ACPI: Use system level attribute of wakeup power resources
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / power.c
1 /*
2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or (at
12 * your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
25
26 /*
27 * ACPI power-managed devices may be controlled in two ways:
28 * 1. via "Device Specific (D-State) Control"
29 * 2. via "Power Resource Control".
30 * This module is used to manage devices relying on Power Resource Control.
31 *
32 * An ACPI "power resource object" describes a software controllable power
33 * plane, clock plane, or other resource used by a power managed device.
34 * A device may rely on multiple power resources, and a power resource
35 * may be shared by multiple devices.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <acpi/acpi_bus.h>
45 #include <acpi/acpi_drivers.h>
46 #include "sleep.h"
47 #include "internal.h"
48
49 #define PREFIX "ACPI: "
50
51 #define _COMPONENT ACPI_POWER_COMPONENT
52 ACPI_MODULE_NAME("power");
53 #define ACPI_POWER_CLASS "power_resource"
54 #define ACPI_POWER_DEVICE_NAME "Power Resource"
55 #define ACPI_POWER_FILE_INFO "info"
56 #define ACPI_POWER_FILE_STATUS "state"
57 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
58 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
59 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
60
61 struct acpi_power_dependent_device {
62 struct list_head node;
63 struct acpi_device *adev;
64 struct work_struct work;
65 };
66
67 struct acpi_power_resource {
68 struct acpi_device device;
69 struct list_head list_node;
70 struct list_head dependent;
71 char *name;
72 u32 system_level;
73 u32 order;
74 unsigned int ref_count;
75 struct mutex resource_lock;
76 };
77
78 struct acpi_power_resource_entry {
79 struct list_head node;
80 struct acpi_power_resource *resource;
81 };
82
83 static LIST_HEAD(acpi_power_resource_list);
84 static DEFINE_MUTEX(power_resource_list_lock);
85
86 /* --------------------------------------------------------------------------
87 Power Resource Management
88 -------------------------------------------------------------------------- */
89
90 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
91 {
92 struct acpi_device *device;
93
94 if (acpi_bus_get_device(handle, &device))
95 return NULL;
96
97 return container_of(device, struct acpi_power_resource, device);
98 }
99
100 static int acpi_power_resources_list_add(acpi_handle handle,
101 struct list_head *list)
102 {
103 struct acpi_power_resource *resource = acpi_power_get_context(handle);
104 struct acpi_power_resource_entry *entry;
105
106 if (!resource || !list)
107 return -EINVAL;
108
109 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
110 if (!entry)
111 return -ENOMEM;
112
113 entry->resource = resource;
114 if (!list_empty(list)) {
115 struct acpi_power_resource_entry *e;
116
117 list_for_each_entry(e, list, node)
118 if (e->resource->order > resource->order) {
119 list_add_tail(&entry->node, &e->node);
120 return 0;
121 }
122 }
123 list_add_tail(&entry->node, list);
124 return 0;
125 }
126
127 void acpi_power_resources_list_free(struct list_head *list)
128 {
129 struct acpi_power_resource_entry *entry, *e;
130
131 list_for_each_entry_safe(entry, e, list, node) {
132 list_del(&entry->node);
133 kfree(entry);
134 }
135 }
136
137 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
138 struct list_head *list)
139 {
140 unsigned int i;
141 int err = 0;
142
143 for (i = start; i < package->package.count; i++) {
144 union acpi_object *element = &package->package.elements[i];
145 acpi_handle rhandle;
146
147 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
148 err = -ENODATA;
149 break;
150 }
151 rhandle = element->reference.handle;
152 if (!rhandle) {
153 err = -ENODEV;
154 break;
155 }
156 err = acpi_add_power_resource(rhandle);
157 if (err)
158 break;
159
160 err = acpi_power_resources_list_add(rhandle, list);
161 if (err)
162 break;
163 }
164 if (err)
165 acpi_power_resources_list_free(list);
166
167 return err;
168 }
169
170 static int acpi_power_get_state(acpi_handle handle, int *state)
171 {
172 acpi_status status = AE_OK;
173 unsigned long long sta = 0;
174 char node_name[5];
175 struct acpi_buffer buffer = { sizeof(node_name), node_name };
176
177
178 if (!handle || !state)
179 return -EINVAL;
180
181 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
182 if (ACPI_FAILURE(status))
183 return -ENODEV;
184
185 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
186 ACPI_POWER_RESOURCE_STATE_OFF;
187
188 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
189
190 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
191 node_name,
192 *state ? "on" : "off"));
193
194 return 0;
195 }
196
197 static int acpi_power_get_list_state(struct list_head *list, int *state)
198 {
199 struct acpi_power_resource_entry *entry;
200 int cur_state;
201
202 if (!list || !state)
203 return -EINVAL;
204
205 /* The state of the list is 'on' IFF all resources are 'on'. */
206 list_for_each_entry(entry, list, node) {
207 struct acpi_power_resource *resource = entry->resource;
208 acpi_handle handle = resource->device.handle;
209 int result;
210
211 mutex_lock(&resource->resource_lock);
212 result = acpi_power_get_state(handle, &cur_state);
213 mutex_unlock(&resource->resource_lock);
214 if (result)
215 return result;
216
217 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
218 break;
219 }
220
221 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
222 cur_state ? "on" : "off"));
223
224 *state = cur_state;
225 return 0;
226 }
227
228 static void acpi_power_resume_dependent(struct work_struct *work)
229 {
230 struct acpi_power_dependent_device *dep;
231 struct acpi_device_physical_node *pn;
232 struct acpi_device *adev;
233 int state;
234
235 dep = container_of(work, struct acpi_power_dependent_device, work);
236 adev = dep->adev;
237 if (acpi_power_get_inferred_state(adev, &state))
238 return;
239
240 if (state > ACPI_STATE_D0)
241 return;
242
243 mutex_lock(&adev->physical_node_lock);
244
245 list_for_each_entry(pn, &adev->physical_node_list, node)
246 pm_request_resume(pn->dev);
247
248 list_for_each_entry(pn, &adev->power_dependent, node)
249 pm_request_resume(pn->dev);
250
251 mutex_unlock(&adev->physical_node_lock);
252 }
253
254 static int __acpi_power_on(struct acpi_power_resource *resource)
255 {
256 acpi_status status = AE_OK;
257
258 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
259 if (ACPI_FAILURE(status))
260 return -ENODEV;
261
262 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
263 resource->name));
264
265 return 0;
266 }
267
268 static int acpi_power_on(struct acpi_power_resource *resource)
269 {
270 int result = 0;;
271
272 mutex_lock(&resource->resource_lock);
273
274 if (resource->ref_count++) {
275 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
276 "Power resource [%s] already on",
277 resource->name));
278 } else {
279 result = __acpi_power_on(resource);
280 if (result) {
281 resource->ref_count--;
282 } else {
283 struct acpi_power_dependent_device *dep;
284
285 list_for_each_entry(dep, &resource->dependent, node)
286 schedule_work(&dep->work);
287 }
288 }
289
290 mutex_unlock(&resource->resource_lock);
291
292 return result;
293 }
294
295 static int acpi_power_off(struct acpi_power_resource *resource)
296 {
297 acpi_status status = AE_OK;
298 int result = 0;
299
300 mutex_lock(&resource->resource_lock);
301
302 if (!resource->ref_count) {
303 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
304 "Power resource [%s] already off",
305 resource->name));
306 goto unlock;
307 }
308
309 if (--resource->ref_count) {
310 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
311 "Power resource [%s] still in use\n",
312 resource->name));
313 goto unlock;
314 }
315
316 status = acpi_evaluate_object(resource->device.handle, "_OFF", NULL, NULL);
317 if (ACPI_FAILURE(status))
318 result = -ENODEV;
319 else
320 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
321 "Power resource [%s] turned off\n",
322 resource->name));
323
324 unlock:
325 mutex_unlock(&resource->resource_lock);
326
327 return result;
328 }
329
330 static int acpi_power_off_list(struct list_head *list)
331 {
332 struct acpi_power_resource_entry *entry;
333 int result = 0;
334
335 list_for_each_entry_reverse(entry, list, node) {
336 result = acpi_power_off(entry->resource);
337 if (result)
338 goto err;
339 }
340 return 0;
341
342 err:
343 list_for_each_entry_continue(entry, list, node)
344 acpi_power_on(entry->resource);
345
346 return result;
347 }
348
349 static int acpi_power_on_list(struct list_head *list)
350 {
351 struct acpi_power_resource_entry *entry;
352 int result = 0;
353
354 list_for_each_entry(entry, list, node) {
355 result = acpi_power_on(entry->resource);
356 if (result)
357 goto err;
358 }
359 return 0;
360
361 err:
362 list_for_each_entry_continue_reverse(entry, list, node)
363 acpi_power_off(entry->resource);
364
365 return result;
366 }
367
368 static void acpi_power_add_dependent(struct acpi_power_resource *resource,
369 struct acpi_device *adev)
370 {
371 struct acpi_power_dependent_device *dep;
372
373 mutex_lock(&resource->resource_lock);
374
375 list_for_each_entry(dep, &resource->dependent, node)
376 if (dep->adev == adev)
377 goto out;
378
379 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
380 if (!dep)
381 goto out;
382
383 dep->adev = adev;
384 INIT_WORK(&dep->work, acpi_power_resume_dependent);
385 list_add_tail(&dep->node, &resource->dependent);
386
387 out:
388 mutex_unlock(&resource->resource_lock);
389 }
390
391 static void acpi_power_remove_dependent(struct acpi_power_resource *resource,
392 struct acpi_device *adev)
393 {
394 struct acpi_power_dependent_device *dep;
395 struct work_struct *work = NULL;
396
397 mutex_lock(&resource->resource_lock);
398
399 list_for_each_entry(dep, &resource->dependent, node)
400 if (dep->adev == adev) {
401 list_del(&dep->node);
402 work = &dep->work;
403 break;
404 }
405
406 mutex_unlock(&resource->resource_lock);
407
408 if (work) {
409 cancel_work_sync(work);
410 kfree(dep);
411 }
412 }
413
414 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
415 {
416 if (adev->power.flags.power_resources) {
417 struct acpi_device_power_state *ps;
418 struct acpi_power_resource_entry *entry;
419
420 ps = &adev->power.states[ACPI_STATE_D0];
421 list_for_each_entry(entry, &ps->resources, node) {
422 struct acpi_power_resource *resource = entry->resource;
423
424 if (add)
425 acpi_power_add_dependent(resource, adev);
426 else
427 acpi_power_remove_dependent(resource, adev);
428 }
429 }
430 }
431
432 int acpi_power_min_system_level(struct list_head *list)
433 {
434 struct acpi_power_resource_entry *entry;
435 int system_level = 5;
436
437 list_for_each_entry(entry, list, node) {
438 struct acpi_power_resource *resource = entry->resource;
439
440 if (system_level > resource->system_level)
441 system_level = resource->system_level;
442 }
443 return system_level;
444 }
445
446 /* --------------------------------------------------------------------------
447 Device Power Management
448 -------------------------------------------------------------------------- */
449
450 /**
451 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
452 * ACPI 3.0) _PSW (Power State Wake)
453 * @dev: Device to handle.
454 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
455 * @sleep_state: Target sleep state of the system.
456 * @dev_state: Target power state of the device.
457 *
458 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
459 * State Wake) for the device, if present. On failure reset the device's
460 * wakeup.flags.valid flag.
461 *
462 * RETURN VALUE:
463 * 0 if either _DSW or _PSW has been successfully executed
464 * 0 if neither _DSW nor _PSW has been found
465 * -ENODEV if the execution of either _DSW or _PSW has failed
466 */
467 int acpi_device_sleep_wake(struct acpi_device *dev,
468 int enable, int sleep_state, int dev_state)
469 {
470 union acpi_object in_arg[3];
471 struct acpi_object_list arg_list = { 3, in_arg };
472 acpi_status status = AE_OK;
473
474 /*
475 * Try to execute _DSW first.
476 *
477 * Three agruments are needed for the _DSW object:
478 * Argument 0: enable/disable the wake capabilities
479 * Argument 1: target system state
480 * Argument 2: target device state
481 * When _DSW object is called to disable the wake capabilities, maybe
482 * the first argument is filled. The values of the other two agruments
483 * are meaningless.
484 */
485 in_arg[0].type = ACPI_TYPE_INTEGER;
486 in_arg[0].integer.value = enable;
487 in_arg[1].type = ACPI_TYPE_INTEGER;
488 in_arg[1].integer.value = sleep_state;
489 in_arg[2].type = ACPI_TYPE_INTEGER;
490 in_arg[2].integer.value = dev_state;
491 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
492 if (ACPI_SUCCESS(status)) {
493 return 0;
494 } else if (status != AE_NOT_FOUND) {
495 printk(KERN_ERR PREFIX "_DSW execution failed\n");
496 dev->wakeup.flags.valid = 0;
497 return -ENODEV;
498 }
499
500 /* Execute _PSW */
501 arg_list.count = 1;
502 in_arg[0].integer.value = enable;
503 status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
504 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
505 printk(KERN_ERR PREFIX "_PSW execution failed\n");
506 dev->wakeup.flags.valid = 0;
507 return -ENODEV;
508 }
509
510 return 0;
511 }
512
513 /*
514 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
515 * 1. Power on the power resources required for the wakeup device
516 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
517 * State Wake) for the device, if present
518 */
519 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
520 {
521 int err = 0;
522
523 if (!dev || !dev->wakeup.flags.valid)
524 return -EINVAL;
525
526 mutex_lock(&acpi_device_lock);
527
528 if (dev->wakeup.prepare_count++)
529 goto out;
530
531 err = acpi_power_on_list(&dev->wakeup.resources);
532 if (err) {
533 dev_err(&dev->dev, "Cannot turn wakeup power resources on\n");
534 dev->wakeup.flags.valid = 0;
535 } else {
536 /*
537 * Passing 3 as the third argument below means the device may be
538 * put into arbitrary power state afterward.
539 */
540 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
541 }
542 if (err)
543 dev->wakeup.prepare_count = 0;
544
545 out:
546 mutex_unlock(&acpi_device_lock);
547 return err;
548 }
549
550 /*
551 * Shutdown a wakeup device, counterpart of above method
552 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
553 * State Wake) for the device, if present
554 * 2. Shutdown down the power resources
555 */
556 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
557 {
558 int err = 0;
559
560 if (!dev || !dev->wakeup.flags.valid)
561 return -EINVAL;
562
563 mutex_lock(&acpi_device_lock);
564
565 if (--dev->wakeup.prepare_count > 0)
566 goto out;
567
568 /*
569 * Executing the code below even if prepare_count is already zero when
570 * the function is called may be useful, for example for initialisation.
571 */
572 if (dev->wakeup.prepare_count < 0)
573 dev->wakeup.prepare_count = 0;
574
575 err = acpi_device_sleep_wake(dev, 0, 0, 0);
576 if (err)
577 goto out;
578
579 err = acpi_power_off_list(&dev->wakeup.resources);
580 if (err) {
581 dev_err(&dev->dev, "Cannot turn wakeup power resources off\n");
582 dev->wakeup.flags.valid = 0;
583 }
584
585 out:
586 mutex_unlock(&acpi_device_lock);
587 return err;
588 }
589
590 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
591 {
592 int result = 0;
593 int list_state = 0;
594 int i = 0;
595
596 if (!device || !state)
597 return -EINVAL;
598
599 /*
600 * We know a device's inferred power state when all the resources
601 * required for a given D-state are 'on'.
602 */
603 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
604 struct list_head *list = &device->power.states[i].resources;
605
606 if (list_empty(list))
607 continue;
608
609 result = acpi_power_get_list_state(list, &list_state);
610 if (result)
611 return result;
612
613 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
614 *state = i;
615 return 0;
616 }
617 }
618
619 *state = ACPI_STATE_D3;
620 return 0;
621 }
622
623 int acpi_power_on_resources(struct acpi_device *device, int state)
624 {
625 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_COLD)
626 return -EINVAL;
627
628 if (state == ACPI_STATE_D3_COLD)
629 return 0;
630
631 return acpi_power_on_list(&device->power.states[state].resources);
632 }
633
634 int acpi_power_transition(struct acpi_device *device, int state)
635 {
636 int result = 0;
637
638 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
639 return -EINVAL;
640
641 if (device->power.state == state || !device->flags.power_manageable)
642 return 0;
643
644 if ((device->power.state < ACPI_STATE_D0)
645 || (device->power.state > ACPI_STATE_D3_COLD))
646 return -ENODEV;
647
648 /* TBD: Resources must be ordered. */
649
650 /*
651 * First we reference all power resources required in the target list
652 * (e.g. so the device doesn't lose power while transitioning). Then,
653 * we dereference all power resources used in the current list.
654 */
655 if (state < ACPI_STATE_D3_COLD)
656 result = acpi_power_on_list(
657 &device->power.states[state].resources);
658
659 if (!result && device->power.state < ACPI_STATE_D3_COLD)
660 acpi_power_off_list(
661 &device->power.states[device->power.state].resources);
662
663 /* We shouldn't change the state unless the above operations succeed. */
664 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
665
666 return result;
667 }
668
669 static void acpi_release_power_resource(struct device *dev)
670 {
671 struct acpi_device *device = to_acpi_device(dev);
672 struct acpi_power_resource *resource;
673
674 resource = container_of(device, struct acpi_power_resource, device);
675
676 mutex_lock(&power_resource_list_lock);
677 list_del(&resource->list_node);
678 mutex_unlock(&power_resource_list_lock);
679
680 acpi_free_ids(device);
681 kfree(resource);
682 }
683
684 int acpi_add_power_resource(acpi_handle handle)
685 {
686 struct acpi_power_resource *resource;
687 struct acpi_device *device = NULL;
688 union acpi_object acpi_object;
689 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
690 acpi_status status;
691 int state, result = -ENODEV;
692
693 acpi_bus_get_device(handle, &device);
694 if (device)
695 return 0;
696
697 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
698 if (!resource)
699 return -ENOMEM;
700
701 device = &resource->device;
702 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
703 ACPI_STA_DEFAULT);
704 mutex_init(&resource->resource_lock);
705 INIT_LIST_HEAD(&resource->dependent);
706 resource->name = device->pnp.bus_id;
707 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
708 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
709 device->power.state = ACPI_STATE_UNKNOWN;
710
711 /* Evalute the object to get the system level and resource order. */
712 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
713 if (ACPI_FAILURE(status))
714 goto err;
715
716 resource->system_level = acpi_object.power_resource.system_level;
717 resource->order = acpi_object.power_resource.resource_order;
718
719 result = acpi_power_get_state(handle, &state);
720 if (result)
721 goto err;
722
723 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
724 acpi_device_bid(device), state ? "on" : "off");
725
726 device->flags.match_driver = true;
727 result = acpi_device_register(device, acpi_release_power_resource);
728 if (result)
729 goto err;
730
731 mutex_lock(&power_resource_list_lock);
732 list_add(&resource->list_node, &acpi_power_resource_list);
733 mutex_unlock(&power_resource_list_lock);
734 return 0;
735
736 err:
737 acpi_release_power_resource(&device->dev);
738 return result;
739 }
740
741 #ifdef CONFIG_ACPI_SLEEP
742 void acpi_resume_power_resources(void)
743 {
744 struct acpi_power_resource *resource;
745
746 mutex_lock(&power_resource_list_lock);
747
748 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
749 int result, state;
750
751 mutex_lock(&resource->resource_lock);
752
753 result = acpi_power_get_state(resource->device.handle, &state);
754 if (!result && state == ACPI_POWER_RESOURCE_STATE_OFF
755 && resource->ref_count) {
756 dev_info(&resource->device.dev, "Turning ON\n");
757 __acpi_power_on(resource);
758 }
759
760 mutex_unlock(&resource->resource_lock);
761 }
762
763 mutex_unlock(&power_resource_list_lock);
764 }
765 #endif