link.
5524 *
5525 * LOCKING:
5526 * Kernel thread context (may sleep)
5527 */
5528 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5529 {
5530 int i;
5531
5532 /* clear everything except for devices */
5533 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5534 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5535
5536 link->ap = ap;
5537 link->pmp = pmp;
5538 link->active_tag = ATA_TAG_POISON;
5539 link->hw_sata_spd_limit = UINT_MAX;
5540
5541 /* can't use iterator, ap isn't initialized yet */
5542 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5543 struct ata_device *dev = &link->device[i];
5544
5545 dev->link = link;
5546 dev->devno = dev - link->device;
5547 #ifdef CONFIG_ATA_ACPI
5548 dev->gtf_filter = ata_acpi_gtf_filter;
5549 #endif
5550 ata_dev_init(dev);
5551 }
5552 }
5553
5554 /**
5555 * sata_link_init_spd - Initialize link->sata_spd_limit
5556 * @link: Link to configure sata_spd_limit for
5557 *
5558 * Initialize @link->[hw_]sata_spd_limit to the currently
5559 * configured value.
5560 *
5561 * LOCKING:
5562 * Kernel thread context (may sleep).
5563 *
5564 * RETURNS:
5565 * 0 on success, -errno on failure.
5566 */
5567 int sata_link_init_spd(struct ata_link *link)
5568 {
5569 u8 spd;
5570 int rc;
5571
5572 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5573 if (rc)
5574 return rc;
5575
5576 spd = (link->saved_scontrol >> 4) & 0xf;
5577 if (spd)
5578 link->hw_sata_spd_limit &= (1 << spd) - 1;
5579
5580 ata_force_link_limits(link);
5581
5582 link->sata_spd_limit = link->hw_sata_spd_limit;
5583
5584 return 0;
5585 }
5586
5587 /**
5588 * ata_port_alloc - allocate and initialize basic ATA port resources
5589 * @host: ATA host this allocated port belongs to
5590 *
5591 * Allocate and initialize basic ATA port resources.
5592 *
5593 * RETURNS:
5594 * Allocate ATA port on success, NULL on failure.
5595 *
5596 * LOCKING:
5597 * Inherited from calling layer (may sleep).
5598 */
5599 struct ata_port *ata_port_alloc(struct ata_host *host)
5600 {
5601 struct ata_port *ap;
5602
5603 DPRINTK("ENTER\n");
5604
5605 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5606 if (!ap)
5607 return NULL;
5608
5609 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5610 ap->lock = &host->lock;
5611 ap->print_id = -1;
5612 ap->host = host;
5613 ap->dev = host->dev;
5614
5615 #if defined(ATA_VERBOSE_DEBUG)
5616 /* turn on all debugging levels */
5617 ap->msg_enable = 0x00FF;
5618 #elif defined(ATA_DEBUG)
5619 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5620 #else
5621 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5622 #endif
5623
5624 mutex_init(&ap->scsi_scan_mutex);
5625 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5626 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5627 INIT_LIST_HEAD(&ap->eh_done_q);
5628 init_waitqueue_head(&ap->eh_wait_q);
5629 init_completion(&ap->park_req_pending);
5630 init_timer_deferrable(&ap->fastdrain_timer);
5631 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5632 ap->fastdrain_timer.data = (unsigned long)ap;
5633
5634 ap->cbl = ATA_CBL_NONE;
5635
5636 ata_link_init(ap, &ap->link, 0);
5637
5638 #ifdef ATA_IRQ_TRAP
5639 ap->stats.unhandled_irq = 1;
5640 ap->stats.idle_irq = 1;
5641 #endif
5642 ata_sff_port_init(ap);
5643
5644 return ap;
5645 }
5646
5647 static void ata_host_release(struct device *gendev, void *res)
5648 {
5649 struct ata_host *host = dev_get_drvdata(gendev);
5650 int i;
5651
5652 for (i = 0; i < host->n_ports; i++) {
5653 struct ata_port *ap = host->ports[i];
5654
5655 if (!ap)
5656 continue;
5657
5658 if (ap->scsi_host)
5659 scsi_host_put(ap->scsi_host);
5660
5661 kfree(ap->pmp_link);
5662 kfree(ap->slave_link);
5663 kfree(ap);
5664 host->ports[i] = NULL;
5665 }
5666
5667 dev_set_drvdata(gendev, NULL);
5668 }
5669
5670 /**
5671 * ata_host_alloc - allocate and init basic ATA host resources
5672 * @dev: generic device this host is associated with
5673 * @max_ports: maximum number of ATA ports associated with this host
5674 *
5675 * Allocate and initialize basic ATA host resources. LLD calls
5676 * this function to allocate a host, initializes it fully and
5677 * attaches it using ata_host_register().
5678 *
5679 * @max_ports ports are allocated and host->n_ports is
5680 * initialized to @max_ports. The caller is allowed to decrease
5681 * host->n_ports before calling ata_host_register(). The unused
5682 * ports will be automatically freed on registration.
5683 *
5684 * RETURNS:
5685 * Allocate ATA host on success, NULL on failure.
5686 *
5687 * LOCKING:
5688 * Inherited from calling layer (may sleep).
5689 */
5690 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5691 {
5692 struct ata_host *host;
5693 size_t sz;
5694 int i;
5695
5696 DPRINTK("ENTER\n");
5697
5698 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5699 return NULL;
5700
5701 /* alloc a container for our list of ATA ports (buses) */
5702 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5703 /* alloc a container for our list of ATA ports (buses) */
5704 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5705 if (!host)
5706 goto err_out;
5707
5708 devres_add(dev, host);
5709 dev_set_drvdata(dev, host);
5710
5711 spin_lock_init(&host->lock);
5712 mutex_init(&host->eh_mutex);
5713 host->dev = dev;
5714 host->n_ports = max_ports;
5715
5716 /* allocate ports bound to this host */
5717 for (i = 0; i < max_ports; i++) {
5718 struct ata_port *ap;
5719
5720 ap = ata_port_alloc(host);
5721 if (!ap)
5722 goto err_out;
5723
5724 ap->port_no = i;
5725 host->ports[i] = ap;
5726 }
5727
5728 devres_remove_group(dev, NULL);
5729 return host;
5730
5731 err_out:
5732 devres_release_group(dev, NULL);
5733 return NULL;
5734 }
5735
5736 /**
5737 * ata_host_alloc_pinfo - alloc host and init with port_info array
5738 * @dev: generic device this host is associated with
5739 * @ppi: array of ATA port_info to initialize host with
5740 * @n_ports: number of ATA ports attached to this host
5741 *
5742 * Allocate ATA host and initialize with info from @ppi. If NULL
5743 * terminated, @ppi may contain fewer entries than @n_ports. The
5744 * last entry will be used for the remaining ports.
5745 *
5746 * RETURNS:
5747 * Allocate ATA host on success, NULL on failure.
5748 *
5749 * LOCKING:
5750 * Inherited from calling layer (may sleep).
5751 */
5752 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5753 const struct ata_port_info * const * ppi,
5754 int n_ports)
5755 {
5756 const struct ata_port_info *pi;
5757 struct ata_host *host;
5758 int i, j;
5759
5760 host = ata_host_alloc(dev, n_ports);
5761 if (!host)
5762 return NULL;
5763
5764 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5765 struct ata_port *ap = host->ports[i];
5766
5767 if (ppi[j])
5768 pi = ppi[j++];
5769
5770 ap->pio_mask = pi->pio_mask;
5771 ap->mwdma_mask = pi->mwdma_mask;
5772 ap->udma_mask = pi->udma_mask;
5773 ap->flags |= pi->flags;
5774 ap->link.flags |= pi->link_flags;
5775 ap->ops = pi->port_ops;
5776
5777 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5778 host->ops = pi->port_ops;
5779 }
5780
5781 return host;
5782 }
5783
5784 /**
5785 * ata_slave_link_init - initialize slave link
5786 * @ap: port to initialize slave link for
5787 *
5788 * Create and initialize slave link for @ap. This enables slave
5789 * link handling on the port.
5790 *
5791 * In libata, a port contains links and a link contains devices.
5792 * There is single host link but if a PMP is attached to it,
5793 * there can be multiple fan-out links. On SATA, there's usually
5794 * a single device connected to a link but PATA and SATA
5795 * controllers emulating TF based interface can have two - master
5796 * and slave.
5797 *
5798 * However, there are a few controllers which don't fit into this
5799 * abstraction too well - SATA controllers which emulate TF
5800 * interface with both master and slave devices but also have
5801 * separate SCR register sets for each device. These controllers
5802 * need separate links for physical link handling
5803 * (e.g. onlineness, link speed) but should be treated like a
5804 * traditional M/S controller for everything else (e.g. command
5805 * issue, softreset).
5806 *
5807 * slave_link is libata's way of handling this class of
5808 * controllers without impacting core layer too much. For
5809 * anything other than physical link handling, the default host
5810 * link is used for both master and slave. For physical link
5811 * handling, separate @ap->slave_link is used. All dirty details
5812 * are implemented inside libata core layer. From LLD's POV, the
5813 * only difference is that prereset, hardreset and postreset are
5814 * called once more for the slave link, so the reset sequence
5815 * looks like the following.
5816 *
5817 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5818 * softreset(M) -> postreset(M) -> postreset(S)
5819 *
5820 * Note that softreset is called only for the master. Softreset
5821 * resets both M/S by definition, so SRST on master should handle
5822 * both (the standard method will work just fine).
5823 *
5824 * LOCKING:
5825 * Should be called before host is registered.
5826 *
5827 * RETURNS:
5828 * 0 on success, -errno on failure.
5829 */
5830 int ata_slave_link_init(struct ata_port *ap)
5831 {
5832 struct ata_link *link;
5833
5834 WARN_ON(ap->slave_link);
5835 WARN_ON(ap->flags & ATA_FLAG_PMP);
5836
5837 link = kzalloc(sizeof(*link), GFP_KERNEL);
5838 if (!link)
5839 return -ENOMEM;
5840
5841 ata_link_init(ap, link, 1);
5842 ap->slave_link = link;
5843 return 0;
5844 }
5845
5846 static void ata_host_stop(struct device *gendev, void *res)
5847 {
5848 struct ata_host *host = dev_get_drvdata(gendev);
5849 int i;
5850
5851 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5852
5853 for (i = 0; i < host->n_ports; i++) {
5854 struct ata_port *ap = host->ports[i];
5855
5856 if (ap->ops->port_stop)
5857 ap->ops->port_stop(ap);
5858 }
5859
5860 if (host->ops->host_stop)
5861 host->ops->host_stop(host);
5862 }
5863
5864 /**
5865 * ata_finalize_port_ops - finalize ata_port_operations
5866 * @ops: ata_port_operations to finalize
5867 *
5868 * An ata_port_operations can inherit from another ops and that
5869 * ops can again inherit from another. This can go on as many
5870 * times as necessary as long as there is no loop in the
5871 * inheritance chain.
5872 *
5873 * Ops tables are finalized when the host is started. NULL or
5874 * unspecified entries are inherited from the closet ancestor
5875 * which has the method and the entry is populated with it.
5876 * After finalization, the ops table directly points to all the
5877 * methods and ->inherits is no longer necessary and cleared.
5878 *
5879 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5880 *
5881 * LOCKING:
5882 * None.
5883 */
5884 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5885 {
5886 static DEFINE_SPINLOCK(lock);
5887 const struct ata_port_operations *cur;
5888 void **begin = (void **)ops;
5889 void **end = (void **)&ops->inherits;
5890 void **pp;
5891
5892 if (!ops || !ops->inherits)
5893 return;
5894
5895 spin_lock(&lock);
5896
5897 for (cur = ops->inherits; cur; cur = cur->inherits) {
5898 void **inherit = (void **)cur;
5899
5900 for (pp = begin; pp < end; pp++, inherit++)
5901 if (!*pp)
5902 *pp = *inherit;
5903 }
5904
5905 for (pp = begin; pp < end; pp++)
5906 if (IS_ERR(*pp))
5907 *pp = NULL;
5908
5909 ops->inherits = NULL;
5910
5911 spin_unlock(&lock);
5912 }
5913
5914 /**
5915 * ata_host_start - start and freeze ports of an ATA host
5916 * @host: ATA host to start ports for
5917 *
5918 * Start and then freeze ports of @host. Started status is
5919 * recorded in host->flags, so this function can be called
5920 * multiple times. Ports are guaranteed to get started only
5921 * once. If host->ops isn't initialized yet, its set to the
5922 * first non-dummy port ops.
5923 *
5924 * LOCKING:
5925 * Inherited from calling layer (may sleep).
5926 *
5927 * RETURNS:
5928 * 0 if all ports are started successfully, -errno otherwise.
5929 */
5930 int ata_host_start(struct ata_host *host)
5931 {
5932 int have_stop = 0;
5933 void *start_dr = NULL;
5934 int i, rc;
5935
5936 if (host->flags & ATA_HOST_STARTED)
5937 return 0;
5938
5939 ata_finalize_port_ops(host->ops);
5940
5941 for (i = 0; i < host->n_ports; i++) {
5942 struct ata_port *ap = host->ports[i];
5943
5944 ata_finalize_port_ops(ap->ops);
5945
5946 if (!host->ops && !ata_port_is_dummy(ap))
5947 host->ops = ap->ops;
5948
5949 if (ap->ops->port_stop)
5950 have_stop = 1;
5951 }
5952
5953 if (host->ops->host_stop)
5954 have_stop = 1;
5955
5956 if (have_stop) {
5957 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5958 if (!start_dr)
5959 return -ENOMEM;
5960 }
5961
5962 for (i = 0; i < host->n_ports; i++) {
5963 struct ata_port *ap = host->ports[i];
5964
5965 if (ap->ops->port_start) {
5966 rc = ap->ops->port_start(ap);
5967 if (rc) {
5968 if (rc != -ENODEV)
5969 dev_err(host->dev,
5970 "failed to start port %d (errno=%d)\n",
5971 i, rc);
5972 goto err_out;
5973 }
5974 }
5975 ata_eh_freeze_port(ap);
5976 }
5977
5978 if (start_dr)
5979 devres_add(host->dev, start_dr);
5980 host->flags |= ATA_HOST_STARTED;
5981 return 0;
5982
5983 err_out:
5984 while (--i >= 0) {
5985 struct ata_port *ap = host->ports[i];
5986
5987 if (ap->ops->port_stop)
5988 ap->ops->port_stop(ap);
5989 }
5990 devres_free(start_dr);
5991 return rc;
5992 }
5993
5994 /**
5995 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5996 * @host: host to initialize
5997 * @dev: device host is attached to
5998 * @ops: port_ops
5999 *
6000 */
6001 void ata_host_init(struct ata_host *host, struct device *dev,
6002 struct ata_port_operations *ops)
6003 {
6004 spin_lock_init(&host->lock);
6005 mutex_init(&host->eh_mutex);
6006 host->dev = dev;
6007 host->ops = ops;
6008 }
6009
6010 void __ata_port_probe(struct ata_port *ap)
6011 {
6012 struct ata_eh_info *ehi = &ap->link.eh_info;
6013 unsigned long flags;
6014
6015 /* kick EH for boot probing */
6016 spin_lock_irqsave(ap->lock, flags);
6017
6018 ehi->probe_mask |= ATA_ALL_DEVICES;
6019 ehi->action |= ATA_EH_RESET;
6020 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6021
6022 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6023 ap->pflags |= ATA_PFLAG_LOADING;
6024 ata_port_schedule_eh(ap);
6025
6026 spin_unlock_irqrestore(ap->lock, flags);
6027 }
6028
6029 int ata_port_probe(struct ata_port *ap)
6030 {
6031 int rc = 0;
6032
6033 if (ap->ops->error_handler) {
6034 __ata_port_probe(ap);
6035 ata_port_wait_eh(ap);
6036 } else {
6037 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6038 rc = ata_bus_probe(ap);
6039 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6040 }
6041 return rc;
6042 }
6043
6044
6045 static void async_port_probe(void *data, async_cookie_t cookie)
6046 {
6047 struct ata_port *ap = data;
6048
6049 /*
6050 * If we're not allowed to scan this host in parallel,
6051 * we need to wait until all previous scans have completed
6052 * before going further.
6053 * Jeff Garzik says this is only within a controller, so we
6054 * don't need to wait for port 0, only for later ports.
6055 */
6056 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6057 async_synchronize_cookie(cookie);
6058
6059 (void)ata_port_probe(ap);
6060
6061 /* in order to keep device order, we need to synchronize at this point */
6062 async_synchronize_cookie(cookie);
6063
6064 ata_scsi_scan_host(ap, 1);
6065 }
6066
6067 /**
6068 * ata_host_register - register initialized ATA host
6069 * @host: ATA host to register
6070 * @sht: template for SCSI host
6071 *
6072 * Register initialized ATA host. @host is allocated using
6073 * ata_host_alloc() and fully initialized by LLD. This function
6074 * starts ports, registers @host with ATA and SCSI layers and
6075 * probe registered devices.
6076 *
6077 * LOCKING:
6078 * Inherited from calling layer (may sleep).
6079 *
6080 * RETURNS:
6081 * 0 on success, -errno otherwise.
6082 */
6083 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6084 {
6085 int i, rc;
6086
6087 /* host must have been started */
6088 if (!(host->flags & ATA_HOST_STARTED)) {
6089 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6090 WARN_ON(1);
6091 return -EINVAL;
6092 }
6093
6094 /* Blow away unused ports. This happens when LLD can't
6095 * determine the exact number of ports to allocate at
6096 * allocation time.
6097 */
6098 for (i = host->n_ports; host->ports[i]; i++)
6099 kfree(host->ports[i]);
6100
6101 /* track host controller */
6102 host->host_id = atomic_inc_return(&host_print_id);
6103
6104 /* give ports names and add SCSI hosts */
6105 for (i = 0; i < host->n_ports; i++)
6106 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6107
6108
6109 /* Create associated sysfs transport objects */
6110 for (i = 0; i < host->n_ports; i++) {
6111 rc = ata_tport_add(host->dev,host->ports[i]);
6112 if (rc) {
6113 goto err_tadd;
6114 }
6115 }
6116
6117 rc = ata_scsi_add_hosts(host, sht);
6118 if (rc)
6119 goto err_tadd;
6120
6121 /* set cable, sata_spd_limit and report */
6122 for (i = 0; i < host->n_ports; i++) {
6123 struct ata_port *ap = host->ports[i];
6124 unsigned long xfer_mask;
6125
6126 /* set SATA cable type if still unset */
6127 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6128 ap->cbl = ATA_CBL_SATA;
6129
6130 /* init sata_spd_limit to the current value */
6131 sata_link_init_spd(&ap->link);
6132 if (ap->slave_link)
6133 sata_link_init_spd(ap->slave_link);
6134
6135 /* print per-port info to dmesg */
6136 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6137 ap->udma_mask);
6138
6139 if (!ata_port_is_dummy(ap)) {
6140 ata_port_info(ap, "%cATA max %s %s\n",
6141 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6142 ata_mode_string(xfer_mask),
6143 ap->link.eh_info.desc);
6144 ata_ehi_clear_desc(&ap->link.eh_info);
6145 } else
6146 ata_port_info(ap, "DUMMY\n");
6147 }
6148
6149 /* perform each probe asynchronously */
6150 for (i = 0; i < host->n_ports; i++) {
6151 struct ata_port *ap = host->ports[i];
6152 async_schedule(async_port_probe, ap);
6153 }
6154
6155 return 0;
6156
6157 err_tadd:
6158 while (--i >= 0) {
6159 ata_tport_delete(host->ports[i]);
6160 }
6161 return rc;
6162
6163 }
6164
6165 /**
6166 * ata_host_activate - start host, request IRQ and register it
6167 * @host: target ATA host
6168 * @irq: IRQ to request
6169 * @irq_handler: irq_handler used when requesting IRQ
6170 * @irq_flags: irq_flags used when requesting IRQ
6171 * @sht: scsi_host_template to use when registering the host
6172 *
6173 * After allocating an ATA host and initializing it, most libata
6174 * LLDs perform three steps to activate the host - start host,
6175 * request IRQ and register it. This helper takes necessasry
6176 * arguments and performs the three steps in one go.
6177 *
6178 * An invalid IRQ skips the IRQ registration and expects the host to
6179 * have set polling mode on the port. In this case, @irq_handler
6180 * should be NULL.
6181 *
6182 * LOCKING:
6183 * Inherited from calling layer (may sleep).
6184 *
6185 * RETURNS:
6186 * 0 on success, -errno otherwise.
6187 */
6188 int ata_host_activate(struct ata_host *host, int irq,
6189 irq_handler_t irq_handler, unsigned long irq_flags,
6190 struct scsi_host_template *sht)
6191 {
6192 int i, rc;
6193
6194 rc = ata_host_start(host);
6195 if (rc)
6196 return rc;
6197
6198 /* Special case for polling mode */
6199 if (!irq) {
6200 WARN_ON(irq_handler);
6201 return ata_host_register(host, sht);
6202 }
6203
6204 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6205 dev_driver_string(host->dev), host);
6206 if (rc)
6207 return rc;
6208
6209 for (i = 0; i < host->n_ports; i++)
6210 ata_port_desc(host->ports[i], "irq %d", irq);
6211
6212 rc = ata_host_register(host, sht);
6213 /* if failed, just free the IRQ and leave ports alone */
6214 if (rc)
6215 devm_free_irq(host->dev, irq, host);
6216
6217 return rc;
6218 }
6219
6220 /**
6221 * ata_port_detach - Detach ATA port in prepration of device removal
6222 * @ap: ATA port to be detached
6223 *
6224 * Detach all ATA devices and the associated SCSI devices of @ap;
6225 * then, remove the associated SCSI host. @ap is guaranteed to
6226 * be quiescent on return from this function.
6227 *
6228 * LOCKING:
6229 * Kernel thread context (may sleep).
6230 */
6231 static void ata_port_detach(struct ata_port *ap)
6232 {
6233 unsigned long flags;
6234
6235 if (!ap->ops->error_handler)
6236 goto skip_eh;
6237
6238 /* tell EH we're leaving & flush EH */
6239 spin_lock_irqsave(ap->lock, flags);
6240 ap->pflags |= ATA_PFLAG_UNLOADING;
6241 ata_port_schedule_eh(ap);
6242 spin_unlock_irqrestore(ap->lock, flags);
6243
6244 /* wait till EH commits suicide */
6245 ata_port_wait_eh(ap);
6246
6247 /* it better be dead now */
6248 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6249
6250 cancel_delayed_work_sync(&ap->hotplug_task);
6251
6252 skip_eh:
6253 if (ap->pmp_link) {
6254 int i;
6255 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6256 ata_tlink_delete(&ap->pmp_link[i]);
6257 }
6258 ata_tport_delete(ap);
6259
6260 /* remove the associated SCSI host */
6261 scsi_remove_host(ap->scsi_host);
6262 }
6263
6264 /**
6265 * ata_host_detach - Detach all ports of an ATA host
6266 * @host: Host to detach
6267 *
6268 * Detach all ports of @host.
6269 *
6270 * LOCKING:
6271 * Kernel thread context (may sleep).
6272 */
6273 void ata_host_detach(struct ata_host *host)
6274 {
6275 int i;
6276
6277 for (i = 0; i < host->n_ports; i++)
6278 ata_port_detach(host->ports[i]);
6279
6280 /* the host is dead now, dissociate ACPI */
6281 ata_acpi_dissociate(host);
6282 }
6283
6284 #ifdef CONFIG_PCI
6285
6286 /**
6287 * ata_pci_remove_one - PCI layer callback for device removal
6288 * @pdev: PCI device that was removed
6289 *
6290 * PCI layer indicates to libata via this hook that hot-unplug or
6291 * module unload event has occurred. Detach all ports. Resource
6292 * release is handled via devres.
6293 *
6294 * LOCKING:
6295 * Inherited from PCI layer (may sleep).
6296 */
6297 void ata_pci_remove_one(struct pci_dev *pdev)
6298 {
6299 struct ata_host *host = pci_get_drvdata(pdev);
6300
6301 ata_host_detach(host);
6302 }
6303
6304 /* move to PCI subsystem */
6305 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6306 {
6307 unsigned long tmp = 0;
6308
6309 switch (bits->width) {
6310 case 1: {
6311 u8 tmp8 = 0;
6312 pci_read_config_byte(pdev, bits->reg, &tmp8);
6313 tmp = tmp8;
6314 break;
6315 }
6316 case 2: {
6317 u16 tmp16 = 0;
6318 pci_read_config_word(pdev, bits->reg, &tmp16);
6319 tmp = tmp16;
6320 break;
6321 }
6322 case 4: {
6323 u32 tmp32 = 0;
6324 pci_read_config_dword(pdev, bits->reg, &tmp32);
6325 tmp = tmp32;
6326 break;
6327 }
6328
6329 default:
6330 return -EINVAL;
6331 }
6332
6333 tmp &= bits->mask;
6334
6335 return (tmp == bits->val) ? 1 : 0;
6336 }
6337
6338 #ifdef CONFIG_PM
6339 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6340 {
6341 pci_save_state(pdev);
6342 pci_disable_device(pdev);
6343
6344 if (mesg.event & PM_EVENT_SLEEP)
6345 pci_set_power_state(pdev, PCI_D3hot);
6346 }
6347
6348 int ata_pci_device_do_resume(struct pci_dev *pdev)
6349 {
6350 int rc;
6351
6352 pci_set_power_state(pdev, PCI_D0);
6353 pci_restore_state(pdev);
6354
6355 rc = pcim_enable_device(pdev);
6356 if (rc) {
6357 dev_err(&pdev->dev,
6358 "failed to enable device after resume (%d)\n", rc);
6359 return rc;
6360 }
6361
6362 pci_set_master(pdev);
6363 return 0;
6364 }
6365
6366 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6367 {
6368 struct ata_host *host = pci_get_drvdata(pdev);
6369 int rc = 0;
6370
6371 rc = ata_host_suspend(host, mesg);
6372 if (rc)
6373 return rc;
6374
6375 ata_pci_device_do_suspend(pdev, mesg);
6376
6377 return 0;
6378 }
6379
6380 int ata_pci_device_resume(struct pci_dev *pdev)
6381 {
6382 struct ata_host *host = pci_get_drvdata(pdev);
6383 int rc;
6384
6385 rc = ata_pci_device_do_resume(pdev);
6386 if (rc == 0)
6387 ata_host_resume(host);
6388 return rc;
6389 }
6390 #endif /* CONFIG_PM */
6391
6392 #endif /* CONFIG_PCI */
6393
6394 /**
6395 * ata_platform_remove_one - Platform layer callback for device removal
6396 * @pdev: Platform device that was removed
6397 *
6398 * Platform layer indicates to libata via this hook that hot-unplug or
6399 * module unload event has occurred. Detach all ports. Resource
6400 * release is handled via devres.
6401 *
6402 * LOCKING:
6403 * Inherited from platform layer (may sleep).
6404 */
6405 int ata_platform_remove_one(struct platform_device *pdev)
6406 {
6407 struct ata_host *host = platform_get_drvdata(pdev);
6408
6409 ata_host_detach(host);
6410
6411 return 0;
6412 }
6413
6414 static int __init ata_parse_force_one(char **cur,
6415 struct ata_force_ent *force_ent,
6416 const char **reason)
6417 {
6418 /* FIXME: Currently, there's no way to tag init const data and
6419 * using __initdata causes build failure on some versions of
6420 * gcc. Once __initdataconst is implemented, add const to the
6421 * following structure.
6422 */
6423 static struct ata_force_param force_tbl[] __initdata = {
6424 { "40c", .cbl = ATA_CBL_PATA40 },
6425 { "80c", .cbl = ATA_CBL_PATA80 },
6426 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6427 { "unk", .cbl = ATA_CBL_PATA_UNK },
6428 { "ign", .cbl = ATA_CBL_PATA_IGN },
6429 { "sata", .cbl = ATA_CBL_SATA },
6430 { "1.5Gbps", .spd_limit = 1 },
6431 { "3.0Gbps", .spd_limit = 2 },
6432 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6433 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6434 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6435 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6436 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6437 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6438 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6439 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6440 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6441 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6442 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6443 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6444 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6445 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6446 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6447 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6448 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6449 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6450 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6451 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6452 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6453 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6454 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6455 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6456 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6457 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6458 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6459 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6460 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6461 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6462 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6463 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6464 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6465 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6466 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6467 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6468 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6469 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6470 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6471 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6472 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6473 };
6474 char *start = *cur, *p = *cur;
6475 char *id, *val, *endp;
6476 const struct ata_force_param *match_fp = NULL;
6477 int nr_matches = 0, i;
6478
6479 /* find where this param ends and update *cur */
6480 while (*p != '\0' && *p != ',')
6481 p++;
6482
6483 if (*p == '\0')
6484 *cur = p;
6485 else
6486 *cur = p + 1;
6487
6488 *p = '\0';
6489
6490 /* parse */
6491 p = strchr(start, ':');
6492 if (!p) {
6493 val = strstrip(start);
6494 goto parse_val;
6495 }
6496 *p = '\0';
6497
6498 id = strstrip(start);
6499 val = strstrip(p + 1);
6500
6501 /* parse id */
6502 p = strchr(id, '.');
6503 if (p) {
6504 *p++ = '\0';
6505 force_ent->device = simple_strtoul(p, &endp, 10);
6506 if (p == endp || *endp != '\0') {
6507 *reason = "invalid device";
6508 return -EINVAL;
6509 }
6510 }
6511
6512 force_ent->port = simple_strtoul(id, &endp, 10);
6513 if (p == endp || *endp != '\0') {
6514 *reason = "invalid port/link";
6515 return -EINVAL;
6516 }
6517
6518 parse_val:
6519 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6520 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6521 const struct ata_force_param *fp = &force_tbl[i];
6522
6523 if (strncasecmp(val, fp->name, strlen(val)))
6524 continue;
6525
6526 nr_matches++;
6527 match_fp = fp;
6528
6529 if (strcasecmp(val, fp->name) == 0) {
6530 nr_matches = 1;
6531 break;
6532 }
6533 }
6534
6535 if (!nr_matches) {
6536 *reason = "unknown value";
6537 return -EINVAL;
6538 }
6539 if (nr_matches > 1) {
6540 *reason = "ambigious value";
6541 return -EINVAL;
6542 }
6543
6544 force_ent->param = *match_fp;
6545
6546 return 0;
6547 }
6548
6549 static void __init ata_parse_force_param(void)
6550 {
6551 int idx = 0, size = 1;
6552 int last_port = -1, last_device = -1;
6553 char *p, *cur, *next;
6554
6555 /* calculate maximum number of params and allocate force_tbl */
6556 for (p = ata_force_param_buf; *p; p++)
6557 if (*p == ',')
6558 size++;
6559
6560 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6561 if (!ata_force_tbl) {
6562 printk(KERN_WARNING "ata: failed to extend force table, "
6563 "libata.force ignored\n");
6564 return;
6565 }
6566
6567 /* parse and populate the table */
6568 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6569 const char *reason = "";
6570 struct ata_force_ent te = { .port = -1, .device = -1 };
6571
6572 next = cur;
6573 if (ata_parse_force_one(&next, &te, &reason)) {
6574 printk(KERN_WARNING "ata: failed to parse force "
6575 "parameter \"%s\" (%s)\n",
6576 cur, reason);
6577 continue;
6578 }
6579
6580 if (te.port == -1) {
6581 te.port = last_port;
6582 te.device = last_device;
6583 }
6584
6585 ata_force_tbl[idx++] = te;
6586
6587 last_port = te.port;
6588 last_device = te.device;
6589 }
6590
6591 ata_force_tbl_size = idx;
6592 }
6593
6594 static int __init ata_init(void)
6595 {
6596 int rc;
6597
6598 ata_parse_force_param();
6599
6600 ata_acpi_register();
6601
6602 rc = ata_sff_init();
6603 if (rc) {
6604 kfree(ata_force_tbl);
6605 return rc;
6606 }
6607
6608 libata_transport_init();
6609 ata_scsi_transport_template = ata_attach_transport();
6610 if (!ata_scsi_transport_template) {
6611 ata_sff_exit();
6612 rc = -ENOMEM;
6613 goto err_out;
6614 }
6615
6616 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6617 return 0;
6618
6619 err_out:
6620 return rc;
6621 }
6622
6623 static void __exit ata_exit(void)
6624 {
6625 ata_release_transport(ata_scsi_transport_template);
6626 libata_transport_exit();
6627 ata_sff_exit();
6628 ata_acpi_unregister();
6629 kfree(ata_force_tbl);
6630 }
6631
6632 subsys_initcall(ata_init);
6633 module_exit(ata_exit);
6634
6635 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6636
6637 int ata_ratelimit(void)
6638 {
6639 return __ratelimit(&ratelimit);
6640 }
6641
6642 /**
6643 * ata_msleep - ATA EH owner aware msleep
6644 * @ap: ATA port to attribute the sleep to
6645 * @msecs: duration to sleep in milliseconds
6646 *
6647 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6648 * ownership is released before going to sleep and reacquired
6649 * after the sleep is complete. IOW, other ports sharing the
6650 * @ap->host will be allowed to own the EH while this task is
6651 * sleeping.
6652 *
6653 * LOCKING:
6654 * Might sleep.
6655 */
6656 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6657 {
6658 bool owns_eh = ap && ap->host->eh_owner == current;
6659
6660 if (owns_eh)
6661 ata_eh_release(ap);
6662
6663 msleep(msecs);
6664
6665 if (owns_eh)
6666 ata_eh_acquire(ap);
6667 }
6668
6669 /**
6670 * ata_wait_register - wait until register value changes
6671 * @ap: ATA port to wait register for, can be NULL
6672 * @reg: IO-mapped register
6673 * @mask: Mask to apply to read register value
6674 * @val: Wait condition
6675 * @interval: polling interval in milliseconds
6676 * @timeout: timeout in milliseconds
6677 *
6678 * Waiting for some bits of register to change is a common
6679 * operation for ATA controllers. This function reads 32bit LE
6680 * IO-mapped register @reg and tests for the following condition.
6681 *
6682 * (*@reg & mask) != val
6683 *
6684 * If the condition is met, it returns; otherwise, the process is
6685 * repeated after @interval_msec until timeout.
6686 *
6687 * LOCKING:
6688 * Kernel thread context (may sleep)
6689 *
6690 * RETURNS:
6691 * The final register value.
6692 */
6693 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6694 unsigned long interval, unsigned long timeout)
6695 {
6696 unsigned long deadline;
6697 u32 tmp;
6698
6699 tmp = ioread32(reg);
6700
6701 /* Calculate timeout _after_ the first read to make sure
6702 * preceding writes reach the controller before starting to
6703 * eat away the timeout.
6704 */
6705 deadline = ata_deadline(jiffies, timeout);
6706
6707 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6708 ata_msleep(ap, interval);
6709 tmp = ioread32(reg);
6710 }
6711
6712 return tmp;
6713 }
6714
6715 /*
6716 * Dummy port_ops
6717 */
6718 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6719 {
6720 return AC_ERR_SYSTEM;
6721 }
6722
6723 static void ata_dummy_error_handler(struct ata_port *ap)
6724 {
6725 /* truly dummy */
6726 }
6727
6728 struct ata_port_operations ata_dummy_port_ops = {
6729 .qc_prep = ata_noop_qc_prep,
6730 .qc_issue = ata_dummy_qc_issue,
6731 .error_handler = ata_dummy_error_handler,
6732 .sched_eh = ata_std_sched_eh,
6733 .end_eh = ata_std_end_eh,
6734 };
6735
6736 const struct ata_port_info ata_dummy_port_info = {
6737 .port_ops = &ata_dummy_port_ops,
6738 };
6739
6740 /*
6741 * Utility print functions
6742 */
6743 int ata_port_printk(const struct ata_port *ap, const char *level,
6744 const char *fmt, ...)
6745 {
6746 struct va_format vaf;
6747 va_list args;
6748 int r;
6749
6750 va_start(args, fmt);
6751
6752 vaf.fmt = fmt;
6753 vaf.va = &args;
6754
6755 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6756
6757 va_end(args);
6758
6759 return r;
6760 }
6761 EXPORT_SYMBOL(ata_port_printk);
6762
6763 int ata_link_printk(const struct ata_link *link, const char *level,
6764 const char *fmt, ...)
6765 {
6766 struct va_format vaf;
6767 va_list args;
6768 int r;
6769
6770 va_start(args, fmt);
6771
6772 vaf.fmt = fmt;
6773 vaf.va = &args;
6774
6775 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6776 r = printk("%sata%u.%02u: %pV",
6777 level, link->ap->print_id, link->pmp, &vaf);
6778 else
6779 r = printk("%sata%u: %pV",
6780 level, link->ap->print_id, &vaf);
6781
6782 va_end(args);
6783
6784 return r;
6785 }
6786 EXPORT_SYMBOL(ata_link_printk);
6787
6788 int ata_dev_printk(const struct ata_device *dev, const char *level,
6789 const char *fmt, ...)
6790 {
6791 struct va_format vaf;
6792 va_list args;
6793 int r;
6794
6795 va_start(args, fmt);
6796
6797 vaf.fmt = fmt;
6798 vaf.va = &args;
6799
6800 r = printk("%sata%u.%02u: %pV",
6801 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6802 &vaf);
6803
6804 va_end(args);
6805
6806 return r;
6807 }
6808 EXPORT_SYMBOL(ata_dev_printk);
6809
6810 void ata_print_version(const struct device *dev, const char *version)
6811 {
6812 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6813 }
6814 EXPORT_SYMBOL(ata_print_version);
6815
6816 /*
6817 * libata is essentially a library of internal helper functions for
6818 * low-level ATA host controller drivers. As such, the API/ABI is
6819 * likely to change as new drivers are added and updated.
6820 * Do not depend on ABI/API stability.
6821 */
6822 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6823 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6824 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6825 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6826 EXPORT_SYMBOL_GPL(sata_port_ops);
6827 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6828 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6829 EXPORT_SYMBOL_GPL(ata_link_next);
6830 EXPORT_SYMBOL_GPL(ata_dev_next);
6831 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6832 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6833 EXPORT_SYMBOL_GPL(ata_host_init);
6834 EXPORT_SYMBOL_GPL(ata_host_alloc);
6835 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6836 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6837 EXPORT_SYMBOL_GPL(ata_host_start);
6838 EXPORT_SYMBOL_GPL(ata_host_register);
6839 EXPORT_SYMBOL_GPL(ata_host_activate);
6840 EXPORT_SYMBOL_GPL(ata_host_detach);
6841 EXPORT_SYMBOL_GPL(ata_sg_init);
6842 EXPORT_SYMBOL_GPL(ata_qc_complete);
6843 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6844 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6845 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6846 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6847 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6848 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6849 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6850 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6851 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6852 EXPORT_SYMBOL_GPL(ata_mode_string);
6853 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6854 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6855 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6856 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6857 EXPORT_SYMBOL_GPL(ata_dev_disable);
6858 EXPORT_SYMBOL_GPL(sata_set_spd);
6859 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6860 EXPORT_SYMBOL_GPL(sata_link_debounce);
6861 EXPORT_SYMBOL_GPL(sata_link_resume);
6862 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6863 EXPORT_SYMBOL_GPL(ata_std_prereset);
6864 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6865 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6866 EXPORT_SYMBOL_GPL(ata_std_postreset);
6867 EXPORT_SYMBOL_GPL(ata_dev_classify);
6868 EXPORT_SYMBOL_GPL(ata_dev_pair);
6869 EXPORT_SYMBOL_GPL(ata_ratelimit);
6870 EXPORT_SYMBOL_GPL(ata_msleep);
6871 EXPORT_SYMBOL_GPL(ata_wait_register);
6872 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6873 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6874 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6875 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6876 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6877 EXPORT_SYMBOL_GPL(sata_scr_valid);
6878 EXPORT_SYMBOL_GPL(sata_scr_read);
6879 EXPORT_SYMBOL_GPL(sata_scr_write);
6880 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6881 EXPORT_SYMBOL_GPL(ata_link_online);
6882 EXPORT_SYMBOL_GPL(ata_link_offline);
6883 #ifdef CONFIG_PM
6884 EXPORT_SYMBOL_GPL(ata_host_suspend);
6885 EXPORT_SYMBOL_GPL(ata_host_resume);
6886 #endif /* CONFIG_PM */
6887 EXPORT_SYMBOL_GPL(ata_id_string);
6888 EXPORT_SYMBOL_GPL(ata_id_c_string);
6889 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6890 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6891
6892 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6893 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6894 EXPORT_SYMBOL_GPL(ata_timing_compute);
6895 EXPORT_SYMBOL_GPL(ata_timing_merge);
6896 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6897
6898 #ifdef CONFIG_PCI
6899 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6900 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6901 #ifdef CONFIG_PM
6902 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6903 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6904 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6905 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6906 #endif /* CONFIG_PM */
6907 #endif /* CONFIG_PCI */
6908
6909 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6910
6911 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6912 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6913 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6914 EXPORT_SYMBOL_GPL(ata_port_desc);
6915 #ifdef CONFIG_PCI
6916 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6917 #endif /* CONFIG_PCI */
6918 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6919 EXPORT_SYMBOL_GPL(ata_link_abort);
6920 EXPORT_SYMBOL_GPL(ata_port_abort);
6921 EXPORT_SYMBOL_GPL(ata_port_freeze);
6922 EXPORT_SYMBOL_GPL(sata_async_notification);
6923 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6924 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6925 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6926 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6927 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6928 EXPORT_SYMBOL_GPL(ata_do_eh);
6929 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6930
6931 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6932 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6933 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6934 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6935 EXPORT_SYMBOL_GPL(ata_cable_sata);