Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 #include <linux/scatterlist.h>
34
35 /*
36 * for max sense size
37 */
38 #include <scsi/scsi_cmnd.h>
39
40 static void blk_unplug_work(struct work_struct *work);
41 static void blk_unplug_timeout(unsigned long data);
42 static void drive_stat_acct(struct request *rq, int new_io);
43 static void init_request_from_bio(struct request *req, struct bio *bio);
44 static int __make_request(struct request_queue *q, struct bio *bio);
45 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
46 static void blk_recalc_rq_segments(struct request *rq);
47 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 static struct kmem_cache *requestq_cachep;
59
60 /*
61 * For io context allocations
62 */
63 static struct kmem_cache *iocontext_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 unsigned long blk_max_low_pfn, blk_max_pfn;
71
72 EXPORT_SYMBOL(blk_max_low_pfn);
73 EXPORT_SYMBOL(blk_max_pfn);
74
75 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
77 /* Amount of time in which a process may batch requests */
78 #define BLK_BATCH_TIME (HZ/50UL)
79
80 /* Number of requests a "batching" process may submit */
81 #define BLK_BATCH_REQ 32
82
83 /*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 {
90 return q->nr_congestion_on;
91 }
92
93 /*
94 * The threshold at which a queue is considered to be uncongested
95 */
96 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 {
98 return q->nr_congestion_off;
99 }
100
101 static void blk_queue_congestion_threshold(struct request_queue *q)
102 {
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114 }
115
116 /**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 {
127 struct backing_dev_info *ret = NULL;
128 struct request_queue *q = bdev_get_queue(bdev);
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133 }
134 EXPORT_SYMBOL(blk_get_backing_dev_info);
135
136 /**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
147 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 {
149 q->prep_rq_fn = pfn;
150 }
151
152 EXPORT_SYMBOL(blk_queue_prep_rq);
153
154 /**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
170 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 {
172 q->merge_bvec_fn = mbfn;
173 }
174
175 EXPORT_SYMBOL(blk_queue_merge_bvec);
176
177 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 {
179 q->softirq_done_fn = fn;
180 }
181
182 EXPORT_SYMBOL(blk_queue_softirq_done);
183
184 /**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
206 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
207 {
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
229 INIT_WORK(&q->unplug_work, blk_unplug_work);
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
238 }
239
240 EXPORT_SYMBOL(blk_queue_make_request);
241
242 static void rq_init(struct request_queue *q, struct request *rq)
243 {
244 INIT_LIST_HEAD(&rq->queuelist);
245 INIT_LIST_HEAD(&rq->donelist);
246
247 rq->errors = 0;
248 rq->bio = rq->biotail = NULL;
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
251 rq->ioprio = 0;
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
258 rq->nr_phys_segments = 0;
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
262 rq->completion_data = NULL;
263 rq->next_rq = NULL;
264 }
265
266 /**
267 * blk_queue_ordered - does this queue support ordered writes
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
279 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
280 prepare_flush_fn *prepare_flush_fn)
281 {
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
297 }
298
299 q->ordered = ordered;
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
304 }
305
306 EXPORT_SYMBOL(blk_queue_ordered);
307
308 /*
309 * Cache flushing for ordered writes handling
310 */
311 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
312 {
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
316 }
317
318 unsigned blk_ordered_req_seq(struct request *rq)
319 {
320 struct request_queue *q = rq->q;
321
322 BUG_ON(q->ordseq == 0);
323
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
330
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
345 }
346
347 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
348 {
349 struct request *rq;
350 int uptodate;
351
352 if (error && !q->orderr)
353 q->orderr = error;
354
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
357
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
360
361 /*
362 * Okay, sequence complete.
363 */
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
367
368 q->ordseq = 0;
369 rq = q->orig_bar_rq;
370
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
373 }
374
375 static void pre_flush_end_io(struct request *rq, int error)
376 {
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379 }
380
381 static void bar_end_io(struct request *rq, int error)
382 {
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385 }
386
387 static void post_flush_end_io(struct request *rq, int error)
388 {
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391 }
392
393 static void queue_flush(struct request_queue *q, unsigned which)
394 {
395 struct request *rq;
396 rq_end_io_fn *end_io;
397
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
404 }
405
406 rq->cmd_flags = REQ_HARDBARRIER;
407 rq_init(q, rq);
408 rq->elevator_private = NULL;
409 rq->elevator_private2 = NULL;
410 rq->rq_disk = q->bar_rq.rq_disk;
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
415 }
416
417 static inline struct request *start_ordered(struct request_queue *q,
418 struct request *rq)
419 {
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
430 rq->cmd_flags = 0;
431 rq_init(q, rq);
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
436 rq->elevator_private = NULL;
437 rq->elevator_private2 = NULL;
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
449 */
450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
462
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
469 }
470
471 int blk_do_ordered(struct request_queue *q, struct request **rqp)
472 {
473 struct request *rq = *rqp;
474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
475
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
479
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
496
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
506 if (q->ordered & QUEUE_ORDERED_TAG) {
507 /* Ordered by tag. Blocking the next barrier is enough. */
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
515 }
516
517 return 1;
518 }
519
520 static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
522 {
523 struct request_queue *q = rq->q;
524
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
530
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
536
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
540 bio_endio(bio, error);
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
550 }
551
552 /**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
561 * buffers for doing I/O to pages residing above @page.
562 **/
563 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
564 {
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569 #if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576 #else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580 #endif
581 if (dma) {
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
584 q->bounce_pfn = bounce_pfn;
585 }
586 }
587
588 EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590 /**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
599 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
600 {
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
612 }
613
614 EXPORT_SYMBOL(blk_queue_max_sectors);
615
616 /**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
626 void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
628 {
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635 }
636
637 EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639 /**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
650 void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
652 {
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659 }
660
661 EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663 /**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
672 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
673 {
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680 }
681
682 EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684 /**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
695 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
696 {
697 q->hardsect_size = size;
698 }
699
700 EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702 /*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707 /**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
712 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
713 {
714 /* zero is "infinity" */
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
724 }
725
726 EXPORT_SYMBOL(blk_queue_stack_limits);
727
728 /**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
733 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734 {
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741 }
742
743 EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745 /**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
755 void blk_queue_dma_alignment(struct request_queue *q, int mask)
756 {
757 q->dma_alignment = mask;
758 }
759
760 EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762 /**
763 * blk_queue_find_tag - find a request by its tag and queue
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
773 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
774 {
775 return blk_map_queue_find_tag(q->queue_tags, tag);
776 }
777
778 EXPORT_SYMBOL(blk_queue_find_tag);
779
780 /**
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
783 *
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787 static int __blk_free_tags(struct blk_queue_tag *bqt)
788 {
789 int retval;
790
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
793 BUG_ON(bqt->busy);
794
795 kfree(bqt->tag_index);
796 bqt->tag_index = NULL;
797
798 kfree(bqt->tag_map);
799 bqt->tag_map = NULL;
800
801 kfree(bqt);
802
803 }
804
805 return retval;
806 }
807
808 /**
809 * __blk_queue_free_tags - release tag maintenance info
810 * @q: the request queue for the device
811 *
812 * Notes:
813 * blk_cleanup_queue() will take care of calling this function, if tagging
814 * has been used. So there's no need to call this directly.
815 **/
816 static void __blk_queue_free_tags(struct request_queue *q)
817 {
818 struct blk_queue_tag *bqt = q->queue_tags;
819
820 if (!bqt)
821 return;
822
823 __blk_free_tags(bqt);
824
825 q->queue_tags = NULL;
826 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
827 }
828
829
830 /**
831 * blk_free_tags - release a given set of tag maintenance info
832 * @bqt: the tag map to free
833 *
834 * For externally managed @bqt@ frees the map. Callers of this
835 * function must guarantee to have released all the queues that
836 * might have been using this tag map.
837 */
838 void blk_free_tags(struct blk_queue_tag *bqt)
839 {
840 if (unlikely(!__blk_free_tags(bqt)))
841 BUG();
842 }
843 EXPORT_SYMBOL(blk_free_tags);
844
845 /**
846 * blk_queue_free_tags - release tag maintenance info
847 * @q: the request queue for the device
848 *
849 * Notes:
850 * This is used to disabled tagged queuing to a device, yet leave
851 * queue in function.
852 **/
853 void blk_queue_free_tags(struct request_queue *q)
854 {
855 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
856 }
857
858 EXPORT_SYMBOL(blk_queue_free_tags);
859
860 static int
861 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
862 {
863 struct request **tag_index;
864 unsigned long *tag_map;
865 int nr_ulongs;
866
867 if (q && depth > q->nr_requests * 2) {
868 depth = q->nr_requests * 2;
869 printk(KERN_ERR "%s: adjusted depth to %d\n",
870 __FUNCTION__, depth);
871 }
872
873 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
874 if (!tag_index)
875 goto fail;
876
877 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
878 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
879 if (!tag_map)
880 goto fail;
881
882 tags->real_max_depth = depth;
883 tags->max_depth = depth;
884 tags->tag_index = tag_index;
885 tags->tag_map = tag_map;
886
887 return 0;
888 fail:
889 kfree(tag_index);
890 return -ENOMEM;
891 }
892
893 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
894 int depth)
895 {
896 struct blk_queue_tag *tags;
897
898 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
899 if (!tags)
900 goto fail;
901
902 if (init_tag_map(q, tags, depth))
903 goto fail;
904
905 tags->busy = 0;
906 atomic_set(&tags->refcnt, 1);
907 return tags;
908 fail:
909 kfree(tags);
910 return NULL;
911 }
912
913 /**
914 * blk_init_tags - initialize the tag info for an external tag map
915 * @depth: the maximum queue depth supported
916 * @tags: the tag to use
917 **/
918 struct blk_queue_tag *blk_init_tags(int depth)
919 {
920 return __blk_queue_init_tags(NULL, depth);
921 }
922 EXPORT_SYMBOL(blk_init_tags);
923
924 /**
925 * blk_queue_init_tags - initialize the queue tag info
926 * @q: the request queue for the device
927 * @depth: the maximum queue depth supported
928 * @tags: the tag to use
929 **/
930 int blk_queue_init_tags(struct request_queue *q, int depth,
931 struct blk_queue_tag *tags)
932 {
933 int rc;
934
935 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
936
937 if (!tags && !q->queue_tags) {
938 tags = __blk_queue_init_tags(q, depth);
939
940 if (!tags)
941 goto fail;
942 } else if (q->queue_tags) {
943 if ((rc = blk_queue_resize_tags(q, depth)))
944 return rc;
945 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
946 return 0;
947 } else
948 atomic_inc(&tags->refcnt);
949
950 /*
951 * assign it, all done
952 */
953 q->queue_tags = tags;
954 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
955 INIT_LIST_HEAD(&q->tag_busy_list);
956 return 0;
957 fail:
958 kfree(tags);
959 return -ENOMEM;
960 }
961
962 EXPORT_SYMBOL(blk_queue_init_tags);
963
964 /**
965 * blk_queue_resize_tags - change the queueing depth
966 * @q: the request queue for the device
967 * @new_depth: the new max command queueing depth
968 *
969 * Notes:
970 * Must be called with the queue lock held.
971 **/
972 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
973 {
974 struct blk_queue_tag *bqt = q->queue_tags;
975 struct request **tag_index;
976 unsigned long *tag_map;
977 int max_depth, nr_ulongs;
978
979 if (!bqt)
980 return -ENXIO;
981
982 /*
983 * if we already have large enough real_max_depth. just
984 * adjust max_depth. *NOTE* as requests with tag value
985 * between new_depth and real_max_depth can be in-flight, tag
986 * map can not be shrunk blindly here.
987 */
988 if (new_depth <= bqt->real_max_depth) {
989 bqt->max_depth = new_depth;
990 return 0;
991 }
992
993 /*
994 * Currently cannot replace a shared tag map with a new
995 * one, so error out if this is the case
996 */
997 if (atomic_read(&bqt->refcnt) != 1)
998 return -EBUSY;
999
1000 /*
1001 * save the old state info, so we can copy it back
1002 */
1003 tag_index = bqt->tag_index;
1004 tag_map = bqt->tag_map;
1005 max_depth = bqt->real_max_depth;
1006
1007 if (init_tag_map(q, bqt, new_depth))
1008 return -ENOMEM;
1009
1010 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1011 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1012 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1013
1014 kfree(tag_index);
1015 kfree(tag_map);
1016 return 0;
1017 }
1018
1019 EXPORT_SYMBOL(blk_queue_resize_tags);
1020
1021 /**
1022 * blk_queue_end_tag - end tag operations for a request
1023 * @q: the request queue for the device
1024 * @rq: the request that has completed
1025 *
1026 * Description:
1027 * Typically called when end_that_request_first() returns 0, meaning
1028 * all transfers have been done for a request. It's important to call
1029 * this function before end_that_request_last(), as that will put the
1030 * request back on the free list thus corrupting the internal tag list.
1031 *
1032 * Notes:
1033 * queue lock must be held.
1034 **/
1035 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1036 {
1037 struct blk_queue_tag *bqt = q->queue_tags;
1038 int tag = rq->tag;
1039
1040 BUG_ON(tag == -1);
1041
1042 if (unlikely(tag >= bqt->real_max_depth))
1043 /*
1044 * This can happen after tag depth has been reduced.
1045 * FIXME: how about a warning or info message here?
1046 */
1047 return;
1048
1049 list_del_init(&rq->queuelist);
1050 rq->cmd_flags &= ~REQ_QUEUED;
1051 rq->tag = -1;
1052
1053 if (unlikely(bqt->tag_index[tag] == NULL))
1054 printk(KERN_ERR "%s: tag %d is missing\n",
1055 __FUNCTION__, tag);
1056
1057 bqt->tag_index[tag] = NULL;
1058
1059 if (unlikely(!test_bit(tag, bqt->tag_map))) {
1060 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1061 __FUNCTION__, tag);
1062 return;
1063 }
1064 /*
1065 * The tag_map bit acts as a lock for tag_index[bit], so we need
1066 * unlock memory barrier semantics.
1067 */
1068 clear_bit_unlock(tag, bqt->tag_map);
1069 bqt->busy--;
1070 }
1071
1072 EXPORT_SYMBOL(blk_queue_end_tag);
1073
1074 /**
1075 * blk_queue_start_tag - find a free tag and assign it
1076 * @q: the request queue for the device
1077 * @rq: the block request that needs tagging
1078 *
1079 * Description:
1080 * This can either be used as a stand-alone helper, or possibly be
1081 * assigned as the queue &prep_rq_fn (in which case &struct request
1082 * automagically gets a tag assigned). Note that this function
1083 * assumes that any type of request can be queued! if this is not
1084 * true for your device, you must check the request type before
1085 * calling this function. The request will also be removed from
1086 * the request queue, so it's the drivers responsibility to readd
1087 * it if it should need to be restarted for some reason.
1088 *
1089 * Notes:
1090 * queue lock must be held.
1091 **/
1092 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1093 {
1094 struct blk_queue_tag *bqt = q->queue_tags;
1095 int tag;
1096
1097 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1098 printk(KERN_ERR
1099 "%s: request %p for device [%s] already tagged %d",
1100 __FUNCTION__, rq,
1101 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1102 BUG();
1103 }
1104
1105 /*
1106 * Protect against shared tag maps, as we may not have exclusive
1107 * access to the tag map.
1108 */
1109 do {
1110 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1111 if (tag >= bqt->max_depth)
1112 return 1;
1113
1114 } while (test_and_set_bit_lock(tag, bqt->tag_map));
1115 /*
1116 * We need lock ordering semantics given by test_and_set_bit_lock.
1117 * See blk_queue_end_tag for details.
1118 */
1119
1120 rq->cmd_flags |= REQ_QUEUED;
1121 rq->tag = tag;
1122 bqt->tag_index[tag] = rq;
1123 blkdev_dequeue_request(rq);
1124 list_add(&rq->queuelist, &q->tag_busy_list);
1125 bqt->busy++;
1126 return 0;
1127 }
1128
1129 EXPORT_SYMBOL(blk_queue_start_tag);
1130
1131 /**
1132 * blk_queue_invalidate_tags - invalidate all pending tags
1133 * @q: the request queue for the device
1134 *
1135 * Description:
1136 * Hardware conditions may dictate a need to stop all pending requests.
1137 * In this case, we will safely clear the block side of the tag queue and
1138 * readd all requests to the request queue in the right order.
1139 *
1140 * Notes:
1141 * queue lock must be held.
1142 **/
1143 void blk_queue_invalidate_tags(struct request_queue *q)
1144 {
1145 struct list_head *tmp, *n;
1146 struct request *rq;
1147
1148 list_for_each_safe(tmp, n, &q->tag_busy_list) {
1149 rq = list_entry_rq(tmp);
1150
1151 if (rq->tag == -1) {
1152 printk(KERN_ERR
1153 "%s: bad tag found on list\n", __FUNCTION__);
1154 list_del_init(&rq->queuelist);
1155 rq->cmd_flags &= ~REQ_QUEUED;
1156 } else
1157 blk_queue_end_tag(q, rq);
1158
1159 rq->cmd_flags &= ~REQ_STARTED;
1160 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1161 }
1162 }
1163
1164 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1165
1166 void blk_dump_rq_flags(struct request *rq, char *msg)
1167 {
1168 int bit;
1169
1170 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1171 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1172 rq->cmd_flags);
1173
1174 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1175 rq->nr_sectors,
1176 rq->current_nr_sectors);
1177 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1178
1179 if (blk_pc_request(rq)) {
1180 printk("cdb: ");
1181 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1182 printk("%02x ", rq->cmd[bit]);
1183 printk("\n");
1184 }
1185 }
1186
1187 EXPORT_SYMBOL(blk_dump_rq_flags);
1188
1189 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1190 {
1191 struct request rq;
1192 struct bio *nxt = bio->bi_next;
1193 rq.q = q;
1194 rq.bio = rq.biotail = bio;
1195 bio->bi_next = NULL;
1196 blk_recalc_rq_segments(&rq);
1197 bio->bi_next = nxt;
1198 bio->bi_phys_segments = rq.nr_phys_segments;
1199 bio->bi_hw_segments = rq.nr_hw_segments;
1200 bio->bi_flags |= (1 << BIO_SEG_VALID);
1201 }
1202 EXPORT_SYMBOL(blk_recount_segments);
1203
1204 static void blk_recalc_rq_segments(struct request *rq)
1205 {
1206 int nr_phys_segs;
1207 int nr_hw_segs;
1208 unsigned int phys_size;
1209 unsigned int hw_size;
1210 struct bio_vec *bv, *bvprv = NULL;
1211 int seg_size;
1212 int hw_seg_size;
1213 int cluster;
1214 struct req_iterator iter;
1215 int high, highprv = 1;
1216 struct request_queue *q = rq->q;
1217
1218 if (!rq->bio)
1219 return;
1220
1221 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1222 hw_seg_size = seg_size = 0;
1223 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1224 rq_for_each_segment(bv, rq, iter) {
1225 /*
1226 * the trick here is making sure that a high page is never
1227 * considered part of another segment, since that might
1228 * change with the bounce page.
1229 */
1230 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1231 if (high || highprv)
1232 goto new_hw_segment;
1233 if (cluster) {
1234 if (seg_size + bv->bv_len > q->max_segment_size)
1235 goto new_segment;
1236 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1237 goto new_segment;
1238 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1239 goto new_segment;
1240 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1241 goto new_hw_segment;
1242
1243 seg_size += bv->bv_len;
1244 hw_seg_size += bv->bv_len;
1245 bvprv = bv;
1246 continue;
1247 }
1248 new_segment:
1249 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1250 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1251 hw_seg_size += bv->bv_len;
1252 else {
1253 new_hw_segment:
1254 if (nr_hw_segs == 1 &&
1255 hw_seg_size > rq->bio->bi_hw_front_size)
1256 rq->bio->bi_hw_front_size = hw_seg_size;
1257 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1258 nr_hw_segs++;
1259 }
1260
1261 nr_phys_segs++;
1262 bvprv = bv;
1263 seg_size = bv->bv_len;
1264 highprv = high;
1265 }
1266
1267 if (nr_hw_segs == 1 &&
1268 hw_seg_size > rq->bio->bi_hw_front_size)
1269 rq->bio->bi_hw_front_size = hw_seg_size;
1270 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1271 rq->biotail->bi_hw_back_size = hw_seg_size;
1272 rq->nr_phys_segments = nr_phys_segs;
1273 rq->nr_hw_segments = nr_hw_segs;
1274 }
1275
1276 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1277 struct bio *nxt)
1278 {
1279 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1280 return 0;
1281
1282 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1283 return 0;
1284 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1285 return 0;
1286
1287 /*
1288 * bio and nxt are contigous in memory, check if the queue allows
1289 * these two to be merged into one
1290 */
1291 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1292 return 1;
1293
1294 return 0;
1295 }
1296
1297 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1298 struct bio *nxt)
1299 {
1300 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1301 blk_recount_segments(q, bio);
1302 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1303 blk_recount_segments(q, nxt);
1304 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1305 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1306 return 0;
1307 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1308 return 0;
1309
1310 return 1;
1311 }
1312
1313 /*
1314 * map a request to scatterlist, return number of sg entries setup. Caller
1315 * must make sure sg can hold rq->nr_phys_segments entries
1316 */
1317 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1318 struct scatterlist *sglist)
1319 {
1320 struct bio_vec *bvec, *bvprv;
1321 struct req_iterator iter;
1322 struct scatterlist *sg;
1323 int nsegs, cluster;
1324
1325 nsegs = 0;
1326 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1327
1328 /*
1329 * for each bio in rq
1330 */
1331 bvprv = NULL;
1332 sg = NULL;
1333 rq_for_each_segment(bvec, rq, iter) {
1334 int nbytes = bvec->bv_len;
1335
1336 if (bvprv && cluster) {
1337 if (sg->length + nbytes > q->max_segment_size)
1338 goto new_segment;
1339
1340 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1341 goto new_segment;
1342 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1343 goto new_segment;
1344
1345 sg->length += nbytes;
1346 } else {
1347 new_segment:
1348 if (!sg)
1349 sg = sglist;
1350 else {
1351 /*
1352 * If the driver previously mapped a shorter
1353 * list, we could see a termination bit
1354 * prematurely unless it fully inits the sg
1355 * table on each mapping. We KNOW that there
1356 * must be more entries here or the driver
1357 * would be buggy, so force clear the
1358 * termination bit to avoid doing a full
1359 * sg_init_table() in drivers for each command.
1360 */
1361 sg->page_link &= ~0x02;
1362 sg = sg_next(sg);
1363 }
1364
1365 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
1366 nsegs++;
1367 }
1368 bvprv = bvec;
1369 } /* segments in rq */
1370
1371 if (sg)
1372 __sg_mark_end(sg);
1373
1374 return nsegs;
1375 }
1376
1377 EXPORT_SYMBOL(blk_rq_map_sg);
1378
1379 /*
1380 * the standard queue merge functions, can be overridden with device
1381 * specific ones if so desired
1382 */
1383
1384 static inline int ll_new_mergeable(struct request_queue *q,
1385 struct request *req,
1386 struct bio *bio)
1387 {
1388 int nr_phys_segs = bio_phys_segments(q, bio);
1389
1390 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1391 req->cmd_flags |= REQ_NOMERGE;
1392 if (req == q->last_merge)
1393 q->last_merge = NULL;
1394 return 0;
1395 }
1396
1397 /*
1398 * A hw segment is just getting larger, bump just the phys
1399 * counter.
1400 */
1401 req->nr_phys_segments += nr_phys_segs;
1402 return 1;
1403 }
1404
1405 static inline int ll_new_hw_segment(struct request_queue *q,
1406 struct request *req,
1407 struct bio *bio)
1408 {
1409 int nr_hw_segs = bio_hw_segments(q, bio);
1410 int nr_phys_segs = bio_phys_segments(q, bio);
1411
1412 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1413 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1414 req->cmd_flags |= REQ_NOMERGE;
1415 if (req == q->last_merge)
1416 q->last_merge = NULL;
1417 return 0;
1418 }
1419
1420 /*
1421 * This will form the start of a new hw segment. Bump both
1422 * counters.
1423 */
1424 req->nr_hw_segments += nr_hw_segs;
1425 req->nr_phys_segments += nr_phys_segs;
1426 return 1;
1427 }
1428
1429 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1430 struct bio *bio)
1431 {
1432 unsigned short max_sectors;
1433 int len;
1434
1435 if (unlikely(blk_pc_request(req)))
1436 max_sectors = q->max_hw_sectors;
1437 else
1438 max_sectors = q->max_sectors;
1439
1440 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1441 req->cmd_flags |= REQ_NOMERGE;
1442 if (req == q->last_merge)
1443 q->last_merge = NULL;
1444 return 0;
1445 }
1446 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1447 blk_recount_segments(q, req->biotail);
1448 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1449 blk_recount_segments(q, bio);
1450 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1451 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1452 !BIOVEC_VIRT_OVERSIZE(len)) {
1453 int mergeable = ll_new_mergeable(q, req, bio);
1454
1455 if (mergeable) {
1456 if (req->nr_hw_segments == 1)
1457 req->bio->bi_hw_front_size = len;
1458 if (bio->bi_hw_segments == 1)
1459 bio->bi_hw_back_size = len;
1460 }
1461 return mergeable;
1462 }
1463
1464 return ll_new_hw_segment(q, req, bio);
1465 }
1466
1467 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1468 struct bio *bio)
1469 {
1470 unsigned short max_sectors;
1471 int len;
1472
1473 if (unlikely(blk_pc_request(req)))
1474 max_sectors = q->max_hw_sectors;
1475 else
1476 max_sectors = q->max_sectors;
1477
1478
1479 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1480 req->cmd_flags |= REQ_NOMERGE;
1481 if (req == q->last_merge)
1482 q->last_merge = NULL;
1483 return 0;
1484 }
1485 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1486 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1487 blk_recount_segments(q, bio);
1488 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1489 blk_recount_segments(q, req->bio);
1490 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1491 !BIOVEC_VIRT_OVERSIZE(len)) {
1492 int mergeable = ll_new_mergeable(q, req, bio);
1493
1494 if (mergeable) {
1495 if (bio->bi_hw_segments == 1)
1496 bio->bi_hw_front_size = len;
1497 if (req->nr_hw_segments == 1)
1498 req->biotail->bi_hw_back_size = len;
1499 }
1500 return mergeable;
1501 }
1502
1503 return ll_new_hw_segment(q, req, bio);
1504 }
1505
1506 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1507 struct request *next)
1508 {
1509 int total_phys_segments;
1510 int total_hw_segments;
1511
1512 /*
1513 * First check if the either of the requests are re-queued
1514 * requests. Can't merge them if they are.
1515 */
1516 if (req->special || next->special)
1517 return 0;
1518
1519 /*
1520 * Will it become too large?
1521 */
1522 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1523 return 0;
1524
1525 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1526 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1527 total_phys_segments--;
1528
1529 if (total_phys_segments > q->max_phys_segments)
1530 return 0;
1531
1532 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1533 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1534 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1535 /*
1536 * propagate the combined length to the end of the requests
1537 */
1538 if (req->nr_hw_segments == 1)
1539 req->bio->bi_hw_front_size = len;
1540 if (next->nr_hw_segments == 1)
1541 next->biotail->bi_hw_back_size = len;
1542 total_hw_segments--;
1543 }
1544
1545 if (total_hw_segments > q->max_hw_segments)
1546 return 0;
1547
1548 /* Merge is OK... */
1549 req->nr_phys_segments = total_phys_segments;
1550 req->nr_hw_segments = total_hw_segments;
1551 return 1;
1552 }
1553
1554 /*
1555 * "plug" the device if there are no outstanding requests: this will
1556 * force the transfer to start only after we have put all the requests
1557 * on the list.
1558 *
1559 * This is called with interrupts off and no requests on the queue and
1560 * with the queue lock held.
1561 */
1562 void blk_plug_device(struct request_queue *q)
1563 {
1564 WARN_ON(!irqs_disabled());
1565
1566 /*
1567 * don't plug a stopped queue, it must be paired with blk_start_queue()
1568 * which will restart the queueing
1569 */
1570 if (blk_queue_stopped(q))
1571 return;
1572
1573 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1574 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1575 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1576 }
1577 }
1578
1579 EXPORT_SYMBOL(blk_plug_device);
1580
1581 /*
1582 * remove the queue from the plugged list, if present. called with
1583 * queue lock held and interrupts disabled.
1584 */
1585 int blk_remove_plug(struct request_queue *q)
1586 {
1587 WARN_ON(!irqs_disabled());
1588
1589 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1590 return 0;
1591
1592 del_timer(&q->unplug_timer);
1593 return 1;
1594 }
1595
1596 EXPORT_SYMBOL(blk_remove_plug);
1597
1598 /*
1599 * remove the plug and let it rip..
1600 */
1601 void __generic_unplug_device(struct request_queue *q)
1602 {
1603 if (unlikely(blk_queue_stopped(q)))
1604 return;
1605
1606 if (!blk_remove_plug(q))
1607 return;
1608
1609 q->request_fn(q);
1610 }
1611 EXPORT_SYMBOL(__generic_unplug_device);
1612
1613 /**
1614 * generic_unplug_device - fire a request queue
1615 * @q: The &struct request_queue in question
1616 *
1617 * Description:
1618 * Linux uses plugging to build bigger requests queues before letting
1619 * the device have at them. If a queue is plugged, the I/O scheduler
1620 * is still adding and merging requests on the queue. Once the queue
1621 * gets unplugged, the request_fn defined for the queue is invoked and
1622 * transfers started.
1623 **/
1624 void generic_unplug_device(struct request_queue *q)
1625 {
1626 spin_lock_irq(q->queue_lock);
1627 __generic_unplug_device(q);
1628 spin_unlock_irq(q->queue_lock);
1629 }
1630 EXPORT_SYMBOL(generic_unplug_device);
1631
1632 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1633 struct page *page)
1634 {
1635 struct request_queue *q = bdi->unplug_io_data;
1636
1637 /*
1638 * devices don't necessarily have an ->unplug_fn defined
1639 */
1640 if (q->unplug_fn) {
1641 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1642 q->rq.count[READ] + q->rq.count[WRITE]);
1643
1644 q->unplug_fn(q);
1645 }
1646 }
1647
1648 static void blk_unplug_work(struct work_struct *work)
1649 {
1650 struct request_queue *q =
1651 container_of(work, struct request_queue, unplug_work);
1652
1653 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1654 q->rq.count[READ] + q->rq.count[WRITE]);
1655
1656 q->unplug_fn(q);
1657 }
1658
1659 static void blk_unplug_timeout(unsigned long data)
1660 {
1661 struct request_queue *q = (struct request_queue *)data;
1662
1663 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1664 q->rq.count[READ] + q->rq.count[WRITE]);
1665
1666 kblockd_schedule_work(&q->unplug_work);
1667 }
1668
1669 /**
1670 * blk_start_queue - restart a previously stopped queue
1671 * @q: The &struct request_queue in question
1672 *
1673 * Description:
1674 * blk_start_queue() will clear the stop flag on the queue, and call
1675 * the request_fn for the queue if it was in a stopped state when
1676 * entered. Also see blk_stop_queue(). Queue lock must be held.
1677 **/
1678 void blk_start_queue(struct request_queue *q)
1679 {
1680 WARN_ON(!irqs_disabled());
1681
1682 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1683
1684 /*
1685 * one level of recursion is ok and is much faster than kicking
1686 * the unplug handling
1687 */
1688 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1689 q->request_fn(q);
1690 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1691 } else {
1692 blk_plug_device(q);
1693 kblockd_schedule_work(&q->unplug_work);
1694 }
1695 }
1696
1697 EXPORT_SYMBOL(blk_start_queue);
1698
1699 /**
1700 * blk_stop_queue - stop a queue
1701 * @q: The &struct request_queue in question
1702 *
1703 * Description:
1704 * The Linux block layer assumes that a block driver will consume all
1705 * entries on the request queue when the request_fn strategy is called.
1706 * Often this will not happen, because of hardware limitations (queue
1707 * depth settings). If a device driver gets a 'queue full' response,
1708 * or if it simply chooses not to queue more I/O at one point, it can
1709 * call this function to prevent the request_fn from being called until
1710 * the driver has signalled it's ready to go again. This happens by calling
1711 * blk_start_queue() to restart queue operations. Queue lock must be held.
1712 **/
1713 void blk_stop_queue(struct request_queue *q)
1714 {
1715 blk_remove_plug(q);
1716 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1717 }
1718 EXPORT_SYMBOL(blk_stop_queue);
1719
1720 /**
1721 * blk_sync_queue - cancel any pending callbacks on a queue
1722 * @q: the queue
1723 *
1724 * Description:
1725 * The block layer may perform asynchronous callback activity
1726 * on a queue, such as calling the unplug function after a timeout.
1727 * A block device may call blk_sync_queue to ensure that any
1728 * such activity is cancelled, thus allowing it to release resources
1729 * that the callbacks might use. The caller must already have made sure
1730 * that its ->make_request_fn will not re-add plugging prior to calling
1731 * this function.
1732 *
1733 */
1734 void blk_sync_queue(struct request_queue *q)
1735 {
1736 del_timer_sync(&q->unplug_timer);
1737 kblockd_flush_work(&q->unplug_work);
1738 }
1739 EXPORT_SYMBOL(blk_sync_queue);
1740
1741 /**
1742 * blk_run_queue - run a single device queue
1743 * @q: The queue to run
1744 */
1745 void blk_run_queue(struct request_queue *q)
1746 {
1747 unsigned long flags;
1748
1749 spin_lock_irqsave(q->queue_lock, flags);
1750 blk_remove_plug(q);
1751
1752 /*
1753 * Only recurse once to avoid overrunning the stack, let the unplug
1754 * handling reinvoke the handler shortly if we already got there.
1755 */
1756 if (!elv_queue_empty(q)) {
1757 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1758 q->request_fn(q);
1759 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1760 } else {
1761 blk_plug_device(q);
1762 kblockd_schedule_work(&q->unplug_work);
1763 }
1764 }
1765
1766 spin_unlock_irqrestore(q->queue_lock, flags);
1767 }
1768 EXPORT_SYMBOL(blk_run_queue);
1769
1770 /**
1771 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1772 * @kobj: the kobj belonging of the request queue to be released
1773 *
1774 * Description:
1775 * blk_cleanup_queue is the pair to blk_init_queue() or
1776 * blk_queue_make_request(). It should be called when a request queue is
1777 * being released; typically when a block device is being de-registered.
1778 * Currently, its primary task it to free all the &struct request
1779 * structures that were allocated to the queue and the queue itself.
1780 *
1781 * Caveat:
1782 * Hopefully the low level driver will have finished any
1783 * outstanding requests first...
1784 **/
1785 static void blk_release_queue(struct kobject *kobj)
1786 {
1787 struct request_queue *q =
1788 container_of(kobj, struct request_queue, kobj);
1789 struct request_list *rl = &q->rq;
1790
1791 blk_sync_queue(q);
1792
1793 if (rl->rq_pool)
1794 mempool_destroy(rl->rq_pool);
1795
1796 if (q->queue_tags)
1797 __blk_queue_free_tags(q);
1798
1799 blk_trace_shutdown(q);
1800
1801 bdi_destroy(&q->backing_dev_info);
1802 kmem_cache_free(requestq_cachep, q);
1803 }
1804
1805 void blk_put_queue(struct request_queue *q)
1806 {
1807 kobject_put(&q->kobj);
1808 }
1809 EXPORT_SYMBOL(blk_put_queue);
1810
1811 void blk_cleanup_queue(struct request_queue * q)
1812 {
1813 mutex_lock(&q->sysfs_lock);
1814 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1815 mutex_unlock(&q->sysfs_lock);
1816
1817 if (q->elevator)
1818 elevator_exit(q->elevator);
1819
1820 blk_put_queue(q);
1821 }
1822
1823 EXPORT_SYMBOL(blk_cleanup_queue);
1824
1825 static int blk_init_free_list(struct request_queue *q)
1826 {
1827 struct request_list *rl = &q->rq;
1828
1829 rl->count[READ] = rl->count[WRITE] = 0;
1830 rl->starved[READ] = rl->starved[WRITE] = 0;
1831 rl->elvpriv = 0;
1832 init_waitqueue_head(&rl->wait[READ]);
1833 init_waitqueue_head(&rl->wait[WRITE]);
1834
1835 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1836 mempool_free_slab, request_cachep, q->node);
1837
1838 if (!rl->rq_pool)
1839 return -ENOMEM;
1840
1841 return 0;
1842 }
1843
1844 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1845 {
1846 return blk_alloc_queue_node(gfp_mask, -1);
1847 }
1848 EXPORT_SYMBOL(blk_alloc_queue);
1849
1850 static struct kobj_type queue_ktype;
1851
1852 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1853 {
1854 struct request_queue *q;
1855 int err;
1856
1857 q = kmem_cache_alloc_node(requestq_cachep,
1858 gfp_mask | __GFP_ZERO, node_id);
1859 if (!q)
1860 return NULL;
1861
1862 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1863 q->backing_dev_info.unplug_io_data = q;
1864 err = bdi_init(&q->backing_dev_info);
1865 if (err) {
1866 kmem_cache_free(requestq_cachep, q);
1867 return NULL;
1868 }
1869
1870 init_timer(&q->unplug_timer);
1871
1872 kobject_set_name(&q->kobj, "%s", "queue");
1873 q->kobj.ktype = &queue_ktype;
1874 kobject_init(&q->kobj);
1875
1876 mutex_init(&q->sysfs_lock);
1877
1878 return q;
1879 }
1880 EXPORT_SYMBOL(blk_alloc_queue_node);
1881
1882 /**
1883 * blk_init_queue - prepare a request queue for use with a block device
1884 * @rfn: The function to be called to process requests that have been
1885 * placed on the queue.
1886 * @lock: Request queue spin lock
1887 *
1888 * Description:
1889 * If a block device wishes to use the standard request handling procedures,
1890 * which sorts requests and coalesces adjacent requests, then it must
1891 * call blk_init_queue(). The function @rfn will be called when there
1892 * are requests on the queue that need to be processed. If the device
1893 * supports plugging, then @rfn may not be called immediately when requests
1894 * are available on the queue, but may be called at some time later instead.
1895 * Plugged queues are generally unplugged when a buffer belonging to one
1896 * of the requests on the queue is needed, or due to memory pressure.
1897 *
1898 * @rfn is not required, or even expected, to remove all requests off the
1899 * queue, but only as many as it can handle at a time. If it does leave
1900 * requests on the queue, it is responsible for arranging that the requests
1901 * get dealt with eventually.
1902 *
1903 * The queue spin lock must be held while manipulating the requests on the
1904 * request queue; this lock will be taken also from interrupt context, so irq
1905 * disabling is needed for it.
1906 *
1907 * Function returns a pointer to the initialized request queue, or NULL if
1908 * it didn't succeed.
1909 *
1910 * Note:
1911 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1912 * when the block device is deactivated (such as at module unload).
1913 **/
1914
1915 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1916 {
1917 return blk_init_queue_node(rfn, lock, -1);
1918 }
1919 EXPORT_SYMBOL(blk_init_queue);
1920
1921 struct request_queue *
1922 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1923 {
1924 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1925
1926 if (!q)
1927 return NULL;
1928
1929 q->node = node_id;
1930 if (blk_init_free_list(q)) {
1931 kmem_cache_free(requestq_cachep, q);
1932 return NULL;
1933 }
1934
1935 /*
1936 * if caller didn't supply a lock, they get per-queue locking with
1937 * our embedded lock
1938 */
1939 if (!lock) {
1940 spin_lock_init(&q->__queue_lock);
1941 lock = &q->__queue_lock;
1942 }
1943
1944 q->request_fn = rfn;
1945 q->prep_rq_fn = NULL;
1946 q->unplug_fn = generic_unplug_device;
1947 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1948 q->queue_lock = lock;
1949
1950 blk_queue_segment_boundary(q, 0xffffffff);
1951
1952 blk_queue_make_request(q, __make_request);
1953 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1954
1955 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1956 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1957
1958 q->sg_reserved_size = INT_MAX;
1959
1960 /*
1961 * all done
1962 */
1963 if (!elevator_init(q, NULL)) {
1964 blk_queue_congestion_threshold(q);
1965 return q;
1966 }
1967
1968 blk_put_queue(q);
1969 return NULL;
1970 }
1971 EXPORT_SYMBOL(blk_init_queue_node);
1972
1973 int blk_get_queue(struct request_queue *q)
1974 {
1975 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1976 kobject_get(&q->kobj);
1977 return 0;
1978 }
1979
1980 return 1;
1981 }
1982
1983 EXPORT_SYMBOL(blk_get_queue);
1984
1985 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1986 {
1987 if (rq->cmd_flags & REQ_ELVPRIV)
1988 elv_put_request(q, rq);
1989 mempool_free(rq, q->rq.rq_pool);
1990 }
1991
1992 static struct request *
1993 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1994 {
1995 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1996
1997 if (!rq)
1998 return NULL;
1999
2000 /*
2001 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2002 * see bio.h and blkdev.h
2003 */
2004 rq->cmd_flags = rw | REQ_ALLOCED;
2005
2006 if (priv) {
2007 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2008 mempool_free(rq, q->rq.rq_pool);
2009 return NULL;
2010 }
2011 rq->cmd_flags |= REQ_ELVPRIV;
2012 }
2013
2014 return rq;
2015 }
2016
2017 /*
2018 * ioc_batching returns true if the ioc is a valid batching request and
2019 * should be given priority access to a request.
2020 */
2021 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2022 {
2023 if (!ioc)
2024 return 0;
2025
2026 /*
2027 * Make sure the process is able to allocate at least 1 request
2028 * even if the batch times out, otherwise we could theoretically
2029 * lose wakeups.
2030 */
2031 return ioc->nr_batch_requests == q->nr_batching ||
2032 (ioc->nr_batch_requests > 0
2033 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2034 }
2035
2036 /*
2037 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2038 * will cause the process to be a "batcher" on all queues in the system. This
2039 * is the behaviour we want though - once it gets a wakeup it should be given
2040 * a nice run.
2041 */
2042 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2043 {
2044 if (!ioc || ioc_batching(q, ioc))
2045 return;
2046
2047 ioc->nr_batch_requests = q->nr_batching;
2048 ioc->last_waited = jiffies;
2049 }
2050
2051 static void __freed_request(struct request_queue *q, int rw)
2052 {
2053 struct request_list *rl = &q->rq;
2054
2055 if (rl->count[rw] < queue_congestion_off_threshold(q))
2056 blk_clear_queue_congested(q, rw);
2057
2058 if (rl->count[rw] + 1 <= q->nr_requests) {
2059 if (waitqueue_active(&rl->wait[rw]))
2060 wake_up(&rl->wait[rw]);
2061
2062 blk_clear_queue_full(q, rw);
2063 }
2064 }
2065
2066 /*
2067 * A request has just been released. Account for it, update the full and
2068 * congestion status, wake up any waiters. Called under q->queue_lock.
2069 */
2070 static void freed_request(struct request_queue *q, int rw, int priv)
2071 {
2072 struct request_list *rl = &q->rq;
2073
2074 rl->count[rw]--;
2075 if (priv)
2076 rl->elvpriv--;
2077
2078 __freed_request(q, rw);
2079
2080 if (unlikely(rl->starved[rw ^ 1]))
2081 __freed_request(q, rw ^ 1);
2082 }
2083
2084 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2085 /*
2086 * Get a free request, queue_lock must be held.
2087 * Returns NULL on failure, with queue_lock held.
2088 * Returns !NULL on success, with queue_lock *not held*.
2089 */
2090 static struct request *get_request(struct request_queue *q, int rw_flags,
2091 struct bio *bio, gfp_t gfp_mask)
2092 {
2093 struct request *rq = NULL;
2094 struct request_list *rl = &q->rq;
2095 struct io_context *ioc = NULL;
2096 const int rw = rw_flags & 0x01;
2097 int may_queue, priv;
2098
2099 may_queue = elv_may_queue(q, rw_flags);
2100 if (may_queue == ELV_MQUEUE_NO)
2101 goto rq_starved;
2102
2103 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2104 if (rl->count[rw]+1 >= q->nr_requests) {
2105 ioc = current_io_context(GFP_ATOMIC, q->node);
2106 /*
2107 * The queue will fill after this allocation, so set
2108 * it as full, and mark this process as "batching".
2109 * This process will be allowed to complete a batch of
2110 * requests, others will be blocked.
2111 */
2112 if (!blk_queue_full(q, rw)) {
2113 ioc_set_batching(q, ioc);
2114 blk_set_queue_full(q, rw);
2115 } else {
2116 if (may_queue != ELV_MQUEUE_MUST
2117 && !ioc_batching(q, ioc)) {
2118 /*
2119 * The queue is full and the allocating
2120 * process is not a "batcher", and not
2121 * exempted by the IO scheduler
2122 */
2123 goto out;
2124 }
2125 }
2126 }
2127 blk_set_queue_congested(q, rw);
2128 }
2129
2130 /*
2131 * Only allow batching queuers to allocate up to 50% over the defined
2132 * limit of requests, otherwise we could have thousands of requests
2133 * allocated with any setting of ->nr_requests
2134 */
2135 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2136 goto out;
2137
2138 rl->count[rw]++;
2139 rl->starved[rw] = 0;
2140
2141 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2142 if (priv)
2143 rl->elvpriv++;
2144
2145 spin_unlock_irq(q->queue_lock);
2146
2147 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2148 if (unlikely(!rq)) {
2149 /*
2150 * Allocation failed presumably due to memory. Undo anything
2151 * we might have messed up.
2152 *
2153 * Allocating task should really be put onto the front of the
2154 * wait queue, but this is pretty rare.
2155 */
2156 spin_lock_irq(q->queue_lock);
2157 freed_request(q, rw, priv);
2158
2159 /*
2160 * in the very unlikely event that allocation failed and no
2161 * requests for this direction was pending, mark us starved
2162 * so that freeing of a request in the other direction will
2163 * notice us. another possible fix would be to split the
2164 * rq mempool into READ and WRITE
2165 */
2166 rq_starved:
2167 if (unlikely(rl->count[rw] == 0))
2168 rl->starved[rw] = 1;
2169
2170 goto out;
2171 }
2172
2173 /*
2174 * ioc may be NULL here, and ioc_batching will be false. That's
2175 * OK, if the queue is under the request limit then requests need
2176 * not count toward the nr_batch_requests limit. There will always
2177 * be some limit enforced by BLK_BATCH_TIME.
2178 */
2179 if (ioc_batching(q, ioc))
2180 ioc->nr_batch_requests--;
2181
2182 rq_init(q, rq);
2183
2184 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2185 out:
2186 return rq;
2187 }
2188
2189 /*
2190 * No available requests for this queue, unplug the device and wait for some
2191 * requests to become available.
2192 *
2193 * Called with q->queue_lock held, and returns with it unlocked.
2194 */
2195 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2196 struct bio *bio)
2197 {
2198 const int rw = rw_flags & 0x01;
2199 struct request *rq;
2200
2201 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2202 while (!rq) {
2203 DEFINE_WAIT(wait);
2204 struct request_list *rl = &q->rq;
2205
2206 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2207 TASK_UNINTERRUPTIBLE);
2208
2209 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2210
2211 if (!rq) {
2212 struct io_context *ioc;
2213
2214 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2215
2216 __generic_unplug_device(q);
2217 spin_unlock_irq(q->queue_lock);
2218 io_schedule();
2219
2220 /*
2221 * After sleeping, we become a "batching" process and
2222 * will be able to allocate at least one request, and
2223 * up to a big batch of them for a small period time.
2224 * See ioc_batching, ioc_set_batching
2225 */
2226 ioc = current_io_context(GFP_NOIO, q->node);
2227 ioc_set_batching(q, ioc);
2228
2229 spin_lock_irq(q->queue_lock);
2230 }
2231 finish_wait(&rl->wait[rw], &wait);
2232 }
2233
2234 return rq;
2235 }
2236
2237 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2238 {
2239 struct request *rq;
2240
2241 BUG_ON(rw != READ && rw != WRITE);
2242
2243 spin_lock_irq(q->queue_lock);
2244 if (gfp_mask & __GFP_WAIT) {
2245 rq = get_request_wait(q, rw, NULL);
2246 } else {
2247 rq = get_request(q, rw, NULL, gfp_mask);
2248 if (!rq)
2249 spin_unlock_irq(q->queue_lock);
2250 }
2251 /* q->queue_lock is unlocked at this point */
2252
2253 return rq;
2254 }
2255 EXPORT_SYMBOL(blk_get_request);
2256
2257 /**
2258 * blk_start_queueing - initiate dispatch of requests to device
2259 * @q: request queue to kick into gear
2260 *
2261 * This is basically a helper to remove the need to know whether a queue
2262 * is plugged or not if someone just wants to initiate dispatch of requests
2263 * for this queue.
2264 *
2265 * The queue lock must be held with interrupts disabled.
2266 */
2267 void blk_start_queueing(struct request_queue *q)
2268 {
2269 if (!blk_queue_plugged(q))
2270 q->request_fn(q);
2271 else
2272 __generic_unplug_device(q);
2273 }
2274 EXPORT_SYMBOL(blk_start_queueing);
2275
2276 /**
2277 * blk_requeue_request - put a request back on queue
2278 * @q: request queue where request should be inserted
2279 * @rq: request to be inserted
2280 *
2281 * Description:
2282 * Drivers often keep queueing requests until the hardware cannot accept
2283 * more, when that condition happens we need to put the request back
2284 * on the queue. Must be called with queue lock held.
2285 */
2286 void blk_requeue_request(struct request_queue *q, struct request *rq)
2287 {
2288 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2289
2290 if (blk_rq_tagged(rq))
2291 blk_queue_end_tag(q, rq);
2292
2293 elv_requeue_request(q, rq);
2294 }
2295
2296 EXPORT_SYMBOL(blk_requeue_request);
2297
2298 /**
2299 * blk_insert_request - insert a special request in to a request queue
2300 * @q: request queue where request should be inserted
2301 * @rq: request to be inserted
2302 * @at_head: insert request at head or tail of queue
2303 * @data: private data
2304 *
2305 * Description:
2306 * Many block devices need to execute commands asynchronously, so they don't
2307 * block the whole kernel from preemption during request execution. This is
2308 * accomplished normally by inserting aritficial requests tagged as
2309 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2310 * scheduled for actual execution by the request queue.
2311 *
2312 * We have the option of inserting the head or the tail of the queue.
2313 * Typically we use the tail for new ioctls and so forth. We use the head
2314 * of the queue for things like a QUEUE_FULL message from a device, or a
2315 * host that is unable to accept a particular command.
2316 */
2317 void blk_insert_request(struct request_queue *q, struct request *rq,
2318 int at_head, void *data)
2319 {
2320 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2321 unsigned long flags;
2322
2323 /*
2324 * tell I/O scheduler that this isn't a regular read/write (ie it
2325 * must not attempt merges on this) and that it acts as a soft
2326 * barrier
2327 */
2328 rq->cmd_type = REQ_TYPE_SPECIAL;
2329 rq->cmd_flags |= REQ_SOFTBARRIER;
2330
2331 rq->special = data;
2332
2333 spin_lock_irqsave(q->queue_lock, flags);
2334
2335 /*
2336 * If command is tagged, release the tag
2337 */
2338 if (blk_rq_tagged(rq))
2339 blk_queue_end_tag(q, rq);
2340
2341 drive_stat_acct(rq, 1);
2342 __elv_add_request(q, rq, where, 0);
2343 blk_start_queueing(q);
2344 spin_unlock_irqrestore(q->queue_lock, flags);
2345 }
2346
2347 EXPORT_SYMBOL(blk_insert_request);
2348
2349 static int __blk_rq_unmap_user(struct bio *bio)
2350 {
2351 int ret = 0;
2352
2353 if (bio) {
2354 if (bio_flagged(bio, BIO_USER_MAPPED))
2355 bio_unmap_user(bio);
2356 else
2357 ret = bio_uncopy_user(bio);
2358 }
2359
2360 return ret;
2361 }
2362
2363 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2364 struct bio *bio)
2365 {
2366 if (!rq->bio)
2367 blk_rq_bio_prep(q, rq, bio);
2368 else if (!ll_back_merge_fn(q, rq, bio))
2369 return -EINVAL;
2370 else {
2371 rq->biotail->bi_next = bio;
2372 rq->biotail = bio;
2373
2374 rq->data_len += bio->bi_size;
2375 }
2376 return 0;
2377 }
2378 EXPORT_SYMBOL(blk_rq_append_bio);
2379
2380 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2381 void __user *ubuf, unsigned int len)
2382 {
2383 unsigned long uaddr;
2384 struct bio *bio, *orig_bio;
2385 int reading, ret;
2386
2387 reading = rq_data_dir(rq) == READ;
2388
2389 /*
2390 * if alignment requirement is satisfied, map in user pages for
2391 * direct dma. else, set up kernel bounce buffers
2392 */
2393 uaddr = (unsigned long) ubuf;
2394 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2395 bio = bio_map_user(q, NULL, uaddr, len, reading);
2396 else
2397 bio = bio_copy_user(q, uaddr, len, reading);
2398
2399 if (IS_ERR(bio))
2400 return PTR_ERR(bio);
2401
2402 orig_bio = bio;
2403 blk_queue_bounce(q, &bio);
2404
2405 /*
2406 * We link the bounce buffer in and could have to traverse it
2407 * later so we have to get a ref to prevent it from being freed
2408 */
2409 bio_get(bio);
2410
2411 ret = blk_rq_append_bio(q, rq, bio);
2412 if (!ret)
2413 return bio->bi_size;
2414
2415 /* if it was boucned we must call the end io function */
2416 bio_endio(bio, 0);
2417 __blk_rq_unmap_user(orig_bio);
2418 bio_put(bio);
2419 return ret;
2420 }
2421
2422 /**
2423 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2424 * @q: request queue where request should be inserted
2425 * @rq: request structure to fill
2426 * @ubuf: the user buffer
2427 * @len: length of user data
2428 *
2429 * Description:
2430 * Data will be mapped directly for zero copy io, if possible. Otherwise
2431 * a kernel bounce buffer is used.
2432 *
2433 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2434 * still in process context.
2435 *
2436 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2437 * before being submitted to the device, as pages mapped may be out of
2438 * reach. It's the callers responsibility to make sure this happens. The
2439 * original bio must be passed back in to blk_rq_unmap_user() for proper
2440 * unmapping.
2441 */
2442 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2443 void __user *ubuf, unsigned long len)
2444 {
2445 unsigned long bytes_read = 0;
2446 struct bio *bio = NULL;
2447 int ret;
2448
2449 if (len > (q->max_hw_sectors << 9))
2450 return -EINVAL;
2451 if (!len || !ubuf)
2452 return -EINVAL;
2453
2454 while (bytes_read != len) {
2455 unsigned long map_len, end, start;
2456
2457 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2458 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2459 >> PAGE_SHIFT;
2460 start = (unsigned long)ubuf >> PAGE_SHIFT;
2461
2462 /*
2463 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2464 * pages. If this happens we just lower the requested
2465 * mapping len by a page so that we can fit
2466 */
2467 if (end - start > BIO_MAX_PAGES)
2468 map_len -= PAGE_SIZE;
2469
2470 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2471 if (ret < 0)
2472 goto unmap_rq;
2473 if (!bio)
2474 bio = rq->bio;
2475 bytes_read += ret;
2476 ubuf += ret;
2477 }
2478
2479 rq->buffer = rq->data = NULL;
2480 return 0;
2481 unmap_rq:
2482 blk_rq_unmap_user(bio);
2483 return ret;
2484 }
2485
2486 EXPORT_SYMBOL(blk_rq_map_user);
2487
2488 /**
2489 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2490 * @q: request queue where request should be inserted
2491 * @rq: request to map data to
2492 * @iov: pointer to the iovec
2493 * @iov_count: number of elements in the iovec
2494 * @len: I/O byte count
2495 *
2496 * Description:
2497 * Data will be mapped directly for zero copy io, if possible. Otherwise
2498 * a kernel bounce buffer is used.
2499 *
2500 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2501 * still in process context.
2502 *
2503 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2504 * before being submitted to the device, as pages mapped may be out of
2505 * reach. It's the callers responsibility to make sure this happens. The
2506 * original bio must be passed back in to blk_rq_unmap_user() for proper
2507 * unmapping.
2508 */
2509 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2510 struct sg_iovec *iov, int iov_count, unsigned int len)
2511 {
2512 struct bio *bio;
2513
2514 if (!iov || iov_count <= 0)
2515 return -EINVAL;
2516
2517 /* we don't allow misaligned data like bio_map_user() does. If the
2518 * user is using sg, they're expected to know the alignment constraints
2519 * and respect them accordingly */
2520 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2521 if (IS_ERR(bio))
2522 return PTR_ERR(bio);
2523
2524 if (bio->bi_size != len) {
2525 bio_endio(bio, 0);
2526 bio_unmap_user(bio);
2527 return -EINVAL;
2528 }
2529
2530 bio_get(bio);
2531 blk_rq_bio_prep(q, rq, bio);
2532 rq->buffer = rq->data = NULL;
2533 return 0;
2534 }
2535
2536 EXPORT_SYMBOL(blk_rq_map_user_iov);
2537
2538 /**
2539 * blk_rq_unmap_user - unmap a request with user data
2540 * @bio: start of bio list
2541 *
2542 * Description:
2543 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2544 * supply the original rq->bio from the blk_rq_map_user() return, since
2545 * the io completion may have changed rq->bio.
2546 */
2547 int blk_rq_unmap_user(struct bio *bio)
2548 {
2549 struct bio *mapped_bio;
2550 int ret = 0, ret2;
2551
2552 while (bio) {
2553 mapped_bio = bio;
2554 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2555 mapped_bio = bio->bi_private;
2556
2557 ret2 = __blk_rq_unmap_user(mapped_bio);
2558 if (ret2 && !ret)
2559 ret = ret2;
2560
2561 mapped_bio = bio;
2562 bio = bio->bi_next;
2563 bio_put(mapped_bio);
2564 }
2565
2566 return ret;
2567 }
2568
2569 EXPORT_SYMBOL(blk_rq_unmap_user);
2570
2571 /**
2572 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2573 * @q: request queue where request should be inserted
2574 * @rq: request to fill
2575 * @kbuf: the kernel buffer
2576 * @len: length of user data
2577 * @gfp_mask: memory allocation flags
2578 */
2579 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2580 unsigned int len, gfp_t gfp_mask)
2581 {
2582 struct bio *bio;
2583
2584 if (len > (q->max_hw_sectors << 9))
2585 return -EINVAL;
2586 if (!len || !kbuf)
2587 return -EINVAL;
2588
2589 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2590 if (IS_ERR(bio))
2591 return PTR_ERR(bio);
2592
2593 if (rq_data_dir(rq) == WRITE)
2594 bio->bi_rw |= (1 << BIO_RW);
2595
2596 blk_rq_bio_prep(q, rq, bio);
2597 blk_queue_bounce(q, &rq->bio);
2598 rq->buffer = rq->data = NULL;
2599 return 0;
2600 }
2601
2602 EXPORT_SYMBOL(blk_rq_map_kern);
2603
2604 /**
2605 * blk_execute_rq_nowait - insert a request into queue for execution
2606 * @q: queue to insert the request in
2607 * @bd_disk: matching gendisk
2608 * @rq: request to insert
2609 * @at_head: insert request at head or tail of queue
2610 * @done: I/O completion handler
2611 *
2612 * Description:
2613 * Insert a fully prepared request at the back of the io scheduler queue
2614 * for execution. Don't wait for completion.
2615 */
2616 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2617 struct request *rq, int at_head,
2618 rq_end_io_fn *done)
2619 {
2620 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2621
2622 rq->rq_disk = bd_disk;
2623 rq->cmd_flags |= REQ_NOMERGE;
2624 rq->end_io = done;
2625 WARN_ON(irqs_disabled());
2626 spin_lock_irq(q->queue_lock);
2627 __elv_add_request(q, rq, where, 1);
2628 __generic_unplug_device(q);
2629 spin_unlock_irq(q->queue_lock);
2630 }
2631 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2632
2633 /**
2634 * blk_execute_rq - insert a request into queue for execution
2635 * @q: queue to insert the request in
2636 * @bd_disk: matching gendisk
2637 * @rq: request to insert
2638 * @at_head: insert request at head or tail of queue
2639 *
2640 * Description:
2641 * Insert a fully prepared request at the back of the io scheduler queue
2642 * for execution and wait for completion.
2643 */
2644 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2645 struct request *rq, int at_head)
2646 {
2647 DECLARE_COMPLETION_ONSTACK(wait);
2648 char sense[SCSI_SENSE_BUFFERSIZE];
2649 int err = 0;
2650
2651 /*
2652 * we need an extra reference to the request, so we can look at
2653 * it after io completion
2654 */
2655 rq->ref_count++;
2656
2657 if (!rq->sense) {
2658 memset(sense, 0, sizeof(sense));
2659 rq->sense = sense;
2660 rq->sense_len = 0;
2661 }
2662
2663 rq->end_io_data = &wait;
2664 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2665 wait_for_completion(&wait);
2666
2667 if (rq->errors)
2668 err = -EIO;
2669
2670 return err;
2671 }
2672
2673 EXPORT_SYMBOL(blk_execute_rq);
2674
2675 static void bio_end_empty_barrier(struct bio *bio, int err)
2676 {
2677 if (err)
2678 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2679
2680 complete(bio->bi_private);
2681 }
2682
2683 /**
2684 * blkdev_issue_flush - queue a flush
2685 * @bdev: blockdev to issue flush for
2686 * @error_sector: error sector
2687 *
2688 * Description:
2689 * Issue a flush for the block device in question. Caller can supply
2690 * room for storing the error offset in case of a flush error, if they
2691 * wish to. Caller must run wait_for_completion() on its own.
2692 */
2693 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2694 {
2695 DECLARE_COMPLETION_ONSTACK(wait);
2696 struct request_queue *q;
2697 struct bio *bio;
2698 int ret;
2699
2700 if (bdev->bd_disk == NULL)
2701 return -ENXIO;
2702
2703 q = bdev_get_queue(bdev);
2704 if (!q)
2705 return -ENXIO;
2706
2707 bio = bio_alloc(GFP_KERNEL, 0);
2708 if (!bio)
2709 return -ENOMEM;
2710
2711 bio->bi_end_io = bio_end_empty_barrier;
2712 bio->bi_private = &wait;
2713 bio->bi_bdev = bdev;
2714 submit_bio(1 << BIO_RW_BARRIER, bio);
2715
2716 wait_for_completion(&wait);
2717
2718 /*
2719 * The driver must store the error location in ->bi_sector, if
2720 * it supports it. For non-stacked drivers, this should be copied
2721 * from rq->sector.
2722 */
2723 if (error_sector)
2724 *error_sector = bio->bi_sector;
2725
2726 ret = 0;
2727 if (!bio_flagged(bio, BIO_UPTODATE))
2728 ret = -EIO;
2729
2730 bio_put(bio);
2731 return ret;
2732 }
2733
2734 EXPORT_SYMBOL(blkdev_issue_flush);
2735
2736 static void drive_stat_acct(struct request *rq, int new_io)
2737 {
2738 int rw = rq_data_dir(rq);
2739
2740 if (!blk_fs_request(rq) || !rq->rq_disk)
2741 return;
2742
2743 if (!new_io) {
2744 __disk_stat_inc(rq->rq_disk, merges[rw]);
2745 } else {
2746 disk_round_stats(rq->rq_disk);
2747 rq->rq_disk->in_flight++;
2748 }
2749 }
2750
2751 /*
2752 * add-request adds a request to the linked list.
2753 * queue lock is held and interrupts disabled, as we muck with the
2754 * request queue list.
2755 */
2756 static inline void add_request(struct request_queue * q, struct request * req)
2757 {
2758 drive_stat_acct(req, 1);
2759
2760 /*
2761 * elevator indicated where it wants this request to be
2762 * inserted at elevator_merge time
2763 */
2764 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2765 }
2766
2767 /*
2768 * disk_round_stats() - Round off the performance stats on a struct
2769 * disk_stats.
2770 *
2771 * The average IO queue length and utilisation statistics are maintained
2772 * by observing the current state of the queue length and the amount of
2773 * time it has been in this state for.
2774 *
2775 * Normally, that accounting is done on IO completion, but that can result
2776 * in more than a second's worth of IO being accounted for within any one
2777 * second, leading to >100% utilisation. To deal with that, we call this
2778 * function to do a round-off before returning the results when reading
2779 * /proc/diskstats. This accounts immediately for all queue usage up to
2780 * the current jiffies and restarts the counters again.
2781 */
2782 void disk_round_stats(struct gendisk *disk)
2783 {
2784 unsigned long now = jiffies;
2785
2786 if (now == disk->stamp)
2787 return;
2788
2789 if (disk->in_flight) {
2790 __disk_stat_add(disk, time_in_queue,
2791 disk->in_flight * (now - disk->stamp));
2792 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2793 }
2794 disk->stamp = now;
2795 }
2796
2797 EXPORT_SYMBOL_GPL(disk_round_stats);
2798
2799 /*
2800 * queue lock must be held
2801 */
2802 void __blk_put_request(struct request_queue *q, struct request *req)
2803 {
2804 if (unlikely(!q))
2805 return;
2806 if (unlikely(--req->ref_count))
2807 return;
2808
2809 elv_completed_request(q, req);
2810
2811 /*
2812 * Request may not have originated from ll_rw_blk. if not,
2813 * it didn't come out of our reserved rq pools
2814 */
2815 if (req->cmd_flags & REQ_ALLOCED) {
2816 int rw = rq_data_dir(req);
2817 int priv = req->cmd_flags & REQ_ELVPRIV;
2818
2819 BUG_ON(!list_empty(&req->queuelist));
2820 BUG_ON(!hlist_unhashed(&req->hash));
2821
2822 blk_free_request(q, req);
2823 freed_request(q, rw, priv);
2824 }
2825 }
2826
2827 EXPORT_SYMBOL_GPL(__blk_put_request);
2828
2829 void blk_put_request(struct request *req)
2830 {
2831 unsigned long flags;
2832 struct request_queue *q = req->q;
2833
2834 /*
2835 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2836 * following if (q) test.
2837 */
2838 if (q) {
2839 spin_lock_irqsave(q->queue_lock, flags);
2840 __blk_put_request(q, req);
2841 spin_unlock_irqrestore(q->queue_lock, flags);
2842 }
2843 }
2844
2845 EXPORT_SYMBOL(blk_put_request);
2846
2847 /**
2848 * blk_end_sync_rq - executes a completion event on a request
2849 * @rq: request to complete
2850 * @error: end io status of the request
2851 */
2852 void blk_end_sync_rq(struct request *rq, int error)
2853 {
2854 struct completion *waiting = rq->end_io_data;
2855
2856 rq->end_io_data = NULL;
2857 __blk_put_request(rq->q, rq);
2858
2859 /*
2860 * complete last, if this is a stack request the process (and thus
2861 * the rq pointer) could be invalid right after this complete()
2862 */
2863 complete(waiting);
2864 }
2865 EXPORT_SYMBOL(blk_end_sync_rq);
2866
2867 /*
2868 * Has to be called with the request spinlock acquired
2869 */
2870 static int attempt_merge(struct request_queue *q, struct request *req,
2871 struct request *next)
2872 {
2873 if (!rq_mergeable(req) || !rq_mergeable(next))
2874 return 0;
2875
2876 /*
2877 * not contiguous
2878 */
2879 if (req->sector + req->nr_sectors != next->sector)
2880 return 0;
2881
2882 if (rq_data_dir(req) != rq_data_dir(next)
2883 || req->rq_disk != next->rq_disk
2884 || next->special)
2885 return 0;
2886
2887 /*
2888 * If we are allowed to merge, then append bio list
2889 * from next to rq and release next. merge_requests_fn
2890 * will have updated segment counts, update sector
2891 * counts here.
2892 */
2893 if (!ll_merge_requests_fn(q, req, next))
2894 return 0;
2895
2896 /*
2897 * At this point we have either done a back merge
2898 * or front merge. We need the smaller start_time of
2899 * the merged requests to be the current request
2900 * for accounting purposes.
2901 */
2902 if (time_after(req->start_time, next->start_time))
2903 req->start_time = next->start_time;
2904
2905 req->biotail->bi_next = next->bio;
2906 req->biotail = next->biotail;
2907
2908 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2909
2910 elv_merge_requests(q, req, next);
2911
2912 if (req->rq_disk) {
2913 disk_round_stats(req->rq_disk);
2914 req->rq_disk->in_flight--;
2915 }
2916
2917 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2918
2919 __blk_put_request(q, next);
2920 return 1;
2921 }
2922
2923 static inline int attempt_back_merge(struct request_queue *q,
2924 struct request *rq)
2925 {
2926 struct request *next = elv_latter_request(q, rq);
2927
2928 if (next)
2929 return attempt_merge(q, rq, next);
2930
2931 return 0;
2932 }
2933
2934 static inline int attempt_front_merge(struct request_queue *q,
2935 struct request *rq)
2936 {
2937 struct request *prev = elv_former_request(q, rq);
2938
2939 if (prev)
2940 return attempt_merge(q, prev, rq);
2941
2942 return 0;
2943 }
2944
2945 static void init_request_from_bio(struct request *req, struct bio *bio)
2946 {
2947 req->cmd_type = REQ_TYPE_FS;
2948
2949 /*
2950 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2951 */
2952 if (bio_rw_ahead(bio) || bio_failfast(bio))
2953 req->cmd_flags |= REQ_FAILFAST;
2954
2955 /*
2956 * REQ_BARRIER implies no merging, but lets make it explicit
2957 */
2958 if (unlikely(bio_barrier(bio)))
2959 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2960
2961 if (bio_sync(bio))
2962 req->cmd_flags |= REQ_RW_SYNC;
2963 if (bio_rw_meta(bio))
2964 req->cmd_flags |= REQ_RW_META;
2965
2966 req->errors = 0;
2967 req->hard_sector = req->sector = bio->bi_sector;
2968 req->ioprio = bio_prio(bio);
2969 req->start_time = jiffies;
2970 blk_rq_bio_prep(req->q, req, bio);
2971 }
2972
2973 static int __make_request(struct request_queue *q, struct bio *bio)
2974 {
2975 struct request *req;
2976 int el_ret, nr_sectors, barrier, err;
2977 const unsigned short prio = bio_prio(bio);
2978 const int sync = bio_sync(bio);
2979 int rw_flags;
2980
2981 nr_sectors = bio_sectors(bio);
2982
2983 /*
2984 * low level driver can indicate that it wants pages above a
2985 * certain limit bounced to low memory (ie for highmem, or even
2986 * ISA dma in theory)
2987 */
2988 blk_queue_bounce(q, &bio);
2989
2990 barrier = bio_barrier(bio);
2991 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2992 err = -EOPNOTSUPP;
2993 goto end_io;
2994 }
2995
2996 spin_lock_irq(q->queue_lock);
2997
2998 if (unlikely(barrier) || elv_queue_empty(q))
2999 goto get_rq;
3000
3001 el_ret = elv_merge(q, &req, bio);
3002 switch (el_ret) {
3003 case ELEVATOR_BACK_MERGE:
3004 BUG_ON(!rq_mergeable(req));
3005
3006 if (!ll_back_merge_fn(q, req, bio))
3007 break;
3008
3009 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3010
3011 req->biotail->bi_next = bio;
3012 req->biotail = bio;
3013 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3014 req->ioprio = ioprio_best(req->ioprio, prio);
3015 drive_stat_acct(req, 0);
3016 if (!attempt_back_merge(q, req))
3017 elv_merged_request(q, req, el_ret);
3018 goto out;
3019
3020 case ELEVATOR_FRONT_MERGE:
3021 BUG_ON(!rq_mergeable(req));
3022
3023 if (!ll_front_merge_fn(q, req, bio))
3024 break;
3025
3026 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3027
3028 bio->bi_next = req->bio;
3029 req->bio = bio;
3030
3031 /*
3032 * may not be valid. if the low level driver said
3033 * it didn't need a bounce buffer then it better
3034 * not touch req->buffer either...
3035 */
3036 req->buffer = bio_data(bio);
3037 req->current_nr_sectors = bio_cur_sectors(bio);
3038 req->hard_cur_sectors = req->current_nr_sectors;
3039 req->sector = req->hard_sector = bio->bi_sector;
3040 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3041 req->ioprio = ioprio_best(req->ioprio, prio);
3042 drive_stat_acct(req, 0);
3043 if (!attempt_front_merge(q, req))
3044 elv_merged_request(q, req, el_ret);
3045 goto out;
3046
3047 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3048 default:
3049 ;
3050 }
3051
3052 get_rq:
3053 /*
3054 * This sync check and mask will be re-done in init_request_from_bio(),
3055 * but we need to set it earlier to expose the sync flag to the
3056 * rq allocator and io schedulers.
3057 */
3058 rw_flags = bio_data_dir(bio);
3059 if (sync)
3060 rw_flags |= REQ_RW_SYNC;
3061
3062 /*
3063 * Grab a free request. This is might sleep but can not fail.
3064 * Returns with the queue unlocked.
3065 */
3066 req = get_request_wait(q, rw_flags, bio);
3067
3068 /*
3069 * After dropping the lock and possibly sleeping here, our request
3070 * may now be mergeable after it had proven unmergeable (above).
3071 * We don't worry about that case for efficiency. It won't happen
3072 * often, and the elevators are able to handle it.
3073 */
3074 init_request_from_bio(req, bio);
3075
3076 spin_lock_irq(q->queue_lock);
3077 if (elv_queue_empty(q))
3078 blk_plug_device(q);
3079 add_request(q, req);
3080 out:
3081 if (sync)
3082 __generic_unplug_device(q);
3083
3084 spin_unlock_irq(q->queue_lock);
3085 return 0;
3086
3087 end_io:
3088 bio_endio(bio, err);
3089 return 0;
3090 }
3091
3092 /*
3093 * If bio->bi_dev is a partition, remap the location
3094 */
3095 static inline void blk_partition_remap(struct bio *bio)
3096 {
3097 struct block_device *bdev = bio->bi_bdev;
3098
3099 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
3100 struct hd_struct *p = bdev->bd_part;
3101 const int rw = bio_data_dir(bio);
3102
3103 p->sectors[rw] += bio_sectors(bio);
3104 p->ios[rw]++;
3105
3106 bio->bi_sector += p->start_sect;
3107 bio->bi_bdev = bdev->bd_contains;
3108
3109 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3110 bdev->bd_dev, bio->bi_sector,
3111 bio->bi_sector - p->start_sect);
3112 }
3113 }
3114
3115 static void handle_bad_sector(struct bio *bio)
3116 {
3117 char b[BDEVNAME_SIZE];
3118
3119 printk(KERN_INFO "attempt to access beyond end of device\n");
3120 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3121 bdevname(bio->bi_bdev, b),
3122 bio->bi_rw,
3123 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3124 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3125
3126 set_bit(BIO_EOF, &bio->bi_flags);
3127 }
3128
3129 #ifdef CONFIG_FAIL_MAKE_REQUEST
3130
3131 static DECLARE_FAULT_ATTR(fail_make_request);
3132
3133 static int __init setup_fail_make_request(char *str)
3134 {
3135 return setup_fault_attr(&fail_make_request, str);
3136 }
3137 __setup("fail_make_request=", setup_fail_make_request);
3138
3139 static int should_fail_request(struct bio *bio)
3140 {
3141 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3142 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3143 return should_fail(&fail_make_request, bio->bi_size);
3144
3145 return 0;
3146 }
3147
3148 static int __init fail_make_request_debugfs(void)
3149 {
3150 return init_fault_attr_dentries(&fail_make_request,
3151 "fail_make_request");
3152 }
3153
3154 late_initcall(fail_make_request_debugfs);
3155
3156 #else /* CONFIG_FAIL_MAKE_REQUEST */
3157
3158 static inline int should_fail_request(struct bio *bio)
3159 {
3160 return 0;
3161 }
3162
3163 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3164
3165 /*
3166 * Check whether this bio extends beyond the end of the device.
3167 */
3168 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3169 {
3170 sector_t maxsector;
3171
3172 if (!nr_sectors)
3173 return 0;
3174
3175 /* Test device or partition size, when known. */
3176 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3177 if (maxsector) {
3178 sector_t sector = bio->bi_sector;
3179
3180 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3181 /*
3182 * This may well happen - the kernel calls bread()
3183 * without checking the size of the device, e.g., when
3184 * mounting a device.
3185 */
3186 handle_bad_sector(bio);
3187 return 1;
3188 }
3189 }
3190
3191 return 0;
3192 }
3193
3194 /**
3195 * generic_make_request: hand a buffer to its device driver for I/O
3196 * @bio: The bio describing the location in memory and on the device.
3197 *
3198 * generic_make_request() is used to make I/O requests of block
3199 * devices. It is passed a &struct bio, which describes the I/O that needs
3200 * to be done.
3201 *
3202 * generic_make_request() does not return any status. The
3203 * success/failure status of the request, along with notification of
3204 * completion, is delivered asynchronously through the bio->bi_end_io
3205 * function described (one day) else where.
3206 *
3207 * The caller of generic_make_request must make sure that bi_io_vec
3208 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3209 * set to describe the device address, and the
3210 * bi_end_io and optionally bi_private are set to describe how
3211 * completion notification should be signaled.
3212 *
3213 * generic_make_request and the drivers it calls may use bi_next if this
3214 * bio happens to be merged with someone else, and may change bi_dev and
3215 * bi_sector for remaps as it sees fit. So the values of these fields
3216 * should NOT be depended on after the call to generic_make_request.
3217 */
3218 static inline void __generic_make_request(struct bio *bio)
3219 {
3220 struct request_queue *q;
3221 sector_t old_sector;
3222 int ret, nr_sectors = bio_sectors(bio);
3223 dev_t old_dev;
3224
3225 might_sleep();
3226
3227 if (bio_check_eod(bio, nr_sectors))
3228 goto end_io;
3229
3230 /*
3231 * Resolve the mapping until finished. (drivers are
3232 * still free to implement/resolve their own stacking
3233 * by explicitly returning 0)
3234 *
3235 * NOTE: we don't repeat the blk_size check for each new device.
3236 * Stacking drivers are expected to know what they are doing.
3237 */
3238 old_sector = -1;
3239 old_dev = 0;
3240 do {
3241 char b[BDEVNAME_SIZE];
3242
3243 q = bdev_get_queue(bio->bi_bdev);
3244 if (!q) {
3245 printk(KERN_ERR
3246 "generic_make_request: Trying to access "
3247 "nonexistent block-device %s (%Lu)\n",
3248 bdevname(bio->bi_bdev, b),
3249 (long long) bio->bi_sector);
3250 end_io:
3251 bio_endio(bio, -EIO);
3252 break;
3253 }
3254
3255 if (unlikely(nr_sectors > q->max_hw_sectors)) {
3256 printk("bio too big device %s (%u > %u)\n",
3257 bdevname(bio->bi_bdev, b),
3258 bio_sectors(bio),
3259 q->max_hw_sectors);
3260 goto end_io;
3261 }
3262
3263 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3264 goto end_io;
3265
3266 if (should_fail_request(bio))
3267 goto end_io;
3268
3269 /*
3270 * If this device has partitions, remap block n
3271 * of partition p to block n+start(p) of the disk.
3272 */
3273 blk_partition_remap(bio);
3274
3275 if (old_sector != -1)
3276 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3277 old_sector);
3278
3279 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3280
3281 old_sector = bio->bi_sector;
3282 old_dev = bio->bi_bdev->bd_dev;
3283
3284 if (bio_check_eod(bio, nr_sectors))
3285 goto end_io;
3286
3287 ret = q->make_request_fn(q, bio);
3288 } while (ret);
3289 }
3290
3291 /*
3292 * We only want one ->make_request_fn to be active at a time,
3293 * else stack usage with stacked devices could be a problem.
3294 * So use current->bio_{list,tail} to keep a list of requests
3295 * submited by a make_request_fn function.
3296 * current->bio_tail is also used as a flag to say if
3297 * generic_make_request is currently active in this task or not.
3298 * If it is NULL, then no make_request is active. If it is non-NULL,
3299 * then a make_request is active, and new requests should be added
3300 * at the tail
3301 */
3302 void generic_make_request(struct bio *bio)
3303 {
3304 if (current->bio_tail) {
3305 /* make_request is active */
3306 *(current->bio_tail) = bio;
3307 bio->bi_next = NULL;
3308 current->bio_tail = &bio->bi_next;
3309 return;
3310 }
3311 /* following loop may be a bit non-obvious, and so deserves some
3312 * explanation.
3313 * Before entering the loop, bio->bi_next is NULL (as all callers
3314 * ensure that) so we have a list with a single bio.
3315 * We pretend that we have just taken it off a longer list, so
3316 * we assign bio_list to the next (which is NULL) and bio_tail
3317 * to &bio_list, thus initialising the bio_list of new bios to be
3318 * added. __generic_make_request may indeed add some more bios
3319 * through a recursive call to generic_make_request. If it
3320 * did, we find a non-NULL value in bio_list and re-enter the loop
3321 * from the top. In this case we really did just take the bio
3322 * of the top of the list (no pretending) and so fixup bio_list and
3323 * bio_tail or bi_next, and call into __generic_make_request again.
3324 *
3325 * The loop was structured like this to make only one call to
3326 * __generic_make_request (which is important as it is large and
3327 * inlined) and to keep the structure simple.
3328 */
3329 BUG_ON(bio->bi_next);
3330 do {
3331 current->bio_list = bio->bi_next;
3332 if (bio->bi_next == NULL)
3333 current->bio_tail = &current->bio_list;
3334 else
3335 bio->bi_next = NULL;
3336 __generic_make_request(bio);
3337 bio = current->bio_list;
3338 } while (bio);
3339 current->bio_tail = NULL; /* deactivate */
3340 }
3341
3342 EXPORT_SYMBOL(generic_make_request);
3343
3344 /**
3345 * submit_bio: submit a bio to the block device layer for I/O
3346 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3347 * @bio: The &struct bio which describes the I/O
3348 *
3349 * submit_bio() is very similar in purpose to generic_make_request(), and
3350 * uses that function to do most of the work. Both are fairly rough
3351 * interfaces, @bio must be presetup and ready for I/O.
3352 *
3353 */
3354 void submit_bio(int rw, struct bio *bio)
3355 {
3356 int count = bio_sectors(bio);
3357
3358 bio->bi_rw |= rw;
3359
3360 /*
3361 * If it's a regular read/write or a barrier with data attached,
3362 * go through the normal accounting stuff before submission.
3363 */
3364 if (!bio_empty_barrier(bio)) {
3365
3366 BIO_BUG_ON(!bio->bi_size);
3367 BIO_BUG_ON(!bio->bi_io_vec);
3368
3369 if (rw & WRITE) {
3370 count_vm_events(PGPGOUT, count);
3371 } else {
3372 task_io_account_read(bio->bi_size);
3373 count_vm_events(PGPGIN, count);
3374 }
3375
3376 if (unlikely(block_dump)) {
3377 char b[BDEVNAME_SIZE];
3378 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3379 current->comm, task_pid_nr(current),
3380 (rw & WRITE) ? "WRITE" : "READ",
3381 (unsigned long long)bio->bi_sector,
3382 bdevname(bio->bi_bdev,b));
3383 }
3384 }
3385
3386 generic_make_request(bio);
3387 }
3388
3389 EXPORT_SYMBOL(submit_bio);
3390
3391 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3392 {
3393 if (blk_fs_request(rq)) {
3394 rq->hard_sector += nsect;
3395 rq->hard_nr_sectors -= nsect;
3396
3397 /*
3398 * Move the I/O submission pointers ahead if required.
3399 */
3400 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3401 (rq->sector <= rq->hard_sector)) {
3402 rq->sector = rq->hard_sector;
3403 rq->nr_sectors = rq->hard_nr_sectors;
3404 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3405 rq->current_nr_sectors = rq->hard_cur_sectors;
3406 rq->buffer = bio_data(rq->bio);
3407 }
3408
3409 /*
3410 * if total number of sectors is less than the first segment
3411 * size, something has gone terribly wrong
3412 */
3413 if (rq->nr_sectors < rq->current_nr_sectors) {
3414 printk("blk: request botched\n");
3415 rq->nr_sectors = rq->current_nr_sectors;
3416 }
3417 }
3418 }
3419
3420 static int __end_that_request_first(struct request *req, int uptodate,
3421 int nr_bytes)
3422 {
3423 int total_bytes, bio_nbytes, error, next_idx = 0;
3424 struct bio *bio;
3425
3426 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3427
3428 /*
3429 * extend uptodate bool to allow < 0 value to be direct io error
3430 */
3431 error = 0;
3432 if (end_io_error(uptodate))
3433 error = !uptodate ? -EIO : uptodate;
3434
3435 /*
3436 * for a REQ_BLOCK_PC request, we want to carry any eventual
3437 * sense key with us all the way through
3438 */
3439 if (!blk_pc_request(req))
3440 req->errors = 0;
3441
3442 if (!uptodate) {
3443 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3444 printk("end_request: I/O error, dev %s, sector %llu\n",
3445 req->rq_disk ? req->rq_disk->disk_name : "?",
3446 (unsigned long long)req->sector);
3447 }
3448
3449 if (blk_fs_request(req) && req->rq_disk) {
3450 const int rw = rq_data_dir(req);
3451
3452 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3453 }
3454
3455 total_bytes = bio_nbytes = 0;
3456 while ((bio = req->bio) != NULL) {
3457 int nbytes;
3458
3459 /*
3460 * For an empty barrier request, the low level driver must
3461 * store a potential error location in ->sector. We pass
3462 * that back up in ->bi_sector.
3463 */
3464 if (blk_empty_barrier(req))
3465 bio->bi_sector = req->sector;
3466
3467 if (nr_bytes >= bio->bi_size) {
3468 req->bio = bio->bi_next;
3469 nbytes = bio->bi_size;
3470 req_bio_endio(req, bio, nbytes, error);
3471 next_idx = 0;
3472 bio_nbytes = 0;
3473 } else {
3474 int idx = bio->bi_idx + next_idx;
3475
3476 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3477 blk_dump_rq_flags(req, "__end_that");
3478 printk("%s: bio idx %d >= vcnt %d\n",
3479 __FUNCTION__,
3480 bio->bi_idx, bio->bi_vcnt);
3481 break;
3482 }
3483
3484 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3485 BIO_BUG_ON(nbytes > bio->bi_size);
3486
3487 /*
3488 * not a complete bvec done
3489 */
3490 if (unlikely(nbytes > nr_bytes)) {
3491 bio_nbytes += nr_bytes;
3492 total_bytes += nr_bytes;
3493 break;
3494 }
3495
3496 /*
3497 * advance to the next vector
3498 */
3499 next_idx++;
3500 bio_nbytes += nbytes;
3501 }
3502
3503 total_bytes += nbytes;
3504 nr_bytes -= nbytes;
3505
3506 if ((bio = req->bio)) {
3507 /*
3508 * end more in this run, or just return 'not-done'
3509 */
3510 if (unlikely(nr_bytes <= 0))
3511 break;
3512 }
3513 }
3514
3515 /*
3516 * completely done
3517 */
3518 if (!req->bio)
3519 return 0;
3520
3521 /*
3522 * if the request wasn't completed, update state
3523 */
3524 if (bio_nbytes) {
3525 req_bio_endio(req, bio, bio_nbytes, error);
3526 bio->bi_idx += next_idx;
3527 bio_iovec(bio)->bv_offset += nr_bytes;
3528 bio_iovec(bio)->bv_len -= nr_bytes;
3529 }
3530
3531 blk_recalc_rq_sectors(req, total_bytes >> 9);
3532 blk_recalc_rq_segments(req);
3533 return 1;
3534 }
3535
3536 /**
3537 * end_that_request_first - end I/O on a request
3538 * @req: the request being processed
3539 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3540 * @nr_sectors: number of sectors to end I/O on
3541 *
3542 * Description:
3543 * Ends I/O on a number of sectors attached to @req, and sets it up
3544 * for the next range of segments (if any) in the cluster.
3545 *
3546 * Return:
3547 * 0 - we are done with this request, call end_that_request_last()
3548 * 1 - still buffers pending for this request
3549 **/
3550 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3551 {
3552 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3553 }
3554
3555 EXPORT_SYMBOL(end_that_request_first);
3556
3557 /**
3558 * end_that_request_chunk - end I/O on a request
3559 * @req: the request being processed
3560 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3561 * @nr_bytes: number of bytes to complete
3562 *
3563 * Description:
3564 * Ends I/O on a number of bytes attached to @req, and sets it up
3565 * for the next range of segments (if any). Like end_that_request_first(),
3566 * but deals with bytes instead of sectors.
3567 *
3568 * Return:
3569 * 0 - we are done with this request, call end_that_request_last()
3570 * 1 - still buffers pending for this request
3571 **/
3572 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3573 {
3574 return __end_that_request_first(req, uptodate, nr_bytes);
3575 }
3576
3577 EXPORT_SYMBOL(end_that_request_chunk);
3578
3579 /*
3580 * splice the completion data to a local structure and hand off to
3581 * process_completion_queue() to complete the requests
3582 */
3583 static void blk_done_softirq(struct softirq_action *h)
3584 {
3585 struct list_head *cpu_list, local_list;
3586
3587 local_irq_disable();
3588 cpu_list = &__get_cpu_var(blk_cpu_done);
3589 list_replace_init(cpu_list, &local_list);
3590 local_irq_enable();
3591
3592 while (!list_empty(&local_list)) {
3593 struct request *rq = list_entry(local_list.next, struct request, donelist);
3594
3595 list_del_init(&rq->donelist);
3596 rq->q->softirq_done_fn(rq);
3597 }
3598 }
3599
3600 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3601 void *hcpu)
3602 {
3603 /*
3604 * If a CPU goes away, splice its entries to the current CPU
3605 * and trigger a run of the softirq
3606 */
3607 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3608 int cpu = (unsigned long) hcpu;
3609
3610 local_irq_disable();
3611 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3612 &__get_cpu_var(blk_cpu_done));
3613 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3614 local_irq_enable();
3615 }
3616
3617 return NOTIFY_OK;
3618 }
3619
3620
3621 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3622 .notifier_call = blk_cpu_notify,
3623 };
3624
3625 /**
3626 * blk_complete_request - end I/O on a request
3627 * @req: the request being processed
3628 *
3629 * Description:
3630 * Ends all I/O on a request. It does not handle partial completions,
3631 * unless the driver actually implements this in its completion callback
3632 * through requeueing. The actual completion happens out-of-order,
3633 * through a softirq handler. The user must have registered a completion
3634 * callback through blk_queue_softirq_done().
3635 **/
3636
3637 void blk_complete_request(struct request *req)
3638 {
3639 struct list_head *cpu_list;
3640 unsigned long flags;
3641
3642 BUG_ON(!req->q->softirq_done_fn);
3643
3644 local_irq_save(flags);
3645
3646 cpu_list = &__get_cpu_var(blk_cpu_done);
3647 list_add_tail(&req->donelist, cpu_list);
3648 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3649
3650 local_irq_restore(flags);
3651 }
3652
3653 EXPORT_SYMBOL(blk_complete_request);
3654
3655 /*
3656 * queue lock must be held
3657 */
3658 void end_that_request_last(struct request *req, int uptodate)
3659 {
3660 struct gendisk *disk = req->rq_disk;
3661 int error;
3662
3663 /*
3664 * extend uptodate bool to allow < 0 value to be direct io error
3665 */
3666 error = 0;
3667 if (end_io_error(uptodate))
3668 error = !uptodate ? -EIO : uptodate;
3669
3670 if (unlikely(laptop_mode) && blk_fs_request(req))
3671 laptop_io_completion();
3672
3673 /*
3674 * Account IO completion. bar_rq isn't accounted as a normal
3675 * IO on queueing nor completion. Accounting the containing
3676 * request is enough.
3677 */
3678 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3679 unsigned long duration = jiffies - req->start_time;
3680 const int rw = rq_data_dir(req);
3681
3682 __disk_stat_inc(disk, ios[rw]);
3683 __disk_stat_add(disk, ticks[rw], duration);
3684 disk_round_stats(disk);
3685 disk->in_flight--;
3686 }
3687 if (req->end_io)
3688 req->end_io(req, error);
3689 else
3690 __blk_put_request(req->q, req);
3691 }
3692
3693 EXPORT_SYMBOL(end_that_request_last);
3694
3695 static inline void __end_request(struct request *rq, int uptodate,
3696 unsigned int nr_bytes, int dequeue)
3697 {
3698 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3699 if (dequeue)
3700 blkdev_dequeue_request(rq);
3701 add_disk_randomness(rq->rq_disk);
3702 end_that_request_last(rq, uptodate);
3703 }
3704 }
3705
3706 static unsigned int rq_byte_size(struct request *rq)
3707 {
3708 if (blk_fs_request(rq))
3709 return rq->hard_nr_sectors << 9;
3710
3711 return rq->data_len;
3712 }
3713
3714 /**
3715 * end_queued_request - end all I/O on a queued request
3716 * @rq: the request being processed
3717 * @uptodate: error value or 0/1 uptodate flag
3718 *
3719 * Description:
3720 * Ends all I/O on a request, and removes it from the block layer queues.
3721 * Not suitable for normal IO completion, unless the driver still has
3722 * the request attached to the block layer.
3723 *
3724 **/
3725 void end_queued_request(struct request *rq, int uptodate)
3726 {
3727 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3728 }
3729 EXPORT_SYMBOL(end_queued_request);
3730
3731 /**
3732 * end_dequeued_request - end all I/O on a dequeued request
3733 * @rq: the request being processed
3734 * @uptodate: error value or 0/1 uptodate flag
3735 *
3736 * Description:
3737 * Ends all I/O on a request. The request must already have been
3738 * dequeued using blkdev_dequeue_request(), as is normally the case
3739 * for most drivers.
3740 *
3741 **/
3742 void end_dequeued_request(struct request *rq, int uptodate)
3743 {
3744 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3745 }
3746 EXPORT_SYMBOL(end_dequeued_request);
3747
3748
3749 /**
3750 * end_request - end I/O on the current segment of the request
3751 * @req: the request being processed
3752 * @uptodate: error value or 0/1 uptodate flag
3753 *
3754 * Description:
3755 * Ends I/O on the current segment of a request. If that is the only
3756 * remaining segment, the request is also completed and freed.
3757 *
3758 * This is a remnant of how older block drivers handled IO completions.
3759 * Modern drivers typically end IO on the full request in one go, unless
3760 * they have a residual value to account for. For that case this function
3761 * isn't really useful, unless the residual just happens to be the
3762 * full current segment. In other words, don't use this function in new
3763 * code. Either use end_request_completely(), or the
3764 * end_that_request_chunk() (along with end_that_request_last()) for
3765 * partial completions.
3766 *
3767 **/
3768 void end_request(struct request *req, int uptodate)
3769 {
3770 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3771 }
3772 EXPORT_SYMBOL(end_request);
3773
3774 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3775 struct bio *bio)
3776 {
3777 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3778 rq->cmd_flags |= (bio->bi_rw & 3);
3779
3780 rq->nr_phys_segments = bio_phys_segments(q, bio);
3781 rq->nr_hw_segments = bio_hw_segments(q, bio);
3782 rq->current_nr_sectors = bio_cur_sectors(bio);
3783 rq->hard_cur_sectors = rq->current_nr_sectors;
3784 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3785 rq->buffer = bio_data(bio);
3786 rq->data_len = bio->bi_size;
3787
3788 rq->bio = rq->biotail = bio;
3789
3790 if (bio->bi_bdev)
3791 rq->rq_disk = bio->bi_bdev->bd_disk;
3792 }
3793
3794 int kblockd_schedule_work(struct work_struct *work)
3795 {
3796 return queue_work(kblockd_workqueue, work);
3797 }
3798
3799 EXPORT_SYMBOL(kblockd_schedule_work);
3800
3801 void kblockd_flush_work(struct work_struct *work)
3802 {
3803 cancel_work_sync(work);
3804 }
3805 EXPORT_SYMBOL(kblockd_flush_work);
3806
3807 int __init blk_dev_init(void)
3808 {
3809 int i;
3810
3811 kblockd_workqueue = create_workqueue("kblockd");
3812 if (!kblockd_workqueue)
3813 panic("Failed to create kblockd\n");
3814
3815 request_cachep = kmem_cache_create("blkdev_requests",
3816 sizeof(struct request), 0, SLAB_PANIC, NULL);
3817
3818 requestq_cachep = kmem_cache_create("blkdev_queue",
3819 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3820
3821 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3822 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3823
3824 for_each_possible_cpu(i)
3825 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3826
3827 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3828 register_hotcpu_notifier(&blk_cpu_notifier);
3829
3830 blk_max_low_pfn = max_low_pfn - 1;
3831 blk_max_pfn = max_pfn - 1;
3832
3833 return 0;
3834 }
3835
3836 /*
3837 * IO Context helper functions
3838 */
3839 void put_io_context(struct io_context *ioc)
3840 {
3841 if (ioc == NULL)
3842 return;
3843
3844 BUG_ON(atomic_read(&ioc->refcount) == 0);
3845
3846 if (atomic_dec_and_test(&ioc->refcount)) {
3847 struct cfq_io_context *cic;
3848
3849 rcu_read_lock();
3850 if (ioc->aic && ioc->aic->dtor)
3851 ioc->aic->dtor(ioc->aic);
3852 if (ioc->cic_root.rb_node != NULL) {
3853 struct rb_node *n = rb_first(&ioc->cic_root);
3854
3855 cic = rb_entry(n, struct cfq_io_context, rb_node);
3856 cic->dtor(ioc);
3857 }
3858 rcu_read_unlock();
3859
3860 kmem_cache_free(iocontext_cachep, ioc);
3861 }
3862 }
3863 EXPORT_SYMBOL(put_io_context);
3864
3865 /* Called by the exitting task */
3866 void exit_io_context(void)
3867 {
3868 struct io_context *ioc;
3869 struct cfq_io_context *cic;
3870
3871 task_lock(current);
3872 ioc = current->io_context;
3873 current->io_context = NULL;
3874 task_unlock(current);
3875
3876 ioc->task = NULL;
3877 if (ioc->aic && ioc->aic->exit)
3878 ioc->aic->exit(ioc->aic);
3879 if (ioc->cic_root.rb_node != NULL) {
3880 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3881 cic->exit(ioc);
3882 }
3883
3884 put_io_context(ioc);
3885 }
3886
3887 /*
3888 * If the current task has no IO context then create one and initialise it.
3889 * Otherwise, return its existing IO context.
3890 *
3891 * This returned IO context doesn't have a specifically elevated refcount,
3892 * but since the current task itself holds a reference, the context can be
3893 * used in general code, so long as it stays within `current` context.
3894 */
3895 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3896 {
3897 struct task_struct *tsk = current;
3898 struct io_context *ret;
3899
3900 ret = tsk->io_context;
3901 if (likely(ret))
3902 return ret;
3903
3904 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3905 if (ret) {
3906 atomic_set(&ret->refcount, 1);
3907 ret->task = current;
3908 ret->ioprio_changed = 0;
3909 ret->last_waited = jiffies; /* doesn't matter... */
3910 ret->nr_batch_requests = 0; /* because this is 0 */
3911 ret->aic = NULL;
3912 ret->cic_root.rb_node = NULL;
3913 ret->ioc_data = NULL;
3914 /* make sure set_task_ioprio() sees the settings above */
3915 smp_wmb();
3916 tsk->io_context = ret;
3917 }
3918
3919 return ret;
3920 }
3921
3922 /*
3923 * If the current task has no IO context then create one and initialise it.
3924 * If it does have a context, take a ref on it.
3925 *
3926 * This is always called in the context of the task which submitted the I/O.
3927 */
3928 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3929 {
3930 struct io_context *ret;
3931 ret = current_io_context(gfp_flags, node);
3932 if (likely(ret))
3933 atomic_inc(&ret->refcount);
3934 return ret;
3935 }
3936 EXPORT_SYMBOL(get_io_context);
3937
3938 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3939 {
3940 struct io_context *src = *psrc;
3941 struct io_context *dst = *pdst;
3942
3943 if (src) {
3944 BUG_ON(atomic_read(&src->refcount) == 0);
3945 atomic_inc(&src->refcount);
3946 put_io_context(dst);
3947 *pdst = src;
3948 }
3949 }
3950 EXPORT_SYMBOL(copy_io_context);
3951
3952 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3953 {
3954 struct io_context *temp;
3955 temp = *ioc1;
3956 *ioc1 = *ioc2;
3957 *ioc2 = temp;
3958 }
3959 EXPORT_SYMBOL(swap_io_context);
3960
3961 /*
3962 * sysfs parts below
3963 */
3964 struct queue_sysfs_entry {
3965 struct attribute attr;
3966 ssize_t (*show)(struct request_queue *, char *);
3967 ssize_t (*store)(struct request_queue *, const char *, size_t);
3968 };
3969
3970 static ssize_t
3971 queue_var_show(unsigned int var, char *page)
3972 {
3973 return sprintf(page, "%d\n", var);
3974 }
3975
3976 static ssize_t
3977 queue_var_store(unsigned long *var, const char *page, size_t count)
3978 {
3979 char *p = (char *) page;
3980
3981 *var = simple_strtoul(p, &p, 10);
3982 return count;
3983 }
3984
3985 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3986 {
3987 return queue_var_show(q->nr_requests, (page));
3988 }
3989
3990 static ssize_t
3991 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3992 {
3993 struct request_list *rl = &q->rq;
3994 unsigned long nr;
3995 int ret = queue_var_store(&nr, page, count);
3996 if (nr < BLKDEV_MIN_RQ)
3997 nr = BLKDEV_MIN_RQ;
3998
3999 spin_lock_irq(q->queue_lock);
4000 q->nr_requests = nr;
4001 blk_queue_congestion_threshold(q);
4002
4003 if (rl->count[READ] >= queue_congestion_on_threshold(q))
4004 blk_set_queue_congested(q, READ);
4005 else if (rl->count[READ] < queue_congestion_off_threshold(q))
4006 blk_clear_queue_congested(q, READ);
4007
4008 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
4009 blk_set_queue_congested(q, WRITE);
4010 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
4011 blk_clear_queue_congested(q, WRITE);
4012
4013 if (rl->count[READ] >= q->nr_requests) {
4014 blk_set_queue_full(q, READ);
4015 } else if (rl->count[READ]+1 <= q->nr_requests) {
4016 blk_clear_queue_full(q, READ);
4017 wake_up(&rl->wait[READ]);
4018 }
4019
4020 if (rl->count[WRITE] >= q->nr_requests) {
4021 blk_set_queue_full(q, WRITE);
4022 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4023 blk_clear_queue_full(q, WRITE);
4024 wake_up(&rl->wait[WRITE]);
4025 }
4026 spin_unlock_irq(q->queue_lock);
4027 return ret;
4028 }
4029
4030 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4031 {
4032 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4033
4034 return queue_var_show(ra_kb, (page));
4035 }
4036
4037 static ssize_t
4038 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4039 {
4040 unsigned long ra_kb;
4041 ssize_t ret = queue_var_store(&ra_kb, page, count);
4042
4043 spin_lock_irq(q->queue_lock);
4044 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4045 spin_unlock_irq(q->queue_lock);
4046
4047 return ret;
4048 }
4049
4050 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4051 {
4052 int max_sectors_kb = q->max_sectors >> 1;
4053
4054 return queue_var_show(max_sectors_kb, (page));
4055 }
4056
4057 static ssize_t
4058 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4059 {
4060 unsigned long max_sectors_kb,
4061 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4062 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4063 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4064
4065 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4066 return -EINVAL;
4067 /*
4068 * Take the queue lock to update the readahead and max_sectors
4069 * values synchronously:
4070 */
4071 spin_lock_irq(q->queue_lock);
4072 q->max_sectors = max_sectors_kb << 1;
4073 spin_unlock_irq(q->queue_lock);
4074
4075 return ret;
4076 }
4077
4078 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4079 {
4080 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4081
4082 return queue_var_show(max_hw_sectors_kb, (page));
4083 }
4084
4085 static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4086 {
4087 return queue_var_show(q->max_phys_segments, page);
4088 }
4089
4090 static ssize_t queue_max_segments_store(struct request_queue *q,
4091 const char *page, size_t count)
4092 {
4093 unsigned long segments;
4094 ssize_t ret = queue_var_store(&segments, page, count);
4095
4096 spin_lock_irq(q->queue_lock);
4097 q->max_phys_segments = segments;
4098 spin_unlock_irq(q->queue_lock);
4099
4100 return ret;
4101 }
4102 static struct queue_sysfs_entry queue_requests_entry = {
4103 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4104 .show = queue_requests_show,
4105 .store = queue_requests_store,
4106 };
4107
4108 static struct queue_sysfs_entry queue_ra_entry = {
4109 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4110 .show = queue_ra_show,
4111 .store = queue_ra_store,
4112 };
4113
4114 static struct queue_sysfs_entry queue_max_sectors_entry = {
4115 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4116 .show = queue_max_sectors_show,
4117 .store = queue_max_sectors_store,
4118 };
4119
4120 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4121 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4122 .show = queue_max_hw_sectors_show,
4123 };
4124
4125 static struct queue_sysfs_entry queue_max_segments_entry = {
4126 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4127 .show = queue_max_segments_show,
4128 .store = queue_max_segments_store,
4129 };
4130
4131 static struct queue_sysfs_entry queue_iosched_entry = {
4132 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4133 .show = elv_iosched_show,
4134 .store = elv_iosched_store,
4135 };
4136
4137 static struct attribute *default_attrs[] = {
4138 &queue_requests_entry.attr,
4139 &queue_ra_entry.attr,
4140 &queue_max_hw_sectors_entry.attr,
4141 &queue_max_sectors_entry.attr,
4142 &queue_max_segments_entry.attr,
4143 &queue_iosched_entry.attr,
4144 NULL,
4145 };
4146
4147 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4148
4149 static ssize_t
4150 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4151 {
4152 struct queue_sysfs_entry *entry = to_queue(attr);
4153 struct request_queue *q =
4154 container_of(kobj, struct request_queue, kobj);
4155 ssize_t res;
4156
4157 if (!entry->show)
4158 return -EIO;
4159 mutex_lock(&q->sysfs_lock);
4160 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4161 mutex_unlock(&q->sysfs_lock);
4162 return -ENOENT;
4163 }
4164 res = entry->show(q, page);
4165 mutex_unlock(&q->sysfs_lock);
4166 return res;
4167 }
4168
4169 static ssize_t
4170 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4171 const char *page, size_t length)
4172 {
4173 struct queue_sysfs_entry *entry = to_queue(attr);
4174 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4175
4176 ssize_t res;
4177
4178 if (!entry->store)
4179 return -EIO;
4180 mutex_lock(&q->sysfs_lock);
4181 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4182 mutex_unlock(&q->sysfs_lock);
4183 return -ENOENT;
4184 }
4185 res = entry->store(q, page, length);
4186 mutex_unlock(&q->sysfs_lock);
4187 return res;
4188 }
4189
4190 static struct sysfs_ops queue_sysfs_ops = {
4191 .show = queue_attr_show,
4192 .store = queue_attr_store,
4193 };
4194
4195 static struct kobj_type queue_ktype = {
4196 .sysfs_ops = &queue_sysfs_ops,
4197 .default_attrs = default_attrs,
4198 .release = blk_release_queue,
4199 };
4200
4201 int blk_register_queue(struct gendisk *disk)
4202 {
4203 int ret;
4204
4205 struct request_queue *q = disk->queue;
4206
4207 if (!q || !q->request_fn)
4208 return -ENXIO;
4209
4210 q->kobj.parent = kobject_get(&disk->kobj);
4211
4212 ret = kobject_add(&q->kobj);
4213 if (ret < 0)
4214 return ret;
4215
4216 kobject_uevent(&q->kobj, KOBJ_ADD);
4217
4218 ret = elv_register_queue(q);
4219 if (ret) {
4220 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4221 kobject_del(&q->kobj);
4222 return ret;
4223 }
4224
4225 return 0;
4226 }
4227
4228 void blk_unregister_queue(struct gendisk *disk)
4229 {
4230 struct request_queue *q = disk->queue;
4231
4232 if (q && q->request_fn) {
4233 elv_unregister_queue(q);
4234
4235 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4236 kobject_del(&q->kobj);
4237 kobject_put(&disk->kobj);
4238 }
4239 }