cfq-iosched: get rid of ->dispatch_slice
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17 * tunables
18 */
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30 * grace period before allowing idle class to get disk access
31 */
32 #define CFQ_IDLE_GRACE (HZ / 10)
33
34 /*
35 * below this threshold, we consider thinktime immediate
36 */
37 #define CFQ_MIN_TT (2)
38
39 #define CFQ_SLICE_SCALE (5)
40
41 #define CFQ_KEY_ASYNC (0)
42
43 /*
44 * for the hash of cfqq inside the cfqd
45 */
46 #define CFQ_QHASH_SHIFT 6
47 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
48
49 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
50 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
51
52 static struct kmem_cache *cfq_pool;
53 static struct kmem_cache *cfq_ioc_pool;
54
55 static DEFINE_PER_CPU(unsigned long, ioc_count);
56 static struct completion *ioc_gone;
57
58 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
59 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
60 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61
62 #define ASYNC (0)
63 #define SYNC (1)
64
65 #define cfq_cfqq_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
66
67 #define sample_valid(samples) ((samples) > 80)
68
69 /*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75 struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
78 };
79 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
80
81 /*
82 * Per block device queue structure
83 */
84 struct cfq_data {
85 request_queue_t *queue;
86
87 /*
88 * rr list of queues with requests and the count of them
89 */
90 struct cfq_rb_root service_tree;
91 unsigned int busy_queues;
92
93 /*
94 * cfqq lookup hash
95 */
96 struct hlist_head *cfq_hash;
97
98 int rq_in_driver;
99 int hw_tag;
100
101 /*
102 * idle window management
103 */
104 struct timer_list idle_slice_timer;
105 struct work_struct unplug_work;
106
107 struct cfq_queue *active_queue;
108 struct cfq_io_context *active_cic;
109
110 struct timer_list idle_class_timer;
111
112 sector_t last_position;
113 unsigned long last_end_request;
114
115 /*
116 * tunables, see top of file
117 */
118 unsigned int cfq_quantum;
119 unsigned int cfq_fifo_expire[2];
120 unsigned int cfq_back_penalty;
121 unsigned int cfq_back_max;
122 unsigned int cfq_slice[2];
123 unsigned int cfq_slice_async_rq;
124 unsigned int cfq_slice_idle;
125
126 struct list_head cic_list;
127
128 sector_t new_seek_mean;
129 u64 new_seek_total;
130 };
131
132 /*
133 * Per process-grouping structure
134 */
135 struct cfq_queue {
136 /* reference count */
137 atomic_t ref;
138 /* parent cfq_data */
139 struct cfq_data *cfqd;
140 /* cfqq lookup hash */
141 struct hlist_node cfq_hash;
142 /* hash key */
143 unsigned int key;
144 /* service_tree member */
145 struct rb_node rb_node;
146 /* service_tree key */
147 unsigned long rb_key;
148 /* sorted list of pending requests */
149 struct rb_root sort_list;
150 /* if fifo isn't expired, next request to serve */
151 struct request *next_rq;
152 /* requests queued in sort_list */
153 int queued[2];
154 /* currently allocated requests */
155 int allocated[2];
156 /* pending metadata requests */
157 int meta_pending;
158 /* fifo list of requests in sort_list */
159 struct list_head fifo;
160
161 unsigned long slice_end;
162 long slice_resid;
163
164 /* number of requests that are on the dispatch list or inside driver */
165 int dispatched;
166
167 /* io prio of this group */
168 unsigned short ioprio, org_ioprio;
169 unsigned short ioprio_class, org_ioprio_class;
170
171 /* various state flags, see below */
172 unsigned int flags;
173
174 sector_t last_request_pos;
175 };
176
177 enum cfqq_state_flags {
178 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
179 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
180 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
181 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
182 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
183 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
184 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
185 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
186 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
187 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
188 };
189
190 #define CFQ_CFQQ_FNS(name) \
191 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
192 { \
193 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
194 } \
195 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
196 { \
197 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
198 } \
199 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
200 { \
201 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
202 }
203
204 CFQ_CFQQ_FNS(on_rr);
205 CFQ_CFQQ_FNS(wait_request);
206 CFQ_CFQQ_FNS(must_alloc);
207 CFQ_CFQQ_FNS(must_alloc_slice);
208 CFQ_CFQQ_FNS(must_dispatch);
209 CFQ_CFQQ_FNS(fifo_expire);
210 CFQ_CFQQ_FNS(idle_window);
211 CFQ_CFQQ_FNS(prio_changed);
212 CFQ_CFQQ_FNS(queue_new);
213 CFQ_CFQQ_FNS(slice_new);
214 #undef CFQ_CFQQ_FNS
215
216 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
217 static void cfq_dispatch_insert(request_queue_t *, struct request *);
218 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
219
220 /*
221 * scheduler run of queue, if there are requests pending and no one in the
222 * driver that will restart queueing
223 */
224 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
225 {
226 if (cfqd->busy_queues)
227 kblockd_schedule_work(&cfqd->unplug_work);
228 }
229
230 static int cfq_queue_empty(request_queue_t *q)
231 {
232 struct cfq_data *cfqd = q->elevator->elevator_data;
233
234 return !cfqd->busy_queues;
235 }
236
237 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
238 {
239 /*
240 * Use the per-process queue, for read requests and syncronous writes
241 */
242 if (!(rw & REQ_RW) || is_sync)
243 return task->pid;
244
245 return CFQ_KEY_ASYNC;
246 }
247
248 /*
249 * Scale schedule slice based on io priority. Use the sync time slice only
250 * if a queue is marked sync and has sync io queued. A sync queue with async
251 * io only, should not get full sync slice length.
252 */
253 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
254 unsigned short prio)
255 {
256 const int base_slice = cfqd->cfq_slice[sync];
257
258 WARN_ON(prio >= IOPRIO_BE_NR);
259
260 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
261 }
262
263 static inline int
264 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
265 {
266 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
267 }
268
269 static inline void
270 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
271 {
272 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
273 }
274
275 /*
276 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
277 * isn't valid until the first request from the dispatch is activated
278 * and the slice time set.
279 */
280 static inline int cfq_slice_used(struct cfq_queue *cfqq)
281 {
282 if (cfq_cfqq_slice_new(cfqq))
283 return 0;
284 if (time_before(jiffies, cfqq->slice_end))
285 return 0;
286
287 return 1;
288 }
289
290 /*
291 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
292 * We choose the request that is closest to the head right now. Distance
293 * behind the head is penalized and only allowed to a certain extent.
294 */
295 static struct request *
296 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
297 {
298 sector_t last, s1, s2, d1 = 0, d2 = 0;
299 unsigned long back_max;
300 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
301 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
302 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
303
304 if (rq1 == NULL || rq1 == rq2)
305 return rq2;
306 if (rq2 == NULL)
307 return rq1;
308
309 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
310 return rq1;
311 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
312 return rq2;
313 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
314 return rq1;
315 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
316 return rq2;
317
318 s1 = rq1->sector;
319 s2 = rq2->sector;
320
321 last = cfqd->last_position;
322
323 /*
324 * by definition, 1KiB is 2 sectors
325 */
326 back_max = cfqd->cfq_back_max * 2;
327
328 /*
329 * Strict one way elevator _except_ in the case where we allow
330 * short backward seeks which are biased as twice the cost of a
331 * similar forward seek.
332 */
333 if (s1 >= last)
334 d1 = s1 - last;
335 else if (s1 + back_max >= last)
336 d1 = (last - s1) * cfqd->cfq_back_penalty;
337 else
338 wrap |= CFQ_RQ1_WRAP;
339
340 if (s2 >= last)
341 d2 = s2 - last;
342 else if (s2 + back_max >= last)
343 d2 = (last - s2) * cfqd->cfq_back_penalty;
344 else
345 wrap |= CFQ_RQ2_WRAP;
346
347 /* Found required data */
348
349 /*
350 * By doing switch() on the bit mask "wrap" we avoid having to
351 * check two variables for all permutations: --> faster!
352 */
353 switch (wrap) {
354 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
355 if (d1 < d2)
356 return rq1;
357 else if (d2 < d1)
358 return rq2;
359 else {
360 if (s1 >= s2)
361 return rq1;
362 else
363 return rq2;
364 }
365
366 case CFQ_RQ2_WRAP:
367 return rq1;
368 case CFQ_RQ1_WRAP:
369 return rq2;
370 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
371 default:
372 /*
373 * Since both rqs are wrapped,
374 * start with the one that's further behind head
375 * (--> only *one* back seek required),
376 * since back seek takes more time than forward.
377 */
378 if (s1 <= s2)
379 return rq1;
380 else
381 return rq2;
382 }
383 }
384
385 /*
386 * The below is leftmost cache rbtree addon
387 */
388 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
389 {
390 if (!root->left)
391 root->left = rb_first(&root->rb);
392
393 return root->left;
394 }
395
396 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
397 {
398 if (root->left == n)
399 root->left = NULL;
400
401 rb_erase(n, &root->rb);
402 RB_CLEAR_NODE(n);
403 }
404
405 /*
406 * would be nice to take fifo expire time into account as well
407 */
408 static struct request *
409 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
410 struct request *last)
411 {
412 struct rb_node *rbnext = rb_next(&last->rb_node);
413 struct rb_node *rbprev = rb_prev(&last->rb_node);
414 struct request *next = NULL, *prev = NULL;
415
416 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
417
418 if (rbprev)
419 prev = rb_entry_rq(rbprev);
420
421 if (rbnext)
422 next = rb_entry_rq(rbnext);
423 else {
424 rbnext = rb_first(&cfqq->sort_list);
425 if (rbnext && rbnext != &last->rb_node)
426 next = rb_entry_rq(rbnext);
427 }
428
429 return cfq_choose_req(cfqd, next, prev);
430 }
431
432 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
433 struct cfq_queue *cfqq)
434 {
435 /*
436 * just an approximation, should be ok.
437 */
438 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
439 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
440 }
441
442 /*
443 * The cfqd->service_tree holds all pending cfq_queue's that have
444 * requests waiting to be processed. It is sorted in the order that
445 * we will service the queues.
446 */
447 static void cfq_service_tree_add(struct cfq_data *cfqd,
448 struct cfq_queue *cfqq, int add_front)
449 {
450 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
451 struct rb_node *parent = NULL;
452 unsigned long rb_key;
453 int left;
454
455 if (!add_front) {
456 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
457 rb_key += cfqq->slice_resid;
458 cfqq->slice_resid = 0;
459 } else
460 rb_key = 0;
461
462 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
463 /*
464 * same position, nothing more to do
465 */
466 if (rb_key == cfqq->rb_key)
467 return;
468
469 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
470 }
471
472 left = 1;
473 while (*p) {
474 struct cfq_queue *__cfqq;
475 struct rb_node **n;
476
477 parent = *p;
478 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
479
480 /*
481 * sort RT queues first, we always want to give
482 * preference to them. IDLE queues goes to the back.
483 * after that, sort on the next service time.
484 */
485 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
486 n = &(*p)->rb_left;
487 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
488 n = &(*p)->rb_right;
489 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
490 n = &(*p)->rb_left;
491 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
492 n = &(*p)->rb_right;
493 else if (rb_key < __cfqq->rb_key)
494 n = &(*p)->rb_left;
495 else
496 n = &(*p)->rb_right;
497
498 if (n == &(*p)->rb_right)
499 left = 0;
500
501 p = n;
502 }
503
504 if (left)
505 cfqd->service_tree.left = &cfqq->rb_node;
506
507 cfqq->rb_key = rb_key;
508 rb_link_node(&cfqq->rb_node, parent, p);
509 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
510 }
511
512 /*
513 * Update cfqq's position in the service tree.
514 */
515 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
516 {
517 /*
518 * Resorting requires the cfqq to be on the RR list already.
519 */
520 if (cfq_cfqq_on_rr(cfqq))
521 cfq_service_tree_add(cfqd, cfqq, 0);
522 }
523
524 /*
525 * add to busy list of queues for service, trying to be fair in ordering
526 * the pending list according to last request service
527 */
528 static inline void
529 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530 {
531 BUG_ON(cfq_cfqq_on_rr(cfqq));
532 cfq_mark_cfqq_on_rr(cfqq);
533 cfqd->busy_queues++;
534
535 cfq_resort_rr_list(cfqd, cfqq);
536 }
537
538 /*
539 * Called when the cfqq no longer has requests pending, remove it from
540 * the service tree.
541 */
542 static inline void
543 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
544 {
545 BUG_ON(!cfq_cfqq_on_rr(cfqq));
546 cfq_clear_cfqq_on_rr(cfqq);
547
548 if (!RB_EMPTY_NODE(&cfqq->rb_node))
549 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
550
551 BUG_ON(!cfqd->busy_queues);
552 cfqd->busy_queues--;
553 }
554
555 /*
556 * rb tree support functions
557 */
558 static inline void cfq_del_rq_rb(struct request *rq)
559 {
560 struct cfq_queue *cfqq = RQ_CFQQ(rq);
561 struct cfq_data *cfqd = cfqq->cfqd;
562 const int sync = rq_is_sync(rq);
563
564 BUG_ON(!cfqq->queued[sync]);
565 cfqq->queued[sync]--;
566
567 elv_rb_del(&cfqq->sort_list, rq);
568
569 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
570 cfq_del_cfqq_rr(cfqd, cfqq);
571 }
572
573 static void cfq_add_rq_rb(struct request *rq)
574 {
575 struct cfq_queue *cfqq = RQ_CFQQ(rq);
576 struct cfq_data *cfqd = cfqq->cfqd;
577 struct request *__alias;
578
579 cfqq->queued[rq_is_sync(rq)]++;
580
581 /*
582 * looks a little odd, but the first insert might return an alias.
583 * if that happens, put the alias on the dispatch list
584 */
585 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
586 cfq_dispatch_insert(cfqd->queue, __alias);
587
588 if (!cfq_cfqq_on_rr(cfqq))
589 cfq_add_cfqq_rr(cfqd, cfqq);
590
591 /*
592 * check if this request is a better next-serve candidate
593 */
594 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
595 BUG_ON(!cfqq->next_rq);
596 }
597
598 static inline void
599 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
600 {
601 elv_rb_del(&cfqq->sort_list, rq);
602 cfqq->queued[rq_is_sync(rq)]--;
603 cfq_add_rq_rb(rq);
604 }
605
606 static struct request *
607 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
608 {
609 struct task_struct *tsk = current;
610 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
611 struct cfq_queue *cfqq;
612
613 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
614 if (cfqq) {
615 sector_t sector = bio->bi_sector + bio_sectors(bio);
616
617 return elv_rb_find(&cfqq->sort_list, sector);
618 }
619
620 return NULL;
621 }
622
623 static void cfq_activate_request(request_queue_t *q, struct request *rq)
624 {
625 struct cfq_data *cfqd = q->elevator->elevator_data;
626
627 cfqd->rq_in_driver++;
628
629 /*
630 * If the depth is larger 1, it really could be queueing. But lets
631 * make the mark a little higher - idling could still be good for
632 * low queueing, and a low queueing number could also just indicate
633 * a SCSI mid layer like behaviour where limit+1 is often seen.
634 */
635 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
636 cfqd->hw_tag = 1;
637
638 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
639 }
640
641 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
642 {
643 struct cfq_data *cfqd = q->elevator->elevator_data;
644
645 WARN_ON(!cfqd->rq_in_driver);
646 cfqd->rq_in_driver--;
647 }
648
649 static void cfq_remove_request(struct request *rq)
650 {
651 struct cfq_queue *cfqq = RQ_CFQQ(rq);
652
653 if (cfqq->next_rq == rq)
654 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
655
656 list_del_init(&rq->queuelist);
657 cfq_del_rq_rb(rq);
658
659 if (rq_is_meta(rq)) {
660 WARN_ON(!cfqq->meta_pending);
661 cfqq->meta_pending--;
662 }
663 }
664
665 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
666 {
667 struct cfq_data *cfqd = q->elevator->elevator_data;
668 struct request *__rq;
669
670 __rq = cfq_find_rq_fmerge(cfqd, bio);
671 if (__rq && elv_rq_merge_ok(__rq, bio)) {
672 *req = __rq;
673 return ELEVATOR_FRONT_MERGE;
674 }
675
676 return ELEVATOR_NO_MERGE;
677 }
678
679 static void cfq_merged_request(request_queue_t *q, struct request *req,
680 int type)
681 {
682 if (type == ELEVATOR_FRONT_MERGE) {
683 struct cfq_queue *cfqq = RQ_CFQQ(req);
684
685 cfq_reposition_rq_rb(cfqq, req);
686 }
687 }
688
689 static void
690 cfq_merged_requests(request_queue_t *q, struct request *rq,
691 struct request *next)
692 {
693 /*
694 * reposition in fifo if next is older than rq
695 */
696 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
697 time_before(next->start_time, rq->start_time))
698 list_move(&rq->queuelist, &next->queuelist);
699
700 cfq_remove_request(next);
701 }
702
703 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
704 struct bio *bio)
705 {
706 struct cfq_data *cfqd = q->elevator->elevator_data;
707 const int rw = bio_data_dir(bio);
708 struct cfq_queue *cfqq;
709 pid_t key;
710
711 /*
712 * Disallow merge of a sync bio into an async request.
713 */
714 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
715 return 0;
716
717 /*
718 * Lookup the cfqq that this bio will be queued with. Allow
719 * merge only if rq is queued there.
720 */
721 key = cfq_queue_pid(current, rw, bio_sync(bio));
722 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
723
724 if (cfqq == RQ_CFQQ(rq))
725 return 1;
726
727 return 0;
728 }
729
730 static inline void
731 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
732 {
733 if (cfqq) {
734 /*
735 * stop potential idle class queues waiting service
736 */
737 del_timer(&cfqd->idle_class_timer);
738
739 cfqq->slice_end = 0;
740 cfq_clear_cfqq_must_alloc_slice(cfqq);
741 cfq_clear_cfqq_fifo_expire(cfqq);
742 cfq_mark_cfqq_slice_new(cfqq);
743 cfq_clear_cfqq_queue_new(cfqq);
744 }
745
746 cfqd->active_queue = cfqq;
747 }
748
749 /*
750 * current cfqq expired its slice (or was too idle), select new one
751 */
752 static void
753 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
754 int timed_out)
755 {
756 if (cfq_cfqq_wait_request(cfqq))
757 del_timer(&cfqd->idle_slice_timer);
758
759 cfq_clear_cfqq_must_dispatch(cfqq);
760 cfq_clear_cfqq_wait_request(cfqq);
761
762 /*
763 * store what was left of this slice, if the queue idled/timed out
764 */
765 if (timed_out && !cfq_cfqq_slice_new(cfqq))
766 cfqq->slice_resid = cfqq->slice_end - jiffies;
767
768 cfq_resort_rr_list(cfqd, cfqq);
769
770 if (cfqq == cfqd->active_queue)
771 cfqd->active_queue = NULL;
772
773 if (cfqd->active_cic) {
774 put_io_context(cfqd->active_cic->ioc);
775 cfqd->active_cic = NULL;
776 }
777 }
778
779 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
780 {
781 struct cfq_queue *cfqq = cfqd->active_queue;
782
783 if (cfqq)
784 __cfq_slice_expired(cfqd, cfqq, timed_out);
785 }
786
787 /*
788 * Get next queue for service. Unless we have a queue preemption,
789 * we'll simply select the first cfqq in the service tree.
790 */
791 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
792 {
793 struct cfq_queue *cfqq;
794 struct rb_node *n;
795
796 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
797 return NULL;
798
799 n = cfq_rb_first(&cfqd->service_tree);
800 cfqq = rb_entry(n, struct cfq_queue, rb_node);
801
802 if (cfq_class_idle(cfqq)) {
803 unsigned long end;
804
805 /*
806 * if we have idle queues and no rt or be queues had
807 * pending requests, either allow immediate service if
808 * the grace period has passed or arm the idle grace
809 * timer
810 */
811 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
812 if (time_before(jiffies, end)) {
813 mod_timer(&cfqd->idle_class_timer, end);
814 cfqq = NULL;
815 }
816 }
817
818 return cfqq;
819 }
820
821 /*
822 * Get and set a new active queue for service.
823 */
824 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
825 {
826 struct cfq_queue *cfqq;
827
828 cfqq = cfq_get_next_queue(cfqd);
829 __cfq_set_active_queue(cfqd, cfqq);
830 return cfqq;
831 }
832
833 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
834 struct request *rq)
835 {
836 if (rq->sector >= cfqd->last_position)
837 return rq->sector - cfqd->last_position;
838 else
839 return cfqd->last_position - rq->sector;
840 }
841
842 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
843 {
844 struct cfq_io_context *cic = cfqd->active_cic;
845
846 if (!sample_valid(cic->seek_samples))
847 return 0;
848
849 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
850 }
851
852 static int cfq_close_cooperator(struct cfq_data *cfq_data,
853 struct cfq_queue *cfqq)
854 {
855 /*
856 * We should notice if some of the queues are cooperating, eg
857 * working closely on the same area of the disk. In that case,
858 * we can group them together and don't waste time idling.
859 */
860 return 0;
861 }
862
863 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
864
865 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
866 {
867 struct cfq_queue *cfqq = cfqd->active_queue;
868 struct cfq_io_context *cic;
869 unsigned long sl;
870
871 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
872 WARN_ON(cfq_cfqq_slice_new(cfqq));
873
874 /*
875 * idle is disabled, either manually or by past process history
876 */
877 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
878 return;
879
880 /*
881 * task has exited, don't wait
882 */
883 cic = cfqd->active_cic;
884 if (!cic || !cic->ioc->task)
885 return;
886
887 /*
888 * See if this prio level has a good candidate
889 */
890 if (cfq_close_cooperator(cfqd, cfqq) &&
891 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
892 return;
893
894 cfq_mark_cfqq_must_dispatch(cfqq);
895 cfq_mark_cfqq_wait_request(cfqq);
896
897 /*
898 * we don't want to idle for seeks, but we do want to allow
899 * fair distribution of slice time for a process doing back-to-back
900 * seeks. so allow a little bit of time for him to submit a new rq
901 */
902 sl = cfqd->cfq_slice_idle;
903 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
904 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
905
906 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
907 }
908
909 /*
910 * Move request from internal lists to the request queue dispatch list.
911 */
912 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
913 {
914 struct cfq_queue *cfqq = RQ_CFQQ(rq);
915
916 cfq_remove_request(rq);
917 cfqq->dispatched++;
918 elv_dispatch_sort(q, rq);
919 }
920
921 /*
922 * return expired entry, or NULL to just start from scratch in rbtree
923 */
924 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
925 {
926 struct cfq_data *cfqd = cfqq->cfqd;
927 struct request *rq;
928 int fifo;
929
930 if (cfq_cfqq_fifo_expire(cfqq))
931 return NULL;
932
933 cfq_mark_cfqq_fifo_expire(cfqq);
934
935 if (list_empty(&cfqq->fifo))
936 return NULL;
937
938 fifo = cfq_cfqq_sync(cfqq);
939 rq = rq_entry_fifo(cfqq->fifo.next);
940
941 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
942 return NULL;
943
944 return rq;
945 }
946
947 static inline int
948 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
949 {
950 const int base_rq = cfqd->cfq_slice_async_rq;
951
952 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
953
954 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
955 }
956
957 /*
958 * Select a queue for service. If we have a current active queue,
959 * check whether to continue servicing it, or retrieve and set a new one.
960 */
961 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
962 {
963 struct cfq_queue *cfqq;
964
965 cfqq = cfqd->active_queue;
966 if (!cfqq)
967 goto new_queue;
968
969 /*
970 * The active queue has run out of time, expire it and select new.
971 */
972 if (cfq_slice_used(cfqq))
973 goto expire;
974
975 /*
976 * The active queue has requests and isn't expired, allow it to
977 * dispatch.
978 */
979 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
980 goto keep_queue;
981
982 /*
983 * No requests pending. If the active queue still has requests in
984 * flight or is idling for a new request, allow either of these
985 * conditions to happen (or time out) before selecting a new queue.
986 */
987 if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
988 cfqq = NULL;
989 goto keep_queue;
990 }
991
992 expire:
993 cfq_slice_expired(cfqd, 0);
994 new_queue:
995 cfqq = cfq_set_active_queue(cfqd);
996 keep_queue:
997 return cfqq;
998 }
999
1000 /*
1001 * Dispatch some requests from cfqq, moving them to the request queue
1002 * dispatch list.
1003 */
1004 static int
1005 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1006 int max_dispatch)
1007 {
1008 int dispatched = 0;
1009
1010 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1011
1012 do {
1013 struct request *rq;
1014
1015 /*
1016 * follow expired path, else get first next available
1017 */
1018 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1019 rq = cfqq->next_rq;
1020
1021 /*
1022 * finally, insert request into driver dispatch list
1023 */
1024 cfq_dispatch_insert(cfqd->queue, rq);
1025
1026 dispatched++;
1027
1028 if (!cfqd->active_cic) {
1029 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1030 cfqd->active_cic = RQ_CIC(rq);
1031 }
1032
1033 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1034 break;
1035
1036 } while (dispatched < max_dispatch);
1037
1038 /*
1039 * expire an async queue immediately if it has used up its slice. idle
1040 * queue always expire after 1 dispatch round.
1041 */
1042 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1043 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1044 cfq_class_idle(cfqq))) {
1045 cfqq->slice_end = jiffies + 1;
1046 cfq_slice_expired(cfqd, 0);
1047 }
1048
1049 return dispatched;
1050 }
1051
1052 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1053 {
1054 int dispatched = 0;
1055
1056 while (cfqq->next_rq) {
1057 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1058 dispatched++;
1059 }
1060
1061 BUG_ON(!list_empty(&cfqq->fifo));
1062 return dispatched;
1063 }
1064
1065 /*
1066 * Drain our current requests. Used for barriers and when switching
1067 * io schedulers on-the-fly.
1068 */
1069 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1070 {
1071 int dispatched = 0;
1072 struct rb_node *n;
1073
1074 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1075 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1076
1077 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1078 }
1079
1080 cfq_slice_expired(cfqd, 0);
1081
1082 BUG_ON(cfqd->busy_queues);
1083
1084 return dispatched;
1085 }
1086
1087 static int cfq_dispatch_requests(request_queue_t *q, int force)
1088 {
1089 struct cfq_data *cfqd = q->elevator->elevator_data;
1090 struct cfq_queue *cfqq;
1091 int dispatched;
1092
1093 if (!cfqd->busy_queues)
1094 return 0;
1095
1096 if (unlikely(force))
1097 return cfq_forced_dispatch(cfqd);
1098
1099 dispatched = 0;
1100 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1101 int max_dispatch;
1102
1103 if (cfqd->busy_queues > 1) {
1104 /*
1105 * So we have dispatched before in this round, if the
1106 * next queue has idling enabled (must be sync), don't
1107 * allow it service until the previous have completed.
1108 */
1109 if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1110 dispatched)
1111 break;
1112 if (cfqq->dispatched >= cfqd->cfq_quantum)
1113 break;
1114 }
1115
1116 cfq_clear_cfqq_must_dispatch(cfqq);
1117 cfq_clear_cfqq_wait_request(cfqq);
1118 del_timer(&cfqd->idle_slice_timer);
1119
1120 max_dispatch = cfqd->cfq_quantum;
1121 if (cfq_class_idle(cfqq))
1122 max_dispatch = 1;
1123
1124 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1125 }
1126
1127 return dispatched;
1128 }
1129
1130 /*
1131 * task holds one reference to the queue, dropped when task exits. each rq
1132 * in-flight on this queue also holds a reference, dropped when rq is freed.
1133 *
1134 * queue lock must be held here.
1135 */
1136 static void cfq_put_queue(struct cfq_queue *cfqq)
1137 {
1138 struct cfq_data *cfqd = cfqq->cfqd;
1139
1140 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1141
1142 if (!atomic_dec_and_test(&cfqq->ref))
1143 return;
1144
1145 BUG_ON(rb_first(&cfqq->sort_list));
1146 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1147 BUG_ON(cfq_cfqq_on_rr(cfqq));
1148
1149 if (unlikely(cfqd->active_queue == cfqq)) {
1150 __cfq_slice_expired(cfqd, cfqq, 0);
1151 cfq_schedule_dispatch(cfqd);
1152 }
1153
1154 /*
1155 * it's on the empty list and still hashed
1156 */
1157 hlist_del(&cfqq->cfq_hash);
1158 kmem_cache_free(cfq_pool, cfqq);
1159 }
1160
1161 static struct cfq_queue *
1162 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1163 const int hashval)
1164 {
1165 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1166 struct hlist_node *entry;
1167 struct cfq_queue *__cfqq;
1168
1169 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1170 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1171
1172 if (__cfqq->key == key && (__p == prio || !prio))
1173 return __cfqq;
1174 }
1175
1176 return NULL;
1177 }
1178
1179 static struct cfq_queue *
1180 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1181 {
1182 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1183 }
1184
1185 static void cfq_free_io_context(struct io_context *ioc)
1186 {
1187 struct cfq_io_context *__cic;
1188 struct rb_node *n;
1189 int freed = 0;
1190
1191 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1192 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1193 rb_erase(&__cic->rb_node, &ioc->cic_root);
1194 kmem_cache_free(cfq_ioc_pool, __cic);
1195 freed++;
1196 }
1197
1198 elv_ioc_count_mod(ioc_count, -freed);
1199
1200 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1201 complete(ioc_gone);
1202 }
1203
1204 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1205 {
1206 if (unlikely(cfqq == cfqd->active_queue)) {
1207 __cfq_slice_expired(cfqd, cfqq, 0);
1208 cfq_schedule_dispatch(cfqd);
1209 }
1210
1211 cfq_put_queue(cfqq);
1212 }
1213
1214 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1215 struct cfq_io_context *cic)
1216 {
1217 list_del_init(&cic->queue_list);
1218 smp_wmb();
1219 cic->key = NULL;
1220
1221 if (cic->cfqq[ASYNC]) {
1222 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1223 cic->cfqq[ASYNC] = NULL;
1224 }
1225
1226 if (cic->cfqq[SYNC]) {
1227 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1228 cic->cfqq[SYNC] = NULL;
1229 }
1230 }
1231
1232 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1233 {
1234 struct cfq_data *cfqd = cic->key;
1235
1236 if (cfqd) {
1237 request_queue_t *q = cfqd->queue;
1238
1239 spin_lock_irq(q->queue_lock);
1240 __cfq_exit_single_io_context(cfqd, cic);
1241 spin_unlock_irq(q->queue_lock);
1242 }
1243 }
1244
1245 /*
1246 * The process that ioc belongs to has exited, we need to clean up
1247 * and put the internal structures we have that belongs to that process.
1248 */
1249 static void cfq_exit_io_context(struct io_context *ioc)
1250 {
1251 struct cfq_io_context *__cic;
1252 struct rb_node *n;
1253
1254 /*
1255 * put the reference this task is holding to the various queues
1256 */
1257
1258 n = rb_first(&ioc->cic_root);
1259 while (n != NULL) {
1260 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1261
1262 cfq_exit_single_io_context(__cic);
1263 n = rb_next(n);
1264 }
1265 }
1266
1267 static struct cfq_io_context *
1268 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1269 {
1270 struct cfq_io_context *cic;
1271
1272 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1273 if (cic) {
1274 memset(cic, 0, sizeof(*cic));
1275 cic->last_end_request = jiffies;
1276 INIT_LIST_HEAD(&cic->queue_list);
1277 cic->dtor = cfq_free_io_context;
1278 cic->exit = cfq_exit_io_context;
1279 elv_ioc_count_inc(ioc_count);
1280 }
1281
1282 return cic;
1283 }
1284
1285 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1286 {
1287 struct task_struct *tsk = current;
1288 int ioprio_class;
1289
1290 if (!cfq_cfqq_prio_changed(cfqq))
1291 return;
1292
1293 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1294 switch (ioprio_class) {
1295 default:
1296 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1297 case IOPRIO_CLASS_NONE:
1298 /*
1299 * no prio set, place us in the middle of the BE classes
1300 */
1301 cfqq->ioprio = task_nice_ioprio(tsk);
1302 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1303 break;
1304 case IOPRIO_CLASS_RT:
1305 cfqq->ioprio = task_ioprio(tsk);
1306 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1307 break;
1308 case IOPRIO_CLASS_BE:
1309 cfqq->ioprio = task_ioprio(tsk);
1310 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1311 break;
1312 case IOPRIO_CLASS_IDLE:
1313 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1314 cfqq->ioprio = 7;
1315 cfq_clear_cfqq_idle_window(cfqq);
1316 break;
1317 }
1318
1319 /*
1320 * keep track of original prio settings in case we have to temporarily
1321 * elevate the priority of this queue
1322 */
1323 cfqq->org_ioprio = cfqq->ioprio;
1324 cfqq->org_ioprio_class = cfqq->ioprio_class;
1325 cfq_clear_cfqq_prio_changed(cfqq);
1326 }
1327
1328 static inline void changed_ioprio(struct cfq_io_context *cic)
1329 {
1330 struct cfq_data *cfqd = cic->key;
1331 struct cfq_queue *cfqq;
1332 unsigned long flags;
1333
1334 if (unlikely(!cfqd))
1335 return;
1336
1337 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1338
1339 cfqq = cic->cfqq[ASYNC];
1340 if (cfqq) {
1341 struct cfq_queue *new_cfqq;
1342 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1343 GFP_ATOMIC);
1344 if (new_cfqq) {
1345 cic->cfqq[ASYNC] = new_cfqq;
1346 cfq_put_queue(cfqq);
1347 }
1348 }
1349
1350 cfqq = cic->cfqq[SYNC];
1351 if (cfqq)
1352 cfq_mark_cfqq_prio_changed(cfqq);
1353
1354 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1355 }
1356
1357 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1358 {
1359 struct cfq_io_context *cic;
1360 struct rb_node *n;
1361
1362 ioc->ioprio_changed = 0;
1363
1364 n = rb_first(&ioc->cic_root);
1365 while (n != NULL) {
1366 cic = rb_entry(n, struct cfq_io_context, rb_node);
1367
1368 changed_ioprio(cic);
1369 n = rb_next(n);
1370 }
1371 }
1372
1373 static struct cfq_queue *
1374 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1375 gfp_t gfp_mask)
1376 {
1377 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1378 struct cfq_queue *cfqq, *new_cfqq = NULL;
1379 unsigned short ioprio;
1380
1381 retry:
1382 ioprio = tsk->ioprio;
1383 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1384
1385 if (!cfqq) {
1386 if (new_cfqq) {
1387 cfqq = new_cfqq;
1388 new_cfqq = NULL;
1389 } else if (gfp_mask & __GFP_WAIT) {
1390 /*
1391 * Inform the allocator of the fact that we will
1392 * just repeat this allocation if it fails, to allow
1393 * the allocator to do whatever it needs to attempt to
1394 * free memory.
1395 */
1396 spin_unlock_irq(cfqd->queue->queue_lock);
1397 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1398 spin_lock_irq(cfqd->queue->queue_lock);
1399 goto retry;
1400 } else {
1401 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1402 if (!cfqq)
1403 goto out;
1404 }
1405
1406 memset(cfqq, 0, sizeof(*cfqq));
1407
1408 INIT_HLIST_NODE(&cfqq->cfq_hash);
1409 RB_CLEAR_NODE(&cfqq->rb_node);
1410 INIT_LIST_HEAD(&cfqq->fifo);
1411
1412 cfqq->key = key;
1413 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1414 atomic_set(&cfqq->ref, 0);
1415 cfqq->cfqd = cfqd;
1416
1417 if (key != CFQ_KEY_ASYNC)
1418 cfq_mark_cfqq_idle_window(cfqq);
1419
1420 cfq_mark_cfqq_prio_changed(cfqq);
1421 cfq_mark_cfqq_queue_new(cfqq);
1422 cfq_init_prio_data(cfqq);
1423 }
1424
1425 if (new_cfqq)
1426 kmem_cache_free(cfq_pool, new_cfqq);
1427
1428 atomic_inc(&cfqq->ref);
1429 out:
1430 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1431 return cfqq;
1432 }
1433
1434 /*
1435 * We drop cfq io contexts lazily, so we may find a dead one.
1436 */
1437 static void
1438 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1439 {
1440 WARN_ON(!list_empty(&cic->queue_list));
1441 rb_erase(&cic->rb_node, &ioc->cic_root);
1442 kmem_cache_free(cfq_ioc_pool, cic);
1443 elv_ioc_count_dec(ioc_count);
1444 }
1445
1446 static struct cfq_io_context *
1447 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1448 {
1449 struct rb_node *n;
1450 struct cfq_io_context *cic;
1451 void *k, *key = cfqd;
1452
1453 restart:
1454 n = ioc->cic_root.rb_node;
1455 while (n) {
1456 cic = rb_entry(n, struct cfq_io_context, rb_node);
1457 /* ->key must be copied to avoid race with cfq_exit_queue() */
1458 k = cic->key;
1459 if (unlikely(!k)) {
1460 cfq_drop_dead_cic(ioc, cic);
1461 goto restart;
1462 }
1463
1464 if (key < k)
1465 n = n->rb_left;
1466 else if (key > k)
1467 n = n->rb_right;
1468 else
1469 return cic;
1470 }
1471
1472 return NULL;
1473 }
1474
1475 static inline void
1476 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1477 struct cfq_io_context *cic)
1478 {
1479 struct rb_node **p;
1480 struct rb_node *parent;
1481 struct cfq_io_context *__cic;
1482 unsigned long flags;
1483 void *k;
1484
1485 cic->ioc = ioc;
1486 cic->key = cfqd;
1487
1488 restart:
1489 parent = NULL;
1490 p = &ioc->cic_root.rb_node;
1491 while (*p) {
1492 parent = *p;
1493 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1494 /* ->key must be copied to avoid race with cfq_exit_queue() */
1495 k = __cic->key;
1496 if (unlikely(!k)) {
1497 cfq_drop_dead_cic(ioc, __cic);
1498 goto restart;
1499 }
1500
1501 if (cic->key < k)
1502 p = &(*p)->rb_left;
1503 else if (cic->key > k)
1504 p = &(*p)->rb_right;
1505 else
1506 BUG();
1507 }
1508
1509 rb_link_node(&cic->rb_node, parent, p);
1510 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1511
1512 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1513 list_add(&cic->queue_list, &cfqd->cic_list);
1514 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1515 }
1516
1517 /*
1518 * Setup general io context and cfq io context. There can be several cfq
1519 * io contexts per general io context, if this process is doing io to more
1520 * than one device managed by cfq.
1521 */
1522 static struct cfq_io_context *
1523 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1524 {
1525 struct io_context *ioc = NULL;
1526 struct cfq_io_context *cic;
1527
1528 might_sleep_if(gfp_mask & __GFP_WAIT);
1529
1530 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1531 if (!ioc)
1532 return NULL;
1533
1534 cic = cfq_cic_rb_lookup(cfqd, ioc);
1535 if (cic)
1536 goto out;
1537
1538 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1539 if (cic == NULL)
1540 goto err;
1541
1542 cfq_cic_link(cfqd, ioc, cic);
1543 out:
1544 smp_read_barrier_depends();
1545 if (unlikely(ioc->ioprio_changed))
1546 cfq_ioc_set_ioprio(ioc);
1547
1548 return cic;
1549 err:
1550 put_io_context(ioc);
1551 return NULL;
1552 }
1553
1554 static void
1555 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1556 {
1557 unsigned long elapsed = jiffies - cic->last_end_request;
1558 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1559
1560 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1561 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1562 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1563 }
1564
1565 static void
1566 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1567 struct request *rq)
1568 {
1569 sector_t sdist;
1570 u64 total;
1571
1572 if (cic->last_request_pos < rq->sector)
1573 sdist = rq->sector - cic->last_request_pos;
1574 else
1575 sdist = cic->last_request_pos - rq->sector;
1576
1577 if (!cic->seek_samples) {
1578 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1579 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1580 }
1581
1582 /*
1583 * Don't allow the seek distance to get too large from the
1584 * odd fragment, pagein, etc
1585 */
1586 if (cic->seek_samples <= 60) /* second&third seek */
1587 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1588 else
1589 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1590
1591 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1592 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1593 total = cic->seek_total + (cic->seek_samples/2);
1594 do_div(total, cic->seek_samples);
1595 cic->seek_mean = (sector_t)total;
1596 }
1597
1598 /*
1599 * Disable idle window if the process thinks too long or seeks so much that
1600 * it doesn't matter
1601 */
1602 static void
1603 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1604 struct cfq_io_context *cic)
1605 {
1606 int enable_idle = cfq_cfqq_idle_window(cfqq);
1607
1608 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1609 (cfqd->hw_tag && CIC_SEEKY(cic)))
1610 enable_idle = 0;
1611 else if (sample_valid(cic->ttime_samples)) {
1612 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1613 enable_idle = 0;
1614 else
1615 enable_idle = 1;
1616 }
1617
1618 if (enable_idle)
1619 cfq_mark_cfqq_idle_window(cfqq);
1620 else
1621 cfq_clear_cfqq_idle_window(cfqq);
1622 }
1623
1624 /*
1625 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1626 * no or if we aren't sure, a 1 will cause a preempt.
1627 */
1628 static int
1629 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1630 struct request *rq)
1631 {
1632 struct cfq_queue *cfqq;
1633
1634 cfqq = cfqd->active_queue;
1635 if (!cfqq)
1636 return 0;
1637
1638 if (cfq_slice_used(cfqq))
1639 return 1;
1640
1641 if (cfq_class_idle(new_cfqq))
1642 return 0;
1643
1644 if (cfq_class_idle(cfqq))
1645 return 1;
1646
1647 /*
1648 * if the new request is sync, but the currently running queue is
1649 * not, let the sync request have priority.
1650 */
1651 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1652 return 1;
1653
1654 /*
1655 * So both queues are sync. Let the new request get disk time if
1656 * it's a metadata request and the current queue is doing regular IO.
1657 */
1658 if (rq_is_meta(rq) && !cfqq->meta_pending)
1659 return 1;
1660
1661 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1662 return 0;
1663
1664 /*
1665 * if this request is as-good as one we would expect from the
1666 * current cfqq, let it preempt
1667 */
1668 if (cfq_rq_close(cfqd, rq))
1669 return 1;
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1676 * let it have half of its nominal slice.
1677 */
1678 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1679 {
1680 cfq_slice_expired(cfqd, 1);
1681
1682 /*
1683 * Put the new queue at the front of the of the current list,
1684 * so we know that it will be selected next.
1685 */
1686 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1687
1688 cfq_service_tree_add(cfqd, cfqq, 1);
1689
1690 cfqq->slice_end = 0;
1691 cfq_mark_cfqq_slice_new(cfqq);
1692 }
1693
1694 /*
1695 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1696 * something we should do about it
1697 */
1698 static void
1699 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1700 struct request *rq)
1701 {
1702 struct cfq_io_context *cic = RQ_CIC(rq);
1703
1704 if (rq_is_meta(rq))
1705 cfqq->meta_pending++;
1706
1707 cfq_update_io_thinktime(cfqd, cic);
1708 cfq_update_io_seektime(cfqd, cic, rq);
1709 cfq_update_idle_window(cfqd, cfqq, cic);
1710
1711 cic->last_request_pos = rq->sector + rq->nr_sectors;
1712 cfqq->last_request_pos = cic->last_request_pos;
1713
1714 if (cfqq == cfqd->active_queue) {
1715 /*
1716 * if we are waiting for a request for this queue, let it rip
1717 * immediately and flag that we must not expire this queue
1718 * just now
1719 */
1720 if (cfq_cfqq_wait_request(cfqq)) {
1721 cfq_mark_cfqq_must_dispatch(cfqq);
1722 del_timer(&cfqd->idle_slice_timer);
1723 blk_start_queueing(cfqd->queue);
1724 }
1725 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1726 /*
1727 * not the active queue - expire current slice if it is
1728 * idle and has expired it's mean thinktime or this new queue
1729 * has some old slice time left and is of higher priority
1730 */
1731 cfq_preempt_queue(cfqd, cfqq);
1732 cfq_mark_cfqq_must_dispatch(cfqq);
1733 blk_start_queueing(cfqd->queue);
1734 }
1735 }
1736
1737 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1738 {
1739 struct cfq_data *cfqd = q->elevator->elevator_data;
1740 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1741
1742 cfq_init_prio_data(cfqq);
1743
1744 cfq_add_rq_rb(rq);
1745
1746 list_add_tail(&rq->queuelist, &cfqq->fifo);
1747
1748 cfq_rq_enqueued(cfqd, cfqq, rq);
1749 }
1750
1751 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1752 {
1753 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1754 struct cfq_data *cfqd = cfqq->cfqd;
1755 const int sync = rq_is_sync(rq);
1756 unsigned long now;
1757
1758 now = jiffies;
1759
1760 WARN_ON(!cfqd->rq_in_driver);
1761 WARN_ON(!cfqq->dispatched);
1762 cfqd->rq_in_driver--;
1763 cfqq->dispatched--;
1764
1765 if (!cfq_class_idle(cfqq))
1766 cfqd->last_end_request = now;
1767
1768 if (sync)
1769 RQ_CIC(rq)->last_end_request = now;
1770
1771 /*
1772 * If this is the active queue, check if it needs to be expired,
1773 * or if we want to idle in case it has no pending requests.
1774 */
1775 if (cfqd->active_queue == cfqq) {
1776 if (cfq_cfqq_slice_new(cfqq)) {
1777 cfq_set_prio_slice(cfqd, cfqq);
1778 cfq_clear_cfqq_slice_new(cfqq);
1779 }
1780 if (cfq_slice_used(cfqq))
1781 cfq_slice_expired(cfqd, 1);
1782 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1783 cfq_arm_slice_timer(cfqd);
1784 }
1785
1786 if (!cfqd->rq_in_driver)
1787 cfq_schedule_dispatch(cfqd);
1788 }
1789
1790 /*
1791 * we temporarily boost lower priority queues if they are holding fs exclusive
1792 * resources. they are boosted to normal prio (CLASS_BE/4)
1793 */
1794 static void cfq_prio_boost(struct cfq_queue *cfqq)
1795 {
1796 if (has_fs_excl()) {
1797 /*
1798 * boost idle prio on transactions that would lock out other
1799 * users of the filesystem
1800 */
1801 if (cfq_class_idle(cfqq))
1802 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1803 if (cfqq->ioprio > IOPRIO_NORM)
1804 cfqq->ioprio = IOPRIO_NORM;
1805 } else {
1806 /*
1807 * check if we need to unboost the queue
1808 */
1809 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1810 cfqq->ioprio_class = cfqq->org_ioprio_class;
1811 if (cfqq->ioprio != cfqq->org_ioprio)
1812 cfqq->ioprio = cfqq->org_ioprio;
1813 }
1814 }
1815
1816 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1817 {
1818 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1819 !cfq_cfqq_must_alloc_slice(cfqq)) {
1820 cfq_mark_cfqq_must_alloc_slice(cfqq);
1821 return ELV_MQUEUE_MUST;
1822 }
1823
1824 return ELV_MQUEUE_MAY;
1825 }
1826
1827 static int cfq_may_queue(request_queue_t *q, int rw)
1828 {
1829 struct cfq_data *cfqd = q->elevator->elevator_data;
1830 struct task_struct *tsk = current;
1831 struct cfq_queue *cfqq;
1832 unsigned int key;
1833
1834 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1835
1836 /*
1837 * don't force setup of a queue from here, as a call to may_queue
1838 * does not necessarily imply that a request actually will be queued.
1839 * so just lookup a possibly existing queue, or return 'may queue'
1840 * if that fails
1841 */
1842 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1843 if (cfqq) {
1844 cfq_init_prio_data(cfqq);
1845 cfq_prio_boost(cfqq);
1846
1847 return __cfq_may_queue(cfqq);
1848 }
1849
1850 return ELV_MQUEUE_MAY;
1851 }
1852
1853 /*
1854 * queue lock held here
1855 */
1856 static void cfq_put_request(struct request *rq)
1857 {
1858 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1859
1860 if (cfqq) {
1861 const int rw = rq_data_dir(rq);
1862
1863 BUG_ON(!cfqq->allocated[rw]);
1864 cfqq->allocated[rw]--;
1865
1866 put_io_context(RQ_CIC(rq)->ioc);
1867
1868 rq->elevator_private = NULL;
1869 rq->elevator_private2 = NULL;
1870
1871 cfq_put_queue(cfqq);
1872 }
1873 }
1874
1875 /*
1876 * Allocate cfq data structures associated with this request.
1877 */
1878 static int
1879 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1880 {
1881 struct cfq_data *cfqd = q->elevator->elevator_data;
1882 struct task_struct *tsk = current;
1883 struct cfq_io_context *cic;
1884 const int rw = rq_data_dir(rq);
1885 const int is_sync = rq_is_sync(rq);
1886 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1887 struct cfq_queue *cfqq;
1888 unsigned long flags;
1889
1890 might_sleep_if(gfp_mask & __GFP_WAIT);
1891
1892 cic = cfq_get_io_context(cfqd, gfp_mask);
1893
1894 spin_lock_irqsave(q->queue_lock, flags);
1895
1896 if (!cic)
1897 goto queue_fail;
1898
1899 if (!cic->cfqq[is_sync]) {
1900 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1901 if (!cfqq)
1902 goto queue_fail;
1903
1904 cic->cfqq[is_sync] = cfqq;
1905 } else
1906 cfqq = cic->cfqq[is_sync];
1907
1908 cfqq->allocated[rw]++;
1909 cfq_clear_cfqq_must_alloc(cfqq);
1910 atomic_inc(&cfqq->ref);
1911
1912 spin_unlock_irqrestore(q->queue_lock, flags);
1913
1914 rq->elevator_private = cic;
1915 rq->elevator_private2 = cfqq;
1916 return 0;
1917
1918 queue_fail:
1919 if (cic)
1920 put_io_context(cic->ioc);
1921
1922 cfq_schedule_dispatch(cfqd);
1923 spin_unlock_irqrestore(q->queue_lock, flags);
1924 return 1;
1925 }
1926
1927 static void cfq_kick_queue(struct work_struct *work)
1928 {
1929 struct cfq_data *cfqd =
1930 container_of(work, struct cfq_data, unplug_work);
1931 request_queue_t *q = cfqd->queue;
1932 unsigned long flags;
1933
1934 spin_lock_irqsave(q->queue_lock, flags);
1935 blk_start_queueing(q);
1936 spin_unlock_irqrestore(q->queue_lock, flags);
1937 }
1938
1939 /*
1940 * Timer running if the active_queue is currently idling inside its time slice
1941 */
1942 static void cfq_idle_slice_timer(unsigned long data)
1943 {
1944 struct cfq_data *cfqd = (struct cfq_data *) data;
1945 struct cfq_queue *cfqq;
1946 unsigned long flags;
1947 int timed_out = 1;
1948
1949 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1950
1951 if ((cfqq = cfqd->active_queue) != NULL) {
1952 timed_out = 0;
1953
1954 /*
1955 * expired
1956 */
1957 if (cfq_slice_used(cfqq))
1958 goto expire;
1959
1960 /*
1961 * only expire and reinvoke request handler, if there are
1962 * other queues with pending requests
1963 */
1964 if (!cfqd->busy_queues)
1965 goto out_cont;
1966
1967 /*
1968 * not expired and it has a request pending, let it dispatch
1969 */
1970 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1971 cfq_mark_cfqq_must_dispatch(cfqq);
1972 goto out_kick;
1973 }
1974 }
1975 expire:
1976 cfq_slice_expired(cfqd, timed_out);
1977 out_kick:
1978 cfq_schedule_dispatch(cfqd);
1979 out_cont:
1980 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1981 }
1982
1983 /*
1984 * Timer running if an idle class queue is waiting for service
1985 */
1986 static void cfq_idle_class_timer(unsigned long data)
1987 {
1988 struct cfq_data *cfqd = (struct cfq_data *) data;
1989 unsigned long flags, end;
1990
1991 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1992
1993 /*
1994 * race with a non-idle queue, reset timer
1995 */
1996 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1997 if (!time_after_eq(jiffies, end))
1998 mod_timer(&cfqd->idle_class_timer, end);
1999 else
2000 cfq_schedule_dispatch(cfqd);
2001
2002 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2003 }
2004
2005 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2006 {
2007 del_timer_sync(&cfqd->idle_slice_timer);
2008 del_timer_sync(&cfqd->idle_class_timer);
2009 blk_sync_queue(cfqd->queue);
2010 }
2011
2012 static void cfq_exit_queue(elevator_t *e)
2013 {
2014 struct cfq_data *cfqd = e->elevator_data;
2015 request_queue_t *q = cfqd->queue;
2016
2017 cfq_shutdown_timer_wq(cfqd);
2018
2019 spin_lock_irq(q->queue_lock);
2020
2021 if (cfqd->active_queue)
2022 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2023
2024 while (!list_empty(&cfqd->cic_list)) {
2025 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2026 struct cfq_io_context,
2027 queue_list);
2028
2029 __cfq_exit_single_io_context(cfqd, cic);
2030 }
2031
2032 spin_unlock_irq(q->queue_lock);
2033
2034 cfq_shutdown_timer_wq(cfqd);
2035
2036 kfree(cfqd->cfq_hash);
2037 kfree(cfqd);
2038 }
2039
2040 static void *cfq_init_queue(request_queue_t *q)
2041 {
2042 struct cfq_data *cfqd;
2043 int i;
2044
2045 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2046 if (!cfqd)
2047 return NULL;
2048
2049 memset(cfqd, 0, sizeof(*cfqd));
2050
2051 cfqd->service_tree = CFQ_RB_ROOT;
2052 INIT_LIST_HEAD(&cfqd->cic_list);
2053
2054 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2055 if (!cfqd->cfq_hash)
2056 goto out_free;
2057
2058 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2059 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2060
2061 cfqd->queue = q;
2062
2063 init_timer(&cfqd->idle_slice_timer);
2064 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2065 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2066
2067 init_timer(&cfqd->idle_class_timer);
2068 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2069 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2070
2071 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2072
2073 cfqd->cfq_quantum = cfq_quantum;
2074 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2075 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2076 cfqd->cfq_back_max = cfq_back_max;
2077 cfqd->cfq_back_penalty = cfq_back_penalty;
2078 cfqd->cfq_slice[0] = cfq_slice_async;
2079 cfqd->cfq_slice[1] = cfq_slice_sync;
2080 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2081 cfqd->cfq_slice_idle = cfq_slice_idle;
2082
2083 return cfqd;
2084 out_free:
2085 kfree(cfqd);
2086 return NULL;
2087 }
2088
2089 static void cfq_slab_kill(void)
2090 {
2091 if (cfq_pool)
2092 kmem_cache_destroy(cfq_pool);
2093 if (cfq_ioc_pool)
2094 kmem_cache_destroy(cfq_ioc_pool);
2095 }
2096
2097 static int __init cfq_slab_setup(void)
2098 {
2099 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2100 NULL, NULL);
2101 if (!cfq_pool)
2102 goto fail;
2103
2104 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2105 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2106 if (!cfq_ioc_pool)
2107 goto fail;
2108
2109 return 0;
2110 fail:
2111 cfq_slab_kill();
2112 return -ENOMEM;
2113 }
2114
2115 /*
2116 * sysfs parts below -->
2117 */
2118 static ssize_t
2119 cfq_var_show(unsigned int var, char *page)
2120 {
2121 return sprintf(page, "%d\n", var);
2122 }
2123
2124 static ssize_t
2125 cfq_var_store(unsigned int *var, const char *page, size_t count)
2126 {
2127 char *p = (char *) page;
2128
2129 *var = simple_strtoul(p, &p, 10);
2130 return count;
2131 }
2132
2133 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2134 static ssize_t __FUNC(elevator_t *e, char *page) \
2135 { \
2136 struct cfq_data *cfqd = e->elevator_data; \
2137 unsigned int __data = __VAR; \
2138 if (__CONV) \
2139 __data = jiffies_to_msecs(__data); \
2140 return cfq_var_show(__data, (page)); \
2141 }
2142 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2143 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2144 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2145 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2146 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2147 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2148 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2149 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2150 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2151 #undef SHOW_FUNCTION
2152
2153 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2154 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2155 { \
2156 struct cfq_data *cfqd = e->elevator_data; \
2157 unsigned int __data; \
2158 int ret = cfq_var_store(&__data, (page), count); \
2159 if (__data < (MIN)) \
2160 __data = (MIN); \
2161 else if (__data > (MAX)) \
2162 __data = (MAX); \
2163 if (__CONV) \
2164 *(__PTR) = msecs_to_jiffies(__data); \
2165 else \
2166 *(__PTR) = __data; \
2167 return ret; \
2168 }
2169 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2170 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2171 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2172 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2173 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2174 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2175 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2176 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2177 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2178 #undef STORE_FUNCTION
2179
2180 #define CFQ_ATTR(name) \
2181 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2182
2183 static struct elv_fs_entry cfq_attrs[] = {
2184 CFQ_ATTR(quantum),
2185 CFQ_ATTR(fifo_expire_sync),
2186 CFQ_ATTR(fifo_expire_async),
2187 CFQ_ATTR(back_seek_max),
2188 CFQ_ATTR(back_seek_penalty),
2189 CFQ_ATTR(slice_sync),
2190 CFQ_ATTR(slice_async),
2191 CFQ_ATTR(slice_async_rq),
2192 CFQ_ATTR(slice_idle),
2193 __ATTR_NULL
2194 };
2195
2196 static struct elevator_type iosched_cfq = {
2197 .ops = {
2198 .elevator_merge_fn = cfq_merge,
2199 .elevator_merged_fn = cfq_merged_request,
2200 .elevator_merge_req_fn = cfq_merged_requests,
2201 .elevator_allow_merge_fn = cfq_allow_merge,
2202 .elevator_dispatch_fn = cfq_dispatch_requests,
2203 .elevator_add_req_fn = cfq_insert_request,
2204 .elevator_activate_req_fn = cfq_activate_request,
2205 .elevator_deactivate_req_fn = cfq_deactivate_request,
2206 .elevator_queue_empty_fn = cfq_queue_empty,
2207 .elevator_completed_req_fn = cfq_completed_request,
2208 .elevator_former_req_fn = elv_rb_former_request,
2209 .elevator_latter_req_fn = elv_rb_latter_request,
2210 .elevator_set_req_fn = cfq_set_request,
2211 .elevator_put_req_fn = cfq_put_request,
2212 .elevator_may_queue_fn = cfq_may_queue,
2213 .elevator_init_fn = cfq_init_queue,
2214 .elevator_exit_fn = cfq_exit_queue,
2215 .trim = cfq_free_io_context,
2216 },
2217 .elevator_attrs = cfq_attrs,
2218 .elevator_name = "cfq",
2219 .elevator_owner = THIS_MODULE,
2220 };
2221
2222 static int __init cfq_init(void)
2223 {
2224 int ret;
2225
2226 /*
2227 * could be 0 on HZ < 1000 setups
2228 */
2229 if (!cfq_slice_async)
2230 cfq_slice_async = 1;
2231 if (!cfq_slice_idle)
2232 cfq_slice_idle = 1;
2233
2234 if (cfq_slab_setup())
2235 return -ENOMEM;
2236
2237 ret = elv_register(&iosched_cfq);
2238 if (ret)
2239 cfq_slab_kill();
2240
2241 return ret;
2242 }
2243
2244 static void __exit cfq_exit(void)
2245 {
2246 DECLARE_COMPLETION_ONSTACK(all_gone);
2247 elv_unregister(&iosched_cfq);
2248 ioc_gone = &all_gone;
2249 /* ioc_gone's update must be visible before reading ioc_count */
2250 smp_wmb();
2251 if (elv_ioc_count_read(ioc_count))
2252 wait_for_completion(ioc_gone);
2253 synchronize_rcu();
2254 cfq_slab_kill();
2255 }
2256
2257 module_init(cfq_init);
2258 module_exit(cfq_exit);
2259
2260 MODULE_AUTHOR("Jens Axboe");
2261 MODULE_LICENSE("GPL");
2262 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");