Merge branch 'for-linus' of git://git.o-hand.com/linux-rpurdie-backlight
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define PREFIX "ACPI: "
64
65 #define ACPI_PROCESSOR_CLASS "processor"
66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER "power"
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD 1 /* 1us */
71 #define C3_OVERHEAD 1 /* 1us */
72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
78
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81
82 static s64 us_to_pm_timer_ticks(s64 t)
83 {
84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 }
86 /*
87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88 * For now disable this. Probably a bug somewhere else.
89 *
90 * To skip this limit, boot/load with a large max_cstate limit.
91 */
92 static int set_max_cstate(const struct dmi_system_id *id)
93 {
94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 return 0;
96
97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
100
101 max_cstate = (long)id->driver_data;
102
103 return 0;
104 }
105
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107 callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 { set_max_cstate, "Clevo 5600D", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 (void *)2},
113 {},
114 };
115
116
117 /*
118 * Callers should disable interrupts before the call and enable
119 * interrupts after return.
120 */
121 static void acpi_safe_halt(void)
122 {
123 current_thread_info()->status &= ~TS_POLLING;
124 /*
125 * TS_POLLING-cleared state must be visible before we
126 * test NEED_RESCHED:
127 */
128 smp_mb();
129 if (!need_resched()) {
130 safe_halt();
131 local_irq_disable();
132 }
133 current_thread_info()->status |= TS_POLLING;
134 }
135
136 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137
138 /*
139 * Some BIOS implementations switch to C3 in the published C2 state.
140 * This seems to be a common problem on AMD boxen, but other vendors
141 * are affected too. We pick the most conservative approach: we assume
142 * that the local APIC stops in both C2 and C3.
143 */
144 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
145 struct acpi_processor_cx *cx)
146 {
147 struct acpi_processor_power *pwr = &pr->power;
148 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
149
150 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
151 return;
152
153 if (boot_cpu_has(X86_FEATURE_AMDC1E))
154 type = ACPI_STATE_C1;
155
156 /*
157 * Check, if one of the previous states already marked the lapic
158 * unstable
159 */
160 if (pwr->timer_broadcast_on_state < state)
161 return;
162
163 if (cx->type >= type)
164 pr->power.timer_broadcast_on_state = state;
165 }
166
167 static void __lapic_timer_propagate_broadcast(void *arg)
168 {
169 struct acpi_processor *pr = (struct acpi_processor *) arg;
170 unsigned long reason;
171
172 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
173 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
174
175 clockevents_notify(reason, &pr->id);
176 }
177
178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
179 {
180 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
181 (void *)pr, 1);
182 }
183
184 /* Power(C) State timer broadcast control */
185 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
186 struct acpi_processor_cx *cx,
187 int broadcast)
188 {
189 int state = cx - pr->power.states;
190
191 if (state >= pr->power.timer_broadcast_on_state) {
192 unsigned long reason;
193
194 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
195 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
196 clockevents_notify(reason, &pr->id);
197 }
198 }
199
200 #else
201
202 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
203 struct acpi_processor_cx *cstate) { }
204 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
205 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
206 struct acpi_processor_cx *cx,
207 int broadcast)
208 {
209 }
210
211 #endif
212
213 /*
214 * Suspend / resume control
215 */
216 static int acpi_idle_suspend;
217 static u32 saved_bm_rld;
218
219 static void acpi_idle_bm_rld_save(void)
220 {
221 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
222 }
223 static void acpi_idle_bm_rld_restore(void)
224 {
225 u32 resumed_bm_rld;
226
227 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
228
229 if (resumed_bm_rld != saved_bm_rld)
230 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
231 }
232
233 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
234 {
235 if (acpi_idle_suspend == 1)
236 return 0;
237
238 acpi_idle_bm_rld_save();
239 acpi_idle_suspend = 1;
240 return 0;
241 }
242
243 int acpi_processor_resume(struct acpi_device * device)
244 {
245 if (acpi_idle_suspend == 0)
246 return 0;
247
248 acpi_idle_bm_rld_restore();
249 acpi_idle_suspend = 0;
250 return 0;
251 }
252
253 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
254 static void tsc_check_state(int state)
255 {
256 switch (boot_cpu_data.x86_vendor) {
257 case X86_VENDOR_AMD:
258 case X86_VENDOR_INTEL:
259 /*
260 * AMD Fam10h TSC will tick in all
261 * C/P/S0/S1 states when this bit is set.
262 */
263 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
264 return;
265
266 /*FALL THROUGH*/
267 default:
268 /* TSC could halt in idle, so notify users */
269 if (state > ACPI_STATE_C1)
270 mark_tsc_unstable("TSC halts in idle");
271 }
272 }
273 #else
274 static void tsc_check_state(int state) { return; }
275 #endif
276
277 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
278 {
279
280 if (!pr)
281 return -EINVAL;
282
283 if (!pr->pblk)
284 return -ENODEV;
285
286 /* if info is obtained from pblk/fadt, type equals state */
287 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
288 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
289
290 #ifndef CONFIG_HOTPLUG_CPU
291 /*
292 * Check for P_LVL2_UP flag before entering C2 and above on
293 * an SMP system.
294 */
295 if ((num_online_cpus() > 1) &&
296 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
297 return -ENODEV;
298 #endif
299
300 /* determine C2 and C3 address from pblk */
301 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
302 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
303
304 /* determine latencies from FADT */
305 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
306 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
307
308 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
309 "lvl2[0x%08x] lvl3[0x%08x]\n",
310 pr->power.states[ACPI_STATE_C2].address,
311 pr->power.states[ACPI_STATE_C3].address));
312
313 return 0;
314 }
315
316 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
317 {
318 if (!pr->power.states[ACPI_STATE_C1].valid) {
319 /* set the first C-State to C1 */
320 /* all processors need to support C1 */
321 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
322 pr->power.states[ACPI_STATE_C1].valid = 1;
323 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
324 }
325 /* the C0 state only exists as a filler in our array */
326 pr->power.states[ACPI_STATE_C0].valid = 1;
327 return 0;
328 }
329
330 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
331 {
332 acpi_status status = 0;
333 acpi_integer count;
334 int current_count;
335 int i;
336 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
337 union acpi_object *cst;
338
339
340 if (nocst)
341 return -ENODEV;
342
343 current_count = 0;
344
345 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
346 if (ACPI_FAILURE(status)) {
347 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
348 return -ENODEV;
349 }
350
351 cst = buffer.pointer;
352
353 /* There must be at least 2 elements */
354 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
355 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
356 status = -EFAULT;
357 goto end;
358 }
359
360 count = cst->package.elements[0].integer.value;
361
362 /* Validate number of power states. */
363 if (count < 1 || count != cst->package.count - 1) {
364 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
365 status = -EFAULT;
366 goto end;
367 }
368
369 /* Tell driver that at least _CST is supported. */
370 pr->flags.has_cst = 1;
371
372 for (i = 1; i <= count; i++) {
373 union acpi_object *element;
374 union acpi_object *obj;
375 struct acpi_power_register *reg;
376 struct acpi_processor_cx cx;
377
378 memset(&cx, 0, sizeof(cx));
379
380 element = &(cst->package.elements[i]);
381 if (element->type != ACPI_TYPE_PACKAGE)
382 continue;
383
384 if (element->package.count != 4)
385 continue;
386
387 obj = &(element->package.elements[0]);
388
389 if (obj->type != ACPI_TYPE_BUFFER)
390 continue;
391
392 reg = (struct acpi_power_register *)obj->buffer.pointer;
393
394 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
395 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
396 continue;
397
398 /* There should be an easy way to extract an integer... */
399 obj = &(element->package.elements[1]);
400 if (obj->type != ACPI_TYPE_INTEGER)
401 continue;
402
403 cx.type = obj->integer.value;
404 /*
405 * Some buggy BIOSes won't list C1 in _CST -
406 * Let acpi_processor_get_power_info_default() handle them later
407 */
408 if (i == 1 && cx.type != ACPI_STATE_C1)
409 current_count++;
410
411 cx.address = reg->address;
412 cx.index = current_count + 1;
413
414 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
415 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
416 if (acpi_processor_ffh_cstate_probe
417 (pr->id, &cx, reg) == 0) {
418 cx.entry_method = ACPI_CSTATE_FFH;
419 } else if (cx.type == ACPI_STATE_C1) {
420 /*
421 * C1 is a special case where FIXED_HARDWARE
422 * can be handled in non-MWAIT way as well.
423 * In that case, save this _CST entry info.
424 * Otherwise, ignore this info and continue.
425 */
426 cx.entry_method = ACPI_CSTATE_HALT;
427 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
428 } else {
429 continue;
430 }
431 if (cx.type == ACPI_STATE_C1 &&
432 (idle_halt || idle_nomwait)) {
433 /*
434 * In most cases the C1 space_id obtained from
435 * _CST object is FIXED_HARDWARE access mode.
436 * But when the option of idle=halt is added,
437 * the entry_method type should be changed from
438 * CSTATE_FFH to CSTATE_HALT.
439 * When the option of idle=nomwait is added,
440 * the C1 entry_method type should be
441 * CSTATE_HALT.
442 */
443 cx.entry_method = ACPI_CSTATE_HALT;
444 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
445 }
446 } else {
447 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
448 cx.address);
449 }
450
451 if (cx.type == ACPI_STATE_C1) {
452 cx.valid = 1;
453 }
454
455 obj = &(element->package.elements[2]);
456 if (obj->type != ACPI_TYPE_INTEGER)
457 continue;
458
459 cx.latency = obj->integer.value;
460
461 obj = &(element->package.elements[3]);
462 if (obj->type != ACPI_TYPE_INTEGER)
463 continue;
464
465 cx.power = obj->integer.value;
466
467 current_count++;
468 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
469
470 /*
471 * We support total ACPI_PROCESSOR_MAX_POWER - 1
472 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
473 */
474 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
475 printk(KERN_WARNING
476 "Limiting number of power states to max (%d)\n",
477 ACPI_PROCESSOR_MAX_POWER);
478 printk(KERN_WARNING
479 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
480 break;
481 }
482 }
483
484 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
485 current_count));
486
487 /* Validate number of power states discovered */
488 if (current_count < 2)
489 status = -EFAULT;
490
491 end:
492 kfree(buffer.pointer);
493
494 return status;
495 }
496
497 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
498 {
499
500 if (!cx->address)
501 return;
502
503 /*
504 * C2 latency must be less than or equal to 100
505 * microseconds.
506 */
507 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
508 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
509 "latency too large [%d]\n", cx->latency));
510 return;
511 }
512
513 /*
514 * Otherwise we've met all of our C2 requirements.
515 * Normalize the C2 latency to expidite policy
516 */
517 cx->valid = 1;
518
519 cx->latency_ticks = cx->latency;
520
521 return;
522 }
523
524 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
525 struct acpi_processor_cx *cx)
526 {
527 static int bm_check_flag = -1;
528 static int bm_control_flag = -1;
529
530
531 if (!cx->address)
532 return;
533
534 /*
535 * C3 latency must be less than or equal to 1000
536 * microseconds.
537 */
538 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
539 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
540 "latency too large [%d]\n", cx->latency));
541 return;
542 }
543
544 /*
545 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
546 * DMA transfers are used by any ISA device to avoid livelock.
547 * Note that we could disable Type-F DMA (as recommended by
548 * the erratum), but this is known to disrupt certain ISA
549 * devices thus we take the conservative approach.
550 */
551 else if (errata.piix4.fdma) {
552 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
553 "C3 not supported on PIIX4 with Type-F DMA\n"));
554 return;
555 }
556
557 /* All the logic here assumes flags.bm_check is same across all CPUs */
558 if (bm_check_flag == -1) {
559 /* Determine whether bm_check is needed based on CPU */
560 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
561 bm_check_flag = pr->flags.bm_check;
562 bm_control_flag = pr->flags.bm_control;
563 } else {
564 pr->flags.bm_check = bm_check_flag;
565 pr->flags.bm_control = bm_control_flag;
566 }
567
568 if (pr->flags.bm_check) {
569 if (!pr->flags.bm_control) {
570 if (pr->flags.has_cst != 1) {
571 /* bus mastering control is necessary */
572 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573 "C3 support requires BM control\n"));
574 return;
575 } else {
576 /* Here we enter C3 without bus mastering */
577 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
578 "C3 support without BM control\n"));
579 }
580 }
581 } else {
582 /*
583 * WBINVD should be set in fadt, for C3 state to be
584 * supported on when bm_check is not required.
585 */
586 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
587 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
588 "Cache invalidation should work properly"
589 " for C3 to be enabled on SMP systems\n"));
590 return;
591 }
592 }
593
594 /*
595 * Otherwise we've met all of our C3 requirements.
596 * Normalize the C3 latency to expidite policy. Enable
597 * checking of bus mastering status (bm_check) so we can
598 * use this in our C3 policy
599 */
600 cx->valid = 1;
601
602 cx->latency_ticks = cx->latency;
603 /*
604 * On older chipsets, BM_RLD needs to be set
605 * in order for Bus Master activity to wake the
606 * system from C3. Newer chipsets handle DMA
607 * during C3 automatically and BM_RLD is a NOP.
608 * In either case, the proper way to
609 * handle BM_RLD is to set it and leave it set.
610 */
611 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
612
613 return;
614 }
615
616 static int acpi_processor_power_verify(struct acpi_processor *pr)
617 {
618 unsigned int i;
619 unsigned int working = 0;
620
621 pr->power.timer_broadcast_on_state = INT_MAX;
622
623 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
624 struct acpi_processor_cx *cx = &pr->power.states[i];
625
626 switch (cx->type) {
627 case ACPI_STATE_C1:
628 cx->valid = 1;
629 break;
630
631 case ACPI_STATE_C2:
632 acpi_processor_power_verify_c2(cx);
633 break;
634
635 case ACPI_STATE_C3:
636 acpi_processor_power_verify_c3(pr, cx);
637 break;
638 }
639 if (!cx->valid)
640 continue;
641
642 lapic_timer_check_state(i, pr, cx);
643 tsc_check_state(cx->type);
644 working++;
645 }
646
647 lapic_timer_propagate_broadcast(pr);
648
649 return (working);
650 }
651
652 static int acpi_processor_get_power_info(struct acpi_processor *pr)
653 {
654 unsigned int i;
655 int result;
656
657
658 /* NOTE: the idle thread may not be running while calling
659 * this function */
660
661 /* Zero initialize all the C-states info. */
662 memset(pr->power.states, 0, sizeof(pr->power.states));
663
664 result = acpi_processor_get_power_info_cst(pr);
665 if (result == -ENODEV)
666 result = acpi_processor_get_power_info_fadt(pr);
667
668 if (result)
669 return result;
670
671 acpi_processor_get_power_info_default(pr);
672
673 pr->power.count = acpi_processor_power_verify(pr);
674
675 /*
676 * if one state of type C2 or C3 is available, mark this
677 * CPU as being "idle manageable"
678 */
679 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
680 if (pr->power.states[i].valid) {
681 pr->power.count = i;
682 if (pr->power.states[i].type >= ACPI_STATE_C2)
683 pr->flags.power = 1;
684 }
685 }
686
687 return 0;
688 }
689
690 #ifdef CONFIG_ACPI_PROCFS
691 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
692 {
693 struct acpi_processor *pr = seq->private;
694 unsigned int i;
695
696
697 if (!pr)
698 goto end;
699
700 seq_printf(seq, "active state: C%zd\n"
701 "max_cstate: C%d\n"
702 "maximum allowed latency: %d usec\n",
703 pr->power.state ? pr->power.state - pr->power.states : 0,
704 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
705
706 seq_puts(seq, "states:\n");
707
708 for (i = 1; i <= pr->power.count; i++) {
709 seq_printf(seq, " %cC%d: ",
710 (&pr->power.states[i] ==
711 pr->power.state ? '*' : ' '), i);
712
713 if (!pr->power.states[i].valid) {
714 seq_puts(seq, "<not supported>\n");
715 continue;
716 }
717
718 switch (pr->power.states[i].type) {
719 case ACPI_STATE_C1:
720 seq_printf(seq, "type[C1] ");
721 break;
722 case ACPI_STATE_C2:
723 seq_printf(seq, "type[C2] ");
724 break;
725 case ACPI_STATE_C3:
726 seq_printf(seq, "type[C3] ");
727 break;
728 default:
729 seq_printf(seq, "type[--] ");
730 break;
731 }
732
733 if (pr->power.states[i].promotion.state)
734 seq_printf(seq, "promotion[C%zd] ",
735 (pr->power.states[i].promotion.state -
736 pr->power.states));
737 else
738 seq_puts(seq, "promotion[--] ");
739
740 if (pr->power.states[i].demotion.state)
741 seq_printf(seq, "demotion[C%zd] ",
742 (pr->power.states[i].demotion.state -
743 pr->power.states));
744 else
745 seq_puts(seq, "demotion[--] ");
746
747 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
748 pr->power.states[i].latency,
749 pr->power.states[i].usage,
750 (unsigned long long)pr->power.states[i].time);
751 }
752
753 end:
754 return 0;
755 }
756
757 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
758 {
759 return single_open(file, acpi_processor_power_seq_show,
760 PDE(inode)->data);
761 }
762
763 static const struct file_operations acpi_processor_power_fops = {
764 .owner = THIS_MODULE,
765 .open = acpi_processor_power_open_fs,
766 .read = seq_read,
767 .llseek = seq_lseek,
768 .release = single_release,
769 };
770 #endif
771
772 /**
773 * acpi_idle_bm_check - checks if bus master activity was detected
774 */
775 static int acpi_idle_bm_check(void)
776 {
777 u32 bm_status = 0;
778
779 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
780 if (bm_status)
781 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
782 /*
783 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
784 * the true state of bus mastering activity; forcing us to
785 * manually check the BMIDEA bit of each IDE channel.
786 */
787 else if (errata.piix4.bmisx) {
788 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
789 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
790 bm_status = 1;
791 }
792 return bm_status;
793 }
794
795 /**
796 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
797 * @cx: cstate data
798 *
799 * Caller disables interrupt before call and enables interrupt after return.
800 */
801 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
802 {
803 /* Don't trace irqs off for idle */
804 stop_critical_timings();
805 if (cx->entry_method == ACPI_CSTATE_FFH) {
806 /* Call into architectural FFH based C-state */
807 acpi_processor_ffh_cstate_enter(cx);
808 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
809 acpi_safe_halt();
810 } else {
811 int unused;
812 /* IO port based C-state */
813 inb(cx->address);
814 /* Dummy wait op - must do something useless after P_LVL2 read
815 because chipsets cannot guarantee that STPCLK# signal
816 gets asserted in time to freeze execution properly. */
817 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
818 }
819 start_critical_timings();
820 }
821
822 /**
823 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
824 * @dev: the target CPU
825 * @state: the state data
826 *
827 * This is equivalent to the HALT instruction.
828 */
829 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
830 struct cpuidle_state *state)
831 {
832 ktime_t kt1, kt2;
833 s64 idle_time;
834 struct acpi_processor *pr;
835 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
836
837 pr = __get_cpu_var(processors);
838
839 if (unlikely(!pr))
840 return 0;
841
842 local_irq_disable();
843
844 /* Do not access any ACPI IO ports in suspend path */
845 if (acpi_idle_suspend) {
846 local_irq_enable();
847 cpu_relax();
848 return 0;
849 }
850
851 lapic_timer_state_broadcast(pr, cx, 1);
852 kt1 = ktime_get_real();
853 acpi_idle_do_entry(cx);
854 kt2 = ktime_get_real();
855 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
856
857 local_irq_enable();
858 cx->usage++;
859 lapic_timer_state_broadcast(pr, cx, 0);
860
861 return idle_time;
862 }
863
864 /**
865 * acpi_idle_enter_simple - enters an ACPI state without BM handling
866 * @dev: the target CPU
867 * @state: the state data
868 */
869 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
870 struct cpuidle_state *state)
871 {
872 struct acpi_processor *pr;
873 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
874 ktime_t kt1, kt2;
875 s64 idle_time;
876 s64 sleep_ticks = 0;
877
878 pr = __get_cpu_var(processors);
879
880 if (unlikely(!pr))
881 return 0;
882
883 if (acpi_idle_suspend)
884 return(acpi_idle_enter_c1(dev, state));
885
886 local_irq_disable();
887 current_thread_info()->status &= ~TS_POLLING;
888 /*
889 * TS_POLLING-cleared state must be visible before we test
890 * NEED_RESCHED:
891 */
892 smp_mb();
893
894 if (unlikely(need_resched())) {
895 current_thread_info()->status |= TS_POLLING;
896 local_irq_enable();
897 return 0;
898 }
899
900 /*
901 * Must be done before busmaster disable as we might need to
902 * access HPET !
903 */
904 lapic_timer_state_broadcast(pr, cx, 1);
905
906 if (cx->type == ACPI_STATE_C3)
907 ACPI_FLUSH_CPU_CACHE();
908
909 kt1 = ktime_get_real();
910 /* Tell the scheduler that we are going deep-idle: */
911 sched_clock_idle_sleep_event();
912 acpi_idle_do_entry(cx);
913 kt2 = ktime_get_real();
914 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
915
916 sleep_ticks = us_to_pm_timer_ticks(idle_time);
917
918 /* Tell the scheduler how much we idled: */
919 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
920
921 local_irq_enable();
922 current_thread_info()->status |= TS_POLLING;
923
924 cx->usage++;
925
926 lapic_timer_state_broadcast(pr, cx, 0);
927 cx->time += sleep_ticks;
928 return idle_time;
929 }
930
931 static int c3_cpu_count;
932 static DEFINE_SPINLOCK(c3_lock);
933
934 /**
935 * acpi_idle_enter_bm - enters C3 with proper BM handling
936 * @dev: the target CPU
937 * @state: the state data
938 *
939 * If BM is detected, the deepest non-C3 idle state is entered instead.
940 */
941 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
942 struct cpuidle_state *state)
943 {
944 struct acpi_processor *pr;
945 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
946 ktime_t kt1, kt2;
947 s64 idle_time;
948 s64 sleep_ticks = 0;
949
950
951 pr = __get_cpu_var(processors);
952
953 if (unlikely(!pr))
954 return 0;
955
956 if (acpi_idle_suspend)
957 return(acpi_idle_enter_c1(dev, state));
958
959 if (acpi_idle_bm_check()) {
960 if (dev->safe_state) {
961 dev->last_state = dev->safe_state;
962 return dev->safe_state->enter(dev, dev->safe_state);
963 } else {
964 local_irq_disable();
965 acpi_safe_halt();
966 local_irq_enable();
967 return 0;
968 }
969 }
970
971 local_irq_disable();
972 current_thread_info()->status &= ~TS_POLLING;
973 /*
974 * TS_POLLING-cleared state must be visible before we test
975 * NEED_RESCHED:
976 */
977 smp_mb();
978
979 if (unlikely(need_resched())) {
980 current_thread_info()->status |= TS_POLLING;
981 local_irq_enable();
982 return 0;
983 }
984
985 acpi_unlazy_tlb(smp_processor_id());
986
987 /* Tell the scheduler that we are going deep-idle: */
988 sched_clock_idle_sleep_event();
989 /*
990 * Must be done before busmaster disable as we might need to
991 * access HPET !
992 */
993 lapic_timer_state_broadcast(pr, cx, 1);
994
995 kt1 = ktime_get_real();
996 /*
997 * disable bus master
998 * bm_check implies we need ARB_DIS
999 * !bm_check implies we need cache flush
1000 * bm_control implies whether we can do ARB_DIS
1001 *
1002 * That leaves a case where bm_check is set and bm_control is
1003 * not set. In that case we cannot do much, we enter C3
1004 * without doing anything.
1005 */
1006 if (pr->flags.bm_check && pr->flags.bm_control) {
1007 spin_lock(&c3_lock);
1008 c3_cpu_count++;
1009 /* Disable bus master arbitration when all CPUs are in C3 */
1010 if (c3_cpu_count == num_online_cpus())
1011 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1012 spin_unlock(&c3_lock);
1013 } else if (!pr->flags.bm_check) {
1014 ACPI_FLUSH_CPU_CACHE();
1015 }
1016
1017 acpi_idle_do_entry(cx);
1018
1019 /* Re-enable bus master arbitration */
1020 if (pr->flags.bm_check && pr->flags.bm_control) {
1021 spin_lock(&c3_lock);
1022 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1023 c3_cpu_count--;
1024 spin_unlock(&c3_lock);
1025 }
1026 kt2 = ktime_get_real();
1027 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1028
1029 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1030 /* Tell the scheduler how much we idled: */
1031 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1032
1033 local_irq_enable();
1034 current_thread_info()->status |= TS_POLLING;
1035
1036 cx->usage++;
1037
1038 lapic_timer_state_broadcast(pr, cx, 0);
1039 cx->time += sleep_ticks;
1040 return idle_time;
1041 }
1042
1043 struct cpuidle_driver acpi_idle_driver = {
1044 .name = "acpi_idle",
1045 .owner = THIS_MODULE,
1046 };
1047
1048 /**
1049 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1050 * @pr: the ACPI processor
1051 */
1052 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1053 {
1054 int i, count = CPUIDLE_DRIVER_STATE_START;
1055 struct acpi_processor_cx *cx;
1056 struct cpuidle_state *state;
1057 struct cpuidle_device *dev = &pr->power.dev;
1058
1059 if (!pr->flags.power_setup_done)
1060 return -EINVAL;
1061
1062 if (pr->flags.power == 0) {
1063 return -EINVAL;
1064 }
1065
1066 dev->cpu = pr->id;
1067 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1068 dev->states[i].name[0] = '\0';
1069 dev->states[i].desc[0] = '\0';
1070 }
1071
1072 if (max_cstate == 0)
1073 max_cstate = 1;
1074
1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1076 cx = &pr->power.states[i];
1077 state = &dev->states[count];
1078
1079 if (!cx->valid)
1080 continue;
1081
1082 #ifdef CONFIG_HOTPLUG_CPU
1083 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1084 !pr->flags.has_cst &&
1085 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1086 continue;
1087 #endif
1088 cpuidle_set_statedata(state, cx);
1089
1090 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1091 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1092 state->exit_latency = cx->latency;
1093 state->target_residency = cx->latency * latency_factor;
1094 state->power_usage = cx->power;
1095
1096 state->flags = 0;
1097 switch (cx->type) {
1098 case ACPI_STATE_C1:
1099 state->flags |= CPUIDLE_FLAG_SHALLOW;
1100 if (cx->entry_method == ACPI_CSTATE_FFH)
1101 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1102
1103 state->enter = acpi_idle_enter_c1;
1104 dev->safe_state = state;
1105 break;
1106
1107 case ACPI_STATE_C2:
1108 state->flags |= CPUIDLE_FLAG_BALANCED;
1109 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1110 state->enter = acpi_idle_enter_simple;
1111 dev->safe_state = state;
1112 break;
1113
1114 case ACPI_STATE_C3:
1115 state->flags |= CPUIDLE_FLAG_DEEP;
1116 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1117 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1118 state->enter = pr->flags.bm_check ?
1119 acpi_idle_enter_bm :
1120 acpi_idle_enter_simple;
1121 break;
1122 }
1123
1124 count++;
1125 if (count == CPUIDLE_STATE_MAX)
1126 break;
1127 }
1128
1129 dev->state_count = count;
1130
1131 if (!count)
1132 return -EINVAL;
1133
1134 return 0;
1135 }
1136
1137 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1138 {
1139 int ret = 0;
1140
1141 if (boot_option_idle_override)
1142 return 0;
1143
1144 if (!pr)
1145 return -EINVAL;
1146
1147 if (nocst) {
1148 return -ENODEV;
1149 }
1150
1151 if (!pr->flags.power_setup_done)
1152 return -ENODEV;
1153
1154 cpuidle_pause_and_lock();
1155 cpuidle_disable_device(&pr->power.dev);
1156 acpi_processor_get_power_info(pr);
1157 if (pr->flags.power) {
1158 acpi_processor_setup_cpuidle(pr);
1159 ret = cpuidle_enable_device(&pr->power.dev);
1160 }
1161 cpuidle_resume_and_unlock();
1162
1163 return ret;
1164 }
1165
1166 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1167 struct acpi_device *device)
1168 {
1169 acpi_status status = 0;
1170 static int first_run;
1171 #ifdef CONFIG_ACPI_PROCFS
1172 struct proc_dir_entry *entry = NULL;
1173 #endif
1174
1175 if (boot_option_idle_override)
1176 return 0;
1177
1178 if (!first_run) {
1179 if (idle_halt) {
1180 /*
1181 * When the boot option of "idle=halt" is added, halt
1182 * is used for CPU IDLE.
1183 * In such case C2/C3 is meaningless. So the max_cstate
1184 * is set to one.
1185 */
1186 max_cstate = 1;
1187 }
1188 dmi_check_system(processor_power_dmi_table);
1189 max_cstate = acpi_processor_cstate_check(max_cstate);
1190 if (max_cstate < ACPI_C_STATES_MAX)
1191 printk(KERN_NOTICE
1192 "ACPI: processor limited to max C-state %d\n",
1193 max_cstate);
1194 first_run++;
1195 }
1196
1197 if (!pr)
1198 return -EINVAL;
1199
1200 if (acpi_gbl_FADT.cst_control && !nocst) {
1201 status =
1202 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1203 if (ACPI_FAILURE(status)) {
1204 ACPI_EXCEPTION((AE_INFO, status,
1205 "Notifying BIOS of _CST ability failed"));
1206 }
1207 }
1208
1209 acpi_processor_get_power_info(pr);
1210 pr->flags.power_setup_done = 1;
1211
1212 /*
1213 * Install the idle handler if processor power management is supported.
1214 * Note that we use previously set idle handler will be used on
1215 * platforms that only support C1.
1216 */
1217 if (pr->flags.power) {
1218 acpi_processor_setup_cpuidle(pr);
1219 if (cpuidle_register_device(&pr->power.dev))
1220 return -EIO;
1221 }
1222 #ifdef CONFIG_ACPI_PROCFS
1223 /* 'power' [R] */
1224 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1225 S_IRUGO, acpi_device_dir(device),
1226 &acpi_processor_power_fops,
1227 acpi_driver_data(device));
1228 if (!entry)
1229 return -EIO;
1230 #endif
1231 return 0;
1232 }
1233
1234 int acpi_processor_power_exit(struct acpi_processor *pr,
1235 struct acpi_device *device)
1236 {
1237 if (boot_option_idle_override)
1238 return 0;
1239
1240 cpuidle_unregister_device(&pr->power.dev);
1241 pr->flags.power_setup_done = 0;
1242
1243 #ifdef CONFIG_ACPI_PROCFS
1244 if (acpi_device_dir(device))
1245 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1246 acpi_device_dir(device));
1247 #endif
1248
1249 return 0;
1250 }