Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h> /* need_resched() */
40 #include <linux/pm_qos.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44
45 /*
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61
62 #define PREFIX "ACPI: "
63
64 #define ACPI_PROCESSOR_CLASS "processor"
65 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD 1 /* 1us */
69 #define C3_OVERHEAD 1 /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 static int bm_check_disable __read_mostly;
77 module_param(bm_check_disable, uint, 0000);
78
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81
82 static int disabled_by_idle_boot_param(void)
83 {
84 return boot_option_idle_override == IDLE_POLL ||
85 boot_option_idle_override == IDLE_FORCE_MWAIT ||
86 boot_option_idle_override == IDLE_HALT;
87 }
88
89 /*
90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91 * For now disable this. Probably a bug somewhere else.
92 *
93 * To skip this limit, boot/load with a large max_cstate limit.
94 */
95 static int set_max_cstate(const struct dmi_system_id *id)
96 {
97 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98 return 0;
99
100 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103
104 max_cstate = (long)id->driver_data;
105
106 return 0;
107 }
108
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110 callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 { set_max_cstate, "Clevo 5600D", {
113 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
114 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
115 (void *)2},
116 { set_max_cstate, "Pavilion zv5000", {
117 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
118 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
119 (void *)1},
120 { set_max_cstate, "Asus L8400B", {
121 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
122 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
123 (void *)1},
124 {},
125 };
126
127
128 /*
129 * Callers should disable interrupts before the call and enable
130 * interrupts after return.
131 */
132 static void acpi_safe_halt(void)
133 {
134 current_thread_info()->status &= ~TS_POLLING;
135 /*
136 * TS_POLLING-cleared state must be visible before we
137 * test NEED_RESCHED:
138 */
139 smp_mb();
140 if (!need_resched()) {
141 safe_halt();
142 local_irq_disable();
143 }
144 current_thread_info()->status |= TS_POLLING;
145 }
146
147 #ifdef ARCH_APICTIMER_STOPS_ON_C3
148
149 /*
150 * Some BIOS implementations switch to C3 in the published C2 state.
151 * This seems to be a common problem on AMD boxen, but other vendors
152 * are affected too. We pick the most conservative approach: we assume
153 * that the local APIC stops in both C2 and C3.
154 */
155 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
156 struct acpi_processor_cx *cx)
157 {
158 struct acpi_processor_power *pwr = &pr->power;
159 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
160
161 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
162 return;
163
164 if (amd_e400_c1e_detected)
165 type = ACPI_STATE_C1;
166
167 /*
168 * Check, if one of the previous states already marked the lapic
169 * unstable
170 */
171 if (pwr->timer_broadcast_on_state < state)
172 return;
173
174 if (cx->type >= type)
175 pr->power.timer_broadcast_on_state = state;
176 }
177
178 static void __lapic_timer_propagate_broadcast(void *arg)
179 {
180 struct acpi_processor *pr = (struct acpi_processor *) arg;
181 unsigned long reason;
182
183 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
184 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
185
186 clockevents_notify(reason, &pr->id);
187 }
188
189 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
190 {
191 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
192 (void *)pr, 1);
193 }
194
195 /* Power(C) State timer broadcast control */
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 struct acpi_processor_cx *cx,
198 int broadcast)
199 {
200 int state = cx - pr->power.states;
201
202 if (state >= pr->power.timer_broadcast_on_state) {
203 unsigned long reason;
204
205 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
206 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
207 clockevents_notify(reason, &pr->id);
208 }
209 }
210
211 #else
212
213 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
214 struct acpi_processor_cx *cstate) { }
215 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
216 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
217 struct acpi_processor_cx *cx,
218 int broadcast)
219 {
220 }
221
222 #endif
223
224 static u32 saved_bm_rld;
225
226 static void acpi_idle_bm_rld_save(void)
227 {
228 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
229 }
230 static void acpi_idle_bm_rld_restore(void)
231 {
232 u32 resumed_bm_rld;
233
234 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
235
236 if (resumed_bm_rld != saved_bm_rld)
237 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
238 }
239
240 int acpi_processor_suspend(struct device *dev)
241 {
242 acpi_idle_bm_rld_save();
243 return 0;
244 }
245
246 int acpi_processor_resume(struct device *dev)
247 {
248 acpi_idle_bm_rld_restore();
249 return 0;
250 }
251
252 #if defined(CONFIG_X86)
253 static void tsc_check_state(int state)
254 {
255 switch (boot_cpu_data.x86_vendor) {
256 case X86_VENDOR_AMD:
257 case X86_VENDOR_INTEL:
258 /*
259 * AMD Fam10h TSC will tick in all
260 * C/P/S0/S1 states when this bit is set.
261 */
262 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
263 return;
264
265 /*FALL THROUGH*/
266 default:
267 /* TSC could halt in idle, so notify users */
268 if (state > ACPI_STATE_C1)
269 mark_tsc_unstable("TSC halts in idle");
270 }
271 }
272 #else
273 static void tsc_check_state(int state) { return; }
274 #endif
275
276 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
277 {
278
279 if (!pr)
280 return -EINVAL;
281
282 if (!pr->pblk)
283 return -ENODEV;
284
285 /* if info is obtained from pblk/fadt, type equals state */
286 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
287 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
288
289 #ifndef CONFIG_HOTPLUG_CPU
290 /*
291 * Check for P_LVL2_UP flag before entering C2 and above on
292 * an SMP system.
293 */
294 if ((num_online_cpus() > 1) &&
295 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
296 return -ENODEV;
297 #endif
298
299 /* determine C2 and C3 address from pblk */
300 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
301 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
302
303 /* determine latencies from FADT */
304 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
305 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
306
307 /*
308 * FADT specified C2 latency must be less than or equal to
309 * 100 microseconds.
310 */
311 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
312 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
313 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
314 /* invalidate C2 */
315 pr->power.states[ACPI_STATE_C2].address = 0;
316 }
317
318 /*
319 * FADT supplied C3 latency must be less than or equal to
320 * 1000 microseconds.
321 */
322 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
323 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
324 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
325 /* invalidate C3 */
326 pr->power.states[ACPI_STATE_C3].address = 0;
327 }
328
329 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
330 "lvl2[0x%08x] lvl3[0x%08x]\n",
331 pr->power.states[ACPI_STATE_C2].address,
332 pr->power.states[ACPI_STATE_C3].address));
333
334 return 0;
335 }
336
337 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
338 {
339 if (!pr->power.states[ACPI_STATE_C1].valid) {
340 /* set the first C-State to C1 */
341 /* all processors need to support C1 */
342 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
343 pr->power.states[ACPI_STATE_C1].valid = 1;
344 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
345 }
346 /* the C0 state only exists as a filler in our array */
347 pr->power.states[ACPI_STATE_C0].valid = 1;
348 return 0;
349 }
350
351 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
352 {
353 acpi_status status = 0;
354 u64 count;
355 int current_count;
356 int i;
357 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
358 union acpi_object *cst;
359
360
361 if (nocst)
362 return -ENODEV;
363
364 current_count = 0;
365
366 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
367 if (ACPI_FAILURE(status)) {
368 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
369 return -ENODEV;
370 }
371
372 cst = buffer.pointer;
373
374 /* There must be at least 2 elements */
375 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
376 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
377 status = -EFAULT;
378 goto end;
379 }
380
381 count = cst->package.elements[0].integer.value;
382
383 /* Validate number of power states. */
384 if (count < 1 || count != cst->package.count - 1) {
385 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
386 status = -EFAULT;
387 goto end;
388 }
389
390 /* Tell driver that at least _CST is supported. */
391 pr->flags.has_cst = 1;
392
393 for (i = 1; i <= count; i++) {
394 union acpi_object *element;
395 union acpi_object *obj;
396 struct acpi_power_register *reg;
397 struct acpi_processor_cx cx;
398
399 memset(&cx, 0, sizeof(cx));
400
401 element = &(cst->package.elements[i]);
402 if (element->type != ACPI_TYPE_PACKAGE)
403 continue;
404
405 if (element->package.count != 4)
406 continue;
407
408 obj = &(element->package.elements[0]);
409
410 if (obj->type != ACPI_TYPE_BUFFER)
411 continue;
412
413 reg = (struct acpi_power_register *)obj->buffer.pointer;
414
415 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
416 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
417 continue;
418
419 /* There should be an easy way to extract an integer... */
420 obj = &(element->package.elements[1]);
421 if (obj->type != ACPI_TYPE_INTEGER)
422 continue;
423
424 cx.type = obj->integer.value;
425 /*
426 * Some buggy BIOSes won't list C1 in _CST -
427 * Let acpi_processor_get_power_info_default() handle them later
428 */
429 if (i == 1 && cx.type != ACPI_STATE_C1)
430 current_count++;
431
432 cx.address = reg->address;
433 cx.index = current_count + 1;
434
435 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
436 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
437 if (acpi_processor_ffh_cstate_probe
438 (pr->id, &cx, reg) == 0) {
439 cx.entry_method = ACPI_CSTATE_FFH;
440 } else if (cx.type == ACPI_STATE_C1) {
441 /*
442 * C1 is a special case where FIXED_HARDWARE
443 * can be handled in non-MWAIT way as well.
444 * In that case, save this _CST entry info.
445 * Otherwise, ignore this info and continue.
446 */
447 cx.entry_method = ACPI_CSTATE_HALT;
448 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
449 } else {
450 continue;
451 }
452 if (cx.type == ACPI_STATE_C1 &&
453 (boot_option_idle_override == IDLE_NOMWAIT)) {
454 /*
455 * In most cases the C1 space_id obtained from
456 * _CST object is FIXED_HARDWARE access mode.
457 * But when the option of idle=halt is added,
458 * the entry_method type should be changed from
459 * CSTATE_FFH to CSTATE_HALT.
460 * When the option of idle=nomwait is added,
461 * the C1 entry_method type should be
462 * CSTATE_HALT.
463 */
464 cx.entry_method = ACPI_CSTATE_HALT;
465 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
466 }
467 } else {
468 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
469 cx.address);
470 }
471
472 if (cx.type == ACPI_STATE_C1) {
473 cx.valid = 1;
474 }
475
476 obj = &(element->package.elements[2]);
477 if (obj->type != ACPI_TYPE_INTEGER)
478 continue;
479
480 cx.latency = obj->integer.value;
481
482 obj = &(element->package.elements[3]);
483 if (obj->type != ACPI_TYPE_INTEGER)
484 continue;
485
486 cx.power = obj->integer.value;
487
488 current_count++;
489 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
490
491 /*
492 * We support total ACPI_PROCESSOR_MAX_POWER - 1
493 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
494 */
495 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
496 printk(KERN_WARNING
497 "Limiting number of power states to max (%d)\n",
498 ACPI_PROCESSOR_MAX_POWER);
499 printk(KERN_WARNING
500 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
501 break;
502 }
503 }
504
505 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
506 current_count));
507
508 /* Validate number of power states discovered */
509 if (current_count < 2)
510 status = -EFAULT;
511
512 end:
513 kfree(buffer.pointer);
514
515 return status;
516 }
517
518 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
519 struct acpi_processor_cx *cx)
520 {
521 static int bm_check_flag = -1;
522 static int bm_control_flag = -1;
523
524
525 if (!cx->address)
526 return;
527
528 /*
529 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
530 * DMA transfers are used by any ISA device to avoid livelock.
531 * Note that we could disable Type-F DMA (as recommended by
532 * the erratum), but this is known to disrupt certain ISA
533 * devices thus we take the conservative approach.
534 */
535 else if (errata.piix4.fdma) {
536 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
537 "C3 not supported on PIIX4 with Type-F DMA\n"));
538 return;
539 }
540
541 /* All the logic here assumes flags.bm_check is same across all CPUs */
542 if (bm_check_flag == -1) {
543 /* Determine whether bm_check is needed based on CPU */
544 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
545 bm_check_flag = pr->flags.bm_check;
546 bm_control_flag = pr->flags.bm_control;
547 } else {
548 pr->flags.bm_check = bm_check_flag;
549 pr->flags.bm_control = bm_control_flag;
550 }
551
552 if (pr->flags.bm_check) {
553 if (!pr->flags.bm_control) {
554 if (pr->flags.has_cst != 1) {
555 /* bus mastering control is necessary */
556 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
557 "C3 support requires BM control\n"));
558 return;
559 } else {
560 /* Here we enter C3 without bus mastering */
561 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
562 "C3 support without BM control\n"));
563 }
564 }
565 } else {
566 /*
567 * WBINVD should be set in fadt, for C3 state to be
568 * supported on when bm_check is not required.
569 */
570 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
571 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 "Cache invalidation should work properly"
573 " for C3 to be enabled on SMP systems\n"));
574 return;
575 }
576 }
577
578 /*
579 * Otherwise we've met all of our C3 requirements.
580 * Normalize the C3 latency to expidite policy. Enable
581 * checking of bus mastering status (bm_check) so we can
582 * use this in our C3 policy
583 */
584 cx->valid = 1;
585
586 /*
587 * On older chipsets, BM_RLD needs to be set
588 * in order for Bus Master activity to wake the
589 * system from C3. Newer chipsets handle DMA
590 * during C3 automatically and BM_RLD is a NOP.
591 * In either case, the proper way to
592 * handle BM_RLD is to set it and leave it set.
593 */
594 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
595
596 return;
597 }
598
599 static int acpi_processor_power_verify(struct acpi_processor *pr)
600 {
601 unsigned int i;
602 unsigned int working = 0;
603
604 pr->power.timer_broadcast_on_state = INT_MAX;
605
606 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
607 struct acpi_processor_cx *cx = &pr->power.states[i];
608
609 switch (cx->type) {
610 case ACPI_STATE_C1:
611 cx->valid = 1;
612 break;
613
614 case ACPI_STATE_C2:
615 if (!cx->address)
616 break;
617 cx->valid = 1;
618 break;
619
620 case ACPI_STATE_C3:
621 acpi_processor_power_verify_c3(pr, cx);
622 break;
623 }
624 if (!cx->valid)
625 continue;
626
627 lapic_timer_check_state(i, pr, cx);
628 tsc_check_state(cx->type);
629 working++;
630 }
631
632 lapic_timer_propagate_broadcast(pr);
633
634 return (working);
635 }
636
637 static int acpi_processor_get_power_info(struct acpi_processor *pr)
638 {
639 unsigned int i;
640 int result;
641
642
643 /* NOTE: the idle thread may not be running while calling
644 * this function */
645
646 /* Zero initialize all the C-states info. */
647 memset(pr->power.states, 0, sizeof(pr->power.states));
648
649 result = acpi_processor_get_power_info_cst(pr);
650 if (result == -ENODEV)
651 result = acpi_processor_get_power_info_fadt(pr);
652
653 if (result)
654 return result;
655
656 acpi_processor_get_power_info_default(pr);
657
658 pr->power.count = acpi_processor_power_verify(pr);
659
660 /*
661 * if one state of type C2 or C3 is available, mark this
662 * CPU as being "idle manageable"
663 */
664 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
665 if (pr->power.states[i].valid) {
666 pr->power.count = i;
667 if (pr->power.states[i].type >= ACPI_STATE_C2)
668 pr->flags.power = 1;
669 }
670 }
671
672 return 0;
673 }
674
675 /**
676 * acpi_idle_bm_check - checks if bus master activity was detected
677 */
678 static int acpi_idle_bm_check(void)
679 {
680 u32 bm_status = 0;
681
682 if (bm_check_disable)
683 return 0;
684
685 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
686 if (bm_status)
687 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
688 /*
689 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
690 * the true state of bus mastering activity; forcing us to
691 * manually check the BMIDEA bit of each IDE channel.
692 */
693 else if (errata.piix4.bmisx) {
694 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
695 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
696 bm_status = 1;
697 }
698 return bm_status;
699 }
700
701 /**
702 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
703 * @cx: cstate data
704 *
705 * Caller disables interrupt before call and enables interrupt after return.
706 */
707 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
708 {
709 /* Don't trace irqs off for idle */
710 stop_critical_timings();
711 if (cx->entry_method == ACPI_CSTATE_FFH) {
712 /* Call into architectural FFH based C-state */
713 acpi_processor_ffh_cstate_enter(cx);
714 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
715 acpi_safe_halt();
716 } else {
717 /* IO port based C-state */
718 inb(cx->address);
719 /* Dummy wait op - must do something useless after P_LVL2 read
720 because chipsets cannot guarantee that STPCLK# signal
721 gets asserted in time to freeze execution properly. */
722 inl(acpi_gbl_FADT.xpm_timer_block.address);
723 }
724 start_critical_timings();
725 }
726
727 /**
728 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
729 * @dev: the target CPU
730 * @drv: cpuidle driver containing cpuidle state info
731 * @index: index of target state
732 *
733 * This is equivalent to the HALT instruction.
734 */
735 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
736 struct cpuidle_driver *drv, int index)
737 {
738 ktime_t kt1, kt2;
739 s64 idle_time;
740 struct acpi_processor *pr;
741 struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
742 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
743
744 pr = __this_cpu_read(processors);
745 dev->last_residency = 0;
746
747 if (unlikely(!pr))
748 return -EINVAL;
749
750 local_irq_disable();
751
752
753 lapic_timer_state_broadcast(pr, cx, 1);
754 kt1 = ktime_get_real();
755 acpi_idle_do_entry(cx);
756 kt2 = ktime_get_real();
757 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
758
759 /* Update device last_residency*/
760 dev->last_residency = (int)idle_time;
761
762 local_irq_enable();
763 lapic_timer_state_broadcast(pr, cx, 0);
764
765 return index;
766 }
767
768
769 /**
770 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
771 * @dev: the target CPU
772 * @index: the index of suggested state
773 */
774 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
775 {
776 struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
777 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
778
779 ACPI_FLUSH_CPU_CACHE();
780
781 while (1) {
782
783 if (cx->entry_method == ACPI_CSTATE_HALT)
784 safe_halt();
785 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
786 inb(cx->address);
787 /* See comment in acpi_idle_do_entry() */
788 inl(acpi_gbl_FADT.xpm_timer_block.address);
789 } else
790 return -ENODEV;
791 }
792
793 /* Never reached */
794 return 0;
795 }
796
797 /**
798 * acpi_idle_enter_simple - enters an ACPI state without BM handling
799 * @dev: the target CPU
800 * @drv: cpuidle driver with cpuidle state information
801 * @index: the index of suggested state
802 */
803 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
804 struct cpuidle_driver *drv, int index)
805 {
806 struct acpi_processor *pr;
807 struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
808 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
809 ktime_t kt1, kt2;
810 s64 idle_time_ns;
811 s64 idle_time;
812
813 pr = __this_cpu_read(processors);
814 dev->last_residency = 0;
815
816 if (unlikely(!pr))
817 return -EINVAL;
818
819 local_irq_disable();
820
821
822 if (cx->entry_method != ACPI_CSTATE_FFH) {
823 current_thread_info()->status &= ~TS_POLLING;
824 /*
825 * TS_POLLING-cleared state must be visible before we test
826 * NEED_RESCHED:
827 */
828 smp_mb();
829
830 if (unlikely(need_resched())) {
831 current_thread_info()->status |= TS_POLLING;
832 local_irq_enable();
833 return -EINVAL;
834 }
835 }
836
837 /*
838 * Must be done before busmaster disable as we might need to
839 * access HPET !
840 */
841 lapic_timer_state_broadcast(pr, cx, 1);
842
843 if (cx->type == ACPI_STATE_C3)
844 ACPI_FLUSH_CPU_CACHE();
845
846 kt1 = ktime_get_real();
847 /* Tell the scheduler that we are going deep-idle: */
848 sched_clock_idle_sleep_event();
849 acpi_idle_do_entry(cx);
850 kt2 = ktime_get_real();
851 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
852 idle_time = idle_time_ns;
853 do_div(idle_time, NSEC_PER_USEC);
854
855 /* Update device last_residency*/
856 dev->last_residency = (int)idle_time;
857
858 /* Tell the scheduler how much we idled: */
859 sched_clock_idle_wakeup_event(idle_time_ns);
860
861 local_irq_enable();
862 if (cx->entry_method != ACPI_CSTATE_FFH)
863 current_thread_info()->status |= TS_POLLING;
864
865 lapic_timer_state_broadcast(pr, cx, 0);
866 return index;
867 }
868
869 static int c3_cpu_count;
870 static DEFINE_RAW_SPINLOCK(c3_lock);
871
872 /**
873 * acpi_idle_enter_bm - enters C3 with proper BM handling
874 * @dev: the target CPU
875 * @drv: cpuidle driver containing state data
876 * @index: the index of suggested state
877 *
878 * If BM is detected, the deepest non-C3 idle state is entered instead.
879 */
880 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
881 struct cpuidle_driver *drv, int index)
882 {
883 struct acpi_processor *pr;
884 struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
885 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
886 ktime_t kt1, kt2;
887 s64 idle_time_ns;
888 s64 idle_time;
889
890
891 pr = __this_cpu_read(processors);
892 dev->last_residency = 0;
893
894 if (unlikely(!pr))
895 return -EINVAL;
896
897 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
898 if (drv->safe_state_index >= 0) {
899 return drv->states[drv->safe_state_index].enter(dev,
900 drv, drv->safe_state_index);
901 } else {
902 local_irq_disable();
903 acpi_safe_halt();
904 local_irq_enable();
905 return -EBUSY;
906 }
907 }
908
909 local_irq_disable();
910
911
912 if (cx->entry_method != ACPI_CSTATE_FFH) {
913 current_thread_info()->status &= ~TS_POLLING;
914 /*
915 * TS_POLLING-cleared state must be visible before we test
916 * NEED_RESCHED:
917 */
918 smp_mb();
919
920 if (unlikely(need_resched())) {
921 current_thread_info()->status |= TS_POLLING;
922 local_irq_enable();
923 return -EINVAL;
924 }
925 }
926
927 acpi_unlazy_tlb(smp_processor_id());
928
929 /* Tell the scheduler that we are going deep-idle: */
930 sched_clock_idle_sleep_event();
931 /*
932 * Must be done before busmaster disable as we might need to
933 * access HPET !
934 */
935 lapic_timer_state_broadcast(pr, cx, 1);
936
937 kt1 = ktime_get_real();
938 /*
939 * disable bus master
940 * bm_check implies we need ARB_DIS
941 * !bm_check implies we need cache flush
942 * bm_control implies whether we can do ARB_DIS
943 *
944 * That leaves a case where bm_check is set and bm_control is
945 * not set. In that case we cannot do much, we enter C3
946 * without doing anything.
947 */
948 if (pr->flags.bm_check && pr->flags.bm_control) {
949 raw_spin_lock(&c3_lock);
950 c3_cpu_count++;
951 /* Disable bus master arbitration when all CPUs are in C3 */
952 if (c3_cpu_count == num_online_cpus())
953 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
954 raw_spin_unlock(&c3_lock);
955 } else if (!pr->flags.bm_check) {
956 ACPI_FLUSH_CPU_CACHE();
957 }
958
959 acpi_idle_do_entry(cx);
960
961 /* Re-enable bus master arbitration */
962 if (pr->flags.bm_check && pr->flags.bm_control) {
963 raw_spin_lock(&c3_lock);
964 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
965 c3_cpu_count--;
966 raw_spin_unlock(&c3_lock);
967 }
968 kt2 = ktime_get_real();
969 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
970 idle_time = idle_time_ns;
971 do_div(idle_time, NSEC_PER_USEC);
972
973 /* Update device last_residency*/
974 dev->last_residency = (int)idle_time;
975
976 /* Tell the scheduler how much we idled: */
977 sched_clock_idle_wakeup_event(idle_time_ns);
978
979 local_irq_enable();
980 if (cx->entry_method != ACPI_CSTATE_FFH)
981 current_thread_info()->status |= TS_POLLING;
982
983 lapic_timer_state_broadcast(pr, cx, 0);
984 return index;
985 }
986
987 struct cpuidle_driver acpi_idle_driver = {
988 .name = "acpi_idle",
989 .owner = THIS_MODULE,
990 };
991
992 /**
993 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
994 * device i.e. per-cpu data
995 *
996 * @pr: the ACPI processor
997 */
998 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr)
999 {
1000 int i, count = CPUIDLE_DRIVER_STATE_START;
1001 struct acpi_processor_cx *cx;
1002 struct cpuidle_state_usage *state_usage;
1003 struct cpuidle_device *dev = &pr->power.dev;
1004
1005 if (!pr->flags.power_setup_done)
1006 return -EINVAL;
1007
1008 if (pr->flags.power == 0) {
1009 return -EINVAL;
1010 }
1011
1012 dev->cpu = pr->id;
1013
1014 if (max_cstate == 0)
1015 max_cstate = 1;
1016
1017 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1018 cx = &pr->power.states[i];
1019 state_usage = &dev->states_usage[count];
1020
1021 if (!cx->valid)
1022 continue;
1023
1024 #ifdef CONFIG_HOTPLUG_CPU
1025 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1026 !pr->flags.has_cst &&
1027 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1028 continue;
1029 #endif
1030
1031 cpuidle_set_statedata(state_usage, cx);
1032
1033 count++;
1034 if (count == CPUIDLE_STATE_MAX)
1035 break;
1036 }
1037
1038 dev->state_count = count;
1039
1040 if (!count)
1041 return -EINVAL;
1042
1043 return 0;
1044 }
1045
1046 /**
1047 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
1048 * global state data i.e. idle routines
1049 *
1050 * @pr: the ACPI processor
1051 */
1052 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1053 {
1054 int i, count = CPUIDLE_DRIVER_STATE_START;
1055 struct acpi_processor_cx *cx;
1056 struct cpuidle_state *state;
1057 struct cpuidle_driver *drv = &acpi_idle_driver;
1058
1059 if (!pr->flags.power_setup_done)
1060 return -EINVAL;
1061
1062 if (pr->flags.power == 0)
1063 return -EINVAL;
1064
1065 drv->safe_state_index = -1;
1066 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1067 drv->states[i].name[0] = '\0';
1068 drv->states[i].desc[0] = '\0';
1069 }
1070
1071 if (max_cstate == 0)
1072 max_cstate = 1;
1073
1074 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1075 cx = &pr->power.states[i];
1076
1077 if (!cx->valid)
1078 continue;
1079
1080 #ifdef CONFIG_HOTPLUG_CPU
1081 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1082 !pr->flags.has_cst &&
1083 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1084 continue;
1085 #endif
1086
1087 state = &drv->states[count];
1088 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1089 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1090 state->exit_latency = cx->latency;
1091 state->target_residency = cx->latency * latency_factor;
1092
1093 state->flags = 0;
1094 switch (cx->type) {
1095 case ACPI_STATE_C1:
1096 if (cx->entry_method == ACPI_CSTATE_FFH)
1097 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1098
1099 state->enter = acpi_idle_enter_c1;
1100 state->enter_dead = acpi_idle_play_dead;
1101 drv->safe_state_index = count;
1102 break;
1103
1104 case ACPI_STATE_C2:
1105 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1106 state->enter = acpi_idle_enter_simple;
1107 state->enter_dead = acpi_idle_play_dead;
1108 drv->safe_state_index = count;
1109 break;
1110
1111 case ACPI_STATE_C3:
1112 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1113 state->enter = pr->flags.bm_check ?
1114 acpi_idle_enter_bm :
1115 acpi_idle_enter_simple;
1116 break;
1117 }
1118
1119 count++;
1120 if (count == CPUIDLE_STATE_MAX)
1121 break;
1122 }
1123
1124 drv->state_count = count;
1125
1126 if (!count)
1127 return -EINVAL;
1128
1129 return 0;
1130 }
1131
1132 int acpi_processor_hotplug(struct acpi_processor *pr)
1133 {
1134 int ret = 0;
1135
1136 if (disabled_by_idle_boot_param())
1137 return 0;
1138
1139 if (!pr)
1140 return -EINVAL;
1141
1142 if (nocst) {
1143 return -ENODEV;
1144 }
1145
1146 if (!pr->flags.power_setup_done)
1147 return -ENODEV;
1148
1149 cpuidle_pause_and_lock();
1150 cpuidle_disable_device(&pr->power.dev);
1151 acpi_processor_get_power_info(pr);
1152 if (pr->flags.power) {
1153 acpi_processor_setup_cpuidle_cx(pr);
1154 ret = cpuidle_enable_device(&pr->power.dev);
1155 }
1156 cpuidle_resume_and_unlock();
1157
1158 return ret;
1159 }
1160
1161 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1162 {
1163 int cpu;
1164 struct acpi_processor *_pr;
1165
1166 if (disabled_by_idle_boot_param())
1167 return 0;
1168
1169 if (!pr)
1170 return -EINVAL;
1171
1172 if (nocst)
1173 return -ENODEV;
1174
1175 if (!pr->flags.power_setup_done)
1176 return -ENODEV;
1177
1178 /*
1179 * FIXME: Design the ACPI notification to make it once per
1180 * system instead of once per-cpu. This condition is a hack
1181 * to make the code that updates C-States be called once.
1182 */
1183
1184 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1185
1186 cpuidle_pause_and_lock();
1187 /* Protect against cpu-hotplug */
1188 get_online_cpus();
1189
1190 /* Disable all cpuidle devices */
1191 for_each_online_cpu(cpu) {
1192 _pr = per_cpu(processors, cpu);
1193 if (!_pr || !_pr->flags.power_setup_done)
1194 continue;
1195 cpuidle_disable_device(&_pr->power.dev);
1196 }
1197
1198 /* Populate Updated C-state information */
1199 acpi_processor_setup_cpuidle_states(pr);
1200
1201 /* Enable all cpuidle devices */
1202 for_each_online_cpu(cpu) {
1203 _pr = per_cpu(processors, cpu);
1204 if (!_pr || !_pr->flags.power_setup_done)
1205 continue;
1206 acpi_processor_get_power_info(_pr);
1207 if (_pr->flags.power) {
1208 acpi_processor_setup_cpuidle_cx(_pr);
1209 cpuidle_enable_device(&_pr->power.dev);
1210 }
1211 }
1212 put_online_cpus();
1213 cpuidle_resume_and_unlock();
1214 }
1215
1216 return 0;
1217 }
1218
1219 static int acpi_processor_registered;
1220
1221 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1222 struct acpi_device *device)
1223 {
1224 acpi_status status = 0;
1225 int retval;
1226 static int first_run;
1227
1228 if (disabled_by_idle_boot_param())
1229 return 0;
1230
1231 if (!first_run) {
1232 dmi_check_system(processor_power_dmi_table);
1233 max_cstate = acpi_processor_cstate_check(max_cstate);
1234 if (max_cstate < ACPI_C_STATES_MAX)
1235 printk(KERN_NOTICE
1236 "ACPI: processor limited to max C-state %d\n",
1237 max_cstate);
1238 first_run++;
1239 }
1240
1241 if (!pr)
1242 return -EINVAL;
1243
1244 if (acpi_gbl_FADT.cst_control && !nocst) {
1245 status =
1246 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1247 if (ACPI_FAILURE(status)) {
1248 ACPI_EXCEPTION((AE_INFO, status,
1249 "Notifying BIOS of _CST ability failed"));
1250 }
1251 }
1252
1253 acpi_processor_get_power_info(pr);
1254 pr->flags.power_setup_done = 1;
1255
1256 /*
1257 * Install the idle handler if processor power management is supported.
1258 * Note that we use previously set idle handler will be used on
1259 * platforms that only support C1.
1260 */
1261 if (pr->flags.power) {
1262 /* Register acpi_idle_driver if not already registered */
1263 if (!acpi_processor_registered) {
1264 acpi_processor_setup_cpuidle_states(pr);
1265 retval = cpuidle_register_driver(&acpi_idle_driver);
1266 if (retval)
1267 return retval;
1268 printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1269 acpi_idle_driver.name);
1270 }
1271 /* Register per-cpu cpuidle_device. Cpuidle driver
1272 * must already be registered before registering device
1273 */
1274 acpi_processor_setup_cpuidle_cx(pr);
1275 retval = cpuidle_register_device(&pr->power.dev);
1276 if (retval) {
1277 if (acpi_processor_registered == 0)
1278 cpuidle_unregister_driver(&acpi_idle_driver);
1279 return retval;
1280 }
1281 acpi_processor_registered++;
1282 }
1283 return 0;
1284 }
1285
1286 int acpi_processor_power_exit(struct acpi_processor *pr,
1287 struct acpi_device *device)
1288 {
1289 if (disabled_by_idle_boot_param())
1290 return 0;
1291
1292 if (pr->flags.power) {
1293 cpuidle_unregister_device(&pr->power.dev);
1294 acpi_processor_registered--;
1295 if (acpi_processor_registered == 0)
1296 cpuidle_unregister_driver(&acpi_idle_driver);
1297 }
1298
1299 pr->flags.power_setup_done = 0;
1300 return 0;
1301 }