Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / crypto / asymmetric_keys / x509_cert_parser.c
1 /* X.509 certificate parser
2 *
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
10 */
11
12 #define pr_fmt(fmt) "X.509: "fmt
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/oid_registry.h>
18 #include <crypto/public_key.h>
19 #include "x509_parser.h"
20 #include "x509-asn1.h"
21 #include "x509_akid-asn1.h"
22
23 struct x509_parse_context {
24 struct x509_certificate *cert; /* Certificate being constructed */
25 unsigned long data; /* Start of data */
26 const void *cert_start; /* Start of cert content */
27 const void *key; /* Key data */
28 size_t key_size; /* Size of key data */
29 enum OID last_oid; /* Last OID encountered */
30 enum OID algo_oid; /* Algorithm OID */
31 unsigned char nr_mpi; /* Number of MPIs stored */
32 u8 o_size; /* Size of organizationName (O) */
33 u8 cn_size; /* Size of commonName (CN) */
34 u8 email_size; /* Size of emailAddress */
35 u16 o_offset; /* Offset of organizationName (O) */
36 u16 cn_offset; /* Offset of commonName (CN) */
37 u16 email_offset; /* Offset of emailAddress */
38 unsigned raw_akid_size;
39 const void *raw_akid; /* Raw authorityKeyId in ASN.1 */
40 const void *akid_raw_issuer; /* Raw directoryName in authorityKeyId */
41 unsigned akid_raw_issuer_size;
42 };
43
44 /*
45 * Free an X.509 certificate
46 */
47 void x509_free_certificate(struct x509_certificate *cert)
48 {
49 if (cert) {
50 public_key_free(cert->pub);
51 public_key_signature_free(cert->sig);
52 kfree(cert->issuer);
53 kfree(cert->subject);
54 kfree(cert->id);
55 kfree(cert->skid);
56 kfree(cert);
57 }
58 }
59 EXPORT_SYMBOL_GPL(x509_free_certificate);
60
61 /*
62 * Parse an X.509 certificate
63 */
64 struct x509_certificate *x509_cert_parse(const void *data, size_t datalen)
65 {
66 struct x509_certificate *cert;
67 struct x509_parse_context *ctx;
68 struct asymmetric_key_id *kid;
69 long ret;
70
71 ret = -ENOMEM;
72 cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
73 if (!cert)
74 goto error_no_cert;
75 cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
76 if (!cert->pub)
77 goto error_no_ctx;
78 cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL);
79 if (!cert->sig)
80 goto error_no_ctx;
81 ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
82 if (!ctx)
83 goto error_no_ctx;
84
85 ctx->cert = cert;
86 ctx->data = (unsigned long)data;
87
88 /* Attempt to decode the certificate */
89 ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
90 if (ret < 0)
91 goto error_decode;
92
93 /* Decode the AuthorityKeyIdentifier */
94 if (ctx->raw_akid) {
95 pr_devel("AKID: %u %*phN\n",
96 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid);
97 ret = asn1_ber_decoder(&x509_akid_decoder, ctx,
98 ctx->raw_akid, ctx->raw_akid_size);
99 if (ret < 0) {
100 pr_warn("Couldn't decode AuthKeyIdentifier\n");
101 goto error_decode;
102 }
103 }
104
105 ret = -ENOMEM;
106 cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
107 if (!cert->pub->key)
108 goto error_decode;
109
110 cert->pub->keylen = ctx->key_size;
111
112 /* Grab the signature bits */
113 ret = x509_get_sig_params(cert);
114 if (ret < 0)
115 goto error_decode;
116
117 /* Generate cert issuer + serial number key ID */
118 kid = asymmetric_key_generate_id(cert->raw_serial,
119 cert->raw_serial_size,
120 cert->raw_issuer,
121 cert->raw_issuer_size);
122 if (IS_ERR(kid)) {
123 ret = PTR_ERR(kid);
124 goto error_decode;
125 }
126 cert->id = kid;
127
128 /* Detect self-signed certificates */
129 ret = x509_check_for_self_signed(cert);
130 if (ret < 0)
131 goto error_decode;
132
133 kfree(ctx);
134 return cert;
135
136 error_decode:
137 kfree(ctx);
138 error_no_ctx:
139 x509_free_certificate(cert);
140 error_no_cert:
141 return ERR_PTR(ret);
142 }
143 EXPORT_SYMBOL_GPL(x509_cert_parse);
144
145 /*
146 * Note an OID when we find one for later processing when we know how
147 * to interpret it.
148 */
149 int x509_note_OID(void *context, size_t hdrlen,
150 unsigned char tag,
151 const void *value, size_t vlen)
152 {
153 struct x509_parse_context *ctx = context;
154
155 ctx->last_oid = look_up_OID(value, vlen);
156 if (ctx->last_oid == OID__NR) {
157 char buffer[50];
158 sprint_oid(value, vlen, buffer, sizeof(buffer));
159 pr_debug("Unknown OID: [%lu] %s\n",
160 (unsigned long)value - ctx->data, buffer);
161 }
162 return 0;
163 }
164
165 /*
166 * Save the position of the TBS data so that we can check the signature over it
167 * later.
168 */
169 int x509_note_tbs_certificate(void *context, size_t hdrlen,
170 unsigned char tag,
171 const void *value, size_t vlen)
172 {
173 struct x509_parse_context *ctx = context;
174
175 pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n",
176 hdrlen, tag, (unsigned long)value - ctx->data, vlen);
177
178 ctx->cert->tbs = value - hdrlen;
179 ctx->cert->tbs_size = vlen + hdrlen;
180 return 0;
181 }
182
183 /*
184 * Record the public key algorithm
185 */
186 int x509_note_pkey_algo(void *context, size_t hdrlen,
187 unsigned char tag,
188 const void *value, size_t vlen)
189 {
190 struct x509_parse_context *ctx = context;
191
192 pr_debug("PubKey Algo: %u\n", ctx->last_oid);
193
194 switch (ctx->last_oid) {
195 case OID_md2WithRSAEncryption:
196 case OID_md3WithRSAEncryption:
197 default:
198 return -ENOPKG; /* Unsupported combination */
199
200 case OID_md4WithRSAEncryption:
201 ctx->cert->sig->hash_algo = "md4";
202 ctx->cert->sig->pkey_algo = "rsa";
203 break;
204
205 case OID_sha1WithRSAEncryption:
206 ctx->cert->sig->hash_algo = "sha1";
207 ctx->cert->sig->pkey_algo = "rsa";
208 break;
209
210 case OID_sha256WithRSAEncryption:
211 ctx->cert->sig->hash_algo = "sha256";
212 ctx->cert->sig->pkey_algo = "rsa";
213 break;
214
215 case OID_sha384WithRSAEncryption:
216 ctx->cert->sig->hash_algo = "sha384";
217 ctx->cert->sig->pkey_algo = "rsa";
218 break;
219
220 case OID_sha512WithRSAEncryption:
221 ctx->cert->sig->hash_algo = "sha512";
222 ctx->cert->sig->pkey_algo = "rsa";
223 break;
224
225 case OID_sha224WithRSAEncryption:
226 ctx->cert->sig->hash_algo = "sha224";
227 ctx->cert->sig->pkey_algo = "rsa";
228 break;
229 }
230
231 ctx->algo_oid = ctx->last_oid;
232 return 0;
233 }
234
235 /*
236 * Note the whereabouts and type of the signature.
237 */
238 int x509_note_signature(void *context, size_t hdrlen,
239 unsigned char tag,
240 const void *value, size_t vlen)
241 {
242 struct x509_parse_context *ctx = context;
243
244 pr_debug("Signature type: %u size %zu\n", ctx->last_oid, vlen);
245
246 if (ctx->last_oid != ctx->algo_oid) {
247 pr_warn("Got cert with pkey (%u) and sig (%u) algorithm OIDs\n",
248 ctx->algo_oid, ctx->last_oid);
249 return -EINVAL;
250 }
251
252 ctx->cert->raw_sig = value;
253 ctx->cert->raw_sig_size = vlen;
254 return 0;
255 }
256
257 /*
258 * Note the certificate serial number
259 */
260 int x509_note_serial(void *context, size_t hdrlen,
261 unsigned char tag,
262 const void *value, size_t vlen)
263 {
264 struct x509_parse_context *ctx = context;
265 ctx->cert->raw_serial = value;
266 ctx->cert->raw_serial_size = vlen;
267 return 0;
268 }
269
270 /*
271 * Note some of the name segments from which we'll fabricate a name.
272 */
273 int x509_extract_name_segment(void *context, size_t hdrlen,
274 unsigned char tag,
275 const void *value, size_t vlen)
276 {
277 struct x509_parse_context *ctx = context;
278
279 switch (ctx->last_oid) {
280 case OID_commonName:
281 ctx->cn_size = vlen;
282 ctx->cn_offset = (unsigned long)value - ctx->data;
283 break;
284 case OID_organizationName:
285 ctx->o_size = vlen;
286 ctx->o_offset = (unsigned long)value - ctx->data;
287 break;
288 case OID_email_address:
289 ctx->email_size = vlen;
290 ctx->email_offset = (unsigned long)value - ctx->data;
291 break;
292 default:
293 break;
294 }
295
296 return 0;
297 }
298
299 /*
300 * Fabricate and save the issuer and subject names
301 */
302 static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen,
303 unsigned char tag,
304 char **_name, size_t vlen)
305 {
306 const void *name, *data = (const void *)ctx->data;
307 size_t namesize;
308 char *buffer;
309
310 if (*_name)
311 return -EINVAL;
312
313 /* Empty name string if no material */
314 if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) {
315 buffer = kmalloc(1, GFP_KERNEL);
316 if (!buffer)
317 return -ENOMEM;
318 buffer[0] = 0;
319 goto done;
320 }
321
322 if (ctx->cn_size && ctx->o_size) {
323 /* Consider combining O and CN, but use only the CN if it is
324 * prefixed by the O, or a significant portion thereof.
325 */
326 namesize = ctx->cn_size;
327 name = data + ctx->cn_offset;
328 if (ctx->cn_size >= ctx->o_size &&
329 memcmp(data + ctx->cn_offset, data + ctx->o_offset,
330 ctx->o_size) == 0)
331 goto single_component;
332 if (ctx->cn_size >= 7 &&
333 ctx->o_size >= 7 &&
334 memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0)
335 goto single_component;
336
337 buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1,
338 GFP_KERNEL);
339 if (!buffer)
340 return -ENOMEM;
341
342 memcpy(buffer,
343 data + ctx->o_offset, ctx->o_size);
344 buffer[ctx->o_size + 0] = ':';
345 buffer[ctx->o_size + 1] = ' ';
346 memcpy(buffer + ctx->o_size + 2,
347 data + ctx->cn_offset, ctx->cn_size);
348 buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
349 goto done;
350
351 } else if (ctx->cn_size) {
352 namesize = ctx->cn_size;
353 name = data + ctx->cn_offset;
354 } else if (ctx->o_size) {
355 namesize = ctx->o_size;
356 name = data + ctx->o_offset;
357 } else {
358 namesize = ctx->email_size;
359 name = data + ctx->email_offset;
360 }
361
362 single_component:
363 buffer = kmalloc(namesize + 1, GFP_KERNEL);
364 if (!buffer)
365 return -ENOMEM;
366 memcpy(buffer, name, namesize);
367 buffer[namesize] = 0;
368
369 done:
370 *_name = buffer;
371 ctx->cn_size = 0;
372 ctx->o_size = 0;
373 ctx->email_size = 0;
374 return 0;
375 }
376
377 int x509_note_issuer(void *context, size_t hdrlen,
378 unsigned char tag,
379 const void *value, size_t vlen)
380 {
381 struct x509_parse_context *ctx = context;
382 ctx->cert->raw_issuer = value;
383 ctx->cert->raw_issuer_size = vlen;
384 return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
385 }
386
387 int x509_note_subject(void *context, size_t hdrlen,
388 unsigned char tag,
389 const void *value, size_t vlen)
390 {
391 struct x509_parse_context *ctx = context;
392 ctx->cert->raw_subject = value;
393 ctx->cert->raw_subject_size = vlen;
394 return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
395 }
396
397 /*
398 * Extract the data for the public key algorithm
399 */
400 int x509_extract_key_data(void *context, size_t hdrlen,
401 unsigned char tag,
402 const void *value, size_t vlen)
403 {
404 struct x509_parse_context *ctx = context;
405
406 if (ctx->last_oid != OID_rsaEncryption)
407 return -ENOPKG;
408
409 ctx->cert->pub->pkey_algo = "rsa";
410
411 /* Discard the BIT STRING metadata */
412 ctx->key = value + 1;
413 ctx->key_size = vlen - 1;
414 return 0;
415 }
416
417 /* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
418 #define SEQ_TAG_KEYID (ASN1_CONT << 6)
419
420 /*
421 * Process certificate extensions that are used to qualify the certificate.
422 */
423 int x509_process_extension(void *context, size_t hdrlen,
424 unsigned char tag,
425 const void *value, size_t vlen)
426 {
427 struct x509_parse_context *ctx = context;
428 struct asymmetric_key_id *kid;
429 const unsigned char *v = value;
430
431 pr_debug("Extension: %u\n", ctx->last_oid);
432
433 if (ctx->last_oid == OID_subjectKeyIdentifier) {
434 /* Get hold of the key fingerprint */
435 if (ctx->cert->skid || vlen < 3)
436 return -EBADMSG;
437 if (v[0] != ASN1_OTS || v[1] != vlen - 2)
438 return -EBADMSG;
439 v += 2;
440 vlen -= 2;
441
442 ctx->cert->raw_skid_size = vlen;
443 ctx->cert->raw_skid = v;
444 kid = asymmetric_key_generate_id(v, vlen, "", 0);
445 if (IS_ERR(kid))
446 return PTR_ERR(kid);
447 ctx->cert->skid = kid;
448 pr_debug("subjkeyid %*phN\n", kid->len, kid->data);
449 return 0;
450 }
451
452 if (ctx->last_oid == OID_authorityKeyIdentifier) {
453 /* Get hold of the CA key fingerprint */
454 ctx->raw_akid = v;
455 ctx->raw_akid_size = vlen;
456 return 0;
457 }
458
459 return 0;
460 }
461
462 /**
463 * x509_decode_time - Decode an X.509 time ASN.1 object
464 * @_t: The time to fill in
465 * @hdrlen: The length of the object header
466 * @tag: The object tag
467 * @value: The object value
468 * @vlen: The size of the object value
469 *
470 * Decode an ASN.1 universal time or generalised time field into a struct the
471 * kernel can handle and check it for validity. The time is decoded thus:
472 *
473 * [RFC5280 §4.1.2.5]
474 * CAs conforming to this profile MUST always encode certificate validity
475 * dates through the year 2049 as UTCTime; certificate validity dates in
476 * 2050 or later MUST be encoded as GeneralizedTime. Conforming
477 * applications MUST be able to process validity dates that are encoded in
478 * either UTCTime or GeneralizedTime.
479 */
480 int x509_decode_time(time64_t *_t, size_t hdrlen,
481 unsigned char tag,
482 const unsigned char *value, size_t vlen)
483 {
484 static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30,
485 31, 31, 30, 31, 30, 31 };
486 const unsigned char *p = value;
487 unsigned year, mon, day, hour, min, sec, mon_len;
488
489 #define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; })
490 #define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; })
491
492 if (tag == ASN1_UNITIM) {
493 /* UTCTime: YYMMDDHHMMSSZ */
494 if (vlen != 13)
495 goto unsupported_time;
496 year = DD2bin(p);
497 if (year >= 50)
498 year += 1900;
499 else
500 year += 2000;
501 } else if (tag == ASN1_GENTIM) {
502 /* GenTime: YYYYMMDDHHMMSSZ */
503 if (vlen != 15)
504 goto unsupported_time;
505 year = DD2bin(p) * 100 + DD2bin(p);
506 if (year >= 1950 && year <= 2049)
507 goto invalid_time;
508 } else {
509 goto unsupported_time;
510 }
511
512 mon = DD2bin(p);
513 day = DD2bin(p);
514 hour = DD2bin(p);
515 min = DD2bin(p);
516 sec = DD2bin(p);
517
518 if (*p != 'Z')
519 goto unsupported_time;
520
521 if (year < 1970 ||
522 mon < 1 || mon > 12)
523 goto invalid_time;
524
525 mon_len = month_lengths[mon - 1];
526 if (mon == 2) {
527 if (year % 4 == 0) {
528 mon_len = 29;
529 if (year % 100 == 0) {
530 mon_len = 28;
531 if (year % 400 == 0)
532 mon_len = 29;
533 }
534 }
535 }
536
537 if (day < 1 || day > mon_len ||
538 hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
539 min > 59 ||
540 sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
541 goto invalid_time;
542
543 *_t = mktime64(year, mon, day, hour, min, sec);
544 return 0;
545
546 unsupported_time:
547 pr_debug("Got unsupported time [tag %02x]: '%*phN'\n",
548 tag, (int)vlen, value);
549 return -EBADMSG;
550 invalid_time:
551 pr_debug("Got invalid time [tag %02x]: '%*phN'\n",
552 tag, (int)vlen, value);
553 return -EBADMSG;
554 }
555 EXPORT_SYMBOL_GPL(x509_decode_time);
556
557 int x509_note_not_before(void *context, size_t hdrlen,
558 unsigned char tag,
559 const void *value, size_t vlen)
560 {
561 struct x509_parse_context *ctx = context;
562 return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen);
563 }
564
565 int x509_note_not_after(void *context, size_t hdrlen,
566 unsigned char tag,
567 const void *value, size_t vlen)
568 {
569 struct x509_parse_context *ctx = context;
570 return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen);
571 }
572
573 /*
574 * Note a key identifier-based AuthorityKeyIdentifier
575 */
576 int x509_akid_note_kid(void *context, size_t hdrlen,
577 unsigned char tag,
578 const void *value, size_t vlen)
579 {
580 struct x509_parse_context *ctx = context;
581 struct asymmetric_key_id *kid;
582
583 pr_debug("AKID: keyid: %*phN\n", (int)vlen, value);
584
585 if (ctx->cert->sig->auth_ids[1])
586 return 0;
587
588 kid = asymmetric_key_generate_id(value, vlen, "", 0);
589 if (IS_ERR(kid))
590 return PTR_ERR(kid);
591 pr_debug("authkeyid %*phN\n", kid->len, kid->data);
592 ctx->cert->sig->auth_ids[1] = kid;
593 return 0;
594 }
595
596 /*
597 * Note a directoryName in an AuthorityKeyIdentifier
598 */
599 int x509_akid_note_name(void *context, size_t hdrlen,
600 unsigned char tag,
601 const void *value, size_t vlen)
602 {
603 struct x509_parse_context *ctx = context;
604
605 pr_debug("AKID: name: %*phN\n", (int)vlen, value);
606
607 ctx->akid_raw_issuer = value;
608 ctx->akid_raw_issuer_size = vlen;
609 return 0;
610 }
611
612 /*
613 * Note a serial number in an AuthorityKeyIdentifier
614 */
615 int x509_akid_note_serial(void *context, size_t hdrlen,
616 unsigned char tag,
617 const void *value, size_t vlen)
618 {
619 struct x509_parse_context *ctx = context;
620 struct asymmetric_key_id *kid;
621
622 pr_debug("AKID: serial: %*phN\n", (int)vlen, value);
623
624 if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0])
625 return 0;
626
627 kid = asymmetric_key_generate_id(value,
628 vlen,
629 ctx->akid_raw_issuer,
630 ctx->akid_raw_issuer_size);
631 if (IS_ERR(kid))
632 return PTR_ERR(kid);
633
634 pr_debug("authkeyid %*phN\n", kid->len, kid->data);
635 ctx->cert->sig->auth_ids[0] = kid;
636 return 0;
637 }