Merge branches 'pm-cpufreq' and 'pm-cpuidle'
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h> /* need_resched() */
35 #include <linux/clockchips.h>
36 #include <linux/cpuidle.h>
37 #include <linux/syscore_ops.h>
38 #include <acpi/processor.h>
39
40 /*
41 * Include the apic definitions for x86 to have the APIC timer related defines
42 * available also for UP (on SMP it gets magically included via linux/smp.h).
43 * asm/acpi.h is not an option, as it would require more include magic. Also
44 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
45 */
46 #ifdef CONFIG_X86
47 #include <asm/apic.h>
48 #endif
49
50 #define PREFIX "ACPI: "
51
52 #define ACPI_PROCESSOR_CLASS "processor"
53 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
54 ACPI_MODULE_NAME("processor_idle");
55
56 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
57 module_param(max_cstate, uint, 0000);
58 static unsigned int nocst __read_mostly;
59 module_param(nocst, uint, 0000);
60 static int bm_check_disable __read_mostly;
61 module_param(bm_check_disable, uint, 0000);
62
63 static unsigned int latency_factor __read_mostly = 2;
64 module_param(latency_factor, uint, 0644);
65
66 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
67
68 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
69 acpi_cstate);
70
71 static int disabled_by_idle_boot_param(void)
72 {
73 return boot_option_idle_override == IDLE_POLL ||
74 boot_option_idle_override == IDLE_HALT;
75 }
76
77 /*
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
80 *
81 * To skip this limit, boot/load with a large max_cstate limit.
82 */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
87
88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92 max_cstate = (long)id->driver_data;
93
94 return 0;
95 }
96
97 static struct dmi_system_id processor_power_dmi_table[] = {
98 { set_max_cstate, "Clevo 5600D", {
99 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101 (void *)2},
102 { set_max_cstate, "Pavilion zv5000", {
103 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105 (void *)1},
106 { set_max_cstate, "Asus L8400B", {
107 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109 (void *)1},
110 {},
111 };
112
113
114 /*
115 * Callers should disable interrupts before the call and enable
116 * interrupts after return.
117 */
118 static void acpi_safe_halt(void)
119 {
120 if (!tif_need_resched()) {
121 safe_halt();
122 local_irq_disable();
123 }
124 }
125
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127
128 /*
129 * Some BIOS implementations switch to C3 in the published C2 state.
130 * This seems to be a common problem on AMD boxen, but other vendors
131 * are affected too. We pick the most conservative approach: we assume
132 * that the local APIC stops in both C2 and C3.
133 */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 struct acpi_processor_cx *cx)
136 {
137 struct acpi_processor_power *pwr = &pr->power;
138 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139
140 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141 return;
142
143 if (amd_e400_c1e_detected)
144 type = ACPI_STATE_C1;
145
146 /*
147 * Check, if one of the previous states already marked the lapic
148 * unstable
149 */
150 if (pwr->timer_broadcast_on_state < state)
151 return;
152
153 if (cx->type >= type)
154 pr->power.timer_broadcast_on_state = state;
155 }
156
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159 struct acpi_processor *pr = (struct acpi_processor *) arg;
160 unsigned long reason;
161
162 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
163 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
164
165 clockevents_notify(reason, &pr->id);
166 }
167
168 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
169 {
170 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
171 (void *)pr, 1);
172 }
173
174 /* Power(C) State timer broadcast control */
175 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
176 struct acpi_processor_cx *cx,
177 int broadcast)
178 {
179 int state = cx - pr->power.states;
180
181 if (state >= pr->power.timer_broadcast_on_state) {
182 unsigned long reason;
183
184 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
185 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
186 clockevents_notify(reason, &pr->id);
187 }
188 }
189
190 #else
191
192 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
193 struct acpi_processor_cx *cstate) { }
194 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
195 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
196 struct acpi_processor_cx *cx,
197 int broadcast)
198 {
199 }
200
201 #endif
202
203 #ifdef CONFIG_PM_SLEEP
204 static u32 saved_bm_rld;
205
206 static int acpi_processor_suspend(void)
207 {
208 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
209 return 0;
210 }
211
212 static void acpi_processor_resume(void)
213 {
214 u32 resumed_bm_rld = 0;
215
216 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
217 if (resumed_bm_rld == saved_bm_rld)
218 return;
219
220 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
221 }
222
223 static struct syscore_ops acpi_processor_syscore_ops = {
224 .suspend = acpi_processor_suspend,
225 .resume = acpi_processor_resume,
226 };
227
228 void acpi_processor_syscore_init(void)
229 {
230 register_syscore_ops(&acpi_processor_syscore_ops);
231 }
232
233 void acpi_processor_syscore_exit(void)
234 {
235 unregister_syscore_ops(&acpi_processor_syscore_ops);
236 }
237 #endif /* CONFIG_PM_SLEEP */
238
239 #if defined(CONFIG_X86)
240 static void tsc_check_state(int state)
241 {
242 switch (boot_cpu_data.x86_vendor) {
243 case X86_VENDOR_AMD:
244 case X86_VENDOR_INTEL:
245 /*
246 * AMD Fam10h TSC will tick in all
247 * C/P/S0/S1 states when this bit is set.
248 */
249 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
250 return;
251
252 /*FALL THROUGH*/
253 default:
254 /* TSC could halt in idle, so notify users */
255 if (state > ACPI_STATE_C1)
256 mark_tsc_unstable("TSC halts in idle");
257 }
258 }
259 #else
260 static void tsc_check_state(int state) { return; }
261 #endif
262
263 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
264 {
265
266 if (!pr->pblk)
267 return -ENODEV;
268
269 /* if info is obtained from pblk/fadt, type equals state */
270 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
271 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
272
273 #ifndef CONFIG_HOTPLUG_CPU
274 /*
275 * Check for P_LVL2_UP flag before entering C2 and above on
276 * an SMP system.
277 */
278 if ((num_online_cpus() > 1) &&
279 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
280 return -ENODEV;
281 #endif
282
283 /* determine C2 and C3 address from pblk */
284 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
285 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
286
287 /* determine latencies from FADT */
288 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
289 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
290
291 /*
292 * FADT specified C2 latency must be less than or equal to
293 * 100 microseconds.
294 */
295 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
296 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
297 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
298 /* invalidate C2 */
299 pr->power.states[ACPI_STATE_C2].address = 0;
300 }
301
302 /*
303 * FADT supplied C3 latency must be less than or equal to
304 * 1000 microseconds.
305 */
306 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
307 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
308 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
309 /* invalidate C3 */
310 pr->power.states[ACPI_STATE_C3].address = 0;
311 }
312
313 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
314 "lvl2[0x%08x] lvl3[0x%08x]\n",
315 pr->power.states[ACPI_STATE_C2].address,
316 pr->power.states[ACPI_STATE_C3].address));
317
318 return 0;
319 }
320
321 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
322 {
323 if (!pr->power.states[ACPI_STATE_C1].valid) {
324 /* set the first C-State to C1 */
325 /* all processors need to support C1 */
326 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
327 pr->power.states[ACPI_STATE_C1].valid = 1;
328 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
329 }
330 /* the C0 state only exists as a filler in our array */
331 pr->power.states[ACPI_STATE_C0].valid = 1;
332 return 0;
333 }
334
335 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
336 {
337 acpi_status status;
338 u64 count;
339 int current_count;
340 int i, ret = 0;
341 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
342 union acpi_object *cst;
343
344
345 if (nocst)
346 return -ENODEV;
347
348 current_count = 0;
349
350 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
351 if (ACPI_FAILURE(status)) {
352 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
353 return -ENODEV;
354 }
355
356 cst = buffer.pointer;
357
358 /* There must be at least 2 elements */
359 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
360 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
361 ret = -EFAULT;
362 goto end;
363 }
364
365 count = cst->package.elements[0].integer.value;
366
367 /* Validate number of power states. */
368 if (count < 1 || count != cst->package.count - 1) {
369 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
370 ret = -EFAULT;
371 goto end;
372 }
373
374 /* Tell driver that at least _CST is supported. */
375 pr->flags.has_cst = 1;
376
377 for (i = 1; i <= count; i++) {
378 union acpi_object *element;
379 union acpi_object *obj;
380 struct acpi_power_register *reg;
381 struct acpi_processor_cx cx;
382
383 memset(&cx, 0, sizeof(cx));
384
385 element = &(cst->package.elements[i]);
386 if (element->type != ACPI_TYPE_PACKAGE)
387 continue;
388
389 if (element->package.count != 4)
390 continue;
391
392 obj = &(element->package.elements[0]);
393
394 if (obj->type != ACPI_TYPE_BUFFER)
395 continue;
396
397 reg = (struct acpi_power_register *)obj->buffer.pointer;
398
399 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
400 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
401 continue;
402
403 /* There should be an easy way to extract an integer... */
404 obj = &(element->package.elements[1]);
405 if (obj->type != ACPI_TYPE_INTEGER)
406 continue;
407
408 cx.type = obj->integer.value;
409 /*
410 * Some buggy BIOSes won't list C1 in _CST -
411 * Let acpi_processor_get_power_info_default() handle them later
412 */
413 if (i == 1 && cx.type != ACPI_STATE_C1)
414 current_count++;
415
416 cx.address = reg->address;
417 cx.index = current_count + 1;
418
419 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
420 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
421 if (acpi_processor_ffh_cstate_probe
422 (pr->id, &cx, reg) == 0) {
423 cx.entry_method = ACPI_CSTATE_FFH;
424 } else if (cx.type == ACPI_STATE_C1) {
425 /*
426 * C1 is a special case where FIXED_HARDWARE
427 * can be handled in non-MWAIT way as well.
428 * In that case, save this _CST entry info.
429 * Otherwise, ignore this info and continue.
430 */
431 cx.entry_method = ACPI_CSTATE_HALT;
432 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
433 } else {
434 continue;
435 }
436 if (cx.type == ACPI_STATE_C1 &&
437 (boot_option_idle_override == IDLE_NOMWAIT)) {
438 /*
439 * In most cases the C1 space_id obtained from
440 * _CST object is FIXED_HARDWARE access mode.
441 * But when the option of idle=halt is added,
442 * the entry_method type should be changed from
443 * CSTATE_FFH to CSTATE_HALT.
444 * When the option of idle=nomwait is added,
445 * the C1 entry_method type should be
446 * CSTATE_HALT.
447 */
448 cx.entry_method = ACPI_CSTATE_HALT;
449 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
450 }
451 } else {
452 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
453 cx.address);
454 }
455
456 if (cx.type == ACPI_STATE_C1) {
457 cx.valid = 1;
458 }
459
460 obj = &(element->package.elements[2]);
461 if (obj->type != ACPI_TYPE_INTEGER)
462 continue;
463
464 cx.latency = obj->integer.value;
465
466 obj = &(element->package.elements[3]);
467 if (obj->type != ACPI_TYPE_INTEGER)
468 continue;
469
470 current_count++;
471 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
472
473 /*
474 * We support total ACPI_PROCESSOR_MAX_POWER - 1
475 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
476 */
477 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
478 printk(KERN_WARNING
479 "Limiting number of power states to max (%d)\n",
480 ACPI_PROCESSOR_MAX_POWER);
481 printk(KERN_WARNING
482 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
483 break;
484 }
485 }
486
487 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
488 current_count));
489
490 /* Validate number of power states discovered */
491 if (current_count < 2)
492 ret = -EFAULT;
493
494 end:
495 kfree(buffer.pointer);
496
497 return ret;
498 }
499
500 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
501 struct acpi_processor_cx *cx)
502 {
503 static int bm_check_flag = -1;
504 static int bm_control_flag = -1;
505
506
507 if (!cx->address)
508 return;
509
510 /*
511 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
512 * DMA transfers are used by any ISA device to avoid livelock.
513 * Note that we could disable Type-F DMA (as recommended by
514 * the erratum), but this is known to disrupt certain ISA
515 * devices thus we take the conservative approach.
516 */
517 else if (errata.piix4.fdma) {
518 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
519 "C3 not supported on PIIX4 with Type-F DMA\n"));
520 return;
521 }
522
523 /* All the logic here assumes flags.bm_check is same across all CPUs */
524 if (bm_check_flag == -1) {
525 /* Determine whether bm_check is needed based on CPU */
526 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
527 bm_check_flag = pr->flags.bm_check;
528 bm_control_flag = pr->flags.bm_control;
529 } else {
530 pr->flags.bm_check = bm_check_flag;
531 pr->flags.bm_control = bm_control_flag;
532 }
533
534 if (pr->flags.bm_check) {
535 if (!pr->flags.bm_control) {
536 if (pr->flags.has_cst != 1) {
537 /* bus mastering control is necessary */
538 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
539 "C3 support requires BM control\n"));
540 return;
541 } else {
542 /* Here we enter C3 without bus mastering */
543 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
544 "C3 support without BM control\n"));
545 }
546 }
547 } else {
548 /*
549 * WBINVD should be set in fadt, for C3 state to be
550 * supported on when bm_check is not required.
551 */
552 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
553 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
554 "Cache invalidation should work properly"
555 " for C3 to be enabled on SMP systems\n"));
556 return;
557 }
558 }
559
560 /*
561 * Otherwise we've met all of our C3 requirements.
562 * Normalize the C3 latency to expidite policy. Enable
563 * checking of bus mastering status (bm_check) so we can
564 * use this in our C3 policy
565 */
566 cx->valid = 1;
567
568 /*
569 * On older chipsets, BM_RLD needs to be set
570 * in order for Bus Master activity to wake the
571 * system from C3. Newer chipsets handle DMA
572 * during C3 automatically and BM_RLD is a NOP.
573 * In either case, the proper way to
574 * handle BM_RLD is to set it and leave it set.
575 */
576 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
577
578 return;
579 }
580
581 static int acpi_processor_power_verify(struct acpi_processor *pr)
582 {
583 unsigned int i;
584 unsigned int working = 0;
585
586 pr->power.timer_broadcast_on_state = INT_MAX;
587
588 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
589 struct acpi_processor_cx *cx = &pr->power.states[i];
590
591 switch (cx->type) {
592 case ACPI_STATE_C1:
593 cx->valid = 1;
594 break;
595
596 case ACPI_STATE_C2:
597 if (!cx->address)
598 break;
599 cx->valid = 1;
600 break;
601
602 case ACPI_STATE_C3:
603 acpi_processor_power_verify_c3(pr, cx);
604 break;
605 }
606 if (!cx->valid)
607 continue;
608
609 lapic_timer_check_state(i, pr, cx);
610 tsc_check_state(cx->type);
611 working++;
612 }
613
614 lapic_timer_propagate_broadcast(pr);
615
616 return (working);
617 }
618
619 static int acpi_processor_get_power_info(struct acpi_processor *pr)
620 {
621 unsigned int i;
622 int result;
623
624
625 /* NOTE: the idle thread may not be running while calling
626 * this function */
627
628 /* Zero initialize all the C-states info. */
629 memset(pr->power.states, 0, sizeof(pr->power.states));
630
631 result = acpi_processor_get_power_info_cst(pr);
632 if (result == -ENODEV)
633 result = acpi_processor_get_power_info_fadt(pr);
634
635 if (result)
636 return result;
637
638 acpi_processor_get_power_info_default(pr);
639
640 pr->power.count = acpi_processor_power_verify(pr);
641
642 /*
643 * if one state of type C2 or C3 is available, mark this
644 * CPU as being "idle manageable"
645 */
646 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
647 if (pr->power.states[i].valid) {
648 pr->power.count = i;
649 if (pr->power.states[i].type >= ACPI_STATE_C2)
650 pr->flags.power = 1;
651 }
652 }
653
654 return 0;
655 }
656
657 /**
658 * acpi_idle_bm_check - checks if bus master activity was detected
659 */
660 static int acpi_idle_bm_check(void)
661 {
662 u32 bm_status = 0;
663
664 if (bm_check_disable)
665 return 0;
666
667 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
668 if (bm_status)
669 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
670 /*
671 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
672 * the true state of bus mastering activity; forcing us to
673 * manually check the BMIDEA bit of each IDE channel.
674 */
675 else if (errata.piix4.bmisx) {
676 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
677 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
678 bm_status = 1;
679 }
680 return bm_status;
681 }
682
683 /**
684 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
685 * @cx: cstate data
686 *
687 * Caller disables interrupt before call and enables interrupt after return.
688 */
689 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
690 {
691 /* Don't trace irqs off for idle */
692 stop_critical_timings();
693 if (cx->entry_method == ACPI_CSTATE_FFH) {
694 /* Call into architectural FFH based C-state */
695 acpi_processor_ffh_cstate_enter(cx);
696 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
697 acpi_safe_halt();
698 } else {
699 /* IO port based C-state */
700 inb(cx->address);
701 /* Dummy wait op - must do something useless after P_LVL2 read
702 because chipsets cannot guarantee that STPCLK# signal
703 gets asserted in time to freeze execution properly. */
704 inl(acpi_gbl_FADT.xpm_timer_block.address);
705 }
706 start_critical_timings();
707 }
708
709 /**
710 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
711 * @dev: the target CPU
712 * @drv: cpuidle driver containing cpuidle state info
713 * @index: index of target state
714 *
715 * This is equivalent to the HALT instruction.
716 */
717 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
718 struct cpuidle_driver *drv, int index)
719 {
720 struct acpi_processor *pr;
721 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
722
723 pr = __this_cpu_read(processors);
724
725 if (unlikely(!pr))
726 return -EINVAL;
727
728 lapic_timer_state_broadcast(pr, cx, 1);
729 acpi_idle_do_entry(cx);
730
731 lapic_timer_state_broadcast(pr, cx, 0);
732
733 return index;
734 }
735
736
737 /**
738 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
739 * @dev: the target CPU
740 * @index: the index of suggested state
741 */
742 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
743 {
744 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
745
746 ACPI_FLUSH_CPU_CACHE();
747
748 while (1) {
749
750 if (cx->entry_method == ACPI_CSTATE_HALT)
751 safe_halt();
752 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
753 inb(cx->address);
754 /* See comment in acpi_idle_do_entry() */
755 inl(acpi_gbl_FADT.xpm_timer_block.address);
756 } else
757 return -ENODEV;
758 }
759
760 /* Never reached */
761 return 0;
762 }
763
764 /**
765 * acpi_idle_enter_simple - enters an ACPI state without BM handling
766 * @dev: the target CPU
767 * @drv: cpuidle driver with cpuidle state information
768 * @index: the index of suggested state
769 */
770 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
771 struct cpuidle_driver *drv, int index)
772 {
773 struct acpi_processor *pr;
774 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
775
776 pr = __this_cpu_read(processors);
777
778 if (unlikely(!pr))
779 return -EINVAL;
780
781 #ifdef CONFIG_HOTPLUG_CPU
782 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
783 !pr->flags.has_cst &&
784 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
785 return acpi_idle_enter_c1(dev, drv, CPUIDLE_DRIVER_STATE_START);
786 #endif
787
788 /*
789 * Must be done before busmaster disable as we might need to
790 * access HPET !
791 */
792 lapic_timer_state_broadcast(pr, cx, 1);
793
794 if (cx->type == ACPI_STATE_C3)
795 ACPI_FLUSH_CPU_CACHE();
796
797 /* Tell the scheduler that we are going deep-idle: */
798 sched_clock_idle_sleep_event();
799 acpi_idle_do_entry(cx);
800
801 sched_clock_idle_wakeup_event(0);
802
803 lapic_timer_state_broadcast(pr, cx, 0);
804 return index;
805 }
806
807 static int c3_cpu_count;
808 static DEFINE_RAW_SPINLOCK(c3_lock);
809
810 /**
811 * acpi_idle_enter_bm - enters C3 with proper BM handling
812 * @dev: the target CPU
813 * @drv: cpuidle driver containing state data
814 * @index: the index of suggested state
815 *
816 * If BM is detected, the deepest non-C3 idle state is entered instead.
817 */
818 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
819 struct cpuidle_driver *drv, int index)
820 {
821 struct acpi_processor *pr;
822 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
823
824 pr = __this_cpu_read(processors);
825
826 if (unlikely(!pr))
827 return -EINVAL;
828
829 #ifdef CONFIG_HOTPLUG_CPU
830 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
831 !pr->flags.has_cst &&
832 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
833 return acpi_idle_enter_c1(dev, drv, CPUIDLE_DRIVER_STATE_START);
834 #endif
835
836 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
837 if (drv->safe_state_index >= 0) {
838 return drv->states[drv->safe_state_index].enter(dev,
839 drv, drv->safe_state_index);
840 } else {
841 acpi_safe_halt();
842 return -EBUSY;
843 }
844 }
845
846 acpi_unlazy_tlb(smp_processor_id());
847
848 /* Tell the scheduler that we are going deep-idle: */
849 sched_clock_idle_sleep_event();
850 /*
851 * Must be done before busmaster disable as we might need to
852 * access HPET !
853 */
854 lapic_timer_state_broadcast(pr, cx, 1);
855
856 /*
857 * disable bus master
858 * bm_check implies we need ARB_DIS
859 * !bm_check implies we need cache flush
860 * bm_control implies whether we can do ARB_DIS
861 *
862 * That leaves a case where bm_check is set and bm_control is
863 * not set. In that case we cannot do much, we enter C3
864 * without doing anything.
865 */
866 if (pr->flags.bm_check && pr->flags.bm_control) {
867 raw_spin_lock(&c3_lock);
868 c3_cpu_count++;
869 /* Disable bus master arbitration when all CPUs are in C3 */
870 if (c3_cpu_count == num_online_cpus())
871 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
872 raw_spin_unlock(&c3_lock);
873 } else if (!pr->flags.bm_check) {
874 ACPI_FLUSH_CPU_CACHE();
875 }
876
877 acpi_idle_do_entry(cx);
878
879 /* Re-enable bus master arbitration */
880 if (pr->flags.bm_check && pr->flags.bm_control) {
881 raw_spin_lock(&c3_lock);
882 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
883 c3_cpu_count--;
884 raw_spin_unlock(&c3_lock);
885 }
886
887 sched_clock_idle_wakeup_event(0);
888
889 lapic_timer_state_broadcast(pr, cx, 0);
890 return index;
891 }
892
893 struct cpuidle_driver acpi_idle_driver = {
894 .name = "acpi_idle",
895 .owner = THIS_MODULE,
896 };
897
898 /**
899 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
900 * device i.e. per-cpu data
901 *
902 * @pr: the ACPI processor
903 * @dev : the cpuidle device
904 */
905 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
906 struct cpuidle_device *dev)
907 {
908 int i, count = CPUIDLE_DRIVER_STATE_START;
909 struct acpi_processor_cx *cx;
910
911 if (!pr->flags.power_setup_done)
912 return -EINVAL;
913
914 if (pr->flags.power == 0) {
915 return -EINVAL;
916 }
917
918 if (!dev)
919 return -EINVAL;
920
921 dev->cpu = pr->id;
922
923 if (max_cstate == 0)
924 max_cstate = 1;
925
926 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
927 cx = &pr->power.states[i];
928
929 if (!cx->valid)
930 continue;
931
932 per_cpu(acpi_cstate[count], dev->cpu) = cx;
933
934 count++;
935 if (count == CPUIDLE_STATE_MAX)
936 break;
937 }
938
939 if (!count)
940 return -EINVAL;
941
942 return 0;
943 }
944
945 /**
946 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
947 * global state data i.e. idle routines
948 *
949 * @pr: the ACPI processor
950 */
951 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
952 {
953 int i, count = CPUIDLE_DRIVER_STATE_START;
954 struct acpi_processor_cx *cx;
955 struct cpuidle_state *state;
956 struct cpuidle_driver *drv = &acpi_idle_driver;
957
958 if (!pr->flags.power_setup_done)
959 return -EINVAL;
960
961 if (pr->flags.power == 0)
962 return -EINVAL;
963
964 drv->safe_state_index = -1;
965 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
966 drv->states[i].name[0] = '\0';
967 drv->states[i].desc[0] = '\0';
968 }
969
970 if (max_cstate == 0)
971 max_cstate = 1;
972
973 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
974 cx = &pr->power.states[i];
975
976 if (!cx->valid)
977 continue;
978
979 state = &drv->states[count];
980 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
981 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
982 state->exit_latency = cx->latency;
983 state->target_residency = cx->latency * latency_factor;
984
985 state->flags = 0;
986 switch (cx->type) {
987 case ACPI_STATE_C1:
988
989 state->enter = acpi_idle_enter_c1;
990 state->enter_dead = acpi_idle_play_dead;
991 drv->safe_state_index = count;
992 break;
993
994 case ACPI_STATE_C2:
995 state->enter = acpi_idle_enter_simple;
996 state->enter_dead = acpi_idle_play_dead;
997 drv->safe_state_index = count;
998 break;
999
1000 case ACPI_STATE_C3:
1001 state->enter = pr->flags.bm_check ?
1002 acpi_idle_enter_bm :
1003 acpi_idle_enter_simple;
1004 break;
1005 }
1006
1007 count++;
1008 if (count == CPUIDLE_STATE_MAX)
1009 break;
1010 }
1011
1012 drv->state_count = count;
1013
1014 if (!count)
1015 return -EINVAL;
1016
1017 return 0;
1018 }
1019
1020 int acpi_processor_hotplug(struct acpi_processor *pr)
1021 {
1022 int ret = 0;
1023 struct cpuidle_device *dev;
1024
1025 if (disabled_by_idle_boot_param())
1026 return 0;
1027
1028 if (nocst)
1029 return -ENODEV;
1030
1031 if (!pr->flags.power_setup_done)
1032 return -ENODEV;
1033
1034 dev = per_cpu(acpi_cpuidle_device, pr->id);
1035 cpuidle_pause_and_lock();
1036 cpuidle_disable_device(dev);
1037 acpi_processor_get_power_info(pr);
1038 if (pr->flags.power) {
1039 acpi_processor_setup_cpuidle_cx(pr, dev);
1040 ret = cpuidle_enable_device(dev);
1041 }
1042 cpuidle_resume_and_unlock();
1043
1044 return ret;
1045 }
1046
1047 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1048 {
1049 int cpu;
1050 struct acpi_processor *_pr;
1051 struct cpuidle_device *dev;
1052
1053 if (disabled_by_idle_boot_param())
1054 return 0;
1055
1056 if (nocst)
1057 return -ENODEV;
1058
1059 if (!pr->flags.power_setup_done)
1060 return -ENODEV;
1061
1062 /*
1063 * FIXME: Design the ACPI notification to make it once per
1064 * system instead of once per-cpu. This condition is a hack
1065 * to make the code that updates C-States be called once.
1066 */
1067
1068 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1069
1070 /* Protect against cpu-hotplug */
1071 get_online_cpus();
1072 cpuidle_pause_and_lock();
1073
1074 /* Disable all cpuidle devices */
1075 for_each_online_cpu(cpu) {
1076 _pr = per_cpu(processors, cpu);
1077 if (!_pr || !_pr->flags.power_setup_done)
1078 continue;
1079 dev = per_cpu(acpi_cpuidle_device, cpu);
1080 cpuidle_disable_device(dev);
1081 }
1082
1083 /* Populate Updated C-state information */
1084 acpi_processor_get_power_info(pr);
1085 acpi_processor_setup_cpuidle_states(pr);
1086
1087 /* Enable all cpuidle devices */
1088 for_each_online_cpu(cpu) {
1089 _pr = per_cpu(processors, cpu);
1090 if (!_pr || !_pr->flags.power_setup_done)
1091 continue;
1092 acpi_processor_get_power_info(_pr);
1093 if (_pr->flags.power) {
1094 dev = per_cpu(acpi_cpuidle_device, cpu);
1095 acpi_processor_setup_cpuidle_cx(_pr, dev);
1096 cpuidle_enable_device(dev);
1097 }
1098 }
1099 cpuidle_resume_and_unlock();
1100 put_online_cpus();
1101 }
1102
1103 return 0;
1104 }
1105
1106 static int acpi_processor_registered;
1107
1108 int acpi_processor_power_init(struct acpi_processor *pr)
1109 {
1110 acpi_status status;
1111 int retval;
1112 struct cpuidle_device *dev;
1113 static int first_run;
1114
1115 if (disabled_by_idle_boot_param())
1116 return 0;
1117
1118 if (!first_run) {
1119 dmi_check_system(processor_power_dmi_table);
1120 max_cstate = acpi_processor_cstate_check(max_cstate);
1121 if (max_cstate < ACPI_C_STATES_MAX)
1122 printk(KERN_NOTICE
1123 "ACPI: processor limited to max C-state %d\n",
1124 max_cstate);
1125 first_run++;
1126 }
1127
1128 if (acpi_gbl_FADT.cst_control && !nocst) {
1129 status =
1130 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1131 if (ACPI_FAILURE(status)) {
1132 ACPI_EXCEPTION((AE_INFO, status,
1133 "Notifying BIOS of _CST ability failed"));
1134 }
1135 }
1136
1137 acpi_processor_get_power_info(pr);
1138 pr->flags.power_setup_done = 1;
1139
1140 /*
1141 * Install the idle handler if processor power management is supported.
1142 * Note that we use previously set idle handler will be used on
1143 * platforms that only support C1.
1144 */
1145 if (pr->flags.power) {
1146 /* Register acpi_idle_driver if not already registered */
1147 if (!acpi_processor_registered) {
1148 acpi_processor_setup_cpuidle_states(pr);
1149 retval = cpuidle_register_driver(&acpi_idle_driver);
1150 if (retval)
1151 return retval;
1152 printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1153 acpi_idle_driver.name);
1154 }
1155
1156 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1157 if (!dev)
1158 return -ENOMEM;
1159 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1160
1161 acpi_processor_setup_cpuidle_cx(pr, dev);
1162
1163 /* Register per-cpu cpuidle_device. Cpuidle driver
1164 * must already be registered before registering device
1165 */
1166 retval = cpuidle_register_device(dev);
1167 if (retval) {
1168 if (acpi_processor_registered == 0)
1169 cpuidle_unregister_driver(&acpi_idle_driver);
1170 return retval;
1171 }
1172 acpi_processor_registered++;
1173 }
1174 return 0;
1175 }
1176
1177 int acpi_processor_power_exit(struct acpi_processor *pr)
1178 {
1179 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1180
1181 if (disabled_by_idle_boot_param())
1182 return 0;
1183
1184 if (pr->flags.power) {
1185 cpuidle_unregister_device(dev);
1186 acpi_processor_registered--;
1187 if (acpi_processor_registered == 0)
1188 cpuidle_unregister_driver(&acpi_idle_driver);
1189 }
1190
1191 pr->flags.power_setup_done = 0;
1192 return 0;
1193 }