Pull randconfig into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43
44 /*
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49 */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
59
60 #define ACPI_PROCESSOR_COMPONENT 0x01000000
61 #define ACPI_PROCESSOR_CLASS "processor"
62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER "power"
65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
67 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
68 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
69 static void (*pm_idle_save) (void) __read_mostly;
70 module_param(max_cstate, uint, 0644);
71
72 static unsigned int nocst __read_mostly;
73 module_param(nocst, uint, 0000);
74
75 /*
76 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
77 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
78 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
79 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
80 * reduce history for more aggressive entry into C3
81 */
82 static unsigned int bm_history __read_mostly =
83 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
84 module_param(bm_history, uint, 0644);
85 /* --------------------------------------------------------------------------
86 Power Management
87 -------------------------------------------------------------------------- */
88
89 /*
90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91 * For now disable this. Probably a bug somewhere else.
92 *
93 * To skip this limit, boot/load with a large max_cstate limit.
94 */
95 static int set_max_cstate(struct dmi_system_id *id)
96 {
97 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98 return 0;
99
100 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103
104 max_cstate = (long)id->driver_data;
105
106 return 0;
107 }
108
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110 callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 { set_max_cstate, "IBM ThinkPad R40e", {
113 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
115 { set_max_cstate, "IBM ThinkPad R40e", {
116 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
118 { set_max_cstate, "IBM ThinkPad R40e", {
119 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
121 { set_max_cstate, "IBM ThinkPad R40e", {
122 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
124 { set_max_cstate, "IBM ThinkPad R40e", {
125 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
127 { set_max_cstate, "IBM ThinkPad R40e", {
128 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
130 { set_max_cstate, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
133 { set_max_cstate, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
136 { set_max_cstate, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
139 { set_max_cstate, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
142 { set_max_cstate, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
145 { set_max_cstate, "IBM ThinkPad R40e", {
146 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
147 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
148 { set_max_cstate, "IBM ThinkPad R40e", {
149 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
150 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
151 { set_max_cstate, "IBM ThinkPad R40e", {
152 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
153 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
154 { set_max_cstate, "IBM ThinkPad R40e", {
155 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
156 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
157 { set_max_cstate, "IBM ThinkPad R40e", {
158 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
159 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
160 { set_max_cstate, "Medion 41700", {
161 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
162 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
163 { set_max_cstate, "Clevo 5600D", {
164 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
165 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
166 (void *)2},
167 {},
168 };
169
170 static inline u32 ticks_elapsed(u32 t1, u32 t2)
171 {
172 if (t2 >= t1)
173 return (t2 - t1);
174 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
175 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
176 else
177 return ((0xFFFFFFFF - t1) + t2);
178 }
179
180 static void
181 acpi_processor_power_activate(struct acpi_processor *pr,
182 struct acpi_processor_cx *new)
183 {
184 struct acpi_processor_cx *old;
185
186 if (!pr || !new)
187 return;
188
189 old = pr->power.state;
190
191 if (old)
192 old->promotion.count = 0;
193 new->demotion.count = 0;
194
195 /* Cleanup from old state. */
196 if (old) {
197 switch (old->type) {
198 case ACPI_STATE_C3:
199 /* Disable bus master reload */
200 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
201 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
202 break;
203 }
204 }
205
206 /* Prepare to use new state. */
207 switch (new->type) {
208 case ACPI_STATE_C3:
209 /* Enable bus master reload */
210 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
211 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
212 break;
213 }
214
215 pr->power.state = new;
216
217 return;
218 }
219
220 static void acpi_safe_halt(void)
221 {
222 current_thread_info()->status &= ~TS_POLLING;
223 /*
224 * TS_POLLING-cleared state must be visible before we
225 * test NEED_RESCHED:
226 */
227 smp_mb();
228 if (!need_resched())
229 safe_halt();
230 current_thread_info()->status |= TS_POLLING;
231 }
232
233 static atomic_t c3_cpu_count;
234
235 /* Common C-state entry for C2, C3, .. */
236 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
237 {
238 if (cstate->space_id == ACPI_CSTATE_FFH) {
239 /* Call into architectural FFH based C-state */
240 acpi_processor_ffh_cstate_enter(cstate);
241 } else {
242 int unused;
243 /* IO port based C-state */
244 inb(cstate->address);
245 /* Dummy wait op - must do something useless after P_LVL2 read
246 because chipsets cannot guarantee that STPCLK# signal
247 gets asserted in time to freeze execution properly. */
248 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
249 }
250 }
251
252 #ifdef ARCH_APICTIMER_STOPS_ON_C3
253
254 /*
255 * Some BIOS implementations switch to C3 in the published C2 state.
256 * This seems to be a common problem on AMD boxen, but other vendors
257 * are affected too. We pick the most conservative approach: we assume
258 * that the local APIC stops in both C2 and C3.
259 */
260 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
261 struct acpi_processor_cx *cx)
262 {
263 struct acpi_processor_power *pwr = &pr->power;
264 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
265
266 /*
267 * Check, if one of the previous states already marked the lapic
268 * unstable
269 */
270 if (pwr->timer_broadcast_on_state < state)
271 return;
272
273 if (cx->type >= type)
274 pr->power.timer_broadcast_on_state = state;
275 }
276
277 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
278 {
279 #ifdef CONFIG_GENERIC_CLOCKEVENTS
280 unsigned long reason;
281
282 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
283 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
284
285 clockevents_notify(reason, &pr->id);
286 #else
287 cpumask_t mask = cpumask_of_cpu(pr->id);
288
289 if (pr->power.timer_broadcast_on_state < INT_MAX)
290 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
291 else
292 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
293 #endif
294 }
295
296 /* Power(C) State timer broadcast control */
297 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
298 struct acpi_processor_cx *cx,
299 int broadcast)
300 {
301 #ifdef CONFIG_GENERIC_CLOCKEVENTS
302
303 int state = cx - pr->power.states;
304
305 if (state >= pr->power.timer_broadcast_on_state) {
306 unsigned long reason;
307
308 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
309 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
310 clockevents_notify(reason, &pr->id);
311 }
312 #endif
313 }
314
315 #else
316
317 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
318 struct acpi_processor_cx *cstate) { }
319 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
320 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
321 struct acpi_processor_cx *cx,
322 int broadcast)
323 {
324 }
325
326 #endif
327
328 /*
329 * Suspend / resume control
330 */
331 static int acpi_idle_suspend;
332
333 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
334 {
335 acpi_idle_suspend = 1;
336 return 0;
337 }
338
339 int acpi_processor_resume(struct acpi_device * device)
340 {
341 acpi_idle_suspend = 0;
342 return 0;
343 }
344
345 static void acpi_processor_idle(void)
346 {
347 struct acpi_processor *pr = NULL;
348 struct acpi_processor_cx *cx = NULL;
349 struct acpi_processor_cx *next_state = NULL;
350 int sleep_ticks = 0;
351 u32 t1, t2 = 0;
352
353 /*
354 * Interrupts must be disabled during bus mastering calculations and
355 * for C2/C3 transitions.
356 */
357 local_irq_disable();
358
359 pr = processors[smp_processor_id()];
360 if (!pr) {
361 local_irq_enable();
362 return;
363 }
364
365 /*
366 * Check whether we truly need to go idle, or should
367 * reschedule:
368 */
369 if (unlikely(need_resched())) {
370 local_irq_enable();
371 return;
372 }
373
374 cx = pr->power.state;
375 if (!cx || acpi_idle_suspend) {
376 if (pm_idle_save)
377 pm_idle_save();
378 else
379 acpi_safe_halt();
380 return;
381 }
382
383 /*
384 * Check BM Activity
385 * -----------------
386 * Check for bus mastering activity (if required), record, and check
387 * for demotion.
388 */
389 if (pr->flags.bm_check) {
390 u32 bm_status = 0;
391 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
392
393 if (diff > 31)
394 diff = 31;
395
396 pr->power.bm_activity <<= diff;
397
398 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
399 if (bm_status) {
400 pr->power.bm_activity |= 0x1;
401 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
402 }
403 /*
404 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
405 * the true state of bus mastering activity; forcing us to
406 * manually check the BMIDEA bit of each IDE channel.
407 */
408 else if (errata.piix4.bmisx) {
409 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
410 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
411 pr->power.bm_activity |= 0x1;
412 }
413
414 pr->power.bm_check_timestamp = jiffies;
415
416 /*
417 * If bus mastering is or was active this jiffy, demote
418 * to avoid a faulty transition. Note that the processor
419 * won't enter a low-power state during this call (to this
420 * function) but should upon the next.
421 *
422 * TBD: A better policy might be to fallback to the demotion
423 * state (use it for this quantum only) istead of
424 * demoting -- and rely on duration as our sole demotion
425 * qualification. This may, however, introduce DMA
426 * issues (e.g. floppy DMA transfer overrun/underrun).
427 */
428 if ((pr->power.bm_activity & 0x1) &&
429 cx->demotion.threshold.bm) {
430 local_irq_enable();
431 next_state = cx->demotion.state;
432 goto end;
433 }
434 }
435
436 #ifdef CONFIG_HOTPLUG_CPU
437 /*
438 * Check for P_LVL2_UP flag before entering C2 and above on
439 * an SMP system. We do it here instead of doing it at _CST/P_LVL
440 * detection phase, to work cleanly with logical CPU hotplug.
441 */
442 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
443 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
444 cx = &pr->power.states[ACPI_STATE_C1];
445 #endif
446
447 /*
448 * Sleep:
449 * ------
450 * Invoke the current Cx state to put the processor to sleep.
451 */
452 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
453 current_thread_info()->status &= ~TS_POLLING;
454 /*
455 * TS_POLLING-cleared state must be visible before we
456 * test NEED_RESCHED:
457 */
458 smp_mb();
459 if (need_resched()) {
460 current_thread_info()->status |= TS_POLLING;
461 local_irq_enable();
462 return;
463 }
464 }
465
466 switch (cx->type) {
467
468 case ACPI_STATE_C1:
469 /*
470 * Invoke C1.
471 * Use the appropriate idle routine, the one that would
472 * be used without acpi C-states.
473 */
474 if (pm_idle_save)
475 pm_idle_save();
476 else
477 acpi_safe_halt();
478
479 /*
480 * TBD: Can't get time duration while in C1, as resumes
481 * go to an ISR rather than here. Need to instrument
482 * base interrupt handler.
483 *
484 * Note: the TSC better not stop in C1, sched_clock() will
485 * skew otherwise.
486 */
487 sleep_ticks = 0xFFFFFFFF;
488 break;
489
490 case ACPI_STATE_C2:
491 /* Get start time (ticks) */
492 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
493 /* Tell the scheduler that we are going deep-idle: */
494 sched_clock_idle_sleep_event();
495 /* Invoke C2 */
496 acpi_state_timer_broadcast(pr, cx, 1);
497 acpi_cstate_enter(cx);
498 /* Get end time (ticks) */
499 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
500
501 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
502 /* TSC halts in C2, so notify users */
503 mark_tsc_unstable("possible TSC halt in C2");
504 #endif
505 /* Compute time (ticks) that we were actually asleep */
506 sleep_ticks = ticks_elapsed(t1, t2);
507
508 /* Tell the scheduler how much we idled: */
509 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
510
511 /* Re-enable interrupts */
512 local_irq_enable();
513 /* Do not account our idle-switching overhead: */
514 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
515
516 current_thread_info()->status |= TS_POLLING;
517 acpi_state_timer_broadcast(pr, cx, 0);
518 break;
519
520 case ACPI_STATE_C3:
521 /*
522 * disable bus master
523 * bm_check implies we need ARB_DIS
524 * !bm_check implies we need cache flush
525 * bm_control implies whether we can do ARB_DIS
526 *
527 * That leaves a case where bm_check is set and bm_control is
528 * not set. In that case we cannot do much, we enter C3
529 * without doing anything.
530 */
531 if (pr->flags.bm_check && pr->flags.bm_control) {
532 if (atomic_inc_return(&c3_cpu_count) ==
533 num_online_cpus()) {
534 /*
535 * All CPUs are trying to go to C3
536 * Disable bus master arbitration
537 */
538 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
539 }
540 } else if (!pr->flags.bm_check) {
541 /* SMP with no shared cache... Invalidate cache */
542 ACPI_FLUSH_CPU_CACHE();
543 }
544
545 /* Get start time (ticks) */
546 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
547 /* Invoke C3 */
548 acpi_state_timer_broadcast(pr, cx, 1);
549 /* Tell the scheduler that we are going deep-idle: */
550 sched_clock_idle_sleep_event();
551 acpi_cstate_enter(cx);
552 /* Get end time (ticks) */
553 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
554 if (pr->flags.bm_check && pr->flags.bm_control) {
555 /* Enable bus master arbitration */
556 atomic_dec(&c3_cpu_count);
557 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
558 }
559
560 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
561 /* TSC halts in C3, so notify users */
562 mark_tsc_unstable("TSC halts in C3");
563 #endif
564 /* Compute time (ticks) that we were actually asleep */
565 sleep_ticks = ticks_elapsed(t1, t2);
566 /* Tell the scheduler how much we idled: */
567 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
568
569 /* Re-enable interrupts */
570 local_irq_enable();
571 /* Do not account our idle-switching overhead: */
572 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
573
574 current_thread_info()->status |= TS_POLLING;
575 acpi_state_timer_broadcast(pr, cx, 0);
576 break;
577
578 default:
579 local_irq_enable();
580 return;
581 }
582 cx->usage++;
583 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
584 cx->time += sleep_ticks;
585
586 next_state = pr->power.state;
587
588 #ifdef CONFIG_HOTPLUG_CPU
589 /* Don't do promotion/demotion */
590 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
591 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
592 next_state = cx;
593 goto end;
594 }
595 #endif
596
597 /*
598 * Promotion?
599 * ----------
600 * Track the number of longs (time asleep is greater than threshold)
601 * and promote when the count threshold is reached. Note that bus
602 * mastering activity may prevent promotions.
603 * Do not promote above max_cstate.
604 */
605 if (cx->promotion.state &&
606 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
607 if (sleep_ticks > cx->promotion.threshold.ticks &&
608 cx->promotion.state->latency <= system_latency_constraint()) {
609 cx->promotion.count++;
610 cx->demotion.count = 0;
611 if (cx->promotion.count >=
612 cx->promotion.threshold.count) {
613 if (pr->flags.bm_check) {
614 if (!
615 (pr->power.bm_activity & cx->
616 promotion.threshold.bm)) {
617 next_state =
618 cx->promotion.state;
619 goto end;
620 }
621 } else {
622 next_state = cx->promotion.state;
623 goto end;
624 }
625 }
626 }
627 }
628
629 /*
630 * Demotion?
631 * ---------
632 * Track the number of shorts (time asleep is less than time threshold)
633 * and demote when the usage threshold is reached.
634 */
635 if (cx->demotion.state) {
636 if (sleep_ticks < cx->demotion.threshold.ticks) {
637 cx->demotion.count++;
638 cx->promotion.count = 0;
639 if (cx->demotion.count >= cx->demotion.threshold.count) {
640 next_state = cx->demotion.state;
641 goto end;
642 }
643 }
644 }
645
646 end:
647 /*
648 * Demote if current state exceeds max_cstate
649 * or if the latency of the current state is unacceptable
650 */
651 if ((pr->power.state - pr->power.states) > max_cstate ||
652 pr->power.state->latency > system_latency_constraint()) {
653 if (cx->demotion.state)
654 next_state = cx->demotion.state;
655 }
656
657 /*
658 * New Cx State?
659 * -------------
660 * If we're going to start using a new Cx state we must clean up
661 * from the previous and prepare to use the new.
662 */
663 if (next_state != pr->power.state)
664 acpi_processor_power_activate(pr, next_state);
665 }
666
667 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
668 {
669 unsigned int i;
670 unsigned int state_is_set = 0;
671 struct acpi_processor_cx *lower = NULL;
672 struct acpi_processor_cx *higher = NULL;
673 struct acpi_processor_cx *cx;
674
675
676 if (!pr)
677 return -EINVAL;
678
679 /*
680 * This function sets the default Cx state policy (OS idle handler).
681 * Our scheme is to promote quickly to C2 but more conservatively
682 * to C3. We're favoring C2 for its characteristics of low latency
683 * (quick response), good power savings, and ability to allow bus
684 * mastering activity. Note that the Cx state policy is completely
685 * customizable and can be altered dynamically.
686 */
687
688 /* startup state */
689 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
690 cx = &pr->power.states[i];
691 if (!cx->valid)
692 continue;
693
694 if (!state_is_set)
695 pr->power.state = cx;
696 state_is_set++;
697 break;
698 }
699
700 if (!state_is_set)
701 return -ENODEV;
702
703 /* demotion */
704 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
705 cx = &pr->power.states[i];
706 if (!cx->valid)
707 continue;
708
709 if (lower) {
710 cx->demotion.state = lower;
711 cx->demotion.threshold.ticks = cx->latency_ticks;
712 cx->demotion.threshold.count = 1;
713 if (cx->type == ACPI_STATE_C3)
714 cx->demotion.threshold.bm = bm_history;
715 }
716
717 lower = cx;
718 }
719
720 /* promotion */
721 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
722 cx = &pr->power.states[i];
723 if (!cx->valid)
724 continue;
725
726 if (higher) {
727 cx->promotion.state = higher;
728 cx->promotion.threshold.ticks = cx->latency_ticks;
729 if (cx->type >= ACPI_STATE_C2)
730 cx->promotion.threshold.count = 4;
731 else
732 cx->promotion.threshold.count = 10;
733 if (higher->type == ACPI_STATE_C3)
734 cx->promotion.threshold.bm = bm_history;
735 }
736
737 higher = cx;
738 }
739
740 return 0;
741 }
742
743 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
744 {
745
746 if (!pr)
747 return -EINVAL;
748
749 if (!pr->pblk)
750 return -ENODEV;
751
752 /* if info is obtained from pblk/fadt, type equals state */
753 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
754 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
755
756 #ifndef CONFIG_HOTPLUG_CPU
757 /*
758 * Check for P_LVL2_UP flag before entering C2 and above on
759 * an SMP system.
760 */
761 if ((num_online_cpus() > 1) &&
762 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
763 return -ENODEV;
764 #endif
765
766 /* determine C2 and C3 address from pblk */
767 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
768 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
769
770 /* determine latencies from FADT */
771 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
772 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
773
774 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
775 "lvl2[0x%08x] lvl3[0x%08x]\n",
776 pr->power.states[ACPI_STATE_C2].address,
777 pr->power.states[ACPI_STATE_C3].address));
778
779 return 0;
780 }
781
782 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
783 {
784 if (!pr->power.states[ACPI_STATE_C1].valid) {
785 /* set the first C-State to C1 */
786 /* all processors need to support C1 */
787 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
788 pr->power.states[ACPI_STATE_C1].valid = 1;
789 }
790 /* the C0 state only exists as a filler in our array */
791 pr->power.states[ACPI_STATE_C0].valid = 1;
792 return 0;
793 }
794
795 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
796 {
797 acpi_status status = 0;
798 acpi_integer count;
799 int current_count;
800 int i;
801 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
802 union acpi_object *cst;
803
804
805 if (nocst)
806 return -ENODEV;
807
808 current_count = 0;
809
810 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
811 if (ACPI_FAILURE(status)) {
812 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
813 return -ENODEV;
814 }
815
816 cst = buffer.pointer;
817
818 /* There must be at least 2 elements */
819 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
820 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
821 status = -EFAULT;
822 goto end;
823 }
824
825 count = cst->package.elements[0].integer.value;
826
827 /* Validate number of power states. */
828 if (count < 1 || count != cst->package.count - 1) {
829 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
830 status = -EFAULT;
831 goto end;
832 }
833
834 /* Tell driver that at least _CST is supported. */
835 pr->flags.has_cst = 1;
836
837 for (i = 1; i <= count; i++) {
838 union acpi_object *element;
839 union acpi_object *obj;
840 struct acpi_power_register *reg;
841 struct acpi_processor_cx cx;
842
843 memset(&cx, 0, sizeof(cx));
844
845 element = &(cst->package.elements[i]);
846 if (element->type != ACPI_TYPE_PACKAGE)
847 continue;
848
849 if (element->package.count != 4)
850 continue;
851
852 obj = &(element->package.elements[0]);
853
854 if (obj->type != ACPI_TYPE_BUFFER)
855 continue;
856
857 reg = (struct acpi_power_register *)obj->buffer.pointer;
858
859 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
860 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
861 continue;
862
863 /* There should be an easy way to extract an integer... */
864 obj = &(element->package.elements[1]);
865 if (obj->type != ACPI_TYPE_INTEGER)
866 continue;
867
868 cx.type = obj->integer.value;
869 /*
870 * Some buggy BIOSes won't list C1 in _CST -
871 * Let acpi_processor_get_power_info_default() handle them later
872 */
873 if (i == 1 && cx.type != ACPI_STATE_C1)
874 current_count++;
875
876 cx.address = reg->address;
877 cx.index = current_count + 1;
878
879 cx.space_id = ACPI_CSTATE_SYSTEMIO;
880 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
881 if (acpi_processor_ffh_cstate_probe
882 (pr->id, &cx, reg) == 0) {
883 cx.space_id = ACPI_CSTATE_FFH;
884 } else if (cx.type != ACPI_STATE_C1) {
885 /*
886 * C1 is a special case where FIXED_HARDWARE
887 * can be handled in non-MWAIT way as well.
888 * In that case, save this _CST entry info.
889 * That is, we retain space_id of SYSTEM_IO for
890 * halt based C1.
891 * Otherwise, ignore this info and continue.
892 */
893 continue;
894 }
895 }
896
897 obj = &(element->package.elements[2]);
898 if (obj->type != ACPI_TYPE_INTEGER)
899 continue;
900
901 cx.latency = obj->integer.value;
902
903 obj = &(element->package.elements[3]);
904 if (obj->type != ACPI_TYPE_INTEGER)
905 continue;
906
907 cx.power = obj->integer.value;
908
909 current_count++;
910 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
911
912 /*
913 * We support total ACPI_PROCESSOR_MAX_POWER - 1
914 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
915 */
916 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
917 printk(KERN_WARNING
918 "Limiting number of power states to max (%d)\n",
919 ACPI_PROCESSOR_MAX_POWER);
920 printk(KERN_WARNING
921 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
922 break;
923 }
924 }
925
926 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
927 current_count));
928
929 /* Validate number of power states discovered */
930 if (current_count < 2)
931 status = -EFAULT;
932
933 end:
934 kfree(buffer.pointer);
935
936 return status;
937 }
938
939 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
940 {
941
942 if (!cx->address)
943 return;
944
945 /*
946 * C2 latency must be less than or equal to 100
947 * microseconds.
948 */
949 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
950 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
951 "latency too large [%d]\n", cx->latency));
952 return;
953 }
954
955 /*
956 * Otherwise we've met all of our C2 requirements.
957 * Normalize the C2 latency to expidite policy
958 */
959 cx->valid = 1;
960 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
961
962 return;
963 }
964
965 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
966 struct acpi_processor_cx *cx)
967 {
968 static int bm_check_flag;
969
970
971 if (!cx->address)
972 return;
973
974 /*
975 * C3 latency must be less than or equal to 1000
976 * microseconds.
977 */
978 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
979 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
980 "latency too large [%d]\n", cx->latency));
981 return;
982 }
983
984 /*
985 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
986 * DMA transfers are used by any ISA device to avoid livelock.
987 * Note that we could disable Type-F DMA (as recommended by
988 * the erratum), but this is known to disrupt certain ISA
989 * devices thus we take the conservative approach.
990 */
991 else if (errata.piix4.fdma) {
992 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
993 "C3 not supported on PIIX4 with Type-F DMA\n"));
994 return;
995 }
996
997 /* All the logic here assumes flags.bm_check is same across all CPUs */
998 if (!bm_check_flag) {
999 /* Determine whether bm_check is needed based on CPU */
1000 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1001 bm_check_flag = pr->flags.bm_check;
1002 } else {
1003 pr->flags.bm_check = bm_check_flag;
1004 }
1005
1006 if (pr->flags.bm_check) {
1007 if (!pr->flags.bm_control) {
1008 if (pr->flags.has_cst != 1) {
1009 /* bus mastering control is necessary */
1010 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1011 "C3 support requires BM control\n"));
1012 return;
1013 } else {
1014 /* Here we enter C3 without bus mastering */
1015 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1016 "C3 support without BM control\n"));
1017 }
1018 }
1019 } else {
1020 /*
1021 * WBINVD should be set in fadt, for C3 state to be
1022 * supported on when bm_check is not required.
1023 */
1024 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1025 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1026 "Cache invalidation should work properly"
1027 " for C3 to be enabled on SMP systems\n"));
1028 return;
1029 }
1030 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1031 }
1032
1033 /*
1034 * Otherwise we've met all of our C3 requirements.
1035 * Normalize the C3 latency to expidite policy. Enable
1036 * checking of bus mastering status (bm_check) so we can
1037 * use this in our C3 policy
1038 */
1039 cx->valid = 1;
1040 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1041
1042 return;
1043 }
1044
1045 static int acpi_processor_power_verify(struct acpi_processor *pr)
1046 {
1047 unsigned int i;
1048 unsigned int working = 0;
1049
1050 pr->power.timer_broadcast_on_state = INT_MAX;
1051
1052 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1053 struct acpi_processor_cx *cx = &pr->power.states[i];
1054
1055 switch (cx->type) {
1056 case ACPI_STATE_C1:
1057 cx->valid = 1;
1058 break;
1059
1060 case ACPI_STATE_C2:
1061 acpi_processor_power_verify_c2(cx);
1062 if (cx->valid)
1063 acpi_timer_check_state(i, pr, cx);
1064 break;
1065
1066 case ACPI_STATE_C3:
1067 acpi_processor_power_verify_c3(pr, cx);
1068 if (cx->valid)
1069 acpi_timer_check_state(i, pr, cx);
1070 break;
1071 }
1072
1073 if (cx->valid)
1074 working++;
1075 }
1076
1077 acpi_propagate_timer_broadcast(pr);
1078
1079 return (working);
1080 }
1081
1082 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1083 {
1084 unsigned int i;
1085 int result;
1086
1087
1088 /* NOTE: the idle thread may not be running while calling
1089 * this function */
1090
1091 /* Zero initialize all the C-states info. */
1092 memset(pr->power.states, 0, sizeof(pr->power.states));
1093
1094 result = acpi_processor_get_power_info_cst(pr);
1095 if (result == -ENODEV)
1096 result = acpi_processor_get_power_info_fadt(pr);
1097
1098 if (result)
1099 return result;
1100
1101 acpi_processor_get_power_info_default(pr);
1102
1103 pr->power.count = acpi_processor_power_verify(pr);
1104
1105 /*
1106 * Set Default Policy
1107 * ------------------
1108 * Now that we know which states are supported, set the default
1109 * policy. Note that this policy can be changed dynamically
1110 * (e.g. encourage deeper sleeps to conserve battery life when
1111 * not on AC).
1112 */
1113 result = acpi_processor_set_power_policy(pr);
1114 if (result)
1115 return result;
1116
1117 /*
1118 * if one state of type C2 or C3 is available, mark this
1119 * CPU as being "idle manageable"
1120 */
1121 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1122 if (pr->power.states[i].valid) {
1123 pr->power.count = i;
1124 if (pr->power.states[i].type >= ACPI_STATE_C2)
1125 pr->flags.power = 1;
1126 }
1127 }
1128
1129 return 0;
1130 }
1131
1132 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1133 {
1134 int result = 0;
1135
1136
1137 if (!pr)
1138 return -EINVAL;
1139
1140 if (nocst) {
1141 return -ENODEV;
1142 }
1143
1144 if (!pr->flags.power_setup_done)
1145 return -ENODEV;
1146
1147 /* Fall back to the default idle loop */
1148 pm_idle = pm_idle_save;
1149 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1150
1151 pr->flags.power = 0;
1152 result = acpi_processor_get_power_info(pr);
1153 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1154 pm_idle = acpi_processor_idle;
1155
1156 return result;
1157 }
1158
1159 /* proc interface */
1160
1161 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1162 {
1163 struct acpi_processor *pr = seq->private;
1164 unsigned int i;
1165
1166
1167 if (!pr)
1168 goto end;
1169
1170 seq_printf(seq, "active state: C%zd\n"
1171 "max_cstate: C%d\n"
1172 "bus master activity: %08x\n"
1173 "maximum allowed latency: %d usec\n",
1174 pr->power.state ? pr->power.state - pr->power.states : 0,
1175 max_cstate, (unsigned)pr->power.bm_activity,
1176 system_latency_constraint());
1177
1178 seq_puts(seq, "states:\n");
1179
1180 for (i = 1; i <= pr->power.count; i++) {
1181 seq_printf(seq, " %cC%d: ",
1182 (&pr->power.states[i] ==
1183 pr->power.state ? '*' : ' '), i);
1184
1185 if (!pr->power.states[i].valid) {
1186 seq_puts(seq, "<not supported>\n");
1187 continue;
1188 }
1189
1190 switch (pr->power.states[i].type) {
1191 case ACPI_STATE_C1:
1192 seq_printf(seq, "type[C1] ");
1193 break;
1194 case ACPI_STATE_C2:
1195 seq_printf(seq, "type[C2] ");
1196 break;
1197 case ACPI_STATE_C3:
1198 seq_printf(seq, "type[C3] ");
1199 break;
1200 default:
1201 seq_printf(seq, "type[--] ");
1202 break;
1203 }
1204
1205 if (pr->power.states[i].promotion.state)
1206 seq_printf(seq, "promotion[C%zd] ",
1207 (pr->power.states[i].promotion.state -
1208 pr->power.states));
1209 else
1210 seq_puts(seq, "promotion[--] ");
1211
1212 if (pr->power.states[i].demotion.state)
1213 seq_printf(seq, "demotion[C%zd] ",
1214 (pr->power.states[i].demotion.state -
1215 pr->power.states));
1216 else
1217 seq_puts(seq, "demotion[--] ");
1218
1219 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1220 pr->power.states[i].latency,
1221 pr->power.states[i].usage,
1222 (unsigned long long)pr->power.states[i].time);
1223 }
1224
1225 end:
1226 return 0;
1227 }
1228
1229 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1230 {
1231 return single_open(file, acpi_processor_power_seq_show,
1232 PDE(inode)->data);
1233 }
1234
1235 static const struct file_operations acpi_processor_power_fops = {
1236 .open = acpi_processor_power_open_fs,
1237 .read = seq_read,
1238 .llseek = seq_lseek,
1239 .release = single_release,
1240 };
1241
1242 #ifdef CONFIG_SMP
1243 static void smp_callback(void *v)
1244 {
1245 /* we already woke the CPU up, nothing more to do */
1246 }
1247
1248 /*
1249 * This function gets called when a part of the kernel has a new latency
1250 * requirement. This means we need to get all processors out of their C-state,
1251 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1252 * wakes them all right up.
1253 */
1254 static int acpi_processor_latency_notify(struct notifier_block *b,
1255 unsigned long l, void *v)
1256 {
1257 smp_call_function(smp_callback, NULL, 0, 1);
1258 return NOTIFY_OK;
1259 }
1260
1261 static struct notifier_block acpi_processor_latency_notifier = {
1262 .notifier_call = acpi_processor_latency_notify,
1263 };
1264 #endif
1265
1266 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1267 struct acpi_device *device)
1268 {
1269 acpi_status status = 0;
1270 static int first_run;
1271 struct proc_dir_entry *entry = NULL;
1272 unsigned int i;
1273
1274
1275 if (!first_run) {
1276 dmi_check_system(processor_power_dmi_table);
1277 if (max_cstate < ACPI_C_STATES_MAX)
1278 printk(KERN_NOTICE
1279 "ACPI: processor limited to max C-state %d\n",
1280 max_cstate);
1281 first_run++;
1282 #ifdef CONFIG_SMP
1283 register_latency_notifier(&acpi_processor_latency_notifier);
1284 #endif
1285 }
1286
1287 if (!pr)
1288 return -EINVAL;
1289
1290 if (acpi_gbl_FADT.cst_control && !nocst) {
1291 status =
1292 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1293 if (ACPI_FAILURE(status)) {
1294 ACPI_EXCEPTION((AE_INFO, status,
1295 "Notifying BIOS of _CST ability failed"));
1296 }
1297 }
1298
1299 acpi_processor_get_power_info(pr);
1300
1301 /*
1302 * Install the idle handler if processor power management is supported.
1303 * Note that we use previously set idle handler will be used on
1304 * platforms that only support C1.
1305 */
1306 if ((pr->flags.power) && (!boot_option_idle_override)) {
1307 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1308 for (i = 1; i <= pr->power.count; i++)
1309 if (pr->power.states[i].valid)
1310 printk(" C%d[C%d]", i,
1311 pr->power.states[i].type);
1312 printk(")\n");
1313
1314 if (pr->id == 0) {
1315 pm_idle_save = pm_idle;
1316 pm_idle = acpi_processor_idle;
1317 }
1318 }
1319
1320 /* 'power' [R] */
1321 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1322 S_IRUGO, acpi_device_dir(device));
1323 if (!entry)
1324 return -EIO;
1325 else {
1326 entry->proc_fops = &acpi_processor_power_fops;
1327 entry->data = acpi_driver_data(device);
1328 entry->owner = THIS_MODULE;
1329 }
1330
1331 pr->flags.power_setup_done = 1;
1332
1333 return 0;
1334 }
1335
1336 int acpi_processor_power_exit(struct acpi_processor *pr,
1337 struct acpi_device *device)
1338 {
1339
1340 pr->flags.power_setup_done = 0;
1341
1342 if (acpi_device_dir(device))
1343 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1344 acpi_device_dir(device));
1345
1346 /* Unregister the idle handler when processor #0 is removed. */
1347 if (pr->id == 0) {
1348 pm_idle = pm_idle_save;
1349
1350 /*
1351 * We are about to unload the current idle thread pm callback
1352 * (pm_idle), Wait for all processors to update cached/local
1353 * copies of pm_idle before proceeding.
1354 */
1355 cpu_idle_wait();
1356 #ifdef CONFIG_SMP
1357 unregister_latency_notifier(&acpi_processor_latency_notifier);
1358 #endif
1359 }
1360
1361 return 0;
1362 }