Merge branches 'topic/fix/misc' and 'topic/fix/asoc' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17 * tunables
18 */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32 * offset from end of service tree
33 */
34 #define CFQ_IDLE_DELAY (HZ / 5)
35
36 /*
37 * below this threshold, we consider thinktime immediate
38 */
39 #define CFQ_MIN_TT (2)
40
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
43
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define ASYNC (0)
60 #define SYNC (1)
61
62 #define sample_valid(samples) ((samples) > 80)
63
64 /*
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
69 */
70 struct cfq_rb_root {
71 struct rb_root rb;
72 struct rb_node *left;
73 };
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
75
76 /*
77 * Per block device queue structure
78 */
79 struct cfq_data {
80 struct request_queue *queue;
81
82 /*
83 * rr list of queues with requests and the count of them
84 */
85 struct cfq_rb_root service_tree;
86 unsigned int busy_queues;
87
88 int rq_in_driver;
89 int sync_flight;
90
91 /*
92 * queue-depth detection
93 */
94 int rq_queued;
95 int hw_tag;
96 int hw_tag_samples;
97 int rq_in_driver_peak;
98
99 /*
100 * idle window management
101 */
102 struct timer_list idle_slice_timer;
103 struct work_struct unplug_work;
104
105 struct cfq_queue *active_queue;
106 struct cfq_io_context *active_cic;
107
108 /*
109 * async queue for each priority case
110 */
111 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
112 struct cfq_queue *async_idle_cfqq;
113
114 sector_t last_position;
115 unsigned long last_end_request;
116
117 /*
118 * tunables, see top of file
119 */
120 unsigned int cfq_quantum;
121 unsigned int cfq_fifo_expire[2];
122 unsigned int cfq_back_penalty;
123 unsigned int cfq_back_max;
124 unsigned int cfq_slice[2];
125 unsigned int cfq_slice_async_rq;
126 unsigned int cfq_slice_idle;
127
128 struct list_head cic_list;
129 };
130
131 /*
132 * Per process-grouping structure
133 */
134 struct cfq_queue {
135 /* reference count */
136 atomic_t ref;
137 /* various state flags, see below */
138 unsigned int flags;
139 /* parent cfq_data */
140 struct cfq_data *cfqd;
141 /* service_tree member */
142 struct rb_node rb_node;
143 /* service_tree key */
144 unsigned long rb_key;
145 /* sorted list of pending requests */
146 struct rb_root sort_list;
147 /* if fifo isn't expired, next request to serve */
148 struct request *next_rq;
149 /* requests queued in sort_list */
150 int queued[2];
151 /* currently allocated requests */
152 int allocated[2];
153 /* fifo list of requests in sort_list */
154 struct list_head fifo;
155
156 unsigned long slice_end;
157 long slice_resid;
158
159 /* pending metadata requests */
160 int meta_pending;
161 /* number of requests that are on the dispatch list or inside driver */
162 int dispatched;
163
164 /* io prio of this group */
165 unsigned short ioprio, org_ioprio;
166 unsigned short ioprio_class, org_ioprio_class;
167
168 pid_t pid;
169 };
170
171 enum cfqq_state_flags {
172 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
173 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
174 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
175 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
176 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
177 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
178 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
179 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
180 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
181 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
182 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
183 };
184
185 #define CFQ_CFQQ_FNS(name) \
186 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
187 { \
188 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
189 } \
190 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
191 { \
192 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
193 } \
194 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
195 { \
196 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
197 }
198
199 CFQ_CFQQ_FNS(on_rr);
200 CFQ_CFQQ_FNS(wait_request);
201 CFQ_CFQQ_FNS(must_alloc);
202 CFQ_CFQQ_FNS(must_alloc_slice);
203 CFQ_CFQQ_FNS(must_dispatch);
204 CFQ_CFQQ_FNS(fifo_expire);
205 CFQ_CFQQ_FNS(idle_window);
206 CFQ_CFQQ_FNS(prio_changed);
207 CFQ_CFQQ_FNS(queue_new);
208 CFQ_CFQQ_FNS(slice_new);
209 CFQ_CFQQ_FNS(sync);
210 #undef CFQ_CFQQ_FNS
211
212 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
213 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
214 #define cfq_log(cfqd, fmt, args...) \
215 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
216
217 static void cfq_dispatch_insert(struct request_queue *, struct request *);
218 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
219 struct io_context *, gfp_t);
220 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
221 struct io_context *);
222
223 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
224 int is_sync)
225 {
226 return cic->cfqq[!!is_sync];
227 }
228
229 static inline void cic_set_cfqq(struct cfq_io_context *cic,
230 struct cfq_queue *cfqq, int is_sync)
231 {
232 cic->cfqq[!!is_sync] = cfqq;
233 }
234
235 /*
236 * We regard a request as SYNC, if it's either a read or has the SYNC bit
237 * set (in which case it could also be direct WRITE).
238 */
239 static inline int cfq_bio_sync(struct bio *bio)
240 {
241 if (bio_data_dir(bio) == READ || bio_sync(bio))
242 return 1;
243
244 return 0;
245 }
246
247 /*
248 * scheduler run of queue, if there are requests pending and no one in the
249 * driver that will restart queueing
250 */
251 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
252 {
253 if (cfqd->busy_queues) {
254 cfq_log(cfqd, "schedule dispatch");
255 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
256 }
257 }
258
259 static int cfq_queue_empty(struct request_queue *q)
260 {
261 struct cfq_data *cfqd = q->elevator->elevator_data;
262
263 return !cfqd->busy_queues;
264 }
265
266 /*
267 * Scale schedule slice based on io priority. Use the sync time slice only
268 * if a queue is marked sync and has sync io queued. A sync queue with async
269 * io only, should not get full sync slice length.
270 */
271 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
272 unsigned short prio)
273 {
274 const int base_slice = cfqd->cfq_slice[sync];
275
276 WARN_ON(prio >= IOPRIO_BE_NR);
277
278 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
279 }
280
281 static inline int
282 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
283 {
284 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
285 }
286
287 static inline void
288 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
289 {
290 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
291 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
292 }
293
294 /*
295 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
296 * isn't valid until the first request from the dispatch is activated
297 * and the slice time set.
298 */
299 static inline int cfq_slice_used(struct cfq_queue *cfqq)
300 {
301 if (cfq_cfqq_slice_new(cfqq))
302 return 0;
303 if (time_before(jiffies, cfqq->slice_end))
304 return 0;
305
306 return 1;
307 }
308
309 /*
310 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
311 * We choose the request that is closest to the head right now. Distance
312 * behind the head is penalized and only allowed to a certain extent.
313 */
314 static struct request *
315 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
316 {
317 sector_t last, s1, s2, d1 = 0, d2 = 0;
318 unsigned long back_max;
319 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
320 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
321 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
322
323 if (rq1 == NULL || rq1 == rq2)
324 return rq2;
325 if (rq2 == NULL)
326 return rq1;
327
328 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
329 return rq1;
330 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
331 return rq2;
332 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
333 return rq1;
334 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
335 return rq2;
336
337 s1 = rq1->sector;
338 s2 = rq2->sector;
339
340 last = cfqd->last_position;
341
342 /*
343 * by definition, 1KiB is 2 sectors
344 */
345 back_max = cfqd->cfq_back_max * 2;
346
347 /*
348 * Strict one way elevator _except_ in the case where we allow
349 * short backward seeks which are biased as twice the cost of a
350 * similar forward seek.
351 */
352 if (s1 >= last)
353 d1 = s1 - last;
354 else if (s1 + back_max >= last)
355 d1 = (last - s1) * cfqd->cfq_back_penalty;
356 else
357 wrap |= CFQ_RQ1_WRAP;
358
359 if (s2 >= last)
360 d2 = s2 - last;
361 else if (s2 + back_max >= last)
362 d2 = (last - s2) * cfqd->cfq_back_penalty;
363 else
364 wrap |= CFQ_RQ2_WRAP;
365
366 /* Found required data */
367
368 /*
369 * By doing switch() on the bit mask "wrap" we avoid having to
370 * check two variables for all permutations: --> faster!
371 */
372 switch (wrap) {
373 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
374 if (d1 < d2)
375 return rq1;
376 else if (d2 < d1)
377 return rq2;
378 else {
379 if (s1 >= s2)
380 return rq1;
381 else
382 return rq2;
383 }
384
385 case CFQ_RQ2_WRAP:
386 return rq1;
387 case CFQ_RQ1_WRAP:
388 return rq2;
389 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
390 default:
391 /*
392 * Since both rqs are wrapped,
393 * start with the one that's further behind head
394 * (--> only *one* back seek required),
395 * since back seek takes more time than forward.
396 */
397 if (s1 <= s2)
398 return rq1;
399 else
400 return rq2;
401 }
402 }
403
404 /*
405 * The below is leftmost cache rbtree addon
406 */
407 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
408 {
409 if (!root->left)
410 root->left = rb_first(&root->rb);
411
412 if (root->left)
413 return rb_entry(root->left, struct cfq_queue, rb_node);
414
415 return NULL;
416 }
417
418 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
419 {
420 if (root->left == n)
421 root->left = NULL;
422
423 rb_erase(n, &root->rb);
424 RB_CLEAR_NODE(n);
425 }
426
427 /*
428 * would be nice to take fifo expire time into account as well
429 */
430 static struct request *
431 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
432 struct request *last)
433 {
434 struct rb_node *rbnext = rb_next(&last->rb_node);
435 struct rb_node *rbprev = rb_prev(&last->rb_node);
436 struct request *next = NULL, *prev = NULL;
437
438 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
439
440 if (rbprev)
441 prev = rb_entry_rq(rbprev);
442
443 if (rbnext)
444 next = rb_entry_rq(rbnext);
445 else {
446 rbnext = rb_first(&cfqq->sort_list);
447 if (rbnext && rbnext != &last->rb_node)
448 next = rb_entry_rq(rbnext);
449 }
450
451 return cfq_choose_req(cfqd, next, prev);
452 }
453
454 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
455 struct cfq_queue *cfqq)
456 {
457 /*
458 * just an approximation, should be ok.
459 */
460 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
461 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
462 }
463
464 /*
465 * The cfqd->service_tree holds all pending cfq_queue's that have
466 * requests waiting to be processed. It is sorted in the order that
467 * we will service the queues.
468 */
469 static void cfq_service_tree_add(struct cfq_data *cfqd,
470 struct cfq_queue *cfqq, int add_front)
471 {
472 struct rb_node **p, *parent;
473 struct cfq_queue *__cfqq;
474 unsigned long rb_key;
475 int left;
476
477 if (cfq_class_idle(cfqq)) {
478 rb_key = CFQ_IDLE_DELAY;
479 parent = rb_last(&cfqd->service_tree.rb);
480 if (parent && parent != &cfqq->rb_node) {
481 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
482 rb_key += __cfqq->rb_key;
483 } else
484 rb_key += jiffies;
485 } else if (!add_front) {
486 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
487 rb_key += cfqq->slice_resid;
488 cfqq->slice_resid = 0;
489 } else
490 rb_key = 0;
491
492 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
493 /*
494 * same position, nothing more to do
495 */
496 if (rb_key == cfqq->rb_key)
497 return;
498
499 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
500 }
501
502 left = 1;
503 parent = NULL;
504 p = &cfqd->service_tree.rb.rb_node;
505 while (*p) {
506 struct rb_node **n;
507
508 parent = *p;
509 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
510
511 /*
512 * sort RT queues first, we always want to give
513 * preference to them. IDLE queues goes to the back.
514 * after that, sort on the next service time.
515 */
516 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
517 n = &(*p)->rb_left;
518 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
519 n = &(*p)->rb_right;
520 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
521 n = &(*p)->rb_left;
522 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
523 n = &(*p)->rb_right;
524 else if (rb_key < __cfqq->rb_key)
525 n = &(*p)->rb_left;
526 else
527 n = &(*p)->rb_right;
528
529 if (n == &(*p)->rb_right)
530 left = 0;
531
532 p = n;
533 }
534
535 if (left)
536 cfqd->service_tree.left = &cfqq->rb_node;
537
538 cfqq->rb_key = rb_key;
539 rb_link_node(&cfqq->rb_node, parent, p);
540 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
541 }
542
543 /*
544 * Update cfqq's position in the service tree.
545 */
546 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
547 {
548 /*
549 * Resorting requires the cfqq to be on the RR list already.
550 */
551 if (cfq_cfqq_on_rr(cfqq))
552 cfq_service_tree_add(cfqd, cfqq, 0);
553 }
554
555 /*
556 * add to busy list of queues for service, trying to be fair in ordering
557 * the pending list according to last request service
558 */
559 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
560 {
561 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
562 BUG_ON(cfq_cfqq_on_rr(cfqq));
563 cfq_mark_cfqq_on_rr(cfqq);
564 cfqd->busy_queues++;
565
566 cfq_resort_rr_list(cfqd, cfqq);
567 }
568
569 /*
570 * Called when the cfqq no longer has requests pending, remove it from
571 * the service tree.
572 */
573 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
574 {
575 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
576 BUG_ON(!cfq_cfqq_on_rr(cfqq));
577 cfq_clear_cfqq_on_rr(cfqq);
578
579 if (!RB_EMPTY_NODE(&cfqq->rb_node))
580 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
581
582 BUG_ON(!cfqd->busy_queues);
583 cfqd->busy_queues--;
584 }
585
586 /*
587 * rb tree support functions
588 */
589 static void cfq_del_rq_rb(struct request *rq)
590 {
591 struct cfq_queue *cfqq = RQ_CFQQ(rq);
592 struct cfq_data *cfqd = cfqq->cfqd;
593 const int sync = rq_is_sync(rq);
594
595 BUG_ON(!cfqq->queued[sync]);
596 cfqq->queued[sync]--;
597
598 elv_rb_del(&cfqq->sort_list, rq);
599
600 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
601 cfq_del_cfqq_rr(cfqd, cfqq);
602 }
603
604 static void cfq_add_rq_rb(struct request *rq)
605 {
606 struct cfq_queue *cfqq = RQ_CFQQ(rq);
607 struct cfq_data *cfqd = cfqq->cfqd;
608 struct request *__alias;
609
610 cfqq->queued[rq_is_sync(rq)]++;
611
612 /*
613 * looks a little odd, but the first insert might return an alias.
614 * if that happens, put the alias on the dispatch list
615 */
616 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
617 cfq_dispatch_insert(cfqd->queue, __alias);
618
619 if (!cfq_cfqq_on_rr(cfqq))
620 cfq_add_cfqq_rr(cfqd, cfqq);
621
622 /*
623 * check if this request is a better next-serve candidate
624 */
625 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
626 BUG_ON(!cfqq->next_rq);
627 }
628
629 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
630 {
631 elv_rb_del(&cfqq->sort_list, rq);
632 cfqq->queued[rq_is_sync(rq)]--;
633 cfq_add_rq_rb(rq);
634 }
635
636 static struct request *
637 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
638 {
639 struct task_struct *tsk = current;
640 struct cfq_io_context *cic;
641 struct cfq_queue *cfqq;
642
643 cic = cfq_cic_lookup(cfqd, tsk->io_context);
644 if (!cic)
645 return NULL;
646
647 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
648 if (cfqq) {
649 sector_t sector = bio->bi_sector + bio_sectors(bio);
650
651 return elv_rb_find(&cfqq->sort_list, sector);
652 }
653
654 return NULL;
655 }
656
657 static void cfq_activate_request(struct request_queue *q, struct request *rq)
658 {
659 struct cfq_data *cfqd = q->elevator->elevator_data;
660
661 cfqd->rq_in_driver++;
662 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
663 cfqd->rq_in_driver);
664
665 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
666 }
667
668 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
669 {
670 struct cfq_data *cfqd = q->elevator->elevator_data;
671
672 WARN_ON(!cfqd->rq_in_driver);
673 cfqd->rq_in_driver--;
674 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
675 cfqd->rq_in_driver);
676 }
677
678 static void cfq_remove_request(struct request *rq)
679 {
680 struct cfq_queue *cfqq = RQ_CFQQ(rq);
681
682 if (cfqq->next_rq == rq)
683 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
684
685 list_del_init(&rq->queuelist);
686 cfq_del_rq_rb(rq);
687
688 cfqq->cfqd->rq_queued--;
689 if (rq_is_meta(rq)) {
690 WARN_ON(!cfqq->meta_pending);
691 cfqq->meta_pending--;
692 }
693 }
694
695 static int cfq_merge(struct request_queue *q, struct request **req,
696 struct bio *bio)
697 {
698 struct cfq_data *cfqd = q->elevator->elevator_data;
699 struct request *__rq;
700
701 __rq = cfq_find_rq_fmerge(cfqd, bio);
702 if (__rq && elv_rq_merge_ok(__rq, bio)) {
703 *req = __rq;
704 return ELEVATOR_FRONT_MERGE;
705 }
706
707 return ELEVATOR_NO_MERGE;
708 }
709
710 static void cfq_merged_request(struct request_queue *q, struct request *req,
711 int type)
712 {
713 if (type == ELEVATOR_FRONT_MERGE) {
714 struct cfq_queue *cfqq = RQ_CFQQ(req);
715
716 cfq_reposition_rq_rb(cfqq, req);
717 }
718 }
719
720 static void
721 cfq_merged_requests(struct request_queue *q, struct request *rq,
722 struct request *next)
723 {
724 /*
725 * reposition in fifo if next is older than rq
726 */
727 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
728 time_before(next->start_time, rq->start_time))
729 list_move(&rq->queuelist, &next->queuelist);
730
731 cfq_remove_request(next);
732 }
733
734 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
735 struct bio *bio)
736 {
737 struct cfq_data *cfqd = q->elevator->elevator_data;
738 struct cfq_io_context *cic;
739 struct cfq_queue *cfqq;
740
741 /*
742 * Disallow merge of a sync bio into an async request.
743 */
744 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
745 return 0;
746
747 /*
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
750 */
751 cic = cfq_cic_lookup(cfqd, current->io_context);
752 if (!cic)
753 return 0;
754
755 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756 if (cfqq == RQ_CFQQ(rq))
757 return 1;
758
759 return 0;
760 }
761
762 static void __cfq_set_active_queue(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
764 {
765 if (cfqq) {
766 cfq_log_cfqq(cfqd, cfqq, "set_active");
767 cfqq->slice_end = 0;
768 cfq_clear_cfqq_must_alloc_slice(cfqq);
769 cfq_clear_cfqq_fifo_expire(cfqq);
770 cfq_mark_cfqq_slice_new(cfqq);
771 cfq_clear_cfqq_queue_new(cfqq);
772 }
773
774 cfqd->active_queue = cfqq;
775 }
776
777 /*
778 * current cfqq expired its slice (or was too idle), select new one
779 */
780 static void
781 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
782 int timed_out)
783 {
784 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
785
786 if (cfq_cfqq_wait_request(cfqq))
787 del_timer(&cfqd->idle_slice_timer);
788
789 cfq_clear_cfqq_must_dispatch(cfqq);
790 cfq_clear_cfqq_wait_request(cfqq);
791
792 /*
793 * store what was left of this slice, if the queue idled/timed out
794 */
795 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
796 cfqq->slice_resid = cfqq->slice_end - jiffies;
797 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
798 }
799
800 cfq_resort_rr_list(cfqd, cfqq);
801
802 if (cfqq == cfqd->active_queue)
803 cfqd->active_queue = NULL;
804
805 if (cfqd->active_cic) {
806 put_io_context(cfqd->active_cic->ioc);
807 cfqd->active_cic = NULL;
808 }
809 }
810
811 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
812 {
813 struct cfq_queue *cfqq = cfqd->active_queue;
814
815 if (cfqq)
816 __cfq_slice_expired(cfqd, cfqq, timed_out);
817 }
818
819 /*
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
822 */
823 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
824 {
825 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
826 return NULL;
827
828 return cfq_rb_first(&cfqd->service_tree);
829 }
830
831 /*
832 * Get and set a new active queue for service.
833 */
834 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
835 {
836 struct cfq_queue *cfqq;
837
838 cfqq = cfq_get_next_queue(cfqd);
839 __cfq_set_active_queue(cfqd, cfqq);
840 return cfqq;
841 }
842
843 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
844 struct request *rq)
845 {
846 if (rq->sector >= cfqd->last_position)
847 return rq->sector - cfqd->last_position;
848 else
849 return cfqd->last_position - rq->sector;
850 }
851
852 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
853 {
854 struct cfq_io_context *cic = cfqd->active_cic;
855
856 if (!sample_valid(cic->seek_samples))
857 return 0;
858
859 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
860 }
861
862 static int cfq_close_cooperator(struct cfq_data *cfq_data,
863 struct cfq_queue *cfqq)
864 {
865 /*
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
869 */
870 return 0;
871 }
872
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
874
875 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
876 {
877 struct cfq_queue *cfqq = cfqd->active_queue;
878 struct cfq_io_context *cic;
879 unsigned long sl;
880
881 /*
882 * SSD device without seek penalty, disable idling. But only do so
883 * for devices that support queuing, otherwise we still have a problem
884 * with sync vs async workloads.
885 */
886 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
887 return;
888
889 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
890 WARN_ON(cfq_cfqq_slice_new(cfqq));
891
892 /*
893 * idle is disabled, either manually or by past process history
894 */
895 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
896 return;
897
898 /*
899 * still requests with the driver, don't idle
900 */
901 if (cfqd->rq_in_driver)
902 return;
903
904 /*
905 * task has exited, don't wait
906 */
907 cic = cfqd->active_cic;
908 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
909 return;
910
911 /*
912 * See if this prio level has a good candidate
913 */
914 if (cfq_close_cooperator(cfqd, cfqq) &&
915 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
916 return;
917
918 cfq_mark_cfqq_must_dispatch(cfqq);
919 cfq_mark_cfqq_wait_request(cfqq);
920
921 /*
922 * we don't want to idle for seeks, but we do want to allow
923 * fair distribution of slice time for a process doing back-to-back
924 * seeks. so allow a little bit of time for him to submit a new rq
925 */
926 sl = cfqd->cfq_slice_idle;
927 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
928 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
929
930 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
931 cfq_log(cfqd, "arm_idle: %lu", sl);
932 }
933
934 /*
935 * Move request from internal lists to the request queue dispatch list.
936 */
937 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
938 {
939 struct cfq_data *cfqd = q->elevator->elevator_data;
940 struct cfq_queue *cfqq = RQ_CFQQ(rq);
941
942 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
943
944 cfq_remove_request(rq);
945 cfqq->dispatched++;
946 elv_dispatch_sort(q, rq);
947
948 if (cfq_cfqq_sync(cfqq))
949 cfqd->sync_flight++;
950 }
951
952 /*
953 * return expired entry, or NULL to just start from scratch in rbtree
954 */
955 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
956 {
957 struct cfq_data *cfqd = cfqq->cfqd;
958 struct request *rq;
959 int fifo;
960
961 if (cfq_cfqq_fifo_expire(cfqq))
962 return NULL;
963
964 cfq_mark_cfqq_fifo_expire(cfqq);
965
966 if (list_empty(&cfqq->fifo))
967 return NULL;
968
969 fifo = cfq_cfqq_sync(cfqq);
970 rq = rq_entry_fifo(cfqq->fifo.next);
971
972 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
973 rq = NULL;
974
975 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
976 return rq;
977 }
978
979 static inline int
980 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
981 {
982 const int base_rq = cfqd->cfq_slice_async_rq;
983
984 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
985
986 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
987 }
988
989 /*
990 * Select a queue for service. If we have a current active queue,
991 * check whether to continue servicing it, or retrieve and set a new one.
992 */
993 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
994 {
995 struct cfq_queue *cfqq;
996
997 cfqq = cfqd->active_queue;
998 if (!cfqq)
999 goto new_queue;
1000
1001 /*
1002 * The active queue has run out of time, expire it and select new.
1003 */
1004 if (cfq_slice_used(cfqq))
1005 goto expire;
1006
1007 /*
1008 * The active queue has requests and isn't expired, allow it to
1009 * dispatch.
1010 */
1011 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1012 goto keep_queue;
1013
1014 /*
1015 * No requests pending. If the active queue still has requests in
1016 * flight or is idling for a new request, allow either of these
1017 * conditions to happen (or time out) before selecting a new queue.
1018 */
1019 if (timer_pending(&cfqd->idle_slice_timer) ||
1020 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1021 cfqq = NULL;
1022 goto keep_queue;
1023 }
1024
1025 expire:
1026 cfq_slice_expired(cfqd, 0);
1027 new_queue:
1028 cfqq = cfq_set_active_queue(cfqd);
1029 keep_queue:
1030 return cfqq;
1031 }
1032
1033 /*
1034 * Dispatch some requests from cfqq, moving them to the request queue
1035 * dispatch list.
1036 */
1037 static int
1038 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1039 int max_dispatch)
1040 {
1041 int dispatched = 0;
1042
1043 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1044
1045 do {
1046 struct request *rq;
1047
1048 /*
1049 * follow expired path, else get first next available
1050 */
1051 rq = cfq_check_fifo(cfqq);
1052 if (rq == NULL)
1053 rq = cfqq->next_rq;
1054
1055 /*
1056 * finally, insert request into driver dispatch list
1057 */
1058 cfq_dispatch_insert(cfqd->queue, rq);
1059
1060 dispatched++;
1061
1062 if (!cfqd->active_cic) {
1063 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1064 cfqd->active_cic = RQ_CIC(rq);
1065 }
1066
1067 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1068 break;
1069
1070 } while (dispatched < max_dispatch);
1071
1072 /*
1073 * expire an async queue immediately if it has used up its slice. idle
1074 * queue always expire after 1 dispatch round.
1075 */
1076 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1077 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1078 cfq_class_idle(cfqq))) {
1079 cfqq->slice_end = jiffies + 1;
1080 cfq_slice_expired(cfqd, 0);
1081 }
1082
1083 return dispatched;
1084 }
1085
1086 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1087 {
1088 int dispatched = 0;
1089
1090 while (cfqq->next_rq) {
1091 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1092 dispatched++;
1093 }
1094
1095 BUG_ON(!list_empty(&cfqq->fifo));
1096 return dispatched;
1097 }
1098
1099 /*
1100 * Drain our current requests. Used for barriers and when switching
1101 * io schedulers on-the-fly.
1102 */
1103 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1104 {
1105 struct cfq_queue *cfqq;
1106 int dispatched = 0;
1107
1108 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1109 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1110
1111 cfq_slice_expired(cfqd, 0);
1112
1113 BUG_ON(cfqd->busy_queues);
1114
1115 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1116 return dispatched;
1117 }
1118
1119 static int cfq_dispatch_requests(struct request_queue *q, int force)
1120 {
1121 struct cfq_data *cfqd = q->elevator->elevator_data;
1122 struct cfq_queue *cfqq;
1123 int dispatched;
1124
1125 if (!cfqd->busy_queues)
1126 return 0;
1127
1128 if (unlikely(force))
1129 return cfq_forced_dispatch(cfqd);
1130
1131 dispatched = 0;
1132 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1133 int max_dispatch;
1134
1135 max_dispatch = cfqd->cfq_quantum;
1136 if (cfq_class_idle(cfqq))
1137 max_dispatch = 1;
1138
1139 if (cfqq->dispatched >= max_dispatch) {
1140 if (cfqd->busy_queues > 1)
1141 break;
1142 if (cfqq->dispatched >= 4 * max_dispatch)
1143 break;
1144 }
1145
1146 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1147 break;
1148
1149 cfq_clear_cfqq_must_dispatch(cfqq);
1150 cfq_clear_cfqq_wait_request(cfqq);
1151 del_timer(&cfqd->idle_slice_timer);
1152
1153 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1154 }
1155
1156 cfq_log(cfqd, "dispatched=%d", dispatched);
1157 return dispatched;
1158 }
1159
1160 /*
1161 * task holds one reference to the queue, dropped when task exits. each rq
1162 * in-flight on this queue also holds a reference, dropped when rq is freed.
1163 *
1164 * queue lock must be held here.
1165 */
1166 static void cfq_put_queue(struct cfq_queue *cfqq)
1167 {
1168 struct cfq_data *cfqd = cfqq->cfqd;
1169
1170 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1171
1172 if (!atomic_dec_and_test(&cfqq->ref))
1173 return;
1174
1175 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1176 BUG_ON(rb_first(&cfqq->sort_list));
1177 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1178 BUG_ON(cfq_cfqq_on_rr(cfqq));
1179
1180 if (unlikely(cfqd->active_queue == cfqq)) {
1181 __cfq_slice_expired(cfqd, cfqq, 0);
1182 cfq_schedule_dispatch(cfqd);
1183 }
1184
1185 kmem_cache_free(cfq_pool, cfqq);
1186 }
1187
1188 /*
1189 * Must always be called with the rcu_read_lock() held
1190 */
1191 static void
1192 __call_for_each_cic(struct io_context *ioc,
1193 void (*func)(struct io_context *, struct cfq_io_context *))
1194 {
1195 struct cfq_io_context *cic;
1196 struct hlist_node *n;
1197
1198 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1199 func(ioc, cic);
1200 }
1201
1202 /*
1203 * Call func for each cic attached to this ioc.
1204 */
1205 static void
1206 call_for_each_cic(struct io_context *ioc,
1207 void (*func)(struct io_context *, struct cfq_io_context *))
1208 {
1209 rcu_read_lock();
1210 __call_for_each_cic(ioc, func);
1211 rcu_read_unlock();
1212 }
1213
1214 static void cfq_cic_free_rcu(struct rcu_head *head)
1215 {
1216 struct cfq_io_context *cic;
1217
1218 cic = container_of(head, struct cfq_io_context, rcu_head);
1219
1220 kmem_cache_free(cfq_ioc_pool, cic);
1221 elv_ioc_count_dec(ioc_count);
1222
1223 if (ioc_gone) {
1224 /*
1225 * CFQ scheduler is exiting, grab exit lock and check
1226 * the pending io context count. If it hits zero,
1227 * complete ioc_gone and set it back to NULL
1228 */
1229 spin_lock(&ioc_gone_lock);
1230 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1231 complete(ioc_gone);
1232 ioc_gone = NULL;
1233 }
1234 spin_unlock(&ioc_gone_lock);
1235 }
1236 }
1237
1238 static void cfq_cic_free(struct cfq_io_context *cic)
1239 {
1240 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1241 }
1242
1243 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1244 {
1245 unsigned long flags;
1246
1247 BUG_ON(!cic->dead_key);
1248
1249 spin_lock_irqsave(&ioc->lock, flags);
1250 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1251 hlist_del_rcu(&cic->cic_list);
1252 spin_unlock_irqrestore(&ioc->lock, flags);
1253
1254 cfq_cic_free(cic);
1255 }
1256
1257 /*
1258 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1259 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1260 * and ->trim() which is called with the task lock held
1261 */
1262 static void cfq_free_io_context(struct io_context *ioc)
1263 {
1264 /*
1265 * ioc->refcount is zero here, or we are called from elv_unregister(),
1266 * so no more cic's are allowed to be linked into this ioc. So it
1267 * should be ok to iterate over the known list, we will see all cic's
1268 * since no new ones are added.
1269 */
1270 __call_for_each_cic(ioc, cic_free_func);
1271 }
1272
1273 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1274 {
1275 if (unlikely(cfqq == cfqd->active_queue)) {
1276 __cfq_slice_expired(cfqd, cfqq, 0);
1277 cfq_schedule_dispatch(cfqd);
1278 }
1279
1280 cfq_put_queue(cfqq);
1281 }
1282
1283 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1284 struct cfq_io_context *cic)
1285 {
1286 struct io_context *ioc = cic->ioc;
1287
1288 list_del_init(&cic->queue_list);
1289
1290 /*
1291 * Make sure key == NULL is seen for dead queues
1292 */
1293 smp_wmb();
1294 cic->dead_key = (unsigned long) cic->key;
1295 cic->key = NULL;
1296
1297 if (ioc->ioc_data == cic)
1298 rcu_assign_pointer(ioc->ioc_data, NULL);
1299
1300 if (cic->cfqq[ASYNC]) {
1301 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1302 cic->cfqq[ASYNC] = NULL;
1303 }
1304
1305 if (cic->cfqq[SYNC]) {
1306 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1307 cic->cfqq[SYNC] = NULL;
1308 }
1309 }
1310
1311 static void cfq_exit_single_io_context(struct io_context *ioc,
1312 struct cfq_io_context *cic)
1313 {
1314 struct cfq_data *cfqd = cic->key;
1315
1316 if (cfqd) {
1317 struct request_queue *q = cfqd->queue;
1318 unsigned long flags;
1319
1320 spin_lock_irqsave(q->queue_lock, flags);
1321 __cfq_exit_single_io_context(cfqd, cic);
1322 spin_unlock_irqrestore(q->queue_lock, flags);
1323 }
1324 }
1325
1326 /*
1327 * The process that ioc belongs to has exited, we need to clean up
1328 * and put the internal structures we have that belongs to that process.
1329 */
1330 static void cfq_exit_io_context(struct io_context *ioc)
1331 {
1332 call_for_each_cic(ioc, cfq_exit_single_io_context);
1333 }
1334
1335 static struct cfq_io_context *
1336 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1337 {
1338 struct cfq_io_context *cic;
1339
1340 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1341 cfqd->queue->node);
1342 if (cic) {
1343 cic->last_end_request = jiffies;
1344 INIT_LIST_HEAD(&cic->queue_list);
1345 INIT_HLIST_NODE(&cic->cic_list);
1346 cic->dtor = cfq_free_io_context;
1347 cic->exit = cfq_exit_io_context;
1348 elv_ioc_count_inc(ioc_count);
1349 }
1350
1351 return cic;
1352 }
1353
1354 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1355 {
1356 struct task_struct *tsk = current;
1357 int ioprio_class;
1358
1359 if (!cfq_cfqq_prio_changed(cfqq))
1360 return;
1361
1362 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1363 switch (ioprio_class) {
1364 default:
1365 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1366 case IOPRIO_CLASS_NONE:
1367 /*
1368 * no prio set, inherit CPU scheduling settings
1369 */
1370 cfqq->ioprio = task_nice_ioprio(tsk);
1371 cfqq->ioprio_class = task_nice_ioclass(tsk);
1372 break;
1373 case IOPRIO_CLASS_RT:
1374 cfqq->ioprio = task_ioprio(ioc);
1375 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1376 break;
1377 case IOPRIO_CLASS_BE:
1378 cfqq->ioprio = task_ioprio(ioc);
1379 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1380 break;
1381 case IOPRIO_CLASS_IDLE:
1382 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1383 cfqq->ioprio = 7;
1384 cfq_clear_cfqq_idle_window(cfqq);
1385 break;
1386 }
1387
1388 /*
1389 * keep track of original prio settings in case we have to temporarily
1390 * elevate the priority of this queue
1391 */
1392 cfqq->org_ioprio = cfqq->ioprio;
1393 cfqq->org_ioprio_class = cfqq->ioprio_class;
1394 cfq_clear_cfqq_prio_changed(cfqq);
1395 }
1396
1397 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1398 {
1399 struct cfq_data *cfqd = cic->key;
1400 struct cfq_queue *cfqq;
1401 unsigned long flags;
1402
1403 if (unlikely(!cfqd))
1404 return;
1405
1406 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1407
1408 cfqq = cic->cfqq[ASYNC];
1409 if (cfqq) {
1410 struct cfq_queue *new_cfqq;
1411 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1412 if (new_cfqq) {
1413 cic->cfqq[ASYNC] = new_cfqq;
1414 cfq_put_queue(cfqq);
1415 }
1416 }
1417
1418 cfqq = cic->cfqq[SYNC];
1419 if (cfqq)
1420 cfq_mark_cfqq_prio_changed(cfqq);
1421
1422 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1423 }
1424
1425 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1426 {
1427 call_for_each_cic(ioc, changed_ioprio);
1428 ioc->ioprio_changed = 0;
1429 }
1430
1431 static struct cfq_queue *
1432 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1433 struct io_context *ioc, gfp_t gfp_mask)
1434 {
1435 struct cfq_queue *cfqq, *new_cfqq = NULL;
1436 struct cfq_io_context *cic;
1437
1438 retry:
1439 cic = cfq_cic_lookup(cfqd, ioc);
1440 /* cic always exists here */
1441 cfqq = cic_to_cfqq(cic, is_sync);
1442
1443 if (!cfqq) {
1444 if (new_cfqq) {
1445 cfqq = new_cfqq;
1446 new_cfqq = NULL;
1447 } else if (gfp_mask & __GFP_WAIT) {
1448 /*
1449 * Inform the allocator of the fact that we will
1450 * just repeat this allocation if it fails, to allow
1451 * the allocator to do whatever it needs to attempt to
1452 * free memory.
1453 */
1454 spin_unlock_irq(cfqd->queue->queue_lock);
1455 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1456 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1457 cfqd->queue->node);
1458 spin_lock_irq(cfqd->queue->queue_lock);
1459 goto retry;
1460 } else {
1461 cfqq = kmem_cache_alloc_node(cfq_pool,
1462 gfp_mask | __GFP_ZERO,
1463 cfqd->queue->node);
1464 if (!cfqq)
1465 goto out;
1466 }
1467
1468 RB_CLEAR_NODE(&cfqq->rb_node);
1469 INIT_LIST_HEAD(&cfqq->fifo);
1470
1471 atomic_set(&cfqq->ref, 0);
1472 cfqq->cfqd = cfqd;
1473
1474 cfq_mark_cfqq_prio_changed(cfqq);
1475 cfq_mark_cfqq_queue_new(cfqq);
1476
1477 cfq_init_prio_data(cfqq, ioc);
1478
1479 if (is_sync) {
1480 if (!cfq_class_idle(cfqq))
1481 cfq_mark_cfqq_idle_window(cfqq);
1482 cfq_mark_cfqq_sync(cfqq);
1483 }
1484 cfqq->pid = current->pid;
1485 cfq_log_cfqq(cfqd, cfqq, "alloced");
1486 }
1487
1488 if (new_cfqq)
1489 kmem_cache_free(cfq_pool, new_cfqq);
1490
1491 out:
1492 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1493 return cfqq;
1494 }
1495
1496 static struct cfq_queue **
1497 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1498 {
1499 switch (ioprio_class) {
1500 case IOPRIO_CLASS_RT:
1501 return &cfqd->async_cfqq[0][ioprio];
1502 case IOPRIO_CLASS_BE:
1503 return &cfqd->async_cfqq[1][ioprio];
1504 case IOPRIO_CLASS_IDLE:
1505 return &cfqd->async_idle_cfqq;
1506 default:
1507 BUG();
1508 }
1509 }
1510
1511 static struct cfq_queue *
1512 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1513 gfp_t gfp_mask)
1514 {
1515 const int ioprio = task_ioprio(ioc);
1516 const int ioprio_class = task_ioprio_class(ioc);
1517 struct cfq_queue **async_cfqq = NULL;
1518 struct cfq_queue *cfqq = NULL;
1519
1520 if (!is_sync) {
1521 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1522 cfqq = *async_cfqq;
1523 }
1524
1525 if (!cfqq) {
1526 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1527 if (!cfqq)
1528 return NULL;
1529 }
1530
1531 /*
1532 * pin the queue now that it's allocated, scheduler exit will prune it
1533 */
1534 if (!is_sync && !(*async_cfqq)) {
1535 atomic_inc(&cfqq->ref);
1536 *async_cfqq = cfqq;
1537 }
1538
1539 atomic_inc(&cfqq->ref);
1540 return cfqq;
1541 }
1542
1543 /*
1544 * We drop cfq io contexts lazily, so we may find a dead one.
1545 */
1546 static void
1547 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1548 struct cfq_io_context *cic)
1549 {
1550 unsigned long flags;
1551
1552 WARN_ON(!list_empty(&cic->queue_list));
1553
1554 spin_lock_irqsave(&ioc->lock, flags);
1555
1556 BUG_ON(ioc->ioc_data == cic);
1557
1558 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1559 hlist_del_rcu(&cic->cic_list);
1560 spin_unlock_irqrestore(&ioc->lock, flags);
1561
1562 cfq_cic_free(cic);
1563 }
1564
1565 static struct cfq_io_context *
1566 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1567 {
1568 struct cfq_io_context *cic;
1569 unsigned long flags;
1570 void *k;
1571
1572 if (unlikely(!ioc))
1573 return NULL;
1574
1575 rcu_read_lock();
1576
1577 /*
1578 * we maintain a last-hit cache, to avoid browsing over the tree
1579 */
1580 cic = rcu_dereference(ioc->ioc_data);
1581 if (cic && cic->key == cfqd) {
1582 rcu_read_unlock();
1583 return cic;
1584 }
1585
1586 do {
1587 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1588 rcu_read_unlock();
1589 if (!cic)
1590 break;
1591 /* ->key must be copied to avoid race with cfq_exit_queue() */
1592 k = cic->key;
1593 if (unlikely(!k)) {
1594 cfq_drop_dead_cic(cfqd, ioc, cic);
1595 rcu_read_lock();
1596 continue;
1597 }
1598
1599 spin_lock_irqsave(&ioc->lock, flags);
1600 rcu_assign_pointer(ioc->ioc_data, cic);
1601 spin_unlock_irqrestore(&ioc->lock, flags);
1602 break;
1603 } while (1);
1604
1605 return cic;
1606 }
1607
1608 /*
1609 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1610 * the process specific cfq io context when entered from the block layer.
1611 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1612 */
1613 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1614 struct cfq_io_context *cic, gfp_t gfp_mask)
1615 {
1616 unsigned long flags;
1617 int ret;
1618
1619 ret = radix_tree_preload(gfp_mask);
1620 if (!ret) {
1621 cic->ioc = ioc;
1622 cic->key = cfqd;
1623
1624 spin_lock_irqsave(&ioc->lock, flags);
1625 ret = radix_tree_insert(&ioc->radix_root,
1626 (unsigned long) cfqd, cic);
1627 if (!ret)
1628 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1629 spin_unlock_irqrestore(&ioc->lock, flags);
1630
1631 radix_tree_preload_end();
1632
1633 if (!ret) {
1634 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1635 list_add(&cic->queue_list, &cfqd->cic_list);
1636 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1637 }
1638 }
1639
1640 if (ret)
1641 printk(KERN_ERR "cfq: cic link failed!\n");
1642
1643 return ret;
1644 }
1645
1646 /*
1647 * Setup general io context and cfq io context. There can be several cfq
1648 * io contexts per general io context, if this process is doing io to more
1649 * than one device managed by cfq.
1650 */
1651 static struct cfq_io_context *
1652 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1653 {
1654 struct io_context *ioc = NULL;
1655 struct cfq_io_context *cic;
1656
1657 might_sleep_if(gfp_mask & __GFP_WAIT);
1658
1659 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1660 if (!ioc)
1661 return NULL;
1662
1663 cic = cfq_cic_lookup(cfqd, ioc);
1664 if (cic)
1665 goto out;
1666
1667 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1668 if (cic == NULL)
1669 goto err;
1670
1671 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1672 goto err_free;
1673
1674 out:
1675 smp_read_barrier_depends();
1676 if (unlikely(ioc->ioprio_changed))
1677 cfq_ioc_set_ioprio(ioc);
1678
1679 return cic;
1680 err_free:
1681 cfq_cic_free(cic);
1682 err:
1683 put_io_context(ioc);
1684 return NULL;
1685 }
1686
1687 static void
1688 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1689 {
1690 unsigned long elapsed = jiffies - cic->last_end_request;
1691 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1692
1693 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1694 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1695 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1696 }
1697
1698 static void
1699 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1700 struct request *rq)
1701 {
1702 sector_t sdist;
1703 u64 total;
1704
1705 if (cic->last_request_pos < rq->sector)
1706 sdist = rq->sector - cic->last_request_pos;
1707 else
1708 sdist = cic->last_request_pos - rq->sector;
1709
1710 /*
1711 * Don't allow the seek distance to get too large from the
1712 * odd fragment, pagein, etc
1713 */
1714 if (cic->seek_samples <= 60) /* second&third seek */
1715 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1716 else
1717 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1718
1719 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1720 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1721 total = cic->seek_total + (cic->seek_samples/2);
1722 do_div(total, cic->seek_samples);
1723 cic->seek_mean = (sector_t)total;
1724 }
1725
1726 /*
1727 * Disable idle window if the process thinks too long or seeks so much that
1728 * it doesn't matter
1729 */
1730 static void
1731 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1732 struct cfq_io_context *cic)
1733 {
1734 int old_idle, enable_idle;
1735
1736 /*
1737 * Don't idle for async or idle io prio class
1738 */
1739 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1740 return;
1741
1742 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1743
1744 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1745 (cfqd->hw_tag && CIC_SEEKY(cic)))
1746 enable_idle = 0;
1747 else if (sample_valid(cic->ttime_samples)) {
1748 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1749 enable_idle = 0;
1750 else
1751 enable_idle = 1;
1752 }
1753
1754 if (old_idle != enable_idle) {
1755 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1756 if (enable_idle)
1757 cfq_mark_cfqq_idle_window(cfqq);
1758 else
1759 cfq_clear_cfqq_idle_window(cfqq);
1760 }
1761 }
1762
1763 /*
1764 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1765 * no or if we aren't sure, a 1 will cause a preempt.
1766 */
1767 static int
1768 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1769 struct request *rq)
1770 {
1771 struct cfq_queue *cfqq;
1772
1773 cfqq = cfqd->active_queue;
1774 if (!cfqq)
1775 return 0;
1776
1777 if (cfq_slice_used(cfqq))
1778 return 1;
1779
1780 if (cfq_class_idle(new_cfqq))
1781 return 0;
1782
1783 if (cfq_class_idle(cfqq))
1784 return 1;
1785
1786 /*
1787 * if the new request is sync, but the currently running queue is
1788 * not, let the sync request have priority.
1789 */
1790 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1791 return 1;
1792
1793 /*
1794 * So both queues are sync. Let the new request get disk time if
1795 * it's a metadata request and the current queue is doing regular IO.
1796 */
1797 if (rq_is_meta(rq) && !cfqq->meta_pending)
1798 return 1;
1799
1800 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1801 return 0;
1802
1803 /*
1804 * if this request is as-good as one we would expect from the
1805 * current cfqq, let it preempt
1806 */
1807 if (cfq_rq_close(cfqd, rq))
1808 return 1;
1809
1810 return 0;
1811 }
1812
1813 /*
1814 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1815 * let it have half of its nominal slice.
1816 */
1817 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1818 {
1819 cfq_log_cfqq(cfqd, cfqq, "preempt");
1820 cfq_slice_expired(cfqd, 1);
1821
1822 /*
1823 * Put the new queue at the front of the of the current list,
1824 * so we know that it will be selected next.
1825 */
1826 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1827
1828 cfq_service_tree_add(cfqd, cfqq, 1);
1829
1830 cfqq->slice_end = 0;
1831 cfq_mark_cfqq_slice_new(cfqq);
1832 }
1833
1834 /*
1835 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1836 * something we should do about it
1837 */
1838 static void
1839 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1840 struct request *rq)
1841 {
1842 struct cfq_io_context *cic = RQ_CIC(rq);
1843
1844 cfqd->rq_queued++;
1845 if (rq_is_meta(rq))
1846 cfqq->meta_pending++;
1847
1848 cfq_update_io_thinktime(cfqd, cic);
1849 cfq_update_io_seektime(cfqd, cic, rq);
1850 cfq_update_idle_window(cfqd, cfqq, cic);
1851
1852 cic->last_request_pos = rq->sector + rq->nr_sectors;
1853
1854 if (cfqq == cfqd->active_queue) {
1855 /*
1856 * if we are waiting for a request for this queue, let it rip
1857 * immediately and flag that we must not expire this queue
1858 * just now
1859 */
1860 if (cfq_cfqq_wait_request(cfqq)) {
1861 cfq_mark_cfqq_must_dispatch(cfqq);
1862 del_timer(&cfqd->idle_slice_timer);
1863 blk_start_queueing(cfqd->queue);
1864 }
1865 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1866 /*
1867 * not the active queue - expire current slice if it is
1868 * idle and has expired it's mean thinktime or this new queue
1869 * has some old slice time left and is of higher priority
1870 */
1871 cfq_preempt_queue(cfqd, cfqq);
1872 cfq_mark_cfqq_must_dispatch(cfqq);
1873 blk_start_queueing(cfqd->queue);
1874 }
1875 }
1876
1877 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1878 {
1879 struct cfq_data *cfqd = q->elevator->elevator_data;
1880 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1881
1882 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1883 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1884
1885 cfq_add_rq_rb(rq);
1886
1887 list_add_tail(&rq->queuelist, &cfqq->fifo);
1888
1889 cfq_rq_enqueued(cfqd, cfqq, rq);
1890 }
1891
1892 /*
1893 * Update hw_tag based on peak queue depth over 50 samples under
1894 * sufficient load.
1895 */
1896 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1897 {
1898 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1899 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1900
1901 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1902 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1903 return;
1904
1905 if (cfqd->hw_tag_samples++ < 50)
1906 return;
1907
1908 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1909 cfqd->hw_tag = 1;
1910 else
1911 cfqd->hw_tag = 0;
1912
1913 cfqd->hw_tag_samples = 0;
1914 cfqd->rq_in_driver_peak = 0;
1915 }
1916
1917 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1918 {
1919 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1920 struct cfq_data *cfqd = cfqq->cfqd;
1921 const int sync = rq_is_sync(rq);
1922 unsigned long now;
1923
1924 now = jiffies;
1925 cfq_log_cfqq(cfqd, cfqq, "complete");
1926
1927 cfq_update_hw_tag(cfqd);
1928
1929 WARN_ON(!cfqd->rq_in_driver);
1930 WARN_ON(!cfqq->dispatched);
1931 cfqd->rq_in_driver--;
1932 cfqq->dispatched--;
1933
1934 if (cfq_cfqq_sync(cfqq))
1935 cfqd->sync_flight--;
1936
1937 if (!cfq_class_idle(cfqq))
1938 cfqd->last_end_request = now;
1939
1940 if (sync)
1941 RQ_CIC(rq)->last_end_request = now;
1942
1943 /*
1944 * If this is the active queue, check if it needs to be expired,
1945 * or if we want to idle in case it has no pending requests.
1946 */
1947 if (cfqd->active_queue == cfqq) {
1948 if (cfq_cfqq_slice_new(cfqq)) {
1949 cfq_set_prio_slice(cfqd, cfqq);
1950 cfq_clear_cfqq_slice_new(cfqq);
1951 }
1952 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1953 cfq_slice_expired(cfqd, 1);
1954 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1955 cfq_arm_slice_timer(cfqd);
1956 }
1957
1958 if (!cfqd->rq_in_driver)
1959 cfq_schedule_dispatch(cfqd);
1960 }
1961
1962 /*
1963 * we temporarily boost lower priority queues if they are holding fs exclusive
1964 * resources. they are boosted to normal prio (CLASS_BE/4)
1965 */
1966 static void cfq_prio_boost(struct cfq_queue *cfqq)
1967 {
1968 if (has_fs_excl()) {
1969 /*
1970 * boost idle prio on transactions that would lock out other
1971 * users of the filesystem
1972 */
1973 if (cfq_class_idle(cfqq))
1974 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1975 if (cfqq->ioprio > IOPRIO_NORM)
1976 cfqq->ioprio = IOPRIO_NORM;
1977 } else {
1978 /*
1979 * check if we need to unboost the queue
1980 */
1981 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1982 cfqq->ioprio_class = cfqq->org_ioprio_class;
1983 if (cfqq->ioprio != cfqq->org_ioprio)
1984 cfqq->ioprio = cfqq->org_ioprio;
1985 }
1986 }
1987
1988 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1989 {
1990 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1991 !cfq_cfqq_must_alloc_slice(cfqq)) {
1992 cfq_mark_cfqq_must_alloc_slice(cfqq);
1993 return ELV_MQUEUE_MUST;
1994 }
1995
1996 return ELV_MQUEUE_MAY;
1997 }
1998
1999 static int cfq_may_queue(struct request_queue *q, int rw)
2000 {
2001 struct cfq_data *cfqd = q->elevator->elevator_data;
2002 struct task_struct *tsk = current;
2003 struct cfq_io_context *cic;
2004 struct cfq_queue *cfqq;
2005
2006 /*
2007 * don't force setup of a queue from here, as a call to may_queue
2008 * does not necessarily imply that a request actually will be queued.
2009 * so just lookup a possibly existing queue, or return 'may queue'
2010 * if that fails
2011 */
2012 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2013 if (!cic)
2014 return ELV_MQUEUE_MAY;
2015
2016 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2017 if (cfqq) {
2018 cfq_init_prio_data(cfqq, cic->ioc);
2019 cfq_prio_boost(cfqq);
2020
2021 return __cfq_may_queue(cfqq);
2022 }
2023
2024 return ELV_MQUEUE_MAY;
2025 }
2026
2027 /*
2028 * queue lock held here
2029 */
2030 static void cfq_put_request(struct request *rq)
2031 {
2032 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2033
2034 if (cfqq) {
2035 const int rw = rq_data_dir(rq);
2036
2037 BUG_ON(!cfqq->allocated[rw]);
2038 cfqq->allocated[rw]--;
2039
2040 put_io_context(RQ_CIC(rq)->ioc);
2041
2042 rq->elevator_private = NULL;
2043 rq->elevator_private2 = NULL;
2044
2045 cfq_put_queue(cfqq);
2046 }
2047 }
2048
2049 /*
2050 * Allocate cfq data structures associated with this request.
2051 */
2052 static int
2053 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2054 {
2055 struct cfq_data *cfqd = q->elevator->elevator_data;
2056 struct cfq_io_context *cic;
2057 const int rw = rq_data_dir(rq);
2058 const int is_sync = rq_is_sync(rq);
2059 struct cfq_queue *cfqq;
2060 unsigned long flags;
2061
2062 might_sleep_if(gfp_mask & __GFP_WAIT);
2063
2064 cic = cfq_get_io_context(cfqd, gfp_mask);
2065
2066 spin_lock_irqsave(q->queue_lock, flags);
2067
2068 if (!cic)
2069 goto queue_fail;
2070
2071 cfqq = cic_to_cfqq(cic, is_sync);
2072 if (!cfqq) {
2073 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2074
2075 if (!cfqq)
2076 goto queue_fail;
2077
2078 cic_set_cfqq(cic, cfqq, is_sync);
2079 }
2080
2081 cfqq->allocated[rw]++;
2082 cfq_clear_cfqq_must_alloc(cfqq);
2083 atomic_inc(&cfqq->ref);
2084
2085 spin_unlock_irqrestore(q->queue_lock, flags);
2086
2087 rq->elevator_private = cic;
2088 rq->elevator_private2 = cfqq;
2089 return 0;
2090
2091 queue_fail:
2092 if (cic)
2093 put_io_context(cic->ioc);
2094
2095 cfq_schedule_dispatch(cfqd);
2096 spin_unlock_irqrestore(q->queue_lock, flags);
2097 cfq_log(cfqd, "set_request fail");
2098 return 1;
2099 }
2100
2101 static void cfq_kick_queue(struct work_struct *work)
2102 {
2103 struct cfq_data *cfqd =
2104 container_of(work, struct cfq_data, unplug_work);
2105 struct request_queue *q = cfqd->queue;
2106 unsigned long flags;
2107
2108 spin_lock_irqsave(q->queue_lock, flags);
2109 blk_start_queueing(q);
2110 spin_unlock_irqrestore(q->queue_lock, flags);
2111 }
2112
2113 /*
2114 * Timer running if the active_queue is currently idling inside its time slice
2115 */
2116 static void cfq_idle_slice_timer(unsigned long data)
2117 {
2118 struct cfq_data *cfqd = (struct cfq_data *) data;
2119 struct cfq_queue *cfqq;
2120 unsigned long flags;
2121 int timed_out = 1;
2122
2123 cfq_log(cfqd, "idle timer fired");
2124
2125 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2126
2127 cfqq = cfqd->active_queue;
2128 if (cfqq) {
2129 timed_out = 0;
2130
2131 /*
2132 * expired
2133 */
2134 if (cfq_slice_used(cfqq))
2135 goto expire;
2136
2137 /*
2138 * only expire and reinvoke request handler, if there are
2139 * other queues with pending requests
2140 */
2141 if (!cfqd->busy_queues)
2142 goto out_cont;
2143
2144 /*
2145 * not expired and it has a request pending, let it dispatch
2146 */
2147 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2148 cfq_mark_cfqq_must_dispatch(cfqq);
2149 goto out_kick;
2150 }
2151 }
2152 expire:
2153 cfq_slice_expired(cfqd, timed_out);
2154 out_kick:
2155 cfq_schedule_dispatch(cfqd);
2156 out_cont:
2157 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2158 }
2159
2160 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2161 {
2162 del_timer_sync(&cfqd->idle_slice_timer);
2163 kblockd_flush_work(&cfqd->unplug_work);
2164 }
2165
2166 static void cfq_put_async_queues(struct cfq_data *cfqd)
2167 {
2168 int i;
2169
2170 for (i = 0; i < IOPRIO_BE_NR; i++) {
2171 if (cfqd->async_cfqq[0][i])
2172 cfq_put_queue(cfqd->async_cfqq[0][i]);
2173 if (cfqd->async_cfqq[1][i])
2174 cfq_put_queue(cfqd->async_cfqq[1][i]);
2175 }
2176
2177 if (cfqd->async_idle_cfqq)
2178 cfq_put_queue(cfqd->async_idle_cfqq);
2179 }
2180
2181 static void cfq_exit_queue(elevator_t *e)
2182 {
2183 struct cfq_data *cfqd = e->elevator_data;
2184 struct request_queue *q = cfqd->queue;
2185
2186 cfq_shutdown_timer_wq(cfqd);
2187
2188 spin_lock_irq(q->queue_lock);
2189
2190 if (cfqd->active_queue)
2191 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2192
2193 while (!list_empty(&cfqd->cic_list)) {
2194 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2195 struct cfq_io_context,
2196 queue_list);
2197
2198 __cfq_exit_single_io_context(cfqd, cic);
2199 }
2200
2201 cfq_put_async_queues(cfqd);
2202
2203 spin_unlock_irq(q->queue_lock);
2204
2205 cfq_shutdown_timer_wq(cfqd);
2206
2207 kfree(cfqd);
2208 }
2209
2210 static void *cfq_init_queue(struct request_queue *q)
2211 {
2212 struct cfq_data *cfqd;
2213
2214 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2215 if (!cfqd)
2216 return NULL;
2217
2218 cfqd->service_tree = CFQ_RB_ROOT;
2219 INIT_LIST_HEAD(&cfqd->cic_list);
2220
2221 cfqd->queue = q;
2222
2223 init_timer(&cfqd->idle_slice_timer);
2224 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2225 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2226
2227 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2228
2229 cfqd->last_end_request = jiffies;
2230 cfqd->cfq_quantum = cfq_quantum;
2231 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2232 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2233 cfqd->cfq_back_max = cfq_back_max;
2234 cfqd->cfq_back_penalty = cfq_back_penalty;
2235 cfqd->cfq_slice[0] = cfq_slice_async;
2236 cfqd->cfq_slice[1] = cfq_slice_sync;
2237 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2238 cfqd->cfq_slice_idle = cfq_slice_idle;
2239 cfqd->hw_tag = 1;
2240
2241 return cfqd;
2242 }
2243
2244 static void cfq_slab_kill(void)
2245 {
2246 /*
2247 * Caller already ensured that pending RCU callbacks are completed,
2248 * so we should have no busy allocations at this point.
2249 */
2250 if (cfq_pool)
2251 kmem_cache_destroy(cfq_pool);
2252 if (cfq_ioc_pool)
2253 kmem_cache_destroy(cfq_ioc_pool);
2254 }
2255
2256 static int __init cfq_slab_setup(void)
2257 {
2258 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2259 if (!cfq_pool)
2260 goto fail;
2261
2262 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2263 if (!cfq_ioc_pool)
2264 goto fail;
2265
2266 return 0;
2267 fail:
2268 cfq_slab_kill();
2269 return -ENOMEM;
2270 }
2271
2272 /*
2273 * sysfs parts below -->
2274 */
2275 static ssize_t
2276 cfq_var_show(unsigned int var, char *page)
2277 {
2278 return sprintf(page, "%d\n", var);
2279 }
2280
2281 static ssize_t
2282 cfq_var_store(unsigned int *var, const char *page, size_t count)
2283 {
2284 char *p = (char *) page;
2285
2286 *var = simple_strtoul(p, &p, 10);
2287 return count;
2288 }
2289
2290 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2291 static ssize_t __FUNC(elevator_t *e, char *page) \
2292 { \
2293 struct cfq_data *cfqd = e->elevator_data; \
2294 unsigned int __data = __VAR; \
2295 if (__CONV) \
2296 __data = jiffies_to_msecs(__data); \
2297 return cfq_var_show(__data, (page)); \
2298 }
2299 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2300 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2301 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2302 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2303 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2304 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2305 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2306 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2307 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2308 #undef SHOW_FUNCTION
2309
2310 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2311 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2312 { \
2313 struct cfq_data *cfqd = e->elevator_data; \
2314 unsigned int __data; \
2315 int ret = cfq_var_store(&__data, (page), count); \
2316 if (__data < (MIN)) \
2317 __data = (MIN); \
2318 else if (__data > (MAX)) \
2319 __data = (MAX); \
2320 if (__CONV) \
2321 *(__PTR) = msecs_to_jiffies(__data); \
2322 else \
2323 *(__PTR) = __data; \
2324 return ret; \
2325 }
2326 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2327 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2328 UINT_MAX, 1);
2329 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2330 UINT_MAX, 1);
2331 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2332 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2333 UINT_MAX, 0);
2334 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2335 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2336 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2337 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2338 UINT_MAX, 0);
2339 #undef STORE_FUNCTION
2340
2341 #define CFQ_ATTR(name) \
2342 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2343
2344 static struct elv_fs_entry cfq_attrs[] = {
2345 CFQ_ATTR(quantum),
2346 CFQ_ATTR(fifo_expire_sync),
2347 CFQ_ATTR(fifo_expire_async),
2348 CFQ_ATTR(back_seek_max),
2349 CFQ_ATTR(back_seek_penalty),
2350 CFQ_ATTR(slice_sync),
2351 CFQ_ATTR(slice_async),
2352 CFQ_ATTR(slice_async_rq),
2353 CFQ_ATTR(slice_idle),
2354 __ATTR_NULL
2355 };
2356
2357 static struct elevator_type iosched_cfq = {
2358 .ops = {
2359 .elevator_merge_fn = cfq_merge,
2360 .elevator_merged_fn = cfq_merged_request,
2361 .elevator_merge_req_fn = cfq_merged_requests,
2362 .elevator_allow_merge_fn = cfq_allow_merge,
2363 .elevator_dispatch_fn = cfq_dispatch_requests,
2364 .elevator_add_req_fn = cfq_insert_request,
2365 .elevator_activate_req_fn = cfq_activate_request,
2366 .elevator_deactivate_req_fn = cfq_deactivate_request,
2367 .elevator_queue_empty_fn = cfq_queue_empty,
2368 .elevator_completed_req_fn = cfq_completed_request,
2369 .elevator_former_req_fn = elv_rb_former_request,
2370 .elevator_latter_req_fn = elv_rb_latter_request,
2371 .elevator_set_req_fn = cfq_set_request,
2372 .elevator_put_req_fn = cfq_put_request,
2373 .elevator_may_queue_fn = cfq_may_queue,
2374 .elevator_init_fn = cfq_init_queue,
2375 .elevator_exit_fn = cfq_exit_queue,
2376 .trim = cfq_free_io_context,
2377 },
2378 .elevator_attrs = cfq_attrs,
2379 .elevator_name = "cfq",
2380 .elevator_owner = THIS_MODULE,
2381 };
2382
2383 static int __init cfq_init(void)
2384 {
2385 /*
2386 * could be 0 on HZ < 1000 setups
2387 */
2388 if (!cfq_slice_async)
2389 cfq_slice_async = 1;
2390 if (!cfq_slice_idle)
2391 cfq_slice_idle = 1;
2392
2393 if (cfq_slab_setup())
2394 return -ENOMEM;
2395
2396 elv_register(&iosched_cfq);
2397
2398 return 0;
2399 }
2400
2401 static void __exit cfq_exit(void)
2402 {
2403 DECLARE_COMPLETION_ONSTACK(all_gone);
2404 elv_unregister(&iosched_cfq);
2405 ioc_gone = &all_gone;
2406 /* ioc_gone's update must be visible before reading ioc_count */
2407 smp_wmb();
2408
2409 /*
2410 * this also protects us from entering cfq_slab_kill() with
2411 * pending RCU callbacks
2412 */
2413 if (elv_ioc_count_read(ioc_count))
2414 wait_for_completion(&all_gone);
2415 cfq_slab_kill();
2416 }
2417
2418 module_init(cfq_init);
2419 module_exit(cfq_exit);
2420
2421 MODULE_AUTHOR("Jens Axboe");
2422 MODULE_LICENSE("GPL");
2423 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");