Merge commit 'v2.6.34-rc1' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
48
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
51 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
52
53 #define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70
71 /*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77 struct cfq_rb_root {
78 struct rb_root rb;
79 struct rb_node *left;
80 unsigned count;
81 unsigned total_weight;
82 u64 min_vdisktime;
83 struct rb_node *active;
84 };
85 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
86 .count = 0, .min_vdisktime = 0, }
87
88 /*
89 * Per process-grouping structure
90 */
91 struct cfq_queue {
92 /* reference count */
93 atomic_t ref;
94 /* various state flags, see below */
95 unsigned int flags;
96 /* parent cfq_data */
97 struct cfq_data *cfqd;
98 /* service_tree member */
99 struct rb_node rb_node;
100 /* service_tree key */
101 unsigned long rb_key;
102 /* prio tree member */
103 struct rb_node p_node;
104 /* prio tree root we belong to, if any */
105 struct rb_root *p_root;
106 /* sorted list of pending requests */
107 struct rb_root sort_list;
108 /* if fifo isn't expired, next request to serve */
109 struct request *next_rq;
110 /* requests queued in sort_list */
111 int queued[2];
112 /* currently allocated requests */
113 int allocated[2];
114 /* fifo list of requests in sort_list */
115 struct list_head fifo;
116
117 /* time when queue got scheduled in to dispatch first request. */
118 unsigned long dispatch_start;
119 unsigned int allocated_slice;
120 unsigned int slice_dispatch;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
123 unsigned long slice_end;
124 long slice_resid;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
135 pid_t pid;
136
137 u32 seek_history;
138 sector_t last_request_pos;
139
140 struct cfq_rb_root *service_tree;
141 struct cfq_queue *new_cfqq;
142 struct cfq_group *cfqg;
143 struct cfq_group *orig_cfqg;
144 /* Sectors dispatched in current dispatch round */
145 unsigned long nr_sectors;
146 };
147
148 /*
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
151 */
152 enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
156 };
157
158 /*
159 * Second index in the service_trees.
160 */
161 enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
165 };
166
167 /* This is per cgroup per device grouping structure */
168 struct cfq_group {
169 /* group service_tree member */
170 struct rb_node rb_node;
171
172 /* group service_tree key */
173 u64 vdisktime;
174 unsigned int weight;
175 bool on_st;
176
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
179
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
182 /*
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
185 */
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
188
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
192 struct blkio_group blkg;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node;
195 atomic_t ref;
196 #endif
197 };
198
199 /*
200 * Per block device queue structure
201 */
202 struct cfq_data {
203 struct request_queue *queue;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree;
206 struct cfq_group root_group;
207
208 /*
209 * The priority currently being served
210 */
211 enum wl_prio_t serving_prio;
212 enum wl_type_t serving_type;
213 unsigned long workload_expires;
214 struct cfq_group *serving_group;
215 bool noidle_tree_requires_idle;
216
217 /*
218 * Each priority tree is sorted by next_request position. These
219 * trees are used when determining if two or more queues are
220 * interleaving requests (see cfq_close_cooperator).
221 */
222 struct rb_root prio_trees[CFQ_PRIO_LISTS];
223
224 unsigned int busy_queues;
225
226 int rq_in_driver;
227 int rq_in_flight[2];
228
229 /*
230 * queue-depth detection
231 */
232 int rq_queued;
233 int hw_tag;
234 /*
235 * hw_tag can be
236 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
238 * 0 => no NCQ
239 */
240 int hw_tag_est_depth;
241 unsigned int hw_tag_samples;
242
243 /*
244 * idle window management
245 */
246 struct timer_list idle_slice_timer;
247 struct work_struct unplug_work;
248
249 struct cfq_queue *active_queue;
250 struct cfq_io_context *active_cic;
251
252 /*
253 * async queue for each priority case
254 */
255 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
256 struct cfq_queue *async_idle_cfqq;
257
258 sector_t last_position;
259
260 /*
261 * tunables, see top of file
262 */
263 unsigned int cfq_quantum;
264 unsigned int cfq_fifo_expire[2];
265 unsigned int cfq_back_penalty;
266 unsigned int cfq_back_max;
267 unsigned int cfq_slice[2];
268 unsigned int cfq_slice_async_rq;
269 unsigned int cfq_slice_idle;
270 unsigned int cfq_latency;
271 unsigned int cfq_group_isolation;
272
273 struct list_head cic_list;
274
275 /*
276 * Fallback dummy cfqq for extreme OOM conditions
277 */
278 struct cfq_queue oom_cfqq;
279
280 unsigned long last_delayed_sync;
281
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list;
284 struct rcu_head rcu;
285 };
286
287 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
288
289 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290 enum wl_prio_t prio,
291 enum wl_type_t type)
292 {
293 if (!cfqg)
294 return NULL;
295
296 if (prio == IDLE_WORKLOAD)
297 return &cfqg->service_tree_idle;
298
299 return &cfqg->service_trees[prio][type];
300 }
301
302 enum cfqq_state_flags {
303 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
305 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
306 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
307 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
310 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
311 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
312 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
313 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
314 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
315 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
316 };
317
318 #define CFQ_CFQQ_FNS(name) \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
320 { \
321 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
322 } \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
324 { \
325 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
326 } \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
328 { \
329 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
330 }
331
332 CFQ_CFQQ_FNS(on_rr);
333 CFQ_CFQQ_FNS(wait_request);
334 CFQ_CFQQ_FNS(must_dispatch);
335 CFQ_CFQQ_FNS(must_alloc_slice);
336 CFQ_CFQQ_FNS(fifo_expire);
337 CFQ_CFQQ_FNS(idle_window);
338 CFQ_CFQQ_FNS(prio_changed);
339 CFQ_CFQQ_FNS(slice_new);
340 CFQ_CFQQ_FNS(sync);
341 CFQ_CFQQ_FNS(coop);
342 CFQ_CFQQ_FNS(split_coop);
343 CFQ_CFQQ_FNS(deep);
344 CFQ_CFQQ_FNS(wait_busy);
345 #undef CFQ_CFQQ_FNS
346
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
349 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351 blkg_path(&(cfqq)->cfqg->blkg), ##args);
352
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
355 blkg_path(&(cfqg)->blkg), ##args); \
356
357 #else
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
361 #endif
362 #define cfq_log(cfqd, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
364
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367 for (i = 0; i <= IDLE_WORKLOAD; i++) \
368 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369 : &cfqg->service_tree_idle; \
370 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371 (i == IDLE_WORKLOAD && j == 0); \
372 j++, st = i < IDLE_WORKLOAD ? \
373 &cfqg->service_trees[i][j]: NULL) \
374
375
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
377 {
378 if (cfq_class_idle(cfqq))
379 return IDLE_WORKLOAD;
380 if (cfq_class_rt(cfqq))
381 return RT_WORKLOAD;
382 return BE_WORKLOAD;
383 }
384
385
386 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
387 {
388 if (!cfq_cfqq_sync(cfqq))
389 return ASYNC_WORKLOAD;
390 if (!cfq_cfqq_idle_window(cfqq))
391 return SYNC_NOIDLE_WORKLOAD;
392 return SYNC_WORKLOAD;
393 }
394
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
396 struct cfq_data *cfqd,
397 struct cfq_group *cfqg)
398 {
399 if (wl == IDLE_WORKLOAD)
400 return cfqg->service_tree_idle.count;
401
402 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
405 }
406
407 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
408 struct cfq_group *cfqg)
409 {
410 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
411 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
412 }
413
414 static void cfq_dispatch_insert(struct request_queue *, struct request *);
415 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
416 struct io_context *, gfp_t);
417 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
418 struct io_context *);
419
420 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
421 bool is_sync)
422 {
423 return cic->cfqq[is_sync];
424 }
425
426 static inline void cic_set_cfqq(struct cfq_io_context *cic,
427 struct cfq_queue *cfqq, bool is_sync)
428 {
429 cic->cfqq[is_sync] = cfqq;
430 }
431
432 /*
433 * We regard a request as SYNC, if it's either a read or has the SYNC bit
434 * set (in which case it could also be direct WRITE).
435 */
436 static inline bool cfq_bio_sync(struct bio *bio)
437 {
438 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
439 }
440
441 /*
442 * scheduler run of queue, if there are requests pending and no one in the
443 * driver that will restart queueing
444 */
445 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
446 {
447 if (cfqd->busy_queues) {
448 cfq_log(cfqd, "schedule dispatch");
449 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
450 }
451 }
452
453 static int cfq_queue_empty(struct request_queue *q)
454 {
455 struct cfq_data *cfqd = q->elevator->elevator_data;
456
457 return !cfqd->rq_queued;
458 }
459
460 /*
461 * Scale schedule slice based on io priority. Use the sync time slice only
462 * if a queue is marked sync and has sync io queued. A sync queue with async
463 * io only, should not get full sync slice length.
464 */
465 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
466 unsigned short prio)
467 {
468 const int base_slice = cfqd->cfq_slice[sync];
469
470 WARN_ON(prio >= IOPRIO_BE_NR);
471
472 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
473 }
474
475 static inline int
476 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
477 {
478 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
479 }
480
481 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
482 {
483 u64 d = delta << CFQ_SERVICE_SHIFT;
484
485 d = d * BLKIO_WEIGHT_DEFAULT;
486 do_div(d, cfqg->weight);
487 return d;
488 }
489
490 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
491 {
492 s64 delta = (s64)(vdisktime - min_vdisktime);
493 if (delta > 0)
494 min_vdisktime = vdisktime;
495
496 return min_vdisktime;
497 }
498
499 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
500 {
501 s64 delta = (s64)(vdisktime - min_vdisktime);
502 if (delta < 0)
503 min_vdisktime = vdisktime;
504
505 return min_vdisktime;
506 }
507
508 static void update_min_vdisktime(struct cfq_rb_root *st)
509 {
510 u64 vdisktime = st->min_vdisktime;
511 struct cfq_group *cfqg;
512
513 if (st->active) {
514 cfqg = rb_entry_cfqg(st->active);
515 vdisktime = cfqg->vdisktime;
516 }
517
518 if (st->left) {
519 cfqg = rb_entry_cfqg(st->left);
520 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
521 }
522
523 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
524 }
525
526 /*
527 * get averaged number of queues of RT/BE priority.
528 * average is updated, with a formula that gives more weight to higher numbers,
529 * to quickly follows sudden increases and decrease slowly
530 */
531
532 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
533 struct cfq_group *cfqg, bool rt)
534 {
535 unsigned min_q, max_q;
536 unsigned mult = cfq_hist_divisor - 1;
537 unsigned round = cfq_hist_divisor / 2;
538 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
539
540 min_q = min(cfqg->busy_queues_avg[rt], busy);
541 max_q = max(cfqg->busy_queues_avg[rt], busy);
542 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
543 cfq_hist_divisor;
544 return cfqg->busy_queues_avg[rt];
545 }
546
547 static inline unsigned
548 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
549 {
550 struct cfq_rb_root *st = &cfqd->grp_service_tree;
551
552 return cfq_target_latency * cfqg->weight / st->total_weight;
553 }
554
555 static inline void
556 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
557 {
558 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
559 if (cfqd->cfq_latency) {
560 /*
561 * interested queues (we consider only the ones with the same
562 * priority class in the cfq group)
563 */
564 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
565 cfq_class_rt(cfqq));
566 unsigned sync_slice = cfqd->cfq_slice[1];
567 unsigned expect_latency = sync_slice * iq;
568 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
569
570 if (expect_latency > group_slice) {
571 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
572 /* scale low_slice according to IO priority
573 * and sync vs async */
574 unsigned low_slice =
575 min(slice, base_low_slice * slice / sync_slice);
576 /* the adapted slice value is scaled to fit all iqs
577 * into the target latency */
578 slice = max(slice * group_slice / expect_latency,
579 low_slice);
580 }
581 }
582 cfqq->slice_start = jiffies;
583 cfqq->slice_end = jiffies + slice;
584 cfqq->allocated_slice = slice;
585 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
586 }
587
588 /*
589 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
590 * isn't valid until the first request from the dispatch is activated
591 * and the slice time set.
592 */
593 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
594 {
595 if (cfq_cfqq_slice_new(cfqq))
596 return 0;
597 if (time_before(jiffies, cfqq->slice_end))
598 return 0;
599
600 return 1;
601 }
602
603 /*
604 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
605 * We choose the request that is closest to the head right now. Distance
606 * behind the head is penalized and only allowed to a certain extent.
607 */
608 static struct request *
609 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
610 {
611 sector_t s1, s2, d1 = 0, d2 = 0;
612 unsigned long back_max;
613 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
614 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
615 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
616
617 if (rq1 == NULL || rq1 == rq2)
618 return rq2;
619 if (rq2 == NULL)
620 return rq1;
621
622 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
623 return rq1;
624 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
625 return rq2;
626 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
627 return rq1;
628 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
629 return rq2;
630
631 s1 = blk_rq_pos(rq1);
632 s2 = blk_rq_pos(rq2);
633
634 /*
635 * by definition, 1KiB is 2 sectors
636 */
637 back_max = cfqd->cfq_back_max * 2;
638
639 /*
640 * Strict one way elevator _except_ in the case where we allow
641 * short backward seeks which are biased as twice the cost of a
642 * similar forward seek.
643 */
644 if (s1 >= last)
645 d1 = s1 - last;
646 else if (s1 + back_max >= last)
647 d1 = (last - s1) * cfqd->cfq_back_penalty;
648 else
649 wrap |= CFQ_RQ1_WRAP;
650
651 if (s2 >= last)
652 d2 = s2 - last;
653 else if (s2 + back_max >= last)
654 d2 = (last - s2) * cfqd->cfq_back_penalty;
655 else
656 wrap |= CFQ_RQ2_WRAP;
657
658 /* Found required data */
659
660 /*
661 * By doing switch() on the bit mask "wrap" we avoid having to
662 * check two variables for all permutations: --> faster!
663 */
664 switch (wrap) {
665 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
666 if (d1 < d2)
667 return rq1;
668 else if (d2 < d1)
669 return rq2;
670 else {
671 if (s1 >= s2)
672 return rq1;
673 else
674 return rq2;
675 }
676
677 case CFQ_RQ2_WRAP:
678 return rq1;
679 case CFQ_RQ1_WRAP:
680 return rq2;
681 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
682 default:
683 /*
684 * Since both rqs are wrapped,
685 * start with the one that's further behind head
686 * (--> only *one* back seek required),
687 * since back seek takes more time than forward.
688 */
689 if (s1 <= s2)
690 return rq1;
691 else
692 return rq2;
693 }
694 }
695
696 /*
697 * The below is leftmost cache rbtree addon
698 */
699 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
700 {
701 /* Service tree is empty */
702 if (!root->count)
703 return NULL;
704
705 if (!root->left)
706 root->left = rb_first(&root->rb);
707
708 if (root->left)
709 return rb_entry(root->left, struct cfq_queue, rb_node);
710
711 return NULL;
712 }
713
714 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
715 {
716 if (!root->left)
717 root->left = rb_first(&root->rb);
718
719 if (root->left)
720 return rb_entry_cfqg(root->left);
721
722 return NULL;
723 }
724
725 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
726 {
727 rb_erase(n, root);
728 RB_CLEAR_NODE(n);
729 }
730
731 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
732 {
733 if (root->left == n)
734 root->left = NULL;
735 rb_erase_init(n, &root->rb);
736 --root->count;
737 }
738
739 /*
740 * would be nice to take fifo expire time into account as well
741 */
742 static struct request *
743 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
744 struct request *last)
745 {
746 struct rb_node *rbnext = rb_next(&last->rb_node);
747 struct rb_node *rbprev = rb_prev(&last->rb_node);
748 struct request *next = NULL, *prev = NULL;
749
750 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
751
752 if (rbprev)
753 prev = rb_entry_rq(rbprev);
754
755 if (rbnext)
756 next = rb_entry_rq(rbnext);
757 else {
758 rbnext = rb_first(&cfqq->sort_list);
759 if (rbnext && rbnext != &last->rb_node)
760 next = rb_entry_rq(rbnext);
761 }
762
763 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
764 }
765
766 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
767 struct cfq_queue *cfqq)
768 {
769 /*
770 * just an approximation, should be ok.
771 */
772 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
773 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
774 }
775
776 static inline s64
777 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
778 {
779 return cfqg->vdisktime - st->min_vdisktime;
780 }
781
782 static void
783 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
784 {
785 struct rb_node **node = &st->rb.rb_node;
786 struct rb_node *parent = NULL;
787 struct cfq_group *__cfqg;
788 s64 key = cfqg_key(st, cfqg);
789 int left = 1;
790
791 while (*node != NULL) {
792 parent = *node;
793 __cfqg = rb_entry_cfqg(parent);
794
795 if (key < cfqg_key(st, __cfqg))
796 node = &parent->rb_left;
797 else {
798 node = &parent->rb_right;
799 left = 0;
800 }
801 }
802
803 if (left)
804 st->left = &cfqg->rb_node;
805
806 rb_link_node(&cfqg->rb_node, parent, node);
807 rb_insert_color(&cfqg->rb_node, &st->rb);
808 }
809
810 static void
811 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
812 {
813 struct cfq_rb_root *st = &cfqd->grp_service_tree;
814 struct cfq_group *__cfqg;
815 struct rb_node *n;
816
817 cfqg->nr_cfqq++;
818 if (cfqg->on_st)
819 return;
820
821 /*
822 * Currently put the group at the end. Later implement something
823 * so that groups get lesser vtime based on their weights, so that
824 * if group does not loose all if it was not continously backlogged.
825 */
826 n = rb_last(&st->rb);
827 if (n) {
828 __cfqg = rb_entry_cfqg(n);
829 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
830 } else
831 cfqg->vdisktime = st->min_vdisktime;
832
833 __cfq_group_service_tree_add(st, cfqg);
834 cfqg->on_st = true;
835 st->total_weight += cfqg->weight;
836 }
837
838 static void
839 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
840 {
841 struct cfq_rb_root *st = &cfqd->grp_service_tree;
842
843 if (st->active == &cfqg->rb_node)
844 st->active = NULL;
845
846 BUG_ON(cfqg->nr_cfqq < 1);
847 cfqg->nr_cfqq--;
848
849 /* If there are other cfq queues under this group, don't delete it */
850 if (cfqg->nr_cfqq)
851 return;
852
853 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
854 cfqg->on_st = false;
855 st->total_weight -= cfqg->weight;
856 if (!RB_EMPTY_NODE(&cfqg->rb_node))
857 cfq_rb_erase(&cfqg->rb_node, st);
858 cfqg->saved_workload_slice = 0;
859 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
860 }
861
862 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
863 {
864 unsigned int slice_used;
865
866 /*
867 * Queue got expired before even a single request completed or
868 * got expired immediately after first request completion.
869 */
870 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
871 /*
872 * Also charge the seek time incurred to the group, otherwise
873 * if there are mutiple queues in the group, each can dispatch
874 * a single request on seeky media and cause lots of seek time
875 * and group will never know it.
876 */
877 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
878 1);
879 } else {
880 slice_used = jiffies - cfqq->slice_start;
881 if (slice_used > cfqq->allocated_slice)
882 slice_used = cfqq->allocated_slice;
883 }
884
885 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
886 cfqq->nr_sectors);
887 return slice_used;
888 }
889
890 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
891 struct cfq_queue *cfqq)
892 {
893 struct cfq_rb_root *st = &cfqd->grp_service_tree;
894 unsigned int used_sl, charge_sl;
895 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
896 - cfqg->service_tree_idle.count;
897
898 BUG_ON(nr_sync < 0);
899 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
900
901 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
902 charge_sl = cfqq->allocated_slice;
903
904 /* Can't update vdisktime while group is on service tree */
905 cfq_rb_erase(&cfqg->rb_node, st);
906 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
907 __cfq_group_service_tree_add(st, cfqg);
908
909 /* This group is being expired. Save the context */
910 if (time_after(cfqd->workload_expires, jiffies)) {
911 cfqg->saved_workload_slice = cfqd->workload_expires
912 - jiffies;
913 cfqg->saved_workload = cfqd->serving_type;
914 cfqg->saved_serving_prio = cfqd->serving_prio;
915 } else
916 cfqg->saved_workload_slice = 0;
917
918 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
919 st->min_vdisktime);
920 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
921 cfqq->nr_sectors);
922 }
923
924 #ifdef CONFIG_CFQ_GROUP_IOSCHED
925 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
926 {
927 if (blkg)
928 return container_of(blkg, struct cfq_group, blkg);
929 return NULL;
930 }
931
932 void
933 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
934 {
935 cfqg_of_blkg(blkg)->weight = weight;
936 }
937
938 static struct cfq_group *
939 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
940 {
941 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
942 struct cfq_group *cfqg = NULL;
943 void *key = cfqd;
944 int i, j;
945 struct cfq_rb_root *st;
946 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
947 unsigned int major, minor;
948
949 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
950 if (cfqg || !create)
951 goto done;
952
953 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
954 if (!cfqg)
955 goto done;
956
957 cfqg->weight = blkcg->weight;
958 for_each_cfqg_st(cfqg, i, j, st)
959 *st = CFQ_RB_ROOT;
960 RB_CLEAR_NODE(&cfqg->rb_node);
961
962 /*
963 * Take the initial reference that will be released on destroy
964 * This can be thought of a joint reference by cgroup and
965 * elevator which will be dropped by either elevator exit
966 * or cgroup deletion path depending on who is exiting first.
967 */
968 atomic_set(&cfqg->ref, 1);
969
970 /* Add group onto cgroup list */
971 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
972 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
973 MKDEV(major, minor));
974
975 /* Add group on cfqd list */
976 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
977
978 done:
979 return cfqg;
980 }
981
982 /*
983 * Search for the cfq group current task belongs to. If create = 1, then also
984 * create the cfq group if it does not exist. request_queue lock must be held.
985 */
986 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
987 {
988 struct cgroup *cgroup;
989 struct cfq_group *cfqg = NULL;
990
991 rcu_read_lock();
992 cgroup = task_cgroup(current, blkio_subsys_id);
993 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
994 if (!cfqg && create)
995 cfqg = &cfqd->root_group;
996 rcu_read_unlock();
997 return cfqg;
998 }
999
1000 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1001 {
1002 /* Currently, all async queues are mapped to root group */
1003 if (!cfq_cfqq_sync(cfqq))
1004 cfqg = &cfqq->cfqd->root_group;
1005
1006 cfqq->cfqg = cfqg;
1007 /* cfqq reference on cfqg */
1008 atomic_inc(&cfqq->cfqg->ref);
1009 }
1010
1011 static void cfq_put_cfqg(struct cfq_group *cfqg)
1012 {
1013 struct cfq_rb_root *st;
1014 int i, j;
1015
1016 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1017 if (!atomic_dec_and_test(&cfqg->ref))
1018 return;
1019 for_each_cfqg_st(cfqg, i, j, st)
1020 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1021 kfree(cfqg);
1022 }
1023
1024 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1025 {
1026 /* Something wrong if we are trying to remove same group twice */
1027 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1028
1029 hlist_del_init(&cfqg->cfqd_node);
1030
1031 /*
1032 * Put the reference taken at the time of creation so that when all
1033 * queues are gone, group can be destroyed.
1034 */
1035 cfq_put_cfqg(cfqg);
1036 }
1037
1038 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1039 {
1040 struct hlist_node *pos, *n;
1041 struct cfq_group *cfqg;
1042
1043 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1044 /*
1045 * If cgroup removal path got to blk_group first and removed
1046 * it from cgroup list, then it will take care of destroying
1047 * cfqg also.
1048 */
1049 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1050 cfq_destroy_cfqg(cfqd, cfqg);
1051 }
1052 }
1053
1054 /*
1055 * Blk cgroup controller notification saying that blkio_group object is being
1056 * delinked as associated cgroup object is going away. That also means that
1057 * no new IO will come in this group. So get rid of this group as soon as
1058 * any pending IO in the group is finished.
1059 *
1060 * This function is called under rcu_read_lock(). key is the rcu protected
1061 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1062 * read lock.
1063 *
1064 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1065 * it should not be NULL as even if elevator was exiting, cgroup deltion
1066 * path got to it first.
1067 */
1068 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1069 {
1070 unsigned long flags;
1071 struct cfq_data *cfqd = key;
1072
1073 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1074 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1075 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1076 }
1077
1078 #else /* GROUP_IOSCHED */
1079 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1080 {
1081 return &cfqd->root_group;
1082 }
1083 static inline void
1084 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1085 cfqq->cfqg = cfqg;
1086 }
1087
1088 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1089 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1090
1091 #endif /* GROUP_IOSCHED */
1092
1093 /*
1094 * The cfqd->service_trees holds all pending cfq_queue's that have
1095 * requests waiting to be processed. It is sorted in the order that
1096 * we will service the queues.
1097 */
1098 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1099 bool add_front)
1100 {
1101 struct rb_node **p, *parent;
1102 struct cfq_queue *__cfqq;
1103 unsigned long rb_key;
1104 struct cfq_rb_root *service_tree;
1105 int left;
1106 int new_cfqq = 1;
1107 int group_changed = 0;
1108
1109 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1110 if (!cfqd->cfq_group_isolation
1111 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1112 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1113 /* Move this cfq to root group */
1114 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1115 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1116 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1117 cfqq->orig_cfqg = cfqq->cfqg;
1118 cfqq->cfqg = &cfqd->root_group;
1119 atomic_inc(&cfqd->root_group.ref);
1120 group_changed = 1;
1121 } else if (!cfqd->cfq_group_isolation
1122 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1123 /* cfqq is sequential now needs to go to its original group */
1124 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1125 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1126 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1127 cfq_put_cfqg(cfqq->cfqg);
1128 cfqq->cfqg = cfqq->orig_cfqg;
1129 cfqq->orig_cfqg = NULL;
1130 group_changed = 1;
1131 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1132 }
1133 #endif
1134
1135 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1136 cfqq_type(cfqq));
1137 if (cfq_class_idle(cfqq)) {
1138 rb_key = CFQ_IDLE_DELAY;
1139 parent = rb_last(&service_tree->rb);
1140 if (parent && parent != &cfqq->rb_node) {
1141 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1142 rb_key += __cfqq->rb_key;
1143 } else
1144 rb_key += jiffies;
1145 } else if (!add_front) {
1146 /*
1147 * Get our rb key offset. Subtract any residual slice
1148 * value carried from last service. A negative resid
1149 * count indicates slice overrun, and this should position
1150 * the next service time further away in the tree.
1151 */
1152 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1153 rb_key -= cfqq->slice_resid;
1154 cfqq->slice_resid = 0;
1155 } else {
1156 rb_key = -HZ;
1157 __cfqq = cfq_rb_first(service_tree);
1158 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1159 }
1160
1161 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1162 new_cfqq = 0;
1163 /*
1164 * same position, nothing more to do
1165 */
1166 if (rb_key == cfqq->rb_key &&
1167 cfqq->service_tree == service_tree)
1168 return;
1169
1170 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1171 cfqq->service_tree = NULL;
1172 }
1173
1174 left = 1;
1175 parent = NULL;
1176 cfqq->service_tree = service_tree;
1177 p = &service_tree->rb.rb_node;
1178 while (*p) {
1179 struct rb_node **n;
1180
1181 parent = *p;
1182 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1183
1184 /*
1185 * sort by key, that represents service time.
1186 */
1187 if (time_before(rb_key, __cfqq->rb_key))
1188 n = &(*p)->rb_left;
1189 else {
1190 n = &(*p)->rb_right;
1191 left = 0;
1192 }
1193
1194 p = n;
1195 }
1196
1197 if (left)
1198 service_tree->left = &cfqq->rb_node;
1199
1200 cfqq->rb_key = rb_key;
1201 rb_link_node(&cfqq->rb_node, parent, p);
1202 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1203 service_tree->count++;
1204 if ((add_front || !new_cfqq) && !group_changed)
1205 return;
1206 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1207 }
1208
1209 static struct cfq_queue *
1210 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1211 sector_t sector, struct rb_node **ret_parent,
1212 struct rb_node ***rb_link)
1213 {
1214 struct rb_node **p, *parent;
1215 struct cfq_queue *cfqq = NULL;
1216
1217 parent = NULL;
1218 p = &root->rb_node;
1219 while (*p) {
1220 struct rb_node **n;
1221
1222 parent = *p;
1223 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1224
1225 /*
1226 * Sort strictly based on sector. Smallest to the left,
1227 * largest to the right.
1228 */
1229 if (sector > blk_rq_pos(cfqq->next_rq))
1230 n = &(*p)->rb_right;
1231 else if (sector < blk_rq_pos(cfqq->next_rq))
1232 n = &(*p)->rb_left;
1233 else
1234 break;
1235 p = n;
1236 cfqq = NULL;
1237 }
1238
1239 *ret_parent = parent;
1240 if (rb_link)
1241 *rb_link = p;
1242 return cfqq;
1243 }
1244
1245 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1246 {
1247 struct rb_node **p, *parent;
1248 struct cfq_queue *__cfqq;
1249
1250 if (cfqq->p_root) {
1251 rb_erase(&cfqq->p_node, cfqq->p_root);
1252 cfqq->p_root = NULL;
1253 }
1254
1255 if (cfq_class_idle(cfqq))
1256 return;
1257 if (!cfqq->next_rq)
1258 return;
1259
1260 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1261 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1262 blk_rq_pos(cfqq->next_rq), &parent, &p);
1263 if (!__cfqq) {
1264 rb_link_node(&cfqq->p_node, parent, p);
1265 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1266 } else
1267 cfqq->p_root = NULL;
1268 }
1269
1270 /*
1271 * Update cfqq's position in the service tree.
1272 */
1273 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1274 {
1275 /*
1276 * Resorting requires the cfqq to be on the RR list already.
1277 */
1278 if (cfq_cfqq_on_rr(cfqq)) {
1279 cfq_service_tree_add(cfqd, cfqq, 0);
1280 cfq_prio_tree_add(cfqd, cfqq);
1281 }
1282 }
1283
1284 /*
1285 * add to busy list of queues for service, trying to be fair in ordering
1286 * the pending list according to last request service
1287 */
1288 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1289 {
1290 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1291 BUG_ON(cfq_cfqq_on_rr(cfqq));
1292 cfq_mark_cfqq_on_rr(cfqq);
1293 cfqd->busy_queues++;
1294
1295 cfq_resort_rr_list(cfqd, cfqq);
1296 }
1297
1298 /*
1299 * Called when the cfqq no longer has requests pending, remove it from
1300 * the service tree.
1301 */
1302 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1303 {
1304 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1305 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1306 cfq_clear_cfqq_on_rr(cfqq);
1307
1308 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1309 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1310 cfqq->service_tree = NULL;
1311 }
1312 if (cfqq->p_root) {
1313 rb_erase(&cfqq->p_node, cfqq->p_root);
1314 cfqq->p_root = NULL;
1315 }
1316
1317 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1318 BUG_ON(!cfqd->busy_queues);
1319 cfqd->busy_queues--;
1320 }
1321
1322 /*
1323 * rb tree support functions
1324 */
1325 static void cfq_del_rq_rb(struct request *rq)
1326 {
1327 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1328 const int sync = rq_is_sync(rq);
1329
1330 BUG_ON(!cfqq->queued[sync]);
1331 cfqq->queued[sync]--;
1332
1333 elv_rb_del(&cfqq->sort_list, rq);
1334
1335 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1336 /*
1337 * Queue will be deleted from service tree when we actually
1338 * expire it later. Right now just remove it from prio tree
1339 * as it is empty.
1340 */
1341 if (cfqq->p_root) {
1342 rb_erase(&cfqq->p_node, cfqq->p_root);
1343 cfqq->p_root = NULL;
1344 }
1345 }
1346 }
1347
1348 static void cfq_add_rq_rb(struct request *rq)
1349 {
1350 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1351 struct cfq_data *cfqd = cfqq->cfqd;
1352 struct request *__alias, *prev;
1353
1354 cfqq->queued[rq_is_sync(rq)]++;
1355
1356 /*
1357 * looks a little odd, but the first insert might return an alias.
1358 * if that happens, put the alias on the dispatch list
1359 */
1360 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1361 cfq_dispatch_insert(cfqd->queue, __alias);
1362
1363 if (!cfq_cfqq_on_rr(cfqq))
1364 cfq_add_cfqq_rr(cfqd, cfqq);
1365
1366 /*
1367 * check if this request is a better next-serve candidate
1368 */
1369 prev = cfqq->next_rq;
1370 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1371
1372 /*
1373 * adjust priority tree position, if ->next_rq changes
1374 */
1375 if (prev != cfqq->next_rq)
1376 cfq_prio_tree_add(cfqd, cfqq);
1377
1378 BUG_ON(!cfqq->next_rq);
1379 }
1380
1381 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1382 {
1383 elv_rb_del(&cfqq->sort_list, rq);
1384 cfqq->queued[rq_is_sync(rq)]--;
1385 cfq_add_rq_rb(rq);
1386 }
1387
1388 static struct request *
1389 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1390 {
1391 struct task_struct *tsk = current;
1392 struct cfq_io_context *cic;
1393 struct cfq_queue *cfqq;
1394
1395 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1396 if (!cic)
1397 return NULL;
1398
1399 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1400 if (cfqq) {
1401 sector_t sector = bio->bi_sector + bio_sectors(bio);
1402
1403 return elv_rb_find(&cfqq->sort_list, sector);
1404 }
1405
1406 return NULL;
1407 }
1408
1409 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1410 {
1411 struct cfq_data *cfqd = q->elevator->elevator_data;
1412
1413 cfqd->rq_in_driver++;
1414 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1415 cfqd->rq_in_driver);
1416
1417 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1418 }
1419
1420 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1421 {
1422 struct cfq_data *cfqd = q->elevator->elevator_data;
1423
1424 WARN_ON(!cfqd->rq_in_driver);
1425 cfqd->rq_in_driver--;
1426 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1427 cfqd->rq_in_driver);
1428 }
1429
1430 static void cfq_remove_request(struct request *rq)
1431 {
1432 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1433
1434 if (cfqq->next_rq == rq)
1435 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1436
1437 list_del_init(&rq->queuelist);
1438 cfq_del_rq_rb(rq);
1439
1440 cfqq->cfqd->rq_queued--;
1441 if (rq_is_meta(rq)) {
1442 WARN_ON(!cfqq->meta_pending);
1443 cfqq->meta_pending--;
1444 }
1445 }
1446
1447 static int cfq_merge(struct request_queue *q, struct request **req,
1448 struct bio *bio)
1449 {
1450 struct cfq_data *cfqd = q->elevator->elevator_data;
1451 struct request *__rq;
1452
1453 __rq = cfq_find_rq_fmerge(cfqd, bio);
1454 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1455 *req = __rq;
1456 return ELEVATOR_FRONT_MERGE;
1457 }
1458
1459 return ELEVATOR_NO_MERGE;
1460 }
1461
1462 static void cfq_merged_request(struct request_queue *q, struct request *req,
1463 int type)
1464 {
1465 if (type == ELEVATOR_FRONT_MERGE) {
1466 struct cfq_queue *cfqq = RQ_CFQQ(req);
1467
1468 cfq_reposition_rq_rb(cfqq, req);
1469 }
1470 }
1471
1472 static void
1473 cfq_merged_requests(struct request_queue *q, struct request *rq,
1474 struct request *next)
1475 {
1476 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1477 /*
1478 * reposition in fifo if next is older than rq
1479 */
1480 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1481 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1482 list_move(&rq->queuelist, &next->queuelist);
1483 rq_set_fifo_time(rq, rq_fifo_time(next));
1484 }
1485
1486 if (cfqq->next_rq == next)
1487 cfqq->next_rq = rq;
1488 cfq_remove_request(next);
1489 }
1490
1491 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1492 struct bio *bio)
1493 {
1494 struct cfq_data *cfqd = q->elevator->elevator_data;
1495 struct cfq_io_context *cic;
1496 struct cfq_queue *cfqq;
1497
1498 /*
1499 * Disallow merge of a sync bio into an async request.
1500 */
1501 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1502 return false;
1503
1504 /*
1505 * Lookup the cfqq that this bio will be queued with. Allow
1506 * merge only if rq is queued there.
1507 */
1508 cic = cfq_cic_lookup(cfqd, current->io_context);
1509 if (!cic)
1510 return false;
1511
1512 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1513 return cfqq == RQ_CFQQ(rq);
1514 }
1515
1516 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1517 struct cfq_queue *cfqq)
1518 {
1519 if (cfqq) {
1520 cfq_log_cfqq(cfqd, cfqq, "set_active");
1521 cfqq->slice_start = 0;
1522 cfqq->dispatch_start = jiffies;
1523 cfqq->allocated_slice = 0;
1524 cfqq->slice_end = 0;
1525 cfqq->slice_dispatch = 0;
1526 cfqq->nr_sectors = 0;
1527
1528 cfq_clear_cfqq_wait_request(cfqq);
1529 cfq_clear_cfqq_must_dispatch(cfqq);
1530 cfq_clear_cfqq_must_alloc_slice(cfqq);
1531 cfq_clear_cfqq_fifo_expire(cfqq);
1532 cfq_mark_cfqq_slice_new(cfqq);
1533
1534 del_timer(&cfqd->idle_slice_timer);
1535 }
1536
1537 cfqd->active_queue = cfqq;
1538 }
1539
1540 /*
1541 * current cfqq expired its slice (or was too idle), select new one
1542 */
1543 static void
1544 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1545 bool timed_out)
1546 {
1547 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1548
1549 if (cfq_cfqq_wait_request(cfqq))
1550 del_timer(&cfqd->idle_slice_timer);
1551
1552 cfq_clear_cfqq_wait_request(cfqq);
1553 cfq_clear_cfqq_wait_busy(cfqq);
1554
1555 /*
1556 * If this cfqq is shared between multiple processes, check to
1557 * make sure that those processes are still issuing I/Os within
1558 * the mean seek distance. If not, it may be time to break the
1559 * queues apart again.
1560 */
1561 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1562 cfq_mark_cfqq_split_coop(cfqq);
1563
1564 /*
1565 * store what was left of this slice, if the queue idled/timed out
1566 */
1567 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1568 cfqq->slice_resid = cfqq->slice_end - jiffies;
1569 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1570 }
1571
1572 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1573
1574 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1575 cfq_del_cfqq_rr(cfqd, cfqq);
1576
1577 cfq_resort_rr_list(cfqd, cfqq);
1578
1579 if (cfqq == cfqd->active_queue)
1580 cfqd->active_queue = NULL;
1581
1582 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1583 cfqd->grp_service_tree.active = NULL;
1584
1585 if (cfqd->active_cic) {
1586 put_io_context(cfqd->active_cic->ioc);
1587 cfqd->active_cic = NULL;
1588 }
1589 }
1590
1591 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1592 {
1593 struct cfq_queue *cfqq = cfqd->active_queue;
1594
1595 if (cfqq)
1596 __cfq_slice_expired(cfqd, cfqq, timed_out);
1597 }
1598
1599 /*
1600 * Get next queue for service. Unless we have a queue preemption,
1601 * we'll simply select the first cfqq in the service tree.
1602 */
1603 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1604 {
1605 struct cfq_rb_root *service_tree =
1606 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1607 cfqd->serving_type);
1608
1609 if (!cfqd->rq_queued)
1610 return NULL;
1611
1612 /* There is nothing to dispatch */
1613 if (!service_tree)
1614 return NULL;
1615 if (RB_EMPTY_ROOT(&service_tree->rb))
1616 return NULL;
1617 return cfq_rb_first(service_tree);
1618 }
1619
1620 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1621 {
1622 struct cfq_group *cfqg;
1623 struct cfq_queue *cfqq;
1624 int i, j;
1625 struct cfq_rb_root *st;
1626
1627 if (!cfqd->rq_queued)
1628 return NULL;
1629
1630 cfqg = cfq_get_next_cfqg(cfqd);
1631 if (!cfqg)
1632 return NULL;
1633
1634 for_each_cfqg_st(cfqg, i, j, st)
1635 if ((cfqq = cfq_rb_first(st)) != NULL)
1636 return cfqq;
1637 return NULL;
1638 }
1639
1640 /*
1641 * Get and set a new active queue for service.
1642 */
1643 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1644 struct cfq_queue *cfqq)
1645 {
1646 if (!cfqq)
1647 cfqq = cfq_get_next_queue(cfqd);
1648
1649 __cfq_set_active_queue(cfqd, cfqq);
1650 return cfqq;
1651 }
1652
1653 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1654 struct request *rq)
1655 {
1656 if (blk_rq_pos(rq) >= cfqd->last_position)
1657 return blk_rq_pos(rq) - cfqd->last_position;
1658 else
1659 return cfqd->last_position - blk_rq_pos(rq);
1660 }
1661
1662 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1663 struct request *rq, bool for_preempt)
1664 {
1665 return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
1666 }
1667
1668 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1669 struct cfq_queue *cur_cfqq)
1670 {
1671 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1672 struct rb_node *parent, *node;
1673 struct cfq_queue *__cfqq;
1674 sector_t sector = cfqd->last_position;
1675
1676 if (RB_EMPTY_ROOT(root))
1677 return NULL;
1678
1679 /*
1680 * First, if we find a request starting at the end of the last
1681 * request, choose it.
1682 */
1683 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1684 if (__cfqq)
1685 return __cfqq;
1686
1687 /*
1688 * If the exact sector wasn't found, the parent of the NULL leaf
1689 * will contain the closest sector.
1690 */
1691 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1692 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1693 return __cfqq;
1694
1695 if (blk_rq_pos(__cfqq->next_rq) < sector)
1696 node = rb_next(&__cfqq->p_node);
1697 else
1698 node = rb_prev(&__cfqq->p_node);
1699 if (!node)
1700 return NULL;
1701
1702 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1703 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1704 return __cfqq;
1705
1706 return NULL;
1707 }
1708
1709 /*
1710 * cfqd - obvious
1711 * cur_cfqq - passed in so that we don't decide that the current queue is
1712 * closely cooperating with itself.
1713 *
1714 * So, basically we're assuming that that cur_cfqq has dispatched at least
1715 * one request, and that cfqd->last_position reflects a position on the disk
1716 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1717 * assumption.
1718 */
1719 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1720 struct cfq_queue *cur_cfqq)
1721 {
1722 struct cfq_queue *cfqq;
1723
1724 if (!cfq_cfqq_sync(cur_cfqq))
1725 return NULL;
1726 if (CFQQ_SEEKY(cur_cfqq))
1727 return NULL;
1728
1729 /*
1730 * Don't search priority tree if it's the only queue in the group.
1731 */
1732 if (cur_cfqq->cfqg->nr_cfqq == 1)
1733 return NULL;
1734
1735 /*
1736 * We should notice if some of the queues are cooperating, eg
1737 * working closely on the same area of the disk. In that case,
1738 * we can group them together and don't waste time idling.
1739 */
1740 cfqq = cfqq_close(cfqd, cur_cfqq);
1741 if (!cfqq)
1742 return NULL;
1743
1744 /* If new queue belongs to different cfq_group, don't choose it */
1745 if (cur_cfqq->cfqg != cfqq->cfqg)
1746 return NULL;
1747
1748 /*
1749 * It only makes sense to merge sync queues.
1750 */
1751 if (!cfq_cfqq_sync(cfqq))
1752 return NULL;
1753 if (CFQQ_SEEKY(cfqq))
1754 return NULL;
1755
1756 /*
1757 * Do not merge queues of different priority classes
1758 */
1759 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1760 return NULL;
1761
1762 return cfqq;
1763 }
1764
1765 /*
1766 * Determine whether we should enforce idle window for this queue.
1767 */
1768
1769 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1770 {
1771 enum wl_prio_t prio = cfqq_prio(cfqq);
1772 struct cfq_rb_root *service_tree = cfqq->service_tree;
1773
1774 BUG_ON(!service_tree);
1775 BUG_ON(!service_tree->count);
1776
1777 /* We never do for idle class queues. */
1778 if (prio == IDLE_WORKLOAD)
1779 return false;
1780
1781 /* We do for queues that were marked with idle window flag. */
1782 if (cfq_cfqq_idle_window(cfqq) &&
1783 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1784 return true;
1785
1786 /*
1787 * Otherwise, we do only if they are the last ones
1788 * in their service tree.
1789 */
1790 return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1791 }
1792
1793 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1794 {
1795 struct cfq_queue *cfqq = cfqd->active_queue;
1796 struct cfq_io_context *cic;
1797 unsigned long sl;
1798
1799 /*
1800 * SSD device without seek penalty, disable idling. But only do so
1801 * for devices that support queuing, otherwise we still have a problem
1802 * with sync vs async workloads.
1803 */
1804 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1805 return;
1806
1807 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1808 WARN_ON(cfq_cfqq_slice_new(cfqq));
1809
1810 /*
1811 * idle is disabled, either manually or by past process history
1812 */
1813 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1814 return;
1815
1816 /*
1817 * still active requests from this queue, don't idle
1818 */
1819 if (cfqq->dispatched)
1820 return;
1821
1822 /*
1823 * task has exited, don't wait
1824 */
1825 cic = cfqd->active_cic;
1826 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1827 return;
1828
1829 /*
1830 * If our average think time is larger than the remaining time
1831 * slice, then don't idle. This avoids overrunning the allotted
1832 * time slice.
1833 */
1834 if (sample_valid(cic->ttime_samples) &&
1835 (cfqq->slice_end - jiffies < cic->ttime_mean))
1836 return;
1837
1838 cfq_mark_cfqq_wait_request(cfqq);
1839
1840 sl = cfqd->cfq_slice_idle;
1841
1842 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1843 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1844 }
1845
1846 /*
1847 * Move request from internal lists to the request queue dispatch list.
1848 */
1849 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1850 {
1851 struct cfq_data *cfqd = q->elevator->elevator_data;
1852 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1853
1854 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1855
1856 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1857 cfq_remove_request(rq);
1858 cfqq->dispatched++;
1859 elv_dispatch_sort(q, rq);
1860
1861 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1862 cfqq->nr_sectors += blk_rq_sectors(rq);
1863 }
1864
1865 /*
1866 * return expired entry, or NULL to just start from scratch in rbtree
1867 */
1868 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1869 {
1870 struct request *rq = NULL;
1871
1872 if (cfq_cfqq_fifo_expire(cfqq))
1873 return NULL;
1874
1875 cfq_mark_cfqq_fifo_expire(cfqq);
1876
1877 if (list_empty(&cfqq->fifo))
1878 return NULL;
1879
1880 rq = rq_entry_fifo(cfqq->fifo.next);
1881 if (time_before(jiffies, rq_fifo_time(rq)))
1882 rq = NULL;
1883
1884 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1885 return rq;
1886 }
1887
1888 static inline int
1889 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1890 {
1891 const int base_rq = cfqd->cfq_slice_async_rq;
1892
1893 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1894
1895 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1896 }
1897
1898 /*
1899 * Must be called with the queue_lock held.
1900 */
1901 static int cfqq_process_refs(struct cfq_queue *cfqq)
1902 {
1903 int process_refs, io_refs;
1904
1905 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1906 process_refs = atomic_read(&cfqq->ref) - io_refs;
1907 BUG_ON(process_refs < 0);
1908 return process_refs;
1909 }
1910
1911 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1912 {
1913 int process_refs, new_process_refs;
1914 struct cfq_queue *__cfqq;
1915
1916 /* Avoid a circular list and skip interim queue merges */
1917 while ((__cfqq = new_cfqq->new_cfqq)) {
1918 if (__cfqq == cfqq)
1919 return;
1920 new_cfqq = __cfqq;
1921 }
1922
1923 process_refs = cfqq_process_refs(cfqq);
1924 /*
1925 * If the process for the cfqq has gone away, there is no
1926 * sense in merging the queues.
1927 */
1928 if (process_refs == 0)
1929 return;
1930
1931 /*
1932 * Merge in the direction of the lesser amount of work.
1933 */
1934 new_process_refs = cfqq_process_refs(new_cfqq);
1935 if (new_process_refs >= process_refs) {
1936 cfqq->new_cfqq = new_cfqq;
1937 atomic_add(process_refs, &new_cfqq->ref);
1938 } else {
1939 new_cfqq->new_cfqq = cfqq;
1940 atomic_add(new_process_refs, &cfqq->ref);
1941 }
1942 }
1943
1944 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1945 struct cfq_group *cfqg, enum wl_prio_t prio)
1946 {
1947 struct cfq_queue *queue;
1948 int i;
1949 bool key_valid = false;
1950 unsigned long lowest_key = 0;
1951 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1952
1953 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1954 /* select the one with lowest rb_key */
1955 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1956 if (queue &&
1957 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1958 lowest_key = queue->rb_key;
1959 cur_best = i;
1960 key_valid = true;
1961 }
1962 }
1963
1964 return cur_best;
1965 }
1966
1967 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1968 {
1969 unsigned slice;
1970 unsigned count;
1971 struct cfq_rb_root *st;
1972 unsigned group_slice;
1973
1974 if (!cfqg) {
1975 cfqd->serving_prio = IDLE_WORKLOAD;
1976 cfqd->workload_expires = jiffies + 1;
1977 return;
1978 }
1979
1980 /* Choose next priority. RT > BE > IDLE */
1981 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1982 cfqd->serving_prio = RT_WORKLOAD;
1983 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1984 cfqd->serving_prio = BE_WORKLOAD;
1985 else {
1986 cfqd->serving_prio = IDLE_WORKLOAD;
1987 cfqd->workload_expires = jiffies + 1;
1988 return;
1989 }
1990
1991 /*
1992 * For RT and BE, we have to choose also the type
1993 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1994 * expiration time
1995 */
1996 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
1997 count = st->count;
1998
1999 /*
2000 * check workload expiration, and that we still have other queues ready
2001 */
2002 if (count && !time_after(jiffies, cfqd->workload_expires))
2003 return;
2004
2005 /* otherwise select new workload type */
2006 cfqd->serving_type =
2007 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2008 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2009 count = st->count;
2010
2011 /*
2012 * the workload slice is computed as a fraction of target latency
2013 * proportional to the number of queues in that workload, over
2014 * all the queues in the same priority class
2015 */
2016 group_slice = cfq_group_slice(cfqd, cfqg);
2017
2018 slice = group_slice * count /
2019 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2020 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2021
2022 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2023 unsigned int tmp;
2024
2025 /*
2026 * Async queues are currently system wide. Just taking
2027 * proportion of queues with-in same group will lead to higher
2028 * async ratio system wide as generally root group is going
2029 * to have higher weight. A more accurate thing would be to
2030 * calculate system wide asnc/sync ratio.
2031 */
2032 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2033 tmp = tmp/cfqd->busy_queues;
2034 slice = min_t(unsigned, slice, tmp);
2035
2036 /* async workload slice is scaled down according to
2037 * the sync/async slice ratio. */
2038 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2039 } else
2040 /* sync workload slice is at least 2 * cfq_slice_idle */
2041 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2042
2043 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2044 cfqd->workload_expires = jiffies + slice;
2045 cfqd->noidle_tree_requires_idle = false;
2046 }
2047
2048 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2049 {
2050 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2051 struct cfq_group *cfqg;
2052
2053 if (RB_EMPTY_ROOT(&st->rb))
2054 return NULL;
2055 cfqg = cfq_rb_first_group(st);
2056 st->active = &cfqg->rb_node;
2057 update_min_vdisktime(st);
2058 return cfqg;
2059 }
2060
2061 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2062 {
2063 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2064
2065 cfqd->serving_group = cfqg;
2066
2067 /* Restore the workload type data */
2068 if (cfqg->saved_workload_slice) {
2069 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2070 cfqd->serving_type = cfqg->saved_workload;
2071 cfqd->serving_prio = cfqg->saved_serving_prio;
2072 } else
2073 cfqd->workload_expires = jiffies - 1;
2074
2075 choose_service_tree(cfqd, cfqg);
2076 }
2077
2078 /*
2079 * Select a queue for service. If we have a current active queue,
2080 * check whether to continue servicing it, or retrieve and set a new one.
2081 */
2082 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2083 {
2084 struct cfq_queue *cfqq, *new_cfqq = NULL;
2085
2086 cfqq = cfqd->active_queue;
2087 if (!cfqq)
2088 goto new_queue;
2089
2090 if (!cfqd->rq_queued)
2091 return NULL;
2092
2093 /*
2094 * We were waiting for group to get backlogged. Expire the queue
2095 */
2096 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2097 goto expire;
2098
2099 /*
2100 * The active queue has run out of time, expire it and select new.
2101 */
2102 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2103 /*
2104 * If slice had not expired at the completion of last request
2105 * we might not have turned on wait_busy flag. Don't expire
2106 * the queue yet. Allow the group to get backlogged.
2107 *
2108 * The very fact that we have used the slice, that means we
2109 * have been idling all along on this queue and it should be
2110 * ok to wait for this request to complete.
2111 */
2112 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2113 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2114 cfqq = NULL;
2115 goto keep_queue;
2116 } else
2117 goto expire;
2118 }
2119
2120 /*
2121 * The active queue has requests and isn't expired, allow it to
2122 * dispatch.
2123 */
2124 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2125 goto keep_queue;
2126
2127 /*
2128 * If another queue has a request waiting within our mean seek
2129 * distance, let it run. The expire code will check for close
2130 * cooperators and put the close queue at the front of the service
2131 * tree. If possible, merge the expiring queue with the new cfqq.
2132 */
2133 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2134 if (new_cfqq) {
2135 if (!cfqq->new_cfqq)
2136 cfq_setup_merge(cfqq, new_cfqq);
2137 goto expire;
2138 }
2139
2140 /*
2141 * No requests pending. If the active queue still has requests in
2142 * flight or is idling for a new request, allow either of these
2143 * conditions to happen (or time out) before selecting a new queue.
2144 */
2145 if (timer_pending(&cfqd->idle_slice_timer) ||
2146 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2147 cfqq = NULL;
2148 goto keep_queue;
2149 }
2150
2151 expire:
2152 cfq_slice_expired(cfqd, 0);
2153 new_queue:
2154 /*
2155 * Current queue expired. Check if we have to switch to a new
2156 * service tree
2157 */
2158 if (!new_cfqq)
2159 cfq_choose_cfqg(cfqd);
2160
2161 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2162 keep_queue:
2163 return cfqq;
2164 }
2165
2166 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2167 {
2168 int dispatched = 0;
2169
2170 while (cfqq->next_rq) {
2171 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2172 dispatched++;
2173 }
2174
2175 BUG_ON(!list_empty(&cfqq->fifo));
2176
2177 /* By default cfqq is not expired if it is empty. Do it explicitly */
2178 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2179 return dispatched;
2180 }
2181
2182 /*
2183 * Drain our current requests. Used for barriers and when switching
2184 * io schedulers on-the-fly.
2185 */
2186 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2187 {
2188 struct cfq_queue *cfqq;
2189 int dispatched = 0;
2190
2191 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2192 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2193
2194 cfq_slice_expired(cfqd, 0);
2195 BUG_ON(cfqd->busy_queues);
2196
2197 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2198 return dispatched;
2199 }
2200
2201 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2202 struct cfq_queue *cfqq)
2203 {
2204 /* the queue hasn't finished any request, can't estimate */
2205 if (cfq_cfqq_slice_new(cfqq))
2206 return 1;
2207 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2208 cfqq->slice_end))
2209 return 1;
2210
2211 return 0;
2212 }
2213
2214 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2215 {
2216 unsigned int max_dispatch;
2217
2218 /*
2219 * Drain async requests before we start sync IO
2220 */
2221 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2222 return false;
2223
2224 /*
2225 * If this is an async queue and we have sync IO in flight, let it wait
2226 */
2227 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2228 return false;
2229
2230 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2231 if (cfq_class_idle(cfqq))
2232 max_dispatch = 1;
2233
2234 /*
2235 * Does this cfqq already have too much IO in flight?
2236 */
2237 if (cfqq->dispatched >= max_dispatch) {
2238 /*
2239 * idle queue must always only have a single IO in flight
2240 */
2241 if (cfq_class_idle(cfqq))
2242 return false;
2243
2244 /*
2245 * We have other queues, don't allow more IO from this one
2246 */
2247 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2248 return false;
2249
2250 /*
2251 * Sole queue user, no limit
2252 */
2253 if (cfqd->busy_queues == 1)
2254 max_dispatch = -1;
2255 else
2256 /*
2257 * Normally we start throttling cfqq when cfq_quantum/2
2258 * requests have been dispatched. But we can drive
2259 * deeper queue depths at the beginning of slice
2260 * subjected to upper limit of cfq_quantum.
2261 * */
2262 max_dispatch = cfqd->cfq_quantum;
2263 }
2264
2265 /*
2266 * Async queues must wait a bit before being allowed dispatch.
2267 * We also ramp up the dispatch depth gradually for async IO,
2268 * based on the last sync IO we serviced
2269 */
2270 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2271 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2272 unsigned int depth;
2273
2274 depth = last_sync / cfqd->cfq_slice[1];
2275 if (!depth && !cfqq->dispatched)
2276 depth = 1;
2277 if (depth < max_dispatch)
2278 max_dispatch = depth;
2279 }
2280
2281 /*
2282 * If we're below the current max, allow a dispatch
2283 */
2284 return cfqq->dispatched < max_dispatch;
2285 }
2286
2287 /*
2288 * Dispatch a request from cfqq, moving them to the request queue
2289 * dispatch list.
2290 */
2291 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2292 {
2293 struct request *rq;
2294
2295 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2296
2297 if (!cfq_may_dispatch(cfqd, cfqq))
2298 return false;
2299
2300 /*
2301 * follow expired path, else get first next available
2302 */
2303 rq = cfq_check_fifo(cfqq);
2304 if (!rq)
2305 rq = cfqq->next_rq;
2306
2307 /*
2308 * insert request into driver dispatch list
2309 */
2310 cfq_dispatch_insert(cfqd->queue, rq);
2311
2312 if (!cfqd->active_cic) {
2313 struct cfq_io_context *cic = RQ_CIC(rq);
2314
2315 atomic_long_inc(&cic->ioc->refcount);
2316 cfqd->active_cic = cic;
2317 }
2318
2319 return true;
2320 }
2321
2322 /*
2323 * Find the cfqq that we need to service and move a request from that to the
2324 * dispatch list
2325 */
2326 static int cfq_dispatch_requests(struct request_queue *q, int force)
2327 {
2328 struct cfq_data *cfqd = q->elevator->elevator_data;
2329 struct cfq_queue *cfqq;
2330
2331 if (!cfqd->busy_queues)
2332 return 0;
2333
2334 if (unlikely(force))
2335 return cfq_forced_dispatch(cfqd);
2336
2337 cfqq = cfq_select_queue(cfqd);
2338 if (!cfqq)
2339 return 0;
2340
2341 /*
2342 * Dispatch a request from this cfqq, if it is allowed
2343 */
2344 if (!cfq_dispatch_request(cfqd, cfqq))
2345 return 0;
2346
2347 cfqq->slice_dispatch++;
2348 cfq_clear_cfqq_must_dispatch(cfqq);
2349
2350 /*
2351 * expire an async queue immediately if it has used up its slice. idle
2352 * queue always expire after 1 dispatch round.
2353 */
2354 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2355 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2356 cfq_class_idle(cfqq))) {
2357 cfqq->slice_end = jiffies + 1;
2358 cfq_slice_expired(cfqd, 0);
2359 }
2360
2361 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2362 return 1;
2363 }
2364
2365 /*
2366 * task holds one reference to the queue, dropped when task exits. each rq
2367 * in-flight on this queue also holds a reference, dropped when rq is freed.
2368 *
2369 * Each cfq queue took a reference on the parent group. Drop it now.
2370 * queue lock must be held here.
2371 */
2372 static void cfq_put_queue(struct cfq_queue *cfqq)
2373 {
2374 struct cfq_data *cfqd = cfqq->cfqd;
2375 struct cfq_group *cfqg, *orig_cfqg;
2376
2377 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2378
2379 if (!atomic_dec_and_test(&cfqq->ref))
2380 return;
2381
2382 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2383 BUG_ON(rb_first(&cfqq->sort_list));
2384 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2385 cfqg = cfqq->cfqg;
2386 orig_cfqg = cfqq->orig_cfqg;
2387
2388 if (unlikely(cfqd->active_queue == cfqq)) {
2389 __cfq_slice_expired(cfqd, cfqq, 0);
2390 cfq_schedule_dispatch(cfqd);
2391 }
2392
2393 BUG_ON(cfq_cfqq_on_rr(cfqq));
2394 kmem_cache_free(cfq_pool, cfqq);
2395 cfq_put_cfqg(cfqg);
2396 if (orig_cfqg)
2397 cfq_put_cfqg(orig_cfqg);
2398 }
2399
2400 /*
2401 * Must always be called with the rcu_read_lock() held
2402 */
2403 static void
2404 __call_for_each_cic(struct io_context *ioc,
2405 void (*func)(struct io_context *, struct cfq_io_context *))
2406 {
2407 struct cfq_io_context *cic;
2408 struct hlist_node *n;
2409
2410 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2411 func(ioc, cic);
2412 }
2413
2414 /*
2415 * Call func for each cic attached to this ioc.
2416 */
2417 static void
2418 call_for_each_cic(struct io_context *ioc,
2419 void (*func)(struct io_context *, struct cfq_io_context *))
2420 {
2421 rcu_read_lock();
2422 __call_for_each_cic(ioc, func);
2423 rcu_read_unlock();
2424 }
2425
2426 static void cfq_cic_free_rcu(struct rcu_head *head)
2427 {
2428 struct cfq_io_context *cic;
2429
2430 cic = container_of(head, struct cfq_io_context, rcu_head);
2431
2432 kmem_cache_free(cfq_ioc_pool, cic);
2433 elv_ioc_count_dec(cfq_ioc_count);
2434
2435 if (ioc_gone) {
2436 /*
2437 * CFQ scheduler is exiting, grab exit lock and check
2438 * the pending io context count. If it hits zero,
2439 * complete ioc_gone and set it back to NULL
2440 */
2441 spin_lock(&ioc_gone_lock);
2442 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2443 complete(ioc_gone);
2444 ioc_gone = NULL;
2445 }
2446 spin_unlock(&ioc_gone_lock);
2447 }
2448 }
2449
2450 static void cfq_cic_free(struct cfq_io_context *cic)
2451 {
2452 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2453 }
2454
2455 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2456 {
2457 unsigned long flags;
2458
2459 BUG_ON(!cic->dead_key);
2460
2461 spin_lock_irqsave(&ioc->lock, flags);
2462 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2463 hlist_del_rcu(&cic->cic_list);
2464 spin_unlock_irqrestore(&ioc->lock, flags);
2465
2466 cfq_cic_free(cic);
2467 }
2468
2469 /*
2470 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2471 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2472 * and ->trim() which is called with the task lock held
2473 */
2474 static void cfq_free_io_context(struct io_context *ioc)
2475 {
2476 /*
2477 * ioc->refcount is zero here, or we are called from elv_unregister(),
2478 * so no more cic's are allowed to be linked into this ioc. So it
2479 * should be ok to iterate over the known list, we will see all cic's
2480 * since no new ones are added.
2481 */
2482 __call_for_each_cic(ioc, cic_free_func);
2483 }
2484
2485 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2486 {
2487 struct cfq_queue *__cfqq, *next;
2488
2489 if (unlikely(cfqq == cfqd->active_queue)) {
2490 __cfq_slice_expired(cfqd, cfqq, 0);
2491 cfq_schedule_dispatch(cfqd);
2492 }
2493
2494 /*
2495 * If this queue was scheduled to merge with another queue, be
2496 * sure to drop the reference taken on that queue (and others in
2497 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2498 */
2499 __cfqq = cfqq->new_cfqq;
2500 while (__cfqq) {
2501 if (__cfqq == cfqq) {
2502 WARN(1, "cfqq->new_cfqq loop detected\n");
2503 break;
2504 }
2505 next = __cfqq->new_cfqq;
2506 cfq_put_queue(__cfqq);
2507 __cfqq = next;
2508 }
2509
2510 cfq_put_queue(cfqq);
2511 }
2512
2513 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2514 struct cfq_io_context *cic)
2515 {
2516 struct io_context *ioc = cic->ioc;
2517
2518 list_del_init(&cic->queue_list);
2519
2520 /*
2521 * Make sure key == NULL is seen for dead queues
2522 */
2523 smp_wmb();
2524 cic->dead_key = (unsigned long) cic->key;
2525 cic->key = NULL;
2526
2527 if (ioc->ioc_data == cic)
2528 rcu_assign_pointer(ioc->ioc_data, NULL);
2529
2530 if (cic->cfqq[BLK_RW_ASYNC]) {
2531 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2532 cic->cfqq[BLK_RW_ASYNC] = NULL;
2533 }
2534
2535 if (cic->cfqq[BLK_RW_SYNC]) {
2536 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2537 cic->cfqq[BLK_RW_SYNC] = NULL;
2538 }
2539 }
2540
2541 static void cfq_exit_single_io_context(struct io_context *ioc,
2542 struct cfq_io_context *cic)
2543 {
2544 struct cfq_data *cfqd = cic->key;
2545
2546 if (cfqd) {
2547 struct request_queue *q = cfqd->queue;
2548 unsigned long flags;
2549
2550 spin_lock_irqsave(q->queue_lock, flags);
2551
2552 /*
2553 * Ensure we get a fresh copy of the ->key to prevent
2554 * race between exiting task and queue
2555 */
2556 smp_read_barrier_depends();
2557 if (cic->key)
2558 __cfq_exit_single_io_context(cfqd, cic);
2559
2560 spin_unlock_irqrestore(q->queue_lock, flags);
2561 }
2562 }
2563
2564 /*
2565 * The process that ioc belongs to has exited, we need to clean up
2566 * and put the internal structures we have that belongs to that process.
2567 */
2568 static void cfq_exit_io_context(struct io_context *ioc)
2569 {
2570 call_for_each_cic(ioc, cfq_exit_single_io_context);
2571 }
2572
2573 static struct cfq_io_context *
2574 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2575 {
2576 struct cfq_io_context *cic;
2577
2578 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2579 cfqd->queue->node);
2580 if (cic) {
2581 cic->last_end_request = jiffies;
2582 INIT_LIST_HEAD(&cic->queue_list);
2583 INIT_HLIST_NODE(&cic->cic_list);
2584 cic->dtor = cfq_free_io_context;
2585 cic->exit = cfq_exit_io_context;
2586 elv_ioc_count_inc(cfq_ioc_count);
2587 }
2588
2589 return cic;
2590 }
2591
2592 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2593 {
2594 struct task_struct *tsk = current;
2595 int ioprio_class;
2596
2597 if (!cfq_cfqq_prio_changed(cfqq))
2598 return;
2599
2600 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2601 switch (ioprio_class) {
2602 default:
2603 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2604 case IOPRIO_CLASS_NONE:
2605 /*
2606 * no prio set, inherit CPU scheduling settings
2607 */
2608 cfqq->ioprio = task_nice_ioprio(tsk);
2609 cfqq->ioprio_class = task_nice_ioclass(tsk);
2610 break;
2611 case IOPRIO_CLASS_RT:
2612 cfqq->ioprio = task_ioprio(ioc);
2613 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2614 break;
2615 case IOPRIO_CLASS_BE:
2616 cfqq->ioprio = task_ioprio(ioc);
2617 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2618 break;
2619 case IOPRIO_CLASS_IDLE:
2620 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2621 cfqq->ioprio = 7;
2622 cfq_clear_cfqq_idle_window(cfqq);
2623 break;
2624 }
2625
2626 /*
2627 * keep track of original prio settings in case we have to temporarily
2628 * elevate the priority of this queue
2629 */
2630 cfqq->org_ioprio = cfqq->ioprio;
2631 cfqq->org_ioprio_class = cfqq->ioprio_class;
2632 cfq_clear_cfqq_prio_changed(cfqq);
2633 }
2634
2635 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2636 {
2637 struct cfq_data *cfqd = cic->key;
2638 struct cfq_queue *cfqq;
2639 unsigned long flags;
2640
2641 if (unlikely(!cfqd))
2642 return;
2643
2644 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2645
2646 cfqq = cic->cfqq[BLK_RW_ASYNC];
2647 if (cfqq) {
2648 struct cfq_queue *new_cfqq;
2649 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2650 GFP_ATOMIC);
2651 if (new_cfqq) {
2652 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2653 cfq_put_queue(cfqq);
2654 }
2655 }
2656
2657 cfqq = cic->cfqq[BLK_RW_SYNC];
2658 if (cfqq)
2659 cfq_mark_cfqq_prio_changed(cfqq);
2660
2661 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2662 }
2663
2664 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2665 {
2666 call_for_each_cic(ioc, changed_ioprio);
2667 ioc->ioprio_changed = 0;
2668 }
2669
2670 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2671 pid_t pid, bool is_sync)
2672 {
2673 RB_CLEAR_NODE(&cfqq->rb_node);
2674 RB_CLEAR_NODE(&cfqq->p_node);
2675 INIT_LIST_HEAD(&cfqq->fifo);
2676
2677 atomic_set(&cfqq->ref, 0);
2678 cfqq->cfqd = cfqd;
2679
2680 cfq_mark_cfqq_prio_changed(cfqq);
2681
2682 if (is_sync) {
2683 if (!cfq_class_idle(cfqq))
2684 cfq_mark_cfqq_idle_window(cfqq);
2685 cfq_mark_cfqq_sync(cfqq);
2686 }
2687 cfqq->pid = pid;
2688 }
2689
2690 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2691 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2692 {
2693 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2694 struct cfq_data *cfqd = cic->key;
2695 unsigned long flags;
2696 struct request_queue *q;
2697
2698 if (unlikely(!cfqd))
2699 return;
2700
2701 q = cfqd->queue;
2702
2703 spin_lock_irqsave(q->queue_lock, flags);
2704
2705 if (sync_cfqq) {
2706 /*
2707 * Drop reference to sync queue. A new sync queue will be
2708 * assigned in new group upon arrival of a fresh request.
2709 */
2710 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2711 cic_set_cfqq(cic, NULL, 1);
2712 cfq_put_queue(sync_cfqq);
2713 }
2714
2715 spin_unlock_irqrestore(q->queue_lock, flags);
2716 }
2717
2718 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2719 {
2720 call_for_each_cic(ioc, changed_cgroup);
2721 ioc->cgroup_changed = 0;
2722 }
2723 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2724
2725 static struct cfq_queue *
2726 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2727 struct io_context *ioc, gfp_t gfp_mask)
2728 {
2729 struct cfq_queue *cfqq, *new_cfqq = NULL;
2730 struct cfq_io_context *cic;
2731 struct cfq_group *cfqg;
2732
2733 retry:
2734 cfqg = cfq_get_cfqg(cfqd, 1);
2735 cic = cfq_cic_lookup(cfqd, ioc);
2736 /* cic always exists here */
2737 cfqq = cic_to_cfqq(cic, is_sync);
2738
2739 /*
2740 * Always try a new alloc if we fell back to the OOM cfqq
2741 * originally, since it should just be a temporary situation.
2742 */
2743 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2744 cfqq = NULL;
2745 if (new_cfqq) {
2746 cfqq = new_cfqq;
2747 new_cfqq = NULL;
2748 } else if (gfp_mask & __GFP_WAIT) {
2749 spin_unlock_irq(cfqd->queue->queue_lock);
2750 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2751 gfp_mask | __GFP_ZERO,
2752 cfqd->queue->node);
2753 spin_lock_irq(cfqd->queue->queue_lock);
2754 if (new_cfqq)
2755 goto retry;
2756 } else {
2757 cfqq = kmem_cache_alloc_node(cfq_pool,
2758 gfp_mask | __GFP_ZERO,
2759 cfqd->queue->node);
2760 }
2761
2762 if (cfqq) {
2763 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2764 cfq_init_prio_data(cfqq, ioc);
2765 cfq_link_cfqq_cfqg(cfqq, cfqg);
2766 cfq_log_cfqq(cfqd, cfqq, "alloced");
2767 } else
2768 cfqq = &cfqd->oom_cfqq;
2769 }
2770
2771 if (new_cfqq)
2772 kmem_cache_free(cfq_pool, new_cfqq);
2773
2774 return cfqq;
2775 }
2776
2777 static struct cfq_queue **
2778 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2779 {
2780 switch (ioprio_class) {
2781 case IOPRIO_CLASS_RT:
2782 return &cfqd->async_cfqq[0][ioprio];
2783 case IOPRIO_CLASS_BE:
2784 return &cfqd->async_cfqq[1][ioprio];
2785 case IOPRIO_CLASS_IDLE:
2786 return &cfqd->async_idle_cfqq;
2787 default:
2788 BUG();
2789 }
2790 }
2791
2792 static struct cfq_queue *
2793 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2794 gfp_t gfp_mask)
2795 {
2796 const int ioprio = task_ioprio(ioc);
2797 const int ioprio_class = task_ioprio_class(ioc);
2798 struct cfq_queue **async_cfqq = NULL;
2799 struct cfq_queue *cfqq = NULL;
2800
2801 if (!is_sync) {
2802 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2803 cfqq = *async_cfqq;
2804 }
2805
2806 if (!cfqq)
2807 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2808
2809 /*
2810 * pin the queue now that it's allocated, scheduler exit will prune it
2811 */
2812 if (!is_sync && !(*async_cfqq)) {
2813 atomic_inc(&cfqq->ref);
2814 *async_cfqq = cfqq;
2815 }
2816
2817 atomic_inc(&cfqq->ref);
2818 return cfqq;
2819 }
2820
2821 /*
2822 * We drop cfq io contexts lazily, so we may find a dead one.
2823 */
2824 static void
2825 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2826 struct cfq_io_context *cic)
2827 {
2828 unsigned long flags;
2829
2830 WARN_ON(!list_empty(&cic->queue_list));
2831
2832 spin_lock_irqsave(&ioc->lock, flags);
2833
2834 BUG_ON(ioc->ioc_data == cic);
2835
2836 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2837 hlist_del_rcu(&cic->cic_list);
2838 spin_unlock_irqrestore(&ioc->lock, flags);
2839
2840 cfq_cic_free(cic);
2841 }
2842
2843 static struct cfq_io_context *
2844 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2845 {
2846 struct cfq_io_context *cic;
2847 unsigned long flags;
2848 void *k;
2849
2850 if (unlikely(!ioc))
2851 return NULL;
2852
2853 rcu_read_lock();
2854
2855 /*
2856 * we maintain a last-hit cache, to avoid browsing over the tree
2857 */
2858 cic = rcu_dereference(ioc->ioc_data);
2859 if (cic && cic->key == cfqd) {
2860 rcu_read_unlock();
2861 return cic;
2862 }
2863
2864 do {
2865 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2866 rcu_read_unlock();
2867 if (!cic)
2868 break;
2869 /* ->key must be copied to avoid race with cfq_exit_queue() */
2870 k = cic->key;
2871 if (unlikely(!k)) {
2872 cfq_drop_dead_cic(cfqd, ioc, cic);
2873 rcu_read_lock();
2874 continue;
2875 }
2876
2877 spin_lock_irqsave(&ioc->lock, flags);
2878 rcu_assign_pointer(ioc->ioc_data, cic);
2879 spin_unlock_irqrestore(&ioc->lock, flags);
2880 break;
2881 } while (1);
2882
2883 return cic;
2884 }
2885
2886 /*
2887 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2888 * the process specific cfq io context when entered from the block layer.
2889 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2890 */
2891 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2892 struct cfq_io_context *cic, gfp_t gfp_mask)
2893 {
2894 unsigned long flags;
2895 int ret;
2896
2897 ret = radix_tree_preload(gfp_mask);
2898 if (!ret) {
2899 cic->ioc = ioc;
2900 cic->key = cfqd;
2901
2902 spin_lock_irqsave(&ioc->lock, flags);
2903 ret = radix_tree_insert(&ioc->radix_root,
2904 (unsigned long) cfqd, cic);
2905 if (!ret)
2906 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2907 spin_unlock_irqrestore(&ioc->lock, flags);
2908
2909 radix_tree_preload_end();
2910
2911 if (!ret) {
2912 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2913 list_add(&cic->queue_list, &cfqd->cic_list);
2914 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2915 }
2916 }
2917
2918 if (ret)
2919 printk(KERN_ERR "cfq: cic link failed!\n");
2920
2921 return ret;
2922 }
2923
2924 /*
2925 * Setup general io context and cfq io context. There can be several cfq
2926 * io contexts per general io context, if this process is doing io to more
2927 * than one device managed by cfq.
2928 */
2929 static struct cfq_io_context *
2930 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2931 {
2932 struct io_context *ioc = NULL;
2933 struct cfq_io_context *cic;
2934
2935 might_sleep_if(gfp_mask & __GFP_WAIT);
2936
2937 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2938 if (!ioc)
2939 return NULL;
2940
2941 cic = cfq_cic_lookup(cfqd, ioc);
2942 if (cic)
2943 goto out;
2944
2945 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2946 if (cic == NULL)
2947 goto err;
2948
2949 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2950 goto err_free;
2951
2952 out:
2953 smp_read_barrier_depends();
2954 if (unlikely(ioc->ioprio_changed))
2955 cfq_ioc_set_ioprio(ioc);
2956
2957 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2958 if (unlikely(ioc->cgroup_changed))
2959 cfq_ioc_set_cgroup(ioc);
2960 #endif
2961 return cic;
2962 err_free:
2963 cfq_cic_free(cic);
2964 err:
2965 put_io_context(ioc);
2966 return NULL;
2967 }
2968
2969 static void
2970 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2971 {
2972 unsigned long elapsed = jiffies - cic->last_end_request;
2973 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2974
2975 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2976 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2977 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2978 }
2979
2980 static void
2981 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2982 struct request *rq)
2983 {
2984 sector_t sdist = 0;
2985 sector_t n_sec = blk_rq_sectors(rq);
2986 if (cfqq->last_request_pos) {
2987 if (cfqq->last_request_pos < blk_rq_pos(rq))
2988 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2989 else
2990 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2991 }
2992
2993 cfqq->seek_history <<= 1;
2994 if (blk_queue_nonrot(cfqd->queue))
2995 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2996 else
2997 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2998 }
2999
3000 /*
3001 * Disable idle window if the process thinks too long or seeks so much that
3002 * it doesn't matter
3003 */
3004 static void
3005 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3006 struct cfq_io_context *cic)
3007 {
3008 int old_idle, enable_idle;
3009
3010 /*
3011 * Don't idle for async or idle io prio class
3012 */
3013 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3014 return;
3015
3016 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3017
3018 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3019 cfq_mark_cfqq_deep(cfqq);
3020
3021 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3022 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3023 enable_idle = 0;
3024 else if (sample_valid(cic->ttime_samples)) {
3025 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3026 enable_idle = 0;
3027 else
3028 enable_idle = 1;
3029 }
3030
3031 if (old_idle != enable_idle) {
3032 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3033 if (enable_idle)
3034 cfq_mark_cfqq_idle_window(cfqq);
3035 else
3036 cfq_clear_cfqq_idle_window(cfqq);
3037 }
3038 }
3039
3040 /*
3041 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3042 * no or if we aren't sure, a 1 will cause a preempt.
3043 */
3044 static bool
3045 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3046 struct request *rq)
3047 {
3048 struct cfq_queue *cfqq;
3049
3050 cfqq = cfqd->active_queue;
3051 if (!cfqq)
3052 return false;
3053
3054 if (cfq_class_idle(new_cfqq))
3055 return false;
3056
3057 if (cfq_class_idle(cfqq))
3058 return true;
3059
3060 /*
3061 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3062 */
3063 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3064 return false;
3065
3066 /*
3067 * if the new request is sync, but the currently running queue is
3068 * not, let the sync request have priority.
3069 */
3070 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3071 return true;
3072
3073 if (new_cfqq->cfqg != cfqq->cfqg)
3074 return false;
3075
3076 if (cfq_slice_used(cfqq))
3077 return true;
3078
3079 /* Allow preemption only if we are idling on sync-noidle tree */
3080 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3081 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3082 new_cfqq->service_tree->count == 2 &&
3083 RB_EMPTY_ROOT(&cfqq->sort_list))
3084 return true;
3085
3086 /*
3087 * So both queues are sync. Let the new request get disk time if
3088 * it's a metadata request and the current queue is doing regular IO.
3089 */
3090 if (rq_is_meta(rq) && !cfqq->meta_pending)
3091 return true;
3092
3093 /*
3094 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3095 */
3096 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3097 return true;
3098
3099 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3100 return false;
3101
3102 /*
3103 * if this request is as-good as one we would expect from the
3104 * current cfqq, let it preempt
3105 */
3106 if (cfq_rq_close(cfqd, cfqq, rq, true))
3107 return true;
3108
3109 return false;
3110 }
3111
3112 /*
3113 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3114 * let it have half of its nominal slice.
3115 */
3116 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3117 {
3118 cfq_log_cfqq(cfqd, cfqq, "preempt");
3119 cfq_slice_expired(cfqd, 1);
3120
3121 /*
3122 * Put the new queue at the front of the of the current list,
3123 * so we know that it will be selected next.
3124 */
3125 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3126
3127 cfq_service_tree_add(cfqd, cfqq, 1);
3128
3129 cfqq->slice_end = 0;
3130 cfq_mark_cfqq_slice_new(cfqq);
3131 }
3132
3133 /*
3134 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3135 * something we should do about it
3136 */
3137 static void
3138 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3139 struct request *rq)
3140 {
3141 struct cfq_io_context *cic = RQ_CIC(rq);
3142
3143 cfqd->rq_queued++;
3144 if (rq_is_meta(rq))
3145 cfqq->meta_pending++;
3146
3147 cfq_update_io_thinktime(cfqd, cic);
3148 cfq_update_io_seektime(cfqd, cfqq, rq);
3149 cfq_update_idle_window(cfqd, cfqq, cic);
3150
3151 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3152
3153 if (cfqq == cfqd->active_queue) {
3154 /*
3155 * Remember that we saw a request from this process, but
3156 * don't start queuing just yet. Otherwise we risk seeing lots
3157 * of tiny requests, because we disrupt the normal plugging
3158 * and merging. If the request is already larger than a single
3159 * page, let it rip immediately. For that case we assume that
3160 * merging is already done. Ditto for a busy system that
3161 * has other work pending, don't risk delaying until the
3162 * idle timer unplug to continue working.
3163 */
3164 if (cfq_cfqq_wait_request(cfqq)) {
3165 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3166 cfqd->busy_queues > 1) {
3167 del_timer(&cfqd->idle_slice_timer);
3168 cfq_clear_cfqq_wait_request(cfqq);
3169 __blk_run_queue(cfqd->queue);
3170 } else
3171 cfq_mark_cfqq_must_dispatch(cfqq);
3172 }
3173 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3174 /*
3175 * not the active queue - expire current slice if it is
3176 * idle and has expired it's mean thinktime or this new queue
3177 * has some old slice time left and is of higher priority or
3178 * this new queue is RT and the current one is BE
3179 */
3180 cfq_preempt_queue(cfqd, cfqq);
3181 __blk_run_queue(cfqd->queue);
3182 }
3183 }
3184
3185 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3186 {
3187 struct cfq_data *cfqd = q->elevator->elevator_data;
3188 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3189
3190 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3191 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3192
3193 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3194 list_add_tail(&rq->queuelist, &cfqq->fifo);
3195 cfq_add_rq_rb(rq);
3196
3197 cfq_rq_enqueued(cfqd, cfqq, rq);
3198 }
3199
3200 /*
3201 * Update hw_tag based on peak queue depth over 50 samples under
3202 * sufficient load.
3203 */
3204 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3205 {
3206 struct cfq_queue *cfqq = cfqd->active_queue;
3207
3208 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3209 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3210
3211 if (cfqd->hw_tag == 1)
3212 return;
3213
3214 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3215 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3216 return;
3217
3218 /*
3219 * If active queue hasn't enough requests and can idle, cfq might not
3220 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3221 * case
3222 */
3223 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3224 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3225 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3226 return;
3227
3228 if (cfqd->hw_tag_samples++ < 50)
3229 return;
3230
3231 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3232 cfqd->hw_tag = 1;
3233 else
3234 cfqd->hw_tag = 0;
3235 }
3236
3237 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3238 {
3239 struct cfq_io_context *cic = cfqd->active_cic;
3240
3241 /* If there are other queues in the group, don't wait */
3242 if (cfqq->cfqg->nr_cfqq > 1)
3243 return false;
3244
3245 if (cfq_slice_used(cfqq))
3246 return true;
3247
3248 /* if slice left is less than think time, wait busy */
3249 if (cic && sample_valid(cic->ttime_samples)
3250 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3251 return true;
3252
3253 /*
3254 * If think times is less than a jiffy than ttime_mean=0 and above
3255 * will not be true. It might happen that slice has not expired yet
3256 * but will expire soon (4-5 ns) during select_queue(). To cover the
3257 * case where think time is less than a jiffy, mark the queue wait
3258 * busy if only 1 jiffy is left in the slice.
3259 */
3260 if (cfqq->slice_end - jiffies == 1)
3261 return true;
3262
3263 return false;
3264 }
3265
3266 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3267 {
3268 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3269 struct cfq_data *cfqd = cfqq->cfqd;
3270 const int sync = rq_is_sync(rq);
3271 unsigned long now;
3272
3273 now = jiffies;
3274 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3275
3276 cfq_update_hw_tag(cfqd);
3277
3278 WARN_ON(!cfqd->rq_in_driver);
3279 WARN_ON(!cfqq->dispatched);
3280 cfqd->rq_in_driver--;
3281 cfqq->dispatched--;
3282
3283 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3284
3285 if (sync) {
3286 RQ_CIC(rq)->last_end_request = now;
3287 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3288 cfqd->last_delayed_sync = now;
3289 }
3290
3291 /*
3292 * If this is the active queue, check if it needs to be expired,
3293 * or if we want to idle in case it has no pending requests.
3294 */
3295 if (cfqd->active_queue == cfqq) {
3296 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3297
3298 if (cfq_cfqq_slice_new(cfqq)) {
3299 cfq_set_prio_slice(cfqd, cfqq);
3300 cfq_clear_cfqq_slice_new(cfqq);
3301 }
3302
3303 /*
3304 * Should we wait for next request to come in before we expire
3305 * the queue.
3306 */
3307 if (cfq_should_wait_busy(cfqd, cfqq)) {
3308 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3309 cfq_mark_cfqq_wait_busy(cfqq);
3310 }
3311
3312 /*
3313 * Idling is not enabled on:
3314 * - expired queues
3315 * - idle-priority queues
3316 * - async queues
3317 * - queues with still some requests queued
3318 * - when there is a close cooperator
3319 */
3320 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3321 cfq_slice_expired(cfqd, 1);
3322 else if (sync && cfqq_empty &&
3323 !cfq_close_cooperator(cfqd, cfqq)) {
3324 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3325 /*
3326 * Idling is enabled for SYNC_WORKLOAD.
3327 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3328 * only if we processed at least one !rq_noidle request
3329 */
3330 if (cfqd->serving_type == SYNC_WORKLOAD
3331 || cfqd->noidle_tree_requires_idle
3332 || cfqq->cfqg->nr_cfqq == 1)
3333 cfq_arm_slice_timer(cfqd);
3334 }
3335 }
3336
3337 if (!cfqd->rq_in_driver)
3338 cfq_schedule_dispatch(cfqd);
3339 }
3340
3341 /*
3342 * we temporarily boost lower priority queues if they are holding fs exclusive
3343 * resources. they are boosted to normal prio (CLASS_BE/4)
3344 */
3345 static void cfq_prio_boost(struct cfq_queue *cfqq)
3346 {
3347 if (has_fs_excl()) {
3348 /*
3349 * boost idle prio on transactions that would lock out other
3350 * users of the filesystem
3351 */
3352 if (cfq_class_idle(cfqq))
3353 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3354 if (cfqq->ioprio > IOPRIO_NORM)
3355 cfqq->ioprio = IOPRIO_NORM;
3356 } else {
3357 /*
3358 * unboost the queue (if needed)
3359 */
3360 cfqq->ioprio_class = cfqq->org_ioprio_class;
3361 cfqq->ioprio = cfqq->org_ioprio;
3362 }
3363 }
3364
3365 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3366 {
3367 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3368 cfq_mark_cfqq_must_alloc_slice(cfqq);
3369 return ELV_MQUEUE_MUST;
3370 }
3371
3372 return ELV_MQUEUE_MAY;
3373 }
3374
3375 static int cfq_may_queue(struct request_queue *q, int rw)
3376 {
3377 struct cfq_data *cfqd = q->elevator->elevator_data;
3378 struct task_struct *tsk = current;
3379 struct cfq_io_context *cic;
3380 struct cfq_queue *cfqq;
3381
3382 /*
3383 * don't force setup of a queue from here, as a call to may_queue
3384 * does not necessarily imply that a request actually will be queued.
3385 * so just lookup a possibly existing queue, or return 'may queue'
3386 * if that fails
3387 */
3388 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3389 if (!cic)
3390 return ELV_MQUEUE_MAY;
3391
3392 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3393 if (cfqq) {
3394 cfq_init_prio_data(cfqq, cic->ioc);
3395 cfq_prio_boost(cfqq);
3396
3397 return __cfq_may_queue(cfqq);
3398 }
3399
3400 return ELV_MQUEUE_MAY;
3401 }
3402
3403 /*
3404 * queue lock held here
3405 */
3406 static void cfq_put_request(struct request *rq)
3407 {
3408 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3409
3410 if (cfqq) {
3411 const int rw = rq_data_dir(rq);
3412
3413 BUG_ON(!cfqq->allocated[rw]);
3414 cfqq->allocated[rw]--;
3415
3416 put_io_context(RQ_CIC(rq)->ioc);
3417
3418 rq->elevator_private = NULL;
3419 rq->elevator_private2 = NULL;
3420
3421 cfq_put_queue(cfqq);
3422 }
3423 }
3424
3425 static struct cfq_queue *
3426 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3427 struct cfq_queue *cfqq)
3428 {
3429 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3430 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3431 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3432 cfq_put_queue(cfqq);
3433 return cic_to_cfqq(cic, 1);
3434 }
3435
3436 /*
3437 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3438 * was the last process referring to said cfqq.
3439 */
3440 static struct cfq_queue *
3441 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3442 {
3443 if (cfqq_process_refs(cfqq) == 1) {
3444 cfqq->pid = current->pid;
3445 cfq_clear_cfqq_coop(cfqq);
3446 cfq_clear_cfqq_split_coop(cfqq);
3447 return cfqq;
3448 }
3449
3450 cic_set_cfqq(cic, NULL, 1);
3451 cfq_put_queue(cfqq);
3452 return NULL;
3453 }
3454 /*
3455 * Allocate cfq data structures associated with this request.
3456 */
3457 static int
3458 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3459 {
3460 struct cfq_data *cfqd = q->elevator->elevator_data;
3461 struct cfq_io_context *cic;
3462 const int rw = rq_data_dir(rq);
3463 const bool is_sync = rq_is_sync(rq);
3464 struct cfq_queue *cfqq;
3465 unsigned long flags;
3466
3467 might_sleep_if(gfp_mask & __GFP_WAIT);
3468
3469 cic = cfq_get_io_context(cfqd, gfp_mask);
3470
3471 spin_lock_irqsave(q->queue_lock, flags);
3472
3473 if (!cic)
3474 goto queue_fail;
3475
3476 new_queue:
3477 cfqq = cic_to_cfqq(cic, is_sync);
3478 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3479 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3480 cic_set_cfqq(cic, cfqq, is_sync);
3481 } else {
3482 /*
3483 * If the queue was seeky for too long, break it apart.
3484 */
3485 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3486 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3487 cfqq = split_cfqq(cic, cfqq);
3488 if (!cfqq)
3489 goto new_queue;
3490 }
3491
3492 /*
3493 * Check to see if this queue is scheduled to merge with
3494 * another, closely cooperating queue. The merging of
3495 * queues happens here as it must be done in process context.
3496 * The reference on new_cfqq was taken in merge_cfqqs.
3497 */
3498 if (cfqq->new_cfqq)
3499 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3500 }
3501
3502 cfqq->allocated[rw]++;
3503 atomic_inc(&cfqq->ref);
3504
3505 spin_unlock_irqrestore(q->queue_lock, flags);
3506
3507 rq->elevator_private = cic;
3508 rq->elevator_private2 = cfqq;
3509 return 0;
3510
3511 queue_fail:
3512 if (cic)
3513 put_io_context(cic->ioc);
3514
3515 cfq_schedule_dispatch(cfqd);
3516 spin_unlock_irqrestore(q->queue_lock, flags);
3517 cfq_log(cfqd, "set_request fail");
3518 return 1;
3519 }
3520
3521 static void cfq_kick_queue(struct work_struct *work)
3522 {
3523 struct cfq_data *cfqd =
3524 container_of(work, struct cfq_data, unplug_work);
3525 struct request_queue *q = cfqd->queue;
3526
3527 spin_lock_irq(q->queue_lock);
3528 __blk_run_queue(cfqd->queue);
3529 spin_unlock_irq(q->queue_lock);
3530 }
3531
3532 /*
3533 * Timer running if the active_queue is currently idling inside its time slice
3534 */
3535 static void cfq_idle_slice_timer(unsigned long data)
3536 {
3537 struct cfq_data *cfqd = (struct cfq_data *) data;
3538 struct cfq_queue *cfqq;
3539 unsigned long flags;
3540 int timed_out = 1;
3541
3542 cfq_log(cfqd, "idle timer fired");
3543
3544 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3545
3546 cfqq = cfqd->active_queue;
3547 if (cfqq) {
3548 timed_out = 0;
3549
3550 /*
3551 * We saw a request before the queue expired, let it through
3552 */
3553 if (cfq_cfqq_must_dispatch(cfqq))
3554 goto out_kick;
3555
3556 /*
3557 * expired
3558 */
3559 if (cfq_slice_used(cfqq))
3560 goto expire;
3561
3562 /*
3563 * only expire and reinvoke request handler, if there are
3564 * other queues with pending requests
3565 */
3566 if (!cfqd->busy_queues)
3567 goto out_cont;
3568
3569 /*
3570 * not expired and it has a request pending, let it dispatch
3571 */
3572 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3573 goto out_kick;
3574
3575 /*
3576 * Queue depth flag is reset only when the idle didn't succeed
3577 */
3578 cfq_clear_cfqq_deep(cfqq);
3579 }
3580 expire:
3581 cfq_slice_expired(cfqd, timed_out);
3582 out_kick:
3583 cfq_schedule_dispatch(cfqd);
3584 out_cont:
3585 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3586 }
3587
3588 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3589 {
3590 del_timer_sync(&cfqd->idle_slice_timer);
3591 cancel_work_sync(&cfqd->unplug_work);
3592 }
3593
3594 static void cfq_put_async_queues(struct cfq_data *cfqd)
3595 {
3596 int i;
3597
3598 for (i = 0; i < IOPRIO_BE_NR; i++) {
3599 if (cfqd->async_cfqq[0][i])
3600 cfq_put_queue(cfqd->async_cfqq[0][i]);
3601 if (cfqd->async_cfqq[1][i])
3602 cfq_put_queue(cfqd->async_cfqq[1][i]);
3603 }
3604
3605 if (cfqd->async_idle_cfqq)
3606 cfq_put_queue(cfqd->async_idle_cfqq);
3607 }
3608
3609 static void cfq_cfqd_free(struct rcu_head *head)
3610 {
3611 kfree(container_of(head, struct cfq_data, rcu));
3612 }
3613
3614 static void cfq_exit_queue(struct elevator_queue *e)
3615 {
3616 struct cfq_data *cfqd = e->elevator_data;
3617 struct request_queue *q = cfqd->queue;
3618
3619 cfq_shutdown_timer_wq(cfqd);
3620
3621 spin_lock_irq(q->queue_lock);
3622
3623 if (cfqd->active_queue)
3624 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3625
3626 while (!list_empty(&cfqd->cic_list)) {
3627 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3628 struct cfq_io_context,
3629 queue_list);
3630
3631 __cfq_exit_single_io_context(cfqd, cic);
3632 }
3633
3634 cfq_put_async_queues(cfqd);
3635 cfq_release_cfq_groups(cfqd);
3636 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3637
3638 spin_unlock_irq(q->queue_lock);
3639
3640 cfq_shutdown_timer_wq(cfqd);
3641
3642 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3643 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3644 }
3645
3646 static void *cfq_init_queue(struct request_queue *q)
3647 {
3648 struct cfq_data *cfqd;
3649 int i, j;
3650 struct cfq_group *cfqg;
3651 struct cfq_rb_root *st;
3652
3653 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3654 if (!cfqd)
3655 return NULL;
3656
3657 /* Init root service tree */
3658 cfqd->grp_service_tree = CFQ_RB_ROOT;
3659
3660 /* Init root group */
3661 cfqg = &cfqd->root_group;
3662 for_each_cfqg_st(cfqg, i, j, st)
3663 *st = CFQ_RB_ROOT;
3664 RB_CLEAR_NODE(&cfqg->rb_node);
3665
3666 /* Give preference to root group over other groups */
3667 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3668
3669 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3670 /*
3671 * Take a reference to root group which we never drop. This is just
3672 * to make sure that cfq_put_cfqg() does not try to kfree root group
3673 */
3674 atomic_set(&cfqg->ref, 1);
3675 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3676 0);
3677 #endif
3678 /*
3679 * Not strictly needed (since RB_ROOT just clears the node and we
3680 * zeroed cfqd on alloc), but better be safe in case someone decides
3681 * to add magic to the rb code
3682 */
3683 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3684 cfqd->prio_trees[i] = RB_ROOT;
3685
3686 /*
3687 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3688 * Grab a permanent reference to it, so that the normal code flow
3689 * will not attempt to free it.
3690 */
3691 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3692 atomic_inc(&cfqd->oom_cfqq.ref);
3693 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3694
3695 INIT_LIST_HEAD(&cfqd->cic_list);
3696
3697 cfqd->queue = q;
3698
3699 init_timer(&cfqd->idle_slice_timer);
3700 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3701 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3702
3703 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3704
3705 cfqd->cfq_quantum = cfq_quantum;
3706 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3707 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3708 cfqd->cfq_back_max = cfq_back_max;
3709 cfqd->cfq_back_penalty = cfq_back_penalty;
3710 cfqd->cfq_slice[0] = cfq_slice_async;
3711 cfqd->cfq_slice[1] = cfq_slice_sync;
3712 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3713 cfqd->cfq_slice_idle = cfq_slice_idle;
3714 cfqd->cfq_latency = 1;
3715 cfqd->cfq_group_isolation = 0;
3716 cfqd->hw_tag = -1;
3717 /*
3718 * we optimistically start assuming sync ops weren't delayed in last
3719 * second, in order to have larger depth for async operations.
3720 */
3721 cfqd->last_delayed_sync = jiffies - HZ;
3722 INIT_RCU_HEAD(&cfqd->rcu);
3723 return cfqd;
3724 }
3725
3726 static void cfq_slab_kill(void)
3727 {
3728 /*
3729 * Caller already ensured that pending RCU callbacks are completed,
3730 * so we should have no busy allocations at this point.
3731 */
3732 if (cfq_pool)
3733 kmem_cache_destroy(cfq_pool);
3734 if (cfq_ioc_pool)
3735 kmem_cache_destroy(cfq_ioc_pool);
3736 }
3737
3738 static int __init cfq_slab_setup(void)
3739 {
3740 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3741 if (!cfq_pool)
3742 goto fail;
3743
3744 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3745 if (!cfq_ioc_pool)
3746 goto fail;
3747
3748 return 0;
3749 fail:
3750 cfq_slab_kill();
3751 return -ENOMEM;
3752 }
3753
3754 /*
3755 * sysfs parts below -->
3756 */
3757 static ssize_t
3758 cfq_var_show(unsigned int var, char *page)
3759 {
3760 return sprintf(page, "%d\n", var);
3761 }
3762
3763 static ssize_t
3764 cfq_var_store(unsigned int *var, const char *page, size_t count)
3765 {
3766 char *p = (char *) page;
3767
3768 *var = simple_strtoul(p, &p, 10);
3769 return count;
3770 }
3771
3772 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3773 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3774 { \
3775 struct cfq_data *cfqd = e->elevator_data; \
3776 unsigned int __data = __VAR; \
3777 if (__CONV) \
3778 __data = jiffies_to_msecs(__data); \
3779 return cfq_var_show(__data, (page)); \
3780 }
3781 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3782 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3783 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3784 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3785 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3786 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3787 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3788 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3789 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3790 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3791 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3792 #undef SHOW_FUNCTION
3793
3794 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3795 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3796 { \
3797 struct cfq_data *cfqd = e->elevator_data; \
3798 unsigned int __data; \
3799 int ret = cfq_var_store(&__data, (page), count); \
3800 if (__data < (MIN)) \
3801 __data = (MIN); \
3802 else if (__data > (MAX)) \
3803 __data = (MAX); \
3804 if (__CONV) \
3805 *(__PTR) = msecs_to_jiffies(__data); \
3806 else \
3807 *(__PTR) = __data; \
3808 return ret; \
3809 }
3810 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3811 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3812 UINT_MAX, 1);
3813 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3814 UINT_MAX, 1);
3815 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3816 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3817 UINT_MAX, 0);
3818 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3819 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3820 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3821 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3822 UINT_MAX, 0);
3823 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3824 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3825 #undef STORE_FUNCTION
3826
3827 #define CFQ_ATTR(name) \
3828 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3829
3830 static struct elv_fs_entry cfq_attrs[] = {
3831 CFQ_ATTR(quantum),
3832 CFQ_ATTR(fifo_expire_sync),
3833 CFQ_ATTR(fifo_expire_async),
3834 CFQ_ATTR(back_seek_max),
3835 CFQ_ATTR(back_seek_penalty),
3836 CFQ_ATTR(slice_sync),
3837 CFQ_ATTR(slice_async),
3838 CFQ_ATTR(slice_async_rq),
3839 CFQ_ATTR(slice_idle),
3840 CFQ_ATTR(low_latency),
3841 CFQ_ATTR(group_isolation),
3842 __ATTR_NULL
3843 };
3844
3845 static struct elevator_type iosched_cfq = {
3846 .ops = {
3847 .elevator_merge_fn = cfq_merge,
3848 .elevator_merged_fn = cfq_merged_request,
3849 .elevator_merge_req_fn = cfq_merged_requests,
3850 .elevator_allow_merge_fn = cfq_allow_merge,
3851 .elevator_dispatch_fn = cfq_dispatch_requests,
3852 .elevator_add_req_fn = cfq_insert_request,
3853 .elevator_activate_req_fn = cfq_activate_request,
3854 .elevator_deactivate_req_fn = cfq_deactivate_request,
3855 .elevator_queue_empty_fn = cfq_queue_empty,
3856 .elevator_completed_req_fn = cfq_completed_request,
3857 .elevator_former_req_fn = elv_rb_former_request,
3858 .elevator_latter_req_fn = elv_rb_latter_request,
3859 .elevator_set_req_fn = cfq_set_request,
3860 .elevator_put_req_fn = cfq_put_request,
3861 .elevator_may_queue_fn = cfq_may_queue,
3862 .elevator_init_fn = cfq_init_queue,
3863 .elevator_exit_fn = cfq_exit_queue,
3864 .trim = cfq_free_io_context,
3865 },
3866 .elevator_attrs = cfq_attrs,
3867 .elevator_name = "cfq",
3868 .elevator_owner = THIS_MODULE,
3869 };
3870
3871 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3872 static struct blkio_policy_type blkio_policy_cfq = {
3873 .ops = {
3874 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3875 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3876 },
3877 };
3878 #else
3879 static struct blkio_policy_type blkio_policy_cfq;
3880 #endif
3881
3882 static int __init cfq_init(void)
3883 {
3884 /*
3885 * could be 0 on HZ < 1000 setups
3886 */
3887 if (!cfq_slice_async)
3888 cfq_slice_async = 1;
3889 if (!cfq_slice_idle)
3890 cfq_slice_idle = 1;
3891
3892 if (cfq_slab_setup())
3893 return -ENOMEM;
3894
3895 elv_register(&iosched_cfq);
3896 blkio_policy_register(&blkio_policy_cfq);
3897
3898 return 0;
3899 }
3900
3901 static void __exit cfq_exit(void)
3902 {
3903 DECLARE_COMPLETION_ONSTACK(all_gone);
3904 blkio_policy_unregister(&blkio_policy_cfq);
3905 elv_unregister(&iosched_cfq);
3906 ioc_gone = &all_gone;
3907 /* ioc_gone's update must be visible before reading ioc_count */
3908 smp_wmb();
3909
3910 /*
3911 * this also protects us from entering cfq_slab_kill() with
3912 * pending RCU callbacks
3913 */
3914 if (elv_ioc_count_read(cfq_ioc_count))
3915 wait_for_completion(&all_gone);
3916 cfq_slab_kill();
3917 }
3918
3919 module_init(cfq_init);
3920 module_exit(cfq_exit);
3921
3922 MODULE_AUTHOR("Jens Axboe");
3923 MODULE_LICENSE("GPL");
3924 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");