iwlwifi: don't mess up the SCD when removing a key
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / acpi / power.c
1 /*
2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or (at
12 * your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
25
26 /*
27 * ACPI power-managed devices may be controlled in two ways:
28 * 1. via "Device Specific (D-State) Control"
29 * 2. via "Power Resource Control".
30 * This module is used to manage devices relying on Power Resource Control.
31 *
32 * An ACPI "power resource object" describes a software controllable power
33 * plane, clock plane, or other resource used by a power managed device.
34 * A device may rely on multiple power resources, and a power resource
35 * may be shared by multiple devices.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <acpi/acpi_bus.h>
45 #include <acpi/acpi_drivers.h>
46 #include "sleep.h"
47 #include "internal.h"
48
49 #define PREFIX "ACPI: "
50
51 #define _COMPONENT ACPI_POWER_COMPONENT
52 ACPI_MODULE_NAME("power");
53 #define ACPI_POWER_CLASS "power_resource"
54 #define ACPI_POWER_DEVICE_NAME "Power Resource"
55 #define ACPI_POWER_FILE_INFO "info"
56 #define ACPI_POWER_FILE_STATUS "state"
57 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
58 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
59 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
60
61 static int acpi_power_add(struct acpi_device *device);
62 static int acpi_power_remove(struct acpi_device *device, int type);
63 static int acpi_power_resume(struct acpi_device *device);
64
65 static const struct acpi_device_id power_device_ids[] = {
66 {ACPI_POWER_HID, 0},
67 {"", 0},
68 };
69 MODULE_DEVICE_TABLE(acpi, power_device_ids);
70
71 static struct acpi_driver acpi_power_driver = {
72 .name = "power",
73 .class = ACPI_POWER_CLASS,
74 .ids = power_device_ids,
75 .ops = {
76 .add = acpi_power_add,
77 .remove = acpi_power_remove,
78 .resume = acpi_power_resume,
79 },
80 };
81
82 /*
83 * A power managed device
84 * A device may rely on multiple power resources.
85 * */
86 struct acpi_power_managed_device {
87 struct device *dev; /* The physical device */
88 acpi_handle *handle;
89 };
90
91 struct acpi_power_resource_device {
92 struct acpi_power_managed_device *device;
93 struct acpi_power_resource_device *next;
94 };
95
96 struct acpi_power_resource {
97 struct acpi_device * device;
98 acpi_bus_id name;
99 u32 system_level;
100 u32 order;
101 unsigned int ref_count;
102 struct mutex resource_lock;
103
104 /* List of devices relying on this power resource */
105 struct acpi_power_resource_device *devices;
106 };
107
108 static struct list_head acpi_power_resource_list;
109
110 /* --------------------------------------------------------------------------
111 Power Resource Management
112 -------------------------------------------------------------------------- */
113
114 static int
115 acpi_power_get_context(acpi_handle handle,
116 struct acpi_power_resource **resource)
117 {
118 int result = 0;
119 struct acpi_device *device = NULL;
120
121
122 if (!resource)
123 return -ENODEV;
124
125 result = acpi_bus_get_device(handle, &device);
126 if (result) {
127 printk(KERN_WARNING PREFIX "Getting context [%p]\n", handle);
128 return result;
129 }
130
131 *resource = acpi_driver_data(device);
132 if (!*resource)
133 return -ENODEV;
134
135 return 0;
136 }
137
138 static int acpi_power_get_state(acpi_handle handle, int *state)
139 {
140 acpi_status status = AE_OK;
141 unsigned long long sta = 0;
142 char node_name[5];
143 struct acpi_buffer buffer = { sizeof(node_name), node_name };
144
145
146 if (!handle || !state)
147 return -EINVAL;
148
149 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
150 if (ACPI_FAILURE(status))
151 return -ENODEV;
152
153 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
154 ACPI_POWER_RESOURCE_STATE_OFF;
155
156 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
157
158 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
159 node_name,
160 *state ? "on" : "off"));
161
162 return 0;
163 }
164
165 static int acpi_power_get_list_state(struct acpi_handle_list *list, int *state)
166 {
167 int cur_state;
168 int i = 0;
169
170 if (!list || !state)
171 return -EINVAL;
172
173 /* The state of the list is 'on' IFF all resources are 'on'. */
174
175 for (i = 0; i < list->count; i++) {
176 struct acpi_power_resource *resource;
177 acpi_handle handle = list->handles[i];
178 int result;
179
180 result = acpi_power_get_context(handle, &resource);
181 if (result)
182 return result;
183
184 mutex_lock(&resource->resource_lock);
185
186 result = acpi_power_get_state(handle, &cur_state);
187
188 mutex_unlock(&resource->resource_lock);
189
190 if (result)
191 return result;
192
193 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
194 break;
195 }
196
197 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
198 cur_state ? "on" : "off"));
199
200 *state = cur_state;
201
202 return 0;
203 }
204
205 /* Resume the device when all power resources in _PR0 are on */
206 static void acpi_power_on_device(struct acpi_power_managed_device *device)
207 {
208 struct acpi_device *acpi_dev;
209 acpi_handle handle = device->handle;
210 int state;
211
212 if (acpi_bus_get_device(handle, &acpi_dev))
213 return;
214
215 if(acpi_power_get_inferred_state(acpi_dev, &state))
216 return;
217
218 if (state == ACPI_STATE_D0 && pm_runtime_suspended(device->dev))
219 pm_request_resume(device->dev);
220 }
221
222 static int __acpi_power_on(struct acpi_power_resource *resource)
223 {
224 struct acpi_power_resource_device *device_list = resource->devices;
225 acpi_status status = AE_OK;
226
227 status = acpi_evaluate_object(resource->device->handle, "_ON", NULL, NULL);
228 if (ACPI_FAILURE(status))
229 return -ENODEV;
230
231 /* Update the power resource's _device_ power state */
232 resource->device->power.state = ACPI_STATE_D0;
233
234 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
235 resource->name));
236
237 while (device_list) {
238 acpi_power_on_device(device_list->device);
239
240 device_list = device_list->next;
241 }
242
243 return 0;
244 }
245
246 static int acpi_power_on(acpi_handle handle)
247 {
248 int result = 0;
249 struct acpi_power_resource *resource = NULL;
250
251 result = acpi_power_get_context(handle, &resource);
252 if (result)
253 return result;
254
255 mutex_lock(&resource->resource_lock);
256
257 if (resource->ref_count++) {
258 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
259 "Power resource [%s] already on",
260 resource->name));
261 } else {
262 result = __acpi_power_on(resource);
263 if (result)
264 resource->ref_count--;
265 }
266
267 mutex_unlock(&resource->resource_lock);
268
269 return result;
270 }
271
272 static int acpi_power_off(acpi_handle handle)
273 {
274 int result = 0;
275 acpi_status status = AE_OK;
276 struct acpi_power_resource *resource = NULL;
277
278 result = acpi_power_get_context(handle, &resource);
279 if (result)
280 return result;
281
282 mutex_lock(&resource->resource_lock);
283
284 if (!resource->ref_count) {
285 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
286 "Power resource [%s] already off",
287 resource->name));
288 goto unlock;
289 }
290
291 if (--resource->ref_count) {
292 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
293 "Power resource [%s] still in use\n",
294 resource->name));
295 goto unlock;
296 }
297
298 status = acpi_evaluate_object(resource->device->handle, "_OFF", NULL, NULL);
299 if (ACPI_FAILURE(status)) {
300 result = -ENODEV;
301 } else {
302 /* Update the power resource's _device_ power state */
303 resource->device->power.state = ACPI_STATE_D3;
304
305 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
306 "Power resource [%s] turned off\n",
307 resource->name));
308 }
309
310 unlock:
311 mutex_unlock(&resource->resource_lock);
312
313 return result;
314 }
315
316 static void __acpi_power_off_list(struct acpi_handle_list *list, int num_res)
317 {
318 int i;
319
320 for (i = num_res - 1; i >= 0 ; i--)
321 acpi_power_off(list->handles[i]);
322 }
323
324 static void acpi_power_off_list(struct acpi_handle_list *list)
325 {
326 __acpi_power_off_list(list, list->count);
327 }
328
329 static int acpi_power_on_list(struct acpi_handle_list *list)
330 {
331 int result = 0;
332 int i;
333
334 for (i = 0; i < list->count; i++) {
335 result = acpi_power_on(list->handles[i]);
336 if (result) {
337 __acpi_power_off_list(list, i);
338 break;
339 }
340 }
341
342 return result;
343 }
344
345 static void __acpi_power_resource_unregister_device(struct device *dev,
346 acpi_handle res_handle)
347 {
348 struct acpi_power_resource *resource = NULL;
349 struct acpi_power_resource_device *prev, *curr;
350
351 if (acpi_power_get_context(res_handle, &resource))
352 return;
353
354 mutex_lock(&resource->resource_lock);
355 prev = NULL;
356 curr = resource->devices;
357 while (curr) {
358 if (curr->device->dev == dev) {
359 if (!prev)
360 resource->devices = curr->next;
361 else
362 prev->next = curr->next;
363
364 kfree(curr);
365 break;
366 }
367
368 prev = curr;
369 curr = curr->next;
370 }
371 mutex_unlock(&resource->resource_lock);
372 }
373
374 /* Unlink dev from all power resources in _PR0 */
375 void acpi_power_resource_unregister_device(struct device *dev, acpi_handle handle)
376 {
377 struct acpi_device *acpi_dev;
378 struct acpi_handle_list *list;
379 int i;
380
381 if (!dev || !handle)
382 return;
383
384 if (acpi_bus_get_device(handle, &acpi_dev))
385 return;
386
387 list = &acpi_dev->power.states[ACPI_STATE_D0].resources;
388
389 for (i = 0; i < list->count; i++)
390 __acpi_power_resource_unregister_device(dev,
391 list->handles[i]);
392 }
393
394 static int __acpi_power_resource_register_device(
395 struct acpi_power_managed_device *powered_device, acpi_handle handle)
396 {
397 struct acpi_power_resource *resource = NULL;
398 struct acpi_power_resource_device *power_resource_device;
399 int result;
400
401 result = acpi_power_get_context(handle, &resource);
402 if (result)
403 return result;
404
405 power_resource_device = kzalloc(
406 sizeof(*power_resource_device), GFP_KERNEL);
407 if (!power_resource_device)
408 return -ENOMEM;
409
410 power_resource_device->device = powered_device;
411
412 mutex_lock(&resource->resource_lock);
413 power_resource_device->next = resource->devices;
414 resource->devices = power_resource_device;
415 mutex_unlock(&resource->resource_lock);
416
417 return 0;
418 }
419
420 /* Link dev to all power resources in _PR0 */
421 int acpi_power_resource_register_device(struct device *dev, acpi_handle handle)
422 {
423 struct acpi_device *acpi_dev;
424 struct acpi_handle_list *list;
425 struct acpi_power_managed_device *powered_device;
426 int i, ret;
427
428 if (!dev || !handle)
429 return -ENODEV;
430
431 ret = acpi_bus_get_device(handle, &acpi_dev);
432 if (ret)
433 goto no_power_resource;
434
435 if (!acpi_dev->power.flags.power_resources)
436 goto no_power_resource;
437
438 powered_device = kzalloc(sizeof(*powered_device), GFP_KERNEL);
439 if (!powered_device)
440 return -ENOMEM;
441
442 powered_device->dev = dev;
443 powered_device->handle = handle;
444
445 list = &acpi_dev->power.states[ACPI_STATE_D0].resources;
446
447 for (i = 0; i < list->count; i++) {
448 ret = __acpi_power_resource_register_device(powered_device,
449 list->handles[i]);
450
451 if (ret) {
452 acpi_power_resource_unregister_device(dev, handle);
453 break;
454 }
455 }
456
457 return ret;
458
459 no_power_resource:
460 printk(KERN_WARNING PREFIX "Invalid Power Resource to register!");
461 return -ENODEV;
462 }
463
464 /**
465 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
466 * ACPI 3.0) _PSW (Power State Wake)
467 * @dev: Device to handle.
468 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
469 * @sleep_state: Target sleep state of the system.
470 * @dev_state: Target power state of the device.
471 *
472 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
473 * State Wake) for the device, if present. On failure reset the device's
474 * wakeup.flags.valid flag.
475 *
476 * RETURN VALUE:
477 * 0 if either _DSW or _PSW has been successfully executed
478 * 0 if neither _DSW nor _PSW has been found
479 * -ENODEV if the execution of either _DSW or _PSW has failed
480 */
481 int acpi_device_sleep_wake(struct acpi_device *dev,
482 int enable, int sleep_state, int dev_state)
483 {
484 union acpi_object in_arg[3];
485 struct acpi_object_list arg_list = { 3, in_arg };
486 acpi_status status = AE_OK;
487
488 /*
489 * Try to execute _DSW first.
490 *
491 * Three agruments are needed for the _DSW object:
492 * Argument 0: enable/disable the wake capabilities
493 * Argument 1: target system state
494 * Argument 2: target device state
495 * When _DSW object is called to disable the wake capabilities, maybe
496 * the first argument is filled. The values of the other two agruments
497 * are meaningless.
498 */
499 in_arg[0].type = ACPI_TYPE_INTEGER;
500 in_arg[0].integer.value = enable;
501 in_arg[1].type = ACPI_TYPE_INTEGER;
502 in_arg[1].integer.value = sleep_state;
503 in_arg[2].type = ACPI_TYPE_INTEGER;
504 in_arg[2].integer.value = dev_state;
505 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
506 if (ACPI_SUCCESS(status)) {
507 return 0;
508 } else if (status != AE_NOT_FOUND) {
509 printk(KERN_ERR PREFIX "_DSW execution failed\n");
510 dev->wakeup.flags.valid = 0;
511 return -ENODEV;
512 }
513
514 /* Execute _PSW */
515 arg_list.count = 1;
516 in_arg[0].integer.value = enable;
517 status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
518 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
519 printk(KERN_ERR PREFIX "_PSW execution failed\n");
520 dev->wakeup.flags.valid = 0;
521 return -ENODEV;
522 }
523
524 return 0;
525 }
526
527 /*
528 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
529 * 1. Power on the power resources required for the wakeup device
530 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
531 * State Wake) for the device, if present
532 */
533 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
534 {
535 int i, err = 0;
536
537 if (!dev || !dev->wakeup.flags.valid)
538 return -EINVAL;
539
540 mutex_lock(&acpi_device_lock);
541
542 if (dev->wakeup.prepare_count++)
543 goto out;
544
545 /* Open power resource */
546 for (i = 0; i < dev->wakeup.resources.count; i++) {
547 int ret = acpi_power_on(dev->wakeup.resources.handles[i]);
548 if (ret) {
549 printk(KERN_ERR PREFIX "Transition power state\n");
550 dev->wakeup.flags.valid = 0;
551 err = -ENODEV;
552 goto err_out;
553 }
554 }
555
556 /*
557 * Passing 3 as the third argument below means the device may be placed
558 * in arbitrary power state afterwards.
559 */
560 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
561
562 err_out:
563 if (err)
564 dev->wakeup.prepare_count = 0;
565
566 out:
567 mutex_unlock(&acpi_device_lock);
568 return err;
569 }
570
571 /*
572 * Shutdown a wakeup device, counterpart of above method
573 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
574 * State Wake) for the device, if present
575 * 2. Shutdown down the power resources
576 */
577 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
578 {
579 int i, err = 0;
580
581 if (!dev || !dev->wakeup.flags.valid)
582 return -EINVAL;
583
584 mutex_lock(&acpi_device_lock);
585
586 if (--dev->wakeup.prepare_count > 0)
587 goto out;
588
589 /*
590 * Executing the code below even if prepare_count is already zero when
591 * the function is called may be useful, for example for initialisation.
592 */
593 if (dev->wakeup.prepare_count < 0)
594 dev->wakeup.prepare_count = 0;
595
596 err = acpi_device_sleep_wake(dev, 0, 0, 0);
597 if (err)
598 goto out;
599
600 /* Close power resource */
601 for (i = 0; i < dev->wakeup.resources.count; i++) {
602 int ret = acpi_power_off(dev->wakeup.resources.handles[i]);
603 if (ret) {
604 printk(KERN_ERR PREFIX "Transition power state\n");
605 dev->wakeup.flags.valid = 0;
606 err = -ENODEV;
607 goto out;
608 }
609 }
610
611 out:
612 mutex_unlock(&acpi_device_lock);
613 return err;
614 }
615
616 /* --------------------------------------------------------------------------
617 Device Power Management
618 -------------------------------------------------------------------------- */
619
620 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
621 {
622 int result = 0;
623 struct acpi_handle_list *list = NULL;
624 int list_state = 0;
625 int i = 0;
626
627 if (!device || !state)
628 return -EINVAL;
629
630 /*
631 * We know a device's inferred power state when all the resources
632 * required for a given D-state are 'on'.
633 */
634 for (i = ACPI_STATE_D0; i < ACPI_STATE_D3_HOT; i++) {
635 list = &device->power.states[i].resources;
636 if (list->count < 1)
637 continue;
638
639 result = acpi_power_get_list_state(list, &list_state);
640 if (result)
641 return result;
642
643 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
644 *state = i;
645 return 0;
646 }
647 }
648
649 *state = ACPI_STATE_D3;
650 return 0;
651 }
652
653 int acpi_power_on_resources(struct acpi_device *device, int state)
654 {
655 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3)
656 return -EINVAL;
657
658 return acpi_power_on_list(&device->power.states[state].resources);
659 }
660
661 int acpi_power_transition(struct acpi_device *device, int state)
662 {
663 int result = 0;
664
665 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
666 return -EINVAL;
667
668 if (device->power.state == state)
669 return 0;
670
671 if ((device->power.state < ACPI_STATE_D0)
672 || (device->power.state > ACPI_STATE_D3_COLD))
673 return -ENODEV;
674
675 /* TBD: Resources must be ordered. */
676
677 /*
678 * First we reference all power resources required in the target list
679 * (e.g. so the device doesn't lose power while transitioning). Then,
680 * we dereference all power resources used in the current list.
681 */
682 if (state < ACPI_STATE_D3_COLD)
683 result = acpi_power_on_list(
684 &device->power.states[state].resources);
685
686 if (!result && device->power.state < ACPI_STATE_D3_COLD)
687 acpi_power_off_list(
688 &device->power.states[device->power.state].resources);
689
690 /* We shouldn't change the state unless the above operations succeed. */
691 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
692
693 return result;
694 }
695
696 /* --------------------------------------------------------------------------
697 Driver Interface
698 -------------------------------------------------------------------------- */
699
700 static int acpi_power_add(struct acpi_device *device)
701 {
702 int result = 0, state;
703 acpi_status status = AE_OK;
704 struct acpi_power_resource *resource = NULL;
705 union acpi_object acpi_object;
706 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
707
708
709 if (!device)
710 return -EINVAL;
711
712 resource = kzalloc(sizeof(struct acpi_power_resource), GFP_KERNEL);
713 if (!resource)
714 return -ENOMEM;
715
716 resource->device = device;
717 mutex_init(&resource->resource_lock);
718 strcpy(resource->name, device->pnp.bus_id);
719 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
720 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
721 device->driver_data = resource;
722
723 /* Evalute the object to get the system level and resource order. */
724 status = acpi_evaluate_object(device->handle, NULL, NULL, &buffer);
725 if (ACPI_FAILURE(status)) {
726 result = -ENODEV;
727 goto end;
728 }
729 resource->system_level = acpi_object.power_resource.system_level;
730 resource->order = acpi_object.power_resource.resource_order;
731
732 result = acpi_power_get_state(device->handle, &state);
733 if (result)
734 goto end;
735
736 switch (state) {
737 case ACPI_POWER_RESOURCE_STATE_ON:
738 device->power.state = ACPI_STATE_D0;
739 break;
740 case ACPI_POWER_RESOURCE_STATE_OFF:
741 device->power.state = ACPI_STATE_D3;
742 break;
743 default:
744 device->power.state = ACPI_STATE_UNKNOWN;
745 break;
746 }
747
748 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
749 acpi_device_bid(device), state ? "on" : "off");
750
751 end:
752 if (result)
753 kfree(resource);
754
755 return result;
756 }
757
758 static int acpi_power_remove(struct acpi_device *device, int type)
759 {
760 struct acpi_power_resource *resource;
761
762 if (!device)
763 return -EINVAL;
764
765 resource = acpi_driver_data(device);
766 if (!resource)
767 return -EINVAL;
768
769 kfree(resource);
770
771 return 0;
772 }
773
774 static int acpi_power_resume(struct acpi_device *device)
775 {
776 int result = 0, state;
777 struct acpi_power_resource *resource;
778
779 if (!device)
780 return -EINVAL;
781
782 resource = acpi_driver_data(device);
783 if (!resource)
784 return -EINVAL;
785
786 mutex_lock(&resource->resource_lock);
787
788 result = acpi_power_get_state(device->handle, &state);
789 if (result)
790 goto unlock;
791
792 if (state == ACPI_POWER_RESOURCE_STATE_OFF && resource->ref_count)
793 result = __acpi_power_on(resource);
794
795 unlock:
796 mutex_unlock(&resource->resource_lock);
797
798 return result;
799 }
800
801 int __init acpi_power_init(void)
802 {
803 INIT_LIST_HEAD(&acpi_power_resource_list);
804 return acpi_bus_register_driver(&acpi_power_driver);
805 }