706eacf49f4e8a42774d56e26c5acab4d975bbd2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / processor_idle.c
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define PREFIX "ACPI: "
64
65 #define ACPI_PROCESSOR_CLASS "processor"
66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER "power"
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD 1 /* 1us */
71 #define C3_OVERHEAD 1 /* 1us */
72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
78
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81
82 static s64 us_to_pm_timer_ticks(s64 t)
83 {
84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 }
86 /*
87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88 * For now disable this. Probably a bug somewhere else.
89 *
90 * To skip this limit, boot/load with a large max_cstate limit.
91 */
92 static int set_max_cstate(const struct dmi_system_id *id)
93 {
94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 return 0;
96
97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
100
101 max_cstate = (long)id->driver_data;
102
103 return 0;
104 }
105
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107 callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 { set_max_cstate, "Clevo 5600D", {
110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 (void *)2},
113 {},
114 };
115
116
117 /*
118 * Callers should disable interrupts before the call and enable
119 * interrupts after return.
120 */
121 static void acpi_safe_halt(void)
122 {
123 current_thread_info()->status &= ~TS_POLLING;
124 /*
125 * TS_POLLING-cleared state must be visible before we
126 * test NEED_RESCHED:
127 */
128 smp_mb();
129 if (!need_resched()) {
130 safe_halt();
131 local_irq_disable();
132 }
133 current_thread_info()->status |= TS_POLLING;
134 }
135
136 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137
138 /*
139 * Some BIOS implementations switch to C3 in the published C2 state.
140 * This seems to be a common problem on AMD boxen, but other vendors
141 * are affected too. We pick the most conservative approach: we assume
142 * that the local APIC stops in both C2 and C3.
143 */
144 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
145 struct acpi_processor_cx *cx)
146 {
147 struct acpi_processor_power *pwr = &pr->power;
148 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
149
150 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
151 return;
152
153 if (boot_cpu_has(X86_FEATURE_AMDC1E))
154 type = ACPI_STATE_C1;
155
156 /*
157 * Check, if one of the previous states already marked the lapic
158 * unstable
159 */
160 if (pwr->timer_broadcast_on_state < state)
161 return;
162
163 if (cx->type >= type)
164 pr->power.timer_broadcast_on_state = state;
165 }
166
167 static void lapic_timer_propagate_broadcast(void *arg)
168 {
169 struct acpi_processor *pr = (struct acpi_processor *) arg;
170 unsigned long reason;
171
172 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
173 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
174
175 clockevents_notify(reason, &pr->id);
176 }
177
178 /* Power(C) State timer broadcast control */
179 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
180 struct acpi_processor_cx *cx,
181 int broadcast)
182 {
183 int state = cx - pr->power.states;
184
185 if (state >= pr->power.timer_broadcast_on_state) {
186 unsigned long reason;
187
188 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
189 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
190 clockevents_notify(reason, &pr->id);
191 }
192 }
193
194 #else
195
196 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
197 struct acpi_processor_cx *cstate) { }
198 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
199 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
200 struct acpi_processor_cx *cx,
201 int broadcast)
202 {
203 }
204
205 #endif
206
207 /*
208 * Suspend / resume control
209 */
210 static int acpi_idle_suspend;
211 static u32 saved_bm_rld;
212
213 static void acpi_idle_bm_rld_save(void)
214 {
215 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
216 }
217 static void acpi_idle_bm_rld_restore(void)
218 {
219 u32 resumed_bm_rld;
220
221 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
222
223 if (resumed_bm_rld != saved_bm_rld)
224 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
225 }
226
227 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
228 {
229 if (acpi_idle_suspend == 1)
230 return 0;
231
232 acpi_idle_bm_rld_save();
233 acpi_idle_suspend = 1;
234 return 0;
235 }
236
237 int acpi_processor_resume(struct acpi_device * device)
238 {
239 if (acpi_idle_suspend == 0)
240 return 0;
241
242 acpi_idle_bm_rld_restore();
243 acpi_idle_suspend = 0;
244 return 0;
245 }
246
247 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
248 static void tsc_check_state(int state)
249 {
250 switch (boot_cpu_data.x86_vendor) {
251 case X86_VENDOR_AMD:
252 case X86_VENDOR_INTEL:
253 /*
254 * AMD Fam10h TSC will tick in all
255 * C/P/S0/S1 states when this bit is set.
256 */
257 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
258 return;
259
260 /*FALL THROUGH*/
261 default:
262 /* TSC could halt in idle, so notify users */
263 if (state > ACPI_STATE_C1)
264 mark_tsc_unstable("TSC halts in idle");
265 }
266 }
267 #else
268 static void tsc_check_state(int state) { return; }
269 #endif
270
271 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
272 {
273
274 if (!pr)
275 return -EINVAL;
276
277 if (!pr->pblk)
278 return -ENODEV;
279
280 /* if info is obtained from pblk/fadt, type equals state */
281 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
282 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
283
284 #ifndef CONFIG_HOTPLUG_CPU
285 /*
286 * Check for P_LVL2_UP flag before entering C2 and above on
287 * an SMP system.
288 */
289 if ((num_online_cpus() > 1) &&
290 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
291 return -ENODEV;
292 #endif
293
294 /* determine C2 and C3 address from pblk */
295 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
296 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
297
298 /* determine latencies from FADT */
299 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
300 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
301
302 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
303 "lvl2[0x%08x] lvl3[0x%08x]\n",
304 pr->power.states[ACPI_STATE_C2].address,
305 pr->power.states[ACPI_STATE_C3].address));
306
307 return 0;
308 }
309
310 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
311 {
312 if (!pr->power.states[ACPI_STATE_C1].valid) {
313 /* set the first C-State to C1 */
314 /* all processors need to support C1 */
315 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
316 pr->power.states[ACPI_STATE_C1].valid = 1;
317 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
318 }
319 /* the C0 state only exists as a filler in our array */
320 pr->power.states[ACPI_STATE_C0].valid = 1;
321 return 0;
322 }
323
324 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
325 {
326 acpi_status status = 0;
327 acpi_integer count;
328 int current_count;
329 int i;
330 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
331 union acpi_object *cst;
332
333
334 if (nocst)
335 return -ENODEV;
336
337 current_count = 0;
338
339 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
340 if (ACPI_FAILURE(status)) {
341 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
342 return -ENODEV;
343 }
344
345 cst = buffer.pointer;
346
347 /* There must be at least 2 elements */
348 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
349 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
350 status = -EFAULT;
351 goto end;
352 }
353
354 count = cst->package.elements[0].integer.value;
355
356 /* Validate number of power states. */
357 if (count < 1 || count != cst->package.count - 1) {
358 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
359 status = -EFAULT;
360 goto end;
361 }
362
363 /* Tell driver that at least _CST is supported. */
364 pr->flags.has_cst = 1;
365
366 for (i = 1; i <= count; i++) {
367 union acpi_object *element;
368 union acpi_object *obj;
369 struct acpi_power_register *reg;
370 struct acpi_processor_cx cx;
371
372 memset(&cx, 0, sizeof(cx));
373
374 element = &(cst->package.elements[i]);
375 if (element->type != ACPI_TYPE_PACKAGE)
376 continue;
377
378 if (element->package.count != 4)
379 continue;
380
381 obj = &(element->package.elements[0]);
382
383 if (obj->type != ACPI_TYPE_BUFFER)
384 continue;
385
386 reg = (struct acpi_power_register *)obj->buffer.pointer;
387
388 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
389 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
390 continue;
391
392 /* There should be an easy way to extract an integer... */
393 obj = &(element->package.elements[1]);
394 if (obj->type != ACPI_TYPE_INTEGER)
395 continue;
396
397 cx.type = obj->integer.value;
398 /*
399 * Some buggy BIOSes won't list C1 in _CST -
400 * Let acpi_processor_get_power_info_default() handle them later
401 */
402 if (i == 1 && cx.type != ACPI_STATE_C1)
403 current_count++;
404
405 cx.address = reg->address;
406 cx.index = current_count + 1;
407
408 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
409 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
410 if (acpi_processor_ffh_cstate_probe
411 (pr->id, &cx, reg) == 0) {
412 cx.entry_method = ACPI_CSTATE_FFH;
413 } else if (cx.type == ACPI_STATE_C1) {
414 /*
415 * C1 is a special case where FIXED_HARDWARE
416 * can be handled in non-MWAIT way as well.
417 * In that case, save this _CST entry info.
418 * Otherwise, ignore this info and continue.
419 */
420 cx.entry_method = ACPI_CSTATE_HALT;
421 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
422 } else {
423 continue;
424 }
425 if (cx.type == ACPI_STATE_C1 &&
426 (idle_halt || idle_nomwait)) {
427 /*
428 * In most cases the C1 space_id obtained from
429 * _CST object is FIXED_HARDWARE access mode.
430 * But when the option of idle=halt is added,
431 * the entry_method type should be changed from
432 * CSTATE_FFH to CSTATE_HALT.
433 * When the option of idle=nomwait is added,
434 * the C1 entry_method type should be
435 * CSTATE_HALT.
436 */
437 cx.entry_method = ACPI_CSTATE_HALT;
438 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
439 }
440 } else {
441 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
442 cx.address);
443 }
444
445 if (cx.type == ACPI_STATE_C1) {
446 cx.valid = 1;
447 }
448
449 obj = &(element->package.elements[2]);
450 if (obj->type != ACPI_TYPE_INTEGER)
451 continue;
452
453 cx.latency = obj->integer.value;
454
455 obj = &(element->package.elements[3]);
456 if (obj->type != ACPI_TYPE_INTEGER)
457 continue;
458
459 cx.power = obj->integer.value;
460
461 current_count++;
462 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
463
464 /*
465 * We support total ACPI_PROCESSOR_MAX_POWER - 1
466 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
467 */
468 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
469 printk(KERN_WARNING
470 "Limiting number of power states to max (%d)\n",
471 ACPI_PROCESSOR_MAX_POWER);
472 printk(KERN_WARNING
473 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
474 break;
475 }
476 }
477
478 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
479 current_count));
480
481 /* Validate number of power states discovered */
482 if (current_count < 2)
483 status = -EFAULT;
484
485 end:
486 kfree(buffer.pointer);
487
488 return status;
489 }
490
491 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
492 {
493
494 if (!cx->address)
495 return;
496
497 /*
498 * C2 latency must be less than or equal to 100
499 * microseconds.
500 */
501 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
502 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
503 "latency too large [%d]\n", cx->latency));
504 return;
505 }
506
507 /*
508 * Otherwise we've met all of our C2 requirements.
509 * Normalize the C2 latency to expidite policy
510 */
511 cx->valid = 1;
512
513 cx->latency_ticks = cx->latency;
514
515 return;
516 }
517
518 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
519 struct acpi_processor_cx *cx)
520 {
521 static int bm_check_flag = -1;
522 static int bm_control_flag = -1;
523
524
525 if (!cx->address)
526 return;
527
528 /*
529 * C3 latency must be less than or equal to 1000
530 * microseconds.
531 */
532 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
533 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
534 "latency too large [%d]\n", cx->latency));
535 return;
536 }
537
538 /*
539 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
540 * DMA transfers are used by any ISA device to avoid livelock.
541 * Note that we could disable Type-F DMA (as recommended by
542 * the erratum), but this is known to disrupt certain ISA
543 * devices thus we take the conservative approach.
544 */
545 else if (errata.piix4.fdma) {
546 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
547 "C3 not supported on PIIX4 with Type-F DMA\n"));
548 return;
549 }
550
551 /* All the logic here assumes flags.bm_check is same across all CPUs */
552 if (bm_check_flag == -1) {
553 /* Determine whether bm_check is needed based on CPU */
554 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
555 bm_check_flag = pr->flags.bm_check;
556 bm_control_flag = pr->flags.bm_control;
557 } else {
558 pr->flags.bm_check = bm_check_flag;
559 pr->flags.bm_control = bm_control_flag;
560 }
561
562 if (pr->flags.bm_check) {
563 if (!pr->flags.bm_control) {
564 if (pr->flags.has_cst != 1) {
565 /* bus mastering control is necessary */
566 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
567 "C3 support requires BM control\n"));
568 return;
569 } else {
570 /* Here we enter C3 without bus mastering */
571 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 "C3 support without BM control\n"));
573 }
574 }
575 } else {
576 /*
577 * WBINVD should be set in fadt, for C3 state to be
578 * supported on when bm_check is not required.
579 */
580 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
581 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
582 "Cache invalidation should work properly"
583 " for C3 to be enabled on SMP systems\n"));
584 return;
585 }
586 }
587
588 /*
589 * Otherwise we've met all of our C3 requirements.
590 * Normalize the C3 latency to expidite policy. Enable
591 * checking of bus mastering status (bm_check) so we can
592 * use this in our C3 policy
593 */
594 cx->valid = 1;
595
596 cx->latency_ticks = cx->latency;
597 /*
598 * On older chipsets, BM_RLD needs to be set
599 * in order for Bus Master activity to wake the
600 * system from C3. Newer chipsets handle DMA
601 * during C3 automatically and BM_RLD is a NOP.
602 * In either case, the proper way to
603 * handle BM_RLD is to set it and leave it set.
604 */
605 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
606
607 return;
608 }
609
610 static int acpi_processor_power_verify(struct acpi_processor *pr)
611 {
612 unsigned int i;
613 unsigned int working = 0;
614
615 pr->power.timer_broadcast_on_state = INT_MAX;
616
617 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
618 struct acpi_processor_cx *cx = &pr->power.states[i];
619
620 switch (cx->type) {
621 case ACPI_STATE_C1:
622 cx->valid = 1;
623 break;
624
625 case ACPI_STATE_C2:
626 acpi_processor_power_verify_c2(cx);
627 break;
628
629 case ACPI_STATE_C3:
630 acpi_processor_power_verify_c3(pr, cx);
631 break;
632 }
633 if (!cx->valid)
634 continue;
635
636 lapic_timer_check_state(i, pr, cx);
637 tsc_check_state(cx->type);
638 working++;
639 }
640
641 smp_call_function_single(pr->id, lapic_timer_propagate_broadcast,
642 pr, 1);
643
644 return (working);
645 }
646
647 static int acpi_processor_get_power_info(struct acpi_processor *pr)
648 {
649 unsigned int i;
650 int result;
651
652
653 /* NOTE: the idle thread may not be running while calling
654 * this function */
655
656 /* Zero initialize all the C-states info. */
657 memset(pr->power.states, 0, sizeof(pr->power.states));
658
659 result = acpi_processor_get_power_info_cst(pr);
660 if (result == -ENODEV)
661 result = acpi_processor_get_power_info_fadt(pr);
662
663 if (result)
664 return result;
665
666 acpi_processor_get_power_info_default(pr);
667
668 pr->power.count = acpi_processor_power_verify(pr);
669
670 /*
671 * if one state of type C2 or C3 is available, mark this
672 * CPU as being "idle manageable"
673 */
674 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
675 if (pr->power.states[i].valid) {
676 pr->power.count = i;
677 if (pr->power.states[i].type >= ACPI_STATE_C2)
678 pr->flags.power = 1;
679 }
680 }
681
682 return 0;
683 }
684
685 #ifdef CONFIG_ACPI_PROCFS
686 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
687 {
688 struct acpi_processor *pr = seq->private;
689 unsigned int i;
690
691
692 if (!pr)
693 goto end;
694
695 seq_printf(seq, "active state: C%zd\n"
696 "max_cstate: C%d\n"
697 "maximum allowed latency: %d usec\n",
698 pr->power.state ? pr->power.state - pr->power.states : 0,
699 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
700
701 seq_puts(seq, "states:\n");
702
703 for (i = 1; i <= pr->power.count; i++) {
704 seq_printf(seq, " %cC%d: ",
705 (&pr->power.states[i] ==
706 pr->power.state ? '*' : ' '), i);
707
708 if (!pr->power.states[i].valid) {
709 seq_puts(seq, "<not supported>\n");
710 continue;
711 }
712
713 switch (pr->power.states[i].type) {
714 case ACPI_STATE_C1:
715 seq_printf(seq, "type[C1] ");
716 break;
717 case ACPI_STATE_C2:
718 seq_printf(seq, "type[C2] ");
719 break;
720 case ACPI_STATE_C3:
721 seq_printf(seq, "type[C3] ");
722 break;
723 default:
724 seq_printf(seq, "type[--] ");
725 break;
726 }
727
728 if (pr->power.states[i].promotion.state)
729 seq_printf(seq, "promotion[C%zd] ",
730 (pr->power.states[i].promotion.state -
731 pr->power.states));
732 else
733 seq_puts(seq, "promotion[--] ");
734
735 if (pr->power.states[i].demotion.state)
736 seq_printf(seq, "demotion[C%zd] ",
737 (pr->power.states[i].demotion.state -
738 pr->power.states));
739 else
740 seq_puts(seq, "demotion[--] ");
741
742 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
743 pr->power.states[i].latency,
744 pr->power.states[i].usage,
745 (unsigned long long)pr->power.states[i].time);
746 }
747
748 end:
749 return 0;
750 }
751
752 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
753 {
754 return single_open(file, acpi_processor_power_seq_show,
755 PDE(inode)->data);
756 }
757
758 static const struct file_operations acpi_processor_power_fops = {
759 .owner = THIS_MODULE,
760 .open = acpi_processor_power_open_fs,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
764 };
765 #endif
766
767 /**
768 * acpi_idle_bm_check - checks if bus master activity was detected
769 */
770 static int acpi_idle_bm_check(void)
771 {
772 u32 bm_status = 0;
773
774 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
775 if (bm_status)
776 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
777 /*
778 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
779 * the true state of bus mastering activity; forcing us to
780 * manually check the BMIDEA bit of each IDE channel.
781 */
782 else if (errata.piix4.bmisx) {
783 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
784 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
785 bm_status = 1;
786 }
787 return bm_status;
788 }
789
790 /**
791 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
792 * @cx: cstate data
793 *
794 * Caller disables interrupt before call and enables interrupt after return.
795 */
796 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
797 {
798 /* Don't trace irqs off for idle */
799 stop_critical_timings();
800 if (cx->entry_method == ACPI_CSTATE_FFH) {
801 /* Call into architectural FFH based C-state */
802 acpi_processor_ffh_cstate_enter(cx);
803 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
804 acpi_safe_halt();
805 } else {
806 int unused;
807 /* IO port based C-state */
808 inb(cx->address);
809 /* Dummy wait op - must do something useless after P_LVL2 read
810 because chipsets cannot guarantee that STPCLK# signal
811 gets asserted in time to freeze execution properly. */
812 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
813 }
814 start_critical_timings();
815 }
816
817 /**
818 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
819 * @dev: the target CPU
820 * @state: the state data
821 *
822 * This is equivalent to the HALT instruction.
823 */
824 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
825 struct cpuidle_state *state)
826 {
827 ktime_t kt1, kt2;
828 s64 idle_time;
829 struct acpi_processor *pr;
830 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
831
832 pr = __get_cpu_var(processors);
833
834 if (unlikely(!pr))
835 return 0;
836
837 local_irq_disable();
838
839 /* Do not access any ACPI IO ports in suspend path */
840 if (acpi_idle_suspend) {
841 local_irq_enable();
842 cpu_relax();
843 return 0;
844 }
845
846 lapic_timer_state_broadcast(pr, cx, 1);
847 kt1 = ktime_get_real();
848 acpi_idle_do_entry(cx);
849 kt2 = ktime_get_real();
850 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
851
852 local_irq_enable();
853 cx->usage++;
854 lapic_timer_state_broadcast(pr, cx, 0);
855
856 return idle_time;
857 }
858
859 /**
860 * acpi_idle_enter_simple - enters an ACPI state without BM handling
861 * @dev: the target CPU
862 * @state: the state data
863 */
864 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
865 struct cpuidle_state *state)
866 {
867 struct acpi_processor *pr;
868 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
869 ktime_t kt1, kt2;
870 s64 idle_time;
871 s64 sleep_ticks = 0;
872
873 pr = __get_cpu_var(processors);
874
875 if (unlikely(!pr))
876 return 0;
877
878 if (acpi_idle_suspend)
879 return(acpi_idle_enter_c1(dev, state));
880
881 local_irq_disable();
882 current_thread_info()->status &= ~TS_POLLING;
883 /*
884 * TS_POLLING-cleared state must be visible before we test
885 * NEED_RESCHED:
886 */
887 smp_mb();
888
889 if (unlikely(need_resched())) {
890 current_thread_info()->status |= TS_POLLING;
891 local_irq_enable();
892 return 0;
893 }
894
895 /*
896 * Must be done before busmaster disable as we might need to
897 * access HPET !
898 */
899 lapic_timer_state_broadcast(pr, cx, 1);
900
901 if (cx->type == ACPI_STATE_C3)
902 ACPI_FLUSH_CPU_CACHE();
903
904 kt1 = ktime_get_real();
905 /* Tell the scheduler that we are going deep-idle: */
906 sched_clock_idle_sleep_event();
907 acpi_idle_do_entry(cx);
908 kt2 = ktime_get_real();
909 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
910
911 sleep_ticks = us_to_pm_timer_ticks(idle_time);
912
913 /* Tell the scheduler how much we idled: */
914 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
915
916 local_irq_enable();
917 current_thread_info()->status |= TS_POLLING;
918
919 cx->usage++;
920
921 lapic_timer_state_broadcast(pr, cx, 0);
922 cx->time += sleep_ticks;
923 return idle_time;
924 }
925
926 static int c3_cpu_count;
927 static DEFINE_SPINLOCK(c3_lock);
928
929 /**
930 * acpi_idle_enter_bm - enters C3 with proper BM handling
931 * @dev: the target CPU
932 * @state: the state data
933 *
934 * If BM is detected, the deepest non-C3 idle state is entered instead.
935 */
936 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
937 struct cpuidle_state *state)
938 {
939 struct acpi_processor *pr;
940 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
941 ktime_t kt1, kt2;
942 s64 idle_time;
943 s64 sleep_ticks = 0;
944
945
946 pr = __get_cpu_var(processors);
947
948 if (unlikely(!pr))
949 return 0;
950
951 if (acpi_idle_suspend)
952 return(acpi_idle_enter_c1(dev, state));
953
954 if (acpi_idle_bm_check()) {
955 if (dev->safe_state) {
956 dev->last_state = dev->safe_state;
957 return dev->safe_state->enter(dev, dev->safe_state);
958 } else {
959 local_irq_disable();
960 acpi_safe_halt();
961 local_irq_enable();
962 return 0;
963 }
964 }
965
966 local_irq_disable();
967 current_thread_info()->status &= ~TS_POLLING;
968 /*
969 * TS_POLLING-cleared state must be visible before we test
970 * NEED_RESCHED:
971 */
972 smp_mb();
973
974 if (unlikely(need_resched())) {
975 current_thread_info()->status |= TS_POLLING;
976 local_irq_enable();
977 return 0;
978 }
979
980 acpi_unlazy_tlb(smp_processor_id());
981
982 /* Tell the scheduler that we are going deep-idle: */
983 sched_clock_idle_sleep_event();
984 /*
985 * Must be done before busmaster disable as we might need to
986 * access HPET !
987 */
988 lapic_timer_state_broadcast(pr, cx, 1);
989
990 kt1 = ktime_get_real();
991 /*
992 * disable bus master
993 * bm_check implies we need ARB_DIS
994 * !bm_check implies we need cache flush
995 * bm_control implies whether we can do ARB_DIS
996 *
997 * That leaves a case where bm_check is set and bm_control is
998 * not set. In that case we cannot do much, we enter C3
999 * without doing anything.
1000 */
1001 if (pr->flags.bm_check && pr->flags.bm_control) {
1002 spin_lock(&c3_lock);
1003 c3_cpu_count++;
1004 /* Disable bus master arbitration when all CPUs are in C3 */
1005 if (c3_cpu_count == num_online_cpus())
1006 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1007 spin_unlock(&c3_lock);
1008 } else if (!pr->flags.bm_check) {
1009 ACPI_FLUSH_CPU_CACHE();
1010 }
1011
1012 acpi_idle_do_entry(cx);
1013
1014 /* Re-enable bus master arbitration */
1015 if (pr->flags.bm_check && pr->flags.bm_control) {
1016 spin_lock(&c3_lock);
1017 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1018 c3_cpu_count--;
1019 spin_unlock(&c3_lock);
1020 }
1021 kt2 = ktime_get_real();
1022 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
1023
1024 sleep_ticks = us_to_pm_timer_ticks(idle_time);
1025 /* Tell the scheduler how much we idled: */
1026 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1027
1028 local_irq_enable();
1029 current_thread_info()->status |= TS_POLLING;
1030
1031 cx->usage++;
1032
1033 lapic_timer_state_broadcast(pr, cx, 0);
1034 cx->time += sleep_ticks;
1035 return idle_time;
1036 }
1037
1038 struct cpuidle_driver acpi_idle_driver = {
1039 .name = "acpi_idle",
1040 .owner = THIS_MODULE,
1041 };
1042
1043 /**
1044 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1045 * @pr: the ACPI processor
1046 */
1047 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1048 {
1049 int i, count = CPUIDLE_DRIVER_STATE_START;
1050 struct acpi_processor_cx *cx;
1051 struct cpuidle_state *state;
1052 struct cpuidle_device *dev = &pr->power.dev;
1053
1054 if (!pr->flags.power_setup_done)
1055 return -EINVAL;
1056
1057 if (pr->flags.power == 0) {
1058 return -EINVAL;
1059 }
1060
1061 dev->cpu = pr->id;
1062 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1063 dev->states[i].name[0] = '\0';
1064 dev->states[i].desc[0] = '\0';
1065 }
1066
1067 if (max_cstate == 0)
1068 max_cstate = 1;
1069
1070 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1071 cx = &pr->power.states[i];
1072 state = &dev->states[count];
1073
1074 if (!cx->valid)
1075 continue;
1076
1077 #ifdef CONFIG_HOTPLUG_CPU
1078 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1079 !pr->flags.has_cst &&
1080 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1081 continue;
1082 #endif
1083 cpuidle_set_statedata(state, cx);
1084
1085 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1086 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1087 state->exit_latency = cx->latency;
1088 state->target_residency = cx->latency * latency_factor;
1089 state->power_usage = cx->power;
1090
1091 state->flags = 0;
1092 switch (cx->type) {
1093 case ACPI_STATE_C1:
1094 state->flags |= CPUIDLE_FLAG_SHALLOW;
1095 if (cx->entry_method == ACPI_CSTATE_FFH)
1096 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1097
1098 state->enter = acpi_idle_enter_c1;
1099 dev->safe_state = state;
1100 break;
1101
1102 case ACPI_STATE_C2:
1103 state->flags |= CPUIDLE_FLAG_BALANCED;
1104 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1105 state->enter = acpi_idle_enter_simple;
1106 dev->safe_state = state;
1107 break;
1108
1109 case ACPI_STATE_C3:
1110 state->flags |= CPUIDLE_FLAG_DEEP;
1111 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1112 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1113 state->enter = pr->flags.bm_check ?
1114 acpi_idle_enter_bm :
1115 acpi_idle_enter_simple;
1116 break;
1117 }
1118
1119 count++;
1120 if (count == CPUIDLE_STATE_MAX)
1121 break;
1122 }
1123
1124 dev->state_count = count;
1125
1126 if (!count)
1127 return -EINVAL;
1128
1129 return 0;
1130 }
1131
1132 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1133 {
1134 int ret = 0;
1135
1136 if (boot_option_idle_override)
1137 return 0;
1138
1139 if (!pr)
1140 return -EINVAL;
1141
1142 if (nocst) {
1143 return -ENODEV;
1144 }
1145
1146 if (!pr->flags.power_setup_done)
1147 return -ENODEV;
1148
1149 cpuidle_pause_and_lock();
1150 cpuidle_disable_device(&pr->power.dev);
1151 acpi_processor_get_power_info(pr);
1152 if (pr->flags.power) {
1153 acpi_processor_setup_cpuidle(pr);
1154 ret = cpuidle_enable_device(&pr->power.dev);
1155 }
1156 cpuidle_resume_and_unlock();
1157
1158 return ret;
1159 }
1160
1161 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1162 struct acpi_device *device)
1163 {
1164 acpi_status status = 0;
1165 static int first_run;
1166 #ifdef CONFIG_ACPI_PROCFS
1167 struct proc_dir_entry *entry = NULL;
1168 #endif
1169 unsigned int i;
1170
1171 if (boot_option_idle_override)
1172 return 0;
1173
1174 if (!first_run) {
1175 if (idle_halt) {
1176 /*
1177 * When the boot option of "idle=halt" is added, halt
1178 * is used for CPU IDLE.
1179 * In such case C2/C3 is meaningless. So the max_cstate
1180 * is set to one.
1181 */
1182 max_cstate = 1;
1183 }
1184 dmi_check_system(processor_power_dmi_table);
1185 max_cstate = acpi_processor_cstate_check(max_cstate);
1186 if (max_cstate < ACPI_C_STATES_MAX)
1187 printk(KERN_NOTICE
1188 "ACPI: processor limited to max C-state %d\n",
1189 max_cstate);
1190 first_run++;
1191 }
1192
1193 if (!pr)
1194 return -EINVAL;
1195
1196 if (acpi_gbl_FADT.cst_control && !nocst) {
1197 status =
1198 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1199 if (ACPI_FAILURE(status)) {
1200 ACPI_EXCEPTION((AE_INFO, status,
1201 "Notifying BIOS of _CST ability failed"));
1202 }
1203 }
1204
1205 acpi_processor_get_power_info(pr);
1206 pr->flags.power_setup_done = 1;
1207
1208 /*
1209 * Install the idle handler if processor power management is supported.
1210 * Note that we use previously set idle handler will be used on
1211 * platforms that only support C1.
1212 */
1213 if (pr->flags.power) {
1214 acpi_processor_setup_cpuidle(pr);
1215 if (cpuidle_register_device(&pr->power.dev))
1216 return -EIO;
1217 }
1218 #ifdef CONFIG_ACPI_PROCFS
1219 /* 'power' [R] */
1220 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1221 S_IRUGO, acpi_device_dir(device),
1222 &acpi_processor_power_fops,
1223 acpi_driver_data(device));
1224 if (!entry)
1225 return -EIO;
1226 #endif
1227 return 0;
1228 }
1229
1230 int acpi_processor_power_exit(struct acpi_processor *pr,
1231 struct acpi_device *device)
1232 {
1233 if (boot_option_idle_override)
1234 return 0;
1235
1236 cpuidle_unregister_device(&pr->power.dev);
1237 pr->flags.power_setup_done = 0;
1238
1239 #ifdef CONFIG_ACPI_PROCFS
1240 if (acpi_device_dir(device))
1241 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1242 acpi_device_dir(device));
1243 #endif
1244
1245 return 0;
1246 }