Merge branch 'for-next-merge' of git://git.kernel.org/pub/scm/linux/kernel/git/nab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / genhd.c
1 /*
2 * gendisk handling
3 */
4
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/mutex.h>
19 #include <linux/idr.h>
20 #include <linux/log2.h>
21
22 #include "blk.h"
23
24 static DEFINE_MUTEX(block_class_lock);
25 struct kobject *block_depr;
26
27 /* for extended dynamic devt allocation, currently only one major is used */
28 #define MAX_EXT_DEVT (1 << MINORBITS)
29
30 /* For extended devt allocation. ext_devt_mutex prevents look up
31 * results from going away underneath its user.
32 */
33 static DEFINE_MUTEX(ext_devt_mutex);
34 static DEFINE_IDR(ext_devt_idr);
35
36 static struct device_type disk_type;
37
38 static void disk_add_events(struct gendisk *disk);
39 static void disk_del_events(struct gendisk *disk);
40 static void disk_release_events(struct gendisk *disk);
41
42 /**
43 * disk_get_part - get partition
44 * @disk: disk to look partition from
45 * @partno: partition number
46 *
47 * Look for partition @partno from @disk. If found, increment
48 * reference count and return it.
49 *
50 * CONTEXT:
51 * Don't care.
52 *
53 * RETURNS:
54 * Pointer to the found partition on success, NULL if not found.
55 */
56 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
57 {
58 struct hd_struct *part = NULL;
59 struct disk_part_tbl *ptbl;
60
61 if (unlikely(partno < 0))
62 return NULL;
63
64 rcu_read_lock();
65
66 ptbl = rcu_dereference(disk->part_tbl);
67 if (likely(partno < ptbl->len)) {
68 part = rcu_dereference(ptbl->part[partno]);
69 if (part)
70 get_device(part_to_dev(part));
71 }
72
73 rcu_read_unlock();
74
75 return part;
76 }
77 EXPORT_SYMBOL_GPL(disk_get_part);
78
79 /**
80 * disk_part_iter_init - initialize partition iterator
81 * @piter: iterator to initialize
82 * @disk: disk to iterate over
83 * @flags: DISK_PITER_* flags
84 *
85 * Initialize @piter so that it iterates over partitions of @disk.
86 *
87 * CONTEXT:
88 * Don't care.
89 */
90 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
91 unsigned int flags)
92 {
93 struct disk_part_tbl *ptbl;
94
95 rcu_read_lock();
96 ptbl = rcu_dereference(disk->part_tbl);
97
98 piter->disk = disk;
99 piter->part = NULL;
100
101 if (flags & DISK_PITER_REVERSE)
102 piter->idx = ptbl->len - 1;
103 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
104 piter->idx = 0;
105 else
106 piter->idx = 1;
107
108 piter->flags = flags;
109
110 rcu_read_unlock();
111 }
112 EXPORT_SYMBOL_GPL(disk_part_iter_init);
113
114 /**
115 * disk_part_iter_next - proceed iterator to the next partition and return it
116 * @piter: iterator of interest
117 *
118 * Proceed @piter to the next partition and return it.
119 *
120 * CONTEXT:
121 * Don't care.
122 */
123 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
124 {
125 struct disk_part_tbl *ptbl;
126 int inc, end;
127
128 /* put the last partition */
129 disk_put_part(piter->part);
130 piter->part = NULL;
131
132 /* get part_tbl */
133 rcu_read_lock();
134 ptbl = rcu_dereference(piter->disk->part_tbl);
135
136 /* determine iteration parameters */
137 if (piter->flags & DISK_PITER_REVERSE) {
138 inc = -1;
139 if (piter->flags & (DISK_PITER_INCL_PART0 |
140 DISK_PITER_INCL_EMPTY_PART0))
141 end = -1;
142 else
143 end = 0;
144 } else {
145 inc = 1;
146 end = ptbl->len;
147 }
148
149 /* iterate to the next partition */
150 for (; piter->idx != end; piter->idx += inc) {
151 struct hd_struct *part;
152
153 part = rcu_dereference(ptbl->part[piter->idx]);
154 if (!part)
155 continue;
156 if (!part->nr_sects &&
157 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
158 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
159 piter->idx == 0))
160 continue;
161
162 get_device(part_to_dev(part));
163 piter->part = part;
164 piter->idx += inc;
165 break;
166 }
167
168 rcu_read_unlock();
169
170 return piter->part;
171 }
172 EXPORT_SYMBOL_GPL(disk_part_iter_next);
173
174 /**
175 * disk_part_iter_exit - finish up partition iteration
176 * @piter: iter of interest
177 *
178 * Called when iteration is over. Cleans up @piter.
179 *
180 * CONTEXT:
181 * Don't care.
182 */
183 void disk_part_iter_exit(struct disk_part_iter *piter)
184 {
185 disk_put_part(piter->part);
186 piter->part = NULL;
187 }
188 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
189
190 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
191 {
192 return part->start_sect <= sector &&
193 sector < part->start_sect + part->nr_sects;
194 }
195
196 /**
197 * disk_map_sector_rcu - map sector to partition
198 * @disk: gendisk of interest
199 * @sector: sector to map
200 *
201 * Find out which partition @sector maps to on @disk. This is
202 * primarily used for stats accounting.
203 *
204 * CONTEXT:
205 * RCU read locked. The returned partition pointer is valid only
206 * while preemption is disabled.
207 *
208 * RETURNS:
209 * Found partition on success, part0 is returned if no partition matches
210 */
211 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
212 {
213 struct disk_part_tbl *ptbl;
214 struct hd_struct *part;
215 int i;
216
217 ptbl = rcu_dereference(disk->part_tbl);
218
219 part = rcu_dereference(ptbl->last_lookup);
220 if (part && sector_in_part(part, sector))
221 return part;
222
223 for (i = 1; i < ptbl->len; i++) {
224 part = rcu_dereference(ptbl->part[i]);
225
226 if (part && sector_in_part(part, sector)) {
227 rcu_assign_pointer(ptbl->last_lookup, part);
228 return part;
229 }
230 }
231 return &disk->part0;
232 }
233 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
234
235 /*
236 * Can be deleted altogether. Later.
237 *
238 */
239 static struct blk_major_name {
240 struct blk_major_name *next;
241 int major;
242 char name[16];
243 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
244
245 /* index in the above - for now: assume no multimajor ranges */
246 static inline int major_to_index(unsigned major)
247 {
248 return major % BLKDEV_MAJOR_HASH_SIZE;
249 }
250
251 #ifdef CONFIG_PROC_FS
252 void blkdev_show(struct seq_file *seqf, off_t offset)
253 {
254 struct blk_major_name *dp;
255
256 if (offset < BLKDEV_MAJOR_HASH_SIZE) {
257 mutex_lock(&block_class_lock);
258 for (dp = major_names[offset]; dp; dp = dp->next)
259 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
260 mutex_unlock(&block_class_lock);
261 }
262 }
263 #endif /* CONFIG_PROC_FS */
264
265 /**
266 * register_blkdev - register a new block device
267 *
268 * @major: the requested major device number [1..255]. If @major=0, try to
269 * allocate any unused major number.
270 * @name: the name of the new block device as a zero terminated string
271 *
272 * The @name must be unique within the system.
273 *
274 * The return value depends on the @major input parameter.
275 * - if a major device number was requested in range [1..255] then the
276 * function returns zero on success, or a negative error code
277 * - if any unused major number was requested with @major=0 parameter
278 * then the return value is the allocated major number in range
279 * [1..255] or a negative error code otherwise
280 */
281 int register_blkdev(unsigned int major, const char *name)
282 {
283 struct blk_major_name **n, *p;
284 int index, ret = 0;
285
286 mutex_lock(&block_class_lock);
287
288 /* temporary */
289 if (major == 0) {
290 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
291 if (major_names[index] == NULL)
292 break;
293 }
294
295 if (index == 0) {
296 printk("register_blkdev: failed to get major for %s\n",
297 name);
298 ret = -EBUSY;
299 goto out;
300 }
301 major = index;
302 ret = major;
303 }
304
305 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
306 if (p == NULL) {
307 ret = -ENOMEM;
308 goto out;
309 }
310
311 p->major = major;
312 strlcpy(p->name, name, sizeof(p->name));
313 p->next = NULL;
314 index = major_to_index(major);
315
316 for (n = &major_names[index]; *n; n = &(*n)->next) {
317 if ((*n)->major == major)
318 break;
319 }
320 if (!*n)
321 *n = p;
322 else
323 ret = -EBUSY;
324
325 if (ret < 0) {
326 printk("register_blkdev: cannot get major %d for %s\n",
327 major, name);
328 kfree(p);
329 }
330 out:
331 mutex_unlock(&block_class_lock);
332 return ret;
333 }
334
335 EXPORT_SYMBOL(register_blkdev);
336
337 void unregister_blkdev(unsigned int major, const char *name)
338 {
339 struct blk_major_name **n;
340 struct blk_major_name *p = NULL;
341 int index = major_to_index(major);
342
343 mutex_lock(&block_class_lock);
344 for (n = &major_names[index]; *n; n = &(*n)->next)
345 if ((*n)->major == major)
346 break;
347 if (!*n || strcmp((*n)->name, name)) {
348 WARN_ON(1);
349 } else {
350 p = *n;
351 *n = p->next;
352 }
353 mutex_unlock(&block_class_lock);
354 kfree(p);
355 }
356
357 EXPORT_SYMBOL(unregister_blkdev);
358
359 static struct kobj_map *bdev_map;
360
361 /**
362 * blk_mangle_minor - scatter minor numbers apart
363 * @minor: minor number to mangle
364 *
365 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
366 * is enabled. Mangling twice gives the original value.
367 *
368 * RETURNS:
369 * Mangled value.
370 *
371 * CONTEXT:
372 * Don't care.
373 */
374 static int blk_mangle_minor(int minor)
375 {
376 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
377 int i;
378
379 for (i = 0; i < MINORBITS / 2; i++) {
380 int low = minor & (1 << i);
381 int high = minor & (1 << (MINORBITS - 1 - i));
382 int distance = MINORBITS - 1 - 2 * i;
383
384 minor ^= low | high; /* clear both bits */
385 low <<= distance; /* swap the positions */
386 high >>= distance;
387 minor |= low | high; /* and set */
388 }
389 #endif
390 return minor;
391 }
392
393 /**
394 * blk_alloc_devt - allocate a dev_t for a partition
395 * @part: partition to allocate dev_t for
396 * @devt: out parameter for resulting dev_t
397 *
398 * Allocate a dev_t for block device.
399 *
400 * RETURNS:
401 * 0 on success, allocated dev_t is returned in *@devt. -errno on
402 * failure.
403 *
404 * CONTEXT:
405 * Might sleep.
406 */
407 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
408 {
409 struct gendisk *disk = part_to_disk(part);
410 int idx, rc;
411
412 /* in consecutive minor range? */
413 if (part->partno < disk->minors) {
414 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
415 return 0;
416 }
417
418 /* allocate ext devt */
419 do {
420 if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL))
421 return -ENOMEM;
422 rc = idr_get_new(&ext_devt_idr, part, &idx);
423 } while (rc == -EAGAIN);
424
425 if (rc)
426 return rc;
427
428 if (idx > MAX_EXT_DEVT) {
429 idr_remove(&ext_devt_idr, idx);
430 return -EBUSY;
431 }
432
433 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
434 return 0;
435 }
436
437 /**
438 * blk_free_devt - free a dev_t
439 * @devt: dev_t to free
440 *
441 * Free @devt which was allocated using blk_alloc_devt().
442 *
443 * CONTEXT:
444 * Might sleep.
445 */
446 void blk_free_devt(dev_t devt)
447 {
448 might_sleep();
449
450 if (devt == MKDEV(0, 0))
451 return;
452
453 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
454 mutex_lock(&ext_devt_mutex);
455 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
456 mutex_unlock(&ext_devt_mutex);
457 }
458 }
459
460 static char *bdevt_str(dev_t devt, char *buf)
461 {
462 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
463 char tbuf[BDEVT_SIZE];
464 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
465 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
466 } else
467 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
468
469 return buf;
470 }
471
472 /*
473 * Register device numbers dev..(dev+range-1)
474 * range must be nonzero
475 * The hash chain is sorted on range, so that subranges can override.
476 */
477 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
478 struct kobject *(*probe)(dev_t, int *, void *),
479 int (*lock)(dev_t, void *), void *data)
480 {
481 kobj_map(bdev_map, devt, range, module, probe, lock, data);
482 }
483
484 EXPORT_SYMBOL(blk_register_region);
485
486 void blk_unregister_region(dev_t devt, unsigned long range)
487 {
488 kobj_unmap(bdev_map, devt, range);
489 }
490
491 EXPORT_SYMBOL(blk_unregister_region);
492
493 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
494 {
495 struct gendisk *p = data;
496
497 return &disk_to_dev(p)->kobj;
498 }
499
500 static int exact_lock(dev_t devt, void *data)
501 {
502 struct gendisk *p = data;
503
504 if (!get_disk(p))
505 return -1;
506 return 0;
507 }
508
509 static void register_disk(struct gendisk *disk)
510 {
511 struct device *ddev = disk_to_dev(disk);
512 struct block_device *bdev;
513 struct disk_part_iter piter;
514 struct hd_struct *part;
515 int err;
516
517 ddev->parent = disk->driverfs_dev;
518
519 dev_set_name(ddev, disk->disk_name);
520
521 /* delay uevents, until we scanned partition table */
522 dev_set_uevent_suppress(ddev, 1);
523
524 if (device_add(ddev))
525 return;
526 if (!sysfs_deprecated) {
527 err = sysfs_create_link(block_depr, &ddev->kobj,
528 kobject_name(&ddev->kobj));
529 if (err) {
530 device_del(ddev);
531 return;
532 }
533 }
534 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
535 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
536
537 /* No minors to use for partitions */
538 if (!disk_part_scan_enabled(disk))
539 goto exit;
540
541 /* No such device (e.g., media were just removed) */
542 if (!get_capacity(disk))
543 goto exit;
544
545 bdev = bdget_disk(disk, 0);
546 if (!bdev)
547 goto exit;
548
549 bdev->bd_invalidated = 1;
550 err = blkdev_get(bdev, FMODE_READ, NULL);
551 if (err < 0)
552 goto exit;
553 blkdev_put(bdev, FMODE_READ);
554
555 exit:
556 /* announce disk after possible partitions are created */
557 dev_set_uevent_suppress(ddev, 0);
558 kobject_uevent(&ddev->kobj, KOBJ_ADD);
559
560 /* announce possible partitions */
561 disk_part_iter_init(&piter, disk, 0);
562 while ((part = disk_part_iter_next(&piter)))
563 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
564 disk_part_iter_exit(&piter);
565 }
566
567 /**
568 * add_disk - add partitioning information to kernel list
569 * @disk: per-device partitioning information
570 *
571 * This function registers the partitioning information in @disk
572 * with the kernel.
573 *
574 * FIXME: error handling
575 */
576 void add_disk(struct gendisk *disk)
577 {
578 struct backing_dev_info *bdi;
579 dev_t devt;
580 int retval;
581
582 /* minors == 0 indicates to use ext devt from part0 and should
583 * be accompanied with EXT_DEVT flag. Make sure all
584 * parameters make sense.
585 */
586 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
587 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
588
589 disk->flags |= GENHD_FL_UP;
590
591 retval = blk_alloc_devt(&disk->part0, &devt);
592 if (retval) {
593 WARN_ON(1);
594 return;
595 }
596 disk_to_dev(disk)->devt = devt;
597
598 /* ->major and ->first_minor aren't supposed to be
599 * dereferenced from here on, but set them just in case.
600 */
601 disk->major = MAJOR(devt);
602 disk->first_minor = MINOR(devt);
603
604 /* Register BDI before referencing it from bdev */
605 bdi = &disk->queue->backing_dev_info;
606 bdi_register_dev(bdi, disk_devt(disk));
607
608 blk_register_region(disk_devt(disk), disk->minors, NULL,
609 exact_match, exact_lock, disk);
610 register_disk(disk);
611 blk_register_queue(disk);
612
613 /*
614 * Take an extra ref on queue which will be put on disk_release()
615 * so that it sticks around as long as @disk is there.
616 */
617 WARN_ON_ONCE(!blk_get_queue(disk->queue));
618
619 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
620 "bdi");
621 WARN_ON(retval);
622
623 disk_add_events(disk);
624 }
625 EXPORT_SYMBOL(add_disk);
626
627 void del_gendisk(struct gendisk *disk)
628 {
629 struct disk_part_iter piter;
630 struct hd_struct *part;
631
632 disk_del_events(disk);
633
634 /* invalidate stuff */
635 disk_part_iter_init(&piter, disk,
636 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
637 while ((part = disk_part_iter_next(&piter))) {
638 invalidate_partition(disk, part->partno);
639 delete_partition(disk, part->partno);
640 }
641 disk_part_iter_exit(&piter);
642
643 invalidate_partition(disk, 0);
644 blk_free_devt(disk_to_dev(disk)->devt);
645 set_capacity(disk, 0);
646 disk->flags &= ~GENHD_FL_UP;
647
648 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
649 bdi_unregister(&disk->queue->backing_dev_info);
650 blk_unregister_queue(disk);
651 blk_unregister_region(disk_devt(disk), disk->minors);
652
653 part_stat_set_all(&disk->part0, 0);
654 disk->part0.stamp = 0;
655
656 kobject_put(disk->part0.holder_dir);
657 kobject_put(disk->slave_dir);
658 disk->driverfs_dev = NULL;
659 if (!sysfs_deprecated)
660 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
661 device_del(disk_to_dev(disk));
662 }
663 EXPORT_SYMBOL(del_gendisk);
664
665 /**
666 * get_gendisk - get partitioning information for a given device
667 * @devt: device to get partitioning information for
668 * @partno: returned partition index
669 *
670 * This function gets the structure containing partitioning
671 * information for the given device @devt.
672 */
673 struct gendisk *get_gendisk(dev_t devt, int *partno)
674 {
675 struct gendisk *disk = NULL;
676
677 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
678 struct kobject *kobj;
679
680 kobj = kobj_lookup(bdev_map, devt, partno);
681 if (kobj)
682 disk = dev_to_disk(kobj_to_dev(kobj));
683 } else {
684 struct hd_struct *part;
685
686 mutex_lock(&ext_devt_mutex);
687 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
688 if (part && get_disk(part_to_disk(part))) {
689 *partno = part->partno;
690 disk = part_to_disk(part);
691 }
692 mutex_unlock(&ext_devt_mutex);
693 }
694
695 return disk;
696 }
697 EXPORT_SYMBOL(get_gendisk);
698
699 /**
700 * bdget_disk - do bdget() by gendisk and partition number
701 * @disk: gendisk of interest
702 * @partno: partition number
703 *
704 * Find partition @partno from @disk, do bdget() on it.
705 *
706 * CONTEXT:
707 * Don't care.
708 *
709 * RETURNS:
710 * Resulting block_device on success, NULL on failure.
711 */
712 struct block_device *bdget_disk(struct gendisk *disk, int partno)
713 {
714 struct hd_struct *part;
715 struct block_device *bdev = NULL;
716
717 part = disk_get_part(disk, partno);
718 if (part)
719 bdev = bdget(part_devt(part));
720 disk_put_part(part);
721
722 return bdev;
723 }
724 EXPORT_SYMBOL(bdget_disk);
725
726 /*
727 * print a full list of all partitions - intended for places where the root
728 * filesystem can't be mounted and thus to give the victim some idea of what
729 * went wrong
730 */
731 void __init printk_all_partitions(void)
732 {
733 struct class_dev_iter iter;
734 struct device *dev;
735
736 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
737 while ((dev = class_dev_iter_next(&iter))) {
738 struct gendisk *disk = dev_to_disk(dev);
739 struct disk_part_iter piter;
740 struct hd_struct *part;
741 char name_buf[BDEVNAME_SIZE];
742 char devt_buf[BDEVT_SIZE];
743 u8 uuid[PARTITION_META_INFO_UUIDLTH * 2 + 1];
744
745 /*
746 * Don't show empty devices or things that have been
747 * suppressed
748 */
749 if (get_capacity(disk) == 0 ||
750 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
751 continue;
752
753 /*
754 * Note, unlike /proc/partitions, I am showing the
755 * numbers in hex - the same format as the root=
756 * option takes.
757 */
758 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
759 while ((part = disk_part_iter_next(&piter))) {
760 bool is_part0 = part == &disk->part0;
761
762 uuid[0] = 0;
763 if (part->info)
764 part_unpack_uuid(part->info->uuid, uuid);
765
766 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
767 bdevt_str(part_devt(part), devt_buf),
768 (unsigned long long)part->nr_sects >> 1,
769 disk_name(disk, part->partno, name_buf), uuid);
770 if (is_part0) {
771 if (disk->driverfs_dev != NULL &&
772 disk->driverfs_dev->driver != NULL)
773 printk(" driver: %s\n",
774 disk->driverfs_dev->driver->name);
775 else
776 printk(" (driver?)\n");
777 } else
778 printk("\n");
779 }
780 disk_part_iter_exit(&piter);
781 }
782 class_dev_iter_exit(&iter);
783 }
784
785 #ifdef CONFIG_PROC_FS
786 /* iterator */
787 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
788 {
789 loff_t skip = *pos;
790 struct class_dev_iter *iter;
791 struct device *dev;
792
793 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
794 if (!iter)
795 return ERR_PTR(-ENOMEM);
796
797 seqf->private = iter;
798 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
799 do {
800 dev = class_dev_iter_next(iter);
801 if (!dev)
802 return NULL;
803 } while (skip--);
804
805 return dev_to_disk(dev);
806 }
807
808 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
809 {
810 struct device *dev;
811
812 (*pos)++;
813 dev = class_dev_iter_next(seqf->private);
814 if (dev)
815 return dev_to_disk(dev);
816
817 return NULL;
818 }
819
820 static void disk_seqf_stop(struct seq_file *seqf, void *v)
821 {
822 struct class_dev_iter *iter = seqf->private;
823
824 /* stop is called even after start failed :-( */
825 if (iter) {
826 class_dev_iter_exit(iter);
827 kfree(iter);
828 }
829 }
830
831 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
832 {
833 static void *p;
834
835 p = disk_seqf_start(seqf, pos);
836 if (!IS_ERR_OR_NULL(p) && !*pos)
837 seq_puts(seqf, "major minor #blocks name\n\n");
838 return p;
839 }
840
841 static int show_partition(struct seq_file *seqf, void *v)
842 {
843 struct gendisk *sgp = v;
844 struct disk_part_iter piter;
845 struct hd_struct *part;
846 char buf[BDEVNAME_SIZE];
847
848 /* Don't show non-partitionable removeable devices or empty devices */
849 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
850 (sgp->flags & GENHD_FL_REMOVABLE)))
851 return 0;
852 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
853 return 0;
854
855 /* show the full disk and all non-0 size partitions of it */
856 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
857 while ((part = disk_part_iter_next(&piter)))
858 seq_printf(seqf, "%4d %7d %10llu %s\n",
859 MAJOR(part_devt(part)), MINOR(part_devt(part)),
860 (unsigned long long)part->nr_sects >> 1,
861 disk_name(sgp, part->partno, buf));
862 disk_part_iter_exit(&piter);
863
864 return 0;
865 }
866
867 static const struct seq_operations partitions_op = {
868 .start = show_partition_start,
869 .next = disk_seqf_next,
870 .stop = disk_seqf_stop,
871 .show = show_partition
872 };
873
874 static int partitions_open(struct inode *inode, struct file *file)
875 {
876 return seq_open(file, &partitions_op);
877 }
878
879 static const struct file_operations proc_partitions_operations = {
880 .open = partitions_open,
881 .read = seq_read,
882 .llseek = seq_lseek,
883 .release = seq_release,
884 };
885 #endif
886
887
888 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
889 {
890 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
891 /* Make old-style 2.4 aliases work */
892 request_module("block-major-%d", MAJOR(devt));
893 return NULL;
894 }
895
896 static int __init genhd_device_init(void)
897 {
898 int error;
899
900 block_class.dev_kobj = sysfs_dev_block_kobj;
901 error = class_register(&block_class);
902 if (unlikely(error))
903 return error;
904 bdev_map = kobj_map_init(base_probe, &block_class_lock);
905 blk_dev_init();
906
907 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
908
909 /* create top-level block dir */
910 if (!sysfs_deprecated)
911 block_depr = kobject_create_and_add("block", NULL);
912 return 0;
913 }
914
915 subsys_initcall(genhd_device_init);
916
917 static ssize_t disk_range_show(struct device *dev,
918 struct device_attribute *attr, char *buf)
919 {
920 struct gendisk *disk = dev_to_disk(dev);
921
922 return sprintf(buf, "%d\n", disk->minors);
923 }
924
925 static ssize_t disk_ext_range_show(struct device *dev,
926 struct device_attribute *attr, char *buf)
927 {
928 struct gendisk *disk = dev_to_disk(dev);
929
930 return sprintf(buf, "%d\n", disk_max_parts(disk));
931 }
932
933 static ssize_t disk_removable_show(struct device *dev,
934 struct device_attribute *attr, char *buf)
935 {
936 struct gendisk *disk = dev_to_disk(dev);
937
938 return sprintf(buf, "%d\n",
939 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
940 }
941
942 static ssize_t disk_ro_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944 {
945 struct gendisk *disk = dev_to_disk(dev);
946
947 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
948 }
949
950 static ssize_t disk_capability_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952 {
953 struct gendisk *disk = dev_to_disk(dev);
954
955 return sprintf(buf, "%x\n", disk->flags);
956 }
957
958 static ssize_t disk_alignment_offset_show(struct device *dev,
959 struct device_attribute *attr,
960 char *buf)
961 {
962 struct gendisk *disk = dev_to_disk(dev);
963
964 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
965 }
966
967 static ssize_t disk_discard_alignment_show(struct device *dev,
968 struct device_attribute *attr,
969 char *buf)
970 {
971 struct gendisk *disk = dev_to_disk(dev);
972
973 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
974 }
975
976 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
977 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
978 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
979 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
980 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
981 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
982 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
983 NULL);
984 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
985 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
986 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
987 #ifdef CONFIG_FAIL_MAKE_REQUEST
988 static struct device_attribute dev_attr_fail =
989 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
990 #endif
991 #ifdef CONFIG_FAIL_IO_TIMEOUT
992 static struct device_attribute dev_attr_fail_timeout =
993 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show,
994 part_timeout_store);
995 #endif
996
997 static struct attribute *disk_attrs[] = {
998 &dev_attr_range.attr,
999 &dev_attr_ext_range.attr,
1000 &dev_attr_removable.attr,
1001 &dev_attr_ro.attr,
1002 &dev_attr_size.attr,
1003 &dev_attr_alignment_offset.attr,
1004 &dev_attr_discard_alignment.attr,
1005 &dev_attr_capability.attr,
1006 &dev_attr_stat.attr,
1007 &dev_attr_inflight.attr,
1008 #ifdef CONFIG_FAIL_MAKE_REQUEST
1009 &dev_attr_fail.attr,
1010 #endif
1011 #ifdef CONFIG_FAIL_IO_TIMEOUT
1012 &dev_attr_fail_timeout.attr,
1013 #endif
1014 NULL
1015 };
1016
1017 static struct attribute_group disk_attr_group = {
1018 .attrs = disk_attrs,
1019 };
1020
1021 static const struct attribute_group *disk_attr_groups[] = {
1022 &disk_attr_group,
1023 NULL
1024 };
1025
1026 /**
1027 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1028 * @disk: disk to replace part_tbl for
1029 * @new_ptbl: new part_tbl to install
1030 *
1031 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1032 * original ptbl is freed using RCU callback.
1033 *
1034 * LOCKING:
1035 * Matching bd_mutx locked.
1036 */
1037 static void disk_replace_part_tbl(struct gendisk *disk,
1038 struct disk_part_tbl *new_ptbl)
1039 {
1040 struct disk_part_tbl *old_ptbl = disk->part_tbl;
1041
1042 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1043
1044 if (old_ptbl) {
1045 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1046 kfree_rcu(old_ptbl, rcu_head);
1047 }
1048 }
1049
1050 /**
1051 * disk_expand_part_tbl - expand disk->part_tbl
1052 * @disk: disk to expand part_tbl for
1053 * @partno: expand such that this partno can fit in
1054 *
1055 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1056 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1057 *
1058 * LOCKING:
1059 * Matching bd_mutex locked, might sleep.
1060 *
1061 * RETURNS:
1062 * 0 on success, -errno on failure.
1063 */
1064 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1065 {
1066 struct disk_part_tbl *old_ptbl = disk->part_tbl;
1067 struct disk_part_tbl *new_ptbl;
1068 int len = old_ptbl ? old_ptbl->len : 0;
1069 int target = partno + 1;
1070 size_t size;
1071 int i;
1072
1073 /* disk_max_parts() is zero during initialization, ignore if so */
1074 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1075 return -EINVAL;
1076
1077 if (target <= len)
1078 return 0;
1079
1080 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1081 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1082 if (!new_ptbl)
1083 return -ENOMEM;
1084
1085 new_ptbl->len = target;
1086
1087 for (i = 0; i < len; i++)
1088 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1089
1090 disk_replace_part_tbl(disk, new_ptbl);
1091 return 0;
1092 }
1093
1094 static void disk_release(struct device *dev)
1095 {
1096 struct gendisk *disk = dev_to_disk(dev);
1097
1098 disk_release_events(disk);
1099 kfree(disk->random);
1100 disk_replace_part_tbl(disk, NULL);
1101 free_part_stats(&disk->part0);
1102 free_part_info(&disk->part0);
1103 if (disk->queue)
1104 blk_put_queue(disk->queue);
1105 kfree(disk);
1106 }
1107 struct class block_class = {
1108 .name = "block",
1109 };
1110
1111 static char *block_devnode(struct device *dev, umode_t *mode)
1112 {
1113 struct gendisk *disk = dev_to_disk(dev);
1114
1115 if (disk->devnode)
1116 return disk->devnode(disk, mode);
1117 return NULL;
1118 }
1119
1120 static struct device_type disk_type = {
1121 .name = "disk",
1122 .groups = disk_attr_groups,
1123 .release = disk_release,
1124 .devnode = block_devnode,
1125 };
1126
1127 #ifdef CONFIG_PROC_FS
1128 /*
1129 * aggregate disk stat collector. Uses the same stats that the sysfs
1130 * entries do, above, but makes them available through one seq_file.
1131 *
1132 * The output looks suspiciously like /proc/partitions with a bunch of
1133 * extra fields.
1134 */
1135 static int diskstats_show(struct seq_file *seqf, void *v)
1136 {
1137 struct gendisk *gp = v;
1138 struct disk_part_iter piter;
1139 struct hd_struct *hd;
1140 char buf[BDEVNAME_SIZE];
1141 int cpu;
1142
1143 /*
1144 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1145 seq_puts(seqf, "major minor name"
1146 " rio rmerge rsect ruse wio wmerge "
1147 "wsect wuse running use aveq"
1148 "\n\n");
1149 */
1150
1151 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1152 while ((hd = disk_part_iter_next(&piter))) {
1153 cpu = part_stat_lock();
1154 part_round_stats(cpu, hd);
1155 part_stat_unlock();
1156 seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1157 "%u %lu %lu %lu %u %u %u %u\n",
1158 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1159 disk_name(gp, hd->partno, buf),
1160 part_stat_read(hd, ios[READ]),
1161 part_stat_read(hd, merges[READ]),
1162 part_stat_read(hd, sectors[READ]),
1163 jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1164 part_stat_read(hd, ios[WRITE]),
1165 part_stat_read(hd, merges[WRITE]),
1166 part_stat_read(hd, sectors[WRITE]),
1167 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1168 part_in_flight(hd),
1169 jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1170 jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1171 );
1172 }
1173 disk_part_iter_exit(&piter);
1174
1175 return 0;
1176 }
1177
1178 static const struct seq_operations diskstats_op = {
1179 .start = disk_seqf_start,
1180 .next = disk_seqf_next,
1181 .stop = disk_seqf_stop,
1182 .show = diskstats_show
1183 };
1184
1185 static int diskstats_open(struct inode *inode, struct file *file)
1186 {
1187 return seq_open(file, &diskstats_op);
1188 }
1189
1190 static const struct file_operations proc_diskstats_operations = {
1191 .open = diskstats_open,
1192 .read = seq_read,
1193 .llseek = seq_lseek,
1194 .release = seq_release,
1195 };
1196
1197 static int __init proc_genhd_init(void)
1198 {
1199 proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1200 proc_create("partitions", 0, NULL, &proc_partitions_operations);
1201 return 0;
1202 }
1203 module_init(proc_genhd_init);
1204 #endif /* CONFIG_PROC_FS */
1205
1206 dev_t blk_lookup_devt(const char *name, int partno)
1207 {
1208 dev_t devt = MKDEV(0, 0);
1209 struct class_dev_iter iter;
1210 struct device *dev;
1211
1212 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1213 while ((dev = class_dev_iter_next(&iter))) {
1214 struct gendisk *disk = dev_to_disk(dev);
1215 struct hd_struct *part;
1216
1217 if (strcmp(dev_name(dev), name))
1218 continue;
1219
1220 if (partno < disk->minors) {
1221 /* We need to return the right devno, even
1222 * if the partition doesn't exist yet.
1223 */
1224 devt = MKDEV(MAJOR(dev->devt),
1225 MINOR(dev->devt) + partno);
1226 break;
1227 }
1228 part = disk_get_part(disk, partno);
1229 if (part) {
1230 devt = part_devt(part);
1231 disk_put_part(part);
1232 break;
1233 }
1234 disk_put_part(part);
1235 }
1236 class_dev_iter_exit(&iter);
1237 return devt;
1238 }
1239 EXPORT_SYMBOL(blk_lookup_devt);
1240
1241 struct gendisk *alloc_disk(int minors)
1242 {
1243 return alloc_disk_node(minors, -1);
1244 }
1245 EXPORT_SYMBOL(alloc_disk);
1246
1247 struct gendisk *alloc_disk_node(int minors, int node_id)
1248 {
1249 struct gendisk *disk;
1250
1251 disk = kmalloc_node(sizeof(struct gendisk),
1252 GFP_KERNEL | __GFP_ZERO, node_id);
1253 if (disk) {
1254 if (!init_part_stats(&disk->part0)) {
1255 kfree(disk);
1256 return NULL;
1257 }
1258 disk->node_id = node_id;
1259 if (disk_expand_part_tbl(disk, 0)) {
1260 free_part_stats(&disk->part0);
1261 kfree(disk);
1262 return NULL;
1263 }
1264 disk->part_tbl->part[0] = &disk->part0;
1265
1266 hd_ref_init(&disk->part0);
1267
1268 disk->minors = minors;
1269 rand_initialize_disk(disk);
1270 disk_to_dev(disk)->class = &block_class;
1271 disk_to_dev(disk)->type = &disk_type;
1272 device_initialize(disk_to_dev(disk));
1273 }
1274 return disk;
1275 }
1276 EXPORT_SYMBOL(alloc_disk_node);
1277
1278 struct kobject *get_disk(struct gendisk *disk)
1279 {
1280 struct module *owner;
1281 struct kobject *kobj;
1282
1283 if (!disk->fops)
1284 return NULL;
1285 owner = disk->fops->owner;
1286 if (owner && !try_module_get(owner))
1287 return NULL;
1288 kobj = kobject_get(&disk_to_dev(disk)->kobj);
1289 if (kobj == NULL) {
1290 module_put(owner);
1291 return NULL;
1292 }
1293 return kobj;
1294
1295 }
1296
1297 EXPORT_SYMBOL(get_disk);
1298
1299 void put_disk(struct gendisk *disk)
1300 {
1301 if (disk)
1302 kobject_put(&disk_to_dev(disk)->kobj);
1303 }
1304
1305 EXPORT_SYMBOL(put_disk);
1306
1307 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1308 {
1309 char event[] = "DISK_RO=1";
1310 char *envp[] = { event, NULL };
1311
1312 if (!ro)
1313 event[8] = '0';
1314 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1315 }
1316
1317 void set_device_ro(struct block_device *bdev, int flag)
1318 {
1319 bdev->bd_part->policy = flag;
1320 }
1321
1322 EXPORT_SYMBOL(set_device_ro);
1323
1324 void set_disk_ro(struct gendisk *disk, int flag)
1325 {
1326 struct disk_part_iter piter;
1327 struct hd_struct *part;
1328
1329 if (disk->part0.policy != flag) {
1330 set_disk_ro_uevent(disk, flag);
1331 disk->part0.policy = flag;
1332 }
1333
1334 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1335 while ((part = disk_part_iter_next(&piter)))
1336 part->policy = flag;
1337 disk_part_iter_exit(&piter);
1338 }
1339
1340 EXPORT_SYMBOL(set_disk_ro);
1341
1342 int bdev_read_only(struct block_device *bdev)
1343 {
1344 if (!bdev)
1345 return 0;
1346 return bdev->bd_part->policy;
1347 }
1348
1349 EXPORT_SYMBOL(bdev_read_only);
1350
1351 int invalidate_partition(struct gendisk *disk, int partno)
1352 {
1353 int res = 0;
1354 struct block_device *bdev = bdget_disk(disk, partno);
1355 if (bdev) {
1356 fsync_bdev(bdev);
1357 res = __invalidate_device(bdev, true);
1358 bdput(bdev);
1359 }
1360 return res;
1361 }
1362
1363 EXPORT_SYMBOL(invalidate_partition);
1364
1365 /*
1366 * Disk events - monitor disk events like media change and eject request.
1367 */
1368 struct disk_events {
1369 struct list_head node; /* all disk_event's */
1370 struct gendisk *disk; /* the associated disk */
1371 spinlock_t lock;
1372
1373 struct mutex block_mutex; /* protects blocking */
1374 int block; /* event blocking depth */
1375 unsigned int pending; /* events already sent out */
1376 unsigned int clearing; /* events being cleared */
1377
1378 long poll_msecs; /* interval, -1 for default */
1379 struct delayed_work dwork;
1380 };
1381
1382 static const char *disk_events_strs[] = {
1383 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1384 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1385 };
1386
1387 static char *disk_uevents[] = {
1388 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1389 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1390 };
1391
1392 /* list of all disk_events */
1393 static DEFINE_MUTEX(disk_events_mutex);
1394 static LIST_HEAD(disk_events);
1395
1396 /* disable in-kernel polling by default */
1397 static unsigned long disk_events_dfl_poll_msecs = 0;
1398
1399 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1400 {
1401 struct disk_events *ev = disk->ev;
1402 long intv_msecs = 0;
1403
1404 /*
1405 * If device-specific poll interval is set, always use it. If
1406 * the default is being used, poll iff there are events which
1407 * can't be monitored asynchronously.
1408 */
1409 if (ev->poll_msecs >= 0)
1410 intv_msecs = ev->poll_msecs;
1411 else if (disk->events & ~disk->async_events)
1412 intv_msecs = disk_events_dfl_poll_msecs;
1413
1414 return msecs_to_jiffies(intv_msecs);
1415 }
1416
1417 /**
1418 * disk_block_events - block and flush disk event checking
1419 * @disk: disk to block events for
1420 *
1421 * On return from this function, it is guaranteed that event checking
1422 * isn't in progress and won't happen until unblocked by
1423 * disk_unblock_events(). Events blocking is counted and the actual
1424 * unblocking happens after the matching number of unblocks are done.
1425 *
1426 * Note that this intentionally does not block event checking from
1427 * disk_clear_events().
1428 *
1429 * CONTEXT:
1430 * Might sleep.
1431 */
1432 void disk_block_events(struct gendisk *disk)
1433 {
1434 struct disk_events *ev = disk->ev;
1435 unsigned long flags;
1436 bool cancel;
1437
1438 if (!ev)
1439 return;
1440
1441 /*
1442 * Outer mutex ensures that the first blocker completes canceling
1443 * the event work before further blockers are allowed to finish.
1444 */
1445 mutex_lock(&ev->block_mutex);
1446
1447 spin_lock_irqsave(&ev->lock, flags);
1448 cancel = !ev->block++;
1449 spin_unlock_irqrestore(&ev->lock, flags);
1450
1451 if (cancel)
1452 cancel_delayed_work_sync(&disk->ev->dwork);
1453
1454 mutex_unlock(&ev->block_mutex);
1455 }
1456
1457 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1458 {
1459 struct disk_events *ev = disk->ev;
1460 unsigned long intv;
1461 unsigned long flags;
1462
1463 spin_lock_irqsave(&ev->lock, flags);
1464
1465 if (WARN_ON_ONCE(ev->block <= 0))
1466 goto out_unlock;
1467
1468 if (--ev->block)
1469 goto out_unlock;
1470
1471 /*
1472 * Not exactly a latency critical operation, set poll timer
1473 * slack to 25% and kick event check.
1474 */
1475 intv = disk_events_poll_jiffies(disk);
1476 set_timer_slack(&ev->dwork.timer, intv / 4);
1477 if (check_now)
1478 queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1479 else if (intv)
1480 queue_delayed_work(system_nrt_wq, &ev->dwork, intv);
1481 out_unlock:
1482 spin_unlock_irqrestore(&ev->lock, flags);
1483 }
1484
1485 /**
1486 * disk_unblock_events - unblock disk event checking
1487 * @disk: disk to unblock events for
1488 *
1489 * Undo disk_block_events(). When the block count reaches zero, it
1490 * starts events polling if configured.
1491 *
1492 * CONTEXT:
1493 * Don't care. Safe to call from irq context.
1494 */
1495 void disk_unblock_events(struct gendisk *disk)
1496 {
1497 if (disk->ev)
1498 __disk_unblock_events(disk, false);
1499 }
1500
1501 /**
1502 * disk_flush_events - schedule immediate event checking and flushing
1503 * @disk: disk to check and flush events for
1504 * @mask: events to flush
1505 *
1506 * Schedule immediate event checking on @disk if not blocked. Events in
1507 * @mask are scheduled to be cleared from the driver. Note that this
1508 * doesn't clear the events from @disk->ev.
1509 *
1510 * CONTEXT:
1511 * If @mask is non-zero must be called with bdev->bd_mutex held.
1512 */
1513 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1514 {
1515 struct disk_events *ev = disk->ev;
1516
1517 if (!ev)
1518 return;
1519
1520 spin_lock_irq(&ev->lock);
1521 ev->clearing |= mask;
1522 if (!ev->block) {
1523 cancel_delayed_work(&ev->dwork);
1524 queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1525 }
1526 spin_unlock_irq(&ev->lock);
1527 }
1528
1529 /**
1530 * disk_clear_events - synchronously check, clear and return pending events
1531 * @disk: disk to fetch and clear events from
1532 * @mask: mask of events to be fetched and clearted
1533 *
1534 * Disk events are synchronously checked and pending events in @mask
1535 * are cleared and returned. This ignores the block count.
1536 *
1537 * CONTEXT:
1538 * Might sleep.
1539 */
1540 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1541 {
1542 const struct block_device_operations *bdops = disk->fops;
1543 struct disk_events *ev = disk->ev;
1544 unsigned int pending;
1545
1546 if (!ev) {
1547 /* for drivers still using the old ->media_changed method */
1548 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1549 bdops->media_changed && bdops->media_changed(disk))
1550 return DISK_EVENT_MEDIA_CHANGE;
1551 return 0;
1552 }
1553
1554 /* tell the workfn about the events being cleared */
1555 spin_lock_irq(&ev->lock);
1556 ev->clearing |= mask;
1557 spin_unlock_irq(&ev->lock);
1558
1559 /* uncondtionally schedule event check and wait for it to finish */
1560 disk_block_events(disk);
1561 queue_delayed_work(system_nrt_wq, &ev->dwork, 0);
1562 flush_delayed_work(&ev->dwork);
1563 __disk_unblock_events(disk, false);
1564
1565 /* then, fetch and clear pending events */
1566 spin_lock_irq(&ev->lock);
1567 WARN_ON_ONCE(ev->clearing & mask); /* cleared by workfn */
1568 pending = ev->pending & mask;
1569 ev->pending &= ~mask;
1570 spin_unlock_irq(&ev->lock);
1571
1572 return pending;
1573 }
1574
1575 static void disk_events_workfn(struct work_struct *work)
1576 {
1577 struct delayed_work *dwork = to_delayed_work(work);
1578 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1579 struct gendisk *disk = ev->disk;
1580 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1581 unsigned int clearing = ev->clearing;
1582 unsigned int events;
1583 unsigned long intv;
1584 int nr_events = 0, i;
1585
1586 /* check events */
1587 events = disk->fops->check_events(disk, clearing);
1588
1589 /* accumulate pending events and schedule next poll if necessary */
1590 spin_lock_irq(&ev->lock);
1591
1592 events &= ~ev->pending;
1593 ev->pending |= events;
1594 ev->clearing &= ~clearing;
1595
1596 intv = disk_events_poll_jiffies(disk);
1597 if (!ev->block && intv)
1598 queue_delayed_work(system_nrt_wq, &ev->dwork, intv);
1599
1600 spin_unlock_irq(&ev->lock);
1601
1602 /*
1603 * Tell userland about new events. Only the events listed in
1604 * @disk->events are reported. Unlisted events are processed the
1605 * same internally but never get reported to userland.
1606 */
1607 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1608 if (events & disk->events & (1 << i))
1609 envp[nr_events++] = disk_uevents[i];
1610
1611 if (nr_events)
1612 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1613 }
1614
1615 /*
1616 * A disk events enabled device has the following sysfs nodes under
1617 * its /sys/block/X/ directory.
1618 *
1619 * events : list of all supported events
1620 * events_async : list of events which can be detected w/o polling
1621 * events_poll_msecs : polling interval, 0: disable, -1: system default
1622 */
1623 static ssize_t __disk_events_show(unsigned int events, char *buf)
1624 {
1625 const char *delim = "";
1626 ssize_t pos = 0;
1627 int i;
1628
1629 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1630 if (events & (1 << i)) {
1631 pos += sprintf(buf + pos, "%s%s",
1632 delim, disk_events_strs[i]);
1633 delim = " ";
1634 }
1635 if (pos)
1636 pos += sprintf(buf + pos, "\n");
1637 return pos;
1638 }
1639
1640 static ssize_t disk_events_show(struct device *dev,
1641 struct device_attribute *attr, char *buf)
1642 {
1643 struct gendisk *disk = dev_to_disk(dev);
1644
1645 return __disk_events_show(disk->events, buf);
1646 }
1647
1648 static ssize_t disk_events_async_show(struct device *dev,
1649 struct device_attribute *attr, char *buf)
1650 {
1651 struct gendisk *disk = dev_to_disk(dev);
1652
1653 return __disk_events_show(disk->async_events, buf);
1654 }
1655
1656 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1657 struct device_attribute *attr,
1658 char *buf)
1659 {
1660 struct gendisk *disk = dev_to_disk(dev);
1661
1662 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1663 }
1664
1665 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1666 struct device_attribute *attr,
1667 const char *buf, size_t count)
1668 {
1669 struct gendisk *disk = dev_to_disk(dev);
1670 long intv;
1671
1672 if (!count || !sscanf(buf, "%ld", &intv))
1673 return -EINVAL;
1674
1675 if (intv < 0 && intv != -1)
1676 return -EINVAL;
1677
1678 disk_block_events(disk);
1679 disk->ev->poll_msecs = intv;
1680 __disk_unblock_events(disk, true);
1681
1682 return count;
1683 }
1684
1685 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1686 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1687 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1688 disk_events_poll_msecs_show,
1689 disk_events_poll_msecs_store);
1690
1691 static const struct attribute *disk_events_attrs[] = {
1692 &dev_attr_events.attr,
1693 &dev_attr_events_async.attr,
1694 &dev_attr_events_poll_msecs.attr,
1695 NULL,
1696 };
1697
1698 /*
1699 * The default polling interval can be specified by the kernel
1700 * parameter block.events_dfl_poll_msecs which defaults to 0
1701 * (disable). This can also be modified runtime by writing to
1702 * /sys/module/block/events_dfl_poll_msecs.
1703 */
1704 static int disk_events_set_dfl_poll_msecs(const char *val,
1705 const struct kernel_param *kp)
1706 {
1707 struct disk_events *ev;
1708 int ret;
1709
1710 ret = param_set_ulong(val, kp);
1711 if (ret < 0)
1712 return ret;
1713
1714 mutex_lock(&disk_events_mutex);
1715
1716 list_for_each_entry(ev, &disk_events, node)
1717 disk_flush_events(ev->disk, 0);
1718
1719 mutex_unlock(&disk_events_mutex);
1720
1721 return 0;
1722 }
1723
1724 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1725 .set = disk_events_set_dfl_poll_msecs,
1726 .get = param_get_ulong,
1727 };
1728
1729 #undef MODULE_PARAM_PREFIX
1730 #define MODULE_PARAM_PREFIX "block."
1731
1732 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1733 &disk_events_dfl_poll_msecs, 0644);
1734
1735 /*
1736 * disk_{add|del|release}_events - initialize and destroy disk_events.
1737 */
1738 static void disk_add_events(struct gendisk *disk)
1739 {
1740 struct disk_events *ev;
1741
1742 if (!disk->fops->check_events)
1743 return;
1744
1745 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1746 if (!ev) {
1747 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1748 return;
1749 }
1750
1751 if (sysfs_create_files(&disk_to_dev(disk)->kobj,
1752 disk_events_attrs) < 0) {
1753 pr_warn("%s: failed to create sysfs files for events\n",
1754 disk->disk_name);
1755 kfree(ev);
1756 return;
1757 }
1758
1759 disk->ev = ev;
1760
1761 INIT_LIST_HEAD(&ev->node);
1762 ev->disk = disk;
1763 spin_lock_init(&ev->lock);
1764 mutex_init(&ev->block_mutex);
1765 ev->block = 1;
1766 ev->poll_msecs = -1;
1767 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1768
1769 mutex_lock(&disk_events_mutex);
1770 list_add_tail(&ev->node, &disk_events);
1771 mutex_unlock(&disk_events_mutex);
1772
1773 /*
1774 * Block count is initialized to 1 and the following initial
1775 * unblock kicks it into action.
1776 */
1777 __disk_unblock_events(disk, true);
1778 }
1779
1780 static void disk_del_events(struct gendisk *disk)
1781 {
1782 if (!disk->ev)
1783 return;
1784
1785 disk_block_events(disk);
1786
1787 mutex_lock(&disk_events_mutex);
1788 list_del_init(&disk->ev->node);
1789 mutex_unlock(&disk_events_mutex);
1790
1791 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1792 }
1793
1794 static void disk_release_events(struct gendisk *disk)
1795 {
1796 /* the block count should be 1 from disk_del_events() */
1797 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1798 kfree(disk->ev);
1799 }