[SCSI] block: Introduce new blk_queue_update_dma_alignment interface
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 #include <linux/scatterlist.h>
34
35 /*
36 * for max sense size
37 */
38 #include <scsi/scsi_cmnd.h>
39
40 static void blk_unplug_work(struct work_struct *work);
41 static void blk_unplug_timeout(unsigned long data);
42 static void drive_stat_acct(struct request *rq, int new_io);
43 static void init_request_from_bio(struct request *req, struct bio *bio);
44 static int __make_request(struct request_queue *q, struct bio *bio);
45 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
46 static void blk_recalc_rq_segments(struct request *rq);
47 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
49
50 /*
51 * For the allocated request tables
52 */
53 static struct kmem_cache *request_cachep;
54
55 /*
56 * For queue allocation
57 */
58 static struct kmem_cache *requestq_cachep;
59
60 /*
61 * For io context allocations
62 */
63 static struct kmem_cache *iocontext_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 unsigned long blk_max_low_pfn, blk_max_pfn;
71
72 EXPORT_SYMBOL(blk_max_low_pfn);
73 EXPORT_SYMBOL(blk_max_pfn);
74
75 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
77 /* Amount of time in which a process may batch requests */
78 #define BLK_BATCH_TIME (HZ/50UL)
79
80 /* Number of requests a "batching" process may submit */
81 #define BLK_BATCH_REQ 32
82
83 /*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 {
90 return q->nr_congestion_on;
91 }
92
93 /*
94 * The threshold at which a queue is considered to be uncongested
95 */
96 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 {
98 return q->nr_congestion_off;
99 }
100
101 static void blk_queue_congestion_threshold(struct request_queue *q)
102 {
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114 }
115
116 /**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 {
127 struct backing_dev_info *ret = NULL;
128 struct request_queue *q = bdev_get_queue(bdev);
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133 }
134 EXPORT_SYMBOL(blk_get_backing_dev_info);
135
136 /**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
147 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 {
149 q->prep_rq_fn = pfn;
150 }
151
152 EXPORT_SYMBOL(blk_queue_prep_rq);
153
154 /**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
170 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 {
172 q->merge_bvec_fn = mbfn;
173 }
174
175 EXPORT_SYMBOL(blk_queue_merge_bvec);
176
177 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 {
179 q->softirq_done_fn = fn;
180 }
181
182 EXPORT_SYMBOL(blk_queue_softirq_done);
183
184 /**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
206 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
207 {
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
229 INIT_WORK(&q->unplug_work, blk_unplug_work);
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
238 }
239
240 EXPORT_SYMBOL(blk_queue_make_request);
241
242 static void rq_init(struct request_queue *q, struct request *rq)
243 {
244 INIT_LIST_HEAD(&rq->queuelist);
245 INIT_LIST_HEAD(&rq->donelist);
246
247 rq->errors = 0;
248 rq->bio = rq->biotail = NULL;
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
251 rq->ioprio = 0;
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
258 rq->nr_phys_segments = 0;
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
262 rq->completion_data = NULL;
263 rq->next_rq = NULL;
264 }
265
266 /**
267 * blk_queue_ordered - does this queue support ordered writes
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
279 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
280 prepare_flush_fn *prepare_flush_fn)
281 {
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
297 }
298
299 q->ordered = ordered;
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
304 }
305
306 EXPORT_SYMBOL(blk_queue_ordered);
307
308 /*
309 * Cache flushing for ordered writes handling
310 */
311 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
312 {
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
316 }
317
318 unsigned blk_ordered_req_seq(struct request *rq)
319 {
320 struct request_queue *q = rq->q;
321
322 BUG_ON(q->ordseq == 0);
323
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
330
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
345 }
346
347 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
348 {
349 struct request *rq;
350 int uptodate;
351
352 if (error && !q->orderr)
353 q->orderr = error;
354
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
357
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
360
361 /*
362 * Okay, sequence complete.
363 */
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
367
368 q->ordseq = 0;
369 rq = q->orig_bar_rq;
370
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
373 }
374
375 static void pre_flush_end_io(struct request *rq, int error)
376 {
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379 }
380
381 static void bar_end_io(struct request *rq, int error)
382 {
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385 }
386
387 static void post_flush_end_io(struct request *rq, int error)
388 {
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391 }
392
393 static void queue_flush(struct request_queue *q, unsigned which)
394 {
395 struct request *rq;
396 rq_end_io_fn *end_io;
397
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
404 }
405
406 rq->cmd_flags = REQ_HARDBARRIER;
407 rq_init(q, rq);
408 rq->elevator_private = NULL;
409 rq->elevator_private2 = NULL;
410 rq->rq_disk = q->bar_rq.rq_disk;
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
415 }
416
417 static inline struct request *start_ordered(struct request_queue *q,
418 struct request *rq)
419 {
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
430 rq->cmd_flags = 0;
431 rq_init(q, rq);
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
436 rq->elevator_private = NULL;
437 rq->elevator_private2 = NULL;
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
449 */
450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
462
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
469 }
470
471 int blk_do_ordered(struct request_queue *q, struct request **rqp)
472 {
473 struct request *rq = *rqp;
474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
475
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
479
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
496
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
506 if (q->ordered & QUEUE_ORDERED_TAG) {
507 /* Ordered by tag. Blocking the next barrier is enough. */
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
515 }
516
517 return 1;
518 }
519
520 static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
522 {
523 struct request_queue *q = rq->q;
524
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
530
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
536
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
540 bio_endio(bio, error);
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
550 }
551
552 /**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
561 * buffers for doing I/O to pages residing above @page.
562 **/
563 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
564 {
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569 #if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576 #else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580 #endif
581 if (dma) {
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
584 q->bounce_pfn = bounce_pfn;
585 }
586 }
587
588 EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590 /**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
599 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
600 {
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
612 }
613
614 EXPORT_SYMBOL(blk_queue_max_sectors);
615
616 /**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
626 void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
628 {
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635 }
636
637 EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639 /**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
650 void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
652 {
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659 }
660
661 EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663 /**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
672 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
673 {
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680 }
681
682 EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684 /**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
695 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
696 {
697 q->hardsect_size = size;
698 }
699
700 EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702 /*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707 /**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
712 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
713 {
714 /* zero is "infinity" */
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
724 }
725
726 EXPORT_SYMBOL(blk_queue_stack_limits);
727
728 /**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
733 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734 {
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741 }
742
743 EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745 /**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
755 void blk_queue_dma_alignment(struct request_queue *q, int mask)
756 {
757 q->dma_alignment = mask;
758 }
759
760 EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762 /**
763 * blk_queue_update_dma_alignment - update dma length and memory alignment
764 * @q: the request queue for the device
765 * @mask: alignment mask
766 *
767 * description:
768 * update required memory and length aligment for direct dma transactions.
769 * If the requested alignment is larger than the current alignment, then
770 * the current queue alignment is updated to the new value, otherwise it
771 * is left alone. The design of this is to allow multiple objects
772 * (driver, device, transport etc) to set their respective
773 * alignments without having them interfere.
774 *
775 **/
776 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
777 {
778 BUG_ON(mask > PAGE_SIZE);
779
780 if (mask > q->dma_alignment)
781 q->dma_alignment = mask;
782 }
783
784 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
785
786 /**
787 * blk_queue_find_tag - find a request by its tag and queue
788 * @q: The request queue for the device
789 * @tag: The tag of the request
790 *
791 * Notes:
792 * Should be used when a device returns a tag and you want to match
793 * it with a request.
794 *
795 * no locks need be held.
796 **/
797 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
798 {
799 return blk_map_queue_find_tag(q->queue_tags, tag);
800 }
801
802 EXPORT_SYMBOL(blk_queue_find_tag);
803
804 /**
805 * __blk_free_tags - release a given set of tag maintenance info
806 * @bqt: the tag map to free
807 *
808 * Tries to free the specified @bqt@. Returns true if it was
809 * actually freed and false if there are still references using it
810 */
811 static int __blk_free_tags(struct blk_queue_tag *bqt)
812 {
813 int retval;
814
815 retval = atomic_dec_and_test(&bqt->refcnt);
816 if (retval) {
817 BUG_ON(bqt->busy);
818
819 kfree(bqt->tag_index);
820 bqt->tag_index = NULL;
821
822 kfree(bqt->tag_map);
823 bqt->tag_map = NULL;
824
825 kfree(bqt);
826
827 }
828
829 return retval;
830 }
831
832 /**
833 * __blk_queue_free_tags - release tag maintenance info
834 * @q: the request queue for the device
835 *
836 * Notes:
837 * blk_cleanup_queue() will take care of calling this function, if tagging
838 * has been used. So there's no need to call this directly.
839 **/
840 static void __blk_queue_free_tags(struct request_queue *q)
841 {
842 struct blk_queue_tag *bqt = q->queue_tags;
843
844 if (!bqt)
845 return;
846
847 __blk_free_tags(bqt);
848
849 q->queue_tags = NULL;
850 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
851 }
852
853
854 /**
855 * blk_free_tags - release a given set of tag maintenance info
856 * @bqt: the tag map to free
857 *
858 * For externally managed @bqt@ frees the map. Callers of this
859 * function must guarantee to have released all the queues that
860 * might have been using this tag map.
861 */
862 void blk_free_tags(struct blk_queue_tag *bqt)
863 {
864 if (unlikely(!__blk_free_tags(bqt)))
865 BUG();
866 }
867 EXPORT_SYMBOL(blk_free_tags);
868
869 /**
870 * blk_queue_free_tags - release tag maintenance info
871 * @q: the request queue for the device
872 *
873 * Notes:
874 * This is used to disabled tagged queuing to a device, yet leave
875 * queue in function.
876 **/
877 void blk_queue_free_tags(struct request_queue *q)
878 {
879 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
880 }
881
882 EXPORT_SYMBOL(blk_queue_free_tags);
883
884 static int
885 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
886 {
887 struct request **tag_index;
888 unsigned long *tag_map;
889 int nr_ulongs;
890
891 if (q && depth > q->nr_requests * 2) {
892 depth = q->nr_requests * 2;
893 printk(KERN_ERR "%s: adjusted depth to %d\n",
894 __FUNCTION__, depth);
895 }
896
897 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
898 if (!tag_index)
899 goto fail;
900
901 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
902 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
903 if (!tag_map)
904 goto fail;
905
906 tags->real_max_depth = depth;
907 tags->max_depth = depth;
908 tags->tag_index = tag_index;
909 tags->tag_map = tag_map;
910
911 return 0;
912 fail:
913 kfree(tag_index);
914 return -ENOMEM;
915 }
916
917 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
918 int depth)
919 {
920 struct blk_queue_tag *tags;
921
922 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
923 if (!tags)
924 goto fail;
925
926 if (init_tag_map(q, tags, depth))
927 goto fail;
928
929 tags->busy = 0;
930 atomic_set(&tags->refcnt, 1);
931 return tags;
932 fail:
933 kfree(tags);
934 return NULL;
935 }
936
937 /**
938 * blk_init_tags - initialize the tag info for an external tag map
939 * @depth: the maximum queue depth supported
940 * @tags: the tag to use
941 **/
942 struct blk_queue_tag *blk_init_tags(int depth)
943 {
944 return __blk_queue_init_tags(NULL, depth);
945 }
946 EXPORT_SYMBOL(blk_init_tags);
947
948 /**
949 * blk_queue_init_tags - initialize the queue tag info
950 * @q: the request queue for the device
951 * @depth: the maximum queue depth supported
952 * @tags: the tag to use
953 **/
954 int blk_queue_init_tags(struct request_queue *q, int depth,
955 struct blk_queue_tag *tags)
956 {
957 int rc;
958
959 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
960
961 if (!tags && !q->queue_tags) {
962 tags = __blk_queue_init_tags(q, depth);
963
964 if (!tags)
965 goto fail;
966 } else if (q->queue_tags) {
967 if ((rc = blk_queue_resize_tags(q, depth)))
968 return rc;
969 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
970 return 0;
971 } else
972 atomic_inc(&tags->refcnt);
973
974 /*
975 * assign it, all done
976 */
977 q->queue_tags = tags;
978 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
979 INIT_LIST_HEAD(&q->tag_busy_list);
980 return 0;
981 fail:
982 kfree(tags);
983 return -ENOMEM;
984 }
985
986 EXPORT_SYMBOL(blk_queue_init_tags);
987
988 /**
989 * blk_queue_resize_tags - change the queueing depth
990 * @q: the request queue for the device
991 * @new_depth: the new max command queueing depth
992 *
993 * Notes:
994 * Must be called with the queue lock held.
995 **/
996 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
997 {
998 struct blk_queue_tag *bqt = q->queue_tags;
999 struct request **tag_index;
1000 unsigned long *tag_map;
1001 int max_depth, nr_ulongs;
1002
1003 if (!bqt)
1004 return -ENXIO;
1005
1006 /*
1007 * if we already have large enough real_max_depth. just
1008 * adjust max_depth. *NOTE* as requests with tag value
1009 * between new_depth and real_max_depth can be in-flight, tag
1010 * map can not be shrunk blindly here.
1011 */
1012 if (new_depth <= bqt->real_max_depth) {
1013 bqt->max_depth = new_depth;
1014 return 0;
1015 }
1016
1017 /*
1018 * Currently cannot replace a shared tag map with a new
1019 * one, so error out if this is the case
1020 */
1021 if (atomic_read(&bqt->refcnt) != 1)
1022 return -EBUSY;
1023
1024 /*
1025 * save the old state info, so we can copy it back
1026 */
1027 tag_index = bqt->tag_index;
1028 tag_map = bqt->tag_map;
1029 max_depth = bqt->real_max_depth;
1030
1031 if (init_tag_map(q, bqt, new_depth))
1032 return -ENOMEM;
1033
1034 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1035 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1036 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1037
1038 kfree(tag_index);
1039 kfree(tag_map);
1040 return 0;
1041 }
1042
1043 EXPORT_SYMBOL(blk_queue_resize_tags);
1044
1045 /**
1046 * blk_queue_end_tag - end tag operations for a request
1047 * @q: the request queue for the device
1048 * @rq: the request that has completed
1049 *
1050 * Description:
1051 * Typically called when end_that_request_first() returns 0, meaning
1052 * all transfers have been done for a request. It's important to call
1053 * this function before end_that_request_last(), as that will put the
1054 * request back on the free list thus corrupting the internal tag list.
1055 *
1056 * Notes:
1057 * queue lock must be held.
1058 **/
1059 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1060 {
1061 struct blk_queue_tag *bqt = q->queue_tags;
1062 int tag = rq->tag;
1063
1064 BUG_ON(tag == -1);
1065
1066 if (unlikely(tag >= bqt->real_max_depth))
1067 /*
1068 * This can happen after tag depth has been reduced.
1069 * FIXME: how about a warning or info message here?
1070 */
1071 return;
1072
1073 list_del_init(&rq->queuelist);
1074 rq->cmd_flags &= ~REQ_QUEUED;
1075 rq->tag = -1;
1076
1077 if (unlikely(bqt->tag_index[tag] == NULL))
1078 printk(KERN_ERR "%s: tag %d is missing\n",
1079 __FUNCTION__, tag);
1080
1081 bqt->tag_index[tag] = NULL;
1082
1083 if (unlikely(!test_bit(tag, bqt->tag_map))) {
1084 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1085 __FUNCTION__, tag);
1086 return;
1087 }
1088 /*
1089 * The tag_map bit acts as a lock for tag_index[bit], so we need
1090 * unlock memory barrier semantics.
1091 */
1092 clear_bit_unlock(tag, bqt->tag_map);
1093 bqt->busy--;
1094 }
1095
1096 EXPORT_SYMBOL(blk_queue_end_tag);
1097
1098 /**
1099 * blk_queue_start_tag - find a free tag and assign it
1100 * @q: the request queue for the device
1101 * @rq: the block request that needs tagging
1102 *
1103 * Description:
1104 * This can either be used as a stand-alone helper, or possibly be
1105 * assigned as the queue &prep_rq_fn (in which case &struct request
1106 * automagically gets a tag assigned). Note that this function
1107 * assumes that any type of request can be queued! if this is not
1108 * true for your device, you must check the request type before
1109 * calling this function. The request will also be removed from
1110 * the request queue, so it's the drivers responsibility to readd
1111 * it if it should need to be restarted for some reason.
1112 *
1113 * Notes:
1114 * queue lock must be held.
1115 **/
1116 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1117 {
1118 struct blk_queue_tag *bqt = q->queue_tags;
1119 int tag;
1120
1121 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1122 printk(KERN_ERR
1123 "%s: request %p for device [%s] already tagged %d",
1124 __FUNCTION__, rq,
1125 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1126 BUG();
1127 }
1128
1129 /*
1130 * Protect against shared tag maps, as we may not have exclusive
1131 * access to the tag map.
1132 */
1133 do {
1134 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1135 if (tag >= bqt->max_depth)
1136 return 1;
1137
1138 } while (test_and_set_bit_lock(tag, bqt->tag_map));
1139 /*
1140 * We need lock ordering semantics given by test_and_set_bit_lock.
1141 * See blk_queue_end_tag for details.
1142 */
1143
1144 rq->cmd_flags |= REQ_QUEUED;
1145 rq->tag = tag;
1146 bqt->tag_index[tag] = rq;
1147 blkdev_dequeue_request(rq);
1148 list_add(&rq->queuelist, &q->tag_busy_list);
1149 bqt->busy++;
1150 return 0;
1151 }
1152
1153 EXPORT_SYMBOL(blk_queue_start_tag);
1154
1155 /**
1156 * blk_queue_invalidate_tags - invalidate all pending tags
1157 * @q: the request queue for the device
1158 *
1159 * Description:
1160 * Hardware conditions may dictate a need to stop all pending requests.
1161 * In this case, we will safely clear the block side of the tag queue and
1162 * readd all requests to the request queue in the right order.
1163 *
1164 * Notes:
1165 * queue lock must be held.
1166 **/
1167 void blk_queue_invalidate_tags(struct request_queue *q)
1168 {
1169 struct list_head *tmp, *n;
1170
1171 list_for_each_safe(tmp, n, &q->tag_busy_list)
1172 blk_requeue_request(q, list_entry_rq(tmp));
1173 }
1174
1175 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1176
1177 void blk_dump_rq_flags(struct request *rq, char *msg)
1178 {
1179 int bit;
1180
1181 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1183 rq->cmd_flags);
1184
1185 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1186 rq->nr_sectors,
1187 rq->current_nr_sectors);
1188 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1189
1190 if (blk_pc_request(rq)) {
1191 printk("cdb: ");
1192 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1193 printk("%02x ", rq->cmd[bit]);
1194 printk("\n");
1195 }
1196 }
1197
1198 EXPORT_SYMBOL(blk_dump_rq_flags);
1199
1200 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1201 {
1202 struct request rq;
1203 struct bio *nxt = bio->bi_next;
1204 rq.q = q;
1205 rq.bio = rq.biotail = bio;
1206 bio->bi_next = NULL;
1207 blk_recalc_rq_segments(&rq);
1208 bio->bi_next = nxt;
1209 bio->bi_phys_segments = rq.nr_phys_segments;
1210 bio->bi_hw_segments = rq.nr_hw_segments;
1211 bio->bi_flags |= (1 << BIO_SEG_VALID);
1212 }
1213 EXPORT_SYMBOL(blk_recount_segments);
1214
1215 static void blk_recalc_rq_segments(struct request *rq)
1216 {
1217 int nr_phys_segs;
1218 int nr_hw_segs;
1219 unsigned int phys_size;
1220 unsigned int hw_size;
1221 struct bio_vec *bv, *bvprv = NULL;
1222 int seg_size;
1223 int hw_seg_size;
1224 int cluster;
1225 struct req_iterator iter;
1226 int high, highprv = 1;
1227 struct request_queue *q = rq->q;
1228
1229 if (!rq->bio)
1230 return;
1231
1232 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1233 hw_seg_size = seg_size = 0;
1234 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1235 rq_for_each_segment(bv, rq, iter) {
1236 /*
1237 * the trick here is making sure that a high page is never
1238 * considered part of another segment, since that might
1239 * change with the bounce page.
1240 */
1241 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1242 if (high || highprv)
1243 goto new_hw_segment;
1244 if (cluster) {
1245 if (seg_size + bv->bv_len > q->max_segment_size)
1246 goto new_segment;
1247 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1248 goto new_segment;
1249 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1250 goto new_segment;
1251 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1252 goto new_hw_segment;
1253
1254 seg_size += bv->bv_len;
1255 hw_seg_size += bv->bv_len;
1256 bvprv = bv;
1257 continue;
1258 }
1259 new_segment:
1260 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1261 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1262 hw_seg_size += bv->bv_len;
1263 else {
1264 new_hw_segment:
1265 if (nr_hw_segs == 1 &&
1266 hw_seg_size > rq->bio->bi_hw_front_size)
1267 rq->bio->bi_hw_front_size = hw_seg_size;
1268 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1269 nr_hw_segs++;
1270 }
1271
1272 nr_phys_segs++;
1273 bvprv = bv;
1274 seg_size = bv->bv_len;
1275 highprv = high;
1276 }
1277
1278 if (nr_hw_segs == 1 &&
1279 hw_seg_size > rq->bio->bi_hw_front_size)
1280 rq->bio->bi_hw_front_size = hw_seg_size;
1281 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1282 rq->biotail->bi_hw_back_size = hw_seg_size;
1283 rq->nr_phys_segments = nr_phys_segs;
1284 rq->nr_hw_segments = nr_hw_segs;
1285 }
1286
1287 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1288 struct bio *nxt)
1289 {
1290 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1291 return 0;
1292
1293 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1294 return 0;
1295 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1296 return 0;
1297
1298 /*
1299 * bio and nxt are contigous in memory, check if the queue allows
1300 * these two to be merged into one
1301 */
1302 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1303 return 1;
1304
1305 return 0;
1306 }
1307
1308 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1309 struct bio *nxt)
1310 {
1311 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1312 blk_recount_segments(q, bio);
1313 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1314 blk_recount_segments(q, nxt);
1315 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1316 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1317 return 0;
1318 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1319 return 0;
1320
1321 return 1;
1322 }
1323
1324 /*
1325 * map a request to scatterlist, return number of sg entries setup. Caller
1326 * must make sure sg can hold rq->nr_phys_segments entries
1327 */
1328 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1329 struct scatterlist *sglist)
1330 {
1331 struct bio_vec *bvec, *bvprv;
1332 struct req_iterator iter;
1333 struct scatterlist *sg;
1334 int nsegs, cluster;
1335
1336 nsegs = 0;
1337 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1338
1339 /*
1340 * for each bio in rq
1341 */
1342 bvprv = NULL;
1343 sg = NULL;
1344 rq_for_each_segment(bvec, rq, iter) {
1345 int nbytes = bvec->bv_len;
1346
1347 if (bvprv && cluster) {
1348 if (sg->length + nbytes > q->max_segment_size)
1349 goto new_segment;
1350
1351 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1352 goto new_segment;
1353 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1354 goto new_segment;
1355
1356 sg->length += nbytes;
1357 } else {
1358 new_segment:
1359 if (!sg)
1360 sg = sglist;
1361 else {
1362 /*
1363 * If the driver previously mapped a shorter
1364 * list, we could see a termination bit
1365 * prematurely unless it fully inits the sg
1366 * table on each mapping. We KNOW that there
1367 * must be more entries here or the driver
1368 * would be buggy, so force clear the
1369 * termination bit to avoid doing a full
1370 * sg_init_table() in drivers for each command.
1371 */
1372 sg->page_link &= ~0x02;
1373 sg = sg_next(sg);
1374 }
1375
1376 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
1377 nsegs++;
1378 }
1379 bvprv = bvec;
1380 } /* segments in rq */
1381
1382 if (sg)
1383 sg_mark_end(sg);
1384
1385 return nsegs;
1386 }
1387
1388 EXPORT_SYMBOL(blk_rq_map_sg);
1389
1390 /*
1391 * the standard queue merge functions, can be overridden with device
1392 * specific ones if so desired
1393 */
1394
1395 static inline int ll_new_mergeable(struct request_queue *q,
1396 struct request *req,
1397 struct bio *bio)
1398 {
1399 int nr_phys_segs = bio_phys_segments(q, bio);
1400
1401 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1402 req->cmd_flags |= REQ_NOMERGE;
1403 if (req == q->last_merge)
1404 q->last_merge = NULL;
1405 return 0;
1406 }
1407
1408 /*
1409 * A hw segment is just getting larger, bump just the phys
1410 * counter.
1411 */
1412 req->nr_phys_segments += nr_phys_segs;
1413 return 1;
1414 }
1415
1416 static inline int ll_new_hw_segment(struct request_queue *q,
1417 struct request *req,
1418 struct bio *bio)
1419 {
1420 int nr_hw_segs = bio_hw_segments(q, bio);
1421 int nr_phys_segs = bio_phys_segments(q, bio);
1422
1423 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1424 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1425 req->cmd_flags |= REQ_NOMERGE;
1426 if (req == q->last_merge)
1427 q->last_merge = NULL;
1428 return 0;
1429 }
1430
1431 /*
1432 * This will form the start of a new hw segment. Bump both
1433 * counters.
1434 */
1435 req->nr_hw_segments += nr_hw_segs;
1436 req->nr_phys_segments += nr_phys_segs;
1437 return 1;
1438 }
1439
1440 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1441 struct bio *bio)
1442 {
1443 unsigned short max_sectors;
1444 int len;
1445
1446 if (unlikely(blk_pc_request(req)))
1447 max_sectors = q->max_hw_sectors;
1448 else
1449 max_sectors = q->max_sectors;
1450
1451 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1452 req->cmd_flags |= REQ_NOMERGE;
1453 if (req == q->last_merge)
1454 q->last_merge = NULL;
1455 return 0;
1456 }
1457 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1458 blk_recount_segments(q, req->biotail);
1459 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1460 blk_recount_segments(q, bio);
1461 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1462 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1463 !BIOVEC_VIRT_OVERSIZE(len)) {
1464 int mergeable = ll_new_mergeable(q, req, bio);
1465
1466 if (mergeable) {
1467 if (req->nr_hw_segments == 1)
1468 req->bio->bi_hw_front_size = len;
1469 if (bio->bi_hw_segments == 1)
1470 bio->bi_hw_back_size = len;
1471 }
1472 return mergeable;
1473 }
1474
1475 return ll_new_hw_segment(q, req, bio);
1476 }
1477
1478 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1479 struct bio *bio)
1480 {
1481 unsigned short max_sectors;
1482 int len;
1483
1484 if (unlikely(blk_pc_request(req)))
1485 max_sectors = q->max_hw_sectors;
1486 else
1487 max_sectors = q->max_sectors;
1488
1489
1490 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1491 req->cmd_flags |= REQ_NOMERGE;
1492 if (req == q->last_merge)
1493 q->last_merge = NULL;
1494 return 0;
1495 }
1496 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1497 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1498 blk_recount_segments(q, bio);
1499 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1500 blk_recount_segments(q, req->bio);
1501 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1502 !BIOVEC_VIRT_OVERSIZE(len)) {
1503 int mergeable = ll_new_mergeable(q, req, bio);
1504
1505 if (mergeable) {
1506 if (bio->bi_hw_segments == 1)
1507 bio->bi_hw_front_size = len;
1508 if (req->nr_hw_segments == 1)
1509 req->biotail->bi_hw_back_size = len;
1510 }
1511 return mergeable;
1512 }
1513
1514 return ll_new_hw_segment(q, req, bio);
1515 }
1516
1517 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1518 struct request *next)
1519 {
1520 int total_phys_segments;
1521 int total_hw_segments;
1522
1523 /*
1524 * First check if the either of the requests are re-queued
1525 * requests. Can't merge them if they are.
1526 */
1527 if (req->special || next->special)
1528 return 0;
1529
1530 /*
1531 * Will it become too large?
1532 */
1533 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1534 return 0;
1535
1536 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1537 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1538 total_phys_segments--;
1539
1540 if (total_phys_segments > q->max_phys_segments)
1541 return 0;
1542
1543 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1544 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1545 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1546 /*
1547 * propagate the combined length to the end of the requests
1548 */
1549 if (req->nr_hw_segments == 1)
1550 req->bio->bi_hw_front_size = len;
1551 if (next->nr_hw_segments == 1)
1552 next->biotail->bi_hw_back_size = len;
1553 total_hw_segments--;
1554 }
1555
1556 if (total_hw_segments > q->max_hw_segments)
1557 return 0;
1558
1559 /* Merge is OK... */
1560 req->nr_phys_segments = total_phys_segments;
1561 req->nr_hw_segments = total_hw_segments;
1562 return 1;
1563 }
1564
1565 /*
1566 * "plug" the device if there are no outstanding requests: this will
1567 * force the transfer to start only after we have put all the requests
1568 * on the list.
1569 *
1570 * This is called with interrupts off and no requests on the queue and
1571 * with the queue lock held.
1572 */
1573 void blk_plug_device(struct request_queue *q)
1574 {
1575 WARN_ON(!irqs_disabled());
1576
1577 /*
1578 * don't plug a stopped queue, it must be paired with blk_start_queue()
1579 * which will restart the queueing
1580 */
1581 if (blk_queue_stopped(q))
1582 return;
1583
1584 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1585 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1586 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1587 }
1588 }
1589
1590 EXPORT_SYMBOL(blk_plug_device);
1591
1592 /*
1593 * remove the queue from the plugged list, if present. called with
1594 * queue lock held and interrupts disabled.
1595 */
1596 int blk_remove_plug(struct request_queue *q)
1597 {
1598 WARN_ON(!irqs_disabled());
1599
1600 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1601 return 0;
1602
1603 del_timer(&q->unplug_timer);
1604 return 1;
1605 }
1606
1607 EXPORT_SYMBOL(blk_remove_plug);
1608
1609 /*
1610 * remove the plug and let it rip..
1611 */
1612 void __generic_unplug_device(struct request_queue *q)
1613 {
1614 if (unlikely(blk_queue_stopped(q)))
1615 return;
1616
1617 if (!blk_remove_plug(q))
1618 return;
1619
1620 q->request_fn(q);
1621 }
1622 EXPORT_SYMBOL(__generic_unplug_device);
1623
1624 /**
1625 * generic_unplug_device - fire a request queue
1626 * @q: The &struct request_queue in question
1627 *
1628 * Description:
1629 * Linux uses plugging to build bigger requests queues before letting
1630 * the device have at them. If a queue is plugged, the I/O scheduler
1631 * is still adding and merging requests on the queue. Once the queue
1632 * gets unplugged, the request_fn defined for the queue is invoked and
1633 * transfers started.
1634 **/
1635 void generic_unplug_device(struct request_queue *q)
1636 {
1637 spin_lock_irq(q->queue_lock);
1638 __generic_unplug_device(q);
1639 spin_unlock_irq(q->queue_lock);
1640 }
1641 EXPORT_SYMBOL(generic_unplug_device);
1642
1643 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1644 struct page *page)
1645 {
1646 struct request_queue *q = bdi->unplug_io_data;
1647
1648 blk_unplug(q);
1649 }
1650
1651 static void blk_unplug_work(struct work_struct *work)
1652 {
1653 struct request_queue *q =
1654 container_of(work, struct request_queue, unplug_work);
1655
1656 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1657 q->rq.count[READ] + q->rq.count[WRITE]);
1658
1659 q->unplug_fn(q);
1660 }
1661
1662 static void blk_unplug_timeout(unsigned long data)
1663 {
1664 struct request_queue *q = (struct request_queue *)data;
1665
1666 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1667 q->rq.count[READ] + q->rq.count[WRITE]);
1668
1669 kblockd_schedule_work(&q->unplug_work);
1670 }
1671
1672 void blk_unplug(struct request_queue *q)
1673 {
1674 /*
1675 * devices don't necessarily have an ->unplug_fn defined
1676 */
1677 if (q->unplug_fn) {
1678 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1679 q->rq.count[READ] + q->rq.count[WRITE]);
1680
1681 q->unplug_fn(q);
1682 }
1683 }
1684 EXPORT_SYMBOL(blk_unplug);
1685
1686 /**
1687 * blk_start_queue - restart a previously stopped queue
1688 * @q: The &struct request_queue in question
1689 *
1690 * Description:
1691 * blk_start_queue() will clear the stop flag on the queue, and call
1692 * the request_fn for the queue if it was in a stopped state when
1693 * entered. Also see blk_stop_queue(). Queue lock must be held.
1694 **/
1695 void blk_start_queue(struct request_queue *q)
1696 {
1697 WARN_ON(!irqs_disabled());
1698
1699 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1700
1701 /*
1702 * one level of recursion is ok and is much faster than kicking
1703 * the unplug handling
1704 */
1705 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1706 q->request_fn(q);
1707 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1708 } else {
1709 blk_plug_device(q);
1710 kblockd_schedule_work(&q->unplug_work);
1711 }
1712 }
1713
1714 EXPORT_SYMBOL(blk_start_queue);
1715
1716 /**
1717 * blk_stop_queue - stop a queue
1718 * @q: The &struct request_queue in question
1719 *
1720 * Description:
1721 * The Linux block layer assumes that a block driver will consume all
1722 * entries on the request queue when the request_fn strategy is called.
1723 * Often this will not happen, because of hardware limitations (queue
1724 * depth settings). If a device driver gets a 'queue full' response,
1725 * or if it simply chooses not to queue more I/O at one point, it can
1726 * call this function to prevent the request_fn from being called until
1727 * the driver has signalled it's ready to go again. This happens by calling
1728 * blk_start_queue() to restart queue operations. Queue lock must be held.
1729 **/
1730 void blk_stop_queue(struct request_queue *q)
1731 {
1732 blk_remove_plug(q);
1733 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1734 }
1735 EXPORT_SYMBOL(blk_stop_queue);
1736
1737 /**
1738 * blk_sync_queue - cancel any pending callbacks on a queue
1739 * @q: the queue
1740 *
1741 * Description:
1742 * The block layer may perform asynchronous callback activity
1743 * on a queue, such as calling the unplug function after a timeout.
1744 * A block device may call blk_sync_queue to ensure that any
1745 * such activity is cancelled, thus allowing it to release resources
1746 * that the callbacks might use. The caller must already have made sure
1747 * that its ->make_request_fn will not re-add plugging prior to calling
1748 * this function.
1749 *
1750 */
1751 void blk_sync_queue(struct request_queue *q)
1752 {
1753 del_timer_sync(&q->unplug_timer);
1754 kblockd_flush_work(&q->unplug_work);
1755 }
1756 EXPORT_SYMBOL(blk_sync_queue);
1757
1758 /**
1759 * blk_run_queue - run a single device queue
1760 * @q: The queue to run
1761 */
1762 void blk_run_queue(struct request_queue *q)
1763 {
1764 unsigned long flags;
1765
1766 spin_lock_irqsave(q->queue_lock, flags);
1767 blk_remove_plug(q);
1768
1769 /*
1770 * Only recurse once to avoid overrunning the stack, let the unplug
1771 * handling reinvoke the handler shortly if we already got there.
1772 */
1773 if (!elv_queue_empty(q)) {
1774 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1775 q->request_fn(q);
1776 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1777 } else {
1778 blk_plug_device(q);
1779 kblockd_schedule_work(&q->unplug_work);
1780 }
1781 }
1782
1783 spin_unlock_irqrestore(q->queue_lock, flags);
1784 }
1785 EXPORT_SYMBOL(blk_run_queue);
1786
1787 /**
1788 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1789 * @kobj: the kobj belonging of the request queue to be released
1790 *
1791 * Description:
1792 * blk_cleanup_queue is the pair to blk_init_queue() or
1793 * blk_queue_make_request(). It should be called when a request queue is
1794 * being released; typically when a block device is being de-registered.
1795 * Currently, its primary task it to free all the &struct request
1796 * structures that were allocated to the queue and the queue itself.
1797 *
1798 * Caveat:
1799 * Hopefully the low level driver will have finished any
1800 * outstanding requests first...
1801 **/
1802 static void blk_release_queue(struct kobject *kobj)
1803 {
1804 struct request_queue *q =
1805 container_of(kobj, struct request_queue, kobj);
1806 struct request_list *rl = &q->rq;
1807
1808 blk_sync_queue(q);
1809
1810 if (rl->rq_pool)
1811 mempool_destroy(rl->rq_pool);
1812
1813 if (q->queue_tags)
1814 __blk_queue_free_tags(q);
1815
1816 blk_trace_shutdown(q);
1817
1818 bdi_destroy(&q->backing_dev_info);
1819 kmem_cache_free(requestq_cachep, q);
1820 }
1821
1822 void blk_put_queue(struct request_queue *q)
1823 {
1824 kobject_put(&q->kobj);
1825 }
1826 EXPORT_SYMBOL(blk_put_queue);
1827
1828 void blk_cleanup_queue(struct request_queue * q)
1829 {
1830 mutex_lock(&q->sysfs_lock);
1831 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1832 mutex_unlock(&q->sysfs_lock);
1833
1834 if (q->elevator)
1835 elevator_exit(q->elevator);
1836
1837 blk_put_queue(q);
1838 }
1839
1840 EXPORT_SYMBOL(blk_cleanup_queue);
1841
1842 static int blk_init_free_list(struct request_queue *q)
1843 {
1844 struct request_list *rl = &q->rq;
1845
1846 rl->count[READ] = rl->count[WRITE] = 0;
1847 rl->starved[READ] = rl->starved[WRITE] = 0;
1848 rl->elvpriv = 0;
1849 init_waitqueue_head(&rl->wait[READ]);
1850 init_waitqueue_head(&rl->wait[WRITE]);
1851
1852 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1853 mempool_free_slab, request_cachep, q->node);
1854
1855 if (!rl->rq_pool)
1856 return -ENOMEM;
1857
1858 return 0;
1859 }
1860
1861 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1862 {
1863 return blk_alloc_queue_node(gfp_mask, -1);
1864 }
1865 EXPORT_SYMBOL(blk_alloc_queue);
1866
1867 static struct kobj_type queue_ktype;
1868
1869 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1870 {
1871 struct request_queue *q;
1872 int err;
1873
1874 q = kmem_cache_alloc_node(requestq_cachep,
1875 gfp_mask | __GFP_ZERO, node_id);
1876 if (!q)
1877 return NULL;
1878
1879 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1880 q->backing_dev_info.unplug_io_data = q;
1881 err = bdi_init(&q->backing_dev_info);
1882 if (err) {
1883 kmem_cache_free(requestq_cachep, q);
1884 return NULL;
1885 }
1886
1887 init_timer(&q->unplug_timer);
1888
1889 kobject_set_name(&q->kobj, "%s", "queue");
1890 q->kobj.ktype = &queue_ktype;
1891 kobject_init(&q->kobj);
1892
1893 mutex_init(&q->sysfs_lock);
1894
1895 return q;
1896 }
1897 EXPORT_SYMBOL(blk_alloc_queue_node);
1898
1899 /**
1900 * blk_init_queue - prepare a request queue for use with a block device
1901 * @rfn: The function to be called to process requests that have been
1902 * placed on the queue.
1903 * @lock: Request queue spin lock
1904 *
1905 * Description:
1906 * If a block device wishes to use the standard request handling procedures,
1907 * which sorts requests and coalesces adjacent requests, then it must
1908 * call blk_init_queue(). The function @rfn will be called when there
1909 * are requests on the queue that need to be processed. If the device
1910 * supports plugging, then @rfn may not be called immediately when requests
1911 * are available on the queue, but may be called at some time later instead.
1912 * Plugged queues are generally unplugged when a buffer belonging to one
1913 * of the requests on the queue is needed, or due to memory pressure.
1914 *
1915 * @rfn is not required, or even expected, to remove all requests off the
1916 * queue, but only as many as it can handle at a time. If it does leave
1917 * requests on the queue, it is responsible for arranging that the requests
1918 * get dealt with eventually.
1919 *
1920 * The queue spin lock must be held while manipulating the requests on the
1921 * request queue; this lock will be taken also from interrupt context, so irq
1922 * disabling is needed for it.
1923 *
1924 * Function returns a pointer to the initialized request queue, or NULL if
1925 * it didn't succeed.
1926 *
1927 * Note:
1928 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1929 * when the block device is deactivated (such as at module unload).
1930 **/
1931
1932 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1933 {
1934 return blk_init_queue_node(rfn, lock, -1);
1935 }
1936 EXPORT_SYMBOL(blk_init_queue);
1937
1938 struct request_queue *
1939 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1940 {
1941 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1942
1943 if (!q)
1944 return NULL;
1945
1946 q->node = node_id;
1947 if (blk_init_free_list(q)) {
1948 kmem_cache_free(requestq_cachep, q);
1949 return NULL;
1950 }
1951
1952 /*
1953 * if caller didn't supply a lock, they get per-queue locking with
1954 * our embedded lock
1955 */
1956 if (!lock) {
1957 spin_lock_init(&q->__queue_lock);
1958 lock = &q->__queue_lock;
1959 }
1960
1961 q->request_fn = rfn;
1962 q->prep_rq_fn = NULL;
1963 q->unplug_fn = generic_unplug_device;
1964 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1965 q->queue_lock = lock;
1966
1967 blk_queue_segment_boundary(q, 0xffffffff);
1968
1969 blk_queue_make_request(q, __make_request);
1970 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1971
1972 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1973 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1974
1975 q->sg_reserved_size = INT_MAX;
1976
1977 /*
1978 * all done
1979 */
1980 if (!elevator_init(q, NULL)) {
1981 blk_queue_congestion_threshold(q);
1982 return q;
1983 }
1984
1985 blk_put_queue(q);
1986 return NULL;
1987 }
1988 EXPORT_SYMBOL(blk_init_queue_node);
1989
1990 int blk_get_queue(struct request_queue *q)
1991 {
1992 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1993 kobject_get(&q->kobj);
1994 return 0;
1995 }
1996
1997 return 1;
1998 }
1999
2000 EXPORT_SYMBOL(blk_get_queue);
2001
2002 static inline void blk_free_request(struct request_queue *q, struct request *rq)
2003 {
2004 if (rq->cmd_flags & REQ_ELVPRIV)
2005 elv_put_request(q, rq);
2006 mempool_free(rq, q->rq.rq_pool);
2007 }
2008
2009 static struct request *
2010 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
2011 {
2012 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2013
2014 if (!rq)
2015 return NULL;
2016
2017 /*
2018 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2019 * see bio.h and blkdev.h
2020 */
2021 rq->cmd_flags = rw | REQ_ALLOCED;
2022
2023 if (priv) {
2024 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2025 mempool_free(rq, q->rq.rq_pool);
2026 return NULL;
2027 }
2028 rq->cmd_flags |= REQ_ELVPRIV;
2029 }
2030
2031 return rq;
2032 }
2033
2034 /*
2035 * ioc_batching returns true if the ioc is a valid batching request and
2036 * should be given priority access to a request.
2037 */
2038 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2039 {
2040 if (!ioc)
2041 return 0;
2042
2043 /*
2044 * Make sure the process is able to allocate at least 1 request
2045 * even if the batch times out, otherwise we could theoretically
2046 * lose wakeups.
2047 */
2048 return ioc->nr_batch_requests == q->nr_batching ||
2049 (ioc->nr_batch_requests > 0
2050 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2051 }
2052
2053 /*
2054 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2055 * will cause the process to be a "batcher" on all queues in the system. This
2056 * is the behaviour we want though - once it gets a wakeup it should be given
2057 * a nice run.
2058 */
2059 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2060 {
2061 if (!ioc || ioc_batching(q, ioc))
2062 return;
2063
2064 ioc->nr_batch_requests = q->nr_batching;
2065 ioc->last_waited = jiffies;
2066 }
2067
2068 static void __freed_request(struct request_queue *q, int rw)
2069 {
2070 struct request_list *rl = &q->rq;
2071
2072 if (rl->count[rw] < queue_congestion_off_threshold(q))
2073 blk_clear_queue_congested(q, rw);
2074
2075 if (rl->count[rw] + 1 <= q->nr_requests) {
2076 if (waitqueue_active(&rl->wait[rw]))
2077 wake_up(&rl->wait[rw]);
2078
2079 blk_clear_queue_full(q, rw);
2080 }
2081 }
2082
2083 /*
2084 * A request has just been released. Account for it, update the full and
2085 * congestion status, wake up any waiters. Called under q->queue_lock.
2086 */
2087 static void freed_request(struct request_queue *q, int rw, int priv)
2088 {
2089 struct request_list *rl = &q->rq;
2090
2091 rl->count[rw]--;
2092 if (priv)
2093 rl->elvpriv--;
2094
2095 __freed_request(q, rw);
2096
2097 if (unlikely(rl->starved[rw ^ 1]))
2098 __freed_request(q, rw ^ 1);
2099 }
2100
2101 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2102 /*
2103 * Get a free request, queue_lock must be held.
2104 * Returns NULL on failure, with queue_lock held.
2105 * Returns !NULL on success, with queue_lock *not held*.
2106 */
2107 static struct request *get_request(struct request_queue *q, int rw_flags,
2108 struct bio *bio, gfp_t gfp_mask)
2109 {
2110 struct request *rq = NULL;
2111 struct request_list *rl = &q->rq;
2112 struct io_context *ioc = NULL;
2113 const int rw = rw_flags & 0x01;
2114 int may_queue, priv;
2115
2116 may_queue = elv_may_queue(q, rw_flags);
2117 if (may_queue == ELV_MQUEUE_NO)
2118 goto rq_starved;
2119
2120 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2121 if (rl->count[rw]+1 >= q->nr_requests) {
2122 ioc = current_io_context(GFP_ATOMIC, q->node);
2123 /*
2124 * The queue will fill after this allocation, so set
2125 * it as full, and mark this process as "batching".
2126 * This process will be allowed to complete a batch of
2127 * requests, others will be blocked.
2128 */
2129 if (!blk_queue_full(q, rw)) {
2130 ioc_set_batching(q, ioc);
2131 blk_set_queue_full(q, rw);
2132 } else {
2133 if (may_queue != ELV_MQUEUE_MUST
2134 && !ioc_batching(q, ioc)) {
2135 /*
2136 * The queue is full and the allocating
2137 * process is not a "batcher", and not
2138 * exempted by the IO scheduler
2139 */
2140 goto out;
2141 }
2142 }
2143 }
2144 blk_set_queue_congested(q, rw);
2145 }
2146
2147 /*
2148 * Only allow batching queuers to allocate up to 50% over the defined
2149 * limit of requests, otherwise we could have thousands of requests
2150 * allocated with any setting of ->nr_requests
2151 */
2152 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2153 goto out;
2154
2155 rl->count[rw]++;
2156 rl->starved[rw] = 0;
2157
2158 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2159 if (priv)
2160 rl->elvpriv++;
2161
2162 spin_unlock_irq(q->queue_lock);
2163
2164 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2165 if (unlikely(!rq)) {
2166 /*
2167 * Allocation failed presumably due to memory. Undo anything
2168 * we might have messed up.
2169 *
2170 * Allocating task should really be put onto the front of the
2171 * wait queue, but this is pretty rare.
2172 */
2173 spin_lock_irq(q->queue_lock);
2174 freed_request(q, rw, priv);
2175
2176 /*
2177 * in the very unlikely event that allocation failed and no
2178 * requests for this direction was pending, mark us starved
2179 * so that freeing of a request in the other direction will
2180 * notice us. another possible fix would be to split the
2181 * rq mempool into READ and WRITE
2182 */
2183 rq_starved:
2184 if (unlikely(rl->count[rw] == 0))
2185 rl->starved[rw] = 1;
2186
2187 goto out;
2188 }
2189
2190 /*
2191 * ioc may be NULL here, and ioc_batching will be false. That's
2192 * OK, if the queue is under the request limit then requests need
2193 * not count toward the nr_batch_requests limit. There will always
2194 * be some limit enforced by BLK_BATCH_TIME.
2195 */
2196 if (ioc_batching(q, ioc))
2197 ioc->nr_batch_requests--;
2198
2199 rq_init(q, rq);
2200
2201 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2202 out:
2203 return rq;
2204 }
2205
2206 /*
2207 * No available requests for this queue, unplug the device and wait for some
2208 * requests to become available.
2209 *
2210 * Called with q->queue_lock held, and returns with it unlocked.
2211 */
2212 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2213 struct bio *bio)
2214 {
2215 const int rw = rw_flags & 0x01;
2216 struct request *rq;
2217
2218 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2219 while (!rq) {
2220 DEFINE_WAIT(wait);
2221 struct request_list *rl = &q->rq;
2222
2223 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2224 TASK_UNINTERRUPTIBLE);
2225
2226 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2227
2228 if (!rq) {
2229 struct io_context *ioc;
2230
2231 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2232
2233 __generic_unplug_device(q);
2234 spin_unlock_irq(q->queue_lock);
2235 io_schedule();
2236
2237 /*
2238 * After sleeping, we become a "batching" process and
2239 * will be able to allocate at least one request, and
2240 * up to a big batch of them for a small period time.
2241 * See ioc_batching, ioc_set_batching
2242 */
2243 ioc = current_io_context(GFP_NOIO, q->node);
2244 ioc_set_batching(q, ioc);
2245
2246 spin_lock_irq(q->queue_lock);
2247 }
2248 finish_wait(&rl->wait[rw], &wait);
2249 }
2250
2251 return rq;
2252 }
2253
2254 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2255 {
2256 struct request *rq;
2257
2258 BUG_ON(rw != READ && rw != WRITE);
2259
2260 spin_lock_irq(q->queue_lock);
2261 if (gfp_mask & __GFP_WAIT) {
2262 rq = get_request_wait(q, rw, NULL);
2263 } else {
2264 rq = get_request(q, rw, NULL, gfp_mask);
2265 if (!rq)
2266 spin_unlock_irq(q->queue_lock);
2267 }
2268 /* q->queue_lock is unlocked at this point */
2269
2270 return rq;
2271 }
2272 EXPORT_SYMBOL(blk_get_request);
2273
2274 /**
2275 * blk_start_queueing - initiate dispatch of requests to device
2276 * @q: request queue to kick into gear
2277 *
2278 * This is basically a helper to remove the need to know whether a queue
2279 * is plugged or not if someone just wants to initiate dispatch of requests
2280 * for this queue.
2281 *
2282 * The queue lock must be held with interrupts disabled.
2283 */
2284 void blk_start_queueing(struct request_queue *q)
2285 {
2286 if (!blk_queue_plugged(q))
2287 q->request_fn(q);
2288 else
2289 __generic_unplug_device(q);
2290 }
2291 EXPORT_SYMBOL(blk_start_queueing);
2292
2293 /**
2294 * blk_requeue_request - put a request back on queue
2295 * @q: request queue where request should be inserted
2296 * @rq: request to be inserted
2297 *
2298 * Description:
2299 * Drivers often keep queueing requests until the hardware cannot accept
2300 * more, when that condition happens we need to put the request back
2301 * on the queue. Must be called with queue lock held.
2302 */
2303 void blk_requeue_request(struct request_queue *q, struct request *rq)
2304 {
2305 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2306
2307 if (blk_rq_tagged(rq))
2308 blk_queue_end_tag(q, rq);
2309
2310 elv_requeue_request(q, rq);
2311 }
2312
2313 EXPORT_SYMBOL(blk_requeue_request);
2314
2315 /**
2316 * blk_insert_request - insert a special request in to a request queue
2317 * @q: request queue where request should be inserted
2318 * @rq: request to be inserted
2319 * @at_head: insert request at head or tail of queue
2320 * @data: private data
2321 *
2322 * Description:
2323 * Many block devices need to execute commands asynchronously, so they don't
2324 * block the whole kernel from preemption during request execution. This is
2325 * accomplished normally by inserting aritficial requests tagged as
2326 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2327 * scheduled for actual execution by the request queue.
2328 *
2329 * We have the option of inserting the head or the tail of the queue.
2330 * Typically we use the tail for new ioctls and so forth. We use the head
2331 * of the queue for things like a QUEUE_FULL message from a device, or a
2332 * host that is unable to accept a particular command.
2333 */
2334 void blk_insert_request(struct request_queue *q, struct request *rq,
2335 int at_head, void *data)
2336 {
2337 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2338 unsigned long flags;
2339
2340 /*
2341 * tell I/O scheduler that this isn't a regular read/write (ie it
2342 * must not attempt merges on this) and that it acts as a soft
2343 * barrier
2344 */
2345 rq->cmd_type = REQ_TYPE_SPECIAL;
2346 rq->cmd_flags |= REQ_SOFTBARRIER;
2347
2348 rq->special = data;
2349
2350 spin_lock_irqsave(q->queue_lock, flags);
2351
2352 /*
2353 * If command is tagged, release the tag
2354 */
2355 if (blk_rq_tagged(rq))
2356 blk_queue_end_tag(q, rq);
2357
2358 drive_stat_acct(rq, 1);
2359 __elv_add_request(q, rq, where, 0);
2360 blk_start_queueing(q);
2361 spin_unlock_irqrestore(q->queue_lock, flags);
2362 }
2363
2364 EXPORT_SYMBOL(blk_insert_request);
2365
2366 static int __blk_rq_unmap_user(struct bio *bio)
2367 {
2368 int ret = 0;
2369
2370 if (bio) {
2371 if (bio_flagged(bio, BIO_USER_MAPPED))
2372 bio_unmap_user(bio);
2373 else
2374 ret = bio_uncopy_user(bio);
2375 }
2376
2377 return ret;
2378 }
2379
2380 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2381 struct bio *bio)
2382 {
2383 if (!rq->bio)
2384 blk_rq_bio_prep(q, rq, bio);
2385 else if (!ll_back_merge_fn(q, rq, bio))
2386 return -EINVAL;
2387 else {
2388 rq->biotail->bi_next = bio;
2389 rq->biotail = bio;
2390
2391 rq->data_len += bio->bi_size;
2392 }
2393 return 0;
2394 }
2395 EXPORT_SYMBOL(blk_rq_append_bio);
2396
2397 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2398 void __user *ubuf, unsigned int len)
2399 {
2400 unsigned long uaddr;
2401 struct bio *bio, *orig_bio;
2402 int reading, ret;
2403
2404 reading = rq_data_dir(rq) == READ;
2405
2406 /*
2407 * if alignment requirement is satisfied, map in user pages for
2408 * direct dma. else, set up kernel bounce buffers
2409 */
2410 uaddr = (unsigned long) ubuf;
2411 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2412 bio = bio_map_user(q, NULL, uaddr, len, reading);
2413 else
2414 bio = bio_copy_user(q, uaddr, len, reading);
2415
2416 if (IS_ERR(bio))
2417 return PTR_ERR(bio);
2418
2419 orig_bio = bio;
2420 blk_queue_bounce(q, &bio);
2421
2422 /*
2423 * We link the bounce buffer in and could have to traverse it
2424 * later so we have to get a ref to prevent it from being freed
2425 */
2426 bio_get(bio);
2427
2428 ret = blk_rq_append_bio(q, rq, bio);
2429 if (!ret)
2430 return bio->bi_size;
2431
2432 /* if it was boucned we must call the end io function */
2433 bio_endio(bio, 0);
2434 __blk_rq_unmap_user(orig_bio);
2435 bio_put(bio);
2436 return ret;
2437 }
2438
2439 /**
2440 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2441 * @q: request queue where request should be inserted
2442 * @rq: request structure to fill
2443 * @ubuf: the user buffer
2444 * @len: length of user data
2445 *
2446 * Description:
2447 * Data will be mapped directly for zero copy io, if possible. Otherwise
2448 * a kernel bounce buffer is used.
2449 *
2450 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2451 * still in process context.
2452 *
2453 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2454 * before being submitted to the device, as pages mapped may be out of
2455 * reach. It's the callers responsibility to make sure this happens. The
2456 * original bio must be passed back in to blk_rq_unmap_user() for proper
2457 * unmapping.
2458 */
2459 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2460 void __user *ubuf, unsigned long len)
2461 {
2462 unsigned long bytes_read = 0;
2463 struct bio *bio = NULL;
2464 int ret;
2465
2466 if (len > (q->max_hw_sectors << 9))
2467 return -EINVAL;
2468 if (!len || !ubuf)
2469 return -EINVAL;
2470
2471 while (bytes_read != len) {
2472 unsigned long map_len, end, start;
2473
2474 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2475 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2476 >> PAGE_SHIFT;
2477 start = (unsigned long)ubuf >> PAGE_SHIFT;
2478
2479 /*
2480 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2481 * pages. If this happens we just lower the requested
2482 * mapping len by a page so that we can fit
2483 */
2484 if (end - start > BIO_MAX_PAGES)
2485 map_len -= PAGE_SIZE;
2486
2487 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2488 if (ret < 0)
2489 goto unmap_rq;
2490 if (!bio)
2491 bio = rq->bio;
2492 bytes_read += ret;
2493 ubuf += ret;
2494 }
2495
2496 rq->buffer = rq->data = NULL;
2497 return 0;
2498 unmap_rq:
2499 blk_rq_unmap_user(bio);
2500 return ret;
2501 }
2502
2503 EXPORT_SYMBOL(blk_rq_map_user);
2504
2505 /**
2506 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2507 * @q: request queue where request should be inserted
2508 * @rq: request to map data to
2509 * @iov: pointer to the iovec
2510 * @iov_count: number of elements in the iovec
2511 * @len: I/O byte count
2512 *
2513 * Description:
2514 * Data will be mapped directly for zero copy io, if possible. Otherwise
2515 * a kernel bounce buffer is used.
2516 *
2517 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2518 * still in process context.
2519 *
2520 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2521 * before being submitted to the device, as pages mapped may be out of
2522 * reach. It's the callers responsibility to make sure this happens. The
2523 * original bio must be passed back in to blk_rq_unmap_user() for proper
2524 * unmapping.
2525 */
2526 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2527 struct sg_iovec *iov, int iov_count, unsigned int len)
2528 {
2529 struct bio *bio;
2530
2531 if (!iov || iov_count <= 0)
2532 return -EINVAL;
2533
2534 /* we don't allow misaligned data like bio_map_user() does. If the
2535 * user is using sg, they're expected to know the alignment constraints
2536 * and respect them accordingly */
2537 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2538 if (IS_ERR(bio))
2539 return PTR_ERR(bio);
2540
2541 if (bio->bi_size != len) {
2542 bio_endio(bio, 0);
2543 bio_unmap_user(bio);
2544 return -EINVAL;
2545 }
2546
2547 bio_get(bio);
2548 blk_rq_bio_prep(q, rq, bio);
2549 rq->buffer = rq->data = NULL;
2550 return 0;
2551 }
2552
2553 EXPORT_SYMBOL(blk_rq_map_user_iov);
2554
2555 /**
2556 * blk_rq_unmap_user - unmap a request with user data
2557 * @bio: start of bio list
2558 *
2559 * Description:
2560 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2561 * supply the original rq->bio from the blk_rq_map_user() return, since
2562 * the io completion may have changed rq->bio.
2563 */
2564 int blk_rq_unmap_user(struct bio *bio)
2565 {
2566 struct bio *mapped_bio;
2567 int ret = 0, ret2;
2568
2569 while (bio) {
2570 mapped_bio = bio;
2571 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2572 mapped_bio = bio->bi_private;
2573
2574 ret2 = __blk_rq_unmap_user(mapped_bio);
2575 if (ret2 && !ret)
2576 ret = ret2;
2577
2578 mapped_bio = bio;
2579 bio = bio->bi_next;
2580 bio_put(mapped_bio);
2581 }
2582
2583 return ret;
2584 }
2585
2586 EXPORT_SYMBOL(blk_rq_unmap_user);
2587
2588 /**
2589 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2590 * @q: request queue where request should be inserted
2591 * @rq: request to fill
2592 * @kbuf: the kernel buffer
2593 * @len: length of user data
2594 * @gfp_mask: memory allocation flags
2595 */
2596 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2597 unsigned int len, gfp_t gfp_mask)
2598 {
2599 struct bio *bio;
2600
2601 if (len > (q->max_hw_sectors << 9))
2602 return -EINVAL;
2603 if (!len || !kbuf)
2604 return -EINVAL;
2605
2606 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2607 if (IS_ERR(bio))
2608 return PTR_ERR(bio);
2609
2610 if (rq_data_dir(rq) == WRITE)
2611 bio->bi_rw |= (1 << BIO_RW);
2612
2613 blk_rq_bio_prep(q, rq, bio);
2614 blk_queue_bounce(q, &rq->bio);
2615 rq->buffer = rq->data = NULL;
2616 return 0;
2617 }
2618
2619 EXPORT_SYMBOL(blk_rq_map_kern);
2620
2621 /**
2622 * blk_execute_rq_nowait - insert a request into queue for execution
2623 * @q: queue to insert the request in
2624 * @bd_disk: matching gendisk
2625 * @rq: request to insert
2626 * @at_head: insert request at head or tail of queue
2627 * @done: I/O completion handler
2628 *
2629 * Description:
2630 * Insert a fully prepared request at the back of the io scheduler queue
2631 * for execution. Don't wait for completion.
2632 */
2633 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2634 struct request *rq, int at_head,
2635 rq_end_io_fn *done)
2636 {
2637 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2638
2639 rq->rq_disk = bd_disk;
2640 rq->cmd_flags |= REQ_NOMERGE;
2641 rq->end_io = done;
2642 WARN_ON(irqs_disabled());
2643 spin_lock_irq(q->queue_lock);
2644 __elv_add_request(q, rq, where, 1);
2645 __generic_unplug_device(q);
2646 spin_unlock_irq(q->queue_lock);
2647 }
2648 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2649
2650 /**
2651 * blk_execute_rq - insert a request into queue for execution
2652 * @q: queue to insert the request in
2653 * @bd_disk: matching gendisk
2654 * @rq: request to insert
2655 * @at_head: insert request at head or tail of queue
2656 *
2657 * Description:
2658 * Insert a fully prepared request at the back of the io scheduler queue
2659 * for execution and wait for completion.
2660 */
2661 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2662 struct request *rq, int at_head)
2663 {
2664 DECLARE_COMPLETION_ONSTACK(wait);
2665 char sense[SCSI_SENSE_BUFFERSIZE];
2666 int err = 0;
2667
2668 /*
2669 * we need an extra reference to the request, so we can look at
2670 * it after io completion
2671 */
2672 rq->ref_count++;
2673
2674 if (!rq->sense) {
2675 memset(sense, 0, sizeof(sense));
2676 rq->sense = sense;
2677 rq->sense_len = 0;
2678 }
2679
2680 rq->end_io_data = &wait;
2681 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2682 wait_for_completion(&wait);
2683
2684 if (rq->errors)
2685 err = -EIO;
2686
2687 return err;
2688 }
2689
2690 EXPORT_SYMBOL(blk_execute_rq);
2691
2692 static void bio_end_empty_barrier(struct bio *bio, int err)
2693 {
2694 if (err)
2695 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2696
2697 complete(bio->bi_private);
2698 }
2699
2700 /**
2701 * blkdev_issue_flush - queue a flush
2702 * @bdev: blockdev to issue flush for
2703 * @error_sector: error sector
2704 *
2705 * Description:
2706 * Issue a flush for the block device in question. Caller can supply
2707 * room for storing the error offset in case of a flush error, if they
2708 * wish to. Caller must run wait_for_completion() on its own.
2709 */
2710 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2711 {
2712 DECLARE_COMPLETION_ONSTACK(wait);
2713 struct request_queue *q;
2714 struct bio *bio;
2715 int ret;
2716
2717 if (bdev->bd_disk == NULL)
2718 return -ENXIO;
2719
2720 q = bdev_get_queue(bdev);
2721 if (!q)
2722 return -ENXIO;
2723
2724 bio = bio_alloc(GFP_KERNEL, 0);
2725 if (!bio)
2726 return -ENOMEM;
2727
2728 bio->bi_end_io = bio_end_empty_barrier;
2729 bio->bi_private = &wait;
2730 bio->bi_bdev = bdev;
2731 submit_bio(1 << BIO_RW_BARRIER, bio);
2732
2733 wait_for_completion(&wait);
2734
2735 /*
2736 * The driver must store the error location in ->bi_sector, if
2737 * it supports it. For non-stacked drivers, this should be copied
2738 * from rq->sector.
2739 */
2740 if (error_sector)
2741 *error_sector = bio->bi_sector;
2742
2743 ret = 0;
2744 if (!bio_flagged(bio, BIO_UPTODATE))
2745 ret = -EIO;
2746
2747 bio_put(bio);
2748 return ret;
2749 }
2750
2751 EXPORT_SYMBOL(blkdev_issue_flush);
2752
2753 static void drive_stat_acct(struct request *rq, int new_io)
2754 {
2755 int rw = rq_data_dir(rq);
2756
2757 if (!blk_fs_request(rq) || !rq->rq_disk)
2758 return;
2759
2760 if (!new_io) {
2761 __disk_stat_inc(rq->rq_disk, merges[rw]);
2762 } else {
2763 disk_round_stats(rq->rq_disk);
2764 rq->rq_disk->in_flight++;
2765 }
2766 }
2767
2768 /*
2769 * add-request adds a request to the linked list.
2770 * queue lock is held and interrupts disabled, as we muck with the
2771 * request queue list.
2772 */
2773 static inline void add_request(struct request_queue * q, struct request * req)
2774 {
2775 drive_stat_acct(req, 1);
2776
2777 /*
2778 * elevator indicated where it wants this request to be
2779 * inserted at elevator_merge time
2780 */
2781 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2782 }
2783
2784 /*
2785 * disk_round_stats() - Round off the performance stats on a struct
2786 * disk_stats.
2787 *
2788 * The average IO queue length and utilisation statistics are maintained
2789 * by observing the current state of the queue length and the amount of
2790 * time it has been in this state for.
2791 *
2792 * Normally, that accounting is done on IO completion, but that can result
2793 * in more than a second's worth of IO being accounted for within any one
2794 * second, leading to >100% utilisation. To deal with that, we call this
2795 * function to do a round-off before returning the results when reading
2796 * /proc/diskstats. This accounts immediately for all queue usage up to
2797 * the current jiffies and restarts the counters again.
2798 */
2799 void disk_round_stats(struct gendisk *disk)
2800 {
2801 unsigned long now = jiffies;
2802
2803 if (now == disk->stamp)
2804 return;
2805
2806 if (disk->in_flight) {
2807 __disk_stat_add(disk, time_in_queue,
2808 disk->in_flight * (now - disk->stamp));
2809 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2810 }
2811 disk->stamp = now;
2812 }
2813
2814 EXPORT_SYMBOL_GPL(disk_round_stats);
2815
2816 /*
2817 * queue lock must be held
2818 */
2819 void __blk_put_request(struct request_queue *q, struct request *req)
2820 {
2821 if (unlikely(!q))
2822 return;
2823 if (unlikely(--req->ref_count))
2824 return;
2825
2826 elv_completed_request(q, req);
2827
2828 /*
2829 * Request may not have originated from ll_rw_blk. if not,
2830 * it didn't come out of our reserved rq pools
2831 */
2832 if (req->cmd_flags & REQ_ALLOCED) {
2833 int rw = rq_data_dir(req);
2834 int priv = req->cmd_flags & REQ_ELVPRIV;
2835
2836 BUG_ON(!list_empty(&req->queuelist));
2837 BUG_ON(!hlist_unhashed(&req->hash));
2838
2839 blk_free_request(q, req);
2840 freed_request(q, rw, priv);
2841 }
2842 }
2843
2844 EXPORT_SYMBOL_GPL(__blk_put_request);
2845
2846 void blk_put_request(struct request *req)
2847 {
2848 unsigned long flags;
2849 struct request_queue *q = req->q;
2850
2851 /*
2852 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2853 * following if (q) test.
2854 */
2855 if (q) {
2856 spin_lock_irqsave(q->queue_lock, flags);
2857 __blk_put_request(q, req);
2858 spin_unlock_irqrestore(q->queue_lock, flags);
2859 }
2860 }
2861
2862 EXPORT_SYMBOL(blk_put_request);
2863
2864 /**
2865 * blk_end_sync_rq - executes a completion event on a request
2866 * @rq: request to complete
2867 * @error: end io status of the request
2868 */
2869 void blk_end_sync_rq(struct request *rq, int error)
2870 {
2871 struct completion *waiting = rq->end_io_data;
2872
2873 rq->end_io_data = NULL;
2874 __blk_put_request(rq->q, rq);
2875
2876 /*
2877 * complete last, if this is a stack request the process (and thus
2878 * the rq pointer) could be invalid right after this complete()
2879 */
2880 complete(waiting);
2881 }
2882 EXPORT_SYMBOL(blk_end_sync_rq);
2883
2884 /*
2885 * Has to be called with the request spinlock acquired
2886 */
2887 static int attempt_merge(struct request_queue *q, struct request *req,
2888 struct request *next)
2889 {
2890 if (!rq_mergeable(req) || !rq_mergeable(next))
2891 return 0;
2892
2893 /*
2894 * not contiguous
2895 */
2896 if (req->sector + req->nr_sectors != next->sector)
2897 return 0;
2898
2899 if (rq_data_dir(req) != rq_data_dir(next)
2900 || req->rq_disk != next->rq_disk
2901 || next->special)
2902 return 0;
2903
2904 /*
2905 * If we are allowed to merge, then append bio list
2906 * from next to rq and release next. merge_requests_fn
2907 * will have updated segment counts, update sector
2908 * counts here.
2909 */
2910 if (!ll_merge_requests_fn(q, req, next))
2911 return 0;
2912
2913 /*
2914 * At this point we have either done a back merge
2915 * or front merge. We need the smaller start_time of
2916 * the merged requests to be the current request
2917 * for accounting purposes.
2918 */
2919 if (time_after(req->start_time, next->start_time))
2920 req->start_time = next->start_time;
2921
2922 req->biotail->bi_next = next->bio;
2923 req->biotail = next->biotail;
2924
2925 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2926
2927 elv_merge_requests(q, req, next);
2928
2929 if (req->rq_disk) {
2930 disk_round_stats(req->rq_disk);
2931 req->rq_disk->in_flight--;
2932 }
2933
2934 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2935
2936 __blk_put_request(q, next);
2937 return 1;
2938 }
2939
2940 static inline int attempt_back_merge(struct request_queue *q,
2941 struct request *rq)
2942 {
2943 struct request *next = elv_latter_request(q, rq);
2944
2945 if (next)
2946 return attempt_merge(q, rq, next);
2947
2948 return 0;
2949 }
2950
2951 static inline int attempt_front_merge(struct request_queue *q,
2952 struct request *rq)
2953 {
2954 struct request *prev = elv_former_request(q, rq);
2955
2956 if (prev)
2957 return attempt_merge(q, prev, rq);
2958
2959 return 0;
2960 }
2961
2962 static void init_request_from_bio(struct request *req, struct bio *bio)
2963 {
2964 req->cmd_type = REQ_TYPE_FS;
2965
2966 /*
2967 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2968 */
2969 if (bio_rw_ahead(bio) || bio_failfast(bio))
2970 req->cmd_flags |= REQ_FAILFAST;
2971
2972 /*
2973 * REQ_BARRIER implies no merging, but lets make it explicit
2974 */
2975 if (unlikely(bio_barrier(bio)))
2976 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2977
2978 if (bio_sync(bio))
2979 req->cmd_flags |= REQ_RW_SYNC;
2980 if (bio_rw_meta(bio))
2981 req->cmd_flags |= REQ_RW_META;
2982
2983 req->errors = 0;
2984 req->hard_sector = req->sector = bio->bi_sector;
2985 req->ioprio = bio_prio(bio);
2986 req->start_time = jiffies;
2987 blk_rq_bio_prep(req->q, req, bio);
2988 }
2989
2990 static int __make_request(struct request_queue *q, struct bio *bio)
2991 {
2992 struct request *req;
2993 int el_ret, nr_sectors, barrier, err;
2994 const unsigned short prio = bio_prio(bio);
2995 const int sync = bio_sync(bio);
2996 int rw_flags;
2997
2998 nr_sectors = bio_sectors(bio);
2999
3000 /*
3001 * low level driver can indicate that it wants pages above a
3002 * certain limit bounced to low memory (ie for highmem, or even
3003 * ISA dma in theory)
3004 */
3005 blk_queue_bounce(q, &bio);
3006
3007 barrier = bio_barrier(bio);
3008 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
3009 err = -EOPNOTSUPP;
3010 goto end_io;
3011 }
3012
3013 spin_lock_irq(q->queue_lock);
3014
3015 if (unlikely(barrier) || elv_queue_empty(q))
3016 goto get_rq;
3017
3018 el_ret = elv_merge(q, &req, bio);
3019 switch (el_ret) {
3020 case ELEVATOR_BACK_MERGE:
3021 BUG_ON(!rq_mergeable(req));
3022
3023 if (!ll_back_merge_fn(q, req, bio))
3024 break;
3025
3026 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3027
3028 req->biotail->bi_next = bio;
3029 req->biotail = bio;
3030 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3031 req->ioprio = ioprio_best(req->ioprio, prio);
3032 drive_stat_acct(req, 0);
3033 if (!attempt_back_merge(q, req))
3034 elv_merged_request(q, req, el_ret);
3035 goto out;
3036
3037 case ELEVATOR_FRONT_MERGE:
3038 BUG_ON(!rq_mergeable(req));
3039
3040 if (!ll_front_merge_fn(q, req, bio))
3041 break;
3042
3043 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3044
3045 bio->bi_next = req->bio;
3046 req->bio = bio;
3047
3048 /*
3049 * may not be valid. if the low level driver said
3050 * it didn't need a bounce buffer then it better
3051 * not touch req->buffer either...
3052 */
3053 req->buffer = bio_data(bio);
3054 req->current_nr_sectors = bio_cur_sectors(bio);
3055 req->hard_cur_sectors = req->current_nr_sectors;
3056 req->sector = req->hard_sector = bio->bi_sector;
3057 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3058 req->ioprio = ioprio_best(req->ioprio, prio);
3059 drive_stat_acct(req, 0);
3060 if (!attempt_front_merge(q, req))
3061 elv_merged_request(q, req, el_ret);
3062 goto out;
3063
3064 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3065 default:
3066 ;
3067 }
3068
3069 get_rq:
3070 /*
3071 * This sync check and mask will be re-done in init_request_from_bio(),
3072 * but we need to set it earlier to expose the sync flag to the
3073 * rq allocator and io schedulers.
3074 */
3075 rw_flags = bio_data_dir(bio);
3076 if (sync)
3077 rw_flags |= REQ_RW_SYNC;
3078
3079 /*
3080 * Grab a free request. This is might sleep but can not fail.
3081 * Returns with the queue unlocked.
3082 */
3083 req = get_request_wait(q, rw_flags, bio);
3084
3085 /*
3086 * After dropping the lock and possibly sleeping here, our request
3087 * may now be mergeable after it had proven unmergeable (above).
3088 * We don't worry about that case for efficiency. It won't happen
3089 * often, and the elevators are able to handle it.
3090 */
3091 init_request_from_bio(req, bio);
3092
3093 spin_lock_irq(q->queue_lock);
3094 if (elv_queue_empty(q))
3095 blk_plug_device(q);
3096 add_request(q, req);
3097 out:
3098 if (sync)
3099 __generic_unplug_device(q);
3100
3101 spin_unlock_irq(q->queue_lock);
3102 return 0;
3103
3104 end_io:
3105 bio_endio(bio, err);
3106 return 0;
3107 }
3108
3109 /*
3110 * If bio->bi_dev is a partition, remap the location
3111 */
3112 static inline void blk_partition_remap(struct bio *bio)
3113 {
3114 struct block_device *bdev = bio->bi_bdev;
3115
3116 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
3117 struct hd_struct *p = bdev->bd_part;
3118 const int rw = bio_data_dir(bio);
3119
3120 p->sectors[rw] += bio_sectors(bio);
3121 p->ios[rw]++;
3122
3123 bio->bi_sector += p->start_sect;
3124 bio->bi_bdev = bdev->bd_contains;
3125
3126 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3127 bdev->bd_dev, bio->bi_sector,
3128 bio->bi_sector - p->start_sect);
3129 }
3130 }
3131
3132 static void handle_bad_sector(struct bio *bio)
3133 {
3134 char b[BDEVNAME_SIZE];
3135
3136 printk(KERN_INFO "attempt to access beyond end of device\n");
3137 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3138 bdevname(bio->bi_bdev, b),
3139 bio->bi_rw,
3140 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3141 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3142
3143 set_bit(BIO_EOF, &bio->bi_flags);
3144 }
3145
3146 #ifdef CONFIG_FAIL_MAKE_REQUEST
3147
3148 static DECLARE_FAULT_ATTR(fail_make_request);
3149
3150 static int __init setup_fail_make_request(char *str)
3151 {
3152 return setup_fault_attr(&fail_make_request, str);
3153 }
3154 __setup("fail_make_request=", setup_fail_make_request);
3155
3156 static int should_fail_request(struct bio *bio)
3157 {
3158 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3159 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3160 return should_fail(&fail_make_request, bio->bi_size);
3161
3162 return 0;
3163 }
3164
3165 static int __init fail_make_request_debugfs(void)
3166 {
3167 return init_fault_attr_dentries(&fail_make_request,
3168 "fail_make_request");
3169 }
3170
3171 late_initcall(fail_make_request_debugfs);
3172
3173 #else /* CONFIG_FAIL_MAKE_REQUEST */
3174
3175 static inline int should_fail_request(struct bio *bio)
3176 {
3177 return 0;
3178 }
3179
3180 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3181
3182 /*
3183 * Check whether this bio extends beyond the end of the device.
3184 */
3185 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3186 {
3187 sector_t maxsector;
3188
3189 if (!nr_sectors)
3190 return 0;
3191
3192 /* Test device or partition size, when known. */
3193 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3194 if (maxsector) {
3195 sector_t sector = bio->bi_sector;
3196
3197 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3198 /*
3199 * This may well happen - the kernel calls bread()
3200 * without checking the size of the device, e.g., when
3201 * mounting a device.
3202 */
3203 handle_bad_sector(bio);
3204 return 1;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /**
3212 * generic_make_request: hand a buffer to its device driver for I/O
3213 * @bio: The bio describing the location in memory and on the device.
3214 *
3215 * generic_make_request() is used to make I/O requests of block
3216 * devices. It is passed a &struct bio, which describes the I/O that needs
3217 * to be done.
3218 *
3219 * generic_make_request() does not return any status. The
3220 * success/failure status of the request, along with notification of
3221 * completion, is delivered asynchronously through the bio->bi_end_io
3222 * function described (one day) else where.
3223 *
3224 * The caller of generic_make_request must make sure that bi_io_vec
3225 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3226 * set to describe the device address, and the
3227 * bi_end_io and optionally bi_private are set to describe how
3228 * completion notification should be signaled.
3229 *
3230 * generic_make_request and the drivers it calls may use bi_next if this
3231 * bio happens to be merged with someone else, and may change bi_dev and
3232 * bi_sector for remaps as it sees fit. So the values of these fields
3233 * should NOT be depended on after the call to generic_make_request.
3234 */
3235 static inline void __generic_make_request(struct bio *bio)
3236 {
3237 struct request_queue *q;
3238 sector_t old_sector;
3239 int ret, nr_sectors = bio_sectors(bio);
3240 dev_t old_dev;
3241 int err = -EIO;
3242
3243 might_sleep();
3244
3245 if (bio_check_eod(bio, nr_sectors))
3246 goto end_io;
3247
3248 /*
3249 * Resolve the mapping until finished. (drivers are
3250 * still free to implement/resolve their own stacking
3251 * by explicitly returning 0)
3252 *
3253 * NOTE: we don't repeat the blk_size check for each new device.
3254 * Stacking drivers are expected to know what they are doing.
3255 */
3256 old_sector = -1;
3257 old_dev = 0;
3258 do {
3259 char b[BDEVNAME_SIZE];
3260
3261 q = bdev_get_queue(bio->bi_bdev);
3262 if (!q) {
3263 printk(KERN_ERR
3264 "generic_make_request: Trying to access "
3265 "nonexistent block-device %s (%Lu)\n",
3266 bdevname(bio->bi_bdev, b),
3267 (long long) bio->bi_sector);
3268 end_io:
3269 bio_endio(bio, err);
3270 break;
3271 }
3272
3273 if (unlikely(nr_sectors > q->max_hw_sectors)) {
3274 printk("bio too big device %s (%u > %u)\n",
3275 bdevname(bio->bi_bdev, b),
3276 bio_sectors(bio),
3277 q->max_hw_sectors);
3278 goto end_io;
3279 }
3280
3281 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3282 goto end_io;
3283
3284 if (should_fail_request(bio))
3285 goto end_io;
3286
3287 /*
3288 * If this device has partitions, remap block n
3289 * of partition p to block n+start(p) of the disk.
3290 */
3291 blk_partition_remap(bio);
3292
3293 if (old_sector != -1)
3294 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3295 old_sector);
3296
3297 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3298
3299 old_sector = bio->bi_sector;
3300 old_dev = bio->bi_bdev->bd_dev;
3301
3302 if (bio_check_eod(bio, nr_sectors))
3303 goto end_io;
3304 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
3305 err = -EOPNOTSUPP;
3306 goto end_io;
3307 }
3308
3309 ret = q->make_request_fn(q, bio);
3310 } while (ret);
3311 }
3312
3313 /*
3314 * We only want one ->make_request_fn to be active at a time,
3315 * else stack usage with stacked devices could be a problem.
3316 * So use current->bio_{list,tail} to keep a list of requests
3317 * submited by a make_request_fn function.
3318 * current->bio_tail is also used as a flag to say if
3319 * generic_make_request is currently active in this task or not.
3320 * If it is NULL, then no make_request is active. If it is non-NULL,
3321 * then a make_request is active, and new requests should be added
3322 * at the tail
3323 */
3324 void generic_make_request(struct bio *bio)
3325 {
3326 if (current->bio_tail) {
3327 /* make_request is active */
3328 *(current->bio_tail) = bio;
3329 bio->bi_next = NULL;
3330 current->bio_tail = &bio->bi_next;
3331 return;
3332 }
3333 /* following loop may be a bit non-obvious, and so deserves some
3334 * explanation.
3335 * Before entering the loop, bio->bi_next is NULL (as all callers
3336 * ensure that) so we have a list with a single bio.
3337 * We pretend that we have just taken it off a longer list, so
3338 * we assign bio_list to the next (which is NULL) and bio_tail
3339 * to &bio_list, thus initialising the bio_list of new bios to be
3340 * added. __generic_make_request may indeed add some more bios
3341 * through a recursive call to generic_make_request. If it
3342 * did, we find a non-NULL value in bio_list and re-enter the loop
3343 * from the top. In this case we really did just take the bio
3344 * of the top of the list (no pretending) and so fixup bio_list and
3345 * bio_tail or bi_next, and call into __generic_make_request again.
3346 *
3347 * The loop was structured like this to make only one call to
3348 * __generic_make_request (which is important as it is large and
3349 * inlined) and to keep the structure simple.
3350 */
3351 BUG_ON(bio->bi_next);
3352 do {
3353 current->bio_list = bio->bi_next;
3354 if (bio->bi_next == NULL)
3355 current->bio_tail = &current->bio_list;
3356 else
3357 bio->bi_next = NULL;
3358 __generic_make_request(bio);
3359 bio = current->bio_list;
3360 } while (bio);
3361 current->bio_tail = NULL; /* deactivate */
3362 }
3363
3364 EXPORT_SYMBOL(generic_make_request);
3365
3366 /**
3367 * submit_bio: submit a bio to the block device layer for I/O
3368 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3369 * @bio: The &struct bio which describes the I/O
3370 *
3371 * submit_bio() is very similar in purpose to generic_make_request(), and
3372 * uses that function to do most of the work. Both are fairly rough
3373 * interfaces, @bio must be presetup and ready for I/O.
3374 *
3375 */
3376 void submit_bio(int rw, struct bio *bio)
3377 {
3378 int count = bio_sectors(bio);
3379
3380 bio->bi_rw |= rw;
3381
3382 /*
3383 * If it's a regular read/write or a barrier with data attached,
3384 * go through the normal accounting stuff before submission.
3385 */
3386 if (!bio_empty_barrier(bio)) {
3387
3388 BIO_BUG_ON(!bio->bi_size);
3389 BIO_BUG_ON(!bio->bi_io_vec);
3390
3391 if (rw & WRITE) {
3392 count_vm_events(PGPGOUT, count);
3393 } else {
3394 task_io_account_read(bio->bi_size);
3395 count_vm_events(PGPGIN, count);
3396 }
3397
3398 if (unlikely(block_dump)) {
3399 char b[BDEVNAME_SIZE];
3400 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3401 current->comm, task_pid_nr(current),
3402 (rw & WRITE) ? "WRITE" : "READ",
3403 (unsigned long long)bio->bi_sector,
3404 bdevname(bio->bi_bdev,b));
3405 }
3406 }
3407
3408 generic_make_request(bio);
3409 }
3410
3411 EXPORT_SYMBOL(submit_bio);
3412
3413 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3414 {
3415 if (blk_fs_request(rq)) {
3416 rq->hard_sector += nsect;
3417 rq->hard_nr_sectors -= nsect;
3418
3419 /*
3420 * Move the I/O submission pointers ahead if required.
3421 */
3422 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3423 (rq->sector <= rq->hard_sector)) {
3424 rq->sector = rq->hard_sector;
3425 rq->nr_sectors = rq->hard_nr_sectors;
3426 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3427 rq->current_nr_sectors = rq->hard_cur_sectors;
3428 rq->buffer = bio_data(rq->bio);
3429 }
3430
3431 /*
3432 * if total number of sectors is less than the first segment
3433 * size, something has gone terribly wrong
3434 */
3435 if (rq->nr_sectors < rq->current_nr_sectors) {
3436 printk("blk: request botched\n");
3437 rq->nr_sectors = rq->current_nr_sectors;
3438 }
3439 }
3440 }
3441
3442 static int __end_that_request_first(struct request *req, int uptodate,
3443 int nr_bytes)
3444 {
3445 int total_bytes, bio_nbytes, error, next_idx = 0;
3446 struct bio *bio;
3447
3448 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3449
3450 /*
3451 * extend uptodate bool to allow < 0 value to be direct io error
3452 */
3453 error = 0;
3454 if (end_io_error(uptodate))
3455 error = !uptodate ? -EIO : uptodate;
3456
3457 /*
3458 * for a REQ_BLOCK_PC request, we want to carry any eventual
3459 * sense key with us all the way through
3460 */
3461 if (!blk_pc_request(req))
3462 req->errors = 0;
3463
3464 if (!uptodate) {
3465 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3466 printk("end_request: I/O error, dev %s, sector %llu\n",
3467 req->rq_disk ? req->rq_disk->disk_name : "?",
3468 (unsigned long long)req->sector);
3469 }
3470
3471 if (blk_fs_request(req) && req->rq_disk) {
3472 const int rw = rq_data_dir(req);
3473
3474 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3475 }
3476
3477 total_bytes = bio_nbytes = 0;
3478 while ((bio = req->bio) != NULL) {
3479 int nbytes;
3480
3481 /*
3482 * For an empty barrier request, the low level driver must
3483 * store a potential error location in ->sector. We pass
3484 * that back up in ->bi_sector.
3485 */
3486 if (blk_empty_barrier(req))
3487 bio->bi_sector = req->sector;
3488
3489 if (nr_bytes >= bio->bi_size) {
3490 req->bio = bio->bi_next;
3491 nbytes = bio->bi_size;
3492 req_bio_endio(req, bio, nbytes, error);
3493 next_idx = 0;
3494 bio_nbytes = 0;
3495 } else {
3496 int idx = bio->bi_idx + next_idx;
3497
3498 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3499 blk_dump_rq_flags(req, "__end_that");
3500 printk("%s: bio idx %d >= vcnt %d\n",
3501 __FUNCTION__,
3502 bio->bi_idx, bio->bi_vcnt);
3503 break;
3504 }
3505
3506 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3507 BIO_BUG_ON(nbytes > bio->bi_size);
3508
3509 /*
3510 * not a complete bvec done
3511 */
3512 if (unlikely(nbytes > nr_bytes)) {
3513 bio_nbytes += nr_bytes;
3514 total_bytes += nr_bytes;
3515 break;
3516 }
3517
3518 /*
3519 * advance to the next vector
3520 */
3521 next_idx++;
3522 bio_nbytes += nbytes;
3523 }
3524
3525 total_bytes += nbytes;
3526 nr_bytes -= nbytes;
3527
3528 if ((bio = req->bio)) {
3529 /*
3530 * end more in this run, or just return 'not-done'
3531 */
3532 if (unlikely(nr_bytes <= 0))
3533 break;
3534 }
3535 }
3536
3537 /*
3538 * completely done
3539 */
3540 if (!req->bio)
3541 return 0;
3542
3543 /*
3544 * if the request wasn't completed, update state
3545 */
3546 if (bio_nbytes) {
3547 req_bio_endio(req, bio, bio_nbytes, error);
3548 bio->bi_idx += next_idx;
3549 bio_iovec(bio)->bv_offset += nr_bytes;
3550 bio_iovec(bio)->bv_len -= nr_bytes;
3551 }
3552
3553 blk_recalc_rq_sectors(req, total_bytes >> 9);
3554 blk_recalc_rq_segments(req);
3555 return 1;
3556 }
3557
3558 /**
3559 * end_that_request_first - end I/O on a request
3560 * @req: the request being processed
3561 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3562 * @nr_sectors: number of sectors to end I/O on
3563 *
3564 * Description:
3565 * Ends I/O on a number of sectors attached to @req, and sets it up
3566 * for the next range of segments (if any) in the cluster.
3567 *
3568 * Return:
3569 * 0 - we are done with this request, call end_that_request_last()
3570 * 1 - still buffers pending for this request
3571 **/
3572 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3573 {
3574 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3575 }
3576
3577 EXPORT_SYMBOL(end_that_request_first);
3578
3579 /**
3580 * end_that_request_chunk - end I/O on a request
3581 * @req: the request being processed
3582 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3583 * @nr_bytes: number of bytes to complete
3584 *
3585 * Description:
3586 * Ends I/O on a number of bytes attached to @req, and sets it up
3587 * for the next range of segments (if any). Like end_that_request_first(),
3588 * but deals with bytes instead of sectors.
3589 *
3590 * Return:
3591 * 0 - we are done with this request, call end_that_request_last()
3592 * 1 - still buffers pending for this request
3593 **/
3594 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3595 {
3596 return __end_that_request_first(req, uptodate, nr_bytes);
3597 }
3598
3599 EXPORT_SYMBOL(end_that_request_chunk);
3600
3601 /*
3602 * splice the completion data to a local structure and hand off to
3603 * process_completion_queue() to complete the requests
3604 */
3605 static void blk_done_softirq(struct softirq_action *h)
3606 {
3607 struct list_head *cpu_list, local_list;
3608
3609 local_irq_disable();
3610 cpu_list = &__get_cpu_var(blk_cpu_done);
3611 list_replace_init(cpu_list, &local_list);
3612 local_irq_enable();
3613
3614 while (!list_empty(&local_list)) {
3615 struct request *rq = list_entry(local_list.next, struct request, donelist);
3616
3617 list_del_init(&rq->donelist);
3618 rq->q->softirq_done_fn(rq);
3619 }
3620 }
3621
3622 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3623 void *hcpu)
3624 {
3625 /*
3626 * If a CPU goes away, splice its entries to the current CPU
3627 * and trigger a run of the softirq
3628 */
3629 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3630 int cpu = (unsigned long) hcpu;
3631
3632 local_irq_disable();
3633 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3634 &__get_cpu_var(blk_cpu_done));
3635 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3636 local_irq_enable();
3637 }
3638
3639 return NOTIFY_OK;
3640 }
3641
3642
3643 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3644 .notifier_call = blk_cpu_notify,
3645 };
3646
3647 /**
3648 * blk_complete_request - end I/O on a request
3649 * @req: the request being processed
3650 *
3651 * Description:
3652 * Ends all I/O on a request. It does not handle partial completions,
3653 * unless the driver actually implements this in its completion callback
3654 * through requeueing. The actual completion happens out-of-order,
3655 * through a softirq handler. The user must have registered a completion
3656 * callback through blk_queue_softirq_done().
3657 **/
3658
3659 void blk_complete_request(struct request *req)
3660 {
3661 struct list_head *cpu_list;
3662 unsigned long flags;
3663
3664 BUG_ON(!req->q->softirq_done_fn);
3665
3666 local_irq_save(flags);
3667
3668 cpu_list = &__get_cpu_var(blk_cpu_done);
3669 list_add_tail(&req->donelist, cpu_list);
3670 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3671
3672 local_irq_restore(flags);
3673 }
3674
3675 EXPORT_SYMBOL(blk_complete_request);
3676
3677 /*
3678 * queue lock must be held
3679 */
3680 void end_that_request_last(struct request *req, int uptodate)
3681 {
3682 struct gendisk *disk = req->rq_disk;
3683 int error;
3684
3685 /*
3686 * extend uptodate bool to allow < 0 value to be direct io error
3687 */
3688 error = 0;
3689 if (end_io_error(uptodate))
3690 error = !uptodate ? -EIO : uptodate;
3691
3692 if (unlikely(laptop_mode) && blk_fs_request(req))
3693 laptop_io_completion();
3694
3695 /*
3696 * Account IO completion. bar_rq isn't accounted as a normal
3697 * IO on queueing nor completion. Accounting the containing
3698 * request is enough.
3699 */
3700 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3701 unsigned long duration = jiffies - req->start_time;
3702 const int rw = rq_data_dir(req);
3703
3704 __disk_stat_inc(disk, ios[rw]);
3705 __disk_stat_add(disk, ticks[rw], duration);
3706 disk_round_stats(disk);
3707 disk->in_flight--;
3708 }
3709 if (req->end_io)
3710 req->end_io(req, error);
3711 else
3712 __blk_put_request(req->q, req);
3713 }
3714
3715 EXPORT_SYMBOL(end_that_request_last);
3716
3717 static inline void __end_request(struct request *rq, int uptodate,
3718 unsigned int nr_bytes, int dequeue)
3719 {
3720 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3721 if (dequeue)
3722 blkdev_dequeue_request(rq);
3723 add_disk_randomness(rq->rq_disk);
3724 end_that_request_last(rq, uptodate);
3725 }
3726 }
3727
3728 static unsigned int rq_byte_size(struct request *rq)
3729 {
3730 if (blk_fs_request(rq))
3731 return rq->hard_nr_sectors << 9;
3732
3733 return rq->data_len;
3734 }
3735
3736 /**
3737 * end_queued_request - end all I/O on a queued request
3738 * @rq: the request being processed
3739 * @uptodate: error value or 0/1 uptodate flag
3740 *
3741 * Description:
3742 * Ends all I/O on a request, and removes it from the block layer queues.
3743 * Not suitable for normal IO completion, unless the driver still has
3744 * the request attached to the block layer.
3745 *
3746 **/
3747 void end_queued_request(struct request *rq, int uptodate)
3748 {
3749 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3750 }
3751 EXPORT_SYMBOL(end_queued_request);
3752
3753 /**
3754 * end_dequeued_request - end all I/O on a dequeued request
3755 * @rq: the request being processed
3756 * @uptodate: error value or 0/1 uptodate flag
3757 *
3758 * Description:
3759 * Ends all I/O on a request. The request must already have been
3760 * dequeued using blkdev_dequeue_request(), as is normally the case
3761 * for most drivers.
3762 *
3763 **/
3764 void end_dequeued_request(struct request *rq, int uptodate)
3765 {
3766 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3767 }
3768 EXPORT_SYMBOL(end_dequeued_request);
3769
3770
3771 /**
3772 * end_request - end I/O on the current segment of the request
3773 * @req: the request being processed
3774 * @uptodate: error value or 0/1 uptodate flag
3775 *
3776 * Description:
3777 * Ends I/O on the current segment of a request. If that is the only
3778 * remaining segment, the request is also completed and freed.
3779 *
3780 * This is a remnant of how older block drivers handled IO completions.
3781 * Modern drivers typically end IO on the full request in one go, unless
3782 * they have a residual value to account for. For that case this function
3783 * isn't really useful, unless the residual just happens to be the
3784 * full current segment. In other words, don't use this function in new
3785 * code. Either use end_request_completely(), or the
3786 * end_that_request_chunk() (along with end_that_request_last()) for
3787 * partial completions.
3788 *
3789 **/
3790 void end_request(struct request *req, int uptodate)
3791 {
3792 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3793 }
3794 EXPORT_SYMBOL(end_request);
3795
3796 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3797 struct bio *bio)
3798 {
3799 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3800 rq->cmd_flags |= (bio->bi_rw & 3);
3801
3802 rq->nr_phys_segments = bio_phys_segments(q, bio);
3803 rq->nr_hw_segments = bio_hw_segments(q, bio);
3804 rq->current_nr_sectors = bio_cur_sectors(bio);
3805 rq->hard_cur_sectors = rq->current_nr_sectors;
3806 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3807 rq->buffer = bio_data(bio);
3808 rq->data_len = bio->bi_size;
3809
3810 rq->bio = rq->biotail = bio;
3811
3812 if (bio->bi_bdev)
3813 rq->rq_disk = bio->bi_bdev->bd_disk;
3814 }
3815
3816 int kblockd_schedule_work(struct work_struct *work)
3817 {
3818 return queue_work(kblockd_workqueue, work);
3819 }
3820
3821 EXPORT_SYMBOL(kblockd_schedule_work);
3822
3823 void kblockd_flush_work(struct work_struct *work)
3824 {
3825 cancel_work_sync(work);
3826 }
3827 EXPORT_SYMBOL(kblockd_flush_work);
3828
3829 int __init blk_dev_init(void)
3830 {
3831 int i;
3832
3833 kblockd_workqueue = create_workqueue("kblockd");
3834 if (!kblockd_workqueue)
3835 panic("Failed to create kblockd\n");
3836
3837 request_cachep = kmem_cache_create("blkdev_requests",
3838 sizeof(struct request), 0, SLAB_PANIC, NULL);
3839
3840 requestq_cachep = kmem_cache_create("blkdev_queue",
3841 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3842
3843 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3844 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3845
3846 for_each_possible_cpu(i)
3847 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3848
3849 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3850 register_hotcpu_notifier(&blk_cpu_notifier);
3851
3852 blk_max_low_pfn = max_low_pfn - 1;
3853 blk_max_pfn = max_pfn - 1;
3854
3855 return 0;
3856 }
3857
3858 /*
3859 * IO Context helper functions
3860 */
3861 void put_io_context(struct io_context *ioc)
3862 {
3863 if (ioc == NULL)
3864 return;
3865
3866 BUG_ON(atomic_read(&ioc->refcount) == 0);
3867
3868 if (atomic_dec_and_test(&ioc->refcount)) {
3869 struct cfq_io_context *cic;
3870
3871 rcu_read_lock();
3872 if (ioc->aic && ioc->aic->dtor)
3873 ioc->aic->dtor(ioc->aic);
3874 if (ioc->cic_root.rb_node != NULL) {
3875 struct rb_node *n = rb_first(&ioc->cic_root);
3876
3877 cic = rb_entry(n, struct cfq_io_context, rb_node);
3878 cic->dtor(ioc);
3879 }
3880 rcu_read_unlock();
3881
3882 kmem_cache_free(iocontext_cachep, ioc);
3883 }
3884 }
3885 EXPORT_SYMBOL(put_io_context);
3886
3887 /* Called by the exitting task */
3888 void exit_io_context(void)
3889 {
3890 struct io_context *ioc;
3891 struct cfq_io_context *cic;
3892
3893 task_lock(current);
3894 ioc = current->io_context;
3895 current->io_context = NULL;
3896 task_unlock(current);
3897
3898 ioc->task = NULL;
3899 if (ioc->aic && ioc->aic->exit)
3900 ioc->aic->exit(ioc->aic);
3901 if (ioc->cic_root.rb_node != NULL) {
3902 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3903 cic->exit(ioc);
3904 }
3905
3906 put_io_context(ioc);
3907 }
3908
3909 /*
3910 * If the current task has no IO context then create one and initialise it.
3911 * Otherwise, return its existing IO context.
3912 *
3913 * This returned IO context doesn't have a specifically elevated refcount,
3914 * but since the current task itself holds a reference, the context can be
3915 * used in general code, so long as it stays within `current` context.
3916 */
3917 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3918 {
3919 struct task_struct *tsk = current;
3920 struct io_context *ret;
3921
3922 ret = tsk->io_context;
3923 if (likely(ret))
3924 return ret;
3925
3926 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3927 if (ret) {
3928 atomic_set(&ret->refcount, 1);
3929 ret->task = current;
3930 ret->ioprio_changed = 0;
3931 ret->last_waited = jiffies; /* doesn't matter... */
3932 ret->nr_batch_requests = 0; /* because this is 0 */
3933 ret->aic = NULL;
3934 ret->cic_root.rb_node = NULL;
3935 ret->ioc_data = NULL;
3936 /* make sure set_task_ioprio() sees the settings above */
3937 smp_wmb();
3938 tsk->io_context = ret;
3939 }
3940
3941 return ret;
3942 }
3943
3944 /*
3945 * If the current task has no IO context then create one and initialise it.
3946 * If it does have a context, take a ref on it.
3947 *
3948 * This is always called in the context of the task which submitted the I/O.
3949 */
3950 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3951 {
3952 struct io_context *ret;
3953 ret = current_io_context(gfp_flags, node);
3954 if (likely(ret))
3955 atomic_inc(&ret->refcount);
3956 return ret;
3957 }
3958 EXPORT_SYMBOL(get_io_context);
3959
3960 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3961 {
3962 struct io_context *src = *psrc;
3963 struct io_context *dst = *pdst;
3964
3965 if (src) {
3966 BUG_ON(atomic_read(&src->refcount) == 0);
3967 atomic_inc(&src->refcount);
3968 put_io_context(dst);
3969 *pdst = src;
3970 }
3971 }
3972 EXPORT_SYMBOL(copy_io_context);
3973
3974 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3975 {
3976 struct io_context *temp;
3977 temp = *ioc1;
3978 *ioc1 = *ioc2;
3979 *ioc2 = temp;
3980 }
3981 EXPORT_SYMBOL(swap_io_context);
3982
3983 /*
3984 * sysfs parts below
3985 */
3986 struct queue_sysfs_entry {
3987 struct attribute attr;
3988 ssize_t (*show)(struct request_queue *, char *);
3989 ssize_t (*store)(struct request_queue *, const char *, size_t);
3990 };
3991
3992 static ssize_t
3993 queue_var_show(unsigned int var, char *page)
3994 {
3995 return sprintf(page, "%d\n", var);
3996 }
3997
3998 static ssize_t
3999 queue_var_store(unsigned long *var, const char *page, size_t count)
4000 {
4001 char *p = (char *) page;
4002
4003 *var = simple_strtoul(p, &p, 10);
4004 return count;
4005 }
4006
4007 static ssize_t queue_requests_show(struct request_queue *q, char *page)
4008 {
4009 return queue_var_show(q->nr_requests, (page));
4010 }
4011
4012 static ssize_t
4013 queue_requests_store(struct request_queue *q, const char *page, size_t count)
4014 {
4015 struct request_list *rl = &q->rq;
4016 unsigned long nr;
4017 int ret = queue_var_store(&nr, page, count);
4018 if (nr < BLKDEV_MIN_RQ)
4019 nr = BLKDEV_MIN_RQ;
4020
4021 spin_lock_irq(q->queue_lock);
4022 q->nr_requests = nr;
4023 blk_queue_congestion_threshold(q);
4024
4025 if (rl->count[READ] >= queue_congestion_on_threshold(q))
4026 blk_set_queue_congested(q, READ);
4027 else if (rl->count[READ] < queue_congestion_off_threshold(q))
4028 blk_clear_queue_congested(q, READ);
4029
4030 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
4031 blk_set_queue_congested(q, WRITE);
4032 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
4033 blk_clear_queue_congested(q, WRITE);
4034
4035 if (rl->count[READ] >= q->nr_requests) {
4036 blk_set_queue_full(q, READ);
4037 } else if (rl->count[READ]+1 <= q->nr_requests) {
4038 blk_clear_queue_full(q, READ);
4039 wake_up(&rl->wait[READ]);
4040 }
4041
4042 if (rl->count[WRITE] >= q->nr_requests) {
4043 blk_set_queue_full(q, WRITE);
4044 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4045 blk_clear_queue_full(q, WRITE);
4046 wake_up(&rl->wait[WRITE]);
4047 }
4048 spin_unlock_irq(q->queue_lock);
4049 return ret;
4050 }
4051
4052 static ssize_t queue_ra_show(struct request_queue *q, char *page)
4053 {
4054 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4055
4056 return queue_var_show(ra_kb, (page));
4057 }
4058
4059 static ssize_t
4060 queue_ra_store(struct request_queue *q, const char *page, size_t count)
4061 {
4062 unsigned long ra_kb;
4063 ssize_t ret = queue_var_store(&ra_kb, page, count);
4064
4065 spin_lock_irq(q->queue_lock);
4066 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4067 spin_unlock_irq(q->queue_lock);
4068
4069 return ret;
4070 }
4071
4072 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4073 {
4074 int max_sectors_kb = q->max_sectors >> 1;
4075
4076 return queue_var_show(max_sectors_kb, (page));
4077 }
4078
4079 static ssize_t
4080 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4081 {
4082 unsigned long max_sectors_kb,
4083 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4084 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4085 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
4086
4087 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4088 return -EINVAL;
4089 /*
4090 * Take the queue lock to update the readahead and max_sectors
4091 * values synchronously:
4092 */
4093 spin_lock_irq(q->queue_lock);
4094 q->max_sectors = max_sectors_kb << 1;
4095 spin_unlock_irq(q->queue_lock);
4096
4097 return ret;
4098 }
4099
4100 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4101 {
4102 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4103
4104 return queue_var_show(max_hw_sectors_kb, (page));
4105 }
4106
4107
4108 static struct queue_sysfs_entry queue_requests_entry = {
4109 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4110 .show = queue_requests_show,
4111 .store = queue_requests_store,
4112 };
4113
4114 static struct queue_sysfs_entry queue_ra_entry = {
4115 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4116 .show = queue_ra_show,
4117 .store = queue_ra_store,
4118 };
4119
4120 static struct queue_sysfs_entry queue_max_sectors_entry = {
4121 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4122 .show = queue_max_sectors_show,
4123 .store = queue_max_sectors_store,
4124 };
4125
4126 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4127 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4128 .show = queue_max_hw_sectors_show,
4129 };
4130
4131 static struct queue_sysfs_entry queue_iosched_entry = {
4132 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4133 .show = elv_iosched_show,
4134 .store = elv_iosched_store,
4135 };
4136
4137 static struct attribute *default_attrs[] = {
4138 &queue_requests_entry.attr,
4139 &queue_ra_entry.attr,
4140 &queue_max_hw_sectors_entry.attr,
4141 &queue_max_sectors_entry.attr,
4142 &queue_iosched_entry.attr,
4143 NULL,
4144 };
4145
4146 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4147
4148 static ssize_t
4149 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4150 {
4151 struct queue_sysfs_entry *entry = to_queue(attr);
4152 struct request_queue *q =
4153 container_of(kobj, struct request_queue, kobj);
4154 ssize_t res;
4155
4156 if (!entry->show)
4157 return -EIO;
4158 mutex_lock(&q->sysfs_lock);
4159 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4160 mutex_unlock(&q->sysfs_lock);
4161 return -ENOENT;
4162 }
4163 res = entry->show(q, page);
4164 mutex_unlock(&q->sysfs_lock);
4165 return res;
4166 }
4167
4168 static ssize_t
4169 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4170 const char *page, size_t length)
4171 {
4172 struct queue_sysfs_entry *entry = to_queue(attr);
4173 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4174
4175 ssize_t res;
4176
4177 if (!entry->store)
4178 return -EIO;
4179 mutex_lock(&q->sysfs_lock);
4180 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4181 mutex_unlock(&q->sysfs_lock);
4182 return -ENOENT;
4183 }
4184 res = entry->store(q, page, length);
4185 mutex_unlock(&q->sysfs_lock);
4186 return res;
4187 }
4188
4189 static struct sysfs_ops queue_sysfs_ops = {
4190 .show = queue_attr_show,
4191 .store = queue_attr_store,
4192 };
4193
4194 static struct kobj_type queue_ktype = {
4195 .sysfs_ops = &queue_sysfs_ops,
4196 .default_attrs = default_attrs,
4197 .release = blk_release_queue,
4198 };
4199
4200 int blk_register_queue(struct gendisk *disk)
4201 {
4202 int ret;
4203
4204 struct request_queue *q = disk->queue;
4205
4206 if (!q || !q->request_fn)
4207 return -ENXIO;
4208
4209 q->kobj.parent = kobject_get(&disk->kobj);
4210
4211 ret = kobject_add(&q->kobj);
4212 if (ret < 0)
4213 return ret;
4214
4215 kobject_uevent(&q->kobj, KOBJ_ADD);
4216
4217 ret = elv_register_queue(q);
4218 if (ret) {
4219 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4220 kobject_del(&q->kobj);
4221 return ret;
4222 }
4223
4224 return 0;
4225 }
4226
4227 void blk_unregister_queue(struct gendisk *disk)
4228 {
4229 struct request_queue *q = disk->queue;
4230
4231 if (q && q->request_fn) {
4232 elv_unregister_queue(q);
4233
4234 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4235 kobject_del(&q->kobj);
4236 kobject_put(&disk->kobj);
4237 }
4238 }