cfq-iosched: fix race in cfq_set_request()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38 * offset from end of service tree
39 */
40 #define CFQ_IDLE_DELAY (HZ / 5)
41
42 /*
43 * below this threshold, we consider thinktime immediate
44 */
45 #define CFQ_MIN_TT (2)
46
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
50
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94 /*
95 * Per process-grouping structure
96 */
97 struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_prio_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162 };
163
164 /*
165 * Second index in the service_trees.
166 */
167 enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171 };
172
173 /* This is per cgroup per device grouping structure */
174 struct cfq_group {
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
180 unsigned int weight;
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
185 /*
186 * Per group busy queus average. Useful for workload slice calc. We
187 * create the array for each prio class but at run time it is used
188 * only for RT and BE class and slot for IDLE class remains unused.
189 * This is primarily done to avoid confusion and a gcc warning.
190 */
191 unsigned int busy_queues_avg[CFQ_PRIO_NR];
192 /*
193 * rr lists of queues with requests. We maintain service trees for
194 * RT and BE classes. These trees are subdivided in subclasses
195 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196 * class there is no subclassification and all the cfq queues go on
197 * a single tree service_tree_idle.
198 * Counts are embedded in the cfq_rb_root
199 */
200 struct cfq_rb_root service_trees[2][3];
201 struct cfq_rb_root service_tree_idle;
202
203 unsigned long saved_workload_slice;
204 enum wl_type_t saved_workload;
205 enum wl_prio_t saved_serving_prio;
206 struct blkio_group blkg;
207 #ifdef CONFIG_CFQ_GROUP_IOSCHED
208 struct hlist_node cfqd_node;
209 int ref;
210 #endif
211 /* number of requests that are on the dispatch list or inside driver */
212 int dispatched;
213 };
214
215 /*
216 * Per block device queue structure
217 */
218 struct cfq_data {
219 struct request_queue *queue;
220 /* Root service tree for cfq_groups */
221 struct cfq_rb_root grp_service_tree;
222 struct cfq_group root_group;
223
224 /*
225 * The priority currently being served
226 */
227 enum wl_prio_t serving_prio;
228 enum wl_type_t serving_type;
229 unsigned long workload_expires;
230 struct cfq_group *serving_group;
231
232 /*
233 * Each priority tree is sorted by next_request position. These
234 * trees are used when determining if two or more queues are
235 * interleaving requests (see cfq_close_cooperator).
236 */
237 struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
239 unsigned int busy_queues;
240
241 int rq_in_driver;
242 int rq_in_flight[2];
243
244 /*
245 * queue-depth detection
246 */
247 int rq_queued;
248 int hw_tag;
249 /*
250 * hw_tag can be
251 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
252 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
253 * 0 => no NCQ
254 */
255 int hw_tag_est_depth;
256 unsigned int hw_tag_samples;
257
258 /*
259 * idle window management
260 */
261 struct timer_list idle_slice_timer;
262 struct work_struct unplug_work;
263
264 struct cfq_queue *active_queue;
265 struct cfq_io_context *active_cic;
266
267 /*
268 * async queue for each priority case
269 */
270 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
271 struct cfq_queue *async_idle_cfqq;
272
273 sector_t last_position;
274
275 /*
276 * tunables, see top of file
277 */
278 unsigned int cfq_quantum;
279 unsigned int cfq_fifo_expire[2];
280 unsigned int cfq_back_penalty;
281 unsigned int cfq_back_max;
282 unsigned int cfq_slice[2];
283 unsigned int cfq_slice_async_rq;
284 unsigned int cfq_slice_idle;
285 unsigned int cfq_group_idle;
286 unsigned int cfq_latency;
287
288 unsigned int cic_index;
289 struct list_head cic_list;
290
291 /*
292 * Fallback dummy cfqq for extreme OOM conditions
293 */
294 struct cfq_queue oom_cfqq;
295
296 unsigned long last_delayed_sync;
297
298 /* List of cfq groups being managed on this device*/
299 struct hlist_head cfqg_list;
300 struct rcu_head rcu;
301 };
302
303 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
304
305 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
306 enum wl_prio_t prio,
307 enum wl_type_t type)
308 {
309 if (!cfqg)
310 return NULL;
311
312 if (prio == IDLE_WORKLOAD)
313 return &cfqg->service_tree_idle;
314
315 return &cfqg->service_trees[prio][type];
316 }
317
318 enum cfqq_state_flags {
319 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
320 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
321 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
322 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
323 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
324 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
325 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
326 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
327 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
328 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
329 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
330 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
331 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
332 };
333
334 #define CFQ_CFQQ_FNS(name) \
335 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
336 { \
337 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
338 } \
339 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
340 { \
341 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
342 } \
343 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
344 { \
345 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
346 }
347
348 CFQ_CFQQ_FNS(on_rr);
349 CFQ_CFQQ_FNS(wait_request);
350 CFQ_CFQQ_FNS(must_dispatch);
351 CFQ_CFQQ_FNS(must_alloc_slice);
352 CFQ_CFQQ_FNS(fifo_expire);
353 CFQ_CFQQ_FNS(idle_window);
354 CFQ_CFQQ_FNS(prio_changed);
355 CFQ_CFQQ_FNS(slice_new);
356 CFQ_CFQQ_FNS(sync);
357 CFQ_CFQQ_FNS(coop);
358 CFQ_CFQQ_FNS(split_coop);
359 CFQ_CFQQ_FNS(deep);
360 CFQ_CFQQ_FNS(wait_busy);
361 #undef CFQ_CFQQ_FNS
362
363 #ifdef CONFIG_CFQ_GROUP_IOSCHED
364 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
366 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
367 blkg_path(&(cfqq)->cfqg->blkg), ##args);
368
369 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
371 blkg_path(&(cfqg)->blkg), ##args); \
372
373 #else
374 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
376 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
377 #endif
378 #define cfq_log(cfqd, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
380
381 /* Traverses through cfq group service trees */
382 #define for_each_cfqg_st(cfqg, i, j, st) \
383 for (i = 0; i <= IDLE_WORKLOAD; i++) \
384 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
385 : &cfqg->service_tree_idle; \
386 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
387 (i == IDLE_WORKLOAD && j == 0); \
388 j++, st = i < IDLE_WORKLOAD ? \
389 &cfqg->service_trees[i][j]: NULL) \
390
391
392 static inline bool iops_mode(struct cfq_data *cfqd)
393 {
394 /*
395 * If we are not idling on queues and it is a NCQ drive, parallel
396 * execution of requests is on and measuring time is not possible
397 * in most of the cases until and unless we drive shallower queue
398 * depths and that becomes a performance bottleneck. In such cases
399 * switch to start providing fairness in terms of number of IOs.
400 */
401 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
402 return true;
403 else
404 return false;
405 }
406
407 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
408 {
409 if (cfq_class_idle(cfqq))
410 return IDLE_WORKLOAD;
411 if (cfq_class_rt(cfqq))
412 return RT_WORKLOAD;
413 return BE_WORKLOAD;
414 }
415
416
417 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
418 {
419 if (!cfq_cfqq_sync(cfqq))
420 return ASYNC_WORKLOAD;
421 if (!cfq_cfqq_idle_window(cfqq))
422 return SYNC_NOIDLE_WORKLOAD;
423 return SYNC_WORKLOAD;
424 }
425
426 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
427 struct cfq_data *cfqd,
428 struct cfq_group *cfqg)
429 {
430 if (wl == IDLE_WORKLOAD)
431 return cfqg->service_tree_idle.count;
432
433 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
434 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
435 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
436 }
437
438 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
439 struct cfq_group *cfqg)
440 {
441 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
442 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
443 }
444
445 static void cfq_dispatch_insert(struct request_queue *, struct request *);
446 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
447 struct io_context *, gfp_t);
448 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
449 struct io_context *);
450
451 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
452 bool is_sync)
453 {
454 return cic->cfqq[is_sync];
455 }
456
457 static inline void cic_set_cfqq(struct cfq_io_context *cic,
458 struct cfq_queue *cfqq, bool is_sync)
459 {
460 cic->cfqq[is_sync] = cfqq;
461 }
462
463 #define CIC_DEAD_KEY 1ul
464 #define CIC_DEAD_INDEX_SHIFT 1
465
466 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
467 {
468 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
469 }
470
471 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
472 {
473 struct cfq_data *cfqd = cic->key;
474
475 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
476 return NULL;
477
478 return cfqd;
479 }
480
481 /*
482 * We regard a request as SYNC, if it's either a read or has the SYNC bit
483 * set (in which case it could also be direct WRITE).
484 */
485 static inline bool cfq_bio_sync(struct bio *bio)
486 {
487 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
488 }
489
490 /*
491 * scheduler run of queue, if there are requests pending and no one in the
492 * driver that will restart queueing
493 */
494 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
495 {
496 if (cfqd->busy_queues) {
497 cfq_log(cfqd, "schedule dispatch");
498 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
499 }
500 }
501
502 static int cfq_queue_empty(struct request_queue *q)
503 {
504 struct cfq_data *cfqd = q->elevator->elevator_data;
505
506 return !cfqd->rq_queued;
507 }
508
509 /*
510 * Scale schedule slice based on io priority. Use the sync time slice only
511 * if a queue is marked sync and has sync io queued. A sync queue with async
512 * io only, should not get full sync slice length.
513 */
514 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
515 unsigned short prio)
516 {
517 const int base_slice = cfqd->cfq_slice[sync];
518
519 WARN_ON(prio >= IOPRIO_BE_NR);
520
521 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
522 }
523
524 static inline int
525 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
526 {
527 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
528 }
529
530 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
531 {
532 u64 d = delta << CFQ_SERVICE_SHIFT;
533
534 d = d * BLKIO_WEIGHT_DEFAULT;
535 do_div(d, cfqg->weight);
536 return d;
537 }
538
539 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
540 {
541 s64 delta = (s64)(vdisktime - min_vdisktime);
542 if (delta > 0)
543 min_vdisktime = vdisktime;
544
545 return min_vdisktime;
546 }
547
548 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
549 {
550 s64 delta = (s64)(vdisktime - min_vdisktime);
551 if (delta < 0)
552 min_vdisktime = vdisktime;
553
554 return min_vdisktime;
555 }
556
557 static void update_min_vdisktime(struct cfq_rb_root *st)
558 {
559 u64 vdisktime = st->min_vdisktime;
560 struct cfq_group *cfqg;
561
562 if (st->left) {
563 cfqg = rb_entry_cfqg(st->left);
564 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
565 }
566
567 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
568 }
569
570 /*
571 * get averaged number of queues of RT/BE priority.
572 * average is updated, with a formula that gives more weight to higher numbers,
573 * to quickly follows sudden increases and decrease slowly
574 */
575
576 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
577 struct cfq_group *cfqg, bool rt)
578 {
579 unsigned min_q, max_q;
580 unsigned mult = cfq_hist_divisor - 1;
581 unsigned round = cfq_hist_divisor / 2;
582 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
583
584 min_q = min(cfqg->busy_queues_avg[rt], busy);
585 max_q = max(cfqg->busy_queues_avg[rt], busy);
586 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
587 cfq_hist_divisor;
588 return cfqg->busy_queues_avg[rt];
589 }
590
591 static inline unsigned
592 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
593 {
594 struct cfq_rb_root *st = &cfqd->grp_service_tree;
595
596 return cfq_target_latency * cfqg->weight / st->total_weight;
597 }
598
599 static inline unsigned
600 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
601 {
602 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
603 if (cfqd->cfq_latency) {
604 /*
605 * interested queues (we consider only the ones with the same
606 * priority class in the cfq group)
607 */
608 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
609 cfq_class_rt(cfqq));
610 unsigned sync_slice = cfqd->cfq_slice[1];
611 unsigned expect_latency = sync_slice * iq;
612 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
613
614 if (expect_latency > group_slice) {
615 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
616 /* scale low_slice according to IO priority
617 * and sync vs async */
618 unsigned low_slice =
619 min(slice, base_low_slice * slice / sync_slice);
620 /* the adapted slice value is scaled to fit all iqs
621 * into the target latency */
622 slice = max(slice * group_slice / expect_latency,
623 low_slice);
624 }
625 }
626 return slice;
627 }
628
629 static inline void
630 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
631 {
632 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
633
634 cfqq->slice_start = jiffies;
635 cfqq->slice_end = jiffies + slice;
636 cfqq->allocated_slice = slice;
637 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
638 }
639
640 /*
641 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
642 * isn't valid until the first request from the dispatch is activated
643 * and the slice time set.
644 */
645 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
646 {
647 if (cfq_cfqq_slice_new(cfqq))
648 return false;
649 if (time_before(jiffies, cfqq->slice_end))
650 return false;
651
652 return true;
653 }
654
655 /*
656 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
657 * We choose the request that is closest to the head right now. Distance
658 * behind the head is penalized and only allowed to a certain extent.
659 */
660 static struct request *
661 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
662 {
663 sector_t s1, s2, d1 = 0, d2 = 0;
664 unsigned long back_max;
665 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
666 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
667 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
668
669 if (rq1 == NULL || rq1 == rq2)
670 return rq2;
671 if (rq2 == NULL)
672 return rq1;
673
674 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
675 return rq1;
676 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
677 return rq2;
678 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
679 return rq1;
680 else if ((rq2->cmd_flags & REQ_META) &&
681 !(rq1->cmd_flags & REQ_META))
682 return rq2;
683
684 s1 = blk_rq_pos(rq1);
685 s2 = blk_rq_pos(rq2);
686
687 /*
688 * by definition, 1KiB is 2 sectors
689 */
690 back_max = cfqd->cfq_back_max * 2;
691
692 /*
693 * Strict one way elevator _except_ in the case where we allow
694 * short backward seeks which are biased as twice the cost of a
695 * similar forward seek.
696 */
697 if (s1 >= last)
698 d1 = s1 - last;
699 else if (s1 + back_max >= last)
700 d1 = (last - s1) * cfqd->cfq_back_penalty;
701 else
702 wrap |= CFQ_RQ1_WRAP;
703
704 if (s2 >= last)
705 d2 = s2 - last;
706 else if (s2 + back_max >= last)
707 d2 = (last - s2) * cfqd->cfq_back_penalty;
708 else
709 wrap |= CFQ_RQ2_WRAP;
710
711 /* Found required data */
712
713 /*
714 * By doing switch() on the bit mask "wrap" we avoid having to
715 * check two variables for all permutations: --> faster!
716 */
717 switch (wrap) {
718 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
719 if (d1 < d2)
720 return rq1;
721 else if (d2 < d1)
722 return rq2;
723 else {
724 if (s1 >= s2)
725 return rq1;
726 else
727 return rq2;
728 }
729
730 case CFQ_RQ2_WRAP:
731 return rq1;
732 case CFQ_RQ1_WRAP:
733 return rq2;
734 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
735 default:
736 /*
737 * Since both rqs are wrapped,
738 * start with the one that's further behind head
739 * (--> only *one* back seek required),
740 * since back seek takes more time than forward.
741 */
742 if (s1 <= s2)
743 return rq1;
744 else
745 return rq2;
746 }
747 }
748
749 /*
750 * The below is leftmost cache rbtree addon
751 */
752 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
753 {
754 /* Service tree is empty */
755 if (!root->count)
756 return NULL;
757
758 if (!root->left)
759 root->left = rb_first(&root->rb);
760
761 if (root->left)
762 return rb_entry(root->left, struct cfq_queue, rb_node);
763
764 return NULL;
765 }
766
767 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
768 {
769 if (!root->left)
770 root->left = rb_first(&root->rb);
771
772 if (root->left)
773 return rb_entry_cfqg(root->left);
774
775 return NULL;
776 }
777
778 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
779 {
780 rb_erase(n, root);
781 RB_CLEAR_NODE(n);
782 }
783
784 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
785 {
786 if (root->left == n)
787 root->left = NULL;
788 rb_erase_init(n, &root->rb);
789 --root->count;
790 }
791
792 /*
793 * would be nice to take fifo expire time into account as well
794 */
795 static struct request *
796 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
797 struct request *last)
798 {
799 struct rb_node *rbnext = rb_next(&last->rb_node);
800 struct rb_node *rbprev = rb_prev(&last->rb_node);
801 struct request *next = NULL, *prev = NULL;
802
803 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
804
805 if (rbprev)
806 prev = rb_entry_rq(rbprev);
807
808 if (rbnext)
809 next = rb_entry_rq(rbnext);
810 else {
811 rbnext = rb_first(&cfqq->sort_list);
812 if (rbnext && rbnext != &last->rb_node)
813 next = rb_entry_rq(rbnext);
814 }
815
816 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
817 }
818
819 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
820 struct cfq_queue *cfqq)
821 {
822 /*
823 * just an approximation, should be ok.
824 */
825 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
826 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
827 }
828
829 static inline s64
830 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
831 {
832 return cfqg->vdisktime - st->min_vdisktime;
833 }
834
835 static void
836 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
837 {
838 struct rb_node **node = &st->rb.rb_node;
839 struct rb_node *parent = NULL;
840 struct cfq_group *__cfqg;
841 s64 key = cfqg_key(st, cfqg);
842 int left = 1;
843
844 while (*node != NULL) {
845 parent = *node;
846 __cfqg = rb_entry_cfqg(parent);
847
848 if (key < cfqg_key(st, __cfqg))
849 node = &parent->rb_left;
850 else {
851 node = &parent->rb_right;
852 left = 0;
853 }
854 }
855
856 if (left)
857 st->left = &cfqg->rb_node;
858
859 rb_link_node(&cfqg->rb_node, parent, node);
860 rb_insert_color(&cfqg->rb_node, &st->rb);
861 }
862
863 static void
864 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
865 {
866 struct cfq_rb_root *st = &cfqd->grp_service_tree;
867 struct cfq_group *__cfqg;
868 struct rb_node *n;
869
870 cfqg->nr_cfqq++;
871 if (!RB_EMPTY_NODE(&cfqg->rb_node))
872 return;
873
874 /*
875 * Currently put the group at the end. Later implement something
876 * so that groups get lesser vtime based on their weights, so that
877 * if group does not loose all if it was not continously backlogged.
878 */
879 n = rb_last(&st->rb);
880 if (n) {
881 __cfqg = rb_entry_cfqg(n);
882 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
883 } else
884 cfqg->vdisktime = st->min_vdisktime;
885
886 __cfq_group_service_tree_add(st, cfqg);
887 st->total_weight += cfqg->weight;
888 }
889
890 static void
891 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
892 {
893 struct cfq_rb_root *st = &cfqd->grp_service_tree;
894
895 BUG_ON(cfqg->nr_cfqq < 1);
896 cfqg->nr_cfqq--;
897
898 /* If there are other cfq queues under this group, don't delete it */
899 if (cfqg->nr_cfqq)
900 return;
901
902 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
903 st->total_weight -= cfqg->weight;
904 if (!RB_EMPTY_NODE(&cfqg->rb_node))
905 cfq_rb_erase(&cfqg->rb_node, st);
906 cfqg->saved_workload_slice = 0;
907 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
908 }
909
910 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
911 {
912 unsigned int slice_used;
913
914 /*
915 * Queue got expired before even a single request completed or
916 * got expired immediately after first request completion.
917 */
918 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
919 /*
920 * Also charge the seek time incurred to the group, otherwise
921 * if there are mutiple queues in the group, each can dispatch
922 * a single request on seeky media and cause lots of seek time
923 * and group will never know it.
924 */
925 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
926 1);
927 } else {
928 slice_used = jiffies - cfqq->slice_start;
929 if (slice_used > cfqq->allocated_slice)
930 slice_used = cfqq->allocated_slice;
931 }
932
933 return slice_used;
934 }
935
936 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
937 struct cfq_queue *cfqq)
938 {
939 struct cfq_rb_root *st = &cfqd->grp_service_tree;
940 unsigned int used_sl, charge;
941 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
942 - cfqg->service_tree_idle.count;
943
944 BUG_ON(nr_sync < 0);
945 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
946
947 if (iops_mode(cfqd))
948 charge = cfqq->slice_dispatch;
949 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
950 charge = cfqq->allocated_slice;
951
952 /* Can't update vdisktime while group is on service tree */
953 cfq_rb_erase(&cfqg->rb_node, st);
954 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
955 __cfq_group_service_tree_add(st, cfqg);
956
957 /* This group is being expired. Save the context */
958 if (time_after(cfqd->workload_expires, jiffies)) {
959 cfqg->saved_workload_slice = cfqd->workload_expires
960 - jiffies;
961 cfqg->saved_workload = cfqd->serving_type;
962 cfqg->saved_serving_prio = cfqd->serving_prio;
963 } else
964 cfqg->saved_workload_slice = 0;
965
966 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
967 st->min_vdisktime);
968 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
969 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
970 iops_mode(cfqd), cfqq->nr_sectors);
971 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
972 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
973 }
974
975 #ifdef CONFIG_CFQ_GROUP_IOSCHED
976 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
977 {
978 if (blkg)
979 return container_of(blkg, struct cfq_group, blkg);
980 return NULL;
981 }
982
983 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
984 unsigned int weight)
985 {
986 cfqg_of_blkg(blkg)->weight = weight;
987 }
988
989 static struct cfq_group *
990 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
991 {
992 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
993 struct cfq_group *cfqg = NULL;
994 void *key = cfqd;
995 int i, j;
996 struct cfq_rb_root *st;
997 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
998 unsigned int major, minor;
999
1000 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1001 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1002 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1003 cfqg->blkg.dev = MKDEV(major, minor);
1004 goto done;
1005 }
1006 if (cfqg || !create)
1007 goto done;
1008
1009 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1010 if (!cfqg)
1011 goto done;
1012
1013 for_each_cfqg_st(cfqg, i, j, st)
1014 *st = CFQ_RB_ROOT;
1015 RB_CLEAR_NODE(&cfqg->rb_node);
1016
1017 /*
1018 * Take the initial reference that will be released on destroy
1019 * This can be thought of a joint reference by cgroup and
1020 * elevator which will be dropped by either elevator exit
1021 * or cgroup deletion path depending on who is exiting first.
1022 */
1023 cfqg->ref = 1;
1024
1025 /*
1026 * Add group onto cgroup list. It might happen that bdi->dev is
1027 * not initialized yet. Initialize this new group without major
1028 * and minor info and this info will be filled in once a new thread
1029 * comes for IO. See code above.
1030 */
1031 if (bdi->dev) {
1032 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1034 MKDEV(major, minor));
1035 } else
1036 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1037 0);
1038
1039 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1040
1041 /* Add group on cfqd list */
1042 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1043
1044 done:
1045 return cfqg;
1046 }
1047
1048 /*
1049 * Search for the cfq group current task belongs to. If create = 1, then also
1050 * create the cfq group if it does not exist. request_queue lock must be held.
1051 */
1052 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1053 {
1054 struct cgroup *cgroup;
1055 struct cfq_group *cfqg = NULL;
1056
1057 rcu_read_lock();
1058 cgroup = task_cgroup(current, blkio_subsys_id);
1059 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1060 if (!cfqg && create)
1061 cfqg = &cfqd->root_group;
1062 rcu_read_unlock();
1063 return cfqg;
1064 }
1065
1066 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1067 {
1068 cfqg->ref++;
1069 return cfqg;
1070 }
1071
1072 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1073 {
1074 /* Currently, all async queues are mapped to root group */
1075 if (!cfq_cfqq_sync(cfqq))
1076 cfqg = &cfqq->cfqd->root_group;
1077
1078 cfqq->cfqg = cfqg;
1079 /* cfqq reference on cfqg */
1080 cfqq->cfqg->ref++;
1081 }
1082
1083 static void cfq_put_cfqg(struct cfq_group *cfqg)
1084 {
1085 struct cfq_rb_root *st;
1086 int i, j;
1087
1088 BUG_ON(cfqg->ref <= 0);
1089 cfqg->ref--;
1090 if (cfqg->ref)
1091 return;
1092 for_each_cfqg_st(cfqg, i, j, st)
1093 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1094 kfree(cfqg);
1095 }
1096
1097 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1098 {
1099 /* Something wrong if we are trying to remove same group twice */
1100 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1101
1102 hlist_del_init(&cfqg->cfqd_node);
1103
1104 /*
1105 * Put the reference taken at the time of creation so that when all
1106 * queues are gone, group can be destroyed.
1107 */
1108 cfq_put_cfqg(cfqg);
1109 }
1110
1111 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1112 {
1113 struct hlist_node *pos, *n;
1114 struct cfq_group *cfqg;
1115
1116 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1117 /*
1118 * If cgroup removal path got to blk_group first and removed
1119 * it from cgroup list, then it will take care of destroying
1120 * cfqg also.
1121 */
1122 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1123 cfq_destroy_cfqg(cfqd, cfqg);
1124 }
1125 }
1126
1127 /*
1128 * Blk cgroup controller notification saying that blkio_group object is being
1129 * delinked as associated cgroup object is going away. That also means that
1130 * no new IO will come in this group. So get rid of this group as soon as
1131 * any pending IO in the group is finished.
1132 *
1133 * This function is called under rcu_read_lock(). key is the rcu protected
1134 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1135 * read lock.
1136 *
1137 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1138 * it should not be NULL as even if elevator was exiting, cgroup deltion
1139 * path got to it first.
1140 */
1141 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1142 {
1143 unsigned long flags;
1144 struct cfq_data *cfqd = key;
1145
1146 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1147 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1148 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1149 }
1150
1151 #else /* GROUP_IOSCHED */
1152 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1153 {
1154 return &cfqd->root_group;
1155 }
1156
1157 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1158 {
1159 return cfqg;
1160 }
1161
1162 static inline void
1163 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1164 cfqq->cfqg = cfqg;
1165 }
1166
1167 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1168 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1169
1170 #endif /* GROUP_IOSCHED */
1171
1172 /*
1173 * The cfqd->service_trees holds all pending cfq_queue's that have
1174 * requests waiting to be processed. It is sorted in the order that
1175 * we will service the queues.
1176 */
1177 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1178 bool add_front)
1179 {
1180 struct rb_node **p, *parent;
1181 struct cfq_queue *__cfqq;
1182 unsigned long rb_key;
1183 struct cfq_rb_root *service_tree;
1184 int left;
1185 int new_cfqq = 1;
1186 int group_changed = 0;
1187
1188 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1189 cfqq_type(cfqq));
1190 if (cfq_class_idle(cfqq)) {
1191 rb_key = CFQ_IDLE_DELAY;
1192 parent = rb_last(&service_tree->rb);
1193 if (parent && parent != &cfqq->rb_node) {
1194 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1195 rb_key += __cfqq->rb_key;
1196 } else
1197 rb_key += jiffies;
1198 } else if (!add_front) {
1199 /*
1200 * Get our rb key offset. Subtract any residual slice
1201 * value carried from last service. A negative resid
1202 * count indicates slice overrun, and this should position
1203 * the next service time further away in the tree.
1204 */
1205 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1206 rb_key -= cfqq->slice_resid;
1207 cfqq->slice_resid = 0;
1208 } else {
1209 rb_key = -HZ;
1210 __cfqq = cfq_rb_first(service_tree);
1211 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1212 }
1213
1214 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1215 new_cfqq = 0;
1216 /*
1217 * same position, nothing more to do
1218 */
1219 if (rb_key == cfqq->rb_key &&
1220 cfqq->service_tree == service_tree)
1221 return;
1222
1223 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1224 cfqq->service_tree = NULL;
1225 }
1226
1227 left = 1;
1228 parent = NULL;
1229 cfqq->service_tree = service_tree;
1230 p = &service_tree->rb.rb_node;
1231 while (*p) {
1232 struct rb_node **n;
1233
1234 parent = *p;
1235 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1236
1237 /*
1238 * sort by key, that represents service time.
1239 */
1240 if (time_before(rb_key, __cfqq->rb_key))
1241 n = &(*p)->rb_left;
1242 else {
1243 n = &(*p)->rb_right;
1244 left = 0;
1245 }
1246
1247 p = n;
1248 }
1249
1250 if (left)
1251 service_tree->left = &cfqq->rb_node;
1252
1253 cfqq->rb_key = rb_key;
1254 rb_link_node(&cfqq->rb_node, parent, p);
1255 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1256 service_tree->count++;
1257 if ((add_front || !new_cfqq) && !group_changed)
1258 return;
1259 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1260 }
1261
1262 static struct cfq_queue *
1263 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1264 sector_t sector, struct rb_node **ret_parent,
1265 struct rb_node ***rb_link)
1266 {
1267 struct rb_node **p, *parent;
1268 struct cfq_queue *cfqq = NULL;
1269
1270 parent = NULL;
1271 p = &root->rb_node;
1272 while (*p) {
1273 struct rb_node **n;
1274
1275 parent = *p;
1276 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1277
1278 /*
1279 * Sort strictly based on sector. Smallest to the left,
1280 * largest to the right.
1281 */
1282 if (sector > blk_rq_pos(cfqq->next_rq))
1283 n = &(*p)->rb_right;
1284 else if (sector < blk_rq_pos(cfqq->next_rq))
1285 n = &(*p)->rb_left;
1286 else
1287 break;
1288 p = n;
1289 cfqq = NULL;
1290 }
1291
1292 *ret_parent = parent;
1293 if (rb_link)
1294 *rb_link = p;
1295 return cfqq;
1296 }
1297
1298 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1299 {
1300 struct rb_node **p, *parent;
1301 struct cfq_queue *__cfqq;
1302
1303 if (cfqq->p_root) {
1304 rb_erase(&cfqq->p_node, cfqq->p_root);
1305 cfqq->p_root = NULL;
1306 }
1307
1308 if (cfq_class_idle(cfqq))
1309 return;
1310 if (!cfqq->next_rq)
1311 return;
1312
1313 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1314 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1315 blk_rq_pos(cfqq->next_rq), &parent, &p);
1316 if (!__cfqq) {
1317 rb_link_node(&cfqq->p_node, parent, p);
1318 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1319 } else
1320 cfqq->p_root = NULL;
1321 }
1322
1323 /*
1324 * Update cfqq's position in the service tree.
1325 */
1326 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1327 {
1328 /*
1329 * Resorting requires the cfqq to be on the RR list already.
1330 */
1331 if (cfq_cfqq_on_rr(cfqq)) {
1332 cfq_service_tree_add(cfqd, cfqq, 0);
1333 cfq_prio_tree_add(cfqd, cfqq);
1334 }
1335 }
1336
1337 /*
1338 * add to busy list of queues for service, trying to be fair in ordering
1339 * the pending list according to last request service
1340 */
1341 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1342 {
1343 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1344 BUG_ON(cfq_cfqq_on_rr(cfqq));
1345 cfq_mark_cfqq_on_rr(cfqq);
1346 cfqd->busy_queues++;
1347
1348 cfq_resort_rr_list(cfqd, cfqq);
1349 }
1350
1351 /*
1352 * Called when the cfqq no longer has requests pending, remove it from
1353 * the service tree.
1354 */
1355 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1356 {
1357 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1358 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1359 cfq_clear_cfqq_on_rr(cfqq);
1360
1361 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1362 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1363 cfqq->service_tree = NULL;
1364 }
1365 if (cfqq->p_root) {
1366 rb_erase(&cfqq->p_node, cfqq->p_root);
1367 cfqq->p_root = NULL;
1368 }
1369
1370 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1371 BUG_ON(!cfqd->busy_queues);
1372 cfqd->busy_queues--;
1373 }
1374
1375 /*
1376 * rb tree support functions
1377 */
1378 static void cfq_del_rq_rb(struct request *rq)
1379 {
1380 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1381 const int sync = rq_is_sync(rq);
1382
1383 BUG_ON(!cfqq->queued[sync]);
1384 cfqq->queued[sync]--;
1385
1386 elv_rb_del(&cfqq->sort_list, rq);
1387
1388 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1389 /*
1390 * Queue will be deleted from service tree when we actually
1391 * expire it later. Right now just remove it from prio tree
1392 * as it is empty.
1393 */
1394 if (cfqq->p_root) {
1395 rb_erase(&cfqq->p_node, cfqq->p_root);
1396 cfqq->p_root = NULL;
1397 }
1398 }
1399 }
1400
1401 static void cfq_add_rq_rb(struct request *rq)
1402 {
1403 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1404 struct cfq_data *cfqd = cfqq->cfqd;
1405 struct request *__alias, *prev;
1406
1407 cfqq->queued[rq_is_sync(rq)]++;
1408
1409 /*
1410 * looks a little odd, but the first insert might return an alias.
1411 * if that happens, put the alias on the dispatch list
1412 */
1413 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1414 cfq_dispatch_insert(cfqd->queue, __alias);
1415
1416 if (!cfq_cfqq_on_rr(cfqq))
1417 cfq_add_cfqq_rr(cfqd, cfqq);
1418
1419 /*
1420 * check if this request is a better next-serve candidate
1421 */
1422 prev = cfqq->next_rq;
1423 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1424
1425 /*
1426 * adjust priority tree position, if ->next_rq changes
1427 */
1428 if (prev != cfqq->next_rq)
1429 cfq_prio_tree_add(cfqd, cfqq);
1430
1431 BUG_ON(!cfqq->next_rq);
1432 }
1433
1434 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1435 {
1436 elv_rb_del(&cfqq->sort_list, rq);
1437 cfqq->queued[rq_is_sync(rq)]--;
1438 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1439 rq_data_dir(rq), rq_is_sync(rq));
1440 cfq_add_rq_rb(rq);
1441 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1442 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1443 rq_is_sync(rq));
1444 }
1445
1446 static struct request *
1447 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1448 {
1449 struct task_struct *tsk = current;
1450 struct cfq_io_context *cic;
1451 struct cfq_queue *cfqq;
1452
1453 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1454 if (!cic)
1455 return NULL;
1456
1457 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1458 if (cfqq) {
1459 sector_t sector = bio->bi_sector + bio_sectors(bio);
1460
1461 return elv_rb_find(&cfqq->sort_list, sector);
1462 }
1463
1464 return NULL;
1465 }
1466
1467 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1468 {
1469 struct cfq_data *cfqd = q->elevator->elevator_data;
1470
1471 cfqd->rq_in_driver++;
1472 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1473 cfqd->rq_in_driver);
1474
1475 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1476 }
1477
1478 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1479 {
1480 struct cfq_data *cfqd = q->elevator->elevator_data;
1481
1482 WARN_ON(!cfqd->rq_in_driver);
1483 cfqd->rq_in_driver--;
1484 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1485 cfqd->rq_in_driver);
1486 }
1487
1488 static void cfq_remove_request(struct request *rq)
1489 {
1490 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1491
1492 if (cfqq->next_rq == rq)
1493 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1494
1495 list_del_init(&rq->queuelist);
1496 cfq_del_rq_rb(rq);
1497
1498 cfqq->cfqd->rq_queued--;
1499 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1500 rq_data_dir(rq), rq_is_sync(rq));
1501 if (rq->cmd_flags & REQ_META) {
1502 WARN_ON(!cfqq->meta_pending);
1503 cfqq->meta_pending--;
1504 }
1505 }
1506
1507 static int cfq_merge(struct request_queue *q, struct request **req,
1508 struct bio *bio)
1509 {
1510 struct cfq_data *cfqd = q->elevator->elevator_data;
1511 struct request *__rq;
1512
1513 __rq = cfq_find_rq_fmerge(cfqd, bio);
1514 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1515 *req = __rq;
1516 return ELEVATOR_FRONT_MERGE;
1517 }
1518
1519 return ELEVATOR_NO_MERGE;
1520 }
1521
1522 static void cfq_merged_request(struct request_queue *q, struct request *req,
1523 int type)
1524 {
1525 if (type == ELEVATOR_FRONT_MERGE) {
1526 struct cfq_queue *cfqq = RQ_CFQQ(req);
1527
1528 cfq_reposition_rq_rb(cfqq, req);
1529 }
1530 }
1531
1532 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1533 struct bio *bio)
1534 {
1535 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1536 bio_data_dir(bio), cfq_bio_sync(bio));
1537 }
1538
1539 static void
1540 cfq_merged_requests(struct request_queue *q, struct request *rq,
1541 struct request *next)
1542 {
1543 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1544 /*
1545 * reposition in fifo if next is older than rq
1546 */
1547 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1548 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1549 list_move(&rq->queuelist, &next->queuelist);
1550 rq_set_fifo_time(rq, rq_fifo_time(next));
1551 }
1552
1553 if (cfqq->next_rq == next)
1554 cfqq->next_rq = rq;
1555 cfq_remove_request(next);
1556 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1557 rq_data_dir(next), rq_is_sync(next));
1558 }
1559
1560 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1561 struct bio *bio)
1562 {
1563 struct cfq_data *cfqd = q->elevator->elevator_data;
1564 struct cfq_io_context *cic;
1565 struct cfq_queue *cfqq;
1566
1567 /*
1568 * Disallow merge of a sync bio into an async request.
1569 */
1570 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1571 return false;
1572
1573 /*
1574 * Lookup the cfqq that this bio will be queued with. Allow
1575 * merge only if rq is queued there.
1576 */
1577 cic = cfq_cic_lookup(cfqd, current->io_context);
1578 if (!cic)
1579 return false;
1580
1581 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1582 return cfqq == RQ_CFQQ(rq);
1583 }
1584
1585 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1586 {
1587 del_timer(&cfqd->idle_slice_timer);
1588 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1589 }
1590
1591 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1592 struct cfq_queue *cfqq)
1593 {
1594 if (cfqq) {
1595 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1596 cfqd->serving_prio, cfqd->serving_type);
1597 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1598 cfqq->slice_start = 0;
1599 cfqq->dispatch_start = jiffies;
1600 cfqq->allocated_slice = 0;
1601 cfqq->slice_end = 0;
1602 cfqq->slice_dispatch = 0;
1603 cfqq->nr_sectors = 0;
1604
1605 cfq_clear_cfqq_wait_request(cfqq);
1606 cfq_clear_cfqq_must_dispatch(cfqq);
1607 cfq_clear_cfqq_must_alloc_slice(cfqq);
1608 cfq_clear_cfqq_fifo_expire(cfqq);
1609 cfq_mark_cfqq_slice_new(cfqq);
1610
1611 cfq_del_timer(cfqd, cfqq);
1612 }
1613
1614 cfqd->active_queue = cfqq;
1615 }
1616
1617 /*
1618 * current cfqq expired its slice (or was too idle), select new one
1619 */
1620 static void
1621 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1622 bool timed_out)
1623 {
1624 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1625
1626 if (cfq_cfqq_wait_request(cfqq))
1627 cfq_del_timer(cfqd, cfqq);
1628
1629 cfq_clear_cfqq_wait_request(cfqq);
1630 cfq_clear_cfqq_wait_busy(cfqq);
1631
1632 /*
1633 * If this cfqq is shared between multiple processes, check to
1634 * make sure that those processes are still issuing I/Os within
1635 * the mean seek distance. If not, it may be time to break the
1636 * queues apart again.
1637 */
1638 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1639 cfq_mark_cfqq_split_coop(cfqq);
1640
1641 /*
1642 * store what was left of this slice, if the queue idled/timed out
1643 */
1644 if (timed_out) {
1645 if (cfq_cfqq_slice_new(cfqq))
1646 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1647 else
1648 cfqq->slice_resid = cfqq->slice_end - jiffies;
1649 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1650 }
1651
1652 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1653
1654 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1655 cfq_del_cfqq_rr(cfqd, cfqq);
1656
1657 cfq_resort_rr_list(cfqd, cfqq);
1658
1659 if (cfqq == cfqd->active_queue)
1660 cfqd->active_queue = NULL;
1661
1662 if (cfqd->active_cic) {
1663 put_io_context(cfqd->active_cic->ioc);
1664 cfqd->active_cic = NULL;
1665 }
1666 }
1667
1668 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1669 {
1670 struct cfq_queue *cfqq = cfqd->active_queue;
1671
1672 if (cfqq)
1673 __cfq_slice_expired(cfqd, cfqq, timed_out);
1674 }
1675
1676 /*
1677 * Get next queue for service. Unless we have a queue preemption,
1678 * we'll simply select the first cfqq in the service tree.
1679 */
1680 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1681 {
1682 struct cfq_rb_root *service_tree =
1683 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1684 cfqd->serving_type);
1685
1686 if (!cfqd->rq_queued)
1687 return NULL;
1688
1689 /* There is nothing to dispatch */
1690 if (!service_tree)
1691 return NULL;
1692 if (RB_EMPTY_ROOT(&service_tree->rb))
1693 return NULL;
1694 return cfq_rb_first(service_tree);
1695 }
1696
1697 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1698 {
1699 struct cfq_group *cfqg;
1700 struct cfq_queue *cfqq;
1701 int i, j;
1702 struct cfq_rb_root *st;
1703
1704 if (!cfqd->rq_queued)
1705 return NULL;
1706
1707 cfqg = cfq_get_next_cfqg(cfqd);
1708 if (!cfqg)
1709 return NULL;
1710
1711 for_each_cfqg_st(cfqg, i, j, st)
1712 if ((cfqq = cfq_rb_first(st)) != NULL)
1713 return cfqq;
1714 return NULL;
1715 }
1716
1717 /*
1718 * Get and set a new active queue for service.
1719 */
1720 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1721 struct cfq_queue *cfqq)
1722 {
1723 if (!cfqq)
1724 cfqq = cfq_get_next_queue(cfqd);
1725
1726 __cfq_set_active_queue(cfqd, cfqq);
1727 return cfqq;
1728 }
1729
1730 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1731 struct request *rq)
1732 {
1733 if (blk_rq_pos(rq) >= cfqd->last_position)
1734 return blk_rq_pos(rq) - cfqd->last_position;
1735 else
1736 return cfqd->last_position - blk_rq_pos(rq);
1737 }
1738
1739 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1740 struct request *rq)
1741 {
1742 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1743 }
1744
1745 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1746 struct cfq_queue *cur_cfqq)
1747 {
1748 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1749 struct rb_node *parent, *node;
1750 struct cfq_queue *__cfqq;
1751 sector_t sector = cfqd->last_position;
1752
1753 if (RB_EMPTY_ROOT(root))
1754 return NULL;
1755
1756 /*
1757 * First, if we find a request starting at the end of the last
1758 * request, choose it.
1759 */
1760 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1761 if (__cfqq)
1762 return __cfqq;
1763
1764 /*
1765 * If the exact sector wasn't found, the parent of the NULL leaf
1766 * will contain the closest sector.
1767 */
1768 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1769 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1770 return __cfqq;
1771
1772 if (blk_rq_pos(__cfqq->next_rq) < sector)
1773 node = rb_next(&__cfqq->p_node);
1774 else
1775 node = rb_prev(&__cfqq->p_node);
1776 if (!node)
1777 return NULL;
1778
1779 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1780 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1781 return __cfqq;
1782
1783 return NULL;
1784 }
1785
1786 /*
1787 * cfqd - obvious
1788 * cur_cfqq - passed in so that we don't decide that the current queue is
1789 * closely cooperating with itself.
1790 *
1791 * So, basically we're assuming that that cur_cfqq has dispatched at least
1792 * one request, and that cfqd->last_position reflects a position on the disk
1793 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1794 * assumption.
1795 */
1796 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1797 struct cfq_queue *cur_cfqq)
1798 {
1799 struct cfq_queue *cfqq;
1800
1801 if (cfq_class_idle(cur_cfqq))
1802 return NULL;
1803 if (!cfq_cfqq_sync(cur_cfqq))
1804 return NULL;
1805 if (CFQQ_SEEKY(cur_cfqq))
1806 return NULL;
1807
1808 /*
1809 * Don't search priority tree if it's the only queue in the group.
1810 */
1811 if (cur_cfqq->cfqg->nr_cfqq == 1)
1812 return NULL;
1813
1814 /*
1815 * We should notice if some of the queues are cooperating, eg
1816 * working closely on the same area of the disk. In that case,
1817 * we can group them together and don't waste time idling.
1818 */
1819 cfqq = cfqq_close(cfqd, cur_cfqq);
1820 if (!cfqq)
1821 return NULL;
1822
1823 /* If new queue belongs to different cfq_group, don't choose it */
1824 if (cur_cfqq->cfqg != cfqq->cfqg)
1825 return NULL;
1826
1827 /*
1828 * It only makes sense to merge sync queues.
1829 */
1830 if (!cfq_cfqq_sync(cfqq))
1831 return NULL;
1832 if (CFQQ_SEEKY(cfqq))
1833 return NULL;
1834
1835 /*
1836 * Do not merge queues of different priority classes
1837 */
1838 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1839 return NULL;
1840
1841 return cfqq;
1842 }
1843
1844 /*
1845 * Determine whether we should enforce idle window for this queue.
1846 */
1847
1848 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1849 {
1850 enum wl_prio_t prio = cfqq_prio(cfqq);
1851 struct cfq_rb_root *service_tree = cfqq->service_tree;
1852
1853 BUG_ON(!service_tree);
1854 BUG_ON(!service_tree->count);
1855
1856 if (!cfqd->cfq_slice_idle)
1857 return false;
1858
1859 /* We never do for idle class queues. */
1860 if (prio == IDLE_WORKLOAD)
1861 return false;
1862
1863 /* We do for queues that were marked with idle window flag. */
1864 if (cfq_cfqq_idle_window(cfqq) &&
1865 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1866 return true;
1867
1868 /*
1869 * Otherwise, we do only if they are the last ones
1870 * in their service tree.
1871 */
1872 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1873 return true;
1874 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1875 service_tree->count);
1876 return false;
1877 }
1878
1879 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1880 {
1881 struct cfq_queue *cfqq = cfqd->active_queue;
1882 struct cfq_io_context *cic;
1883 unsigned long sl, group_idle = 0;
1884
1885 /*
1886 * SSD device without seek penalty, disable idling. But only do so
1887 * for devices that support queuing, otherwise we still have a problem
1888 * with sync vs async workloads.
1889 */
1890 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1891 return;
1892
1893 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1894 WARN_ON(cfq_cfqq_slice_new(cfqq));
1895
1896 /*
1897 * idle is disabled, either manually or by past process history
1898 */
1899 if (!cfq_should_idle(cfqd, cfqq)) {
1900 /* no queue idling. Check for group idling */
1901 if (cfqd->cfq_group_idle)
1902 group_idle = cfqd->cfq_group_idle;
1903 else
1904 return;
1905 }
1906
1907 /*
1908 * still active requests from this queue, don't idle
1909 */
1910 if (cfqq->dispatched)
1911 return;
1912
1913 /*
1914 * task has exited, don't wait
1915 */
1916 cic = cfqd->active_cic;
1917 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1918 return;
1919
1920 /*
1921 * If our average think time is larger than the remaining time
1922 * slice, then don't idle. This avoids overrunning the allotted
1923 * time slice.
1924 */
1925 if (sample_valid(cic->ttime_samples) &&
1926 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1927 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1928 cic->ttime_mean);
1929 return;
1930 }
1931
1932 /* There are other queues in the group, don't do group idle */
1933 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1934 return;
1935
1936 cfq_mark_cfqq_wait_request(cfqq);
1937
1938 if (group_idle)
1939 sl = cfqd->cfq_group_idle;
1940 else
1941 sl = cfqd->cfq_slice_idle;
1942
1943 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1944 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1945 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1946 group_idle ? 1 : 0);
1947 }
1948
1949 /*
1950 * Move request from internal lists to the request queue dispatch list.
1951 */
1952 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1953 {
1954 struct cfq_data *cfqd = q->elevator->elevator_data;
1955 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1956
1957 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1958
1959 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1960 cfq_remove_request(rq);
1961 cfqq->dispatched++;
1962 (RQ_CFQG(rq))->dispatched++;
1963 elv_dispatch_sort(q, rq);
1964
1965 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1966 cfqq->nr_sectors += blk_rq_sectors(rq);
1967 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1968 rq_data_dir(rq), rq_is_sync(rq));
1969 }
1970
1971 /*
1972 * return expired entry, or NULL to just start from scratch in rbtree
1973 */
1974 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1975 {
1976 struct request *rq = NULL;
1977
1978 if (cfq_cfqq_fifo_expire(cfqq))
1979 return NULL;
1980
1981 cfq_mark_cfqq_fifo_expire(cfqq);
1982
1983 if (list_empty(&cfqq->fifo))
1984 return NULL;
1985
1986 rq = rq_entry_fifo(cfqq->fifo.next);
1987 if (time_before(jiffies, rq_fifo_time(rq)))
1988 rq = NULL;
1989
1990 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1991 return rq;
1992 }
1993
1994 static inline int
1995 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1996 {
1997 const int base_rq = cfqd->cfq_slice_async_rq;
1998
1999 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2000
2001 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2002 }
2003
2004 /*
2005 * Must be called with the queue_lock held.
2006 */
2007 static int cfqq_process_refs(struct cfq_queue *cfqq)
2008 {
2009 int process_refs, io_refs;
2010
2011 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2012 process_refs = cfqq->ref - io_refs;
2013 BUG_ON(process_refs < 0);
2014 return process_refs;
2015 }
2016
2017 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2018 {
2019 int process_refs, new_process_refs;
2020 struct cfq_queue *__cfqq;
2021
2022 /*
2023 * If there are no process references on the new_cfqq, then it is
2024 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2025 * chain may have dropped their last reference (not just their
2026 * last process reference).
2027 */
2028 if (!cfqq_process_refs(new_cfqq))
2029 return;
2030
2031 /* Avoid a circular list and skip interim queue merges */
2032 while ((__cfqq = new_cfqq->new_cfqq)) {
2033 if (__cfqq == cfqq)
2034 return;
2035 new_cfqq = __cfqq;
2036 }
2037
2038 process_refs = cfqq_process_refs(cfqq);
2039 new_process_refs = cfqq_process_refs(new_cfqq);
2040 /*
2041 * If the process for the cfqq has gone away, there is no
2042 * sense in merging the queues.
2043 */
2044 if (process_refs == 0 || new_process_refs == 0)
2045 return;
2046
2047 /*
2048 * Merge in the direction of the lesser amount of work.
2049 */
2050 if (new_process_refs >= process_refs) {
2051 cfqq->new_cfqq = new_cfqq;
2052 new_cfqq->ref += process_refs;
2053 } else {
2054 new_cfqq->new_cfqq = cfqq;
2055 cfqq->ref += new_process_refs;
2056 }
2057 }
2058
2059 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2060 struct cfq_group *cfqg, enum wl_prio_t prio)
2061 {
2062 struct cfq_queue *queue;
2063 int i;
2064 bool key_valid = false;
2065 unsigned long lowest_key = 0;
2066 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2067
2068 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2069 /* select the one with lowest rb_key */
2070 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2071 if (queue &&
2072 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2073 lowest_key = queue->rb_key;
2074 cur_best = i;
2075 key_valid = true;
2076 }
2077 }
2078
2079 return cur_best;
2080 }
2081
2082 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2083 {
2084 unsigned slice;
2085 unsigned count;
2086 struct cfq_rb_root *st;
2087 unsigned group_slice;
2088 enum wl_prio_t original_prio = cfqd->serving_prio;
2089
2090 /* Choose next priority. RT > BE > IDLE */
2091 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2092 cfqd->serving_prio = RT_WORKLOAD;
2093 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2094 cfqd->serving_prio = BE_WORKLOAD;
2095 else {
2096 cfqd->serving_prio = IDLE_WORKLOAD;
2097 cfqd->workload_expires = jiffies + 1;
2098 return;
2099 }
2100
2101 if (original_prio != cfqd->serving_prio)
2102 goto new_workload;
2103
2104 /*
2105 * For RT and BE, we have to choose also the type
2106 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2107 * expiration time
2108 */
2109 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2110 count = st->count;
2111
2112 /*
2113 * check workload expiration, and that we still have other queues ready
2114 */
2115 if (count && !time_after(jiffies, cfqd->workload_expires))
2116 return;
2117
2118 new_workload:
2119 /* otherwise select new workload type */
2120 cfqd->serving_type =
2121 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2122 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2123 count = st->count;
2124
2125 /*
2126 * the workload slice is computed as a fraction of target latency
2127 * proportional to the number of queues in that workload, over
2128 * all the queues in the same priority class
2129 */
2130 group_slice = cfq_group_slice(cfqd, cfqg);
2131
2132 slice = group_slice * count /
2133 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2134 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2135
2136 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2137 unsigned int tmp;
2138
2139 /*
2140 * Async queues are currently system wide. Just taking
2141 * proportion of queues with-in same group will lead to higher
2142 * async ratio system wide as generally root group is going
2143 * to have higher weight. A more accurate thing would be to
2144 * calculate system wide asnc/sync ratio.
2145 */
2146 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2147 tmp = tmp/cfqd->busy_queues;
2148 slice = min_t(unsigned, slice, tmp);
2149
2150 /* async workload slice is scaled down according to
2151 * the sync/async slice ratio. */
2152 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2153 } else
2154 /* sync workload slice is at least 2 * cfq_slice_idle */
2155 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2156
2157 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2158 cfq_log(cfqd, "workload slice:%d", slice);
2159 cfqd->workload_expires = jiffies + slice;
2160 }
2161
2162 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2163 {
2164 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2165 struct cfq_group *cfqg;
2166
2167 if (RB_EMPTY_ROOT(&st->rb))
2168 return NULL;
2169 cfqg = cfq_rb_first_group(st);
2170 update_min_vdisktime(st);
2171 return cfqg;
2172 }
2173
2174 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2175 {
2176 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2177
2178 cfqd->serving_group = cfqg;
2179
2180 /* Restore the workload type data */
2181 if (cfqg->saved_workload_slice) {
2182 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2183 cfqd->serving_type = cfqg->saved_workload;
2184 cfqd->serving_prio = cfqg->saved_serving_prio;
2185 } else
2186 cfqd->workload_expires = jiffies - 1;
2187
2188 choose_service_tree(cfqd, cfqg);
2189 }
2190
2191 /*
2192 * Select a queue for service. If we have a current active queue,
2193 * check whether to continue servicing it, or retrieve and set a new one.
2194 */
2195 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2196 {
2197 struct cfq_queue *cfqq, *new_cfqq = NULL;
2198
2199 cfqq = cfqd->active_queue;
2200 if (!cfqq)
2201 goto new_queue;
2202
2203 if (!cfqd->rq_queued)
2204 return NULL;
2205
2206 /*
2207 * We were waiting for group to get backlogged. Expire the queue
2208 */
2209 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2210 goto expire;
2211
2212 /*
2213 * The active queue has run out of time, expire it and select new.
2214 */
2215 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2216 /*
2217 * If slice had not expired at the completion of last request
2218 * we might not have turned on wait_busy flag. Don't expire
2219 * the queue yet. Allow the group to get backlogged.
2220 *
2221 * The very fact that we have used the slice, that means we
2222 * have been idling all along on this queue and it should be
2223 * ok to wait for this request to complete.
2224 */
2225 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2226 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2227 cfqq = NULL;
2228 goto keep_queue;
2229 } else
2230 goto check_group_idle;
2231 }
2232
2233 /*
2234 * The active queue has requests and isn't expired, allow it to
2235 * dispatch.
2236 */
2237 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2238 goto keep_queue;
2239
2240 /*
2241 * If another queue has a request waiting within our mean seek
2242 * distance, let it run. The expire code will check for close
2243 * cooperators and put the close queue at the front of the service
2244 * tree. If possible, merge the expiring queue with the new cfqq.
2245 */
2246 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2247 if (new_cfqq) {
2248 if (!cfqq->new_cfqq)
2249 cfq_setup_merge(cfqq, new_cfqq);
2250 goto expire;
2251 }
2252
2253 /*
2254 * No requests pending. If the active queue still has requests in
2255 * flight or is idling for a new request, allow either of these
2256 * conditions to happen (or time out) before selecting a new queue.
2257 */
2258 if (timer_pending(&cfqd->idle_slice_timer)) {
2259 cfqq = NULL;
2260 goto keep_queue;
2261 }
2262
2263 /*
2264 * This is a deep seek queue, but the device is much faster than
2265 * the queue can deliver, don't idle
2266 **/
2267 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2268 (cfq_cfqq_slice_new(cfqq) ||
2269 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2270 cfq_clear_cfqq_deep(cfqq);
2271 cfq_clear_cfqq_idle_window(cfqq);
2272 }
2273
2274 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2275 cfqq = NULL;
2276 goto keep_queue;
2277 }
2278
2279 /*
2280 * If group idle is enabled and there are requests dispatched from
2281 * this group, wait for requests to complete.
2282 */
2283 check_group_idle:
2284 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2285 && cfqq->cfqg->dispatched) {
2286 cfqq = NULL;
2287 goto keep_queue;
2288 }
2289
2290 expire:
2291 cfq_slice_expired(cfqd, 0);
2292 new_queue:
2293 /*
2294 * Current queue expired. Check if we have to switch to a new
2295 * service tree
2296 */
2297 if (!new_cfqq)
2298 cfq_choose_cfqg(cfqd);
2299
2300 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2301 keep_queue:
2302 return cfqq;
2303 }
2304
2305 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2306 {
2307 int dispatched = 0;
2308
2309 while (cfqq->next_rq) {
2310 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2311 dispatched++;
2312 }
2313
2314 BUG_ON(!list_empty(&cfqq->fifo));
2315
2316 /* By default cfqq is not expired if it is empty. Do it explicitly */
2317 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2318 return dispatched;
2319 }
2320
2321 /*
2322 * Drain our current requests. Used for barriers and when switching
2323 * io schedulers on-the-fly.
2324 */
2325 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2326 {
2327 struct cfq_queue *cfqq;
2328 int dispatched = 0;
2329
2330 /* Expire the timeslice of the current active queue first */
2331 cfq_slice_expired(cfqd, 0);
2332 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2333 __cfq_set_active_queue(cfqd, cfqq);
2334 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2335 }
2336
2337 BUG_ON(cfqd->busy_queues);
2338
2339 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2340 return dispatched;
2341 }
2342
2343 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2344 struct cfq_queue *cfqq)
2345 {
2346 /* the queue hasn't finished any request, can't estimate */
2347 if (cfq_cfqq_slice_new(cfqq))
2348 return true;
2349 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2350 cfqq->slice_end))
2351 return true;
2352
2353 return false;
2354 }
2355
2356 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2357 {
2358 unsigned int max_dispatch;
2359
2360 /*
2361 * Drain async requests before we start sync IO
2362 */
2363 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2364 return false;
2365
2366 /*
2367 * If this is an async queue and we have sync IO in flight, let it wait
2368 */
2369 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2370 return false;
2371
2372 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2373 if (cfq_class_idle(cfqq))
2374 max_dispatch = 1;
2375
2376 /*
2377 * Does this cfqq already have too much IO in flight?
2378 */
2379 if (cfqq->dispatched >= max_dispatch) {
2380 /*
2381 * idle queue must always only have a single IO in flight
2382 */
2383 if (cfq_class_idle(cfqq))
2384 return false;
2385
2386 /*
2387 * We have other queues, don't allow more IO from this one
2388 */
2389 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2390 return false;
2391
2392 /*
2393 * Sole queue user, no limit
2394 */
2395 if (cfqd->busy_queues == 1)
2396 max_dispatch = -1;
2397 else
2398 /*
2399 * Normally we start throttling cfqq when cfq_quantum/2
2400 * requests have been dispatched. But we can drive
2401 * deeper queue depths at the beginning of slice
2402 * subjected to upper limit of cfq_quantum.
2403 * */
2404 max_dispatch = cfqd->cfq_quantum;
2405 }
2406
2407 /*
2408 * Async queues must wait a bit before being allowed dispatch.
2409 * We also ramp up the dispatch depth gradually for async IO,
2410 * based on the last sync IO we serviced
2411 */
2412 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2413 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2414 unsigned int depth;
2415
2416 depth = last_sync / cfqd->cfq_slice[1];
2417 if (!depth && !cfqq->dispatched)
2418 depth = 1;
2419 if (depth < max_dispatch)
2420 max_dispatch = depth;
2421 }
2422
2423 /*
2424 * If we're below the current max, allow a dispatch
2425 */
2426 return cfqq->dispatched < max_dispatch;
2427 }
2428
2429 /*
2430 * Dispatch a request from cfqq, moving them to the request queue
2431 * dispatch list.
2432 */
2433 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2434 {
2435 struct request *rq;
2436
2437 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2438
2439 if (!cfq_may_dispatch(cfqd, cfqq))
2440 return false;
2441
2442 /*
2443 * follow expired path, else get first next available
2444 */
2445 rq = cfq_check_fifo(cfqq);
2446 if (!rq)
2447 rq = cfqq->next_rq;
2448
2449 /*
2450 * insert request into driver dispatch list
2451 */
2452 cfq_dispatch_insert(cfqd->queue, rq);
2453
2454 if (!cfqd->active_cic) {
2455 struct cfq_io_context *cic = RQ_CIC(rq);
2456
2457 atomic_long_inc(&cic->ioc->refcount);
2458 cfqd->active_cic = cic;
2459 }
2460
2461 return true;
2462 }
2463
2464 /*
2465 * Find the cfqq that we need to service and move a request from that to the
2466 * dispatch list
2467 */
2468 static int cfq_dispatch_requests(struct request_queue *q, int force)
2469 {
2470 struct cfq_data *cfqd = q->elevator->elevator_data;
2471 struct cfq_queue *cfqq;
2472
2473 if (!cfqd->busy_queues)
2474 return 0;
2475
2476 if (unlikely(force))
2477 return cfq_forced_dispatch(cfqd);
2478
2479 cfqq = cfq_select_queue(cfqd);
2480 if (!cfqq)
2481 return 0;
2482
2483 /*
2484 * Dispatch a request from this cfqq, if it is allowed
2485 */
2486 if (!cfq_dispatch_request(cfqd, cfqq))
2487 return 0;
2488
2489 cfqq->slice_dispatch++;
2490 cfq_clear_cfqq_must_dispatch(cfqq);
2491
2492 /*
2493 * expire an async queue immediately if it has used up its slice. idle
2494 * queue always expire after 1 dispatch round.
2495 */
2496 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2497 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2498 cfq_class_idle(cfqq))) {
2499 cfqq->slice_end = jiffies + 1;
2500 cfq_slice_expired(cfqd, 0);
2501 }
2502
2503 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2504 return 1;
2505 }
2506
2507 /*
2508 * task holds one reference to the queue, dropped when task exits. each rq
2509 * in-flight on this queue also holds a reference, dropped when rq is freed.
2510 *
2511 * Each cfq queue took a reference on the parent group. Drop it now.
2512 * queue lock must be held here.
2513 */
2514 static void cfq_put_queue(struct cfq_queue *cfqq)
2515 {
2516 struct cfq_data *cfqd = cfqq->cfqd;
2517 struct cfq_group *cfqg;
2518
2519 BUG_ON(cfqq->ref <= 0);
2520
2521 cfqq->ref--;
2522 if (cfqq->ref)
2523 return;
2524
2525 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2526 BUG_ON(rb_first(&cfqq->sort_list));
2527 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2528 cfqg = cfqq->cfqg;
2529
2530 if (unlikely(cfqd->active_queue == cfqq)) {
2531 __cfq_slice_expired(cfqd, cfqq, 0);
2532 cfq_schedule_dispatch(cfqd);
2533 }
2534
2535 BUG_ON(cfq_cfqq_on_rr(cfqq));
2536 kmem_cache_free(cfq_pool, cfqq);
2537 cfq_put_cfqg(cfqg);
2538 }
2539
2540 /*
2541 * Must always be called with the rcu_read_lock() held
2542 */
2543 static void
2544 __call_for_each_cic(struct io_context *ioc,
2545 void (*func)(struct io_context *, struct cfq_io_context *))
2546 {
2547 struct cfq_io_context *cic;
2548 struct hlist_node *n;
2549
2550 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2551 func(ioc, cic);
2552 }
2553
2554 /*
2555 * Call func for each cic attached to this ioc.
2556 */
2557 static void
2558 call_for_each_cic(struct io_context *ioc,
2559 void (*func)(struct io_context *, struct cfq_io_context *))
2560 {
2561 rcu_read_lock();
2562 __call_for_each_cic(ioc, func);
2563 rcu_read_unlock();
2564 }
2565
2566 static void cfq_cic_free_rcu(struct rcu_head *head)
2567 {
2568 struct cfq_io_context *cic;
2569
2570 cic = container_of(head, struct cfq_io_context, rcu_head);
2571
2572 kmem_cache_free(cfq_ioc_pool, cic);
2573 elv_ioc_count_dec(cfq_ioc_count);
2574
2575 if (ioc_gone) {
2576 /*
2577 * CFQ scheduler is exiting, grab exit lock and check
2578 * the pending io context count. If it hits zero,
2579 * complete ioc_gone and set it back to NULL
2580 */
2581 spin_lock(&ioc_gone_lock);
2582 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2583 complete(ioc_gone);
2584 ioc_gone = NULL;
2585 }
2586 spin_unlock(&ioc_gone_lock);
2587 }
2588 }
2589
2590 static void cfq_cic_free(struct cfq_io_context *cic)
2591 {
2592 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2593 }
2594
2595 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2596 {
2597 unsigned long flags;
2598 unsigned long dead_key = (unsigned long) cic->key;
2599
2600 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2601
2602 spin_lock_irqsave(&ioc->lock, flags);
2603 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2604 hlist_del_rcu(&cic->cic_list);
2605 spin_unlock_irqrestore(&ioc->lock, flags);
2606
2607 cfq_cic_free(cic);
2608 }
2609
2610 /*
2611 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2612 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2613 * and ->trim() which is called with the task lock held
2614 */
2615 static void cfq_free_io_context(struct io_context *ioc)
2616 {
2617 /*
2618 * ioc->refcount is zero here, or we are called from elv_unregister(),
2619 * so no more cic's are allowed to be linked into this ioc. So it
2620 * should be ok to iterate over the known list, we will see all cic's
2621 * since no new ones are added.
2622 */
2623 __call_for_each_cic(ioc, cic_free_func);
2624 }
2625
2626 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2627 {
2628 struct cfq_queue *__cfqq, *next;
2629
2630 /*
2631 * If this queue was scheduled to merge with another queue, be
2632 * sure to drop the reference taken on that queue (and others in
2633 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2634 */
2635 __cfqq = cfqq->new_cfqq;
2636 while (__cfqq) {
2637 if (__cfqq == cfqq) {
2638 WARN(1, "cfqq->new_cfqq loop detected\n");
2639 break;
2640 }
2641 next = __cfqq->new_cfqq;
2642 cfq_put_queue(__cfqq);
2643 __cfqq = next;
2644 }
2645 }
2646
2647 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2648 {
2649 if (unlikely(cfqq == cfqd->active_queue)) {
2650 __cfq_slice_expired(cfqd, cfqq, 0);
2651 cfq_schedule_dispatch(cfqd);
2652 }
2653
2654 cfq_put_cooperator(cfqq);
2655
2656 cfq_put_queue(cfqq);
2657 }
2658
2659 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2660 struct cfq_io_context *cic)
2661 {
2662 struct io_context *ioc = cic->ioc;
2663
2664 list_del_init(&cic->queue_list);
2665
2666 /*
2667 * Make sure dead mark is seen for dead queues
2668 */
2669 smp_wmb();
2670 cic->key = cfqd_dead_key(cfqd);
2671
2672 if (ioc->ioc_data == cic)
2673 rcu_assign_pointer(ioc->ioc_data, NULL);
2674
2675 if (cic->cfqq[BLK_RW_ASYNC]) {
2676 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2677 cic->cfqq[BLK_RW_ASYNC] = NULL;
2678 }
2679
2680 if (cic->cfqq[BLK_RW_SYNC]) {
2681 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2682 cic->cfqq[BLK_RW_SYNC] = NULL;
2683 }
2684 }
2685
2686 static void cfq_exit_single_io_context(struct io_context *ioc,
2687 struct cfq_io_context *cic)
2688 {
2689 struct cfq_data *cfqd = cic_to_cfqd(cic);
2690
2691 if (cfqd) {
2692 struct request_queue *q = cfqd->queue;
2693 unsigned long flags;
2694
2695 spin_lock_irqsave(q->queue_lock, flags);
2696
2697 /*
2698 * Ensure we get a fresh copy of the ->key to prevent
2699 * race between exiting task and queue
2700 */
2701 smp_read_barrier_depends();
2702 if (cic->key == cfqd)
2703 __cfq_exit_single_io_context(cfqd, cic);
2704
2705 spin_unlock_irqrestore(q->queue_lock, flags);
2706 }
2707 }
2708
2709 /*
2710 * The process that ioc belongs to has exited, we need to clean up
2711 * and put the internal structures we have that belongs to that process.
2712 */
2713 static void cfq_exit_io_context(struct io_context *ioc)
2714 {
2715 call_for_each_cic(ioc, cfq_exit_single_io_context);
2716 }
2717
2718 static struct cfq_io_context *
2719 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2720 {
2721 struct cfq_io_context *cic;
2722
2723 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2724 cfqd->queue->node);
2725 if (cic) {
2726 cic->last_end_request = jiffies;
2727 INIT_LIST_HEAD(&cic->queue_list);
2728 INIT_HLIST_NODE(&cic->cic_list);
2729 cic->dtor = cfq_free_io_context;
2730 cic->exit = cfq_exit_io_context;
2731 elv_ioc_count_inc(cfq_ioc_count);
2732 }
2733
2734 return cic;
2735 }
2736
2737 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2738 {
2739 struct task_struct *tsk = current;
2740 int ioprio_class;
2741
2742 if (!cfq_cfqq_prio_changed(cfqq))
2743 return;
2744
2745 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2746 switch (ioprio_class) {
2747 default:
2748 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2749 case IOPRIO_CLASS_NONE:
2750 /*
2751 * no prio set, inherit CPU scheduling settings
2752 */
2753 cfqq->ioprio = task_nice_ioprio(tsk);
2754 cfqq->ioprio_class = task_nice_ioclass(tsk);
2755 break;
2756 case IOPRIO_CLASS_RT:
2757 cfqq->ioprio = task_ioprio(ioc);
2758 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2759 break;
2760 case IOPRIO_CLASS_BE:
2761 cfqq->ioprio = task_ioprio(ioc);
2762 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2763 break;
2764 case IOPRIO_CLASS_IDLE:
2765 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2766 cfqq->ioprio = 7;
2767 cfq_clear_cfqq_idle_window(cfqq);
2768 break;
2769 }
2770
2771 /*
2772 * keep track of original prio settings in case we have to temporarily
2773 * elevate the priority of this queue
2774 */
2775 cfqq->org_ioprio = cfqq->ioprio;
2776 cfqq->org_ioprio_class = cfqq->ioprio_class;
2777 cfq_clear_cfqq_prio_changed(cfqq);
2778 }
2779
2780 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2781 {
2782 struct cfq_data *cfqd = cic_to_cfqd(cic);
2783 struct cfq_queue *cfqq;
2784 unsigned long flags;
2785
2786 if (unlikely(!cfqd))
2787 return;
2788
2789 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2790
2791 cfqq = cic->cfqq[BLK_RW_ASYNC];
2792 if (cfqq) {
2793 struct cfq_queue *new_cfqq;
2794 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2795 GFP_ATOMIC);
2796 if (new_cfqq) {
2797 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2798 cfq_put_queue(cfqq);
2799 }
2800 }
2801
2802 cfqq = cic->cfqq[BLK_RW_SYNC];
2803 if (cfqq)
2804 cfq_mark_cfqq_prio_changed(cfqq);
2805
2806 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2807 }
2808
2809 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2810 {
2811 call_for_each_cic(ioc, changed_ioprio);
2812 ioc->ioprio_changed = 0;
2813 }
2814
2815 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2816 pid_t pid, bool is_sync)
2817 {
2818 RB_CLEAR_NODE(&cfqq->rb_node);
2819 RB_CLEAR_NODE(&cfqq->p_node);
2820 INIT_LIST_HEAD(&cfqq->fifo);
2821
2822 cfqq->ref = 0;
2823 cfqq->cfqd = cfqd;
2824
2825 cfq_mark_cfqq_prio_changed(cfqq);
2826
2827 if (is_sync) {
2828 if (!cfq_class_idle(cfqq))
2829 cfq_mark_cfqq_idle_window(cfqq);
2830 cfq_mark_cfqq_sync(cfqq);
2831 }
2832 cfqq->pid = pid;
2833 }
2834
2835 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2836 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2837 {
2838 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2839 struct cfq_data *cfqd = cic_to_cfqd(cic);
2840 unsigned long flags;
2841 struct request_queue *q;
2842
2843 if (unlikely(!cfqd))
2844 return;
2845
2846 q = cfqd->queue;
2847
2848 spin_lock_irqsave(q->queue_lock, flags);
2849
2850 if (sync_cfqq) {
2851 /*
2852 * Drop reference to sync queue. A new sync queue will be
2853 * assigned in new group upon arrival of a fresh request.
2854 */
2855 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2856 cic_set_cfqq(cic, NULL, 1);
2857 cfq_put_queue(sync_cfqq);
2858 }
2859
2860 spin_unlock_irqrestore(q->queue_lock, flags);
2861 }
2862
2863 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2864 {
2865 call_for_each_cic(ioc, changed_cgroup);
2866 ioc->cgroup_changed = 0;
2867 }
2868 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2869
2870 static struct cfq_queue *
2871 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2872 struct io_context *ioc, gfp_t gfp_mask)
2873 {
2874 struct cfq_queue *cfqq, *new_cfqq = NULL;
2875 struct cfq_io_context *cic;
2876 struct cfq_group *cfqg;
2877
2878 retry:
2879 cfqg = cfq_get_cfqg(cfqd, 1);
2880 cic = cfq_cic_lookup(cfqd, ioc);
2881 /* cic always exists here */
2882 cfqq = cic_to_cfqq(cic, is_sync);
2883
2884 /*
2885 * Always try a new alloc if we fell back to the OOM cfqq
2886 * originally, since it should just be a temporary situation.
2887 */
2888 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2889 cfqq = NULL;
2890 if (new_cfqq) {
2891 cfqq = new_cfqq;
2892 new_cfqq = NULL;
2893 } else if (gfp_mask & __GFP_WAIT) {
2894 spin_unlock_irq(cfqd->queue->queue_lock);
2895 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2896 gfp_mask | __GFP_ZERO,
2897 cfqd->queue->node);
2898 spin_lock_irq(cfqd->queue->queue_lock);
2899 if (new_cfqq)
2900 goto retry;
2901 } else {
2902 cfqq = kmem_cache_alloc_node(cfq_pool,
2903 gfp_mask | __GFP_ZERO,
2904 cfqd->queue->node);
2905 }
2906
2907 if (cfqq) {
2908 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2909 cfq_init_prio_data(cfqq, ioc);
2910 cfq_link_cfqq_cfqg(cfqq, cfqg);
2911 cfq_log_cfqq(cfqd, cfqq, "alloced");
2912 } else
2913 cfqq = &cfqd->oom_cfqq;
2914 }
2915
2916 if (new_cfqq)
2917 kmem_cache_free(cfq_pool, new_cfqq);
2918
2919 return cfqq;
2920 }
2921
2922 static struct cfq_queue **
2923 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2924 {
2925 switch (ioprio_class) {
2926 case IOPRIO_CLASS_RT:
2927 return &cfqd->async_cfqq[0][ioprio];
2928 case IOPRIO_CLASS_BE:
2929 return &cfqd->async_cfqq[1][ioprio];
2930 case IOPRIO_CLASS_IDLE:
2931 return &cfqd->async_idle_cfqq;
2932 default:
2933 BUG();
2934 }
2935 }
2936
2937 static struct cfq_queue *
2938 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2939 gfp_t gfp_mask)
2940 {
2941 const int ioprio = task_ioprio(ioc);
2942 const int ioprio_class = task_ioprio_class(ioc);
2943 struct cfq_queue **async_cfqq = NULL;
2944 struct cfq_queue *cfqq = NULL;
2945
2946 if (!is_sync) {
2947 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2948 cfqq = *async_cfqq;
2949 }
2950
2951 if (!cfqq)
2952 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2953
2954 /*
2955 * pin the queue now that it's allocated, scheduler exit will prune it
2956 */
2957 if (!is_sync && !(*async_cfqq)) {
2958 cfqq->ref++;
2959 *async_cfqq = cfqq;
2960 }
2961
2962 cfqq->ref++;
2963 return cfqq;
2964 }
2965
2966 /*
2967 * We drop cfq io contexts lazily, so we may find a dead one.
2968 */
2969 static void
2970 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2971 struct cfq_io_context *cic)
2972 {
2973 unsigned long flags;
2974
2975 WARN_ON(!list_empty(&cic->queue_list));
2976 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2977
2978 spin_lock_irqsave(&ioc->lock, flags);
2979
2980 BUG_ON(ioc->ioc_data == cic);
2981
2982 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2983 hlist_del_rcu(&cic->cic_list);
2984 spin_unlock_irqrestore(&ioc->lock, flags);
2985
2986 cfq_cic_free(cic);
2987 }
2988
2989 static struct cfq_io_context *
2990 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2991 {
2992 struct cfq_io_context *cic;
2993 unsigned long flags;
2994
2995 if (unlikely(!ioc))
2996 return NULL;
2997
2998 rcu_read_lock();
2999
3000 /*
3001 * we maintain a last-hit cache, to avoid browsing over the tree
3002 */
3003 cic = rcu_dereference(ioc->ioc_data);
3004 if (cic && cic->key == cfqd) {
3005 rcu_read_unlock();
3006 return cic;
3007 }
3008
3009 do {
3010 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3011 rcu_read_unlock();
3012 if (!cic)
3013 break;
3014 if (unlikely(cic->key != cfqd)) {
3015 cfq_drop_dead_cic(cfqd, ioc, cic);
3016 rcu_read_lock();
3017 continue;
3018 }
3019
3020 spin_lock_irqsave(&ioc->lock, flags);
3021 rcu_assign_pointer(ioc->ioc_data, cic);
3022 spin_unlock_irqrestore(&ioc->lock, flags);
3023 break;
3024 } while (1);
3025
3026 return cic;
3027 }
3028
3029 /*
3030 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3031 * the process specific cfq io context when entered from the block layer.
3032 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3033 */
3034 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3035 struct cfq_io_context *cic, gfp_t gfp_mask)
3036 {
3037 unsigned long flags;
3038 int ret;
3039
3040 ret = radix_tree_preload(gfp_mask);
3041 if (!ret) {
3042 cic->ioc = ioc;
3043 cic->key = cfqd;
3044
3045 spin_lock_irqsave(&ioc->lock, flags);
3046 ret = radix_tree_insert(&ioc->radix_root,
3047 cfqd->cic_index, cic);
3048 if (!ret)
3049 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3050 spin_unlock_irqrestore(&ioc->lock, flags);
3051
3052 radix_tree_preload_end();
3053
3054 if (!ret) {
3055 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3056 list_add(&cic->queue_list, &cfqd->cic_list);
3057 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3058 }
3059 }
3060
3061 if (ret)
3062 printk(KERN_ERR "cfq: cic link failed!\n");
3063
3064 return ret;
3065 }
3066
3067 /*
3068 * Setup general io context and cfq io context. There can be several cfq
3069 * io contexts per general io context, if this process is doing io to more
3070 * than one device managed by cfq.
3071 */
3072 static struct cfq_io_context *
3073 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3074 {
3075 struct io_context *ioc = NULL;
3076 struct cfq_io_context *cic;
3077
3078 might_sleep_if(gfp_mask & __GFP_WAIT);
3079
3080 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3081 if (!ioc)
3082 return NULL;
3083
3084 cic = cfq_cic_lookup(cfqd, ioc);
3085 if (cic)
3086 goto out;
3087
3088 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3089 if (cic == NULL)
3090 goto err;
3091
3092 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3093 goto err_free;
3094
3095 out:
3096 smp_read_barrier_depends();
3097 if (unlikely(ioc->ioprio_changed))
3098 cfq_ioc_set_ioprio(ioc);
3099
3100 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3101 if (unlikely(ioc->cgroup_changed))
3102 cfq_ioc_set_cgroup(ioc);
3103 #endif
3104 return cic;
3105 err_free:
3106 cfq_cic_free(cic);
3107 err:
3108 put_io_context(ioc);
3109 return NULL;
3110 }
3111
3112 static void
3113 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3114 {
3115 unsigned long elapsed = jiffies - cic->last_end_request;
3116 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3117
3118 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3119 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3120 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3121 }
3122
3123 static void
3124 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3125 struct request *rq)
3126 {
3127 sector_t sdist = 0;
3128 sector_t n_sec = blk_rq_sectors(rq);
3129 if (cfqq->last_request_pos) {
3130 if (cfqq->last_request_pos < blk_rq_pos(rq))
3131 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3132 else
3133 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3134 }
3135
3136 cfqq->seek_history <<= 1;
3137 if (blk_queue_nonrot(cfqd->queue))
3138 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3139 else
3140 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3141 }
3142
3143 /*
3144 * Disable idle window if the process thinks too long or seeks so much that
3145 * it doesn't matter
3146 */
3147 static void
3148 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3149 struct cfq_io_context *cic)
3150 {
3151 int old_idle, enable_idle;
3152
3153 /*
3154 * Don't idle for async or idle io prio class
3155 */
3156 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3157 return;
3158
3159 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3160
3161 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3162 cfq_mark_cfqq_deep(cfqq);
3163
3164 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3165 enable_idle = 0;
3166 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3167 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3168 enable_idle = 0;
3169 else if (sample_valid(cic->ttime_samples)) {
3170 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3171 enable_idle = 0;
3172 else
3173 enable_idle = 1;
3174 }
3175
3176 if (old_idle != enable_idle) {
3177 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3178 if (enable_idle)
3179 cfq_mark_cfqq_idle_window(cfqq);
3180 else
3181 cfq_clear_cfqq_idle_window(cfqq);
3182 }
3183 }
3184
3185 /*
3186 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3187 * no or if we aren't sure, a 1 will cause a preempt.
3188 */
3189 static bool
3190 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3191 struct request *rq)
3192 {
3193 struct cfq_queue *cfqq;
3194
3195 cfqq = cfqd->active_queue;
3196 if (!cfqq)
3197 return false;
3198
3199 if (cfq_class_idle(new_cfqq))
3200 return false;
3201
3202 if (cfq_class_idle(cfqq))
3203 return true;
3204
3205 /*
3206 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3207 */
3208 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3209 return false;
3210
3211 /*
3212 * if the new request is sync, but the currently running queue is
3213 * not, let the sync request have priority.
3214 */
3215 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3216 return true;
3217
3218 if (new_cfqq->cfqg != cfqq->cfqg)
3219 return false;
3220
3221 if (cfq_slice_used(cfqq))
3222 return true;
3223
3224 /* Allow preemption only if we are idling on sync-noidle tree */
3225 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3226 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3227 new_cfqq->service_tree->count == 2 &&
3228 RB_EMPTY_ROOT(&cfqq->sort_list))
3229 return true;
3230
3231 /*
3232 * So both queues are sync. Let the new request get disk time if
3233 * it's a metadata request and the current queue is doing regular IO.
3234 */
3235 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3236 return true;
3237
3238 /*
3239 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3240 */
3241 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3242 return true;
3243
3244 /* An idle queue should not be idle now for some reason */
3245 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3246 return true;
3247
3248 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3249 return false;
3250
3251 /*
3252 * if this request is as-good as one we would expect from the
3253 * current cfqq, let it preempt
3254 */
3255 if (cfq_rq_close(cfqd, cfqq, rq))
3256 return true;
3257
3258 return false;
3259 }
3260
3261 /*
3262 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3263 * let it have half of its nominal slice.
3264 */
3265 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3266 {
3267 struct cfq_queue *old_cfqq = cfqd->active_queue;
3268
3269 cfq_log_cfqq(cfqd, cfqq, "preempt");
3270 cfq_slice_expired(cfqd, 1);
3271
3272 /*
3273 * workload type is changed, don't save slice, otherwise preempt
3274 * doesn't happen
3275 */
3276 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3277 cfqq->cfqg->saved_workload_slice = 0;
3278
3279 /*
3280 * Put the new queue at the front of the of the current list,
3281 * so we know that it will be selected next.
3282 */
3283 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3284
3285 cfq_service_tree_add(cfqd, cfqq, 1);
3286
3287 cfqq->slice_end = 0;
3288 cfq_mark_cfqq_slice_new(cfqq);
3289 }
3290
3291 /*
3292 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3293 * something we should do about it
3294 */
3295 static void
3296 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3297 struct request *rq)
3298 {
3299 struct cfq_io_context *cic = RQ_CIC(rq);
3300
3301 cfqd->rq_queued++;
3302 if (rq->cmd_flags & REQ_META)
3303 cfqq->meta_pending++;
3304
3305 cfq_update_io_thinktime(cfqd, cic);
3306 cfq_update_io_seektime(cfqd, cfqq, rq);
3307 cfq_update_idle_window(cfqd, cfqq, cic);
3308
3309 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3310
3311 if (cfqq == cfqd->active_queue) {
3312 /*
3313 * Remember that we saw a request from this process, but
3314 * don't start queuing just yet. Otherwise we risk seeing lots
3315 * of tiny requests, because we disrupt the normal plugging
3316 * and merging. If the request is already larger than a single
3317 * page, let it rip immediately. For that case we assume that
3318 * merging is already done. Ditto for a busy system that
3319 * has other work pending, don't risk delaying until the
3320 * idle timer unplug to continue working.
3321 */
3322 if (cfq_cfqq_wait_request(cfqq)) {
3323 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3324 cfqd->busy_queues > 1) {
3325 cfq_del_timer(cfqd, cfqq);
3326 cfq_clear_cfqq_wait_request(cfqq);
3327 __blk_run_queue(cfqd->queue);
3328 } else {
3329 cfq_blkiocg_update_idle_time_stats(
3330 &cfqq->cfqg->blkg);
3331 cfq_mark_cfqq_must_dispatch(cfqq);
3332 }
3333 }
3334 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3335 /*
3336 * not the active queue - expire current slice if it is
3337 * idle and has expired it's mean thinktime or this new queue
3338 * has some old slice time left and is of higher priority or
3339 * this new queue is RT and the current one is BE
3340 */
3341 cfq_preempt_queue(cfqd, cfqq);
3342 __blk_run_queue(cfqd->queue);
3343 }
3344 }
3345
3346 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3347 {
3348 struct cfq_data *cfqd = q->elevator->elevator_data;
3349 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3350
3351 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3352 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3353
3354 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3355 list_add_tail(&rq->queuelist, &cfqq->fifo);
3356 cfq_add_rq_rb(rq);
3357 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3358 &cfqd->serving_group->blkg, rq_data_dir(rq),
3359 rq_is_sync(rq));
3360 cfq_rq_enqueued(cfqd, cfqq, rq);
3361 }
3362
3363 /*
3364 * Update hw_tag based on peak queue depth over 50 samples under
3365 * sufficient load.
3366 */
3367 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3368 {
3369 struct cfq_queue *cfqq = cfqd->active_queue;
3370
3371 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3372 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3373
3374 if (cfqd->hw_tag == 1)
3375 return;
3376
3377 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3378 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3379 return;
3380
3381 /*
3382 * If active queue hasn't enough requests and can idle, cfq might not
3383 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3384 * case
3385 */
3386 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3387 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3388 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3389 return;
3390
3391 if (cfqd->hw_tag_samples++ < 50)
3392 return;
3393
3394 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3395 cfqd->hw_tag = 1;
3396 else
3397 cfqd->hw_tag = 0;
3398 }
3399
3400 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3401 {
3402 struct cfq_io_context *cic = cfqd->active_cic;
3403
3404 /* If the queue already has requests, don't wait */
3405 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3406 return false;
3407
3408 /* If there are other queues in the group, don't wait */
3409 if (cfqq->cfqg->nr_cfqq > 1)
3410 return false;
3411
3412 if (cfq_slice_used(cfqq))
3413 return true;
3414
3415 /* if slice left is less than think time, wait busy */
3416 if (cic && sample_valid(cic->ttime_samples)
3417 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3418 return true;
3419
3420 /*
3421 * If think times is less than a jiffy than ttime_mean=0 and above
3422 * will not be true. It might happen that slice has not expired yet
3423 * but will expire soon (4-5 ns) during select_queue(). To cover the
3424 * case where think time is less than a jiffy, mark the queue wait
3425 * busy if only 1 jiffy is left in the slice.
3426 */
3427 if (cfqq->slice_end - jiffies == 1)
3428 return true;
3429
3430 return false;
3431 }
3432
3433 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3434 {
3435 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3436 struct cfq_data *cfqd = cfqq->cfqd;
3437 const int sync = rq_is_sync(rq);
3438 unsigned long now;
3439
3440 now = jiffies;
3441 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3442 !!(rq->cmd_flags & REQ_NOIDLE));
3443
3444 cfq_update_hw_tag(cfqd);
3445
3446 WARN_ON(!cfqd->rq_in_driver);
3447 WARN_ON(!cfqq->dispatched);
3448 cfqd->rq_in_driver--;
3449 cfqq->dispatched--;
3450 (RQ_CFQG(rq))->dispatched--;
3451 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3452 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3453 rq_data_dir(rq), rq_is_sync(rq));
3454
3455 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3456
3457 if (sync) {
3458 RQ_CIC(rq)->last_end_request = now;
3459 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3460 cfqd->last_delayed_sync = now;
3461 }
3462
3463 /*
3464 * If this is the active queue, check if it needs to be expired,
3465 * or if we want to idle in case it has no pending requests.
3466 */
3467 if (cfqd->active_queue == cfqq) {
3468 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3469
3470 if (cfq_cfqq_slice_new(cfqq)) {
3471 cfq_set_prio_slice(cfqd, cfqq);
3472 cfq_clear_cfqq_slice_new(cfqq);
3473 }
3474
3475 /*
3476 * Should we wait for next request to come in before we expire
3477 * the queue.
3478 */
3479 if (cfq_should_wait_busy(cfqd, cfqq)) {
3480 unsigned long extend_sl = cfqd->cfq_slice_idle;
3481 if (!cfqd->cfq_slice_idle)
3482 extend_sl = cfqd->cfq_group_idle;
3483 cfqq->slice_end = jiffies + extend_sl;
3484 cfq_mark_cfqq_wait_busy(cfqq);
3485 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3486 }
3487
3488 /*
3489 * Idling is not enabled on:
3490 * - expired queues
3491 * - idle-priority queues
3492 * - async queues
3493 * - queues with still some requests queued
3494 * - when there is a close cooperator
3495 */
3496 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3497 cfq_slice_expired(cfqd, 1);
3498 else if (sync && cfqq_empty &&
3499 !cfq_close_cooperator(cfqd, cfqq)) {
3500 cfq_arm_slice_timer(cfqd);
3501 }
3502 }
3503
3504 if (!cfqd->rq_in_driver)
3505 cfq_schedule_dispatch(cfqd);
3506 }
3507
3508 /*
3509 * we temporarily boost lower priority queues if they are holding fs exclusive
3510 * resources. they are boosted to normal prio (CLASS_BE/4)
3511 */
3512 static void cfq_prio_boost(struct cfq_queue *cfqq)
3513 {
3514 if (has_fs_excl()) {
3515 /*
3516 * boost idle prio on transactions that would lock out other
3517 * users of the filesystem
3518 */
3519 if (cfq_class_idle(cfqq))
3520 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3521 if (cfqq->ioprio > IOPRIO_NORM)
3522 cfqq->ioprio = IOPRIO_NORM;
3523 } else {
3524 /*
3525 * unboost the queue (if needed)
3526 */
3527 cfqq->ioprio_class = cfqq->org_ioprio_class;
3528 cfqq->ioprio = cfqq->org_ioprio;
3529 }
3530 }
3531
3532 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3533 {
3534 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3535 cfq_mark_cfqq_must_alloc_slice(cfqq);
3536 return ELV_MQUEUE_MUST;
3537 }
3538
3539 return ELV_MQUEUE_MAY;
3540 }
3541
3542 static int cfq_may_queue(struct request_queue *q, int rw)
3543 {
3544 struct cfq_data *cfqd = q->elevator->elevator_data;
3545 struct task_struct *tsk = current;
3546 struct cfq_io_context *cic;
3547 struct cfq_queue *cfqq;
3548
3549 /*
3550 * don't force setup of a queue from here, as a call to may_queue
3551 * does not necessarily imply that a request actually will be queued.
3552 * so just lookup a possibly existing queue, or return 'may queue'
3553 * if that fails
3554 */
3555 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3556 if (!cic)
3557 return ELV_MQUEUE_MAY;
3558
3559 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3560 if (cfqq) {
3561 cfq_init_prio_data(cfqq, cic->ioc);
3562 cfq_prio_boost(cfqq);
3563
3564 return __cfq_may_queue(cfqq);
3565 }
3566
3567 return ELV_MQUEUE_MAY;
3568 }
3569
3570 /*
3571 * queue lock held here
3572 */
3573 static void cfq_put_request(struct request *rq)
3574 {
3575 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3576
3577 if (cfqq) {
3578 const int rw = rq_data_dir(rq);
3579
3580 BUG_ON(!cfqq->allocated[rw]);
3581 cfqq->allocated[rw]--;
3582
3583 put_io_context(RQ_CIC(rq)->ioc);
3584
3585 rq->elevator_private[0] = NULL;
3586 rq->elevator_private[1] = NULL;
3587
3588 /* Put down rq reference on cfqg */
3589 cfq_put_cfqg(RQ_CFQG(rq));
3590 rq->elevator_private[2] = NULL;
3591
3592 cfq_put_queue(cfqq);
3593 }
3594 }
3595
3596 static struct cfq_queue *
3597 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3598 struct cfq_queue *cfqq)
3599 {
3600 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3601 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3602 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3603 cfq_put_queue(cfqq);
3604 return cic_to_cfqq(cic, 1);
3605 }
3606
3607 /*
3608 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3609 * was the last process referring to said cfqq.
3610 */
3611 static struct cfq_queue *
3612 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3613 {
3614 if (cfqq_process_refs(cfqq) == 1) {
3615 cfqq->pid = current->pid;
3616 cfq_clear_cfqq_coop(cfqq);
3617 cfq_clear_cfqq_split_coop(cfqq);
3618 return cfqq;
3619 }
3620
3621 cic_set_cfqq(cic, NULL, 1);
3622
3623 cfq_put_cooperator(cfqq);
3624
3625 cfq_put_queue(cfqq);
3626 return NULL;
3627 }
3628 /*
3629 * Allocate cfq data structures associated with this request.
3630 */
3631 static int
3632 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3633 {
3634 struct cfq_data *cfqd = q->elevator->elevator_data;
3635 struct cfq_io_context *cic;
3636 const int rw = rq_data_dir(rq);
3637 const bool is_sync = rq_is_sync(rq);
3638 struct cfq_queue *cfqq;
3639 unsigned long flags;
3640
3641 might_sleep_if(gfp_mask & __GFP_WAIT);
3642
3643 cic = cfq_get_io_context(cfqd, gfp_mask);
3644
3645 spin_lock_irqsave(q->queue_lock, flags);
3646
3647 if (!cic)
3648 goto queue_fail;
3649
3650 new_queue:
3651 cfqq = cic_to_cfqq(cic, is_sync);
3652 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3653 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3654 cic_set_cfqq(cic, cfqq, is_sync);
3655 } else {
3656 /*
3657 * If the queue was seeky for too long, break it apart.
3658 */
3659 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3660 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3661 cfqq = split_cfqq(cic, cfqq);
3662 if (!cfqq)
3663 goto new_queue;
3664 }
3665
3666 /*
3667 * Check to see if this queue is scheduled to merge with
3668 * another, closely cooperating queue. The merging of
3669 * queues happens here as it must be done in process context.
3670 * The reference on new_cfqq was taken in merge_cfqqs.
3671 */
3672 if (cfqq->new_cfqq)
3673 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3674 }
3675
3676 cfqq->allocated[rw]++;
3677
3678 cfqq->ref++;
3679 rq->elevator_private[0] = cic;
3680 rq->elevator_private[1] = cfqq;
3681 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3682 spin_unlock_irqrestore(q->queue_lock, flags);
3683 return 0;
3684
3685 queue_fail:
3686 if (cic)
3687 put_io_context(cic->ioc);
3688
3689 cfq_schedule_dispatch(cfqd);
3690 spin_unlock_irqrestore(q->queue_lock, flags);
3691 cfq_log(cfqd, "set_request fail");
3692 return 1;
3693 }
3694
3695 static void cfq_kick_queue(struct work_struct *work)
3696 {
3697 struct cfq_data *cfqd =
3698 container_of(work, struct cfq_data, unplug_work);
3699 struct request_queue *q = cfqd->queue;
3700
3701 spin_lock_irq(q->queue_lock);
3702 __blk_run_queue(cfqd->queue);
3703 spin_unlock_irq(q->queue_lock);
3704 }
3705
3706 /*
3707 * Timer running if the active_queue is currently idling inside its time slice
3708 */
3709 static void cfq_idle_slice_timer(unsigned long data)
3710 {
3711 struct cfq_data *cfqd = (struct cfq_data *) data;
3712 struct cfq_queue *cfqq;
3713 unsigned long flags;
3714 int timed_out = 1;
3715
3716 cfq_log(cfqd, "idle timer fired");
3717
3718 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3719
3720 cfqq = cfqd->active_queue;
3721 if (cfqq) {
3722 timed_out = 0;
3723
3724 /*
3725 * We saw a request before the queue expired, let it through
3726 */
3727 if (cfq_cfqq_must_dispatch(cfqq))
3728 goto out_kick;
3729
3730 /*
3731 * expired
3732 */
3733 if (cfq_slice_used(cfqq))
3734 goto expire;
3735
3736 /*
3737 * only expire and reinvoke request handler, if there are
3738 * other queues with pending requests
3739 */
3740 if (!cfqd->busy_queues)
3741 goto out_cont;
3742
3743 /*
3744 * not expired and it has a request pending, let it dispatch
3745 */
3746 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3747 goto out_kick;
3748
3749 /*
3750 * Queue depth flag is reset only when the idle didn't succeed
3751 */
3752 cfq_clear_cfqq_deep(cfqq);
3753 }
3754 expire:
3755 cfq_slice_expired(cfqd, timed_out);
3756 out_kick:
3757 cfq_schedule_dispatch(cfqd);
3758 out_cont:
3759 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3760 }
3761
3762 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3763 {
3764 del_timer_sync(&cfqd->idle_slice_timer);
3765 cancel_work_sync(&cfqd->unplug_work);
3766 }
3767
3768 static void cfq_put_async_queues(struct cfq_data *cfqd)
3769 {
3770 int i;
3771
3772 for (i = 0; i < IOPRIO_BE_NR; i++) {
3773 if (cfqd->async_cfqq[0][i])
3774 cfq_put_queue(cfqd->async_cfqq[0][i]);
3775 if (cfqd->async_cfqq[1][i])
3776 cfq_put_queue(cfqd->async_cfqq[1][i]);
3777 }
3778
3779 if (cfqd->async_idle_cfqq)
3780 cfq_put_queue(cfqd->async_idle_cfqq);
3781 }
3782
3783 static void cfq_cfqd_free(struct rcu_head *head)
3784 {
3785 kfree(container_of(head, struct cfq_data, rcu));
3786 }
3787
3788 static void cfq_exit_queue(struct elevator_queue *e)
3789 {
3790 struct cfq_data *cfqd = e->elevator_data;
3791 struct request_queue *q = cfqd->queue;
3792
3793 cfq_shutdown_timer_wq(cfqd);
3794
3795 spin_lock_irq(q->queue_lock);
3796
3797 if (cfqd->active_queue)
3798 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3799
3800 while (!list_empty(&cfqd->cic_list)) {
3801 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3802 struct cfq_io_context,
3803 queue_list);
3804
3805 __cfq_exit_single_io_context(cfqd, cic);
3806 }
3807
3808 cfq_put_async_queues(cfqd);
3809 cfq_release_cfq_groups(cfqd);
3810 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3811
3812 spin_unlock_irq(q->queue_lock);
3813
3814 cfq_shutdown_timer_wq(cfqd);
3815
3816 spin_lock(&cic_index_lock);
3817 ida_remove(&cic_index_ida, cfqd->cic_index);
3818 spin_unlock(&cic_index_lock);
3819
3820 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3821 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3822 }
3823
3824 static int cfq_alloc_cic_index(void)
3825 {
3826 int index, error;
3827
3828 do {
3829 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3830 return -ENOMEM;
3831
3832 spin_lock(&cic_index_lock);
3833 error = ida_get_new(&cic_index_ida, &index);
3834 spin_unlock(&cic_index_lock);
3835 if (error && error != -EAGAIN)
3836 return error;
3837 } while (error);
3838
3839 return index;
3840 }
3841
3842 static void *cfq_init_queue(struct request_queue *q)
3843 {
3844 struct cfq_data *cfqd;
3845 int i, j;
3846 struct cfq_group *cfqg;
3847 struct cfq_rb_root *st;
3848
3849 i = cfq_alloc_cic_index();
3850 if (i < 0)
3851 return NULL;
3852
3853 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3854 if (!cfqd)
3855 return NULL;
3856
3857 /*
3858 * Don't need take queue_lock in the routine, since we are
3859 * initializing the ioscheduler, and nobody is using cfqd
3860 */
3861 cfqd->cic_index = i;
3862
3863 /* Init root service tree */
3864 cfqd->grp_service_tree = CFQ_RB_ROOT;
3865
3866 /* Init root group */
3867 cfqg = &cfqd->root_group;
3868 for_each_cfqg_st(cfqg, i, j, st)
3869 *st = CFQ_RB_ROOT;
3870 RB_CLEAR_NODE(&cfqg->rb_node);
3871
3872 /* Give preference to root group over other groups */
3873 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3874
3875 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3876 /*
3877 * Take a reference to root group which we never drop. This is just
3878 * to make sure that cfq_put_cfqg() does not try to kfree root group
3879 */
3880 cfqg->ref = 1;
3881 rcu_read_lock();
3882 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3883 (void *)cfqd, 0);
3884 rcu_read_unlock();
3885 #endif
3886 /*
3887 * Not strictly needed (since RB_ROOT just clears the node and we
3888 * zeroed cfqd on alloc), but better be safe in case someone decides
3889 * to add magic to the rb code
3890 */
3891 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3892 cfqd->prio_trees[i] = RB_ROOT;
3893
3894 /*
3895 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3896 * Grab a permanent reference to it, so that the normal code flow
3897 * will not attempt to free it.
3898 */
3899 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3900 cfqd->oom_cfqq.ref++;
3901 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3902
3903 INIT_LIST_HEAD(&cfqd->cic_list);
3904
3905 cfqd->queue = q;
3906
3907 init_timer(&cfqd->idle_slice_timer);
3908 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3909 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3910
3911 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3912
3913 cfqd->cfq_quantum = cfq_quantum;
3914 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3915 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3916 cfqd->cfq_back_max = cfq_back_max;
3917 cfqd->cfq_back_penalty = cfq_back_penalty;
3918 cfqd->cfq_slice[0] = cfq_slice_async;
3919 cfqd->cfq_slice[1] = cfq_slice_sync;
3920 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3921 cfqd->cfq_slice_idle = cfq_slice_idle;
3922 cfqd->cfq_group_idle = cfq_group_idle;
3923 cfqd->cfq_latency = 1;
3924 cfqd->hw_tag = -1;
3925 /*
3926 * we optimistically start assuming sync ops weren't delayed in last
3927 * second, in order to have larger depth for async operations.
3928 */
3929 cfqd->last_delayed_sync = jiffies - HZ;
3930 return cfqd;
3931 }
3932
3933 static void cfq_slab_kill(void)
3934 {
3935 /*
3936 * Caller already ensured that pending RCU callbacks are completed,
3937 * so we should have no busy allocations at this point.
3938 */
3939 if (cfq_pool)
3940 kmem_cache_destroy(cfq_pool);
3941 if (cfq_ioc_pool)
3942 kmem_cache_destroy(cfq_ioc_pool);
3943 }
3944
3945 static int __init cfq_slab_setup(void)
3946 {
3947 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3948 if (!cfq_pool)
3949 goto fail;
3950
3951 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3952 if (!cfq_ioc_pool)
3953 goto fail;
3954
3955 return 0;
3956 fail:
3957 cfq_slab_kill();
3958 return -ENOMEM;
3959 }
3960
3961 /*
3962 * sysfs parts below -->
3963 */
3964 static ssize_t
3965 cfq_var_show(unsigned int var, char *page)
3966 {
3967 return sprintf(page, "%d\n", var);
3968 }
3969
3970 static ssize_t
3971 cfq_var_store(unsigned int *var, const char *page, size_t count)
3972 {
3973 char *p = (char *) page;
3974
3975 *var = simple_strtoul(p, &p, 10);
3976 return count;
3977 }
3978
3979 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3980 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3981 { \
3982 struct cfq_data *cfqd = e->elevator_data; \
3983 unsigned int __data = __VAR; \
3984 if (__CONV) \
3985 __data = jiffies_to_msecs(__data); \
3986 return cfq_var_show(__data, (page)); \
3987 }
3988 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3989 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3990 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3991 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3992 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3993 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3994 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3995 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3996 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3997 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3998 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3999 #undef SHOW_FUNCTION
4000
4001 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4002 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4003 { \
4004 struct cfq_data *cfqd = e->elevator_data; \
4005 unsigned int __data; \
4006 int ret = cfq_var_store(&__data, (page), count); \
4007 if (__data < (MIN)) \
4008 __data = (MIN); \
4009 else if (__data > (MAX)) \
4010 __data = (MAX); \
4011 if (__CONV) \
4012 *(__PTR) = msecs_to_jiffies(__data); \
4013 else \
4014 *(__PTR) = __data; \
4015 return ret; \
4016 }
4017 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4018 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4019 UINT_MAX, 1);
4020 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4021 UINT_MAX, 1);
4022 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4023 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4024 UINT_MAX, 0);
4025 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4026 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4027 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4028 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4029 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4030 UINT_MAX, 0);
4031 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4032 #undef STORE_FUNCTION
4033
4034 #define CFQ_ATTR(name) \
4035 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4036
4037 static struct elv_fs_entry cfq_attrs[] = {
4038 CFQ_ATTR(quantum),
4039 CFQ_ATTR(fifo_expire_sync),
4040 CFQ_ATTR(fifo_expire_async),
4041 CFQ_ATTR(back_seek_max),
4042 CFQ_ATTR(back_seek_penalty),
4043 CFQ_ATTR(slice_sync),
4044 CFQ_ATTR(slice_async),
4045 CFQ_ATTR(slice_async_rq),
4046 CFQ_ATTR(slice_idle),
4047 CFQ_ATTR(group_idle),
4048 CFQ_ATTR(low_latency),
4049 __ATTR_NULL
4050 };
4051
4052 static struct elevator_type iosched_cfq = {
4053 .ops = {
4054 .elevator_merge_fn = cfq_merge,
4055 .elevator_merged_fn = cfq_merged_request,
4056 .elevator_merge_req_fn = cfq_merged_requests,
4057 .elevator_allow_merge_fn = cfq_allow_merge,
4058 .elevator_bio_merged_fn = cfq_bio_merged,
4059 .elevator_dispatch_fn = cfq_dispatch_requests,
4060 .elevator_add_req_fn = cfq_insert_request,
4061 .elevator_activate_req_fn = cfq_activate_request,
4062 .elevator_deactivate_req_fn = cfq_deactivate_request,
4063 .elevator_queue_empty_fn = cfq_queue_empty,
4064 .elevator_completed_req_fn = cfq_completed_request,
4065 .elevator_former_req_fn = elv_rb_former_request,
4066 .elevator_latter_req_fn = elv_rb_latter_request,
4067 .elevator_set_req_fn = cfq_set_request,
4068 .elevator_put_req_fn = cfq_put_request,
4069 .elevator_may_queue_fn = cfq_may_queue,
4070 .elevator_init_fn = cfq_init_queue,
4071 .elevator_exit_fn = cfq_exit_queue,
4072 .trim = cfq_free_io_context,
4073 },
4074 .elevator_attrs = cfq_attrs,
4075 .elevator_name = "cfq",
4076 .elevator_owner = THIS_MODULE,
4077 };
4078
4079 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4080 static struct blkio_policy_type blkio_policy_cfq = {
4081 .ops = {
4082 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4083 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4084 },
4085 .plid = BLKIO_POLICY_PROP,
4086 };
4087 #else
4088 static struct blkio_policy_type blkio_policy_cfq;
4089 #endif
4090
4091 static int __init cfq_init(void)
4092 {
4093 /*
4094 * could be 0 on HZ < 1000 setups
4095 */
4096 if (!cfq_slice_async)
4097 cfq_slice_async = 1;
4098 if (!cfq_slice_idle)
4099 cfq_slice_idle = 1;
4100
4101 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4102 if (!cfq_group_idle)
4103 cfq_group_idle = 1;
4104 #else
4105 cfq_group_idle = 0;
4106 #endif
4107 if (cfq_slab_setup())
4108 return -ENOMEM;
4109
4110 elv_register(&iosched_cfq);
4111 blkio_policy_register(&blkio_policy_cfq);
4112
4113 return 0;
4114 }
4115
4116 static void __exit cfq_exit(void)
4117 {
4118 DECLARE_COMPLETION_ONSTACK(all_gone);
4119 blkio_policy_unregister(&blkio_policy_cfq);
4120 elv_unregister(&iosched_cfq);
4121 ioc_gone = &all_gone;
4122 /* ioc_gone's update must be visible before reading ioc_count */
4123 smp_wmb();
4124
4125 /*
4126 * this also protects us from entering cfq_slab_kill() with
4127 * pending RCU callbacks
4128 */
4129 if (elv_ioc_count_read(cfq_ioc_count))
4130 wait_for_completion(&all_gone);
4131 ida_destroy(&cic_index_ida);
4132 cfq_slab_kill();
4133 }
4134
4135 module_init(cfq_init);
4136 module_exit(cfq_exit);
4137
4138 MODULE_AUTHOR("Jens Axboe");
4139 MODULE_LICENSE("GPL");
4140 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");