Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "blk-cgroup.h"
19
20 /*
21 * tunables
22 */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37
38 /*
39 * offset from end of service tree
40 */
41 #define CFQ_IDLE_DELAY (HZ / 5)
42
43 /*
44 * below this threshold, we consider thinktime immediate
45 */
46 #define CFQ_MIN_TT (2)
47
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
51
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61 static struct kmem_cache *cfq_pool;
62
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70 struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76 };
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 u64 min_vdisktime;
89 struct cfq_ttime ttime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
92 .ttime = {.last_end_request = jiffies,},}
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending priority requests */
133 int prio_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_class_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 struct cfqg_stats {
174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
175 /* total bytes transferred */
176 struct blkg_rwstat service_bytes;
177 /* total IOs serviced, post merge */
178 struct blkg_rwstat serviced;
179 /* number of ios merged */
180 struct blkg_rwstat merged;
181 /* total time spent on device in ns, may not be accurate w/ queueing */
182 struct blkg_rwstat service_time;
183 /* total time spent waiting in scheduler queue in ns */
184 struct blkg_rwstat wait_time;
185 /* number of IOs queued up */
186 struct blkg_rwstat queued;
187 /* total sectors transferred */
188 struct blkg_stat sectors;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time;
208 uint64_t start_idle_time;
209 uint64_t start_empty_time;
210 uint16_t flags;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
213 };
214
215 /* This is per cgroup per device grouping structure */
216 struct cfq_group {
217 /* must be the first member */
218 struct blkg_policy_data pd;
219
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225
226 /*
227 * The number of active cfqgs and sum of their weights under this
228 * cfqg. This covers this cfqg's leaf_weight and all children's
229 * weights, but does not cover weights of further descendants.
230 *
231 * If a cfqg is on the service tree, it's active. An active cfqg
232 * also activates its parent and contributes to the children_weight
233 * of the parent.
234 */
235 int nr_active;
236 unsigned int children_weight;
237
238 /*
239 * vfraction is the fraction of vdisktime that the tasks in this
240 * cfqg are entitled to. This is determined by compounding the
241 * ratios walking up from this cfqg to the root.
242 *
243 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244 * vfractions on a service tree is approximately 1. The sum may
245 * deviate a bit due to rounding errors and fluctuations caused by
246 * cfqgs entering and leaving the service tree.
247 */
248 unsigned int vfraction;
249
250 /*
251 * There are two weights - (internal) weight is the weight of this
252 * cfqg against the sibling cfqgs. leaf_weight is the wight of
253 * this cfqg against the child cfqgs. For the root cfqg, both
254 * weights are kept in sync for backward compatibility.
255 */
256 unsigned int weight;
257 unsigned int new_weight;
258 unsigned int dev_weight;
259
260 unsigned int leaf_weight;
261 unsigned int new_leaf_weight;
262 unsigned int dev_leaf_weight;
263
264 /* number of cfqq currently on this group */
265 int nr_cfqq;
266
267 /*
268 * Per group busy queues average. Useful for workload slice calc. We
269 * create the array for each prio class but at run time it is used
270 * only for RT and BE class and slot for IDLE class remains unused.
271 * This is primarily done to avoid confusion and a gcc warning.
272 */
273 unsigned int busy_queues_avg[CFQ_PRIO_NR];
274 /*
275 * rr lists of queues with requests. We maintain service trees for
276 * RT and BE classes. These trees are subdivided in subclasses
277 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278 * class there is no subclassification and all the cfq queues go on
279 * a single tree service_tree_idle.
280 * Counts are embedded in the cfq_rb_root
281 */
282 struct cfq_rb_root service_trees[2][3];
283 struct cfq_rb_root service_tree_idle;
284
285 unsigned long saved_wl_slice;
286 enum wl_type_t saved_wl_type;
287 enum wl_class_t saved_wl_class;
288
289 /* number of requests that are on the dispatch list or inside driver */
290 int dispatched;
291 struct cfq_ttime ttime;
292 struct cfqg_stats stats; /* stats for this cfqg */
293 struct cfqg_stats dead_stats; /* stats pushed from dead children */
294 };
295
296 struct cfq_io_cq {
297 struct io_cq icq; /* must be the first member */
298 struct cfq_queue *cfqq[2];
299 struct cfq_ttime ttime;
300 int ioprio; /* the current ioprio */
301 #ifdef CONFIG_CFQ_GROUP_IOSCHED
302 uint64_t blkcg_id; /* the current blkcg ID */
303 #endif
304 };
305
306 /*
307 * Per block device queue structure
308 */
309 struct cfq_data {
310 struct request_queue *queue;
311 /* Root service tree for cfq_groups */
312 struct cfq_rb_root grp_service_tree;
313 struct cfq_group *root_group;
314
315 /*
316 * The priority currently being served
317 */
318 enum wl_class_t serving_wl_class;
319 enum wl_type_t serving_wl_type;
320 unsigned long workload_expires;
321 struct cfq_group *serving_group;
322
323 /*
324 * Each priority tree is sorted by next_request position. These
325 * trees are used when determining if two or more queues are
326 * interleaving requests (see cfq_close_cooperator).
327 */
328 struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330 unsigned int busy_queues;
331 unsigned int busy_sync_queues;
332
333 int rq_in_driver;
334 int rq_in_flight[2];
335
336 /*
337 * queue-depth detection
338 */
339 int rq_queued;
340 int hw_tag;
341 /*
342 * hw_tag can be
343 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345 * 0 => no NCQ
346 */
347 int hw_tag_est_depth;
348 unsigned int hw_tag_samples;
349
350 /*
351 * idle window management
352 */
353 struct timer_list idle_slice_timer;
354 struct work_struct unplug_work;
355
356 struct cfq_queue *active_queue;
357 struct cfq_io_cq *active_cic;
358
359 /*
360 * async queue for each priority case
361 */
362 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363 struct cfq_queue *async_idle_cfqq;
364
365 sector_t last_position;
366
367 /*
368 * tunables, see top of file
369 */
370 unsigned int cfq_quantum;
371 unsigned int cfq_fifo_expire[2];
372 unsigned int cfq_back_penalty;
373 unsigned int cfq_back_max;
374 unsigned int cfq_slice[2];
375 unsigned int cfq_slice_async_rq;
376 unsigned int cfq_slice_idle;
377 unsigned int cfq_group_idle;
378 unsigned int cfq_latency;
379 unsigned int cfq_target_latency;
380
381 /*
382 * Fallback dummy cfqq for extreme OOM conditions
383 */
384 struct cfq_queue oom_cfqq;
385
386 unsigned long last_delayed_sync;
387 };
388
389 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392 enum wl_class_t class,
393 enum wl_type_t type)
394 {
395 if (!cfqg)
396 return NULL;
397
398 if (class == IDLE_WORKLOAD)
399 return &cfqg->service_tree_idle;
400
401 return &cfqg->service_trees[class][type];
402 }
403
404 enum cfqq_state_flags {
405 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
406 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
407 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
408 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
409 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
410 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
411 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
412 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
413 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
414 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
415 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
416 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
417 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
418 };
419
420 #define CFQ_CFQQ_FNS(name) \
421 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
422 { \
423 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
424 } \
425 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
426 { \
427 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
428 } \
429 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
430 { \
431 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
432 }
433
434 CFQ_CFQQ_FNS(on_rr);
435 CFQ_CFQQ_FNS(wait_request);
436 CFQ_CFQQ_FNS(must_dispatch);
437 CFQ_CFQQ_FNS(must_alloc_slice);
438 CFQ_CFQQ_FNS(fifo_expire);
439 CFQ_CFQQ_FNS(idle_window);
440 CFQ_CFQQ_FNS(prio_changed);
441 CFQ_CFQQ_FNS(slice_new);
442 CFQ_CFQQ_FNS(sync);
443 CFQ_CFQQ_FNS(coop);
444 CFQ_CFQQ_FNS(split_coop);
445 CFQ_CFQQ_FNS(deep);
446 CFQ_CFQQ_FNS(wait_busy);
447 #undef CFQ_CFQQ_FNS
448
449 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450 {
451 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452 }
453
454 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455 {
456 return pd_to_blkg(&cfqg->pd);
457 }
458
459 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461 /* cfqg stats flags */
462 enum cfqg_stats_flags {
463 CFQG_stats_waiting = 0,
464 CFQG_stats_idling,
465 CFQG_stats_empty,
466 };
467
468 #define CFQG_FLAG_FNS(name) \
469 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470 { \
471 stats->flags |= (1 << CFQG_stats_##name); \
472 } \
473 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474 { \
475 stats->flags &= ~(1 << CFQG_stats_##name); \
476 } \
477 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478 { \
479 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480 } \
481
482 CFQG_FLAG_FNS(waiting)
483 CFQG_FLAG_FNS(idling)
484 CFQG_FLAG_FNS(empty)
485 #undef CFQG_FLAG_FNS
486
487 /* This should be called with the queue_lock held. */
488 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489 {
490 unsigned long long now;
491
492 if (!cfqg_stats_waiting(stats))
493 return;
494
495 now = sched_clock();
496 if (time_after64(now, stats->start_group_wait_time))
497 blkg_stat_add(&stats->group_wait_time,
498 now - stats->start_group_wait_time);
499 cfqg_stats_clear_waiting(stats);
500 }
501
502 /* This should be called with the queue_lock held. */
503 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504 struct cfq_group *curr_cfqg)
505 {
506 struct cfqg_stats *stats = &cfqg->stats;
507
508 if (cfqg_stats_waiting(stats))
509 return;
510 if (cfqg == curr_cfqg)
511 return;
512 stats->start_group_wait_time = sched_clock();
513 cfqg_stats_mark_waiting(stats);
514 }
515
516 /* This should be called with the queue_lock held. */
517 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518 {
519 unsigned long long now;
520
521 if (!cfqg_stats_empty(stats))
522 return;
523
524 now = sched_clock();
525 if (time_after64(now, stats->start_empty_time))
526 blkg_stat_add(&stats->empty_time,
527 now - stats->start_empty_time);
528 cfqg_stats_clear_empty(stats);
529 }
530
531 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532 {
533 blkg_stat_add(&cfqg->stats.dequeue, 1);
534 }
535
536 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537 {
538 struct cfqg_stats *stats = &cfqg->stats;
539
540 if (blkg_rwstat_total(&stats->queued))
541 return;
542
543 /*
544 * group is already marked empty. This can happen if cfqq got new
545 * request in parent group and moved to this group while being added
546 * to service tree. Just ignore the event and move on.
547 */
548 if (cfqg_stats_empty(stats))
549 return;
550
551 stats->start_empty_time = sched_clock();
552 cfqg_stats_mark_empty(stats);
553 }
554
555 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556 {
557 struct cfqg_stats *stats = &cfqg->stats;
558
559 if (cfqg_stats_idling(stats)) {
560 unsigned long long now = sched_clock();
561
562 if (time_after64(now, stats->start_idle_time))
563 blkg_stat_add(&stats->idle_time,
564 now - stats->start_idle_time);
565 cfqg_stats_clear_idling(stats);
566 }
567 }
568
569 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570 {
571 struct cfqg_stats *stats = &cfqg->stats;
572
573 BUG_ON(cfqg_stats_idling(stats));
574
575 stats->start_idle_time = sched_clock();
576 cfqg_stats_mark_idling(stats);
577 }
578
579 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580 {
581 struct cfqg_stats *stats = &cfqg->stats;
582
583 blkg_stat_add(&stats->avg_queue_size_sum,
584 blkg_rwstat_total(&stats->queued));
585 blkg_stat_add(&stats->avg_queue_size_samples, 1);
586 cfqg_stats_update_group_wait_time(stats);
587 }
588
589 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603 static struct blkcg_policy blkcg_policy_cfq;
604
605 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606 {
607 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608 }
609
610 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611 {
612 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615 }
616
617 static inline void cfqg_get(struct cfq_group *cfqg)
618 {
619 return blkg_get(cfqg_to_blkg(cfqg));
620 }
621
622 static inline void cfqg_put(struct cfq_group *cfqg)
623 {
624 return blkg_put(cfqg_to_blkg(cfqg));
625 }
626
627 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
628 char __pbuf[128]; \
629 \
630 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
631 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
633 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634 __pbuf, ##args); \
635 } while (0)
636
637 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
638 char __pbuf[128]; \
639 \
640 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
641 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
642 } while (0)
643
644 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645 struct cfq_group *curr_cfqg, int rw)
646 {
647 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648 cfqg_stats_end_empty_time(&cfqg->stats);
649 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650 }
651
652 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653 unsigned long time, unsigned long unaccounted_time)
654 {
655 blkg_stat_add(&cfqg->stats.time, time);
656 #ifdef CONFIG_DEBUG_BLK_CGROUP
657 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658 #endif
659 }
660
661 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662 {
663 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664 }
665
666 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667 {
668 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669 }
670
671 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672 uint64_t bytes, int rw)
673 {
674 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677 }
678
679 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680 uint64_t start_time, uint64_t io_start_time, int rw)
681 {
682 struct cfqg_stats *stats = &cfqg->stats;
683 unsigned long long now = sched_clock();
684
685 if (time_after64(now, io_start_time))
686 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687 if (time_after64(io_start_time, start_time))
688 blkg_rwstat_add(&stats->wait_time, rw,
689 io_start_time - start_time);
690 }
691
692 /* @stats = 0 */
693 static void cfqg_stats_reset(struct cfqg_stats *stats)
694 {
695 /* queued stats shouldn't be cleared */
696 blkg_rwstat_reset(&stats->service_bytes);
697 blkg_rwstat_reset(&stats->serviced);
698 blkg_rwstat_reset(&stats->merged);
699 blkg_rwstat_reset(&stats->service_time);
700 blkg_rwstat_reset(&stats->wait_time);
701 blkg_stat_reset(&stats->time);
702 #ifdef CONFIG_DEBUG_BLK_CGROUP
703 blkg_stat_reset(&stats->unaccounted_time);
704 blkg_stat_reset(&stats->avg_queue_size_sum);
705 blkg_stat_reset(&stats->avg_queue_size_samples);
706 blkg_stat_reset(&stats->dequeue);
707 blkg_stat_reset(&stats->group_wait_time);
708 blkg_stat_reset(&stats->idle_time);
709 blkg_stat_reset(&stats->empty_time);
710 #endif
711 }
712
713 /* @to += @from */
714 static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715 {
716 /* queued stats shouldn't be cleared */
717 blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718 blkg_rwstat_merge(&to->serviced, &from->serviced);
719 blkg_rwstat_merge(&to->merged, &from->merged);
720 blkg_rwstat_merge(&to->service_time, &from->service_time);
721 blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722 blkg_stat_merge(&from->time, &from->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725 blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726 blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727 blkg_stat_merge(&to->dequeue, &from->dequeue);
728 blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729 blkg_stat_merge(&to->idle_time, &from->idle_time);
730 blkg_stat_merge(&to->empty_time, &from->empty_time);
731 #endif
732 }
733
734 /*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740 {
741 struct cfq_group *parent = cfqg_parent(cfqg);
742
743 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745 if (unlikely(!parent))
746 return;
747
748 cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749 cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750 cfqg_stats_reset(&cfqg->stats);
751 cfqg_stats_reset(&cfqg->dead_stats);
752 }
753
754 #else /* CONFIG_CFQ_GROUP_IOSCHED */
755
756 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757 static inline void cfqg_get(struct cfq_group *cfqg) { }
758 static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
761 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
762 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
763 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764 ##args)
765 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
766
767 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768 struct cfq_group *curr_cfqg, int rw) { }
769 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770 unsigned long time, unsigned long unaccounted_time) { }
771 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773 static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774 uint64_t bytes, int rw) { }
775 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776 uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
779
780 #define cfq_log(cfqd, fmt, args...) \
781 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783 /* Traverses through cfq group service trees */
784 #define for_each_cfqg_st(cfqg, i, j, st) \
785 for (i = 0; i <= IDLE_WORKLOAD; i++) \
786 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787 : &cfqg->service_tree_idle; \
788 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789 (i == IDLE_WORKLOAD && j == 0); \
790 j++, st = i < IDLE_WORKLOAD ? \
791 &cfqg->service_trees[i][j]: NULL) \
792
793 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794 struct cfq_ttime *ttime, bool group_idle)
795 {
796 unsigned long slice;
797 if (!sample_valid(ttime->ttime_samples))
798 return false;
799 if (group_idle)
800 slice = cfqd->cfq_group_idle;
801 else
802 slice = cfqd->cfq_slice_idle;
803 return ttime->ttime_mean > slice;
804 }
805
806 static inline bool iops_mode(struct cfq_data *cfqd)
807 {
808 /*
809 * If we are not idling on queues and it is a NCQ drive, parallel
810 * execution of requests is on and measuring time is not possible
811 * in most of the cases until and unless we drive shallower queue
812 * depths and that becomes a performance bottleneck. In such cases
813 * switch to start providing fairness in terms of number of IOs.
814 */
815 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816 return true;
817 else
818 return false;
819 }
820
821 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822 {
823 if (cfq_class_idle(cfqq))
824 return IDLE_WORKLOAD;
825 if (cfq_class_rt(cfqq))
826 return RT_WORKLOAD;
827 return BE_WORKLOAD;
828 }
829
830
831 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832 {
833 if (!cfq_cfqq_sync(cfqq))
834 return ASYNC_WORKLOAD;
835 if (!cfq_cfqq_idle_window(cfqq))
836 return SYNC_NOIDLE_WORKLOAD;
837 return SYNC_WORKLOAD;
838 }
839
840 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841 struct cfq_data *cfqd,
842 struct cfq_group *cfqg)
843 {
844 if (wl_class == IDLE_WORKLOAD)
845 return cfqg->service_tree_idle.count;
846
847 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850 }
851
852 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853 struct cfq_group *cfqg)
854 {
855 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857 }
858
859 static void cfq_dispatch_insert(struct request_queue *, struct request *);
860 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861 struct cfq_io_cq *cic, struct bio *bio,
862 gfp_t gfp_mask);
863
864 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865 {
866 /* cic->icq is the first member, %NULL will convert to %NULL */
867 return container_of(icq, struct cfq_io_cq, icq);
868 }
869
870 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871 struct io_context *ioc)
872 {
873 if (ioc)
874 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875 return NULL;
876 }
877
878 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879 {
880 return cic->cfqq[is_sync];
881 }
882
883 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884 bool is_sync)
885 {
886 cic->cfqq[is_sync] = cfqq;
887 }
888
889 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890 {
891 return cic->icq.q->elevator->elevator_data;
892 }
893
894 /*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898 static inline bool cfq_bio_sync(struct bio *bio)
899 {
900 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901 }
902
903 /*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908 {
909 if (cfqd->busy_queues) {
910 cfq_log(cfqd, "schedule dispatch");
911 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
912 }
913 }
914
915 /*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921 unsigned short prio)
922 {
923 const int base_slice = cfqd->cfq_slice[sync];
924
925 WARN_ON(prio >= IOPRIO_BE_NR);
926
927 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928 }
929
930 static inline int
931 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932 {
933 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934 }
935
936 /**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1]. The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948 static inline u64 cfqg_scale_charge(unsigned long charge,
949 unsigned int vfraction)
950 {
951 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
952
953 /* charge / vfraction */
954 c <<= CFQ_SERVICE_SHIFT;
955 do_div(c, vfraction);
956 return c;
957 }
958
959 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960 {
961 s64 delta = (s64)(vdisktime - min_vdisktime);
962 if (delta > 0)
963 min_vdisktime = vdisktime;
964
965 return min_vdisktime;
966 }
967
968 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969 {
970 s64 delta = (s64)(vdisktime - min_vdisktime);
971 if (delta < 0)
972 min_vdisktime = vdisktime;
973
974 return min_vdisktime;
975 }
976
977 static void update_min_vdisktime(struct cfq_rb_root *st)
978 {
979 struct cfq_group *cfqg;
980
981 if (st->left) {
982 cfqg = rb_entry_cfqg(st->left);
983 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984 cfqg->vdisktime);
985 }
986 }
987
988 /*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995 struct cfq_group *cfqg, bool rt)
996 {
997 unsigned min_q, max_q;
998 unsigned mult = cfq_hist_divisor - 1;
999 unsigned round = cfq_hist_divisor / 2;
1000 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002 min_q = min(cfqg->busy_queues_avg[rt], busy);
1003 max_q = max(cfqg->busy_queues_avg[rt], busy);
1004 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005 cfq_hist_divisor;
1006 return cfqg->busy_queues_avg[rt];
1007 }
1008
1009 static inline unsigned
1010 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011 {
1012 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013 }
1014
1015 static inline unsigned
1016 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017 {
1018 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019 if (cfqd->cfq_latency) {
1020 /*
1021 * interested queues (we consider only the ones with the same
1022 * priority class in the cfq group)
1023 */
1024 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025 cfq_class_rt(cfqq));
1026 unsigned sync_slice = cfqd->cfq_slice[1];
1027 unsigned expect_latency = sync_slice * iq;
1028 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030 if (expect_latency > group_slice) {
1031 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032 /* scale low_slice according to IO priority
1033 * and sync vs async */
1034 unsigned low_slice =
1035 min(slice, base_low_slice * slice / sync_slice);
1036 /* the adapted slice value is scaled to fit all iqs
1037 * into the target latency */
1038 slice = max(slice * group_slice / expect_latency,
1039 low_slice);
1040 }
1041 }
1042 return slice;
1043 }
1044
1045 static inline void
1046 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047 {
1048 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050 cfqq->slice_start = jiffies;
1051 cfqq->slice_end = jiffies + slice;
1052 cfqq->allocated_slice = slice;
1053 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054 }
1055
1056 /*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062 {
1063 if (cfq_cfqq_slice_new(cfqq))
1064 return false;
1065 if (time_before(jiffies, cfqq->slice_end))
1066 return false;
1067
1068 return true;
1069 }
1070
1071 /*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076 static struct request *
1077 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078 {
1079 sector_t s1, s2, d1 = 0, d2 = 0;
1080 unsigned long back_max;
1081 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1082 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1083 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085 if (rq1 == NULL || rq1 == rq2)
1086 return rq2;
1087 if (rq2 == NULL)
1088 return rq1;
1089
1090 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091 return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096 s1 = blk_rq_pos(rq1);
1097 s2 = blk_rq_pos(rq2);
1098
1099 /*
1100 * by definition, 1KiB is 2 sectors
1101 */
1102 back_max = cfqd->cfq_back_max * 2;
1103
1104 /*
1105 * Strict one way elevator _except_ in the case where we allow
1106 * short backward seeks which are biased as twice the cost of a
1107 * similar forward seek.
1108 */
1109 if (s1 >= last)
1110 d1 = s1 - last;
1111 else if (s1 + back_max >= last)
1112 d1 = (last - s1) * cfqd->cfq_back_penalty;
1113 else
1114 wrap |= CFQ_RQ1_WRAP;
1115
1116 if (s2 >= last)
1117 d2 = s2 - last;
1118 else if (s2 + back_max >= last)
1119 d2 = (last - s2) * cfqd->cfq_back_penalty;
1120 else
1121 wrap |= CFQ_RQ2_WRAP;
1122
1123 /* Found required data */
1124
1125 /*
1126 * By doing switch() on the bit mask "wrap" we avoid having to
1127 * check two variables for all permutations: --> faster!
1128 */
1129 switch (wrap) {
1130 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131 if (d1 < d2)
1132 return rq1;
1133 else if (d2 < d1)
1134 return rq2;
1135 else {
1136 if (s1 >= s2)
1137 return rq1;
1138 else
1139 return rq2;
1140 }
1141
1142 case CFQ_RQ2_WRAP:
1143 return rq1;
1144 case CFQ_RQ1_WRAP:
1145 return rq2;
1146 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147 default:
1148 /*
1149 * Since both rqs are wrapped,
1150 * start with the one that's further behind head
1151 * (--> only *one* back seek required),
1152 * since back seek takes more time than forward.
1153 */
1154 if (s1 <= s2)
1155 return rq1;
1156 else
1157 return rq2;
1158 }
1159 }
1160
1161 /*
1162 * The below is leftmost cache rbtree addon
1163 */
1164 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165 {
1166 /* Service tree is empty */
1167 if (!root->count)
1168 return NULL;
1169
1170 if (!root->left)
1171 root->left = rb_first(&root->rb);
1172
1173 if (root->left)
1174 return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176 return NULL;
1177 }
1178
1179 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180 {
1181 if (!root->left)
1182 root->left = rb_first(&root->rb);
1183
1184 if (root->left)
1185 return rb_entry_cfqg(root->left);
1186
1187 return NULL;
1188 }
1189
1190 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191 {
1192 rb_erase(n, root);
1193 RB_CLEAR_NODE(n);
1194 }
1195
1196 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197 {
1198 if (root->left == n)
1199 root->left = NULL;
1200 rb_erase_init(n, &root->rb);
1201 --root->count;
1202 }
1203
1204 /*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207 static struct request *
1208 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209 struct request *last)
1210 {
1211 struct rb_node *rbnext = rb_next(&last->rb_node);
1212 struct rb_node *rbprev = rb_prev(&last->rb_node);
1213 struct request *next = NULL, *prev = NULL;
1214
1215 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217 if (rbprev)
1218 prev = rb_entry_rq(rbprev);
1219
1220 if (rbnext)
1221 next = rb_entry_rq(rbnext);
1222 else {
1223 rbnext = rb_first(&cfqq->sort_list);
1224 if (rbnext && rbnext != &last->rb_node)
1225 next = rb_entry_rq(rbnext);
1226 }
1227
1228 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229 }
1230
1231 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232 struct cfq_queue *cfqq)
1233 {
1234 /*
1235 * just an approximation, should be ok.
1236 */
1237 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239 }
1240
1241 static inline s64
1242 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243 {
1244 return cfqg->vdisktime - st->min_vdisktime;
1245 }
1246
1247 static void
1248 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249 {
1250 struct rb_node **node = &st->rb.rb_node;
1251 struct rb_node *parent = NULL;
1252 struct cfq_group *__cfqg;
1253 s64 key = cfqg_key(st, cfqg);
1254 int left = 1;
1255
1256 while (*node != NULL) {
1257 parent = *node;
1258 __cfqg = rb_entry_cfqg(parent);
1259
1260 if (key < cfqg_key(st, __cfqg))
1261 node = &parent->rb_left;
1262 else {
1263 node = &parent->rb_right;
1264 left = 0;
1265 }
1266 }
1267
1268 if (left)
1269 st->left = &cfqg->rb_node;
1270
1271 rb_link_node(&cfqg->rb_node, parent, node);
1272 rb_insert_color(&cfqg->rb_node, &st->rb);
1273 }
1274
1275 static void
1276 cfq_update_group_weight(struct cfq_group *cfqg)
1277 {
1278 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1279
1280 if (cfqg->new_weight) {
1281 cfqg->weight = cfqg->new_weight;
1282 cfqg->new_weight = 0;
1283 }
1284
1285 if (cfqg->new_leaf_weight) {
1286 cfqg->leaf_weight = cfqg->new_leaf_weight;
1287 cfqg->new_leaf_weight = 0;
1288 }
1289 }
1290
1291 static void
1292 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1293 {
1294 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1295 struct cfq_group *pos = cfqg;
1296 struct cfq_group *parent;
1297 bool propagate;
1298
1299 /* add to the service tree */
1300 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1301
1302 cfq_update_group_weight(cfqg);
1303 __cfq_group_service_tree_add(st, cfqg);
1304
1305 /*
1306 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1307 * entitled to. vfraction is calculated by walking the tree
1308 * towards the root calculating the fraction it has at each level.
1309 * The compounded ratio is how much vfraction @cfqg owns.
1310 *
1311 * Start with the proportion tasks in this cfqg has against active
1312 * children cfqgs - its leaf_weight against children_weight.
1313 */
1314 propagate = !pos->nr_active++;
1315 pos->children_weight += pos->leaf_weight;
1316 vfr = vfr * pos->leaf_weight / pos->children_weight;
1317
1318 /*
1319 * Compound ->weight walking up the tree. Both activation and
1320 * vfraction calculation are done in the same loop. Propagation
1321 * stops once an already activated node is met. vfraction
1322 * calculation should always continue to the root.
1323 */
1324 while ((parent = cfqg_parent(pos))) {
1325 if (propagate) {
1326 propagate = !parent->nr_active++;
1327 parent->children_weight += pos->weight;
1328 }
1329 vfr = vfr * pos->weight / parent->children_weight;
1330 pos = parent;
1331 }
1332
1333 cfqg->vfraction = max_t(unsigned, vfr, 1);
1334 }
1335
1336 static void
1337 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1338 {
1339 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1340 struct cfq_group *__cfqg;
1341 struct rb_node *n;
1342
1343 cfqg->nr_cfqq++;
1344 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1345 return;
1346
1347 /*
1348 * Currently put the group at the end. Later implement something
1349 * so that groups get lesser vtime based on their weights, so that
1350 * if group does not loose all if it was not continuously backlogged.
1351 */
1352 n = rb_last(&st->rb);
1353 if (n) {
1354 __cfqg = rb_entry_cfqg(n);
1355 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1356 } else
1357 cfqg->vdisktime = st->min_vdisktime;
1358 cfq_group_service_tree_add(st, cfqg);
1359 }
1360
1361 static void
1362 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1363 {
1364 struct cfq_group *pos = cfqg;
1365 bool propagate;
1366
1367 /*
1368 * Undo activation from cfq_group_service_tree_add(). Deactivate
1369 * @cfqg and propagate deactivation upwards.
1370 */
1371 propagate = !--pos->nr_active;
1372 pos->children_weight -= pos->leaf_weight;
1373
1374 while (propagate) {
1375 struct cfq_group *parent = cfqg_parent(pos);
1376
1377 /* @pos has 0 nr_active at this point */
1378 WARN_ON_ONCE(pos->children_weight);
1379 pos->vfraction = 0;
1380
1381 if (!parent)
1382 break;
1383
1384 propagate = !--parent->nr_active;
1385 parent->children_weight -= pos->weight;
1386 pos = parent;
1387 }
1388
1389 /* remove from the service tree */
1390 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1391 cfq_rb_erase(&cfqg->rb_node, st);
1392 }
1393
1394 static void
1395 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1396 {
1397 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1398
1399 BUG_ON(cfqg->nr_cfqq < 1);
1400 cfqg->nr_cfqq--;
1401
1402 /* If there are other cfq queues under this group, don't delete it */
1403 if (cfqg->nr_cfqq)
1404 return;
1405
1406 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1407 cfq_group_service_tree_del(st, cfqg);
1408 cfqg->saved_wl_slice = 0;
1409 cfqg_stats_update_dequeue(cfqg);
1410 }
1411
1412 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1413 unsigned int *unaccounted_time)
1414 {
1415 unsigned int slice_used;
1416
1417 /*
1418 * Queue got expired before even a single request completed or
1419 * got expired immediately after first request completion.
1420 */
1421 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1422 /*
1423 * Also charge the seek time incurred to the group, otherwise
1424 * if there are mutiple queues in the group, each can dispatch
1425 * a single request on seeky media and cause lots of seek time
1426 * and group will never know it.
1427 */
1428 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1429 1);
1430 } else {
1431 slice_used = jiffies - cfqq->slice_start;
1432 if (slice_used > cfqq->allocated_slice) {
1433 *unaccounted_time = slice_used - cfqq->allocated_slice;
1434 slice_used = cfqq->allocated_slice;
1435 }
1436 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1437 *unaccounted_time += cfqq->slice_start -
1438 cfqq->dispatch_start;
1439 }
1440
1441 return slice_used;
1442 }
1443
1444 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1445 struct cfq_queue *cfqq)
1446 {
1447 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1448 unsigned int used_sl, charge, unaccounted_sl = 0;
1449 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1450 - cfqg->service_tree_idle.count;
1451 unsigned int vfr;
1452
1453 BUG_ON(nr_sync < 0);
1454 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1455
1456 if (iops_mode(cfqd))
1457 charge = cfqq->slice_dispatch;
1458 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1459 charge = cfqq->allocated_slice;
1460
1461 /*
1462 * Can't update vdisktime while on service tree and cfqg->vfraction
1463 * is valid only while on it. Cache vfr, leave the service tree,
1464 * update vdisktime and go back on. The re-addition to the tree
1465 * will also update the weights as necessary.
1466 */
1467 vfr = cfqg->vfraction;
1468 cfq_group_service_tree_del(st, cfqg);
1469 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1470 cfq_group_service_tree_add(st, cfqg);
1471
1472 /* This group is being expired. Save the context */
1473 if (time_after(cfqd->workload_expires, jiffies)) {
1474 cfqg->saved_wl_slice = cfqd->workload_expires
1475 - jiffies;
1476 cfqg->saved_wl_type = cfqd->serving_wl_type;
1477 cfqg->saved_wl_class = cfqd->serving_wl_class;
1478 } else
1479 cfqg->saved_wl_slice = 0;
1480
1481 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1482 st->min_vdisktime);
1483 cfq_log_cfqq(cfqq->cfqd, cfqq,
1484 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1485 used_sl, cfqq->slice_dispatch, charge,
1486 iops_mode(cfqd), cfqq->nr_sectors);
1487 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1488 cfqg_stats_set_start_empty_time(cfqg);
1489 }
1490
1491 /**
1492 * cfq_init_cfqg_base - initialize base part of a cfq_group
1493 * @cfqg: cfq_group to initialize
1494 *
1495 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1496 * is enabled or not.
1497 */
1498 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1499 {
1500 struct cfq_rb_root *st;
1501 int i, j;
1502
1503 for_each_cfqg_st(cfqg, i, j, st)
1504 *st = CFQ_RB_ROOT;
1505 RB_CLEAR_NODE(&cfqg->rb_node);
1506
1507 cfqg->ttime.last_end_request = jiffies;
1508 }
1509
1510 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1511 static void cfq_pd_init(struct blkcg_gq *blkg)
1512 {
1513 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1514
1515 cfq_init_cfqg_base(cfqg);
1516 cfqg->weight = blkg->blkcg->cfq_weight;
1517 cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1518 }
1519
1520 static void cfq_pd_offline(struct blkcg_gq *blkg)
1521 {
1522 /*
1523 * @blkg is going offline and will be ignored by
1524 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1525 * that they don't get lost. If IOs complete after this point, the
1526 * stats for them will be lost. Oh well...
1527 */
1528 cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1529 }
1530
1531 /* offset delta from cfqg->stats to cfqg->dead_stats */
1532 static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1533 offsetof(struct cfq_group, stats);
1534
1535 /* to be used by recursive prfill, sums live and dead stats recursively */
1536 static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1537 {
1538 u64 sum = 0;
1539
1540 sum += blkg_stat_recursive_sum(pd, off);
1541 sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1542 return sum;
1543 }
1544
1545 /* to be used by recursive prfill, sums live and dead rwstats recursively */
1546 static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1547 int off)
1548 {
1549 struct blkg_rwstat a, b;
1550
1551 a = blkg_rwstat_recursive_sum(pd, off);
1552 b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1553 blkg_rwstat_merge(&a, &b);
1554 return a;
1555 }
1556
1557 static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1558 {
1559 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1560
1561 cfqg_stats_reset(&cfqg->stats);
1562 cfqg_stats_reset(&cfqg->dead_stats);
1563 }
1564
1565 /*
1566 * Search for the cfq group current task belongs to. request_queue lock must
1567 * be held.
1568 */
1569 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1570 struct blkcg *blkcg)
1571 {
1572 struct request_queue *q = cfqd->queue;
1573 struct cfq_group *cfqg = NULL;
1574
1575 /* avoid lookup for the common case where there's no blkcg */
1576 if (blkcg == &blkcg_root) {
1577 cfqg = cfqd->root_group;
1578 } else {
1579 struct blkcg_gq *blkg;
1580
1581 blkg = blkg_lookup_create(blkcg, q);
1582 if (!IS_ERR(blkg))
1583 cfqg = blkg_to_cfqg(blkg);
1584 }
1585
1586 return cfqg;
1587 }
1588
1589 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1590 {
1591 /* Currently, all async queues are mapped to root group */
1592 if (!cfq_cfqq_sync(cfqq))
1593 cfqg = cfqq->cfqd->root_group;
1594
1595 cfqq->cfqg = cfqg;
1596 /* cfqq reference on cfqg */
1597 cfqg_get(cfqg);
1598 }
1599
1600 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1601 struct blkg_policy_data *pd, int off)
1602 {
1603 struct cfq_group *cfqg = pd_to_cfqg(pd);
1604
1605 if (!cfqg->dev_weight)
1606 return 0;
1607 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1608 }
1609
1610 static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1611 struct seq_file *sf)
1612 {
1613 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1614 cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1615 false);
1616 return 0;
1617 }
1618
1619 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1620 struct blkg_policy_data *pd, int off)
1621 {
1622 struct cfq_group *cfqg = pd_to_cfqg(pd);
1623
1624 if (!cfqg->dev_leaf_weight)
1625 return 0;
1626 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1627 }
1628
1629 static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1630 struct cftype *cft,
1631 struct seq_file *sf)
1632 {
1633 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1634 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1635 false);
1636 return 0;
1637 }
1638
1639 static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1640 struct seq_file *sf)
1641 {
1642 seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1643 return 0;
1644 }
1645
1646 static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1647 struct seq_file *sf)
1648 {
1649 seq_printf(sf, "%u\n",
1650 cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1651 return 0;
1652 }
1653
1654 static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1655 const char *buf, bool is_leaf_weight)
1656 {
1657 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1658 struct blkg_conf_ctx ctx;
1659 struct cfq_group *cfqg;
1660 int ret;
1661
1662 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1663 if (ret)
1664 return ret;
1665
1666 ret = -EINVAL;
1667 cfqg = blkg_to_cfqg(ctx.blkg);
1668 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1669 if (!is_leaf_weight) {
1670 cfqg->dev_weight = ctx.v;
1671 cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1672 } else {
1673 cfqg->dev_leaf_weight = ctx.v;
1674 cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1675 }
1676 ret = 0;
1677 }
1678
1679 blkg_conf_finish(&ctx);
1680 return ret;
1681 }
1682
1683 static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1684 const char *buf)
1685 {
1686 return __cfqg_set_weight_device(cgrp, cft, buf, false);
1687 }
1688
1689 static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1690 const char *buf)
1691 {
1692 return __cfqg_set_weight_device(cgrp, cft, buf, true);
1693 }
1694
1695 static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1696 bool is_leaf_weight)
1697 {
1698 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1699 struct blkcg_gq *blkg;
1700
1701 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1702 return -EINVAL;
1703
1704 spin_lock_irq(&blkcg->lock);
1705
1706 if (!is_leaf_weight)
1707 blkcg->cfq_weight = val;
1708 else
1709 blkcg->cfq_leaf_weight = val;
1710
1711 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1712 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1713
1714 if (!cfqg)
1715 continue;
1716
1717 if (!is_leaf_weight) {
1718 if (!cfqg->dev_weight)
1719 cfqg->new_weight = blkcg->cfq_weight;
1720 } else {
1721 if (!cfqg->dev_leaf_weight)
1722 cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1723 }
1724 }
1725
1726 spin_unlock_irq(&blkcg->lock);
1727 return 0;
1728 }
1729
1730 static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1731 {
1732 return __cfq_set_weight(cgrp, cft, val, false);
1733 }
1734
1735 static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1736 {
1737 return __cfq_set_weight(cgrp, cft, val, true);
1738 }
1739
1740 static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1741 struct seq_file *sf)
1742 {
1743 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1744
1745 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1746 cft->private, false);
1747 return 0;
1748 }
1749
1750 static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1751 struct seq_file *sf)
1752 {
1753 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1754
1755 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1756 cft->private, true);
1757 return 0;
1758 }
1759
1760 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1761 struct blkg_policy_data *pd, int off)
1762 {
1763 u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1764
1765 return __blkg_prfill_u64(sf, pd, sum);
1766 }
1767
1768 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1769 struct blkg_policy_data *pd, int off)
1770 {
1771 struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1772
1773 return __blkg_prfill_rwstat(sf, pd, &sum);
1774 }
1775
1776 static int cfqg_print_stat_recursive(struct cgroup *cgrp, struct cftype *cft,
1777 struct seq_file *sf)
1778 {
1779 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1780
1781 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_stat_recursive,
1782 &blkcg_policy_cfq, cft->private, false);
1783 return 0;
1784 }
1785
1786 static int cfqg_print_rwstat_recursive(struct cgroup *cgrp, struct cftype *cft,
1787 struct seq_file *sf)
1788 {
1789 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1790
1791 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_rwstat_recursive,
1792 &blkcg_policy_cfq, cft->private, true);
1793 return 0;
1794 }
1795
1796 #ifdef CONFIG_DEBUG_BLK_CGROUP
1797 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1798 struct blkg_policy_data *pd, int off)
1799 {
1800 struct cfq_group *cfqg = pd_to_cfqg(pd);
1801 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1802 u64 v = 0;
1803
1804 if (samples) {
1805 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1806 do_div(v, samples);
1807 }
1808 __blkg_prfill_u64(sf, pd, v);
1809 return 0;
1810 }
1811
1812 /* print avg_queue_size */
1813 static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1814 struct seq_file *sf)
1815 {
1816 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1817
1818 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1819 &blkcg_policy_cfq, 0, false);
1820 return 0;
1821 }
1822 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1823
1824 static struct cftype cfq_blkcg_files[] = {
1825 /* on root, weight is mapped to leaf_weight */
1826 {
1827 .name = "weight_device",
1828 .flags = CFTYPE_ONLY_ON_ROOT,
1829 .read_seq_string = cfqg_print_leaf_weight_device,
1830 .write_string = cfqg_set_leaf_weight_device,
1831 .max_write_len = 256,
1832 },
1833 {
1834 .name = "weight",
1835 .flags = CFTYPE_ONLY_ON_ROOT,
1836 .read_seq_string = cfq_print_leaf_weight,
1837 .write_u64 = cfq_set_leaf_weight,
1838 },
1839
1840 /* no such mapping necessary for !roots */
1841 {
1842 .name = "weight_device",
1843 .flags = CFTYPE_NOT_ON_ROOT,
1844 .read_seq_string = cfqg_print_weight_device,
1845 .write_string = cfqg_set_weight_device,
1846 .max_write_len = 256,
1847 },
1848 {
1849 .name = "weight",
1850 .flags = CFTYPE_NOT_ON_ROOT,
1851 .read_seq_string = cfq_print_weight,
1852 .write_u64 = cfq_set_weight,
1853 },
1854
1855 {
1856 .name = "leaf_weight_device",
1857 .read_seq_string = cfqg_print_leaf_weight_device,
1858 .write_string = cfqg_set_leaf_weight_device,
1859 .max_write_len = 256,
1860 },
1861 {
1862 .name = "leaf_weight",
1863 .read_seq_string = cfq_print_leaf_weight,
1864 .write_u64 = cfq_set_leaf_weight,
1865 },
1866
1867 /* statistics, covers only the tasks in the cfqg */
1868 {
1869 .name = "time",
1870 .private = offsetof(struct cfq_group, stats.time),
1871 .read_seq_string = cfqg_print_stat,
1872 },
1873 {
1874 .name = "sectors",
1875 .private = offsetof(struct cfq_group, stats.sectors),
1876 .read_seq_string = cfqg_print_stat,
1877 },
1878 {
1879 .name = "io_service_bytes",
1880 .private = offsetof(struct cfq_group, stats.service_bytes),
1881 .read_seq_string = cfqg_print_rwstat,
1882 },
1883 {
1884 .name = "io_serviced",
1885 .private = offsetof(struct cfq_group, stats.serviced),
1886 .read_seq_string = cfqg_print_rwstat,
1887 },
1888 {
1889 .name = "io_service_time",
1890 .private = offsetof(struct cfq_group, stats.service_time),
1891 .read_seq_string = cfqg_print_rwstat,
1892 },
1893 {
1894 .name = "io_wait_time",
1895 .private = offsetof(struct cfq_group, stats.wait_time),
1896 .read_seq_string = cfqg_print_rwstat,
1897 },
1898 {
1899 .name = "io_merged",
1900 .private = offsetof(struct cfq_group, stats.merged),
1901 .read_seq_string = cfqg_print_rwstat,
1902 },
1903 {
1904 .name = "io_queued",
1905 .private = offsetof(struct cfq_group, stats.queued),
1906 .read_seq_string = cfqg_print_rwstat,
1907 },
1908
1909 /* the same statictics which cover the cfqg and its descendants */
1910 {
1911 .name = "time_recursive",
1912 .private = offsetof(struct cfq_group, stats.time),
1913 .read_seq_string = cfqg_print_stat_recursive,
1914 },
1915 {
1916 .name = "sectors_recursive",
1917 .private = offsetof(struct cfq_group, stats.sectors),
1918 .read_seq_string = cfqg_print_stat_recursive,
1919 },
1920 {
1921 .name = "io_service_bytes_recursive",
1922 .private = offsetof(struct cfq_group, stats.service_bytes),
1923 .read_seq_string = cfqg_print_rwstat_recursive,
1924 },
1925 {
1926 .name = "io_serviced_recursive",
1927 .private = offsetof(struct cfq_group, stats.serviced),
1928 .read_seq_string = cfqg_print_rwstat_recursive,
1929 },
1930 {
1931 .name = "io_service_time_recursive",
1932 .private = offsetof(struct cfq_group, stats.service_time),
1933 .read_seq_string = cfqg_print_rwstat_recursive,
1934 },
1935 {
1936 .name = "io_wait_time_recursive",
1937 .private = offsetof(struct cfq_group, stats.wait_time),
1938 .read_seq_string = cfqg_print_rwstat_recursive,
1939 },
1940 {
1941 .name = "io_merged_recursive",
1942 .private = offsetof(struct cfq_group, stats.merged),
1943 .read_seq_string = cfqg_print_rwstat_recursive,
1944 },
1945 {
1946 .name = "io_queued_recursive",
1947 .private = offsetof(struct cfq_group, stats.queued),
1948 .read_seq_string = cfqg_print_rwstat_recursive,
1949 },
1950 #ifdef CONFIG_DEBUG_BLK_CGROUP
1951 {
1952 .name = "avg_queue_size",
1953 .read_seq_string = cfqg_print_avg_queue_size,
1954 },
1955 {
1956 .name = "group_wait_time",
1957 .private = offsetof(struct cfq_group, stats.group_wait_time),
1958 .read_seq_string = cfqg_print_stat,
1959 },
1960 {
1961 .name = "idle_time",
1962 .private = offsetof(struct cfq_group, stats.idle_time),
1963 .read_seq_string = cfqg_print_stat,
1964 },
1965 {
1966 .name = "empty_time",
1967 .private = offsetof(struct cfq_group, stats.empty_time),
1968 .read_seq_string = cfqg_print_stat,
1969 },
1970 {
1971 .name = "dequeue",
1972 .private = offsetof(struct cfq_group, stats.dequeue),
1973 .read_seq_string = cfqg_print_stat,
1974 },
1975 {
1976 .name = "unaccounted_time",
1977 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1978 .read_seq_string = cfqg_print_stat,
1979 },
1980 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1981 { } /* terminate */
1982 };
1983 #else /* GROUP_IOSCHED */
1984 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1985 struct blkcg *blkcg)
1986 {
1987 return cfqd->root_group;
1988 }
1989
1990 static inline void
1991 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1992 cfqq->cfqg = cfqg;
1993 }
1994
1995 #endif /* GROUP_IOSCHED */
1996
1997 /*
1998 * The cfqd->service_trees holds all pending cfq_queue's that have
1999 * requests waiting to be processed. It is sorted in the order that
2000 * we will service the queues.
2001 */
2002 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2003 bool add_front)
2004 {
2005 struct rb_node **p, *parent;
2006 struct cfq_queue *__cfqq;
2007 unsigned long rb_key;
2008 struct cfq_rb_root *st;
2009 int left;
2010 int new_cfqq = 1;
2011
2012 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2013 if (cfq_class_idle(cfqq)) {
2014 rb_key = CFQ_IDLE_DELAY;
2015 parent = rb_last(&st->rb);
2016 if (parent && parent != &cfqq->rb_node) {
2017 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2018 rb_key += __cfqq->rb_key;
2019 } else
2020 rb_key += jiffies;
2021 } else if (!add_front) {
2022 /*
2023 * Get our rb key offset. Subtract any residual slice
2024 * value carried from last service. A negative resid
2025 * count indicates slice overrun, and this should position
2026 * the next service time further away in the tree.
2027 */
2028 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2029 rb_key -= cfqq->slice_resid;
2030 cfqq->slice_resid = 0;
2031 } else {
2032 rb_key = -HZ;
2033 __cfqq = cfq_rb_first(st);
2034 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2035 }
2036
2037 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2038 new_cfqq = 0;
2039 /*
2040 * same position, nothing more to do
2041 */
2042 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2043 return;
2044
2045 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2046 cfqq->service_tree = NULL;
2047 }
2048
2049 left = 1;
2050 parent = NULL;
2051 cfqq->service_tree = st;
2052 p = &st->rb.rb_node;
2053 while (*p) {
2054 parent = *p;
2055 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2056
2057 /*
2058 * sort by key, that represents service time.
2059 */
2060 if (time_before(rb_key, __cfqq->rb_key))
2061 p = &parent->rb_left;
2062 else {
2063 p = &parent->rb_right;
2064 left = 0;
2065 }
2066 }
2067
2068 if (left)
2069 st->left = &cfqq->rb_node;
2070
2071 cfqq->rb_key = rb_key;
2072 rb_link_node(&cfqq->rb_node, parent, p);
2073 rb_insert_color(&cfqq->rb_node, &st->rb);
2074 st->count++;
2075 if (add_front || !new_cfqq)
2076 return;
2077 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2078 }
2079
2080 static struct cfq_queue *
2081 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2082 sector_t sector, struct rb_node **ret_parent,
2083 struct rb_node ***rb_link)
2084 {
2085 struct rb_node **p, *parent;
2086 struct cfq_queue *cfqq = NULL;
2087
2088 parent = NULL;
2089 p = &root->rb_node;
2090 while (*p) {
2091 struct rb_node **n;
2092
2093 parent = *p;
2094 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2095
2096 /*
2097 * Sort strictly based on sector. Smallest to the left,
2098 * largest to the right.
2099 */
2100 if (sector > blk_rq_pos(cfqq->next_rq))
2101 n = &(*p)->rb_right;
2102 else if (sector < blk_rq_pos(cfqq->next_rq))
2103 n = &(*p)->rb_left;
2104 else
2105 break;
2106 p = n;
2107 cfqq = NULL;
2108 }
2109
2110 *ret_parent = parent;
2111 if (rb_link)
2112 *rb_link = p;
2113 return cfqq;
2114 }
2115
2116 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2117 {
2118 struct rb_node **p, *parent;
2119 struct cfq_queue *__cfqq;
2120
2121 if (cfqq->p_root) {
2122 rb_erase(&cfqq->p_node, cfqq->p_root);
2123 cfqq->p_root = NULL;
2124 }
2125
2126 if (cfq_class_idle(cfqq))
2127 return;
2128 if (!cfqq->next_rq)
2129 return;
2130
2131 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2132 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2133 blk_rq_pos(cfqq->next_rq), &parent, &p);
2134 if (!__cfqq) {
2135 rb_link_node(&cfqq->p_node, parent, p);
2136 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2137 } else
2138 cfqq->p_root = NULL;
2139 }
2140
2141 /*
2142 * Update cfqq's position in the service tree.
2143 */
2144 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2145 {
2146 /*
2147 * Resorting requires the cfqq to be on the RR list already.
2148 */
2149 if (cfq_cfqq_on_rr(cfqq)) {
2150 cfq_service_tree_add(cfqd, cfqq, 0);
2151 cfq_prio_tree_add(cfqd, cfqq);
2152 }
2153 }
2154
2155 /*
2156 * add to busy list of queues for service, trying to be fair in ordering
2157 * the pending list according to last request service
2158 */
2159 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2160 {
2161 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2162 BUG_ON(cfq_cfqq_on_rr(cfqq));
2163 cfq_mark_cfqq_on_rr(cfqq);
2164 cfqd->busy_queues++;
2165 if (cfq_cfqq_sync(cfqq))
2166 cfqd->busy_sync_queues++;
2167
2168 cfq_resort_rr_list(cfqd, cfqq);
2169 }
2170
2171 /*
2172 * Called when the cfqq no longer has requests pending, remove it from
2173 * the service tree.
2174 */
2175 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2176 {
2177 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2178 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2179 cfq_clear_cfqq_on_rr(cfqq);
2180
2181 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2182 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2183 cfqq->service_tree = NULL;
2184 }
2185 if (cfqq->p_root) {
2186 rb_erase(&cfqq->p_node, cfqq->p_root);
2187 cfqq->p_root = NULL;
2188 }
2189
2190 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2191 BUG_ON(!cfqd->busy_queues);
2192 cfqd->busy_queues--;
2193 if (cfq_cfqq_sync(cfqq))
2194 cfqd->busy_sync_queues--;
2195 }
2196
2197 /*
2198 * rb tree support functions
2199 */
2200 static void cfq_del_rq_rb(struct request *rq)
2201 {
2202 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2203 const int sync = rq_is_sync(rq);
2204
2205 BUG_ON(!cfqq->queued[sync]);
2206 cfqq->queued[sync]--;
2207
2208 elv_rb_del(&cfqq->sort_list, rq);
2209
2210 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2211 /*
2212 * Queue will be deleted from service tree when we actually
2213 * expire it later. Right now just remove it from prio tree
2214 * as it is empty.
2215 */
2216 if (cfqq->p_root) {
2217 rb_erase(&cfqq->p_node, cfqq->p_root);
2218 cfqq->p_root = NULL;
2219 }
2220 }
2221 }
2222
2223 static void cfq_add_rq_rb(struct request *rq)
2224 {
2225 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2226 struct cfq_data *cfqd = cfqq->cfqd;
2227 struct request *prev;
2228
2229 cfqq->queued[rq_is_sync(rq)]++;
2230
2231 elv_rb_add(&cfqq->sort_list, rq);
2232
2233 if (!cfq_cfqq_on_rr(cfqq))
2234 cfq_add_cfqq_rr(cfqd, cfqq);
2235
2236 /*
2237 * check if this request is a better next-serve candidate
2238 */
2239 prev = cfqq->next_rq;
2240 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2241
2242 /*
2243 * adjust priority tree position, if ->next_rq changes
2244 */
2245 if (prev != cfqq->next_rq)
2246 cfq_prio_tree_add(cfqd, cfqq);
2247
2248 BUG_ON(!cfqq->next_rq);
2249 }
2250
2251 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2252 {
2253 elv_rb_del(&cfqq->sort_list, rq);
2254 cfqq->queued[rq_is_sync(rq)]--;
2255 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2256 cfq_add_rq_rb(rq);
2257 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2258 rq->cmd_flags);
2259 }
2260
2261 static struct request *
2262 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2263 {
2264 struct task_struct *tsk = current;
2265 struct cfq_io_cq *cic;
2266 struct cfq_queue *cfqq;
2267
2268 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2269 if (!cic)
2270 return NULL;
2271
2272 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2273 if (cfqq) {
2274 sector_t sector = bio->bi_sector + bio_sectors(bio);
2275
2276 return elv_rb_find(&cfqq->sort_list, sector);
2277 }
2278
2279 return NULL;
2280 }
2281
2282 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2283 {
2284 struct cfq_data *cfqd = q->elevator->elevator_data;
2285
2286 cfqd->rq_in_driver++;
2287 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2288 cfqd->rq_in_driver);
2289
2290 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2291 }
2292
2293 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2294 {
2295 struct cfq_data *cfqd = q->elevator->elevator_data;
2296
2297 WARN_ON(!cfqd->rq_in_driver);
2298 cfqd->rq_in_driver--;
2299 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2300 cfqd->rq_in_driver);
2301 }
2302
2303 static void cfq_remove_request(struct request *rq)
2304 {
2305 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2306
2307 if (cfqq->next_rq == rq)
2308 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2309
2310 list_del_init(&rq->queuelist);
2311 cfq_del_rq_rb(rq);
2312
2313 cfqq->cfqd->rq_queued--;
2314 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2315 if (rq->cmd_flags & REQ_PRIO) {
2316 WARN_ON(!cfqq->prio_pending);
2317 cfqq->prio_pending--;
2318 }
2319 }
2320
2321 static int cfq_merge(struct request_queue *q, struct request **req,
2322 struct bio *bio)
2323 {
2324 struct cfq_data *cfqd = q->elevator->elevator_data;
2325 struct request *__rq;
2326
2327 __rq = cfq_find_rq_fmerge(cfqd, bio);
2328 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2329 *req = __rq;
2330 return ELEVATOR_FRONT_MERGE;
2331 }
2332
2333 return ELEVATOR_NO_MERGE;
2334 }
2335
2336 static void cfq_merged_request(struct request_queue *q, struct request *req,
2337 int type)
2338 {
2339 if (type == ELEVATOR_FRONT_MERGE) {
2340 struct cfq_queue *cfqq = RQ_CFQQ(req);
2341
2342 cfq_reposition_rq_rb(cfqq, req);
2343 }
2344 }
2345
2346 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2347 struct bio *bio)
2348 {
2349 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2350 }
2351
2352 static void
2353 cfq_merged_requests(struct request_queue *q, struct request *rq,
2354 struct request *next)
2355 {
2356 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2357 struct cfq_data *cfqd = q->elevator->elevator_data;
2358
2359 /*
2360 * reposition in fifo if next is older than rq
2361 */
2362 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2363 time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2364 cfqq == RQ_CFQQ(next)) {
2365 list_move(&rq->queuelist, &next->queuelist);
2366 rq_set_fifo_time(rq, rq_fifo_time(next));
2367 }
2368
2369 if (cfqq->next_rq == next)
2370 cfqq->next_rq = rq;
2371 cfq_remove_request(next);
2372 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2373
2374 cfqq = RQ_CFQQ(next);
2375 /*
2376 * all requests of this queue are merged to other queues, delete it
2377 * from the service tree. If it's the active_queue,
2378 * cfq_dispatch_requests() will choose to expire it or do idle
2379 */
2380 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2381 cfqq != cfqd->active_queue)
2382 cfq_del_cfqq_rr(cfqd, cfqq);
2383 }
2384
2385 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2386 struct bio *bio)
2387 {
2388 struct cfq_data *cfqd = q->elevator->elevator_data;
2389 struct cfq_io_cq *cic;
2390 struct cfq_queue *cfqq;
2391
2392 /*
2393 * Disallow merge of a sync bio into an async request.
2394 */
2395 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2396 return false;
2397
2398 /*
2399 * Lookup the cfqq that this bio will be queued with and allow
2400 * merge only if rq is queued there.
2401 */
2402 cic = cfq_cic_lookup(cfqd, current->io_context);
2403 if (!cic)
2404 return false;
2405
2406 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2407 return cfqq == RQ_CFQQ(rq);
2408 }
2409
2410 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2411 {
2412 del_timer(&cfqd->idle_slice_timer);
2413 cfqg_stats_update_idle_time(cfqq->cfqg);
2414 }
2415
2416 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2417 struct cfq_queue *cfqq)
2418 {
2419 if (cfqq) {
2420 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2421 cfqd->serving_wl_class, cfqd->serving_wl_type);
2422 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2423 cfqq->slice_start = 0;
2424 cfqq->dispatch_start = jiffies;
2425 cfqq->allocated_slice = 0;
2426 cfqq->slice_end = 0;
2427 cfqq->slice_dispatch = 0;
2428 cfqq->nr_sectors = 0;
2429
2430 cfq_clear_cfqq_wait_request(cfqq);
2431 cfq_clear_cfqq_must_dispatch(cfqq);
2432 cfq_clear_cfqq_must_alloc_slice(cfqq);
2433 cfq_clear_cfqq_fifo_expire(cfqq);
2434 cfq_mark_cfqq_slice_new(cfqq);
2435
2436 cfq_del_timer(cfqd, cfqq);
2437 }
2438
2439 cfqd->active_queue = cfqq;
2440 }
2441
2442 /*
2443 * current cfqq expired its slice (or was too idle), select new one
2444 */
2445 static void
2446 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2447 bool timed_out)
2448 {
2449 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2450
2451 if (cfq_cfqq_wait_request(cfqq))
2452 cfq_del_timer(cfqd, cfqq);
2453
2454 cfq_clear_cfqq_wait_request(cfqq);
2455 cfq_clear_cfqq_wait_busy(cfqq);
2456
2457 /*
2458 * If this cfqq is shared between multiple processes, check to
2459 * make sure that those processes are still issuing I/Os within
2460 * the mean seek distance. If not, it may be time to break the
2461 * queues apart again.
2462 */
2463 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2464 cfq_mark_cfqq_split_coop(cfqq);
2465
2466 /*
2467 * store what was left of this slice, if the queue idled/timed out
2468 */
2469 if (timed_out) {
2470 if (cfq_cfqq_slice_new(cfqq))
2471 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2472 else
2473 cfqq->slice_resid = cfqq->slice_end - jiffies;
2474 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2475 }
2476
2477 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2478
2479 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2480 cfq_del_cfqq_rr(cfqd, cfqq);
2481
2482 cfq_resort_rr_list(cfqd, cfqq);
2483
2484 if (cfqq == cfqd->active_queue)
2485 cfqd->active_queue = NULL;
2486
2487 if (cfqd->active_cic) {
2488 put_io_context(cfqd->active_cic->icq.ioc);
2489 cfqd->active_cic = NULL;
2490 }
2491 }
2492
2493 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2494 {
2495 struct cfq_queue *cfqq = cfqd->active_queue;
2496
2497 if (cfqq)
2498 __cfq_slice_expired(cfqd, cfqq, timed_out);
2499 }
2500
2501 /*
2502 * Get next queue for service. Unless we have a queue preemption,
2503 * we'll simply select the first cfqq in the service tree.
2504 */
2505 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2506 {
2507 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2508 cfqd->serving_wl_class, cfqd->serving_wl_type);
2509
2510 if (!cfqd->rq_queued)
2511 return NULL;
2512
2513 /* There is nothing to dispatch */
2514 if (!st)
2515 return NULL;
2516 if (RB_EMPTY_ROOT(&st->rb))
2517 return NULL;
2518 return cfq_rb_first(st);
2519 }
2520
2521 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2522 {
2523 struct cfq_group *cfqg;
2524 struct cfq_queue *cfqq;
2525 int i, j;
2526 struct cfq_rb_root *st;
2527
2528 if (!cfqd->rq_queued)
2529 return NULL;
2530
2531 cfqg = cfq_get_next_cfqg(cfqd);
2532 if (!cfqg)
2533 return NULL;
2534
2535 for_each_cfqg_st(cfqg, i, j, st)
2536 if ((cfqq = cfq_rb_first(st)) != NULL)
2537 return cfqq;
2538 return NULL;
2539 }
2540
2541 /*
2542 * Get and set a new active queue for service.
2543 */
2544 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2545 struct cfq_queue *cfqq)
2546 {
2547 if (!cfqq)
2548 cfqq = cfq_get_next_queue(cfqd);
2549
2550 __cfq_set_active_queue(cfqd, cfqq);
2551 return cfqq;
2552 }
2553
2554 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2555 struct request *rq)
2556 {
2557 if (blk_rq_pos(rq) >= cfqd->last_position)
2558 return blk_rq_pos(rq) - cfqd->last_position;
2559 else
2560 return cfqd->last_position - blk_rq_pos(rq);
2561 }
2562
2563 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2564 struct request *rq)
2565 {
2566 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2567 }
2568
2569 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2570 struct cfq_queue *cur_cfqq)
2571 {
2572 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2573 struct rb_node *parent, *node;
2574 struct cfq_queue *__cfqq;
2575 sector_t sector = cfqd->last_position;
2576
2577 if (RB_EMPTY_ROOT(root))
2578 return NULL;
2579
2580 /*
2581 * First, if we find a request starting at the end of the last
2582 * request, choose it.
2583 */
2584 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2585 if (__cfqq)
2586 return __cfqq;
2587
2588 /*
2589 * If the exact sector wasn't found, the parent of the NULL leaf
2590 * will contain the closest sector.
2591 */
2592 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2593 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2594 return __cfqq;
2595
2596 if (blk_rq_pos(__cfqq->next_rq) < sector)
2597 node = rb_next(&__cfqq->p_node);
2598 else
2599 node = rb_prev(&__cfqq->p_node);
2600 if (!node)
2601 return NULL;
2602
2603 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2604 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2605 return __cfqq;
2606
2607 return NULL;
2608 }
2609
2610 /*
2611 * cfqd - obvious
2612 * cur_cfqq - passed in so that we don't decide that the current queue is
2613 * closely cooperating with itself.
2614 *
2615 * So, basically we're assuming that that cur_cfqq has dispatched at least
2616 * one request, and that cfqd->last_position reflects a position on the disk
2617 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2618 * assumption.
2619 */
2620 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2621 struct cfq_queue *cur_cfqq)
2622 {
2623 struct cfq_queue *cfqq;
2624
2625 if (cfq_class_idle(cur_cfqq))
2626 return NULL;
2627 if (!cfq_cfqq_sync(cur_cfqq))
2628 return NULL;
2629 if (CFQQ_SEEKY(cur_cfqq))
2630 return NULL;
2631
2632 /*
2633 * Don't search priority tree if it's the only queue in the group.
2634 */
2635 if (cur_cfqq->cfqg->nr_cfqq == 1)
2636 return NULL;
2637
2638 /*
2639 * We should notice if some of the queues are cooperating, eg
2640 * working closely on the same area of the disk. In that case,
2641 * we can group them together and don't waste time idling.
2642 */
2643 cfqq = cfqq_close(cfqd, cur_cfqq);
2644 if (!cfqq)
2645 return NULL;
2646
2647 /* If new queue belongs to different cfq_group, don't choose it */
2648 if (cur_cfqq->cfqg != cfqq->cfqg)
2649 return NULL;
2650
2651 /*
2652 * It only makes sense to merge sync queues.
2653 */
2654 if (!cfq_cfqq_sync(cfqq))
2655 return NULL;
2656 if (CFQQ_SEEKY(cfqq))
2657 return NULL;
2658
2659 /*
2660 * Do not merge queues of different priority classes
2661 */
2662 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2663 return NULL;
2664
2665 return cfqq;
2666 }
2667
2668 /*
2669 * Determine whether we should enforce idle window for this queue.
2670 */
2671
2672 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2673 {
2674 enum wl_class_t wl_class = cfqq_class(cfqq);
2675 struct cfq_rb_root *st = cfqq->service_tree;
2676
2677 BUG_ON(!st);
2678 BUG_ON(!st->count);
2679
2680 if (!cfqd->cfq_slice_idle)
2681 return false;
2682
2683 /* We never do for idle class queues. */
2684 if (wl_class == IDLE_WORKLOAD)
2685 return false;
2686
2687 /* We do for queues that were marked with idle window flag. */
2688 if (cfq_cfqq_idle_window(cfqq) &&
2689 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2690 return true;
2691
2692 /*
2693 * Otherwise, we do only if they are the last ones
2694 * in their service tree.
2695 */
2696 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2697 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2698 return true;
2699 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2700 return false;
2701 }
2702
2703 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2704 {
2705 struct cfq_queue *cfqq = cfqd->active_queue;
2706 struct cfq_io_cq *cic;
2707 unsigned long sl, group_idle = 0;
2708
2709 /*
2710 * SSD device without seek penalty, disable idling. But only do so
2711 * for devices that support queuing, otherwise we still have a problem
2712 * with sync vs async workloads.
2713 */
2714 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2715 return;
2716
2717 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2718 WARN_ON(cfq_cfqq_slice_new(cfqq));
2719
2720 /*
2721 * idle is disabled, either manually or by past process history
2722 */
2723 if (!cfq_should_idle(cfqd, cfqq)) {
2724 /* no queue idling. Check for group idling */
2725 if (cfqd->cfq_group_idle)
2726 group_idle = cfqd->cfq_group_idle;
2727 else
2728 return;
2729 }
2730
2731 /*
2732 * still active requests from this queue, don't idle
2733 */
2734 if (cfqq->dispatched)
2735 return;
2736
2737 /*
2738 * task has exited, don't wait
2739 */
2740 cic = cfqd->active_cic;
2741 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2742 return;
2743
2744 /*
2745 * If our average think time is larger than the remaining time
2746 * slice, then don't idle. This avoids overrunning the allotted
2747 * time slice.
2748 */
2749 if (sample_valid(cic->ttime.ttime_samples) &&
2750 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2751 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2752 cic->ttime.ttime_mean);
2753 return;
2754 }
2755
2756 /* There are other queues in the group, don't do group idle */
2757 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2758 return;
2759
2760 cfq_mark_cfqq_wait_request(cfqq);
2761
2762 if (group_idle)
2763 sl = cfqd->cfq_group_idle;
2764 else
2765 sl = cfqd->cfq_slice_idle;
2766
2767 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2768 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2769 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2770 group_idle ? 1 : 0);
2771 }
2772
2773 /*
2774 * Move request from internal lists to the request queue dispatch list.
2775 */
2776 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2777 {
2778 struct cfq_data *cfqd = q->elevator->elevator_data;
2779 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2780
2781 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2782
2783 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2784 cfq_remove_request(rq);
2785 cfqq->dispatched++;
2786 (RQ_CFQG(rq))->dispatched++;
2787 elv_dispatch_sort(q, rq);
2788
2789 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2790 cfqq->nr_sectors += blk_rq_sectors(rq);
2791 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2792 }
2793
2794 /*
2795 * return expired entry, or NULL to just start from scratch in rbtree
2796 */
2797 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2798 {
2799 struct request *rq = NULL;
2800
2801 if (cfq_cfqq_fifo_expire(cfqq))
2802 return NULL;
2803
2804 cfq_mark_cfqq_fifo_expire(cfqq);
2805
2806 if (list_empty(&cfqq->fifo))
2807 return NULL;
2808
2809 rq = rq_entry_fifo(cfqq->fifo.next);
2810 if (time_before(jiffies, rq_fifo_time(rq)))
2811 rq = NULL;
2812
2813 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2814 return rq;
2815 }
2816
2817 static inline int
2818 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2819 {
2820 const int base_rq = cfqd->cfq_slice_async_rq;
2821
2822 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2823
2824 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2825 }
2826
2827 /*
2828 * Must be called with the queue_lock held.
2829 */
2830 static int cfqq_process_refs(struct cfq_queue *cfqq)
2831 {
2832 int process_refs, io_refs;
2833
2834 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2835 process_refs = cfqq->ref - io_refs;
2836 BUG_ON(process_refs < 0);
2837 return process_refs;
2838 }
2839
2840 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2841 {
2842 int process_refs, new_process_refs;
2843 struct cfq_queue *__cfqq;
2844
2845 /*
2846 * If there are no process references on the new_cfqq, then it is
2847 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2848 * chain may have dropped their last reference (not just their
2849 * last process reference).
2850 */
2851 if (!cfqq_process_refs(new_cfqq))
2852 return;
2853
2854 /* Avoid a circular list and skip interim queue merges */
2855 while ((__cfqq = new_cfqq->new_cfqq)) {
2856 if (__cfqq == cfqq)
2857 return;
2858 new_cfqq = __cfqq;
2859 }
2860
2861 process_refs = cfqq_process_refs(cfqq);
2862 new_process_refs = cfqq_process_refs(new_cfqq);
2863 /*
2864 * If the process for the cfqq has gone away, there is no
2865 * sense in merging the queues.
2866 */
2867 if (process_refs == 0 || new_process_refs == 0)
2868 return;
2869
2870 /*
2871 * Merge in the direction of the lesser amount of work.
2872 */
2873 if (new_process_refs >= process_refs) {
2874 cfqq->new_cfqq = new_cfqq;
2875 new_cfqq->ref += process_refs;
2876 } else {
2877 new_cfqq->new_cfqq = cfqq;
2878 cfqq->ref += new_process_refs;
2879 }
2880 }
2881
2882 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2883 struct cfq_group *cfqg, enum wl_class_t wl_class)
2884 {
2885 struct cfq_queue *queue;
2886 int i;
2887 bool key_valid = false;
2888 unsigned long lowest_key = 0;
2889 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2890
2891 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2892 /* select the one with lowest rb_key */
2893 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2894 if (queue &&
2895 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2896 lowest_key = queue->rb_key;
2897 cur_best = i;
2898 key_valid = true;
2899 }
2900 }
2901
2902 return cur_best;
2903 }
2904
2905 static void
2906 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2907 {
2908 unsigned slice;
2909 unsigned count;
2910 struct cfq_rb_root *st;
2911 unsigned group_slice;
2912 enum wl_class_t original_class = cfqd->serving_wl_class;
2913
2914 /* Choose next priority. RT > BE > IDLE */
2915 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2916 cfqd->serving_wl_class = RT_WORKLOAD;
2917 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2918 cfqd->serving_wl_class = BE_WORKLOAD;
2919 else {
2920 cfqd->serving_wl_class = IDLE_WORKLOAD;
2921 cfqd->workload_expires = jiffies + 1;
2922 return;
2923 }
2924
2925 if (original_class != cfqd->serving_wl_class)
2926 goto new_workload;
2927
2928 /*
2929 * For RT and BE, we have to choose also the type
2930 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2931 * expiration time
2932 */
2933 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2934 count = st->count;
2935
2936 /*
2937 * check workload expiration, and that we still have other queues ready
2938 */
2939 if (count && !time_after(jiffies, cfqd->workload_expires))
2940 return;
2941
2942 new_workload:
2943 /* otherwise select new workload type */
2944 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2945 cfqd->serving_wl_class);
2946 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2947 count = st->count;
2948
2949 /*
2950 * the workload slice is computed as a fraction of target latency
2951 * proportional to the number of queues in that workload, over
2952 * all the queues in the same priority class
2953 */
2954 group_slice = cfq_group_slice(cfqd, cfqg);
2955
2956 slice = group_slice * count /
2957 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2958 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2959 cfqg));
2960
2961 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2962 unsigned int tmp;
2963
2964 /*
2965 * Async queues are currently system wide. Just taking
2966 * proportion of queues with-in same group will lead to higher
2967 * async ratio system wide as generally root group is going
2968 * to have higher weight. A more accurate thing would be to
2969 * calculate system wide asnc/sync ratio.
2970 */
2971 tmp = cfqd->cfq_target_latency *
2972 cfqg_busy_async_queues(cfqd, cfqg);
2973 tmp = tmp/cfqd->busy_queues;
2974 slice = min_t(unsigned, slice, tmp);
2975
2976 /* async workload slice is scaled down according to
2977 * the sync/async slice ratio. */
2978 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2979 } else
2980 /* sync workload slice is at least 2 * cfq_slice_idle */
2981 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2982
2983 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2984 cfq_log(cfqd, "workload slice:%d", slice);
2985 cfqd->workload_expires = jiffies + slice;
2986 }
2987
2988 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2989 {
2990 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2991 struct cfq_group *cfqg;
2992
2993 if (RB_EMPTY_ROOT(&st->rb))
2994 return NULL;
2995 cfqg = cfq_rb_first_group(st);
2996 update_min_vdisktime(st);
2997 return cfqg;
2998 }
2999
3000 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3001 {
3002 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3003
3004 cfqd->serving_group = cfqg;
3005
3006 /* Restore the workload type data */
3007 if (cfqg->saved_wl_slice) {
3008 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3009 cfqd->serving_wl_type = cfqg->saved_wl_type;
3010 cfqd->serving_wl_class = cfqg->saved_wl_class;
3011 } else
3012 cfqd->workload_expires = jiffies - 1;
3013
3014 choose_wl_class_and_type(cfqd, cfqg);
3015 }
3016
3017 /*
3018 * Select a queue for service. If we have a current active queue,
3019 * check whether to continue servicing it, or retrieve and set a new one.
3020 */
3021 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3022 {
3023 struct cfq_queue *cfqq, *new_cfqq = NULL;
3024
3025 cfqq = cfqd->active_queue;
3026 if (!cfqq)
3027 goto new_queue;
3028
3029 if (!cfqd->rq_queued)
3030 return NULL;
3031
3032 /*
3033 * We were waiting for group to get backlogged. Expire the queue
3034 */
3035 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3036 goto expire;
3037
3038 /*
3039 * The active queue has run out of time, expire it and select new.
3040 */
3041 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3042 /*
3043 * If slice had not expired at the completion of last request
3044 * we might not have turned on wait_busy flag. Don't expire
3045 * the queue yet. Allow the group to get backlogged.
3046 *
3047 * The very fact that we have used the slice, that means we
3048 * have been idling all along on this queue and it should be
3049 * ok to wait for this request to complete.
3050 */
3051 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3052 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3053 cfqq = NULL;
3054 goto keep_queue;
3055 } else
3056 goto check_group_idle;
3057 }
3058
3059 /*
3060 * The active queue has requests and isn't expired, allow it to
3061 * dispatch.
3062 */
3063 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3064 goto keep_queue;
3065
3066 /*
3067 * If another queue has a request waiting within our mean seek
3068 * distance, let it run. The expire code will check for close
3069 * cooperators and put the close queue at the front of the service
3070 * tree. If possible, merge the expiring queue with the new cfqq.
3071 */
3072 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3073 if (new_cfqq) {
3074 if (!cfqq->new_cfqq)
3075 cfq_setup_merge(cfqq, new_cfqq);
3076 goto expire;
3077 }
3078
3079 /*
3080 * No requests pending. If the active queue still has requests in
3081 * flight or is idling for a new request, allow either of these
3082 * conditions to happen (or time out) before selecting a new queue.
3083 */
3084 if (timer_pending(&cfqd->idle_slice_timer)) {
3085 cfqq = NULL;
3086 goto keep_queue;
3087 }
3088
3089 /*
3090 * This is a deep seek queue, but the device is much faster than
3091 * the queue can deliver, don't idle
3092 **/
3093 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3094 (cfq_cfqq_slice_new(cfqq) ||
3095 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3096 cfq_clear_cfqq_deep(cfqq);
3097 cfq_clear_cfqq_idle_window(cfqq);
3098 }
3099
3100 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3101 cfqq = NULL;
3102 goto keep_queue;
3103 }
3104
3105 /*
3106 * If group idle is enabled and there are requests dispatched from
3107 * this group, wait for requests to complete.
3108 */
3109 check_group_idle:
3110 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3111 cfqq->cfqg->dispatched &&
3112 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3113 cfqq = NULL;
3114 goto keep_queue;
3115 }
3116
3117 expire:
3118 cfq_slice_expired(cfqd, 0);
3119 new_queue:
3120 /*
3121 * Current queue expired. Check if we have to switch to a new
3122 * service tree
3123 */
3124 if (!new_cfqq)
3125 cfq_choose_cfqg(cfqd);
3126
3127 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3128 keep_queue:
3129 return cfqq;
3130 }
3131
3132 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3133 {
3134 int dispatched = 0;
3135
3136 while (cfqq->next_rq) {
3137 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3138 dispatched++;
3139 }
3140
3141 BUG_ON(!list_empty(&cfqq->fifo));
3142
3143 /* By default cfqq is not expired if it is empty. Do it explicitly */
3144 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3145 return dispatched;
3146 }
3147
3148 /*
3149 * Drain our current requests. Used for barriers and when switching
3150 * io schedulers on-the-fly.
3151 */
3152 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3153 {
3154 struct cfq_queue *cfqq;
3155 int dispatched = 0;
3156
3157 /* Expire the timeslice of the current active queue first */
3158 cfq_slice_expired(cfqd, 0);
3159 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3160 __cfq_set_active_queue(cfqd, cfqq);
3161 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3162 }
3163
3164 BUG_ON(cfqd->busy_queues);
3165
3166 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3167 return dispatched;
3168 }
3169
3170 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3171 struct cfq_queue *cfqq)
3172 {
3173 /* the queue hasn't finished any request, can't estimate */
3174 if (cfq_cfqq_slice_new(cfqq))
3175 return true;
3176 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3177 cfqq->slice_end))
3178 return true;
3179
3180 return false;
3181 }
3182
3183 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3184 {
3185 unsigned int max_dispatch;
3186
3187 /*
3188 * Drain async requests before we start sync IO
3189 */
3190 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3191 return false;
3192
3193 /*
3194 * If this is an async queue and we have sync IO in flight, let it wait
3195 */
3196 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3197 return false;
3198
3199 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3200 if (cfq_class_idle(cfqq))
3201 max_dispatch = 1;
3202
3203 /*
3204 * Does this cfqq already have too much IO in flight?
3205 */
3206 if (cfqq->dispatched >= max_dispatch) {
3207 bool promote_sync = false;
3208 /*
3209 * idle queue must always only have a single IO in flight
3210 */
3211 if (cfq_class_idle(cfqq))
3212 return false;
3213
3214 /*
3215 * If there is only one sync queue
3216 * we can ignore async queue here and give the sync
3217 * queue no dispatch limit. The reason is a sync queue can
3218 * preempt async queue, limiting the sync queue doesn't make
3219 * sense. This is useful for aiostress test.
3220 */
3221 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3222 promote_sync = true;
3223
3224 /*
3225 * We have other queues, don't allow more IO from this one
3226 */
3227 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3228 !promote_sync)
3229 return false;
3230
3231 /*
3232 * Sole queue user, no limit
3233 */
3234 if (cfqd->busy_queues == 1 || promote_sync)
3235 max_dispatch = -1;
3236 else
3237 /*
3238 * Normally we start throttling cfqq when cfq_quantum/2
3239 * requests have been dispatched. But we can drive
3240 * deeper queue depths at the beginning of slice
3241 * subjected to upper limit of cfq_quantum.
3242 * */
3243 max_dispatch = cfqd->cfq_quantum;
3244 }
3245
3246 /*
3247 * Async queues must wait a bit before being allowed dispatch.
3248 * We also ramp up the dispatch depth gradually for async IO,
3249 * based on the last sync IO we serviced
3250 */
3251 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3252 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3253 unsigned int depth;
3254
3255 depth = last_sync / cfqd->cfq_slice[1];
3256 if (!depth && !cfqq->dispatched)
3257 depth = 1;
3258 if (depth < max_dispatch)
3259 max_dispatch = depth;
3260 }
3261
3262 /*
3263 * If we're below the current max, allow a dispatch
3264 */
3265 return cfqq->dispatched < max_dispatch;
3266 }
3267
3268 /*
3269 * Dispatch a request from cfqq, moving them to the request queue
3270 * dispatch list.
3271 */
3272 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3273 {
3274 struct request *rq;
3275
3276 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3277
3278 if (!cfq_may_dispatch(cfqd, cfqq))
3279 return false;
3280
3281 /*
3282 * follow expired path, else get first next available
3283 */
3284 rq = cfq_check_fifo(cfqq);
3285 if (!rq)
3286 rq = cfqq->next_rq;
3287
3288 /*
3289 * insert request into driver dispatch list
3290 */
3291 cfq_dispatch_insert(cfqd->queue, rq);
3292
3293 if (!cfqd->active_cic) {
3294 struct cfq_io_cq *cic = RQ_CIC(rq);
3295
3296 atomic_long_inc(&cic->icq.ioc->refcount);
3297 cfqd->active_cic = cic;
3298 }
3299
3300 return true;
3301 }
3302
3303 /*
3304 * Find the cfqq that we need to service and move a request from that to the
3305 * dispatch list
3306 */
3307 static int cfq_dispatch_requests(struct request_queue *q, int force)
3308 {
3309 struct cfq_data *cfqd = q->elevator->elevator_data;
3310 struct cfq_queue *cfqq;
3311
3312 if (!cfqd->busy_queues)
3313 return 0;
3314
3315 if (unlikely(force))
3316 return cfq_forced_dispatch(cfqd);
3317
3318 cfqq = cfq_select_queue(cfqd);
3319 if (!cfqq)
3320 return 0;
3321
3322 /*
3323 * Dispatch a request from this cfqq, if it is allowed
3324 */
3325 if (!cfq_dispatch_request(cfqd, cfqq))
3326 return 0;
3327
3328 cfqq->slice_dispatch++;
3329 cfq_clear_cfqq_must_dispatch(cfqq);
3330
3331 /*
3332 * expire an async queue immediately if it has used up its slice. idle
3333 * queue always expire after 1 dispatch round.
3334 */
3335 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3336 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3337 cfq_class_idle(cfqq))) {
3338 cfqq->slice_end = jiffies + 1;
3339 cfq_slice_expired(cfqd, 0);
3340 }
3341
3342 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3343 return 1;
3344 }
3345
3346 /*
3347 * task holds one reference to the queue, dropped when task exits. each rq
3348 * in-flight on this queue also holds a reference, dropped when rq is freed.
3349 *
3350 * Each cfq queue took a reference on the parent group. Drop it now.
3351 * queue lock must be held here.
3352 */
3353 static void cfq_put_queue(struct cfq_queue *cfqq)
3354 {
3355 struct cfq_data *cfqd = cfqq->cfqd;
3356 struct cfq_group *cfqg;
3357
3358 BUG_ON(cfqq->ref <= 0);
3359
3360 cfqq->ref--;
3361 if (cfqq->ref)
3362 return;
3363
3364 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3365 BUG_ON(rb_first(&cfqq->sort_list));
3366 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3367 cfqg = cfqq->cfqg;
3368
3369 if (unlikely(cfqd->active_queue == cfqq)) {
3370 __cfq_slice_expired(cfqd, cfqq, 0);
3371 cfq_schedule_dispatch(cfqd);
3372 }
3373
3374 BUG_ON(cfq_cfqq_on_rr(cfqq));
3375 kmem_cache_free(cfq_pool, cfqq);
3376 cfqg_put(cfqg);
3377 }
3378
3379 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3380 {
3381 struct cfq_queue *__cfqq, *next;
3382
3383 /*
3384 * If this queue was scheduled to merge with another queue, be
3385 * sure to drop the reference taken on that queue (and others in
3386 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3387 */
3388 __cfqq = cfqq->new_cfqq;
3389 while (__cfqq) {
3390 if (__cfqq == cfqq) {
3391 WARN(1, "cfqq->new_cfqq loop detected\n");
3392 break;
3393 }
3394 next = __cfqq->new_cfqq;
3395 cfq_put_queue(__cfqq);
3396 __cfqq = next;
3397 }
3398 }
3399
3400 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3401 {
3402 if (unlikely(cfqq == cfqd->active_queue)) {
3403 __cfq_slice_expired(cfqd, cfqq, 0);
3404 cfq_schedule_dispatch(cfqd);
3405 }
3406
3407 cfq_put_cooperator(cfqq);
3408
3409 cfq_put_queue(cfqq);
3410 }
3411
3412 static void cfq_init_icq(struct io_cq *icq)
3413 {
3414 struct cfq_io_cq *cic = icq_to_cic(icq);
3415
3416 cic->ttime.last_end_request = jiffies;
3417 }
3418
3419 static void cfq_exit_icq(struct io_cq *icq)
3420 {
3421 struct cfq_io_cq *cic = icq_to_cic(icq);
3422 struct cfq_data *cfqd = cic_to_cfqd(cic);
3423
3424 if (cic->cfqq[BLK_RW_ASYNC]) {
3425 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3426 cic->cfqq[BLK_RW_ASYNC] = NULL;
3427 }
3428
3429 if (cic->cfqq[BLK_RW_SYNC]) {
3430 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3431 cic->cfqq[BLK_RW_SYNC] = NULL;
3432 }
3433 }
3434
3435 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3436 {
3437 struct task_struct *tsk = current;
3438 int ioprio_class;
3439
3440 if (!cfq_cfqq_prio_changed(cfqq))
3441 return;
3442
3443 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3444 switch (ioprio_class) {
3445 default:
3446 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3447 case IOPRIO_CLASS_NONE:
3448 /*
3449 * no prio set, inherit CPU scheduling settings
3450 */
3451 cfqq->ioprio = task_nice_ioprio(tsk);
3452 cfqq->ioprio_class = task_nice_ioclass(tsk);
3453 break;
3454 case IOPRIO_CLASS_RT:
3455 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3456 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3457 break;
3458 case IOPRIO_CLASS_BE:
3459 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3460 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3461 break;
3462 case IOPRIO_CLASS_IDLE:
3463 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3464 cfqq->ioprio = 7;
3465 cfq_clear_cfqq_idle_window(cfqq);
3466 break;
3467 }
3468
3469 /*
3470 * keep track of original prio settings in case we have to temporarily
3471 * elevate the priority of this queue
3472 */
3473 cfqq->org_ioprio = cfqq->ioprio;
3474 cfq_clear_cfqq_prio_changed(cfqq);
3475 }
3476
3477 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3478 {
3479 int ioprio = cic->icq.ioc->ioprio;
3480 struct cfq_data *cfqd = cic_to_cfqd(cic);
3481 struct cfq_queue *cfqq;
3482
3483 /*
3484 * Check whether ioprio has changed. The condition may trigger
3485 * spuriously on a newly created cic but there's no harm.
3486 */
3487 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3488 return;
3489
3490 cfqq = cic->cfqq[BLK_RW_ASYNC];
3491 if (cfqq) {
3492 struct cfq_queue *new_cfqq;
3493 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3494 GFP_ATOMIC);
3495 if (new_cfqq) {
3496 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3497 cfq_put_queue(cfqq);
3498 }
3499 }
3500
3501 cfqq = cic->cfqq[BLK_RW_SYNC];
3502 if (cfqq)
3503 cfq_mark_cfqq_prio_changed(cfqq);
3504
3505 cic->ioprio = ioprio;
3506 }
3507
3508 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3509 pid_t pid, bool is_sync)
3510 {
3511 RB_CLEAR_NODE(&cfqq->rb_node);
3512 RB_CLEAR_NODE(&cfqq->p_node);
3513 INIT_LIST_HEAD(&cfqq->fifo);
3514
3515 cfqq->ref = 0;
3516 cfqq->cfqd = cfqd;
3517
3518 cfq_mark_cfqq_prio_changed(cfqq);
3519
3520 if (is_sync) {
3521 if (!cfq_class_idle(cfqq))
3522 cfq_mark_cfqq_idle_window(cfqq);
3523 cfq_mark_cfqq_sync(cfqq);
3524 }
3525 cfqq->pid = pid;
3526 }
3527
3528 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3529 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3530 {
3531 struct cfq_data *cfqd = cic_to_cfqd(cic);
3532 struct cfq_queue *sync_cfqq;
3533 uint64_t id;
3534
3535 rcu_read_lock();
3536 id = bio_blkcg(bio)->id;
3537 rcu_read_unlock();
3538
3539 /*
3540 * Check whether blkcg has changed. The condition may trigger
3541 * spuriously on a newly created cic but there's no harm.
3542 */
3543 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3544 return;
3545
3546 sync_cfqq = cic_to_cfqq(cic, 1);
3547 if (sync_cfqq) {
3548 /*
3549 * Drop reference to sync queue. A new sync queue will be
3550 * assigned in new group upon arrival of a fresh request.
3551 */
3552 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3553 cic_set_cfqq(cic, NULL, 1);
3554 cfq_put_queue(sync_cfqq);
3555 }
3556
3557 cic->blkcg_id = id;
3558 }
3559 #else
3560 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3561 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3562
3563 static struct cfq_queue *
3564 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3565 struct bio *bio, gfp_t gfp_mask)
3566 {
3567 struct blkcg *blkcg;
3568 struct cfq_queue *cfqq, *new_cfqq = NULL;
3569 struct cfq_group *cfqg;
3570
3571 retry:
3572 rcu_read_lock();
3573
3574 blkcg = bio_blkcg(bio);
3575 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3576 cfqq = cic_to_cfqq(cic, is_sync);
3577
3578 /*
3579 * Always try a new alloc if we fell back to the OOM cfqq
3580 * originally, since it should just be a temporary situation.
3581 */
3582 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3583 cfqq = NULL;
3584 if (new_cfqq) {
3585 cfqq = new_cfqq;
3586 new_cfqq = NULL;
3587 } else if (gfp_mask & __GFP_WAIT) {
3588 rcu_read_unlock();
3589 spin_unlock_irq(cfqd->queue->queue_lock);
3590 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3591 gfp_mask | __GFP_ZERO,
3592 cfqd->queue->node);
3593 spin_lock_irq(cfqd->queue->queue_lock);
3594 if (new_cfqq)
3595 goto retry;
3596 else
3597 return &cfqd->oom_cfqq;
3598 } else {
3599 cfqq = kmem_cache_alloc_node(cfq_pool,
3600 gfp_mask | __GFP_ZERO,
3601 cfqd->queue->node);
3602 }
3603
3604 if (cfqq) {
3605 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3606 cfq_init_prio_data(cfqq, cic);
3607 cfq_link_cfqq_cfqg(cfqq, cfqg);
3608 cfq_log_cfqq(cfqd, cfqq, "alloced");
3609 } else
3610 cfqq = &cfqd->oom_cfqq;
3611 }
3612
3613 if (new_cfqq)
3614 kmem_cache_free(cfq_pool, new_cfqq);
3615
3616 rcu_read_unlock();
3617 return cfqq;
3618 }
3619
3620 static struct cfq_queue **
3621 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3622 {
3623 switch (ioprio_class) {
3624 case IOPRIO_CLASS_RT:
3625 return &cfqd->async_cfqq[0][ioprio];
3626 case IOPRIO_CLASS_NONE:
3627 ioprio = IOPRIO_NORM;
3628 /* fall through */
3629 case IOPRIO_CLASS_BE:
3630 return &cfqd->async_cfqq[1][ioprio];
3631 case IOPRIO_CLASS_IDLE:
3632 return &cfqd->async_idle_cfqq;
3633 default:
3634 BUG();
3635 }
3636 }
3637
3638 static struct cfq_queue *
3639 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3640 struct bio *bio, gfp_t gfp_mask)
3641 {
3642 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3643 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3644 struct cfq_queue **async_cfqq = NULL;
3645 struct cfq_queue *cfqq = NULL;
3646
3647 if (!is_sync) {
3648 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3649 cfqq = *async_cfqq;
3650 }
3651
3652 if (!cfqq)
3653 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3654
3655 /*
3656 * pin the queue now that it's allocated, scheduler exit will prune it
3657 */
3658 if (!is_sync && !(*async_cfqq)) {
3659 cfqq->ref++;
3660 *async_cfqq = cfqq;
3661 }
3662
3663 cfqq->ref++;
3664 return cfqq;
3665 }
3666
3667 static void
3668 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3669 {
3670 unsigned long elapsed = jiffies - ttime->last_end_request;
3671 elapsed = min(elapsed, 2UL * slice_idle);
3672
3673 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3674 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3675 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3676 }
3677
3678 static void
3679 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3680 struct cfq_io_cq *cic)
3681 {
3682 if (cfq_cfqq_sync(cfqq)) {
3683 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3684 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3685 cfqd->cfq_slice_idle);
3686 }
3687 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3688 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3689 #endif
3690 }
3691
3692 static void
3693 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3694 struct request *rq)
3695 {
3696 sector_t sdist = 0;
3697 sector_t n_sec = blk_rq_sectors(rq);
3698 if (cfqq->last_request_pos) {
3699 if (cfqq->last_request_pos < blk_rq_pos(rq))
3700 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3701 else
3702 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3703 }
3704
3705 cfqq->seek_history <<= 1;
3706 if (blk_queue_nonrot(cfqd->queue))
3707 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3708 else
3709 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3710 }
3711
3712 /*
3713 * Disable idle window if the process thinks too long or seeks so much that
3714 * it doesn't matter
3715 */
3716 static void
3717 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3718 struct cfq_io_cq *cic)
3719 {
3720 int old_idle, enable_idle;
3721
3722 /*
3723 * Don't idle for async or idle io prio class
3724 */
3725 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3726 return;
3727
3728 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3729
3730 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3731 cfq_mark_cfqq_deep(cfqq);
3732
3733 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3734 enable_idle = 0;
3735 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3736 !cfqd->cfq_slice_idle ||
3737 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3738 enable_idle = 0;
3739 else if (sample_valid(cic->ttime.ttime_samples)) {
3740 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3741 enable_idle = 0;
3742 else
3743 enable_idle = 1;
3744 }
3745
3746 if (old_idle != enable_idle) {
3747 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3748 if (enable_idle)
3749 cfq_mark_cfqq_idle_window(cfqq);
3750 else
3751 cfq_clear_cfqq_idle_window(cfqq);
3752 }
3753 }
3754
3755 /*
3756 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3757 * no or if we aren't sure, a 1 will cause a preempt.
3758 */
3759 static bool
3760 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3761 struct request *rq)
3762 {
3763 struct cfq_queue *cfqq;
3764
3765 cfqq = cfqd->active_queue;
3766 if (!cfqq)
3767 return false;
3768
3769 if (cfq_class_idle(new_cfqq))
3770 return false;
3771
3772 if (cfq_class_idle(cfqq))
3773 return true;
3774
3775 /*
3776 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3777 */
3778 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3779 return false;
3780
3781 /*
3782 * if the new request is sync, but the currently running queue is
3783 * not, let the sync request have priority.
3784 */
3785 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3786 return true;
3787
3788 if (new_cfqq->cfqg != cfqq->cfqg)
3789 return false;
3790
3791 if (cfq_slice_used(cfqq))
3792 return true;
3793
3794 /* Allow preemption only if we are idling on sync-noidle tree */
3795 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3796 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3797 new_cfqq->service_tree->count == 2 &&
3798 RB_EMPTY_ROOT(&cfqq->sort_list))
3799 return true;
3800
3801 /*
3802 * So both queues are sync. Let the new request get disk time if
3803 * it's a metadata request and the current queue is doing regular IO.
3804 */
3805 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3806 return true;
3807
3808 /*
3809 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3810 */
3811 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3812 return true;
3813
3814 /* An idle queue should not be idle now for some reason */
3815 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3816 return true;
3817
3818 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3819 return false;
3820
3821 /*
3822 * if this request is as-good as one we would expect from the
3823 * current cfqq, let it preempt
3824 */
3825 if (cfq_rq_close(cfqd, cfqq, rq))
3826 return true;
3827
3828 return false;
3829 }
3830
3831 /*
3832 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3833 * let it have half of its nominal slice.
3834 */
3835 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3836 {
3837 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3838
3839 cfq_log_cfqq(cfqd, cfqq, "preempt");
3840 cfq_slice_expired(cfqd, 1);
3841
3842 /*
3843 * workload type is changed, don't save slice, otherwise preempt
3844 * doesn't happen
3845 */
3846 if (old_type != cfqq_type(cfqq))
3847 cfqq->cfqg->saved_wl_slice = 0;
3848
3849 /*
3850 * Put the new queue at the front of the of the current list,
3851 * so we know that it will be selected next.
3852 */
3853 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3854
3855 cfq_service_tree_add(cfqd, cfqq, 1);
3856
3857 cfqq->slice_end = 0;
3858 cfq_mark_cfqq_slice_new(cfqq);
3859 }
3860
3861 /*
3862 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3863 * something we should do about it
3864 */
3865 static void
3866 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3867 struct request *rq)
3868 {
3869 struct cfq_io_cq *cic = RQ_CIC(rq);
3870
3871 cfqd->rq_queued++;
3872 if (rq->cmd_flags & REQ_PRIO)
3873 cfqq->prio_pending++;
3874
3875 cfq_update_io_thinktime(cfqd, cfqq, cic);
3876 cfq_update_io_seektime(cfqd, cfqq, rq);
3877 cfq_update_idle_window(cfqd, cfqq, cic);
3878
3879 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3880
3881 if (cfqq == cfqd->active_queue) {
3882 /*
3883 * Remember that we saw a request from this process, but
3884 * don't start queuing just yet. Otherwise we risk seeing lots
3885 * of tiny requests, because we disrupt the normal plugging
3886 * and merging. If the request is already larger than a single
3887 * page, let it rip immediately. For that case we assume that
3888 * merging is already done. Ditto for a busy system that
3889 * has other work pending, don't risk delaying until the
3890 * idle timer unplug to continue working.
3891 */
3892 if (cfq_cfqq_wait_request(cfqq)) {
3893 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3894 cfqd->busy_queues > 1) {
3895 cfq_del_timer(cfqd, cfqq);
3896 cfq_clear_cfqq_wait_request(cfqq);
3897 __blk_run_queue(cfqd->queue);
3898 } else {
3899 cfqg_stats_update_idle_time(cfqq->cfqg);
3900 cfq_mark_cfqq_must_dispatch(cfqq);
3901 }
3902 }
3903 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3904 /*
3905 * not the active queue - expire current slice if it is
3906 * idle and has expired it's mean thinktime or this new queue
3907 * has some old slice time left and is of higher priority or
3908 * this new queue is RT and the current one is BE
3909 */
3910 cfq_preempt_queue(cfqd, cfqq);
3911 __blk_run_queue(cfqd->queue);
3912 }
3913 }
3914
3915 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3916 {
3917 struct cfq_data *cfqd = q->elevator->elevator_data;
3918 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3919
3920 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3921 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3922
3923 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3924 list_add_tail(&rq->queuelist, &cfqq->fifo);
3925 cfq_add_rq_rb(rq);
3926 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3927 rq->cmd_flags);
3928 cfq_rq_enqueued(cfqd, cfqq, rq);
3929 }
3930
3931 /*
3932 * Update hw_tag based on peak queue depth over 50 samples under
3933 * sufficient load.
3934 */
3935 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3936 {
3937 struct cfq_queue *cfqq = cfqd->active_queue;
3938
3939 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3940 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3941
3942 if (cfqd->hw_tag == 1)
3943 return;
3944
3945 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3946 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3947 return;
3948
3949 /*
3950 * If active queue hasn't enough requests and can idle, cfq might not
3951 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3952 * case
3953 */
3954 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3955 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3956 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3957 return;
3958
3959 if (cfqd->hw_tag_samples++ < 50)
3960 return;
3961
3962 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3963 cfqd->hw_tag = 1;
3964 else
3965 cfqd->hw_tag = 0;
3966 }
3967
3968 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3969 {
3970 struct cfq_io_cq *cic = cfqd->active_cic;
3971
3972 /* If the queue already has requests, don't wait */
3973 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3974 return false;
3975
3976 /* If there are other queues in the group, don't wait */
3977 if (cfqq->cfqg->nr_cfqq > 1)
3978 return false;
3979
3980 /* the only queue in the group, but think time is big */
3981 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3982 return false;
3983
3984 if (cfq_slice_used(cfqq))
3985 return true;
3986
3987 /* if slice left is less than think time, wait busy */
3988 if (cic && sample_valid(cic->ttime.ttime_samples)
3989 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3990 return true;
3991
3992 /*
3993 * If think times is less than a jiffy than ttime_mean=0 and above
3994 * will not be true. It might happen that slice has not expired yet
3995 * but will expire soon (4-5 ns) during select_queue(). To cover the
3996 * case where think time is less than a jiffy, mark the queue wait
3997 * busy if only 1 jiffy is left in the slice.
3998 */
3999 if (cfqq->slice_end - jiffies == 1)
4000 return true;
4001
4002 return false;
4003 }
4004
4005 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4006 {
4007 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4008 struct cfq_data *cfqd = cfqq->cfqd;
4009 const int sync = rq_is_sync(rq);
4010 unsigned long now;
4011
4012 now = jiffies;
4013 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4014 !!(rq->cmd_flags & REQ_NOIDLE));
4015
4016 cfq_update_hw_tag(cfqd);
4017
4018 WARN_ON(!cfqd->rq_in_driver);
4019 WARN_ON(!cfqq->dispatched);
4020 cfqd->rq_in_driver--;
4021 cfqq->dispatched--;
4022 (RQ_CFQG(rq))->dispatched--;
4023 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4024 rq_io_start_time_ns(rq), rq->cmd_flags);
4025
4026 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4027
4028 if (sync) {
4029 struct cfq_rb_root *st;
4030
4031 RQ_CIC(rq)->ttime.last_end_request = now;
4032
4033 if (cfq_cfqq_on_rr(cfqq))
4034 st = cfqq->service_tree;
4035 else
4036 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4037 cfqq_type(cfqq));
4038
4039 st->ttime.last_end_request = now;
4040 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4041 cfqd->last_delayed_sync = now;
4042 }
4043
4044 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4045 cfqq->cfqg->ttime.last_end_request = now;
4046 #endif
4047
4048 /*
4049 * If this is the active queue, check if it needs to be expired,
4050 * or if we want to idle in case it has no pending requests.
4051 */
4052 if (cfqd->active_queue == cfqq) {
4053 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4054
4055 if (cfq_cfqq_slice_new(cfqq)) {
4056 cfq_set_prio_slice(cfqd, cfqq);
4057 cfq_clear_cfqq_slice_new(cfqq);
4058 }
4059
4060 /*
4061 * Should we wait for next request to come in before we expire
4062 * the queue.
4063 */
4064 if (cfq_should_wait_busy(cfqd, cfqq)) {
4065 unsigned long extend_sl = cfqd->cfq_slice_idle;
4066 if (!cfqd->cfq_slice_idle)
4067 extend_sl = cfqd->cfq_group_idle;
4068 cfqq->slice_end = jiffies + extend_sl;
4069 cfq_mark_cfqq_wait_busy(cfqq);
4070 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4071 }
4072
4073 /*
4074 * Idling is not enabled on:
4075 * - expired queues
4076 * - idle-priority queues
4077 * - async queues
4078 * - queues with still some requests queued
4079 * - when there is a close cooperator
4080 */
4081 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4082 cfq_slice_expired(cfqd, 1);
4083 else if (sync && cfqq_empty &&
4084 !cfq_close_cooperator(cfqd, cfqq)) {
4085 cfq_arm_slice_timer(cfqd);
4086 }
4087 }
4088
4089 if (!cfqd->rq_in_driver)
4090 cfq_schedule_dispatch(cfqd);
4091 }
4092
4093 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4094 {
4095 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4096 cfq_mark_cfqq_must_alloc_slice(cfqq);
4097 return ELV_MQUEUE_MUST;
4098 }
4099
4100 return ELV_MQUEUE_MAY;
4101 }
4102
4103 static int cfq_may_queue(struct request_queue *q, int rw)
4104 {
4105 struct cfq_data *cfqd = q->elevator->elevator_data;
4106 struct task_struct *tsk = current;
4107 struct cfq_io_cq *cic;
4108 struct cfq_queue *cfqq;
4109
4110 /*
4111 * don't force setup of a queue from here, as a call to may_queue
4112 * does not necessarily imply that a request actually will be queued.
4113 * so just lookup a possibly existing queue, or return 'may queue'
4114 * if that fails
4115 */
4116 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4117 if (!cic)
4118 return ELV_MQUEUE_MAY;
4119
4120 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4121 if (cfqq) {
4122 cfq_init_prio_data(cfqq, cic);
4123
4124 return __cfq_may_queue(cfqq);
4125 }
4126
4127 return ELV_MQUEUE_MAY;
4128 }
4129
4130 /*
4131 * queue lock held here
4132 */
4133 static void cfq_put_request(struct request *rq)
4134 {
4135 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4136
4137 if (cfqq) {
4138 const int rw = rq_data_dir(rq);
4139
4140 BUG_ON(!cfqq->allocated[rw]);
4141 cfqq->allocated[rw]--;
4142
4143 /* Put down rq reference on cfqg */
4144 cfqg_put(RQ_CFQG(rq));
4145 rq->elv.priv[0] = NULL;
4146 rq->elv.priv[1] = NULL;
4147
4148 cfq_put_queue(cfqq);
4149 }
4150 }
4151
4152 static struct cfq_queue *
4153 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4154 struct cfq_queue *cfqq)
4155 {
4156 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4157 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4158 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4159 cfq_put_queue(cfqq);
4160 return cic_to_cfqq(cic, 1);
4161 }
4162
4163 /*
4164 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4165 * was the last process referring to said cfqq.
4166 */
4167 static struct cfq_queue *
4168 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4169 {
4170 if (cfqq_process_refs(cfqq) == 1) {
4171 cfqq->pid = current->pid;
4172 cfq_clear_cfqq_coop(cfqq);
4173 cfq_clear_cfqq_split_coop(cfqq);
4174 return cfqq;
4175 }
4176
4177 cic_set_cfqq(cic, NULL, 1);
4178
4179 cfq_put_cooperator(cfqq);
4180
4181 cfq_put_queue(cfqq);
4182 return NULL;
4183 }
4184 /*
4185 * Allocate cfq data structures associated with this request.
4186 */
4187 static int
4188 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4189 gfp_t gfp_mask)
4190 {
4191 struct cfq_data *cfqd = q->elevator->elevator_data;
4192 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4193 const int rw = rq_data_dir(rq);
4194 const bool is_sync = rq_is_sync(rq);
4195 struct cfq_queue *cfqq;
4196
4197 might_sleep_if(gfp_mask & __GFP_WAIT);
4198
4199 spin_lock_irq(q->queue_lock);
4200
4201 check_ioprio_changed(cic, bio);
4202 check_blkcg_changed(cic, bio);
4203 new_queue:
4204 cfqq = cic_to_cfqq(cic, is_sync);
4205 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4206 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4207 cic_set_cfqq(cic, cfqq, is_sync);
4208 } else {
4209 /*
4210 * If the queue was seeky for too long, break it apart.
4211 */
4212 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4213 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4214 cfqq = split_cfqq(cic, cfqq);
4215 if (!cfqq)
4216 goto new_queue;
4217 }
4218
4219 /*
4220 * Check to see if this queue is scheduled to merge with
4221 * another, closely cooperating queue. The merging of
4222 * queues happens here as it must be done in process context.
4223 * The reference on new_cfqq was taken in merge_cfqqs.
4224 */
4225 if (cfqq->new_cfqq)
4226 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4227 }
4228
4229 cfqq->allocated[rw]++;
4230
4231 cfqq->ref++;
4232 cfqg_get(cfqq->cfqg);
4233 rq->elv.priv[0] = cfqq;
4234 rq->elv.priv[1] = cfqq->cfqg;
4235 spin_unlock_irq(q->queue_lock);
4236 return 0;
4237 }
4238
4239 static void cfq_kick_queue(struct work_struct *work)
4240 {
4241 struct cfq_data *cfqd =
4242 container_of(work, struct cfq_data, unplug_work);
4243 struct request_queue *q = cfqd->queue;
4244
4245 spin_lock_irq(q->queue_lock);
4246 __blk_run_queue(cfqd->queue);
4247 spin_unlock_irq(q->queue_lock);
4248 }
4249
4250 /*
4251 * Timer running if the active_queue is currently idling inside its time slice
4252 */
4253 static void cfq_idle_slice_timer(unsigned long data)
4254 {
4255 struct cfq_data *cfqd = (struct cfq_data *) data;
4256 struct cfq_queue *cfqq;
4257 unsigned long flags;
4258 int timed_out = 1;
4259
4260 cfq_log(cfqd, "idle timer fired");
4261
4262 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4263
4264 cfqq = cfqd->active_queue;
4265 if (cfqq) {
4266 timed_out = 0;
4267
4268 /*
4269 * We saw a request before the queue expired, let it through
4270 */
4271 if (cfq_cfqq_must_dispatch(cfqq))
4272 goto out_kick;
4273
4274 /*
4275 * expired
4276 */
4277 if (cfq_slice_used(cfqq))
4278 goto expire;
4279
4280 /*
4281 * only expire and reinvoke request handler, if there are
4282 * other queues with pending requests
4283 */
4284 if (!cfqd->busy_queues)
4285 goto out_cont;
4286
4287 /*
4288 * not expired and it has a request pending, let it dispatch
4289 */
4290 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4291 goto out_kick;
4292
4293 /*
4294 * Queue depth flag is reset only when the idle didn't succeed
4295 */
4296 cfq_clear_cfqq_deep(cfqq);
4297 }
4298 expire:
4299 cfq_slice_expired(cfqd, timed_out);
4300 out_kick:
4301 cfq_schedule_dispatch(cfqd);
4302 out_cont:
4303 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4304 }
4305
4306 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4307 {
4308 del_timer_sync(&cfqd->idle_slice_timer);
4309 cancel_work_sync(&cfqd->unplug_work);
4310 }
4311
4312 static void cfq_put_async_queues(struct cfq_data *cfqd)
4313 {
4314 int i;
4315
4316 for (i = 0; i < IOPRIO_BE_NR; i++) {
4317 if (cfqd->async_cfqq[0][i])
4318 cfq_put_queue(cfqd->async_cfqq[0][i]);
4319 if (cfqd->async_cfqq[1][i])
4320 cfq_put_queue(cfqd->async_cfqq[1][i]);
4321 }
4322
4323 if (cfqd->async_idle_cfqq)
4324 cfq_put_queue(cfqd->async_idle_cfqq);
4325 }
4326
4327 static void cfq_exit_queue(struct elevator_queue *e)
4328 {
4329 struct cfq_data *cfqd = e->elevator_data;
4330 struct request_queue *q = cfqd->queue;
4331
4332 cfq_shutdown_timer_wq(cfqd);
4333
4334 spin_lock_irq(q->queue_lock);
4335
4336 if (cfqd->active_queue)
4337 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4338
4339 cfq_put_async_queues(cfqd);
4340
4341 spin_unlock_irq(q->queue_lock);
4342
4343 cfq_shutdown_timer_wq(cfqd);
4344
4345 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4346 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4347 #else
4348 kfree(cfqd->root_group);
4349 #endif
4350 kfree(cfqd);
4351 }
4352
4353 static int cfq_init_queue(struct request_queue *q)
4354 {
4355 struct cfq_data *cfqd;
4356 struct blkcg_gq *blkg __maybe_unused;
4357 int i, ret;
4358
4359 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4360 if (!cfqd)
4361 return -ENOMEM;
4362
4363 cfqd->queue = q;
4364 q->elevator->elevator_data = cfqd;
4365
4366 /* Init root service tree */
4367 cfqd->grp_service_tree = CFQ_RB_ROOT;
4368
4369 /* Init root group and prefer root group over other groups by default */
4370 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4371 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4372 if (ret)
4373 goto out_free;
4374
4375 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4376 #else
4377 ret = -ENOMEM;
4378 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4379 GFP_KERNEL, cfqd->queue->node);
4380 if (!cfqd->root_group)
4381 goto out_free;
4382
4383 cfq_init_cfqg_base(cfqd->root_group);
4384 #endif
4385 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4386 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4387
4388 /*
4389 * Not strictly needed (since RB_ROOT just clears the node and we
4390 * zeroed cfqd on alloc), but better be safe in case someone decides
4391 * to add magic to the rb code
4392 */
4393 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4394 cfqd->prio_trees[i] = RB_ROOT;
4395
4396 /*
4397 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4398 * Grab a permanent reference to it, so that the normal code flow
4399 * will not attempt to free it. oom_cfqq is linked to root_group
4400 * but shouldn't hold a reference as it'll never be unlinked. Lose
4401 * the reference from linking right away.
4402 */
4403 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4404 cfqd->oom_cfqq.ref++;
4405
4406 spin_lock_irq(q->queue_lock);
4407 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4408 cfqg_put(cfqd->root_group);
4409 spin_unlock_irq(q->queue_lock);
4410
4411 init_timer(&cfqd->idle_slice_timer);
4412 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4413 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4414
4415 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4416
4417 cfqd->cfq_quantum = cfq_quantum;
4418 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4419 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4420 cfqd->cfq_back_max = cfq_back_max;
4421 cfqd->cfq_back_penalty = cfq_back_penalty;
4422 cfqd->cfq_slice[0] = cfq_slice_async;
4423 cfqd->cfq_slice[1] = cfq_slice_sync;
4424 cfqd->cfq_target_latency = cfq_target_latency;
4425 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4426 cfqd->cfq_slice_idle = cfq_slice_idle;
4427 cfqd->cfq_group_idle = cfq_group_idle;
4428 cfqd->cfq_latency = 1;
4429 cfqd->hw_tag = -1;
4430 /*
4431 * we optimistically start assuming sync ops weren't delayed in last
4432 * second, in order to have larger depth for async operations.
4433 */
4434 cfqd->last_delayed_sync = jiffies - HZ;
4435 return 0;
4436
4437 out_free:
4438 kfree(cfqd);
4439 return ret;
4440 }
4441
4442 /*
4443 * sysfs parts below -->
4444 */
4445 static ssize_t
4446 cfq_var_show(unsigned int var, char *page)
4447 {
4448 return sprintf(page, "%d\n", var);
4449 }
4450
4451 static ssize_t
4452 cfq_var_store(unsigned int *var, const char *page, size_t count)
4453 {
4454 char *p = (char *) page;
4455
4456 *var = simple_strtoul(p, &p, 10);
4457 return count;
4458 }
4459
4460 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4461 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4462 { \
4463 struct cfq_data *cfqd = e->elevator_data; \
4464 unsigned int __data = __VAR; \
4465 if (__CONV) \
4466 __data = jiffies_to_msecs(__data); \
4467 return cfq_var_show(__data, (page)); \
4468 }
4469 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4470 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4471 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4472 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4473 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4474 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4475 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4476 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4477 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4478 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4479 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4480 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4481 #undef SHOW_FUNCTION
4482
4483 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4484 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4485 { \
4486 struct cfq_data *cfqd = e->elevator_data; \
4487 unsigned int __data; \
4488 int ret = cfq_var_store(&__data, (page), count); \
4489 if (__data < (MIN)) \
4490 __data = (MIN); \
4491 else if (__data > (MAX)) \
4492 __data = (MAX); \
4493 if (__CONV) \
4494 *(__PTR) = msecs_to_jiffies(__data); \
4495 else \
4496 *(__PTR) = __data; \
4497 return ret; \
4498 }
4499 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4500 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4501 UINT_MAX, 1);
4502 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4503 UINT_MAX, 1);
4504 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4505 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4506 UINT_MAX, 0);
4507 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4508 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4509 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4510 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4511 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4512 UINT_MAX, 0);
4513 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4514 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4515 #undef STORE_FUNCTION
4516
4517 #define CFQ_ATTR(name) \
4518 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4519
4520 static struct elv_fs_entry cfq_attrs[] = {
4521 CFQ_ATTR(quantum),
4522 CFQ_ATTR(fifo_expire_sync),
4523 CFQ_ATTR(fifo_expire_async),
4524 CFQ_ATTR(back_seek_max),
4525 CFQ_ATTR(back_seek_penalty),
4526 CFQ_ATTR(slice_sync),
4527 CFQ_ATTR(slice_async),
4528 CFQ_ATTR(slice_async_rq),
4529 CFQ_ATTR(slice_idle),
4530 CFQ_ATTR(group_idle),
4531 CFQ_ATTR(low_latency),
4532 CFQ_ATTR(target_latency),
4533 __ATTR_NULL
4534 };
4535
4536 static struct elevator_type iosched_cfq = {
4537 .ops = {
4538 .elevator_merge_fn = cfq_merge,
4539 .elevator_merged_fn = cfq_merged_request,
4540 .elevator_merge_req_fn = cfq_merged_requests,
4541 .elevator_allow_merge_fn = cfq_allow_merge,
4542 .elevator_bio_merged_fn = cfq_bio_merged,
4543 .elevator_dispatch_fn = cfq_dispatch_requests,
4544 .elevator_add_req_fn = cfq_insert_request,
4545 .elevator_activate_req_fn = cfq_activate_request,
4546 .elevator_deactivate_req_fn = cfq_deactivate_request,
4547 .elevator_completed_req_fn = cfq_completed_request,
4548 .elevator_former_req_fn = elv_rb_former_request,
4549 .elevator_latter_req_fn = elv_rb_latter_request,
4550 .elevator_init_icq_fn = cfq_init_icq,
4551 .elevator_exit_icq_fn = cfq_exit_icq,
4552 .elevator_set_req_fn = cfq_set_request,
4553 .elevator_put_req_fn = cfq_put_request,
4554 .elevator_may_queue_fn = cfq_may_queue,
4555 .elevator_init_fn = cfq_init_queue,
4556 .elevator_exit_fn = cfq_exit_queue,
4557 },
4558 .icq_size = sizeof(struct cfq_io_cq),
4559 .icq_align = __alignof__(struct cfq_io_cq),
4560 .elevator_attrs = cfq_attrs,
4561 .elevator_name = "cfq",
4562 .elevator_owner = THIS_MODULE,
4563 };
4564
4565 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4566 static struct blkcg_policy blkcg_policy_cfq = {
4567 .pd_size = sizeof(struct cfq_group),
4568 .cftypes = cfq_blkcg_files,
4569
4570 .pd_init_fn = cfq_pd_init,
4571 .pd_offline_fn = cfq_pd_offline,
4572 .pd_reset_stats_fn = cfq_pd_reset_stats,
4573 };
4574 #endif
4575
4576 static int __init cfq_init(void)
4577 {
4578 int ret;
4579
4580 /*
4581 * could be 0 on HZ < 1000 setups
4582 */
4583 if (!cfq_slice_async)
4584 cfq_slice_async = 1;
4585 if (!cfq_slice_idle)
4586 cfq_slice_idle = 1;
4587
4588 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4589 if (!cfq_group_idle)
4590 cfq_group_idle = 1;
4591
4592 ret = blkcg_policy_register(&blkcg_policy_cfq);
4593 if (ret)
4594 return ret;
4595 #else
4596 cfq_group_idle = 0;
4597 #endif
4598
4599 ret = -ENOMEM;
4600 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4601 if (!cfq_pool)
4602 goto err_pol_unreg;
4603
4604 ret = elv_register(&iosched_cfq);
4605 if (ret)
4606 goto err_free_pool;
4607
4608 return 0;
4609
4610 err_free_pool:
4611 kmem_cache_destroy(cfq_pool);
4612 err_pol_unreg:
4613 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4614 blkcg_policy_unregister(&blkcg_policy_cfq);
4615 #endif
4616 return ret;
4617 }
4618
4619 static void __exit cfq_exit(void)
4620 {
4621 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4622 blkcg_policy_unregister(&blkcg_policy_cfq);
4623 #endif
4624 elv_unregister(&iosched_cfq);
4625 kmem_cache_destroy(cfq_pool);
4626 }
4627
4628 module_init(cfq_init);
4629 module_exit(cfq_exit);
4630
4631 MODULE_AUTHOR("Jens Axboe");
4632 MODULE_LICENSE("GPL");
4633 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");