timekeeping: Update tk->cycle_last in resume
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h> /* need_resched() */
35 #include <linux/clockchips.h>
36 #include <linux/cpuidle.h>
37
38 /*
39 * Include the apic definitions for x86 to have the APIC timer related defines
40 * available also for UP (on SMP it gets magically included via linux/smp.h).
41 * asm/acpi.h is not an option, as it would require more include magic. Also
42 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
43 */
44 #ifdef CONFIG_X86
45 #include <asm/apic.h>
46 #endif
47
48 #include <acpi/acpi_bus.h>
49 #include <acpi/processor.h>
50
51 #define PREFIX "ACPI: "
52
53 #define ACPI_PROCESSOR_CLASS "processor"
54 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
55 ACPI_MODULE_NAME("processor_idle");
56
57 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
58 module_param(max_cstate, uint, 0000);
59 static unsigned int nocst __read_mostly;
60 module_param(nocst, uint, 0000);
61 static int bm_check_disable __read_mostly;
62 module_param(bm_check_disable, uint, 0000);
63
64 static unsigned int latency_factor __read_mostly = 2;
65 module_param(latency_factor, uint, 0644);
66
67 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
68
69 static struct acpi_processor_cx *acpi_cstate[CPUIDLE_STATE_MAX];
70
71 static int disabled_by_idle_boot_param(void)
72 {
73 return boot_option_idle_override == IDLE_POLL ||
74 boot_option_idle_override == IDLE_HALT;
75 }
76
77 /*
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
80 *
81 * To skip this limit, boot/load with a large max_cstate limit.
82 */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
87
88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92 max_cstate = (long)id->driver_data;
93
94 return 0;
95 }
96
97 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
98 callers to only run once -AK */
99 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
100 { set_max_cstate, "Clevo 5600D", {
101 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
102 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
103 (void *)2},
104 { set_max_cstate, "Pavilion zv5000", {
105 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
106 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
107 (void *)1},
108 { set_max_cstate, "Asus L8400B", {
109 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
110 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
111 (void *)1},
112 {},
113 };
114
115
116 /*
117 * Callers should disable interrupts before the call and enable
118 * interrupts after return.
119 */
120 static void acpi_safe_halt(void)
121 {
122 current_thread_info()->status &= ~TS_POLLING;
123 /*
124 * TS_POLLING-cleared state must be visible before we
125 * test NEED_RESCHED:
126 */
127 smp_mb();
128 if (!need_resched()) {
129 safe_halt();
130 local_irq_disable();
131 }
132 current_thread_info()->status |= TS_POLLING;
133 }
134
135 #ifdef ARCH_APICTIMER_STOPS_ON_C3
136
137 /*
138 * Some BIOS implementations switch to C3 in the published C2 state.
139 * This seems to be a common problem on AMD boxen, but other vendors
140 * are affected too. We pick the most conservative approach: we assume
141 * that the local APIC stops in both C2 and C3.
142 */
143 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
144 struct acpi_processor_cx *cx)
145 {
146 struct acpi_processor_power *pwr = &pr->power;
147 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
148
149 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
150 return;
151
152 if (amd_e400_c1e_detected)
153 type = ACPI_STATE_C1;
154
155 /*
156 * Check, if one of the previous states already marked the lapic
157 * unstable
158 */
159 if (pwr->timer_broadcast_on_state < state)
160 return;
161
162 if (cx->type >= type)
163 pr->power.timer_broadcast_on_state = state;
164 }
165
166 static void __lapic_timer_propagate_broadcast(void *arg)
167 {
168 struct acpi_processor *pr = (struct acpi_processor *) arg;
169 unsigned long reason;
170
171 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
172 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
173
174 clockevents_notify(reason, &pr->id);
175 }
176
177 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
178 {
179 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
180 (void *)pr, 1);
181 }
182
183 /* Power(C) State timer broadcast control */
184 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
185 struct acpi_processor_cx *cx,
186 int broadcast)
187 {
188 int state = cx - pr->power.states;
189
190 if (state >= pr->power.timer_broadcast_on_state) {
191 unsigned long reason;
192
193 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
194 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
195 clockevents_notify(reason, &pr->id);
196 }
197 }
198
199 #else
200
201 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
202 struct acpi_processor_cx *cstate) { }
203 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
204 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
205 struct acpi_processor_cx *cx,
206 int broadcast)
207 {
208 }
209
210 #endif
211
212 static u32 saved_bm_rld;
213
214 static void acpi_idle_bm_rld_save(void)
215 {
216 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
217 }
218 static void acpi_idle_bm_rld_restore(void)
219 {
220 u32 resumed_bm_rld;
221
222 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
223
224 if (resumed_bm_rld != saved_bm_rld)
225 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
226 }
227
228 int acpi_processor_suspend(struct device *dev)
229 {
230 acpi_idle_bm_rld_save();
231 return 0;
232 }
233
234 int acpi_processor_resume(struct device *dev)
235 {
236 acpi_idle_bm_rld_restore();
237 return 0;
238 }
239
240 #if defined(CONFIG_X86)
241 static void tsc_check_state(int state)
242 {
243 switch (boot_cpu_data.x86_vendor) {
244 case X86_VENDOR_AMD:
245 case X86_VENDOR_INTEL:
246 /*
247 * AMD Fam10h TSC will tick in all
248 * C/P/S0/S1 states when this bit is set.
249 */
250 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
251 return;
252
253 /*FALL THROUGH*/
254 default:
255 /* TSC could halt in idle, so notify users */
256 if (state > ACPI_STATE_C1)
257 mark_tsc_unstable("TSC halts in idle");
258 }
259 }
260 #else
261 static void tsc_check_state(int state) { return; }
262 #endif
263
264 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
265 {
266
267 if (!pr)
268 return -EINVAL;
269
270 if (!pr->pblk)
271 return -ENODEV;
272
273 /* if info is obtained from pblk/fadt, type equals state */
274 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
275 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
276
277 #ifndef CONFIG_HOTPLUG_CPU
278 /*
279 * Check for P_LVL2_UP flag before entering C2 and above on
280 * an SMP system.
281 */
282 if ((num_online_cpus() > 1) &&
283 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
284 return -ENODEV;
285 #endif
286
287 /* determine C2 and C3 address from pblk */
288 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
289 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
290
291 /* determine latencies from FADT */
292 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
293 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
294
295 /*
296 * FADT specified C2 latency must be less than or equal to
297 * 100 microseconds.
298 */
299 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
300 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
301 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
302 /* invalidate C2 */
303 pr->power.states[ACPI_STATE_C2].address = 0;
304 }
305
306 /*
307 * FADT supplied C3 latency must be less than or equal to
308 * 1000 microseconds.
309 */
310 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
311 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
312 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
313 /* invalidate C3 */
314 pr->power.states[ACPI_STATE_C3].address = 0;
315 }
316
317 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
318 "lvl2[0x%08x] lvl3[0x%08x]\n",
319 pr->power.states[ACPI_STATE_C2].address,
320 pr->power.states[ACPI_STATE_C3].address));
321
322 return 0;
323 }
324
325 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
326 {
327 if (!pr->power.states[ACPI_STATE_C1].valid) {
328 /* set the first C-State to C1 */
329 /* all processors need to support C1 */
330 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
331 pr->power.states[ACPI_STATE_C1].valid = 1;
332 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
333 }
334 /* the C0 state only exists as a filler in our array */
335 pr->power.states[ACPI_STATE_C0].valid = 1;
336 return 0;
337 }
338
339 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
340 {
341 acpi_status status = 0;
342 u64 count;
343 int current_count;
344 int i;
345 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
346 union acpi_object *cst;
347
348
349 if (nocst)
350 return -ENODEV;
351
352 current_count = 0;
353
354 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
355 if (ACPI_FAILURE(status)) {
356 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
357 return -ENODEV;
358 }
359
360 cst = buffer.pointer;
361
362 /* There must be at least 2 elements */
363 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
364 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
365 status = -EFAULT;
366 goto end;
367 }
368
369 count = cst->package.elements[0].integer.value;
370
371 /* Validate number of power states. */
372 if (count < 1 || count != cst->package.count - 1) {
373 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
374 status = -EFAULT;
375 goto end;
376 }
377
378 /* Tell driver that at least _CST is supported. */
379 pr->flags.has_cst = 1;
380
381 for (i = 1; i <= count; i++) {
382 union acpi_object *element;
383 union acpi_object *obj;
384 struct acpi_power_register *reg;
385 struct acpi_processor_cx cx;
386
387 memset(&cx, 0, sizeof(cx));
388
389 element = &(cst->package.elements[i]);
390 if (element->type != ACPI_TYPE_PACKAGE)
391 continue;
392
393 if (element->package.count != 4)
394 continue;
395
396 obj = &(element->package.elements[0]);
397
398 if (obj->type != ACPI_TYPE_BUFFER)
399 continue;
400
401 reg = (struct acpi_power_register *)obj->buffer.pointer;
402
403 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
404 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
405 continue;
406
407 /* There should be an easy way to extract an integer... */
408 obj = &(element->package.elements[1]);
409 if (obj->type != ACPI_TYPE_INTEGER)
410 continue;
411
412 cx.type = obj->integer.value;
413 /*
414 * Some buggy BIOSes won't list C1 in _CST -
415 * Let acpi_processor_get_power_info_default() handle them later
416 */
417 if (i == 1 && cx.type != ACPI_STATE_C1)
418 current_count++;
419
420 cx.address = reg->address;
421 cx.index = current_count + 1;
422
423 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
424 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
425 if (acpi_processor_ffh_cstate_probe
426 (pr->id, &cx, reg) == 0) {
427 cx.entry_method = ACPI_CSTATE_FFH;
428 } else if (cx.type == ACPI_STATE_C1) {
429 /*
430 * C1 is a special case where FIXED_HARDWARE
431 * can be handled in non-MWAIT way as well.
432 * In that case, save this _CST entry info.
433 * Otherwise, ignore this info and continue.
434 */
435 cx.entry_method = ACPI_CSTATE_HALT;
436 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
437 } else {
438 continue;
439 }
440 if (cx.type == ACPI_STATE_C1 &&
441 (boot_option_idle_override == IDLE_NOMWAIT)) {
442 /*
443 * In most cases the C1 space_id obtained from
444 * _CST object is FIXED_HARDWARE access mode.
445 * But when the option of idle=halt is added,
446 * the entry_method type should be changed from
447 * CSTATE_FFH to CSTATE_HALT.
448 * When the option of idle=nomwait is added,
449 * the C1 entry_method type should be
450 * CSTATE_HALT.
451 */
452 cx.entry_method = ACPI_CSTATE_HALT;
453 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
454 }
455 } else {
456 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
457 cx.address);
458 }
459
460 if (cx.type == ACPI_STATE_C1) {
461 cx.valid = 1;
462 }
463
464 obj = &(element->package.elements[2]);
465 if (obj->type != ACPI_TYPE_INTEGER)
466 continue;
467
468 cx.latency = obj->integer.value;
469
470 obj = &(element->package.elements[3]);
471 if (obj->type != ACPI_TYPE_INTEGER)
472 continue;
473
474 current_count++;
475 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
476
477 /*
478 * We support total ACPI_PROCESSOR_MAX_POWER - 1
479 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
480 */
481 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
482 printk(KERN_WARNING
483 "Limiting number of power states to max (%d)\n",
484 ACPI_PROCESSOR_MAX_POWER);
485 printk(KERN_WARNING
486 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
487 break;
488 }
489 }
490
491 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
492 current_count));
493
494 /* Validate number of power states discovered */
495 if (current_count < 2)
496 status = -EFAULT;
497
498 end:
499 kfree(buffer.pointer);
500
501 return status;
502 }
503
504 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
505 struct acpi_processor_cx *cx)
506 {
507 static int bm_check_flag = -1;
508 static int bm_control_flag = -1;
509
510
511 if (!cx->address)
512 return;
513
514 /*
515 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
516 * DMA transfers are used by any ISA device to avoid livelock.
517 * Note that we could disable Type-F DMA (as recommended by
518 * the erratum), but this is known to disrupt certain ISA
519 * devices thus we take the conservative approach.
520 */
521 else if (errata.piix4.fdma) {
522 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
523 "C3 not supported on PIIX4 with Type-F DMA\n"));
524 return;
525 }
526
527 /* All the logic here assumes flags.bm_check is same across all CPUs */
528 if (bm_check_flag == -1) {
529 /* Determine whether bm_check is needed based on CPU */
530 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
531 bm_check_flag = pr->flags.bm_check;
532 bm_control_flag = pr->flags.bm_control;
533 } else {
534 pr->flags.bm_check = bm_check_flag;
535 pr->flags.bm_control = bm_control_flag;
536 }
537
538 if (pr->flags.bm_check) {
539 if (!pr->flags.bm_control) {
540 if (pr->flags.has_cst != 1) {
541 /* bus mastering control is necessary */
542 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543 "C3 support requires BM control\n"));
544 return;
545 } else {
546 /* Here we enter C3 without bus mastering */
547 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
548 "C3 support without BM control\n"));
549 }
550 }
551 } else {
552 /*
553 * WBINVD should be set in fadt, for C3 state to be
554 * supported on when bm_check is not required.
555 */
556 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
557 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
558 "Cache invalidation should work properly"
559 " for C3 to be enabled on SMP systems\n"));
560 return;
561 }
562 }
563
564 /*
565 * Otherwise we've met all of our C3 requirements.
566 * Normalize the C3 latency to expidite policy. Enable
567 * checking of bus mastering status (bm_check) so we can
568 * use this in our C3 policy
569 */
570 cx->valid = 1;
571
572 /*
573 * On older chipsets, BM_RLD needs to be set
574 * in order for Bus Master activity to wake the
575 * system from C3. Newer chipsets handle DMA
576 * during C3 automatically and BM_RLD is a NOP.
577 * In either case, the proper way to
578 * handle BM_RLD is to set it and leave it set.
579 */
580 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
581
582 return;
583 }
584
585 static int acpi_processor_power_verify(struct acpi_processor *pr)
586 {
587 unsigned int i;
588 unsigned int working = 0;
589
590 pr->power.timer_broadcast_on_state = INT_MAX;
591
592 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
593 struct acpi_processor_cx *cx = &pr->power.states[i];
594
595 switch (cx->type) {
596 case ACPI_STATE_C1:
597 cx->valid = 1;
598 break;
599
600 case ACPI_STATE_C2:
601 if (!cx->address)
602 break;
603 cx->valid = 1;
604 break;
605
606 case ACPI_STATE_C3:
607 acpi_processor_power_verify_c3(pr, cx);
608 break;
609 }
610 if (!cx->valid)
611 continue;
612
613 lapic_timer_check_state(i, pr, cx);
614 tsc_check_state(cx->type);
615 working++;
616 }
617
618 lapic_timer_propagate_broadcast(pr);
619
620 return (working);
621 }
622
623 static int acpi_processor_get_power_info(struct acpi_processor *pr)
624 {
625 unsigned int i;
626 int result;
627
628
629 /* NOTE: the idle thread may not be running while calling
630 * this function */
631
632 /* Zero initialize all the C-states info. */
633 memset(pr->power.states, 0, sizeof(pr->power.states));
634
635 result = acpi_processor_get_power_info_cst(pr);
636 if (result == -ENODEV)
637 result = acpi_processor_get_power_info_fadt(pr);
638
639 if (result)
640 return result;
641
642 acpi_processor_get_power_info_default(pr);
643
644 pr->power.count = acpi_processor_power_verify(pr);
645
646 /*
647 * if one state of type C2 or C3 is available, mark this
648 * CPU as being "idle manageable"
649 */
650 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
651 if (pr->power.states[i].valid) {
652 pr->power.count = i;
653 if (pr->power.states[i].type >= ACPI_STATE_C2)
654 pr->flags.power = 1;
655 }
656 }
657
658 return 0;
659 }
660
661 /**
662 * acpi_idle_bm_check - checks if bus master activity was detected
663 */
664 static int acpi_idle_bm_check(void)
665 {
666 u32 bm_status = 0;
667
668 if (bm_check_disable)
669 return 0;
670
671 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
672 if (bm_status)
673 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
674 /*
675 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
676 * the true state of bus mastering activity; forcing us to
677 * manually check the BMIDEA bit of each IDE channel.
678 */
679 else if (errata.piix4.bmisx) {
680 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
681 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
682 bm_status = 1;
683 }
684 return bm_status;
685 }
686
687 /**
688 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
689 * @cx: cstate data
690 *
691 * Caller disables interrupt before call and enables interrupt after return.
692 */
693 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
694 {
695 /* Don't trace irqs off for idle */
696 stop_critical_timings();
697 if (cx->entry_method == ACPI_CSTATE_FFH) {
698 /* Call into architectural FFH based C-state */
699 acpi_processor_ffh_cstate_enter(cx);
700 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
701 acpi_safe_halt();
702 } else {
703 /* IO port based C-state */
704 inb(cx->address);
705 /* Dummy wait op - must do something useless after P_LVL2 read
706 because chipsets cannot guarantee that STPCLK# signal
707 gets asserted in time to freeze execution properly. */
708 inl(acpi_gbl_FADT.xpm_timer_block.address);
709 }
710 start_critical_timings();
711 }
712
713 /**
714 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
715 * @dev: the target CPU
716 * @drv: cpuidle driver containing cpuidle state info
717 * @index: index of target state
718 *
719 * This is equivalent to the HALT instruction.
720 */
721 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
722 struct cpuidle_driver *drv, int index)
723 {
724 struct acpi_processor *pr;
725 struct acpi_processor_cx *cx = acpi_cstate[index];
726
727 pr = __this_cpu_read(processors);
728
729 if (unlikely(!pr))
730 return -EINVAL;
731
732 lapic_timer_state_broadcast(pr, cx, 1);
733 acpi_idle_do_entry(cx);
734
735 lapic_timer_state_broadcast(pr, cx, 0);
736
737 return index;
738 }
739
740
741 /**
742 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
743 * @dev: the target CPU
744 * @index: the index of suggested state
745 */
746 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
747 {
748 struct acpi_processor_cx *cx = acpi_cstate[index];
749
750 ACPI_FLUSH_CPU_CACHE();
751
752 while (1) {
753
754 if (cx->entry_method == ACPI_CSTATE_HALT)
755 safe_halt();
756 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
757 inb(cx->address);
758 /* See comment in acpi_idle_do_entry() */
759 inl(acpi_gbl_FADT.xpm_timer_block.address);
760 } else
761 return -ENODEV;
762 }
763
764 /* Never reached */
765 return 0;
766 }
767
768 /**
769 * acpi_idle_enter_simple - enters an ACPI state without BM handling
770 * @dev: the target CPU
771 * @drv: cpuidle driver with cpuidle state information
772 * @index: the index of suggested state
773 */
774 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
775 struct cpuidle_driver *drv, int index)
776 {
777 struct acpi_processor *pr;
778 struct acpi_processor_cx *cx = acpi_cstate[index];
779
780 pr = __this_cpu_read(processors);
781
782 if (unlikely(!pr))
783 return -EINVAL;
784
785 if (cx->entry_method != ACPI_CSTATE_FFH) {
786 current_thread_info()->status &= ~TS_POLLING;
787 /*
788 * TS_POLLING-cleared state must be visible before we test
789 * NEED_RESCHED:
790 */
791 smp_mb();
792
793 if (unlikely(need_resched())) {
794 current_thread_info()->status |= TS_POLLING;
795 return -EINVAL;
796 }
797 }
798
799 /*
800 * Must be done before busmaster disable as we might need to
801 * access HPET !
802 */
803 lapic_timer_state_broadcast(pr, cx, 1);
804
805 if (cx->type == ACPI_STATE_C3)
806 ACPI_FLUSH_CPU_CACHE();
807
808 /* Tell the scheduler that we are going deep-idle: */
809 sched_clock_idle_sleep_event();
810 acpi_idle_do_entry(cx);
811
812 sched_clock_idle_wakeup_event(0);
813
814 if (cx->entry_method != ACPI_CSTATE_FFH)
815 current_thread_info()->status |= TS_POLLING;
816
817 lapic_timer_state_broadcast(pr, cx, 0);
818 return index;
819 }
820
821 static int c3_cpu_count;
822 static DEFINE_RAW_SPINLOCK(c3_lock);
823
824 /**
825 * acpi_idle_enter_bm - enters C3 with proper BM handling
826 * @dev: the target CPU
827 * @drv: cpuidle driver containing state data
828 * @index: the index of suggested state
829 *
830 * If BM is detected, the deepest non-C3 idle state is entered instead.
831 */
832 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
833 struct cpuidle_driver *drv, int index)
834 {
835 struct acpi_processor *pr;
836 struct acpi_processor_cx *cx = acpi_cstate[index];
837
838 pr = __this_cpu_read(processors);
839
840 if (unlikely(!pr))
841 return -EINVAL;
842
843 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
844 if (drv->safe_state_index >= 0) {
845 return drv->states[drv->safe_state_index].enter(dev,
846 drv, drv->safe_state_index);
847 } else {
848 acpi_safe_halt();
849 return -EBUSY;
850 }
851 }
852
853 if (cx->entry_method != ACPI_CSTATE_FFH) {
854 current_thread_info()->status &= ~TS_POLLING;
855 /*
856 * TS_POLLING-cleared state must be visible before we test
857 * NEED_RESCHED:
858 */
859 smp_mb();
860
861 if (unlikely(need_resched())) {
862 current_thread_info()->status |= TS_POLLING;
863 return -EINVAL;
864 }
865 }
866
867 acpi_unlazy_tlb(smp_processor_id());
868
869 /* Tell the scheduler that we are going deep-idle: */
870 sched_clock_idle_sleep_event();
871 /*
872 * Must be done before busmaster disable as we might need to
873 * access HPET !
874 */
875 lapic_timer_state_broadcast(pr, cx, 1);
876
877 /*
878 * disable bus master
879 * bm_check implies we need ARB_DIS
880 * !bm_check implies we need cache flush
881 * bm_control implies whether we can do ARB_DIS
882 *
883 * That leaves a case where bm_check is set and bm_control is
884 * not set. In that case we cannot do much, we enter C3
885 * without doing anything.
886 */
887 if (pr->flags.bm_check && pr->flags.bm_control) {
888 raw_spin_lock(&c3_lock);
889 c3_cpu_count++;
890 /* Disable bus master arbitration when all CPUs are in C3 */
891 if (c3_cpu_count == num_online_cpus())
892 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
893 raw_spin_unlock(&c3_lock);
894 } else if (!pr->flags.bm_check) {
895 ACPI_FLUSH_CPU_CACHE();
896 }
897
898 acpi_idle_do_entry(cx);
899
900 /* Re-enable bus master arbitration */
901 if (pr->flags.bm_check && pr->flags.bm_control) {
902 raw_spin_lock(&c3_lock);
903 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
904 c3_cpu_count--;
905 raw_spin_unlock(&c3_lock);
906 }
907
908 sched_clock_idle_wakeup_event(0);
909
910 if (cx->entry_method != ACPI_CSTATE_FFH)
911 current_thread_info()->status |= TS_POLLING;
912
913 lapic_timer_state_broadcast(pr, cx, 0);
914 return index;
915 }
916
917 struct cpuidle_driver acpi_idle_driver = {
918 .name = "acpi_idle",
919 .owner = THIS_MODULE,
920 .en_core_tk_irqen = 1,
921 };
922
923 /**
924 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
925 * device i.e. per-cpu data
926 *
927 * @pr: the ACPI processor
928 * @dev : the cpuidle device
929 */
930 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
931 struct cpuidle_device *dev)
932 {
933 int i, count = CPUIDLE_DRIVER_STATE_START;
934 struct acpi_processor_cx *cx;
935
936 if (!pr->flags.power_setup_done)
937 return -EINVAL;
938
939 if (pr->flags.power == 0) {
940 return -EINVAL;
941 }
942
943 if (!dev)
944 return -EINVAL;
945
946 dev->cpu = pr->id;
947
948 if (max_cstate == 0)
949 max_cstate = 1;
950
951 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
952 cx = &pr->power.states[i];
953
954 if (!cx->valid)
955 continue;
956
957 #ifdef CONFIG_HOTPLUG_CPU
958 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
959 !pr->flags.has_cst &&
960 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
961 continue;
962 #endif
963 acpi_cstate[count] = cx;
964
965 count++;
966 if (count == CPUIDLE_STATE_MAX)
967 break;
968 }
969
970 dev->state_count = count;
971
972 if (!count)
973 return -EINVAL;
974
975 return 0;
976 }
977
978 /**
979 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
980 * global state data i.e. idle routines
981 *
982 * @pr: the ACPI processor
983 */
984 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
985 {
986 int i, count = CPUIDLE_DRIVER_STATE_START;
987 struct acpi_processor_cx *cx;
988 struct cpuidle_state *state;
989 struct cpuidle_driver *drv = &acpi_idle_driver;
990
991 if (!pr->flags.power_setup_done)
992 return -EINVAL;
993
994 if (pr->flags.power == 0)
995 return -EINVAL;
996
997 drv->safe_state_index = -1;
998 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
999 drv->states[i].name[0] = '\0';
1000 drv->states[i].desc[0] = '\0';
1001 }
1002
1003 if (max_cstate == 0)
1004 max_cstate = 1;
1005
1006 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1007 cx = &pr->power.states[i];
1008
1009 if (!cx->valid)
1010 continue;
1011
1012 #ifdef CONFIG_HOTPLUG_CPU
1013 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1014 !pr->flags.has_cst &&
1015 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1016 continue;
1017 #endif
1018
1019 state = &drv->states[count];
1020 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1021 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1022 state->exit_latency = cx->latency;
1023 state->target_residency = cx->latency * latency_factor;
1024
1025 state->flags = 0;
1026 switch (cx->type) {
1027 case ACPI_STATE_C1:
1028 if (cx->entry_method == ACPI_CSTATE_FFH)
1029 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1030
1031 state->enter = acpi_idle_enter_c1;
1032 state->enter_dead = acpi_idle_play_dead;
1033 drv->safe_state_index = count;
1034 break;
1035
1036 case ACPI_STATE_C2:
1037 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1038 state->enter = acpi_idle_enter_simple;
1039 state->enter_dead = acpi_idle_play_dead;
1040 drv->safe_state_index = count;
1041 break;
1042
1043 case ACPI_STATE_C3:
1044 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1045 state->enter = pr->flags.bm_check ?
1046 acpi_idle_enter_bm :
1047 acpi_idle_enter_simple;
1048 break;
1049 }
1050
1051 count++;
1052 if (count == CPUIDLE_STATE_MAX)
1053 break;
1054 }
1055
1056 drv->state_count = count;
1057
1058 if (!count)
1059 return -EINVAL;
1060
1061 return 0;
1062 }
1063
1064 int acpi_processor_hotplug(struct acpi_processor *pr)
1065 {
1066 int ret = 0;
1067 struct cpuidle_device *dev;
1068
1069 if (disabled_by_idle_boot_param())
1070 return 0;
1071
1072 if (!pr)
1073 return -EINVAL;
1074
1075 if (nocst) {
1076 return -ENODEV;
1077 }
1078
1079 if (!pr->flags.power_setup_done)
1080 return -ENODEV;
1081
1082 dev = per_cpu(acpi_cpuidle_device, pr->id);
1083 cpuidle_pause_and_lock();
1084 cpuidle_disable_device(dev);
1085 acpi_processor_get_power_info(pr);
1086 if (pr->flags.power) {
1087 acpi_processor_setup_cpuidle_cx(pr, dev);
1088 ret = cpuidle_enable_device(dev);
1089 }
1090 cpuidle_resume_and_unlock();
1091
1092 return ret;
1093 }
1094
1095 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1096 {
1097 int cpu;
1098 struct acpi_processor *_pr;
1099 struct cpuidle_device *dev;
1100
1101 if (disabled_by_idle_boot_param())
1102 return 0;
1103
1104 if (!pr)
1105 return -EINVAL;
1106
1107 if (nocst)
1108 return -ENODEV;
1109
1110 if (!pr->flags.power_setup_done)
1111 return -ENODEV;
1112
1113 /*
1114 * FIXME: Design the ACPI notification to make it once per
1115 * system instead of once per-cpu. This condition is a hack
1116 * to make the code that updates C-States be called once.
1117 */
1118
1119 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1120
1121 cpuidle_pause_and_lock();
1122 /* Protect against cpu-hotplug */
1123 get_online_cpus();
1124
1125 /* Disable all cpuidle devices */
1126 for_each_online_cpu(cpu) {
1127 _pr = per_cpu(processors, cpu);
1128 if (!_pr || !_pr->flags.power_setup_done)
1129 continue;
1130 dev = per_cpu(acpi_cpuidle_device, cpu);
1131 cpuidle_disable_device(dev);
1132 }
1133
1134 /* Populate Updated C-state information */
1135 acpi_processor_get_power_info(pr);
1136 acpi_processor_setup_cpuidle_states(pr);
1137
1138 /* Enable all cpuidle devices */
1139 for_each_online_cpu(cpu) {
1140 _pr = per_cpu(processors, cpu);
1141 if (!_pr || !_pr->flags.power_setup_done)
1142 continue;
1143 acpi_processor_get_power_info(_pr);
1144 if (_pr->flags.power) {
1145 dev = per_cpu(acpi_cpuidle_device, cpu);
1146 acpi_processor_setup_cpuidle_cx(_pr, dev);
1147 cpuidle_enable_device(dev);
1148 }
1149 }
1150 put_online_cpus();
1151 cpuidle_resume_and_unlock();
1152 }
1153
1154 return 0;
1155 }
1156
1157 static int acpi_processor_registered;
1158
1159 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr)
1160 {
1161 acpi_status status = 0;
1162 int retval;
1163 struct cpuidle_device *dev;
1164 static int first_run;
1165
1166 if (disabled_by_idle_boot_param())
1167 return 0;
1168
1169 if (!first_run) {
1170 dmi_check_system(processor_power_dmi_table);
1171 max_cstate = acpi_processor_cstate_check(max_cstate);
1172 if (max_cstate < ACPI_C_STATES_MAX)
1173 printk(KERN_NOTICE
1174 "ACPI: processor limited to max C-state %d\n",
1175 max_cstate);
1176 first_run++;
1177 }
1178
1179 if (!pr)
1180 return -EINVAL;
1181
1182 if (acpi_gbl_FADT.cst_control && !nocst) {
1183 status =
1184 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1185 if (ACPI_FAILURE(status)) {
1186 ACPI_EXCEPTION((AE_INFO, status,
1187 "Notifying BIOS of _CST ability failed"));
1188 }
1189 }
1190
1191 acpi_processor_get_power_info(pr);
1192 pr->flags.power_setup_done = 1;
1193
1194 /*
1195 * Install the idle handler if processor power management is supported.
1196 * Note that we use previously set idle handler will be used on
1197 * platforms that only support C1.
1198 */
1199 if (pr->flags.power) {
1200 /* Register acpi_idle_driver if not already registered */
1201 if (!acpi_processor_registered) {
1202 acpi_processor_setup_cpuidle_states(pr);
1203 retval = cpuidle_register_driver(&acpi_idle_driver);
1204 if (retval)
1205 return retval;
1206 printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1207 acpi_idle_driver.name);
1208 }
1209
1210 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1211 if (!dev)
1212 return -ENOMEM;
1213 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1214
1215 acpi_processor_setup_cpuidle_cx(pr, dev);
1216
1217 /* Register per-cpu cpuidle_device. Cpuidle driver
1218 * must already be registered before registering device
1219 */
1220 retval = cpuidle_register_device(dev);
1221 if (retval) {
1222 if (acpi_processor_registered == 0)
1223 cpuidle_unregister_driver(&acpi_idle_driver);
1224 return retval;
1225 }
1226 acpi_processor_registered++;
1227 }
1228 return 0;
1229 }
1230
1231 int acpi_processor_power_exit(struct acpi_processor *pr)
1232 {
1233 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1234
1235 if (disabled_by_idle_boot_param())
1236 return 0;
1237
1238 if (pr->flags.power) {
1239 cpuidle_unregister_device(dev);
1240 acpi_processor_registered--;
1241 if (acpi_processor_registered == 0)
1242 cpuidle_unregister_driver(&acpi_idle_driver);
1243 }
1244
1245 pr->flags.power_setup_done = 0;
1246 return 0;
1247 }