Merge branch 'upstream-jeff' of git://git.kernel.org/pub/scm/linux/kernel/git/romieu...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 #include <linux/scatterlist.h>
34
35 /*
36 * for max sense size
37 */
38 #include <scsi/scsi_cmnd.h>
39
40 static void blk_unplug_work(struct work_struct *work);
41 static void blk_unplug_timeout(unsigned long data);
42 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
43 static void init_request_from_bio(struct request *req, struct bio *bio);
44 static int __make_request(struct request_queue *q, struct bio *bio);
45 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
46 static void blk_recalc_rq_segments(struct request *rq);
47 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 static struct kmem_cache *requestq_cachep;
59
60 /*
61 * For io context allocations
62 */
63 static struct kmem_cache *iocontext_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 unsigned long blk_max_low_pfn, blk_max_pfn;
71
72 EXPORT_SYMBOL(blk_max_low_pfn);
73 EXPORT_SYMBOL(blk_max_pfn);
74
75 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
77 /* Amount of time in which a process may batch requests */
78 #define BLK_BATCH_TIME (HZ/50UL)
79
80 /* Number of requests a "batching" process may submit */
81 #define BLK_BATCH_REQ 32
82
83 /*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 {
90 return q->nr_congestion_on;
91 }
92
93 /*
94 * The threshold at which a queue is considered to be uncongested
95 */
96 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 {
98 return q->nr_congestion_off;
99 }
100
101 static void blk_queue_congestion_threshold(struct request_queue *q)
102 {
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114 }
115
116 /**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 {
127 struct backing_dev_info *ret = NULL;
128 struct request_queue *q = bdev_get_queue(bdev);
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133 }
134 EXPORT_SYMBOL(blk_get_backing_dev_info);
135
136 /**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
147 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 {
149 q->prep_rq_fn = pfn;
150 }
151
152 EXPORT_SYMBOL(blk_queue_prep_rq);
153
154 /**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
170 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 {
172 q->merge_bvec_fn = mbfn;
173 }
174
175 EXPORT_SYMBOL(blk_queue_merge_bvec);
176
177 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 {
179 q->softirq_done_fn = fn;
180 }
181
182 EXPORT_SYMBOL(blk_queue_softirq_done);
183
184 /**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
206 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
207 {
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
229 INIT_WORK(&q->unplug_work, blk_unplug_work);
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
238 }
239
240 EXPORT_SYMBOL(blk_queue_make_request);
241
242 static void rq_init(struct request_queue *q, struct request *rq)
243 {
244 INIT_LIST_HEAD(&rq->queuelist);
245 INIT_LIST_HEAD(&rq->donelist);
246
247 rq->errors = 0;
248 rq->bio = rq->biotail = NULL;
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
251 rq->ioprio = 0;
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
258 rq->nr_phys_segments = 0;
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
262 rq->completion_data = NULL;
263 rq->next_rq = NULL;
264 }
265
266 /**
267 * blk_queue_ordered - does this queue support ordered writes
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
279 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
280 prepare_flush_fn *prepare_flush_fn)
281 {
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
297 }
298
299 q->ordered = ordered;
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
304 }
305
306 EXPORT_SYMBOL(blk_queue_ordered);
307
308 /*
309 * Cache flushing for ordered writes handling
310 */
311 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
312 {
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
316 }
317
318 unsigned blk_ordered_req_seq(struct request *rq)
319 {
320 struct request_queue *q = rq->q;
321
322 BUG_ON(q->ordseq == 0);
323
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
330
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
345 }
346
347 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
348 {
349 struct request *rq;
350 int uptodate;
351
352 if (error && !q->orderr)
353 q->orderr = error;
354
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
357
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
360
361 /*
362 * Okay, sequence complete.
363 */
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
367
368 q->ordseq = 0;
369 rq = q->orig_bar_rq;
370
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
373 }
374
375 static void pre_flush_end_io(struct request *rq, int error)
376 {
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379 }
380
381 static void bar_end_io(struct request *rq, int error)
382 {
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385 }
386
387 static void post_flush_end_io(struct request *rq, int error)
388 {
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391 }
392
393 static void queue_flush(struct request_queue *q, unsigned which)
394 {
395 struct request *rq;
396 rq_end_io_fn *end_io;
397
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
404 }
405
406 rq->cmd_flags = REQ_HARDBARRIER;
407 rq_init(q, rq);
408 rq->elevator_private = NULL;
409 rq->elevator_private2 = NULL;
410 rq->rq_disk = q->bar_rq.rq_disk;
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
415 }
416
417 static inline struct request *start_ordered(struct request_queue *q,
418 struct request *rq)
419 {
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
430 rq->cmd_flags = 0;
431 rq_init(q, rq);
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
436 rq->elevator_private = NULL;
437 rq->elevator_private2 = NULL;
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
449 */
450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
462
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
469 }
470
471 int blk_do_ordered(struct request_queue *q, struct request **rqp)
472 {
473 struct request *rq = *rqp;
474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
475
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
479
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
496
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
506 if (q->ordered & QUEUE_ORDERED_TAG) {
507 /* Ordered by tag. Blocking the next barrier is enough. */
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
515 }
516
517 return 1;
518 }
519
520 static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
522 {
523 struct request_queue *q = rq->q;
524
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
530
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
536
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
540 bio_endio(bio, error);
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
550 }
551
552 /**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
561 * buffers for doing I/O to pages residing above @page.
562 **/
563 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
564 {
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569 #if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576 #else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580 #endif
581 if (dma) {
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
584 q->bounce_pfn = bounce_pfn;
585 }
586 }
587
588 EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590 /**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
599 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
600 {
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
612 }
613
614 EXPORT_SYMBOL(blk_queue_max_sectors);
615
616 /**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
626 void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
628 {
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635 }
636
637 EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639 /**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
650 void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
652 {
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659 }
660
661 EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663 /**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
672 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
673 {
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680 }
681
682 EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684 /**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
695 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
696 {
697 q->hardsect_size = size;
698 }
699
700 EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702 /*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707 /**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
712 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
713 {
714 /* zero is "infinity" */
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
724 }
725
726 EXPORT_SYMBOL(blk_queue_stack_limits);
727
728 /**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
733 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734 {
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741 }
742
743 EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745 /**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
755 void blk_queue_dma_alignment(struct request_queue *q, int mask)
756 {
757 q->dma_alignment = mask;
758 }
759
760 EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762 /**
763 * blk_queue_find_tag - find a request by its tag and queue
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
773 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
774 {
775 return blk_map_queue_find_tag(q->queue_tags, tag);
776 }
777
778 EXPORT_SYMBOL(blk_queue_find_tag);
779
780 /**
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
783 *
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787 static int __blk_free_tags(struct blk_queue_tag *bqt)
788 {
789 int retval;
790
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
803
804 }
805
806 return retval;
807 }
808
809 /**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
817 static void __blk_queue_free_tags(struct request_queue *q)
818 {
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828 }
829
830
831 /**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839 void blk_free_tags(struct blk_queue_tag *bqt)
840 {
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843 }
844 EXPORT_SYMBOL(blk_free_tags);
845
846 /**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
854 void blk_queue_free_tags(struct request_queue *q)
855 {
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857 }
858
859 EXPORT_SYMBOL(blk_queue_free_tags);
860
861 static int
862 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
863 {
864 struct request **tag_index;
865 unsigned long *tag_map;
866 int nr_ulongs;
867
868 if (q && depth > q->nr_requests * 2) {
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
875 if (!tag_index)
876 goto fail;
877
878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
880 if (!tag_map)
881 goto fail;
882
883 tags->real_max_depth = depth;
884 tags->max_depth = depth;
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
888 return 0;
889 fail:
890 kfree(tag_index);
891 return -ENOMEM;
892 }
893
894 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896 {
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910 fail:
911 kfree(tags);
912 return NULL;
913 }
914
915 /**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920 struct blk_queue_tag *blk_init_tags(int depth)
921 {
922 return __blk_queue_init_tags(NULL, depth);
923 }
924 EXPORT_SYMBOL(blk_init_tags);
925
926 /**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
932 int blk_queue_init_tags(struct request_queue *q, int depth,
933 struct blk_queue_tag *tags)
934 {
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
940 tags = __blk_queue_init_tags(q, depth);
941
942 if (!tags)
943 goto fail;
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958 fail:
959 kfree(tags);
960 return -ENOMEM;
961 }
962
963 EXPORT_SYMBOL(blk_queue_init_tags);
964
965 /**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
973 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
974 {
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
978 int max_depth, nr_ulongs;
979
980 if (!bqt)
981 return -ENXIO;
982
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
1006 max_depth = bqt->real_max_depth;
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018 }
1019
1020 EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022 /**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
1036 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1037 {
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
1043 if (unlikely(tag >= bqt->real_max_depth))
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1048 return;
1049
1050 list_del_init(&rq->queuelist);
1051 rq->cmd_flags &= ~REQ_QUEUED;
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1057
1058 bqt->tag_index[tag] = NULL;
1059
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1072 bqt->busy--;
1073 }
1074
1075 EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077 /**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
1095 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1096 {
1097 struct blk_queue_tag *bqt = q->queue_tags;
1098 int tag;
1099
1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1101 printk(KERN_ERR
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1105 BUG();
1106 }
1107
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1116
1117 } while (test_and_set_bit(tag, bqt->tag_map));
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1122
1123 rq->cmd_flags |= REQ_QUEUED;
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130 }
1131
1132 EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134 /**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
1146 void blk_queue_invalidate_tags(struct request_queue *q)
1147 {
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1158 list_del_init(&rq->queuelist);
1159 rq->cmd_flags &= ~REQ_QUEUED;
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
1163 rq->cmd_flags &= ~REQ_STARTED;
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166 }
1167
1168 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1170 void blk_dump_rq_flags(struct request *rq, char *msg)
1171 {
1172 int bit;
1173
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
1183 if (blk_pc_request(rq)) {
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189 }
1190
1191 EXPORT_SYMBOL(blk_dump_rq_flags);
1192
1193 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1194 {
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205 }
1206 EXPORT_SYMBOL(blk_recount_segments);
1207
1208 static void blk_recalc_rq_segments(struct request *rq)
1209 {
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1214 struct bio_vec *bv, *bvprv = NULL;
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
1218 struct req_iterator iter;
1219 int high, highprv = 1;
1220 struct request_queue *q = rq->q;
1221
1222 if (!rq->bio)
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1228 rq_for_each_segment(bv, rq, iter) {
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252 new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1255 hw_seg_size += bv->bv_len;
1256 else {
1257 new_hw_segment:
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1278 }
1279
1280 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1281 struct bio *nxt)
1282 {
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299 }
1300
1301 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1302 struct bio *nxt)
1303 {
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1310 return 0;
1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1312 return 0;
1313
1314 return 1;
1315 }
1316
1317 /*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
1321 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1322 struct scatterlist *sglist)
1323 {
1324 struct bio_vec *bvec, *bvprv;
1325 struct req_iterator iter;
1326 struct scatterlist *sg;
1327 int nsegs, cluster;
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
1336 sg = NULL;
1337 rq_for_each_segment(bvec, rq, iter) {
1338 int nbytes = bvec->bv_len;
1339
1340 if (bvprv && cluster) {
1341 if (sg->length + nbytes > q->max_segment_size)
1342 goto new_segment;
1343
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1348
1349 sg->length += nbytes;
1350 } else {
1351 new_segment:
1352 if (!sg)
1353 sg = sglist;
1354 else {
1355 /*
1356 * If the driver previously mapped a shorter
1357 * list, we could see a termination bit
1358 * prematurely unless it fully inits the sg
1359 * table on each mapping. We KNOW that there
1360 * must be more entries here or the driver
1361 * would be buggy, so force clear the
1362 * termination bit to avoid doing a full
1363 * sg_init_table() in drivers for each command.
1364 */
1365 sg->page_link &= ~0x02;
1366 sg = sg_next(sg);
1367 }
1368
1369 sg_set_page(sg, bvec->bv_page);
1370 sg->length = nbytes;
1371 sg->offset = bvec->bv_offset;
1372 nsegs++;
1373 }
1374 bvprv = bvec;
1375 } /* segments in rq */
1376
1377 if (sg)
1378 __sg_mark_end(sg);
1379
1380 return nsegs;
1381 }
1382
1383 EXPORT_SYMBOL(blk_rq_map_sg);
1384
1385 /*
1386 * the standard queue merge functions, can be overridden with device
1387 * specific ones if so desired
1388 */
1389
1390 static inline int ll_new_mergeable(struct request_queue *q,
1391 struct request *req,
1392 struct bio *bio)
1393 {
1394 int nr_phys_segs = bio_phys_segments(q, bio);
1395
1396 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1397 req->cmd_flags |= REQ_NOMERGE;
1398 if (req == q->last_merge)
1399 q->last_merge = NULL;
1400 return 0;
1401 }
1402
1403 /*
1404 * A hw segment is just getting larger, bump just the phys
1405 * counter.
1406 */
1407 req->nr_phys_segments += nr_phys_segs;
1408 return 1;
1409 }
1410
1411 static inline int ll_new_hw_segment(struct request_queue *q,
1412 struct request *req,
1413 struct bio *bio)
1414 {
1415 int nr_hw_segs = bio_hw_segments(q, bio);
1416 int nr_phys_segs = bio_phys_segments(q, bio);
1417
1418 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1419 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1420 req->cmd_flags |= REQ_NOMERGE;
1421 if (req == q->last_merge)
1422 q->last_merge = NULL;
1423 return 0;
1424 }
1425
1426 /*
1427 * This will form the start of a new hw segment. Bump both
1428 * counters.
1429 */
1430 req->nr_hw_segments += nr_hw_segs;
1431 req->nr_phys_segments += nr_phys_segs;
1432 return 1;
1433 }
1434
1435 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1436 struct bio *bio)
1437 {
1438 unsigned short max_sectors;
1439 int len;
1440
1441 if (unlikely(blk_pc_request(req)))
1442 max_sectors = q->max_hw_sectors;
1443 else
1444 max_sectors = q->max_sectors;
1445
1446 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1447 req->cmd_flags |= REQ_NOMERGE;
1448 if (req == q->last_merge)
1449 q->last_merge = NULL;
1450 return 0;
1451 }
1452 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1453 blk_recount_segments(q, req->biotail);
1454 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1455 blk_recount_segments(q, bio);
1456 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1457 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1458 !BIOVEC_VIRT_OVERSIZE(len)) {
1459 int mergeable = ll_new_mergeable(q, req, bio);
1460
1461 if (mergeable) {
1462 if (req->nr_hw_segments == 1)
1463 req->bio->bi_hw_front_size = len;
1464 if (bio->bi_hw_segments == 1)
1465 bio->bi_hw_back_size = len;
1466 }
1467 return mergeable;
1468 }
1469
1470 return ll_new_hw_segment(q, req, bio);
1471 }
1472
1473 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1474 struct bio *bio)
1475 {
1476 unsigned short max_sectors;
1477 int len;
1478
1479 if (unlikely(blk_pc_request(req)))
1480 max_sectors = q->max_hw_sectors;
1481 else
1482 max_sectors = q->max_sectors;
1483
1484
1485 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1486 req->cmd_flags |= REQ_NOMERGE;
1487 if (req == q->last_merge)
1488 q->last_merge = NULL;
1489 return 0;
1490 }
1491 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1492 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1493 blk_recount_segments(q, bio);
1494 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1495 blk_recount_segments(q, req->bio);
1496 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1497 !BIOVEC_VIRT_OVERSIZE(len)) {
1498 int mergeable = ll_new_mergeable(q, req, bio);
1499
1500 if (mergeable) {
1501 if (bio->bi_hw_segments == 1)
1502 bio->bi_hw_front_size = len;
1503 if (req->nr_hw_segments == 1)
1504 req->biotail->bi_hw_back_size = len;
1505 }
1506 return mergeable;
1507 }
1508
1509 return ll_new_hw_segment(q, req, bio);
1510 }
1511
1512 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1513 struct request *next)
1514 {
1515 int total_phys_segments;
1516 int total_hw_segments;
1517
1518 /*
1519 * First check if the either of the requests are re-queued
1520 * requests. Can't merge them if they are.
1521 */
1522 if (req->special || next->special)
1523 return 0;
1524
1525 /*
1526 * Will it become too large?
1527 */
1528 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1529 return 0;
1530
1531 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1532 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1533 total_phys_segments--;
1534
1535 if (total_phys_segments > q->max_phys_segments)
1536 return 0;
1537
1538 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1539 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1540 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1541 /*
1542 * propagate the combined length to the end of the requests
1543 */
1544 if (req->nr_hw_segments == 1)
1545 req->bio->bi_hw_front_size = len;
1546 if (next->nr_hw_segments == 1)
1547 next->biotail->bi_hw_back_size = len;
1548 total_hw_segments--;
1549 }
1550
1551 if (total_hw_segments > q->max_hw_segments)
1552 return 0;
1553
1554 /* Merge is OK... */
1555 req->nr_phys_segments = total_phys_segments;
1556 req->nr_hw_segments = total_hw_segments;
1557 return 1;
1558 }
1559
1560 /*
1561 * "plug" the device if there are no outstanding requests: this will
1562 * force the transfer to start only after we have put all the requests
1563 * on the list.
1564 *
1565 * This is called with interrupts off and no requests on the queue and
1566 * with the queue lock held.
1567 */
1568 void blk_plug_device(struct request_queue *q)
1569 {
1570 WARN_ON(!irqs_disabled());
1571
1572 /*
1573 * don't plug a stopped queue, it must be paired with blk_start_queue()
1574 * which will restart the queueing
1575 */
1576 if (blk_queue_stopped(q))
1577 return;
1578
1579 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1580 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1581 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1582 }
1583 }
1584
1585 EXPORT_SYMBOL(blk_plug_device);
1586
1587 /*
1588 * remove the queue from the plugged list, if present. called with
1589 * queue lock held and interrupts disabled.
1590 */
1591 int blk_remove_plug(struct request_queue *q)
1592 {
1593 WARN_ON(!irqs_disabled());
1594
1595 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1596 return 0;
1597
1598 del_timer(&q->unplug_timer);
1599 return 1;
1600 }
1601
1602 EXPORT_SYMBOL(blk_remove_plug);
1603
1604 /*
1605 * remove the plug and let it rip..
1606 */
1607 void __generic_unplug_device(struct request_queue *q)
1608 {
1609 if (unlikely(blk_queue_stopped(q)))
1610 return;
1611
1612 if (!blk_remove_plug(q))
1613 return;
1614
1615 q->request_fn(q);
1616 }
1617 EXPORT_SYMBOL(__generic_unplug_device);
1618
1619 /**
1620 * generic_unplug_device - fire a request queue
1621 * @q: The &struct request_queue in question
1622 *
1623 * Description:
1624 * Linux uses plugging to build bigger requests queues before letting
1625 * the device have at them. If a queue is plugged, the I/O scheduler
1626 * is still adding and merging requests on the queue. Once the queue
1627 * gets unplugged, the request_fn defined for the queue is invoked and
1628 * transfers started.
1629 **/
1630 void generic_unplug_device(struct request_queue *q)
1631 {
1632 spin_lock_irq(q->queue_lock);
1633 __generic_unplug_device(q);
1634 spin_unlock_irq(q->queue_lock);
1635 }
1636 EXPORT_SYMBOL(generic_unplug_device);
1637
1638 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1639 struct page *page)
1640 {
1641 struct request_queue *q = bdi->unplug_io_data;
1642
1643 /*
1644 * devices don't necessarily have an ->unplug_fn defined
1645 */
1646 if (q->unplug_fn) {
1647 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1648 q->rq.count[READ] + q->rq.count[WRITE]);
1649
1650 q->unplug_fn(q);
1651 }
1652 }
1653
1654 static void blk_unplug_work(struct work_struct *work)
1655 {
1656 struct request_queue *q =
1657 container_of(work, struct request_queue, unplug_work);
1658
1659 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1660 q->rq.count[READ] + q->rq.count[WRITE]);
1661
1662 q->unplug_fn(q);
1663 }
1664
1665 static void blk_unplug_timeout(unsigned long data)
1666 {
1667 struct request_queue *q = (struct request_queue *)data;
1668
1669 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1670 q->rq.count[READ] + q->rq.count[WRITE]);
1671
1672 kblockd_schedule_work(&q->unplug_work);
1673 }
1674
1675 /**
1676 * blk_start_queue - restart a previously stopped queue
1677 * @q: The &struct request_queue in question
1678 *
1679 * Description:
1680 * blk_start_queue() will clear the stop flag on the queue, and call
1681 * the request_fn for the queue if it was in a stopped state when
1682 * entered. Also see blk_stop_queue(). Queue lock must be held.
1683 **/
1684 void blk_start_queue(struct request_queue *q)
1685 {
1686 WARN_ON(!irqs_disabled());
1687
1688 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1689
1690 /*
1691 * one level of recursion is ok and is much faster than kicking
1692 * the unplug handling
1693 */
1694 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1695 q->request_fn(q);
1696 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1697 } else {
1698 blk_plug_device(q);
1699 kblockd_schedule_work(&q->unplug_work);
1700 }
1701 }
1702
1703 EXPORT_SYMBOL(blk_start_queue);
1704
1705 /**
1706 * blk_stop_queue - stop a queue
1707 * @q: The &struct request_queue in question
1708 *
1709 * Description:
1710 * The Linux block layer assumes that a block driver will consume all
1711 * entries on the request queue when the request_fn strategy is called.
1712 * Often this will not happen, because of hardware limitations (queue
1713 * depth settings). If a device driver gets a 'queue full' response,
1714 * or if it simply chooses not to queue more I/O at one point, it can
1715 * call this function to prevent the request_fn from being called until
1716 * the driver has signalled it's ready to go again. This happens by calling
1717 * blk_start_queue() to restart queue operations. Queue lock must be held.
1718 **/
1719 void blk_stop_queue(struct request_queue *q)
1720 {
1721 blk_remove_plug(q);
1722 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1723 }
1724 EXPORT_SYMBOL(blk_stop_queue);
1725
1726 /**
1727 * blk_sync_queue - cancel any pending callbacks on a queue
1728 * @q: the queue
1729 *
1730 * Description:
1731 * The block layer may perform asynchronous callback activity
1732 * on a queue, such as calling the unplug function after a timeout.
1733 * A block device may call blk_sync_queue to ensure that any
1734 * such activity is cancelled, thus allowing it to release resources
1735 * that the callbacks might use. The caller must already have made sure
1736 * that its ->make_request_fn will not re-add plugging prior to calling
1737 * this function.
1738 *
1739 */
1740 void blk_sync_queue(struct request_queue *q)
1741 {
1742 del_timer_sync(&q->unplug_timer);
1743 }
1744 EXPORT_SYMBOL(blk_sync_queue);
1745
1746 /**
1747 * blk_run_queue - run a single device queue
1748 * @q: The queue to run
1749 */
1750 void blk_run_queue(struct request_queue *q)
1751 {
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(q->queue_lock, flags);
1755 blk_remove_plug(q);
1756
1757 /*
1758 * Only recurse once to avoid overrunning the stack, let the unplug
1759 * handling reinvoke the handler shortly if we already got there.
1760 */
1761 if (!elv_queue_empty(q)) {
1762 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1763 q->request_fn(q);
1764 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1765 } else {
1766 blk_plug_device(q);
1767 kblockd_schedule_work(&q->unplug_work);
1768 }
1769 }
1770
1771 spin_unlock_irqrestore(q->queue_lock, flags);
1772 }
1773 EXPORT_SYMBOL(blk_run_queue);
1774
1775 /**
1776 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1777 * @kobj: the kobj belonging of the request queue to be released
1778 *
1779 * Description:
1780 * blk_cleanup_queue is the pair to blk_init_queue() or
1781 * blk_queue_make_request(). It should be called when a request queue is
1782 * being released; typically when a block device is being de-registered.
1783 * Currently, its primary task it to free all the &struct request
1784 * structures that were allocated to the queue and the queue itself.
1785 *
1786 * Caveat:
1787 * Hopefully the low level driver will have finished any
1788 * outstanding requests first...
1789 **/
1790 static void blk_release_queue(struct kobject *kobj)
1791 {
1792 struct request_queue *q =
1793 container_of(kobj, struct request_queue, kobj);
1794 struct request_list *rl = &q->rq;
1795
1796 blk_sync_queue(q);
1797
1798 if (rl->rq_pool)
1799 mempool_destroy(rl->rq_pool);
1800
1801 if (q->queue_tags)
1802 __blk_queue_free_tags(q);
1803
1804 blk_trace_shutdown(q);
1805
1806 bdi_destroy(&q->backing_dev_info);
1807 kmem_cache_free(requestq_cachep, q);
1808 }
1809
1810 void blk_put_queue(struct request_queue *q)
1811 {
1812 kobject_put(&q->kobj);
1813 }
1814 EXPORT_SYMBOL(blk_put_queue);
1815
1816 void blk_cleanup_queue(struct request_queue * q)
1817 {
1818 mutex_lock(&q->sysfs_lock);
1819 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1820 mutex_unlock(&q->sysfs_lock);
1821
1822 if (q->elevator)
1823 elevator_exit(q->elevator);
1824
1825 blk_put_queue(q);
1826 }
1827
1828 EXPORT_SYMBOL(blk_cleanup_queue);
1829
1830 static int blk_init_free_list(struct request_queue *q)
1831 {
1832 struct request_list *rl = &q->rq;
1833
1834 rl->count[READ] = rl->count[WRITE] = 0;
1835 rl->starved[READ] = rl->starved[WRITE] = 0;
1836 rl->elvpriv = 0;
1837 init_waitqueue_head(&rl->wait[READ]);
1838 init_waitqueue_head(&rl->wait[WRITE]);
1839
1840 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1841 mempool_free_slab, request_cachep, q->node);
1842
1843 if (!rl->rq_pool)
1844 return -ENOMEM;
1845
1846 return 0;
1847 }
1848
1849 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1850 {
1851 return blk_alloc_queue_node(gfp_mask, -1);
1852 }
1853 EXPORT_SYMBOL(blk_alloc_queue);
1854
1855 static struct kobj_type queue_ktype;
1856
1857 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1858 {
1859 struct request_queue *q;
1860 int err;
1861
1862 q = kmem_cache_alloc_node(requestq_cachep,
1863 gfp_mask | __GFP_ZERO, node_id);
1864 if (!q)
1865 return NULL;
1866
1867 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1868 q->backing_dev_info.unplug_io_data = q;
1869 err = bdi_init(&q->backing_dev_info);
1870 if (err) {
1871 kmem_cache_free(requestq_cachep, q);
1872 return NULL;
1873 }
1874
1875 init_timer(&q->unplug_timer);
1876
1877 kobject_set_name(&q->kobj, "%s", "queue");
1878 q->kobj.ktype = &queue_ktype;
1879 kobject_init(&q->kobj);
1880
1881 mutex_init(&q->sysfs_lock);
1882
1883 return q;
1884 }
1885 EXPORT_SYMBOL(blk_alloc_queue_node);
1886
1887 /**
1888 * blk_init_queue - prepare a request queue for use with a block device
1889 * @rfn: The function to be called to process requests that have been
1890 * placed on the queue.
1891 * @lock: Request queue spin lock
1892 *
1893 * Description:
1894 * If a block device wishes to use the standard request handling procedures,
1895 * which sorts requests and coalesces adjacent requests, then it must
1896 * call blk_init_queue(). The function @rfn will be called when there
1897 * are requests on the queue that need to be processed. If the device
1898 * supports plugging, then @rfn may not be called immediately when requests
1899 * are available on the queue, but may be called at some time later instead.
1900 * Plugged queues are generally unplugged when a buffer belonging to one
1901 * of the requests on the queue is needed, or due to memory pressure.
1902 *
1903 * @rfn is not required, or even expected, to remove all requests off the
1904 * queue, but only as many as it can handle at a time. If it does leave
1905 * requests on the queue, it is responsible for arranging that the requests
1906 * get dealt with eventually.
1907 *
1908 * The queue spin lock must be held while manipulating the requests on the
1909 * request queue; this lock will be taken also from interrupt context, so irq
1910 * disabling is needed for it.
1911 *
1912 * Function returns a pointer to the initialized request queue, or NULL if
1913 * it didn't succeed.
1914 *
1915 * Note:
1916 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1917 * when the block device is deactivated (such as at module unload).
1918 **/
1919
1920 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1921 {
1922 return blk_init_queue_node(rfn, lock, -1);
1923 }
1924 EXPORT_SYMBOL(blk_init_queue);
1925
1926 struct request_queue *
1927 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1928 {
1929 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1930
1931 if (!q)
1932 return NULL;
1933
1934 q->node = node_id;
1935 if (blk_init_free_list(q)) {
1936 kmem_cache_free(requestq_cachep, q);
1937 return NULL;
1938 }
1939
1940 /*
1941 * if caller didn't supply a lock, they get per-queue locking with
1942 * our embedded lock
1943 */
1944 if (!lock) {
1945 spin_lock_init(&q->__queue_lock);
1946 lock = &q->__queue_lock;
1947 }
1948
1949 q->request_fn = rfn;
1950 q->prep_rq_fn = NULL;
1951 q->unplug_fn = generic_unplug_device;
1952 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1953 q->queue_lock = lock;
1954
1955 blk_queue_segment_boundary(q, 0xffffffff);
1956
1957 blk_queue_make_request(q, __make_request);
1958 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1959
1960 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1961 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1962
1963 q->sg_reserved_size = INT_MAX;
1964
1965 /*
1966 * all done
1967 */
1968 if (!elevator_init(q, NULL)) {
1969 blk_queue_congestion_threshold(q);
1970 return q;
1971 }
1972
1973 blk_put_queue(q);
1974 return NULL;
1975 }
1976 EXPORT_SYMBOL(blk_init_queue_node);
1977
1978 int blk_get_queue(struct request_queue *q)
1979 {
1980 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1981 kobject_get(&q->kobj);
1982 return 0;
1983 }
1984
1985 return 1;
1986 }
1987
1988 EXPORT_SYMBOL(blk_get_queue);
1989
1990 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1991 {
1992 if (rq->cmd_flags & REQ_ELVPRIV)
1993 elv_put_request(q, rq);
1994 mempool_free(rq, q->rq.rq_pool);
1995 }
1996
1997 static struct request *
1998 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1999 {
2000 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2001
2002 if (!rq)
2003 return NULL;
2004
2005 /*
2006 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2007 * see bio.h and blkdev.h
2008 */
2009 rq->cmd_flags = rw | REQ_ALLOCED;
2010
2011 if (priv) {
2012 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2013 mempool_free(rq, q->rq.rq_pool);
2014 return NULL;
2015 }
2016 rq->cmd_flags |= REQ_ELVPRIV;
2017 }
2018
2019 return rq;
2020 }
2021
2022 /*
2023 * ioc_batching returns true if the ioc is a valid batching request and
2024 * should be given priority access to a request.
2025 */
2026 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2027 {
2028 if (!ioc)
2029 return 0;
2030
2031 /*
2032 * Make sure the process is able to allocate at least 1 request
2033 * even if the batch times out, otherwise we could theoretically
2034 * lose wakeups.
2035 */
2036 return ioc->nr_batch_requests == q->nr_batching ||
2037 (ioc->nr_batch_requests > 0
2038 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2039 }
2040
2041 /*
2042 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2043 * will cause the process to be a "batcher" on all queues in the system. This
2044 * is the behaviour we want though - once it gets a wakeup it should be given
2045 * a nice run.
2046 */
2047 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2048 {
2049 if (!ioc || ioc_batching(q, ioc))
2050 return;
2051
2052 ioc->nr_batch_requests = q->nr_batching;
2053 ioc->last_waited = jiffies;
2054 }
2055
2056 static void __freed_request(struct request_queue *q, int rw)
2057 {
2058 struct request_list *rl = &q->rq;
2059
2060 if (rl->count[rw] < queue_congestion_off_threshold(q))
2061 blk_clear_queue_congested(q, rw);
2062
2063 if (rl->count[rw] + 1 <= q->nr_requests) {
2064 if (waitqueue_active(&rl->wait[rw]))
2065 wake_up(&rl->wait[rw]);
2066
2067 blk_clear_queue_full(q, rw);
2068 }
2069 }
2070
2071 /*
2072 * A request has just been released. Account for it, update the full and
2073 * congestion status, wake up any waiters. Called under q->queue_lock.
2074 */
2075 static void freed_request(struct request_queue *q, int rw, int priv)
2076 {
2077 struct request_list *rl = &q->rq;
2078
2079 rl->count[rw]--;
2080 if (priv)
2081 rl->elvpriv--;
2082
2083 __freed_request(q, rw);
2084
2085 if (unlikely(rl->starved[rw ^ 1]))
2086 __freed_request(q, rw ^ 1);
2087 }
2088
2089 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2090 /*
2091 * Get a free request, queue_lock must be held.
2092 * Returns NULL on failure, with queue_lock held.
2093 * Returns !NULL on success, with queue_lock *not held*.
2094 */
2095 static struct request *get_request(struct request_queue *q, int rw_flags,
2096 struct bio *bio, gfp_t gfp_mask)
2097 {
2098 struct request *rq = NULL;
2099 struct request_list *rl = &q->rq;
2100 struct io_context *ioc = NULL;
2101 const int rw = rw_flags & 0x01;
2102 int may_queue, priv;
2103
2104 may_queue = elv_may_queue(q, rw_flags);
2105 if (may_queue == ELV_MQUEUE_NO)
2106 goto rq_starved;
2107
2108 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2109 if (rl->count[rw]+1 >= q->nr_requests) {
2110 ioc = current_io_context(GFP_ATOMIC, q->node);
2111 /*
2112 * The queue will fill after this allocation, so set
2113 * it as full, and mark this process as "batching".
2114 * This process will be allowed to complete a batch of
2115 * requests, others will be blocked.
2116 */
2117 if (!blk_queue_full(q, rw)) {
2118 ioc_set_batching(q, ioc);
2119 blk_set_queue_full(q, rw);
2120 } else {
2121 if (may_queue != ELV_MQUEUE_MUST
2122 && !ioc_batching(q, ioc)) {
2123 /*
2124 * The queue is full and the allocating
2125 * process is not a "batcher", and not
2126 * exempted by the IO scheduler
2127 */
2128 goto out;
2129 }
2130 }
2131 }
2132 blk_set_queue_congested(q, rw);
2133 }
2134
2135 /*
2136 * Only allow batching queuers to allocate up to 50% over the defined
2137 * limit of requests, otherwise we could have thousands of requests
2138 * allocated with any setting of ->nr_requests
2139 */
2140 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2141 goto out;
2142
2143 rl->count[rw]++;
2144 rl->starved[rw] = 0;
2145
2146 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2147 if (priv)
2148 rl->elvpriv++;
2149
2150 spin_unlock_irq(q->queue_lock);
2151
2152 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2153 if (unlikely(!rq)) {
2154 /*
2155 * Allocation failed presumably due to memory. Undo anything
2156 * we might have messed up.
2157 *
2158 * Allocating task should really be put onto the front of the
2159 * wait queue, but this is pretty rare.
2160 */
2161 spin_lock_irq(q->queue_lock);
2162 freed_request(q, rw, priv);
2163
2164 /*
2165 * in the very unlikely event that allocation failed and no
2166 * requests for this direction was pending, mark us starved
2167 * so that freeing of a request in the other direction will
2168 * notice us. another possible fix would be to split the
2169 * rq mempool into READ and WRITE
2170 */
2171 rq_starved:
2172 if (unlikely(rl->count[rw] == 0))
2173 rl->starved[rw] = 1;
2174
2175 goto out;
2176 }
2177
2178 /*
2179 * ioc may be NULL here, and ioc_batching will be false. That's
2180 * OK, if the queue is under the request limit then requests need
2181 * not count toward the nr_batch_requests limit. There will always
2182 * be some limit enforced by BLK_BATCH_TIME.
2183 */
2184 if (ioc_batching(q, ioc))
2185 ioc->nr_batch_requests--;
2186
2187 rq_init(q, rq);
2188
2189 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2190 out:
2191 return rq;
2192 }
2193
2194 /*
2195 * No available requests for this queue, unplug the device and wait for some
2196 * requests to become available.
2197 *
2198 * Called with q->queue_lock held, and returns with it unlocked.
2199 */
2200 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2201 struct bio *bio)
2202 {
2203 const int rw = rw_flags & 0x01;
2204 struct request *rq;
2205
2206 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2207 while (!rq) {
2208 DEFINE_WAIT(wait);
2209 struct request_list *rl = &q->rq;
2210
2211 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2212 TASK_UNINTERRUPTIBLE);
2213
2214 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2215
2216 if (!rq) {
2217 struct io_context *ioc;
2218
2219 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2220
2221 __generic_unplug_device(q);
2222 spin_unlock_irq(q->queue_lock);
2223 io_schedule();
2224
2225 /*
2226 * After sleeping, we become a "batching" process and
2227 * will be able to allocate at least one request, and
2228 * up to a big batch of them for a small period time.
2229 * See ioc_batching, ioc_set_batching
2230 */
2231 ioc = current_io_context(GFP_NOIO, q->node);
2232 ioc_set_batching(q, ioc);
2233
2234 spin_lock_irq(q->queue_lock);
2235 }
2236 finish_wait(&rl->wait[rw], &wait);
2237 }
2238
2239 return rq;
2240 }
2241
2242 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2243 {
2244 struct request *rq;
2245
2246 BUG_ON(rw != READ && rw != WRITE);
2247
2248 spin_lock_irq(q->queue_lock);
2249 if (gfp_mask & __GFP_WAIT) {
2250 rq = get_request_wait(q, rw, NULL);
2251 } else {
2252 rq = get_request(q, rw, NULL, gfp_mask);
2253 if (!rq)
2254 spin_unlock_irq(q->queue_lock);
2255 }
2256 /* q->queue_lock is unlocked at this point */
2257
2258 return rq;
2259 }
2260 EXPORT_SYMBOL(blk_get_request);
2261
2262 /**
2263 * blk_start_queueing - initiate dispatch of requests to device
2264 * @q: request queue to kick into gear
2265 *
2266 * This is basically a helper to remove the need to know whether a queue
2267 * is plugged or not if someone just wants to initiate dispatch of requests
2268 * for this queue.
2269 *
2270 * The queue lock must be held with interrupts disabled.
2271 */
2272 void blk_start_queueing(struct request_queue *q)
2273 {
2274 if (!blk_queue_plugged(q))
2275 q->request_fn(q);
2276 else
2277 __generic_unplug_device(q);
2278 }
2279 EXPORT_SYMBOL(blk_start_queueing);
2280
2281 /**
2282 * blk_requeue_request - put a request back on queue
2283 * @q: request queue where request should be inserted
2284 * @rq: request to be inserted
2285 *
2286 * Description:
2287 * Drivers often keep queueing requests until the hardware cannot accept
2288 * more, when that condition happens we need to put the request back
2289 * on the queue. Must be called with queue lock held.
2290 */
2291 void blk_requeue_request(struct request_queue *q, struct request *rq)
2292 {
2293 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2294
2295 if (blk_rq_tagged(rq))
2296 blk_queue_end_tag(q, rq);
2297
2298 elv_requeue_request(q, rq);
2299 }
2300
2301 EXPORT_SYMBOL(blk_requeue_request);
2302
2303 /**
2304 * blk_insert_request - insert a special request in to a request queue
2305 * @q: request queue where request should be inserted
2306 * @rq: request to be inserted
2307 * @at_head: insert request at head or tail of queue
2308 * @data: private data
2309 *
2310 * Description:
2311 * Many block devices need to execute commands asynchronously, so they don't
2312 * block the whole kernel from preemption during request execution. This is
2313 * accomplished normally by inserting aritficial requests tagged as
2314 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2315 * scheduled for actual execution by the request queue.
2316 *
2317 * We have the option of inserting the head or the tail of the queue.
2318 * Typically we use the tail for new ioctls and so forth. We use the head
2319 * of the queue for things like a QUEUE_FULL message from a device, or a
2320 * host that is unable to accept a particular command.
2321 */
2322 void blk_insert_request(struct request_queue *q, struct request *rq,
2323 int at_head, void *data)
2324 {
2325 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2326 unsigned long flags;
2327
2328 /*
2329 * tell I/O scheduler that this isn't a regular read/write (ie it
2330 * must not attempt merges on this) and that it acts as a soft
2331 * barrier
2332 */
2333 rq->cmd_type = REQ_TYPE_SPECIAL;
2334 rq->cmd_flags |= REQ_SOFTBARRIER;
2335
2336 rq->special = data;
2337
2338 spin_lock_irqsave(q->queue_lock, flags);
2339
2340 /*
2341 * If command is tagged, release the tag
2342 */
2343 if (blk_rq_tagged(rq))
2344 blk_queue_end_tag(q, rq);
2345
2346 drive_stat_acct(rq, rq->nr_sectors, 1);
2347 __elv_add_request(q, rq, where, 0);
2348 blk_start_queueing(q);
2349 spin_unlock_irqrestore(q->queue_lock, flags);
2350 }
2351
2352 EXPORT_SYMBOL(blk_insert_request);
2353
2354 static int __blk_rq_unmap_user(struct bio *bio)
2355 {
2356 int ret = 0;
2357
2358 if (bio) {
2359 if (bio_flagged(bio, BIO_USER_MAPPED))
2360 bio_unmap_user(bio);
2361 else
2362 ret = bio_uncopy_user(bio);
2363 }
2364
2365 return ret;
2366 }
2367
2368 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2369 struct bio *bio)
2370 {
2371 if (!rq->bio)
2372 blk_rq_bio_prep(q, rq, bio);
2373 else if (!ll_back_merge_fn(q, rq, bio))
2374 return -EINVAL;
2375 else {
2376 rq->biotail->bi_next = bio;
2377 rq->biotail = bio;
2378
2379 rq->data_len += bio->bi_size;
2380 }
2381 return 0;
2382 }
2383 EXPORT_SYMBOL(blk_rq_append_bio);
2384
2385 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2386 void __user *ubuf, unsigned int len)
2387 {
2388 unsigned long uaddr;
2389 struct bio *bio, *orig_bio;
2390 int reading, ret;
2391
2392 reading = rq_data_dir(rq) == READ;
2393
2394 /*
2395 * if alignment requirement is satisfied, map in user pages for
2396 * direct dma. else, set up kernel bounce buffers
2397 */
2398 uaddr = (unsigned long) ubuf;
2399 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2400 bio = bio_map_user(q, NULL, uaddr, len, reading);
2401 else
2402 bio = bio_copy_user(q, uaddr, len, reading);
2403
2404 if (IS_ERR(bio))
2405 return PTR_ERR(bio);
2406
2407 orig_bio = bio;
2408 blk_queue_bounce(q, &bio);
2409
2410 /*
2411 * We link the bounce buffer in and could have to traverse it
2412 * later so we have to get a ref to prevent it from being freed
2413 */
2414 bio_get(bio);
2415
2416 ret = blk_rq_append_bio(q, rq, bio);
2417 if (!ret)
2418 return bio->bi_size;
2419
2420 /* if it was boucned we must call the end io function */
2421 bio_endio(bio, 0);
2422 __blk_rq_unmap_user(orig_bio);
2423 bio_put(bio);
2424 return ret;
2425 }
2426
2427 /**
2428 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2429 * @q: request queue where request should be inserted
2430 * @rq: request structure to fill
2431 * @ubuf: the user buffer
2432 * @len: length of user data
2433 *
2434 * Description:
2435 * Data will be mapped directly for zero copy io, if possible. Otherwise
2436 * a kernel bounce buffer is used.
2437 *
2438 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2439 * still in process context.
2440 *
2441 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2442 * before being submitted to the device, as pages mapped may be out of
2443 * reach. It's the callers responsibility to make sure this happens. The
2444 * original bio must be passed back in to blk_rq_unmap_user() for proper
2445 * unmapping.
2446 */
2447 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2448 void __user *ubuf, unsigned long len)
2449 {
2450 unsigned long bytes_read = 0;
2451 struct bio *bio = NULL;
2452 int ret;
2453
2454 if (len > (q->max_hw_sectors << 9))
2455 return -EINVAL;
2456 if (!len || !ubuf)
2457 return -EINVAL;
2458
2459 while (bytes_read != len) {
2460 unsigned long map_len, end, start;
2461
2462 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2463 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2464 >> PAGE_SHIFT;
2465 start = (unsigned long)ubuf >> PAGE_SHIFT;
2466
2467 /*
2468 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2469 * pages. If this happens we just lower the requested
2470 * mapping len by a page so that we can fit
2471 */
2472 if (end - start > BIO_MAX_PAGES)
2473 map_len -= PAGE_SIZE;
2474
2475 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2476 if (ret < 0)
2477 goto unmap_rq;
2478 if (!bio)
2479 bio = rq->bio;
2480 bytes_read += ret;
2481 ubuf += ret;
2482 }
2483
2484 rq->buffer = rq->data = NULL;
2485 return 0;
2486 unmap_rq:
2487 blk_rq_unmap_user(bio);
2488 return ret;
2489 }
2490
2491 EXPORT_SYMBOL(blk_rq_map_user);
2492
2493 /**
2494 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2495 * @q: request queue where request should be inserted
2496 * @rq: request to map data to
2497 * @iov: pointer to the iovec
2498 * @iov_count: number of elements in the iovec
2499 * @len: I/O byte count
2500 *
2501 * Description:
2502 * Data will be mapped directly for zero copy io, if possible. Otherwise
2503 * a kernel bounce buffer is used.
2504 *
2505 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2506 * still in process context.
2507 *
2508 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2509 * before being submitted to the device, as pages mapped may be out of
2510 * reach. It's the callers responsibility to make sure this happens. The
2511 * original bio must be passed back in to blk_rq_unmap_user() for proper
2512 * unmapping.
2513 */
2514 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2515 struct sg_iovec *iov, int iov_count, unsigned int len)
2516 {
2517 struct bio *bio;
2518
2519 if (!iov || iov_count <= 0)
2520 return -EINVAL;
2521
2522 /* we don't allow misaligned data like bio_map_user() does. If the
2523 * user is using sg, they're expected to know the alignment constraints
2524 * and respect them accordingly */
2525 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2526 if (IS_ERR(bio))
2527 return PTR_ERR(bio);
2528
2529 if (bio->bi_size != len) {
2530 bio_endio(bio, 0);
2531 bio_unmap_user(bio);
2532 return -EINVAL;
2533 }
2534
2535 bio_get(bio);
2536 blk_rq_bio_prep(q, rq, bio);
2537 rq->buffer = rq->data = NULL;
2538 return 0;
2539 }
2540
2541 EXPORT_SYMBOL(blk_rq_map_user_iov);
2542
2543 /**
2544 * blk_rq_unmap_user - unmap a request with user data
2545 * @bio: start of bio list
2546 *
2547 * Description:
2548 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2549 * supply the original rq->bio from the blk_rq_map_user() return, since
2550 * the io completion may have changed rq->bio.
2551 */
2552 int blk_rq_unmap_user(struct bio *bio)
2553 {
2554 struct bio *mapped_bio;
2555 int ret = 0, ret2;
2556
2557 while (bio) {
2558 mapped_bio = bio;
2559 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2560 mapped_bio = bio->bi_private;
2561
2562 ret2 = __blk_rq_unmap_user(mapped_bio);
2563 if (ret2 && !ret)
2564 ret = ret2;
2565
2566 mapped_bio = bio;
2567 bio = bio->bi_next;
2568 bio_put(mapped_bio);
2569 }
2570
2571 return ret;
2572 }
2573
2574 EXPORT_SYMBOL(blk_rq_unmap_user);
2575
2576 /**
2577 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2578 * @q: request queue where request should be inserted
2579 * @rq: request to fill
2580 * @kbuf: the kernel buffer
2581 * @len: length of user data
2582 * @gfp_mask: memory allocation flags
2583 */
2584 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2585 unsigned int len, gfp_t gfp_mask)
2586 {
2587 struct bio *bio;
2588
2589 if (len > (q->max_hw_sectors << 9))
2590 return -EINVAL;
2591 if (!len || !kbuf)
2592 return -EINVAL;
2593
2594 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2595 if (IS_ERR(bio))
2596 return PTR_ERR(bio);
2597
2598 if (rq_data_dir(rq) == WRITE)
2599 bio->bi_rw |= (1 << BIO_RW);
2600
2601 blk_rq_bio_prep(q, rq, bio);
2602 blk_queue_bounce(q, &rq->bio);
2603 rq->buffer = rq->data = NULL;
2604 return 0;
2605 }
2606
2607 EXPORT_SYMBOL(blk_rq_map_kern);
2608
2609 /**
2610 * blk_execute_rq_nowait - insert a request into queue for execution
2611 * @q: queue to insert the request in
2612 * @bd_disk: matching gendisk
2613 * @rq: request to insert
2614 * @at_head: insert request at head or tail of queue
2615 * @done: I/O completion handler
2616 *
2617 * Description:
2618 * Insert a fully prepared request at the back of the io scheduler queue
2619 * for execution. Don't wait for completion.
2620 */
2621 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2622 struct request *rq, int at_head,
2623 rq_end_io_fn *done)
2624 {
2625 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2626
2627 rq->rq_disk = bd_disk;
2628 rq->cmd_flags |= REQ_NOMERGE;
2629 rq->end_io = done;
2630 WARN_ON(irqs_disabled());
2631 spin_lock_irq(q->queue_lock);
2632 __elv_add_request(q, rq, where, 1);
2633 __generic_unplug_device(q);
2634 spin_unlock_irq(q->queue_lock);
2635 }
2636 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2637
2638 /**
2639 * blk_execute_rq - insert a request into queue for execution
2640 * @q: queue to insert the request in
2641 * @bd_disk: matching gendisk
2642 * @rq: request to insert
2643 * @at_head: insert request at head or tail of queue
2644 *
2645 * Description:
2646 * Insert a fully prepared request at the back of the io scheduler queue
2647 * for execution and wait for completion.
2648 */
2649 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2650 struct request *rq, int at_head)
2651 {
2652 DECLARE_COMPLETION_ONSTACK(wait);
2653 char sense[SCSI_SENSE_BUFFERSIZE];
2654 int err = 0;
2655
2656 /*
2657 * we need an extra reference to the request, so we can look at
2658 * it after io completion
2659 */
2660 rq->ref_count++;
2661
2662 if (!rq->sense) {
2663 memset(sense, 0, sizeof(sense));
2664 rq->sense = sense;
2665 rq->sense_len = 0;
2666 }
2667
2668 rq->end_io_data = &wait;
2669 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2670 wait_for_completion(&wait);
2671
2672 if (rq->errors)
2673 err = -EIO;
2674
2675 return err;
2676 }
2677
2678 EXPORT_SYMBOL(blk_execute_rq);
2679
2680 static void bio_end_empty_barrier(struct bio *bio, int err)
2681 {
2682 if (err)
2683 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2684
2685 complete(bio->bi_private);
2686 }
2687
2688 /**
2689 * blkdev_issue_flush - queue a flush
2690 * @bdev: blockdev to issue flush for
2691 * @error_sector: error sector
2692 *
2693 * Description:
2694 * Issue a flush for the block device in question. Caller can supply
2695 * room for storing the error offset in case of a flush error, if they
2696 * wish to. Caller must run wait_for_completion() on its own.
2697 */
2698 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2699 {
2700 DECLARE_COMPLETION_ONSTACK(wait);
2701 struct request_queue *q;
2702 struct bio *bio;
2703 int ret;
2704
2705 if (bdev->bd_disk == NULL)
2706 return -ENXIO;
2707
2708 q = bdev_get_queue(bdev);
2709 if (!q)
2710 return -ENXIO;
2711
2712 bio = bio_alloc(GFP_KERNEL, 0);
2713 if (!bio)
2714 return -ENOMEM;
2715
2716 bio->bi_end_io = bio_end_empty_barrier;
2717 bio->bi_private = &wait;
2718 bio->bi_bdev = bdev;
2719 submit_bio(1 << BIO_RW_BARRIER, bio);
2720
2721 wait_for_completion(&wait);
2722
2723 /*
2724 * The driver must store the error location in ->bi_sector, if
2725 * it supports it. For non-stacked drivers, this should be copied
2726 * from rq->sector.
2727 */
2728 if (error_sector)
2729 *error_sector = bio->bi_sector;
2730
2731 ret = 0;
2732 if (!bio_flagged(bio, BIO_UPTODATE))
2733 ret = -EIO;
2734
2735 bio_put(bio);
2736 return ret;
2737 }
2738
2739 EXPORT_SYMBOL(blkdev_issue_flush);
2740
2741 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2742 {
2743 int rw = rq_data_dir(rq);
2744
2745 if (!blk_fs_request(rq) || !rq->rq_disk)
2746 return;
2747
2748 if (!new_io) {
2749 __disk_stat_inc(rq->rq_disk, merges[rw]);
2750 } else {
2751 disk_round_stats(rq->rq_disk);
2752 rq->rq_disk->in_flight++;
2753 }
2754 }
2755
2756 /*
2757 * add-request adds a request to the linked list.
2758 * queue lock is held and interrupts disabled, as we muck with the
2759 * request queue list.
2760 */
2761 static inline void add_request(struct request_queue * q, struct request * req)
2762 {
2763 drive_stat_acct(req, req->nr_sectors, 1);
2764
2765 /*
2766 * elevator indicated where it wants this request to be
2767 * inserted at elevator_merge time
2768 */
2769 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2770 }
2771
2772 /*
2773 * disk_round_stats() - Round off the performance stats on a struct
2774 * disk_stats.
2775 *
2776 * The average IO queue length and utilisation statistics are maintained
2777 * by observing the current state of the queue length and the amount of
2778 * time it has been in this state for.
2779 *
2780 * Normally, that accounting is done on IO completion, but that can result
2781 * in more than a second's worth of IO being accounted for within any one
2782 * second, leading to >100% utilisation. To deal with that, we call this
2783 * function to do a round-off before returning the results when reading
2784 * /proc/diskstats. This accounts immediately for all queue usage up to
2785 * the current jiffies and restarts the counters again.
2786 */
2787 void disk_round_stats(struct gendisk *disk)
2788 {
2789 unsigned long now = jiffies;
2790
2791 if (now == disk->stamp)
2792 return;
2793
2794 if (disk->in_flight) {
2795 __disk_stat_add(disk, time_in_queue,
2796 disk->in_flight * (now - disk->stamp));
2797 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2798 }
2799 disk->stamp = now;
2800 }
2801
2802 EXPORT_SYMBOL_GPL(disk_round_stats);
2803
2804 /*
2805 * queue lock must be held
2806 */
2807 void __blk_put_request(struct request_queue *q, struct request *req)
2808 {
2809 if (unlikely(!q))
2810 return;
2811 if (unlikely(--req->ref_count))
2812 return;
2813
2814 elv_completed_request(q, req);
2815
2816 /*
2817 * Request may not have originated from ll_rw_blk. if not,
2818 * it didn't come out of our reserved rq pools
2819 */
2820 if (req->cmd_flags & REQ_ALLOCED) {
2821 int rw = rq_data_dir(req);
2822 int priv = req->cmd_flags & REQ_ELVPRIV;
2823
2824 BUG_ON(!list_empty(&req->queuelist));
2825 BUG_ON(!hlist_unhashed(&req->hash));
2826
2827 blk_free_request(q, req);
2828 freed_request(q, rw, priv);
2829 }
2830 }
2831
2832 EXPORT_SYMBOL_GPL(__blk_put_request);
2833
2834 void blk_put_request(struct request *req)
2835 {
2836 unsigned long flags;
2837 struct request_queue *q = req->q;
2838
2839 /*
2840 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2841 * following if (q) test.
2842 */
2843 if (q) {
2844 spin_lock_irqsave(q->queue_lock, flags);
2845 __blk_put_request(q, req);
2846 spin_unlock_irqrestore(q->queue_lock, flags);
2847 }
2848 }
2849
2850 EXPORT_SYMBOL(blk_put_request);
2851
2852 /**
2853 * blk_end_sync_rq - executes a completion event on a request
2854 * @rq: request to complete
2855 * @error: end io status of the request
2856 */
2857 void blk_end_sync_rq(struct request *rq, int error)
2858 {
2859 struct completion *waiting = rq->end_io_data;
2860
2861 rq->end_io_data = NULL;
2862 __blk_put_request(rq->q, rq);
2863
2864 /*
2865 * complete last, if this is a stack request the process (and thus
2866 * the rq pointer) could be invalid right after this complete()
2867 */
2868 complete(waiting);
2869 }
2870 EXPORT_SYMBOL(blk_end_sync_rq);
2871
2872 /*
2873 * Has to be called with the request spinlock acquired
2874 */
2875 static int attempt_merge(struct request_queue *q, struct request *req,
2876 struct request *next)
2877 {
2878 if (!rq_mergeable(req) || !rq_mergeable(next))
2879 return 0;
2880
2881 /*
2882 * not contiguous
2883 */
2884 if (req->sector + req->nr_sectors != next->sector)
2885 return 0;
2886
2887 if (rq_data_dir(req) != rq_data_dir(next)
2888 || req->rq_disk != next->rq_disk
2889 || next->special)
2890 return 0;
2891
2892 /*
2893 * If we are allowed to merge, then append bio list
2894 * from next to rq and release next. merge_requests_fn
2895 * will have updated segment counts, update sector
2896 * counts here.
2897 */
2898 if (!ll_merge_requests_fn(q, req, next))
2899 return 0;
2900
2901 /*
2902 * At this point we have either done a back merge
2903 * or front merge. We need the smaller start_time of
2904 * the merged requests to be the current request
2905 * for accounting purposes.
2906 */
2907 if (time_after(req->start_time, next->start_time))
2908 req->start_time = next->start_time;
2909
2910 req->biotail->bi_next = next->bio;
2911 req->biotail = next->biotail;
2912
2913 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2914
2915 elv_merge_requests(q, req, next);
2916
2917 if (req->rq_disk) {
2918 disk_round_stats(req->rq_disk);
2919 req->rq_disk->in_flight--;
2920 }
2921
2922 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2923
2924 __blk_put_request(q, next);
2925 return 1;
2926 }
2927
2928 static inline int attempt_back_merge(struct request_queue *q,
2929 struct request *rq)
2930 {
2931 struct request *next = elv_latter_request(q, rq);
2932
2933 if (next)
2934 return attempt_merge(q, rq, next);
2935
2936 return 0;
2937 }
2938
2939 static inline int attempt_front_merge(struct request_queue *q,
2940 struct request *rq)
2941 {
2942 struct request *prev = elv_former_request(q, rq);
2943
2944 if (prev)
2945 return attempt_merge(q, prev, rq);
2946
2947 return 0;
2948 }
2949
2950 static void init_request_from_bio(struct request *req, struct bio *bio)
2951 {
2952 req->cmd_type = REQ_TYPE_FS;
2953
2954 /*
2955 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2956 */
2957 if (bio_rw_ahead(bio) || bio_failfast(bio))
2958 req->cmd_flags |= REQ_FAILFAST;
2959
2960 /*
2961 * REQ_BARRIER implies no merging, but lets make it explicit
2962 */
2963 if (unlikely(bio_barrier(bio)))
2964 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2965
2966 if (bio_sync(bio))
2967 req->cmd_flags |= REQ_RW_SYNC;
2968 if (bio_rw_meta(bio))
2969 req->cmd_flags |= REQ_RW_META;
2970
2971 req->errors = 0;
2972 req->hard_sector = req->sector = bio->bi_sector;
2973 req->ioprio = bio_prio(bio);
2974 req->start_time = jiffies;
2975 blk_rq_bio_prep(req->q, req, bio);
2976 }
2977
2978 static int __make_request(struct request_queue *q, struct bio *bio)
2979 {
2980 struct request *req;
2981 int el_ret, nr_sectors, barrier, err;
2982 const unsigned short prio = bio_prio(bio);
2983 const int sync = bio_sync(bio);
2984 int rw_flags;
2985
2986 nr_sectors = bio_sectors(bio);
2987
2988 /*
2989 * low level driver can indicate that it wants pages above a
2990 * certain limit bounced to low memory (ie for highmem, or even
2991 * ISA dma in theory)
2992 */
2993 blk_queue_bounce(q, &bio);
2994
2995 barrier = bio_barrier(bio);
2996 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2997 err = -EOPNOTSUPP;
2998 goto end_io;
2999 }
3000
3001 spin_lock_irq(q->queue_lock);
3002
3003 if (unlikely(barrier) || elv_queue_empty(q))
3004 goto get_rq;
3005
3006 el_ret = elv_merge(q, &req, bio);
3007 switch (el_ret) {
3008 case ELEVATOR_BACK_MERGE:
3009 BUG_ON(!rq_mergeable(req));
3010
3011 if (!ll_back_merge_fn(q, req, bio))
3012 break;
3013
3014 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3015
3016 req->biotail->bi_next = bio;
3017 req->biotail = bio;
3018 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3019 req->ioprio = ioprio_best(req->ioprio, prio);
3020 drive_stat_acct(req, nr_sectors, 0);
3021 if (!attempt_back_merge(q, req))
3022 elv_merged_request(q, req, el_ret);
3023 goto out;
3024
3025 case ELEVATOR_FRONT_MERGE:
3026 BUG_ON(!rq_mergeable(req));
3027
3028 if (!ll_front_merge_fn(q, req, bio))
3029 break;
3030
3031 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3032
3033 bio->bi_next = req->bio;
3034 req->bio = bio;
3035
3036 /*
3037 * may not be valid. if the low level driver said
3038 * it didn't need a bounce buffer then it better
3039 * not touch req->buffer either...
3040 */
3041 req->buffer = bio_data(bio);
3042 req->current_nr_sectors = bio_cur_sectors(bio);
3043 req->hard_cur_sectors = req->current_nr_sectors;
3044 req->sector = req->hard_sector = bio->bi_sector;
3045 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3046 req->ioprio = ioprio_best(req->ioprio, prio);
3047 drive_stat_acct(req, nr_sectors, 0);
3048 if (!attempt_front_merge(q, req))
3049 elv_merged_request(q, req, el_ret);
3050 goto out;
3051
3052 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3053 default:
3054 ;
3055 }
3056
3057 get_rq:
3058 /*
3059 * This sync check and mask will be re-done in init_request_from_bio(),
3060 * but we need to set it earlier to expose the sync flag to the
3061 * rq allocator and io schedulers.
3062 */
3063 rw_flags = bio_data_dir(bio);
3064 if (sync)
3065 rw_flags |= REQ_RW_SYNC;
3066
3067 /*
3068 * Grab a free request. This is might sleep but can not fail.
3069 * Returns with the queue unlocked.
3070 */
3071 req = get_request_wait(q, rw_flags, bio);
3072
3073 /*
3074 * After dropping the lock and possibly sleeping here, our request
3075 * may now be mergeable after it had proven unmergeable (above).
3076 * We don't worry about that case for efficiency. It won't happen
3077 * often, and the elevators are able to handle it.
3078 */
3079 init_request_from_bio(req, bio);
3080
3081 spin_lock_irq(q->queue_lock);
3082 if (elv_queue_empty(q))
3083 blk_plug_device(q);
3084 add_request(q, req);
3085 out:
3086 if (sync)
3087 __generic_unplug_device(q);
3088
3089 spin_unlock_irq(q->queue_lock);
3090 return 0;
3091
3092 end_io:
3093 bio_endio(bio, err);
3094 return 0;
3095 }
3096
3097 /*
3098 * If bio->bi_dev is a partition, remap the location
3099 */
3100 static inline void blk_partition_remap(struct bio *bio)
3101 {
3102 struct block_device *bdev = bio->bi_bdev;
3103
3104 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
3105 struct hd_struct *p = bdev->bd_part;
3106 const int rw = bio_data_dir(bio);
3107
3108 p->sectors[rw] += bio_sectors(bio);
3109 p->ios[rw]++;
3110
3111 bio->bi_sector += p->start_sect;
3112 bio->bi_bdev = bdev->bd_contains;
3113
3114 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3115 bdev->bd_dev, bio->bi_sector,
3116 bio->bi_sector - p->start_sect);
3117 }
3118 }
3119
3120 static void handle_bad_sector(struct bio *bio)
3121 {
3122 char b[BDEVNAME_SIZE];
3123
3124 printk(KERN_INFO "attempt to access beyond end of device\n");
3125 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3126 bdevname(bio->bi_bdev, b),
3127 bio->bi_rw,
3128 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3129 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3130
3131 set_bit(BIO_EOF, &bio->bi_flags);
3132 }
3133
3134 #ifdef CONFIG_FAIL_MAKE_REQUEST
3135
3136 static DECLARE_FAULT_ATTR(fail_make_request);
3137
3138 static int __init setup_fail_make_request(char *str)
3139 {
3140 return setup_fault_attr(&fail_make_request, str);
3141 }
3142 __setup("fail_make_request=", setup_fail_make_request);
3143
3144 static int should_fail_request(struct bio *bio)
3145 {
3146 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3147 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3148 return should_fail(&fail_make_request, bio->bi_size);
3149
3150 return 0;
3151 }
3152
3153 static int __init fail_make_request_debugfs(void)
3154 {
3155 return init_fault_attr_dentries(&fail_make_request,
3156 "fail_make_request");
3157 }
3158
3159 late_initcall(fail_make_request_debugfs);
3160
3161 #else /* CONFIG_FAIL_MAKE_REQUEST */
3162
3163 static inline int should_fail_request(struct bio *bio)
3164 {
3165 return 0;
3166 }
3167
3168 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3169
3170 /*
3171 * Check whether this bio extends beyond the end of the device.
3172 */
3173 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3174 {
3175 sector_t maxsector;
3176
3177 if (!nr_sectors)
3178 return 0;
3179
3180 /* Test device or partition size, when known. */
3181 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3182 if (maxsector) {
3183 sector_t sector = bio->bi_sector;
3184
3185 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3186 /*
3187 * This may well happen - the kernel calls bread()
3188 * without checking the size of the device, e.g., when
3189 * mounting a device.
3190 */
3191 handle_bad_sector(bio);
3192 return 1;
3193 }
3194 }
3195
3196 return 0;
3197 }
3198
3199 /**
3200 * generic_make_request: hand a buffer to its device driver for I/O
3201 * @bio: The bio describing the location in memory and on the device.
3202 *
3203 * generic_make_request() is used to make I/O requests of block
3204 * devices. It is passed a &struct bio, which describes the I/O that needs
3205 * to be done.
3206 *
3207 * generic_make_request() does not return any status. The
3208 * success/failure status of the request, along with notification of
3209 * completion, is delivered asynchronously through the bio->bi_end_io
3210 * function described (one day) else where.
3211 *
3212 * The caller of generic_make_request must make sure that bi_io_vec
3213 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3214 * set to describe the device address, and the
3215 * bi_end_io and optionally bi_private are set to describe how
3216 * completion notification should be signaled.
3217 *
3218 * generic_make_request and the drivers it calls may use bi_next if this
3219 * bio happens to be merged with someone else, and may change bi_dev and
3220 * bi_sector for remaps as it sees fit. So the values of these fields
3221 * should NOT be depended on after the call to generic_make_request.
3222 */
3223 static inline void __generic_make_request(struct bio *bio)
3224 {
3225 struct request_queue *q;
3226 sector_t old_sector;
3227 int ret, nr_sectors = bio_sectors(bio);
3228 dev_t old_dev;
3229
3230 might_sleep();
3231
3232 if (bio_check_eod(bio, nr_sectors))
3233 goto end_io;
3234
3235 /*
3236 * Resolve the mapping until finished. (drivers are
3237 * still free to implement/resolve their own stacking
3238 * by explicitly returning 0)
3239 *
3240 * NOTE: we don't repeat the blk_size check for each new device.
3241 * Stacking drivers are expected to know what they are doing.
3242 */
3243 old_sector = -1;
3244 old_dev = 0;
3245 do {
3246 char b[BDEVNAME_SIZE];
3247
3248 q = bdev_get_queue(bio->bi_bdev);
3249 if (!q) {
3250 printk(KERN_ERR
3251 "generic_make_request: Trying to access "
3252 "nonexistent block-device %s (%Lu)\n",
3253 bdevname(bio->bi_bdev, b),
3254 (long long) bio->bi_sector);
3255 end_io:
3256 bio_endio(bio, -EIO);
3257 break;
3258 }
3259
3260 if (unlikely(nr_sectors > q->max_hw_sectors)) {
3261 printk("bio too big device %s (%u > %u)\n",
3262 bdevname(bio->bi_bdev, b),
3263 bio_sectors(bio),
3264 q->max_hw_sectors);
3265 goto end_io;
3266 }
3267
3268 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3269 goto end_io;
3270
3271 if (should_fail_request(bio))
3272 goto end_io;
3273
3274 /*
3275 * If this device has partitions, remap block n
3276 * of partition p to block n+start(p) of the disk.
3277 */
3278 blk_partition_remap(bio);
3279
3280 if (old_sector != -1)
3281 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3282 old_sector);
3283
3284 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3285
3286 old_sector = bio->bi_sector;
3287 old_dev = bio->bi_bdev->bd_dev;
3288
3289 if (bio_check_eod(bio, nr_sectors))
3290 goto end_io;
3291
3292 ret = q->make_request_fn(q, bio);
3293 } while (ret);
3294 }
3295
3296 /*
3297 * We only want one ->make_request_fn to be active at a time,
3298 * else stack usage with stacked devices could be a problem.
3299 * So use current->bio_{list,tail} to keep a list of requests
3300 * submited by a make_request_fn function.
3301 * current->bio_tail is also used as a flag to say if
3302 * generic_make_request is currently active in this task or not.
3303 * If it is NULL, then no make_request is active. If it is non-NULL,
3304 * then a make_request is active, and new requests should be added
3305 * at the tail
3306 */
3307 void generic_make_request(struct bio *bio)
3308 {
3309 if (current->bio_tail) {
3310 /* make_request is active */
3311 *(current->bio_tail) = bio;
3312 bio->bi_next = NULL;
3313 current->bio_tail = &bio->bi_next;
3314 return;
3315 }
3316 /* following loop may be a bit non-obvious, and so deserves some
3317 * explanation.
3318 * Before entering the loop, bio->bi_next is NULL (as all callers
3319 * ensure that) so we have a list with a single bio.
3320 * We pretend that we have just taken it off a longer list, so
3321 * we assign bio_list to the next (which is NULL) and bio_tail
3322 * to &bio_list, thus initialising the bio_list of new bios to be
3323 * added. __generic_make_request may indeed add some more bios
3324 * through a recursive call to generic_make_request. If it
3325 * did, we find a non-NULL value in bio_list and re-enter the loop
3326 * from the top. In this case we really did just take the bio
3327 * of the top of the list (no pretending) and so fixup bio_list and
3328 * bio_tail or bi_next, and call into __generic_make_request again.
3329 *
3330 * The loop was structured like this to make only one call to
3331 * __generic_make_request (which is important as it is large and
3332 * inlined) and to keep the structure simple.
3333 */
3334 BUG_ON(bio->bi_next);
3335 do {
3336 current->bio_list = bio->bi_next;
3337 if (bio->bi_next == NULL)
3338 current->bio_tail = &current->bio_list;
3339 else
3340 bio->bi_next = NULL;
3341 __generic_make_request(bio);
3342 bio = current->bio_list;
3343 } while (bio);
3344 current->bio_tail = NULL; /* deactivate */
3345 }
3346
3347 EXPORT_SYMBOL(generic_make_request);
3348
3349 /**
3350 * submit_bio: submit a bio to the block device layer for I/O
3351 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3352 * @bio: The &struct bio which describes the I/O
3353 *
3354 * submit_bio() is very similar in purpose to generic_make_request(), and
3355 * uses that function to do most of the work. Both are fairly rough
3356 * interfaces, @bio must be presetup and ready for I/O.
3357 *
3358 */
3359 void submit_bio(int rw, struct bio *bio)
3360 {
3361 int count = bio_sectors(bio);
3362
3363 bio->bi_rw |= rw;
3364
3365 /*
3366 * If it's a regular read/write or a barrier with data attached,
3367 * go through the normal accounting stuff before submission.
3368 */
3369 if (!bio_empty_barrier(bio)) {
3370
3371 BIO_BUG_ON(!bio->bi_size);
3372 BIO_BUG_ON(!bio->bi_io_vec);
3373
3374 if (rw & WRITE) {
3375 count_vm_events(PGPGOUT, count);
3376 } else {
3377 task_io_account_read(bio->bi_size);
3378 count_vm_events(PGPGIN, count);
3379 }
3380
3381 if (unlikely(block_dump)) {
3382 char b[BDEVNAME_SIZE];
3383 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3384 current->comm, task_pid_nr(current),
3385 (rw & WRITE) ? "WRITE" : "READ",
3386 (unsigned long long)bio->bi_sector,
3387 bdevname(bio->bi_bdev,b));
3388 }
3389 }
3390
3391 generic_make_request(bio);
3392 }
3393
3394 EXPORT_SYMBOL(submit_bio);
3395
3396 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3397 {
3398 if (blk_fs_request(rq)) {
3399 rq->hard_sector += nsect;
3400 rq->hard_nr_sectors -= nsect;
3401
3402 /*
3403 * Move the I/O submission pointers ahead if required.
3404 */
3405 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3406 (rq->sector <= rq->hard_sector)) {
3407 rq->sector = rq->hard_sector;
3408 rq->nr_sectors = rq->hard_nr_sectors;
3409 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3410 rq->current_nr_sectors = rq->hard_cur_sectors;
3411 rq->buffer = bio_data(rq->bio);
3412 }
3413
3414 /*
3415 * if total number of sectors is less than the first segment
3416 * size, something has gone terribly wrong
3417 */
3418 if (rq->nr_sectors < rq->current_nr_sectors) {
3419 printk("blk: request botched\n");
3420 rq->nr_sectors = rq->current_nr_sectors;
3421 }
3422 }
3423 }
3424
3425 static int __end_that_request_first(struct request *req, int uptodate,
3426 int nr_bytes)
3427 {
3428 int total_bytes, bio_nbytes, error, next_idx = 0;
3429 struct bio *bio;
3430
3431 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3432
3433 /*
3434 * extend uptodate bool to allow < 0 value to be direct io error
3435 */
3436 error = 0;
3437 if (end_io_error(uptodate))
3438 error = !uptodate ? -EIO : uptodate;
3439
3440 /*
3441 * for a REQ_BLOCK_PC request, we want to carry any eventual
3442 * sense key with us all the way through
3443 */
3444 if (!blk_pc_request(req))
3445 req->errors = 0;
3446
3447 if (!uptodate) {
3448 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3449 printk("end_request: I/O error, dev %s, sector %llu\n",
3450 req->rq_disk ? req->rq_disk->disk_name : "?",
3451 (unsigned long long)req->sector);
3452 }
3453
3454 if (blk_fs_request(req) && req->rq_disk) {
3455 const int rw = rq_data_dir(req);
3456
3457 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3458 }
3459
3460 total_bytes = bio_nbytes = 0;
3461 while ((bio = req->bio) != NULL) {
3462 int nbytes;
3463
3464 /*
3465 * For an empty barrier request, the low level driver must
3466 * store a potential error location in ->sector. We pass
3467 * that back up in ->bi_sector.
3468 */
3469 if (blk_empty_barrier(req))
3470 bio->bi_sector = req->sector;
3471
3472 if (nr_bytes >= bio->bi_size) {
3473 req->bio = bio->bi_next;
3474 nbytes = bio->bi_size;
3475 req_bio_endio(req, bio, nbytes, error);
3476 next_idx = 0;
3477 bio_nbytes = 0;
3478 } else {
3479 int idx = bio->bi_idx + next_idx;
3480
3481 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3482 blk_dump_rq_flags(req, "__end_that");
3483 printk("%s: bio idx %d >= vcnt %d\n",
3484 __FUNCTION__,
3485 bio->bi_idx, bio->bi_vcnt);
3486 break;
3487 }
3488
3489 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3490 BIO_BUG_ON(nbytes > bio->bi_size);
3491
3492 /*
3493 * not a complete bvec done
3494 */
3495 if (unlikely(nbytes > nr_bytes)) {
3496 bio_nbytes += nr_bytes;
3497 total_bytes += nr_bytes;
3498 break;
3499 }
3500
3501 /*
3502 * advance to the next vector
3503 */
3504 next_idx++;
3505 bio_nbytes += nbytes;
3506 }
3507
3508 total_bytes += nbytes;
3509 nr_bytes -= nbytes;
3510
3511 if ((bio = req->bio)) {
3512 /*
3513 * end more in this run, or just return 'not-done'
3514 */
3515 if (unlikely(nr_bytes <= 0))
3516 break;
3517 }
3518 }
3519
3520 /*
3521 * completely done
3522 */
3523 if (!req->bio)
3524 return 0;
3525
3526 /*
3527 * if the request wasn't completed, update state
3528 */
3529 if (bio_nbytes) {
3530 req_bio_endio(req, bio, bio_nbytes, error);
3531 bio->bi_idx += next_idx;
3532 bio_iovec(bio)->bv_offset += nr_bytes;
3533 bio_iovec(bio)->bv_len -= nr_bytes;
3534 }
3535
3536 blk_recalc_rq_sectors(req, total_bytes >> 9);
3537 blk_recalc_rq_segments(req);
3538 return 1;
3539 }
3540
3541 /**
3542 * end_that_request_first - end I/O on a request
3543 * @req: the request being processed
3544 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3545 * @nr_sectors: number of sectors to end I/O on
3546 *
3547 * Description:
3548 * Ends I/O on a number of sectors attached to @req, and sets it up
3549 * for the next range of segments (if any) in the cluster.
3550 *
3551 * Return:
3552 * 0 - we are done with this request, call end_that_request_last()
3553 * 1 - still buffers pending for this request
3554 **/
3555 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3556 {
3557 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3558 }
3559
3560 EXPORT_SYMBOL(end_that_request_first);
3561
3562 /**
3563 * end_that_request_chunk - end I/O on a request
3564 * @req: the request being processed
3565 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3566 * @nr_bytes: number of bytes to complete
3567 *
3568 * Description:
3569 * Ends I/O on a number of bytes attached to @req, and sets it up
3570 * for the next range of segments (if any). Like end_that_request_first(),
3571 * but deals with bytes instead of sectors.
3572 *
3573 * Return:
3574 * 0 - we are done with this request, call end_that_request_last()
3575 * 1 - still buffers pending for this request
3576 **/
3577 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3578 {
3579 return __end_that_request_first(req, uptodate, nr_bytes);
3580 }
3581
3582 EXPORT_SYMBOL(end_that_request_chunk);
3583
3584 /*
3585 * splice the completion data to a local structure and hand off to
3586 * process_completion_queue() to complete the requests
3587 */
3588 static void blk_done_softirq(struct softirq_action *h)
3589 {
3590 struct list_head *cpu_list, local_list;
3591
3592 local_irq_disable();
3593 cpu_list = &__get_cpu_var(blk_cpu_done);
3594 list_replace_init(cpu_list, &local_list);
3595 local_irq_enable();
3596
3597 while (!list_empty(&local_list)) {
3598 struct request *rq = list_entry(local_list.next, struct request, donelist);
3599
3600 list_del_init(&rq->donelist);
3601 rq->q->softirq_done_fn(rq);
3602 }
3603 }
3604
3605 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3606 void *hcpu)
3607 {
3608 /*
3609 * If a CPU goes away, splice its entries to the current CPU
3610 * and trigger a run of the softirq
3611 */
3612 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3613 int cpu = (unsigned long) hcpu;
3614
3615 local_irq_disable();
3616 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3617 &__get_cpu_var(blk_cpu_done));
3618 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3619 local_irq_enable();
3620 }
3621
3622 return NOTIFY_OK;
3623 }
3624
3625
3626 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3627 .notifier_call = blk_cpu_notify,
3628 };
3629
3630 /**
3631 * blk_complete_request - end I/O on a request
3632 * @req: the request being processed
3633 *
3634 * Description:
3635 * Ends all I/O on a request. It does not handle partial completions,
3636 * unless the driver actually implements this in its completion callback
3637 * through requeueing. The actual completion happens out-of-order,
3638 * through a softirq handler. The user must have registered a completion
3639 * callback through blk_queue_softirq_done().
3640 **/
3641
3642 void blk_complete_request(struct request *req)
3643 {
3644 struct list_head *cpu_list;
3645 unsigned long flags;
3646
3647 BUG_ON(!req->q->softirq_done_fn);
3648
3649 local_irq_save(flags);
3650
3651 cpu_list = &__get_cpu_var(blk_cpu_done);
3652 list_add_tail(&req->donelist, cpu_list);
3653 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3654
3655 local_irq_restore(flags);
3656 }
3657
3658 EXPORT_SYMBOL(blk_complete_request);
3659
3660 /*
3661 * queue lock must be held
3662 */
3663 void end_that_request_last(struct request *req, int uptodate)
3664 {
3665 struct gendisk *disk = req->rq_disk;
3666 int error;
3667
3668 /*
3669 * extend uptodate bool to allow < 0 value to be direct io error
3670 */
3671 error = 0;
3672 if (end_io_error(uptodate))
3673 error = !uptodate ? -EIO : uptodate;
3674
3675 if (unlikely(laptop_mode) && blk_fs_request(req))
3676 laptop_io_completion();
3677
3678 /*
3679 * Account IO completion. bar_rq isn't accounted as a normal
3680 * IO on queueing nor completion. Accounting the containing
3681 * request is enough.
3682 */
3683 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3684 unsigned long duration = jiffies - req->start_time;
3685 const int rw = rq_data_dir(req);
3686
3687 __disk_stat_inc(disk, ios[rw]);
3688 __disk_stat_add(disk, ticks[rw], duration);
3689 disk_round_stats(disk);
3690 disk->in_flight--;
3691 }
3692 if (req->end_io)
3693 req->end_io(req, error);
3694 else
3695 __blk_put_request(req->q, req);
3696 }
3697
3698 EXPORT_SYMBOL(end_that_request_last);
3699
3700 static inline void __end_request(struct request *rq, int uptodate,
3701 unsigned int nr_bytes, int dequeue)
3702 {
3703 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3704 if (dequeue)
3705 blkdev_dequeue_request(rq);
3706 add_disk_randomness(rq->rq_disk);
3707 end_that_request_last(rq, uptodate);
3708 }
3709 }
3710
3711 static unsigned int rq_byte_size(struct request *rq)
3712 {
3713 if (blk_fs_request(rq))
3714 return rq->hard_nr_sectors << 9;
3715
3716 return rq->data_len;
3717 }
3718
3719 /**
3720 * end_queued_request - end all I/O on a queued request
3721 * @rq: the request being processed
3722 * @uptodate: error value or 0/1 uptodate flag
3723 *
3724 * Description:
3725 * Ends all I/O on a request, and removes it from the block layer queues.
3726 * Not suitable for normal IO completion, unless the driver still has
3727 * the request attached to the block layer.
3728 *
3729 **/
3730 void end_queued_request(struct request *rq, int uptodate)
3731 {
3732 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3733 }
3734 EXPORT_SYMBOL(end_queued_request);
3735
3736 /**
3737 * end_dequeued_request - end all I/O on a dequeued request
3738 * @rq: the request being processed
3739 * @uptodate: error value or 0/1 uptodate flag
3740 *
3741 * Description:
3742 * Ends all I/O on a request. The request must already have been
3743 * dequeued using blkdev_dequeue_request(), as is normally the case
3744 * for most drivers.
3745 *
3746 **/
3747 void end_dequeued_request(struct request *rq, int uptodate)
3748 {
3749 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3750 }
3751 EXPORT_SYMBOL(end_dequeued_request);
3752
3753
3754 /**
3755 * end_request - end I/O on the current segment of the request
3756 * @req: the request being processed
3757 * @uptodate: error value or 0/1 uptodate flag
3758 *
3759 * Description:
3760 * Ends I/O on the current segment of a request. If that is the only
3761 * remaining segment, the request is also completed and freed.
3762 *
3763 * This is a remnant of how older block drivers handled IO completions.
3764 * Modern drivers typically end IO on the full request in one go, unless
3765 * they have a residual value to account for. For that case this function
3766 * isn't really useful, unless the residual just happens to be the
3767 * full current segment. In other words, don't use this function in new
3768 * code. Either use end_request_completely(), or the
3769 * end_that_request_chunk() (along with end_that_request_last()) for
3770 * partial completions.
3771 *
3772 **/
3773 void end_request(struct request *req, int uptodate)
3774 {
3775 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3776 }
3777 EXPORT_SYMBOL(end_request);
3778
3779 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3780 struct bio *bio)
3781 {
3782 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3783 rq->cmd_flags |= (bio->bi_rw & 3);
3784
3785 rq->nr_phys_segments = bio_phys_segments(q, bio);
3786 rq->nr_hw_segments = bio_hw_segments(q, bio);
3787 rq->current_nr_sectors = bio_cur_sectors(bio);
3788 rq->hard_cur_sectors = rq->current_nr_sectors;
3789 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3790 rq->buffer = bio_data(bio);
3791 rq->data_len = bio->bi_size;
3792
3793 rq->bio = rq->biotail = bio;
3794
3795 if (bio->bi_bdev)
3796 rq->rq_disk = bio->bi_bdev->bd_disk;
3797 }
3798
3799 int kblockd_schedule_work(struct work_struct *work)
3800 {
3801 return queue_work(kblockd_workqueue, work);
3802 }
3803
3804 EXPORT_SYMBOL(kblockd_schedule_work);
3805
3806 void kblockd_flush_work(struct work_struct *work)
3807 {
3808 cancel_work_sync(work);
3809 }
3810 EXPORT_SYMBOL(kblockd_flush_work);
3811
3812 int __init blk_dev_init(void)
3813 {
3814 int i;
3815
3816 kblockd_workqueue = create_workqueue("kblockd");
3817 if (!kblockd_workqueue)
3818 panic("Failed to create kblockd\n");
3819
3820 request_cachep = kmem_cache_create("blkdev_requests",
3821 sizeof(struct request), 0, SLAB_PANIC, NULL);
3822
3823 requestq_cachep = kmem_cache_create("blkdev_queue",
3824 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3825
3826 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3827 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3828
3829 for_each_possible_cpu(i)
3830 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3831
3832 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3833 register_hotcpu_notifier(&blk_cpu_notifier);
3834
3835 blk_max_low_pfn = max_low_pfn - 1;
3836 blk_max_pfn = max_pfn - 1;
3837
3838 return 0;
3839 }
3840
3841 /*
3842 * IO Context helper functions
3843 */
3844 void put_io_context(struct io_context *ioc)
3845 {
3846 if (ioc == NULL)
3847 return;
3848
3849 BUG_ON(atomic_read(&ioc->refcount) == 0);
3850
3851 if (atomic_dec_and_test(&ioc->refcount)) {
3852 struct cfq_io_context *cic;
3853
3854 rcu_read_lock();
3855 if (ioc->aic && ioc->aic->dtor)
3856 ioc->aic->dtor(ioc->aic);
3857 if (ioc->cic_root.rb_node != NULL) {
3858 struct rb_node *n = rb_first(&ioc->cic_root);
3859
3860 cic = rb_entry(n, struct cfq_io_context, rb_node);
3861 cic->dtor(ioc);
3862 }
3863 rcu_read_unlock();
3864
3865 kmem_cache_free(iocontext_cachep, ioc);
3866 }
3867 }
3868 EXPORT_SYMBOL(put_io_context);
3869
3870 /* Called by the exitting task */
3871 void exit_io_context(void)
3872 {
3873 struct io_context *ioc;
3874 struct cfq_io_context *cic;
3875
3876 task_lock(current);
3877 ioc = current->io_context;
3878 current->io_context = NULL;
3879 task_unlock(current);
3880
3881 ioc->task = NULL;
3882 if (ioc->aic && ioc->aic->exit)
3883 ioc->aic->exit(ioc->aic);
3884 if (ioc->cic_root.rb_node != NULL) {
3885 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3886 cic->exit(ioc);
3887 }
3888
3889 put_io_context(ioc);
3890 }
3891
3892 /*
3893 * If the current task has no IO context then create one and initialise it.
3894 * Otherwise, return its existing IO context.
3895 *
3896 * This returned IO context doesn't have a specifically elevated refcount,
3897 * but since the current task itself holds a reference, the context can be
3898 * used in general code, so long as it stays within `current` context.
3899 */
3900 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3901 {
3902 struct task_struct *tsk = current;
3903 struct io_context *ret;
3904
3905 ret = tsk->io_context;
3906 if (likely(ret))
3907 return ret;
3908
3909 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3910 if (ret) {
3911 atomic_set(&ret->refcount, 1);
3912 ret->task = current;
3913 ret->ioprio_changed = 0;
3914 ret->last_waited = jiffies; /* doesn't matter... */
3915 ret->nr_batch_requests = 0; /* because this is 0 */
3916 ret->aic = NULL;
3917 ret->cic_root.rb_node = NULL;
3918 ret->ioc_data = NULL;
3919 /* make sure set_task_ioprio() sees the settings above */
3920 smp_wmb();
3921 tsk->io_context = ret;
3922 }
3923
3924 return ret;
3925 }
3926
3927 /*
3928 * If the current task has no IO context then create one and initialise it.
3929 * If it does have a context, take a ref on it.
3930 *
3931 * This is always called in the context of the task which submitted the I/O.
3932 */
3933 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3934 {
3935 struct io_context *ret;
3936 ret = current_io_context(gfp_flags, node);
3937 if (likely(ret))
3938 atomic_inc(&ret->refcount);
3939 return ret;
3940 }
3941 EXPORT_SYMBOL(get_io_context);
3942
3943 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3944 {
3945 struct io_context *src = *psrc;
3946 struct io_context *dst = *pdst;
3947
3948 if (src) {
3949 BUG_ON(atomic_read(&src->refcount) == 0);
3950 atomic_inc(&src->refcount);
3951 put_io_context(dst);
3952 *pdst = src;
3953 }
3954 }
3955 EXPORT_SYMBOL(copy_io_context);
3956
3957 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3958 {
3959 struct io_context *temp;
3960 temp = *ioc1;
3961 *ioc1 = *ioc2;
3962 *ioc2 = temp;
3963 }
3964 EXPORT_SYMBOL(swap_io_context);
3965
3966 /*
3967 * sysfs parts below
3968 */
3969 struct queue_sysfs_entry {
3970 struct attribute attr;
3971 ssize_t (*show)(struct request_queue *, char *);
3972 ssize_t (*store)(struct request_queue *, const char *, size_t);
3973 };
3974
3975 static ssize_t
3976 queue_var_show(unsigned int var, char *page)
3977 {
3978 return sprintf(page, "%d\n", var);
3979 }
3980
3981 static ssize_t
3982 queue_var_store(unsigned long *var, const char *page, size_t count)
3983 {
3984 char *p = (char *) page;
3985
3986 *var = simple_strtoul(p, &p, 10);
3987 return count;
3988 }
3989
3990 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3991 {
3992 return queue_var_show(q->nr_requests, (page));
3993 }
3994
3995 static ssize_t
3996 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3997 {
3998 struct request_list *rl = &q->rq;
3999 unsigned long nr;
4000 int ret = queue_var_store(&nr, page, count);
4001 if (nr < BLKDEV_MIN_RQ)
4002 nr = BLKDEV_MIN_RQ;
4003
4004 spin_lock_irq(q->queue_lock);
4005 q->nr_requests = nr;
4006 blk_queue_congestion_threshold(q);
4007
4008 if (rl->count[READ] >= queue_congestion_on_threshold(q))
4009 blk_set_queue_congested(q, READ);
4010 else if (rl->count[READ] < queue_congestion_off_threshold(q))
4011 blk_clear_queue_congested(q, READ);
4012
4013 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
4014 blk_set_queue_congested(q, WRITE);
4015 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
4016 blk_clear_queue_congested(q, WRITE);
4017
4018 if (rl->count[READ] >= q->nr_requests) {
4019 blk_set_queue_full(q, READ);
4020 } else if (rl->count[READ]+1 <= q->nr_requests) {
4021 blk_clear_queue_full(q, READ);
4022 wake_up(&rl->wait[READ]);
4023 }
4024
4025 if (rl->count[WRITE] >= q->nr_requests) {
4026 blk_set_queue_full(q, WRITE);
4027 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4028 blk_clear_queue_full(q, WRITE);
4029 wake_up(&rl->wait[WRITE]);
4030 }
4031 spin_unlock_irq(q->queue_lock);
4032 return ret;
4033 }
4034
4035 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4036 {
4037 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4038
4039 return queue_var_show(ra_kb, (page));
4040 }
4041
4042 static ssize_t
4043 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4044 {
4045 unsigned long ra_kb;
4046 ssize_t ret = queue_var_store(&ra_kb, page, count);
4047
4048 spin_lock_irq(q->queue_lock);
4049 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4050 spin_unlock_irq(q->queue_lock);
4051
4052 return ret;
4053 }
4054
4055 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4056 {
4057 int max_sectors_kb = q->max_sectors >> 1;
4058
4059 return queue_var_show(max_sectors_kb, (page));
4060 }
4061
4062 static ssize_t
4063 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4064 {
4065 unsigned long max_sectors_kb,
4066 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4067 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4068 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4069
4070 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4071 return -EINVAL;
4072 /*
4073 * Take the queue lock to update the readahead and max_sectors
4074 * values synchronously:
4075 */
4076 spin_lock_irq(q->queue_lock);
4077 q->max_sectors = max_sectors_kb << 1;
4078 spin_unlock_irq(q->queue_lock);
4079
4080 return ret;
4081 }
4082
4083 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4084 {
4085 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4086
4087 return queue_var_show(max_hw_sectors_kb, (page));
4088 }
4089
4090 static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4091 {
4092 return queue_var_show(q->max_phys_segments, page);
4093 }
4094
4095 static ssize_t queue_max_segments_store(struct request_queue *q,
4096 const char *page, size_t count)
4097 {
4098 unsigned long segments;
4099 ssize_t ret = queue_var_store(&segments, page, count);
4100
4101 spin_lock_irq(q->queue_lock);
4102 q->max_phys_segments = segments;
4103 spin_unlock_irq(q->queue_lock);
4104
4105 return ret;
4106 }
4107 static struct queue_sysfs_entry queue_requests_entry = {
4108 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4109 .show = queue_requests_show,
4110 .store = queue_requests_store,
4111 };
4112
4113 static struct queue_sysfs_entry queue_ra_entry = {
4114 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4115 .show = queue_ra_show,
4116 .store = queue_ra_store,
4117 };
4118
4119 static struct queue_sysfs_entry queue_max_sectors_entry = {
4120 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4121 .show = queue_max_sectors_show,
4122 .store = queue_max_sectors_store,
4123 };
4124
4125 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4126 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4127 .show = queue_max_hw_sectors_show,
4128 };
4129
4130 static struct queue_sysfs_entry queue_max_segments_entry = {
4131 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4132 .show = queue_max_segments_show,
4133 .store = queue_max_segments_store,
4134 };
4135
4136 static struct queue_sysfs_entry queue_iosched_entry = {
4137 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4138 .show = elv_iosched_show,
4139 .store = elv_iosched_store,
4140 };
4141
4142 static struct attribute *default_attrs[] = {
4143 &queue_requests_entry.attr,
4144 &queue_ra_entry.attr,
4145 &queue_max_hw_sectors_entry.attr,
4146 &queue_max_sectors_entry.attr,
4147 &queue_max_segments_entry.attr,
4148 &queue_iosched_entry.attr,
4149 NULL,
4150 };
4151
4152 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4153
4154 static ssize_t
4155 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4156 {
4157 struct queue_sysfs_entry *entry = to_queue(attr);
4158 struct request_queue *q =
4159 container_of(kobj, struct request_queue, kobj);
4160 ssize_t res;
4161
4162 if (!entry->show)
4163 return -EIO;
4164 mutex_lock(&q->sysfs_lock);
4165 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4166 mutex_unlock(&q->sysfs_lock);
4167 return -ENOENT;
4168 }
4169 res = entry->show(q, page);
4170 mutex_unlock(&q->sysfs_lock);
4171 return res;
4172 }
4173
4174 static ssize_t
4175 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4176 const char *page, size_t length)
4177 {
4178 struct queue_sysfs_entry *entry = to_queue(attr);
4179 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4180
4181 ssize_t res;
4182
4183 if (!entry->store)
4184 return -EIO;
4185 mutex_lock(&q->sysfs_lock);
4186 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4187 mutex_unlock(&q->sysfs_lock);
4188 return -ENOENT;
4189 }
4190 res = entry->store(q, page, length);
4191 mutex_unlock(&q->sysfs_lock);
4192 return res;
4193 }
4194
4195 static struct sysfs_ops queue_sysfs_ops = {
4196 .show = queue_attr_show,
4197 .store = queue_attr_store,
4198 };
4199
4200 static struct kobj_type queue_ktype = {
4201 .sysfs_ops = &queue_sysfs_ops,
4202 .default_attrs = default_attrs,
4203 .release = blk_release_queue,
4204 };
4205
4206 int blk_register_queue(struct gendisk *disk)
4207 {
4208 int ret;
4209
4210 struct request_queue *q = disk->queue;
4211
4212 if (!q || !q->request_fn)
4213 return -ENXIO;
4214
4215 q->kobj.parent = kobject_get(&disk->kobj);
4216
4217 ret = kobject_add(&q->kobj);
4218 if (ret < 0)
4219 return ret;
4220
4221 kobject_uevent(&q->kobj, KOBJ_ADD);
4222
4223 ret = elv_register_queue(q);
4224 if (ret) {
4225 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4226 kobject_del(&q->kobj);
4227 return ret;
4228 }
4229
4230 return 0;
4231 }
4232
4233 void blk_unregister_queue(struct gendisk *disk)
4234 {
4235 struct request_queue *q = disk->queue;
4236
4237 if (q && q->request_fn) {
4238 elv_unregister_queue(q);
4239
4240 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4241 kobject_del(&q->kobj);
4242 kobject_put(&disk->kobj);
4243 }
4244 }