Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43
44 /*
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49 */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
59
60 #define ACPI_PROCESSOR_COMPONENT 0x01000000
61 #define ACPI_PROCESSOR_CLASS "processor"
62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER "power"
65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
67 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
68 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
69 static void (*pm_idle_save) (void) __read_mostly;
70 module_param(max_cstate, uint, 0644);
71
72 static unsigned int nocst __read_mostly;
73 module_param(nocst, uint, 0000);
74
75 /*
76 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
77 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
78 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
79 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
80 * reduce history for more aggressive entry into C3
81 */
82 static unsigned int bm_history __read_mostly =
83 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
84 module_param(bm_history, uint, 0644);
85 /* --------------------------------------------------------------------------
86 Power Management
87 -------------------------------------------------------------------------- */
88
89 /*
90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91 * For now disable this. Probably a bug somewhere else.
92 *
93 * To skip this limit, boot/load with a large max_cstate limit.
94 */
95 static int set_max_cstate(const struct dmi_system_id *id)
96 {
97 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98 return 0;
99
100 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103
104 max_cstate = (long)id->driver_data;
105
106 return 0;
107 }
108
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110 callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 { set_max_cstate, "IBM ThinkPad R40e", {
113 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
115 { set_max_cstate, "IBM ThinkPad R40e", {
116 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
118 { set_max_cstate, "IBM ThinkPad R40e", {
119 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
121 { set_max_cstate, "IBM ThinkPad R40e", {
122 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
124 { set_max_cstate, "IBM ThinkPad R40e", {
125 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
127 { set_max_cstate, "IBM ThinkPad R40e", {
128 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
130 { set_max_cstate, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
133 { set_max_cstate, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
136 { set_max_cstate, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
139 { set_max_cstate, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
142 { set_max_cstate, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
145 { set_max_cstate, "IBM ThinkPad R40e", {
146 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
147 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
148 { set_max_cstate, "IBM ThinkPad R40e", {
149 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
150 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
151 { set_max_cstate, "IBM ThinkPad R40e", {
152 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
153 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
154 { set_max_cstate, "IBM ThinkPad R40e", {
155 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
156 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
157 { set_max_cstate, "IBM ThinkPad R40e", {
158 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
159 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
160 { set_max_cstate, "Medion 41700", {
161 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
162 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
163 { set_max_cstate, "Clevo 5600D", {
164 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
165 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
166 (void *)2},
167 {},
168 };
169
170 static inline u32 ticks_elapsed(u32 t1, u32 t2)
171 {
172 if (t2 >= t1)
173 return (t2 - t1);
174 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
175 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
176 else
177 return ((0xFFFFFFFF - t1) + t2);
178 }
179
180 static void
181 acpi_processor_power_activate(struct acpi_processor *pr,
182 struct acpi_processor_cx *new)
183 {
184 struct acpi_processor_cx *old;
185
186 if (!pr || !new)
187 return;
188
189 old = pr->power.state;
190
191 if (old)
192 old->promotion.count = 0;
193 new->demotion.count = 0;
194
195 /* Cleanup from old state. */
196 if (old) {
197 switch (old->type) {
198 case ACPI_STATE_C3:
199 /* Disable bus master reload */
200 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
201 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
202 break;
203 }
204 }
205
206 /* Prepare to use new state. */
207 switch (new->type) {
208 case ACPI_STATE_C3:
209 /* Enable bus master reload */
210 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
211 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
212 break;
213 }
214
215 pr->power.state = new;
216
217 return;
218 }
219
220 static void acpi_safe_halt(void)
221 {
222 current_thread_info()->status &= ~TS_POLLING;
223 /*
224 * TS_POLLING-cleared state must be visible before we
225 * test NEED_RESCHED:
226 */
227 smp_mb();
228 if (!need_resched())
229 safe_halt();
230 current_thread_info()->status |= TS_POLLING;
231 }
232
233 static atomic_t c3_cpu_count;
234
235 /* Common C-state entry for C2, C3, .. */
236 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
237 {
238 if (cstate->space_id == ACPI_CSTATE_FFH) {
239 /* Call into architectural FFH based C-state */
240 acpi_processor_ffh_cstate_enter(cstate);
241 } else {
242 int unused;
243 /* IO port based C-state */
244 inb(cstate->address);
245 /* Dummy wait op - must do something useless after P_LVL2 read
246 because chipsets cannot guarantee that STPCLK# signal
247 gets asserted in time to freeze execution properly. */
248 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
249 }
250 }
251
252 #ifdef ARCH_APICTIMER_STOPS_ON_C3
253
254 /*
255 * Some BIOS implementations switch to C3 in the published C2 state.
256 * This seems to be a common problem on AMD boxen, but other vendors
257 * are affected too. We pick the most conservative approach: we assume
258 * that the local APIC stops in both C2 and C3.
259 */
260 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
261 struct acpi_processor_cx *cx)
262 {
263 struct acpi_processor_power *pwr = &pr->power;
264 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
265
266 /*
267 * Check, if one of the previous states already marked the lapic
268 * unstable
269 */
270 if (pwr->timer_broadcast_on_state < state)
271 return;
272
273 if (cx->type >= type)
274 pr->power.timer_broadcast_on_state = state;
275 }
276
277 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
278 {
279 unsigned long reason;
280
281 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
282 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
283
284 clockevents_notify(reason, &pr->id);
285 }
286
287 /* Power(C) State timer broadcast control */
288 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
289 struct acpi_processor_cx *cx,
290 int broadcast)
291 {
292 int state = cx - pr->power.states;
293
294 if (state >= pr->power.timer_broadcast_on_state) {
295 unsigned long reason;
296
297 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
298 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
299 clockevents_notify(reason, &pr->id);
300 }
301 }
302
303 #else
304
305 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
306 struct acpi_processor_cx *cstate) { }
307 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
308 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
309 struct acpi_processor_cx *cx,
310 int broadcast)
311 {
312 }
313
314 #endif
315
316 /*
317 * Suspend / resume control
318 */
319 static int acpi_idle_suspend;
320
321 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
322 {
323 acpi_idle_suspend = 1;
324 return 0;
325 }
326
327 int acpi_processor_resume(struct acpi_device * device)
328 {
329 acpi_idle_suspend = 0;
330 return 0;
331 }
332
333 static void acpi_processor_idle(void)
334 {
335 struct acpi_processor *pr = NULL;
336 struct acpi_processor_cx *cx = NULL;
337 struct acpi_processor_cx *next_state = NULL;
338 int sleep_ticks = 0;
339 u32 t1, t2 = 0;
340
341 /*
342 * Interrupts must be disabled during bus mastering calculations and
343 * for C2/C3 transitions.
344 */
345 local_irq_disable();
346
347 pr = processors[smp_processor_id()];
348 if (!pr) {
349 local_irq_enable();
350 return;
351 }
352
353 /*
354 * Check whether we truly need to go idle, or should
355 * reschedule:
356 */
357 if (unlikely(need_resched())) {
358 local_irq_enable();
359 return;
360 }
361
362 cx = pr->power.state;
363 if (!cx || acpi_idle_suspend) {
364 if (pm_idle_save)
365 pm_idle_save();
366 else
367 acpi_safe_halt();
368 return;
369 }
370
371 /*
372 * Check BM Activity
373 * -----------------
374 * Check for bus mastering activity (if required), record, and check
375 * for demotion.
376 */
377 if (pr->flags.bm_check) {
378 u32 bm_status = 0;
379 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
380
381 if (diff > 31)
382 diff = 31;
383
384 pr->power.bm_activity <<= diff;
385
386 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
387 if (bm_status) {
388 pr->power.bm_activity |= 0x1;
389 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
390 }
391 /*
392 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
393 * the true state of bus mastering activity; forcing us to
394 * manually check the BMIDEA bit of each IDE channel.
395 */
396 else if (errata.piix4.bmisx) {
397 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
398 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
399 pr->power.bm_activity |= 0x1;
400 }
401
402 pr->power.bm_check_timestamp = jiffies;
403
404 /*
405 * If bus mastering is or was active this jiffy, demote
406 * to avoid a faulty transition. Note that the processor
407 * won't enter a low-power state during this call (to this
408 * function) but should upon the next.
409 *
410 * TBD: A better policy might be to fallback to the demotion
411 * state (use it for this quantum only) istead of
412 * demoting -- and rely on duration as our sole demotion
413 * qualification. This may, however, introduce DMA
414 * issues (e.g. floppy DMA transfer overrun/underrun).
415 */
416 if ((pr->power.bm_activity & 0x1) &&
417 cx->demotion.threshold.bm) {
418 local_irq_enable();
419 next_state = cx->demotion.state;
420 goto end;
421 }
422 }
423
424 #ifdef CONFIG_HOTPLUG_CPU
425 /*
426 * Check for P_LVL2_UP flag before entering C2 and above on
427 * an SMP system. We do it here instead of doing it at _CST/P_LVL
428 * detection phase, to work cleanly with logical CPU hotplug.
429 */
430 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
431 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
432 cx = &pr->power.states[ACPI_STATE_C1];
433 #endif
434
435 /*
436 * Sleep:
437 * ------
438 * Invoke the current Cx state to put the processor to sleep.
439 */
440 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
441 current_thread_info()->status &= ~TS_POLLING;
442 /*
443 * TS_POLLING-cleared state must be visible before we
444 * test NEED_RESCHED:
445 */
446 smp_mb();
447 if (need_resched()) {
448 current_thread_info()->status |= TS_POLLING;
449 local_irq_enable();
450 return;
451 }
452 }
453
454 switch (cx->type) {
455
456 case ACPI_STATE_C1:
457 /*
458 * Invoke C1.
459 * Use the appropriate idle routine, the one that would
460 * be used without acpi C-states.
461 */
462 if (pm_idle_save)
463 pm_idle_save();
464 else
465 acpi_safe_halt();
466
467 /*
468 * TBD: Can't get time duration while in C1, as resumes
469 * go to an ISR rather than here. Need to instrument
470 * base interrupt handler.
471 *
472 * Note: the TSC better not stop in C1, sched_clock() will
473 * skew otherwise.
474 */
475 sleep_ticks = 0xFFFFFFFF;
476 break;
477
478 case ACPI_STATE_C2:
479 /* Get start time (ticks) */
480 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
481 /* Tell the scheduler that we are going deep-idle: */
482 sched_clock_idle_sleep_event();
483 /* Invoke C2 */
484 acpi_state_timer_broadcast(pr, cx, 1);
485 acpi_cstate_enter(cx);
486 /* Get end time (ticks) */
487 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
488
489 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
490 /* TSC halts in C2, so notify users */
491 mark_tsc_unstable("possible TSC halt in C2");
492 #endif
493 /* Compute time (ticks) that we were actually asleep */
494 sleep_ticks = ticks_elapsed(t1, t2);
495
496 /* Tell the scheduler how much we idled: */
497 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
498
499 /* Re-enable interrupts */
500 local_irq_enable();
501 /* Do not account our idle-switching overhead: */
502 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
503
504 current_thread_info()->status |= TS_POLLING;
505 acpi_state_timer_broadcast(pr, cx, 0);
506 break;
507
508 case ACPI_STATE_C3:
509 /*
510 * disable bus master
511 * bm_check implies we need ARB_DIS
512 * !bm_check implies we need cache flush
513 * bm_control implies whether we can do ARB_DIS
514 *
515 * That leaves a case where bm_check is set and bm_control is
516 * not set. In that case we cannot do much, we enter C3
517 * without doing anything.
518 */
519 if (pr->flags.bm_check && pr->flags.bm_control) {
520 if (atomic_inc_return(&c3_cpu_count) ==
521 num_online_cpus()) {
522 /*
523 * All CPUs are trying to go to C3
524 * Disable bus master arbitration
525 */
526 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
527 }
528 } else if (!pr->flags.bm_check) {
529 /* SMP with no shared cache... Invalidate cache */
530 ACPI_FLUSH_CPU_CACHE();
531 }
532
533 /* Get start time (ticks) */
534 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
535 /* Invoke C3 */
536 acpi_state_timer_broadcast(pr, cx, 1);
537 /* Tell the scheduler that we are going deep-idle: */
538 sched_clock_idle_sleep_event();
539 acpi_cstate_enter(cx);
540 /* Get end time (ticks) */
541 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
542 if (pr->flags.bm_check && pr->flags.bm_control) {
543 /* Enable bus master arbitration */
544 atomic_dec(&c3_cpu_count);
545 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
546 }
547
548 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
549 /* TSC halts in C3, so notify users */
550 mark_tsc_unstable("TSC halts in C3");
551 #endif
552 /* Compute time (ticks) that we were actually asleep */
553 sleep_ticks = ticks_elapsed(t1, t2);
554 /* Tell the scheduler how much we idled: */
555 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
556
557 /* Re-enable interrupts */
558 local_irq_enable();
559 /* Do not account our idle-switching overhead: */
560 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
561
562 current_thread_info()->status |= TS_POLLING;
563 acpi_state_timer_broadcast(pr, cx, 0);
564 break;
565
566 default:
567 local_irq_enable();
568 return;
569 }
570 cx->usage++;
571 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
572 cx->time += sleep_ticks;
573
574 next_state = pr->power.state;
575
576 #ifdef CONFIG_HOTPLUG_CPU
577 /* Don't do promotion/demotion */
578 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
579 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
580 next_state = cx;
581 goto end;
582 }
583 #endif
584
585 /*
586 * Promotion?
587 * ----------
588 * Track the number of longs (time asleep is greater than threshold)
589 * and promote when the count threshold is reached. Note that bus
590 * mastering activity may prevent promotions.
591 * Do not promote above max_cstate.
592 */
593 if (cx->promotion.state &&
594 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
595 if (sleep_ticks > cx->promotion.threshold.ticks &&
596 cx->promotion.state->latency <= system_latency_constraint()) {
597 cx->promotion.count++;
598 cx->demotion.count = 0;
599 if (cx->promotion.count >=
600 cx->promotion.threshold.count) {
601 if (pr->flags.bm_check) {
602 if (!
603 (pr->power.bm_activity & cx->
604 promotion.threshold.bm)) {
605 next_state =
606 cx->promotion.state;
607 goto end;
608 }
609 } else {
610 next_state = cx->promotion.state;
611 goto end;
612 }
613 }
614 }
615 }
616
617 /*
618 * Demotion?
619 * ---------
620 * Track the number of shorts (time asleep is less than time threshold)
621 * and demote when the usage threshold is reached.
622 */
623 if (cx->demotion.state) {
624 if (sleep_ticks < cx->demotion.threshold.ticks) {
625 cx->demotion.count++;
626 cx->promotion.count = 0;
627 if (cx->demotion.count >= cx->demotion.threshold.count) {
628 next_state = cx->demotion.state;
629 goto end;
630 }
631 }
632 }
633
634 end:
635 /*
636 * Demote if current state exceeds max_cstate
637 * or if the latency of the current state is unacceptable
638 */
639 if ((pr->power.state - pr->power.states) > max_cstate ||
640 pr->power.state->latency > system_latency_constraint()) {
641 if (cx->demotion.state)
642 next_state = cx->demotion.state;
643 }
644
645 /*
646 * New Cx State?
647 * -------------
648 * If we're going to start using a new Cx state we must clean up
649 * from the previous and prepare to use the new.
650 */
651 if (next_state != pr->power.state)
652 acpi_processor_power_activate(pr, next_state);
653 }
654
655 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
656 {
657 unsigned int i;
658 unsigned int state_is_set = 0;
659 struct acpi_processor_cx *lower = NULL;
660 struct acpi_processor_cx *higher = NULL;
661 struct acpi_processor_cx *cx;
662
663
664 if (!pr)
665 return -EINVAL;
666
667 /*
668 * This function sets the default Cx state policy (OS idle handler).
669 * Our scheme is to promote quickly to C2 but more conservatively
670 * to C3. We're favoring C2 for its characteristics of low latency
671 * (quick response), good power savings, and ability to allow bus
672 * mastering activity. Note that the Cx state policy is completely
673 * customizable and can be altered dynamically.
674 */
675
676 /* startup state */
677 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
678 cx = &pr->power.states[i];
679 if (!cx->valid)
680 continue;
681
682 if (!state_is_set)
683 pr->power.state = cx;
684 state_is_set++;
685 break;
686 }
687
688 if (!state_is_set)
689 return -ENODEV;
690
691 /* demotion */
692 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
693 cx = &pr->power.states[i];
694 if (!cx->valid)
695 continue;
696
697 if (lower) {
698 cx->demotion.state = lower;
699 cx->demotion.threshold.ticks = cx->latency_ticks;
700 cx->demotion.threshold.count = 1;
701 if (cx->type == ACPI_STATE_C3)
702 cx->demotion.threshold.bm = bm_history;
703 }
704
705 lower = cx;
706 }
707
708 /* promotion */
709 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
710 cx = &pr->power.states[i];
711 if (!cx->valid)
712 continue;
713
714 if (higher) {
715 cx->promotion.state = higher;
716 cx->promotion.threshold.ticks = cx->latency_ticks;
717 if (cx->type >= ACPI_STATE_C2)
718 cx->promotion.threshold.count = 4;
719 else
720 cx->promotion.threshold.count = 10;
721 if (higher->type == ACPI_STATE_C3)
722 cx->promotion.threshold.bm = bm_history;
723 }
724
725 higher = cx;
726 }
727
728 return 0;
729 }
730
731 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
732 {
733
734 if (!pr)
735 return -EINVAL;
736
737 if (!pr->pblk)
738 return -ENODEV;
739
740 /* if info is obtained from pblk/fadt, type equals state */
741 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
742 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
743
744 #ifndef CONFIG_HOTPLUG_CPU
745 /*
746 * Check for P_LVL2_UP flag before entering C2 and above on
747 * an SMP system.
748 */
749 if ((num_online_cpus() > 1) &&
750 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
751 return -ENODEV;
752 #endif
753
754 /* determine C2 and C3 address from pblk */
755 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
756 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
757
758 /* determine latencies from FADT */
759 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
760 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
761
762 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
763 "lvl2[0x%08x] lvl3[0x%08x]\n",
764 pr->power.states[ACPI_STATE_C2].address,
765 pr->power.states[ACPI_STATE_C3].address));
766
767 return 0;
768 }
769
770 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
771 {
772 if (!pr->power.states[ACPI_STATE_C1].valid) {
773 /* set the first C-State to C1 */
774 /* all processors need to support C1 */
775 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
776 pr->power.states[ACPI_STATE_C1].valid = 1;
777 }
778 /* the C0 state only exists as a filler in our array */
779 pr->power.states[ACPI_STATE_C0].valid = 1;
780 return 0;
781 }
782
783 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
784 {
785 acpi_status status = 0;
786 acpi_integer count;
787 int current_count;
788 int i;
789 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
790 union acpi_object *cst;
791
792
793 if (nocst)
794 return -ENODEV;
795
796 current_count = 0;
797
798 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
799 if (ACPI_FAILURE(status)) {
800 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
801 return -ENODEV;
802 }
803
804 cst = buffer.pointer;
805
806 /* There must be at least 2 elements */
807 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
808 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
809 status = -EFAULT;
810 goto end;
811 }
812
813 count = cst->package.elements[0].integer.value;
814
815 /* Validate number of power states. */
816 if (count < 1 || count != cst->package.count - 1) {
817 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
818 status = -EFAULT;
819 goto end;
820 }
821
822 /* Tell driver that at least _CST is supported. */
823 pr->flags.has_cst = 1;
824
825 for (i = 1; i <= count; i++) {
826 union acpi_object *element;
827 union acpi_object *obj;
828 struct acpi_power_register *reg;
829 struct acpi_processor_cx cx;
830
831 memset(&cx, 0, sizeof(cx));
832
833 element = &(cst->package.elements[i]);
834 if (element->type != ACPI_TYPE_PACKAGE)
835 continue;
836
837 if (element->package.count != 4)
838 continue;
839
840 obj = &(element->package.elements[0]);
841
842 if (obj->type != ACPI_TYPE_BUFFER)
843 continue;
844
845 reg = (struct acpi_power_register *)obj->buffer.pointer;
846
847 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
848 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
849 continue;
850
851 /* There should be an easy way to extract an integer... */
852 obj = &(element->package.elements[1]);
853 if (obj->type != ACPI_TYPE_INTEGER)
854 continue;
855
856 cx.type = obj->integer.value;
857 /*
858 * Some buggy BIOSes won't list C1 in _CST -
859 * Let acpi_processor_get_power_info_default() handle them later
860 */
861 if (i == 1 && cx.type != ACPI_STATE_C1)
862 current_count++;
863
864 cx.address = reg->address;
865 cx.index = current_count + 1;
866
867 cx.space_id = ACPI_CSTATE_SYSTEMIO;
868 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
869 if (acpi_processor_ffh_cstate_probe
870 (pr->id, &cx, reg) == 0) {
871 cx.space_id = ACPI_CSTATE_FFH;
872 } else if (cx.type != ACPI_STATE_C1) {
873 /*
874 * C1 is a special case where FIXED_HARDWARE
875 * can be handled in non-MWAIT way as well.
876 * In that case, save this _CST entry info.
877 * That is, we retain space_id of SYSTEM_IO for
878 * halt based C1.
879 * Otherwise, ignore this info and continue.
880 */
881 continue;
882 }
883 }
884
885 obj = &(element->package.elements[2]);
886 if (obj->type != ACPI_TYPE_INTEGER)
887 continue;
888
889 cx.latency = obj->integer.value;
890
891 obj = &(element->package.elements[3]);
892 if (obj->type != ACPI_TYPE_INTEGER)
893 continue;
894
895 cx.power = obj->integer.value;
896
897 current_count++;
898 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
899
900 /*
901 * We support total ACPI_PROCESSOR_MAX_POWER - 1
902 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
903 */
904 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
905 printk(KERN_WARNING
906 "Limiting number of power states to max (%d)\n",
907 ACPI_PROCESSOR_MAX_POWER);
908 printk(KERN_WARNING
909 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
910 break;
911 }
912 }
913
914 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
915 current_count));
916
917 /* Validate number of power states discovered */
918 if (current_count < 2)
919 status = -EFAULT;
920
921 end:
922 kfree(buffer.pointer);
923
924 return status;
925 }
926
927 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
928 {
929
930 if (!cx->address)
931 return;
932
933 /*
934 * C2 latency must be less than or equal to 100
935 * microseconds.
936 */
937 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
938 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
939 "latency too large [%d]\n", cx->latency));
940 return;
941 }
942
943 /*
944 * Otherwise we've met all of our C2 requirements.
945 * Normalize the C2 latency to expidite policy
946 */
947 cx->valid = 1;
948 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
949
950 return;
951 }
952
953 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
954 struct acpi_processor_cx *cx)
955 {
956 static int bm_check_flag;
957
958
959 if (!cx->address)
960 return;
961
962 /*
963 * C3 latency must be less than or equal to 1000
964 * microseconds.
965 */
966 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
967 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
968 "latency too large [%d]\n", cx->latency));
969 return;
970 }
971
972 /*
973 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
974 * DMA transfers are used by any ISA device to avoid livelock.
975 * Note that we could disable Type-F DMA (as recommended by
976 * the erratum), but this is known to disrupt certain ISA
977 * devices thus we take the conservative approach.
978 */
979 else if (errata.piix4.fdma) {
980 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
981 "C3 not supported on PIIX4 with Type-F DMA\n"));
982 return;
983 }
984
985 /* All the logic here assumes flags.bm_check is same across all CPUs */
986 if (!bm_check_flag) {
987 /* Determine whether bm_check is needed based on CPU */
988 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
989 bm_check_flag = pr->flags.bm_check;
990 } else {
991 pr->flags.bm_check = bm_check_flag;
992 }
993
994 if (pr->flags.bm_check) {
995 if (!pr->flags.bm_control) {
996 if (pr->flags.has_cst != 1) {
997 /* bus mastering control is necessary */
998 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
999 "C3 support requires BM control\n"));
1000 return;
1001 } else {
1002 /* Here we enter C3 without bus mastering */
1003 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1004 "C3 support without BM control\n"));
1005 }
1006 }
1007 } else {
1008 /*
1009 * WBINVD should be set in fadt, for C3 state to be
1010 * supported on when bm_check is not required.
1011 */
1012 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1013 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1014 "Cache invalidation should work properly"
1015 " for C3 to be enabled on SMP systems\n"));
1016 return;
1017 }
1018 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1019 }
1020
1021 /*
1022 * Otherwise we've met all of our C3 requirements.
1023 * Normalize the C3 latency to expidite policy. Enable
1024 * checking of bus mastering status (bm_check) so we can
1025 * use this in our C3 policy
1026 */
1027 cx->valid = 1;
1028 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1029
1030 return;
1031 }
1032
1033 static int acpi_processor_power_verify(struct acpi_processor *pr)
1034 {
1035 unsigned int i;
1036 unsigned int working = 0;
1037
1038 pr->power.timer_broadcast_on_state = INT_MAX;
1039
1040 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1041 struct acpi_processor_cx *cx = &pr->power.states[i];
1042
1043 switch (cx->type) {
1044 case ACPI_STATE_C1:
1045 cx->valid = 1;
1046 break;
1047
1048 case ACPI_STATE_C2:
1049 acpi_processor_power_verify_c2(cx);
1050 if (cx->valid)
1051 acpi_timer_check_state(i, pr, cx);
1052 break;
1053
1054 case ACPI_STATE_C3:
1055 acpi_processor_power_verify_c3(pr, cx);
1056 if (cx->valid)
1057 acpi_timer_check_state(i, pr, cx);
1058 break;
1059 }
1060
1061 if (cx->valid)
1062 working++;
1063 }
1064
1065 acpi_propagate_timer_broadcast(pr);
1066
1067 return (working);
1068 }
1069
1070 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1071 {
1072 unsigned int i;
1073 int result;
1074
1075
1076 /* NOTE: the idle thread may not be running while calling
1077 * this function */
1078
1079 /* Zero initialize all the C-states info. */
1080 memset(pr->power.states, 0, sizeof(pr->power.states));
1081
1082 result = acpi_processor_get_power_info_cst(pr);
1083 if (result == -ENODEV)
1084 result = acpi_processor_get_power_info_fadt(pr);
1085
1086 if (result)
1087 return result;
1088
1089 acpi_processor_get_power_info_default(pr);
1090
1091 pr->power.count = acpi_processor_power_verify(pr);
1092
1093 /*
1094 * Set Default Policy
1095 * ------------------
1096 * Now that we know which states are supported, set the default
1097 * policy. Note that this policy can be changed dynamically
1098 * (e.g. encourage deeper sleeps to conserve battery life when
1099 * not on AC).
1100 */
1101 result = acpi_processor_set_power_policy(pr);
1102 if (result)
1103 return result;
1104
1105 /*
1106 * if one state of type C2 or C3 is available, mark this
1107 * CPU as being "idle manageable"
1108 */
1109 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1110 if (pr->power.states[i].valid) {
1111 pr->power.count = i;
1112 if (pr->power.states[i].type >= ACPI_STATE_C2)
1113 pr->flags.power = 1;
1114 }
1115 }
1116
1117 return 0;
1118 }
1119
1120 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1121 {
1122 int result = 0;
1123
1124
1125 if (!pr)
1126 return -EINVAL;
1127
1128 if (nocst) {
1129 return -ENODEV;
1130 }
1131
1132 if (!pr->flags.power_setup_done)
1133 return -ENODEV;
1134
1135 /* Fall back to the default idle loop */
1136 pm_idle = pm_idle_save;
1137 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1138
1139 pr->flags.power = 0;
1140 result = acpi_processor_get_power_info(pr);
1141 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1142 pm_idle = acpi_processor_idle;
1143
1144 return result;
1145 }
1146
1147 /* proc interface */
1148
1149 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1150 {
1151 struct acpi_processor *pr = seq->private;
1152 unsigned int i;
1153
1154
1155 if (!pr)
1156 goto end;
1157
1158 seq_printf(seq, "active state: C%zd\n"
1159 "max_cstate: C%d\n"
1160 "bus master activity: %08x\n"
1161 "maximum allowed latency: %d usec\n",
1162 pr->power.state ? pr->power.state - pr->power.states : 0,
1163 max_cstate, (unsigned)pr->power.bm_activity,
1164 system_latency_constraint());
1165
1166 seq_puts(seq, "states:\n");
1167
1168 for (i = 1; i <= pr->power.count; i++) {
1169 seq_printf(seq, " %cC%d: ",
1170 (&pr->power.states[i] ==
1171 pr->power.state ? '*' : ' '), i);
1172
1173 if (!pr->power.states[i].valid) {
1174 seq_puts(seq, "<not supported>\n");
1175 continue;
1176 }
1177
1178 switch (pr->power.states[i].type) {
1179 case ACPI_STATE_C1:
1180 seq_printf(seq, "type[C1] ");
1181 break;
1182 case ACPI_STATE_C2:
1183 seq_printf(seq, "type[C2] ");
1184 break;
1185 case ACPI_STATE_C3:
1186 seq_printf(seq, "type[C3] ");
1187 break;
1188 default:
1189 seq_printf(seq, "type[--] ");
1190 break;
1191 }
1192
1193 if (pr->power.states[i].promotion.state)
1194 seq_printf(seq, "promotion[C%zd] ",
1195 (pr->power.states[i].promotion.state -
1196 pr->power.states));
1197 else
1198 seq_puts(seq, "promotion[--] ");
1199
1200 if (pr->power.states[i].demotion.state)
1201 seq_printf(seq, "demotion[C%zd] ",
1202 (pr->power.states[i].demotion.state -
1203 pr->power.states));
1204 else
1205 seq_puts(seq, "demotion[--] ");
1206
1207 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1208 pr->power.states[i].latency,
1209 pr->power.states[i].usage,
1210 (unsigned long long)pr->power.states[i].time);
1211 }
1212
1213 end:
1214 return 0;
1215 }
1216
1217 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1218 {
1219 return single_open(file, acpi_processor_power_seq_show,
1220 PDE(inode)->data);
1221 }
1222
1223 static const struct file_operations acpi_processor_power_fops = {
1224 .open = acpi_processor_power_open_fs,
1225 .read = seq_read,
1226 .llseek = seq_lseek,
1227 .release = single_release,
1228 };
1229
1230 #ifdef CONFIG_SMP
1231 static void smp_callback(void *v)
1232 {
1233 /* we already woke the CPU up, nothing more to do */
1234 }
1235
1236 /*
1237 * This function gets called when a part of the kernel has a new latency
1238 * requirement. This means we need to get all processors out of their C-state,
1239 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1240 * wakes them all right up.
1241 */
1242 static int acpi_processor_latency_notify(struct notifier_block *b,
1243 unsigned long l, void *v)
1244 {
1245 smp_call_function(smp_callback, NULL, 0, 1);
1246 return NOTIFY_OK;
1247 }
1248
1249 static struct notifier_block acpi_processor_latency_notifier = {
1250 .notifier_call = acpi_processor_latency_notify,
1251 };
1252 #endif
1253
1254 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1255 struct acpi_device *device)
1256 {
1257 acpi_status status = 0;
1258 static int first_run;
1259 struct proc_dir_entry *entry = NULL;
1260 unsigned int i;
1261
1262
1263 if (!first_run) {
1264 dmi_check_system(processor_power_dmi_table);
1265 if (max_cstate < ACPI_C_STATES_MAX)
1266 printk(KERN_NOTICE
1267 "ACPI: processor limited to max C-state %d\n",
1268 max_cstate);
1269 first_run++;
1270 #ifdef CONFIG_SMP
1271 register_latency_notifier(&acpi_processor_latency_notifier);
1272 #endif
1273 }
1274
1275 if (!pr)
1276 return -EINVAL;
1277
1278 if (acpi_gbl_FADT.cst_control && !nocst) {
1279 status =
1280 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1281 if (ACPI_FAILURE(status)) {
1282 ACPI_EXCEPTION((AE_INFO, status,
1283 "Notifying BIOS of _CST ability failed"));
1284 }
1285 }
1286
1287 acpi_processor_get_power_info(pr);
1288
1289 /*
1290 * Install the idle handler if processor power management is supported.
1291 * Note that we use previously set idle handler will be used on
1292 * platforms that only support C1.
1293 */
1294 if ((pr->flags.power) && (!boot_option_idle_override)) {
1295 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1296 for (i = 1; i <= pr->power.count; i++)
1297 if (pr->power.states[i].valid)
1298 printk(" C%d[C%d]", i,
1299 pr->power.states[i].type);
1300 printk(")\n");
1301
1302 if (pr->id == 0) {
1303 pm_idle_save = pm_idle;
1304 pm_idle = acpi_processor_idle;
1305 }
1306 }
1307
1308 /* 'power' [R] */
1309 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1310 S_IRUGO, acpi_device_dir(device));
1311 if (!entry)
1312 return -EIO;
1313 else {
1314 entry->proc_fops = &acpi_processor_power_fops;
1315 entry->data = acpi_driver_data(device);
1316 entry->owner = THIS_MODULE;
1317 }
1318
1319 pr->flags.power_setup_done = 1;
1320
1321 return 0;
1322 }
1323
1324 int acpi_processor_power_exit(struct acpi_processor *pr,
1325 struct acpi_device *device)
1326 {
1327
1328 pr->flags.power_setup_done = 0;
1329
1330 if (acpi_device_dir(device))
1331 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1332 acpi_device_dir(device));
1333
1334 /* Unregister the idle handler when processor #0 is removed. */
1335 if (pr->id == 0) {
1336 pm_idle = pm_idle_save;
1337
1338 /*
1339 * We are about to unload the current idle thread pm callback
1340 * (pm_idle), Wait for all processors to update cached/local
1341 * copies of pm_idle before proceeding.
1342 */
1343 cpu_idle_wait();
1344 #ifdef CONFIG_SMP
1345 unregister_latency_notifier(&acpi_processor_latency_notifier);
1346 #endif
1347 }
1348
1349 return 0;
1350 }