blkio: Some debugging aids for CFQ
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 /*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49 #define CFQQ_COOP_TOUT (HZ)
50
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
139 unsigned long seeky_start;
140
141 pid_t pid;
142
143 struct cfq_rb_root *service_tree;
144 struct cfq_queue *new_cfqq;
145 struct cfq_group *cfqg;
146 };
147
148 /*
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
151 */
152 enum wl_prio_t {
153 BE_WORKLOAD = 0,
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
156 };
157
158 /*
159 * Second index in the service_trees.
160 */
161 enum wl_type_t {
162 ASYNC_WORKLOAD = 0,
163 SYNC_NOIDLE_WORKLOAD = 1,
164 SYNC_WORKLOAD = 2
165 };
166
167 /* This is per cgroup per device grouping structure */
168 struct cfq_group {
169 /* group service_tree member */
170 struct rb_node rb_node;
171
172 /* group service_tree key */
173 u64 vdisktime;
174 unsigned int weight;
175 bool on_st;
176
177 /* number of cfqq currently on this group */
178 int nr_cfqq;
179
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg[2];
182 /*
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
185 */
186 struct cfq_rb_root service_trees[2][3];
187 struct cfq_rb_root service_tree_idle;
188
189 unsigned long saved_workload_slice;
190 enum wl_type_t saved_workload;
191 enum wl_prio_t saved_serving_prio;
192 struct blkio_group blkg;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node;
195 atomic_t ref;
196 #endif
197 };
198
199 /*
200 * Per block device queue structure
201 */
202 struct cfq_data {
203 struct request_queue *queue;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree;
206 struct cfq_group root_group;
207 /* Number of active cfq groups on group service tree */
208 int nr_groups;
209
210 /*
211 * The priority currently being served
212 */
213 enum wl_prio_t serving_prio;
214 enum wl_type_t serving_type;
215 unsigned long workload_expires;
216 struct cfq_group *serving_group;
217 bool noidle_tree_requires_idle;
218
219 /*
220 * Each priority tree is sorted by next_request position. These
221 * trees are used when determining if two or more queues are
222 * interleaving requests (see cfq_close_cooperator).
223 */
224 struct rb_root prio_trees[CFQ_PRIO_LISTS];
225
226 unsigned int busy_queues;
227
228 int rq_in_driver[2];
229 int sync_flight;
230
231 /*
232 * queue-depth detection
233 */
234 int rq_queued;
235 int hw_tag;
236 /*
237 * hw_tag can be
238 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
239 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 * 0 => no NCQ
241 */
242 int hw_tag_est_depth;
243 unsigned int hw_tag_samples;
244
245 /*
246 * idle window management
247 */
248 struct timer_list idle_slice_timer;
249 struct work_struct unplug_work;
250
251 struct cfq_queue *active_queue;
252 struct cfq_io_context *active_cic;
253
254 /*
255 * async queue for each priority case
256 */
257 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
258 struct cfq_queue *async_idle_cfqq;
259
260 sector_t last_position;
261
262 /*
263 * tunables, see top of file
264 */
265 unsigned int cfq_quantum;
266 unsigned int cfq_fifo_expire[2];
267 unsigned int cfq_back_penalty;
268 unsigned int cfq_back_max;
269 unsigned int cfq_slice[2];
270 unsigned int cfq_slice_async_rq;
271 unsigned int cfq_slice_idle;
272 unsigned int cfq_latency;
273
274 struct list_head cic_list;
275
276 /*
277 * Fallback dummy cfqq for extreme OOM conditions
278 */
279 struct cfq_queue oom_cfqq;
280
281 unsigned long last_end_sync_rq;
282
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
285 };
286
287 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
288
289 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290 enum wl_prio_t prio,
291 enum wl_type_t type,
292 struct cfq_data *cfqd)
293 {
294 if (!cfqg)
295 return NULL;
296
297 if (prio == IDLE_WORKLOAD)
298 return &cfqg->service_tree_idle;
299
300 return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
314 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
315 };
316
317 #define CFQ_CFQQ_FNS(name) \
318 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
319 { \
320 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
321 } \
322 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
323 { \
324 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
325 } \
326 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
327 { \
328 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
329 }
330
331 CFQ_CFQQ_FNS(on_rr);
332 CFQ_CFQQ_FNS(wait_request);
333 CFQ_CFQQ_FNS(must_dispatch);
334 CFQ_CFQQ_FNS(must_alloc_slice);
335 CFQ_CFQQ_FNS(fifo_expire);
336 CFQ_CFQQ_FNS(idle_window);
337 CFQ_CFQQ_FNS(prio_changed);
338 CFQ_CFQQ_FNS(slice_new);
339 CFQ_CFQQ_FNS(sync);
340 CFQ_CFQQ_FNS(coop);
341 CFQ_CFQQ_FNS(deep);
342 #undef CFQ_CFQQ_FNS
343
344 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
345 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
346 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
347 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
348 blkg_path(&(cfqq)->cfqg->blkg), ##args);
349
350 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
351 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
352 blkg_path(&(cfqg)->blkg), ##args); \
353
354 #else
355 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
357 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
358 #endif
359 #define cfq_log(cfqd, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
361
362 /* Traverses through cfq group service trees */
363 #define for_each_cfqg_st(cfqg, i, j, st) \
364 for (i = 0; i <= IDLE_WORKLOAD; i++) \
365 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
366 : &cfqg->service_tree_idle; \
367 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
368 (i == IDLE_WORKLOAD && j == 0); \
369 j++, st = i < IDLE_WORKLOAD ? \
370 &cfqg->service_trees[i][j]: NULL) \
371
372
373 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
374 {
375 if (cfq_class_idle(cfqq))
376 return IDLE_WORKLOAD;
377 if (cfq_class_rt(cfqq))
378 return RT_WORKLOAD;
379 return BE_WORKLOAD;
380 }
381
382
383 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
384 {
385 if (!cfq_cfqq_sync(cfqq))
386 return ASYNC_WORKLOAD;
387 if (!cfq_cfqq_idle_window(cfqq))
388 return SYNC_NOIDLE_WORKLOAD;
389 return SYNC_WORKLOAD;
390 }
391
392 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
393 struct cfq_data *cfqd,
394 struct cfq_group *cfqg)
395 {
396 if (wl == IDLE_WORKLOAD)
397 return cfqg->service_tree_idle.count;
398
399 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
400 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
401 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
402 }
403
404 static void cfq_dispatch_insert(struct request_queue *, struct request *);
405 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
406 struct io_context *, gfp_t);
407 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
408 struct io_context *);
409
410 static inline int rq_in_driver(struct cfq_data *cfqd)
411 {
412 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
413 }
414
415 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
416 bool is_sync)
417 {
418 return cic->cfqq[is_sync];
419 }
420
421 static inline void cic_set_cfqq(struct cfq_io_context *cic,
422 struct cfq_queue *cfqq, bool is_sync)
423 {
424 cic->cfqq[is_sync] = cfqq;
425 }
426
427 /*
428 * We regard a request as SYNC, if it's either a read or has the SYNC bit
429 * set (in which case it could also be direct WRITE).
430 */
431 static inline bool cfq_bio_sync(struct bio *bio)
432 {
433 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
434 }
435
436 /*
437 * scheduler run of queue, if there are requests pending and no one in the
438 * driver that will restart queueing
439 */
440 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
441 {
442 if (cfqd->busy_queues) {
443 cfq_log(cfqd, "schedule dispatch");
444 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
445 }
446 }
447
448 static int cfq_queue_empty(struct request_queue *q)
449 {
450 struct cfq_data *cfqd = q->elevator->elevator_data;
451
452 return !cfqd->rq_queued;
453 }
454
455 /*
456 * Scale schedule slice based on io priority. Use the sync time slice only
457 * if a queue is marked sync and has sync io queued. A sync queue with async
458 * io only, should not get full sync slice length.
459 */
460 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
461 unsigned short prio)
462 {
463 const int base_slice = cfqd->cfq_slice[sync];
464
465 WARN_ON(prio >= IOPRIO_BE_NR);
466
467 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
468 }
469
470 static inline int
471 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
472 {
473 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
474 }
475
476 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
477 {
478 u64 d = delta << CFQ_SERVICE_SHIFT;
479
480 d = d * BLKIO_WEIGHT_DEFAULT;
481 do_div(d, cfqg->weight);
482 return d;
483 }
484
485 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
486 {
487 s64 delta = (s64)(vdisktime - min_vdisktime);
488 if (delta > 0)
489 min_vdisktime = vdisktime;
490
491 return min_vdisktime;
492 }
493
494 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
495 {
496 s64 delta = (s64)(vdisktime - min_vdisktime);
497 if (delta < 0)
498 min_vdisktime = vdisktime;
499
500 return min_vdisktime;
501 }
502
503 static void update_min_vdisktime(struct cfq_rb_root *st)
504 {
505 u64 vdisktime = st->min_vdisktime;
506 struct cfq_group *cfqg;
507
508 if (st->active) {
509 cfqg = rb_entry_cfqg(st->active);
510 vdisktime = cfqg->vdisktime;
511 }
512
513 if (st->left) {
514 cfqg = rb_entry_cfqg(st->left);
515 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
516 }
517
518 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
519 }
520
521 /*
522 * get averaged number of queues of RT/BE priority.
523 * average is updated, with a formula that gives more weight to higher numbers,
524 * to quickly follows sudden increases and decrease slowly
525 */
526
527 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
528 struct cfq_group *cfqg, bool rt)
529 {
530 unsigned min_q, max_q;
531 unsigned mult = cfq_hist_divisor - 1;
532 unsigned round = cfq_hist_divisor / 2;
533 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
534
535 min_q = min(cfqg->busy_queues_avg[rt], busy);
536 max_q = max(cfqg->busy_queues_avg[rt], busy);
537 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
538 cfq_hist_divisor;
539 return cfqg->busy_queues_avg[rt];
540 }
541
542 static inline unsigned
543 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
544 {
545 struct cfq_rb_root *st = &cfqd->grp_service_tree;
546
547 return cfq_target_latency * cfqg->weight / st->total_weight;
548 }
549
550 static inline void
551 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
552 {
553 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
554 if (cfqd->cfq_latency) {
555 /*
556 * interested queues (we consider only the ones with the same
557 * priority class in the cfq group)
558 */
559 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
560 cfq_class_rt(cfqq));
561 unsigned sync_slice = cfqd->cfq_slice[1];
562 unsigned expect_latency = sync_slice * iq;
563 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
564
565 if (expect_latency > group_slice) {
566 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
567 /* scale low_slice according to IO priority
568 * and sync vs async */
569 unsigned low_slice =
570 min(slice, base_low_slice * slice / sync_slice);
571 /* the adapted slice value is scaled to fit all iqs
572 * into the target latency */
573 slice = max(slice * group_slice / expect_latency,
574 low_slice);
575 }
576 }
577 cfqq->slice_start = jiffies;
578 cfqq->slice_end = jiffies + slice;
579 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
580 }
581
582 /*
583 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
584 * isn't valid until the first request from the dispatch is activated
585 * and the slice time set.
586 */
587 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
588 {
589 if (cfq_cfqq_slice_new(cfqq))
590 return 0;
591 if (time_before(jiffies, cfqq->slice_end))
592 return 0;
593
594 return 1;
595 }
596
597 /*
598 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
599 * We choose the request that is closest to the head right now. Distance
600 * behind the head is penalized and only allowed to a certain extent.
601 */
602 static struct request *
603 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
604 {
605 sector_t s1, s2, d1 = 0, d2 = 0;
606 unsigned long back_max;
607 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
608 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
609 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
610
611 if (rq1 == NULL || rq1 == rq2)
612 return rq2;
613 if (rq2 == NULL)
614 return rq1;
615
616 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
617 return rq1;
618 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
619 return rq2;
620 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
621 return rq1;
622 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
623 return rq2;
624
625 s1 = blk_rq_pos(rq1);
626 s2 = blk_rq_pos(rq2);
627
628 /*
629 * by definition, 1KiB is 2 sectors
630 */
631 back_max = cfqd->cfq_back_max * 2;
632
633 /*
634 * Strict one way elevator _except_ in the case where we allow
635 * short backward seeks which are biased as twice the cost of a
636 * similar forward seek.
637 */
638 if (s1 >= last)
639 d1 = s1 - last;
640 else if (s1 + back_max >= last)
641 d1 = (last - s1) * cfqd->cfq_back_penalty;
642 else
643 wrap |= CFQ_RQ1_WRAP;
644
645 if (s2 >= last)
646 d2 = s2 - last;
647 else if (s2 + back_max >= last)
648 d2 = (last - s2) * cfqd->cfq_back_penalty;
649 else
650 wrap |= CFQ_RQ2_WRAP;
651
652 /* Found required data */
653
654 /*
655 * By doing switch() on the bit mask "wrap" we avoid having to
656 * check two variables for all permutations: --> faster!
657 */
658 switch (wrap) {
659 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
660 if (d1 < d2)
661 return rq1;
662 else if (d2 < d1)
663 return rq2;
664 else {
665 if (s1 >= s2)
666 return rq1;
667 else
668 return rq2;
669 }
670
671 case CFQ_RQ2_WRAP:
672 return rq1;
673 case CFQ_RQ1_WRAP:
674 return rq2;
675 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
676 default:
677 /*
678 * Since both rqs are wrapped,
679 * start with the one that's further behind head
680 * (--> only *one* back seek required),
681 * since back seek takes more time than forward.
682 */
683 if (s1 <= s2)
684 return rq1;
685 else
686 return rq2;
687 }
688 }
689
690 /*
691 * The below is leftmost cache rbtree addon
692 */
693 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
694 {
695 /* Service tree is empty */
696 if (!root->count)
697 return NULL;
698
699 if (!root->left)
700 root->left = rb_first(&root->rb);
701
702 if (root->left)
703 return rb_entry(root->left, struct cfq_queue, rb_node);
704
705 return NULL;
706 }
707
708 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
709 {
710 if (!root->left)
711 root->left = rb_first(&root->rb);
712
713 if (root->left)
714 return rb_entry_cfqg(root->left);
715
716 return NULL;
717 }
718
719 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
720 {
721 rb_erase(n, root);
722 RB_CLEAR_NODE(n);
723 }
724
725 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
726 {
727 if (root->left == n)
728 root->left = NULL;
729 rb_erase_init(n, &root->rb);
730 --root->count;
731 }
732
733 /*
734 * would be nice to take fifo expire time into account as well
735 */
736 static struct request *
737 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
738 struct request *last)
739 {
740 struct rb_node *rbnext = rb_next(&last->rb_node);
741 struct rb_node *rbprev = rb_prev(&last->rb_node);
742 struct request *next = NULL, *prev = NULL;
743
744 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
745
746 if (rbprev)
747 prev = rb_entry_rq(rbprev);
748
749 if (rbnext)
750 next = rb_entry_rq(rbnext);
751 else {
752 rbnext = rb_first(&cfqq->sort_list);
753 if (rbnext && rbnext != &last->rb_node)
754 next = rb_entry_rq(rbnext);
755 }
756
757 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
758 }
759
760 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
761 struct cfq_queue *cfqq)
762 {
763 /*
764 * just an approximation, should be ok.
765 */
766 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
767 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
768 }
769
770 static inline s64
771 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
772 {
773 return cfqg->vdisktime - st->min_vdisktime;
774 }
775
776 static void
777 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
778 {
779 struct rb_node **node = &st->rb.rb_node;
780 struct rb_node *parent = NULL;
781 struct cfq_group *__cfqg;
782 s64 key = cfqg_key(st, cfqg);
783 int left = 1;
784
785 while (*node != NULL) {
786 parent = *node;
787 __cfqg = rb_entry_cfqg(parent);
788
789 if (key < cfqg_key(st, __cfqg))
790 node = &parent->rb_left;
791 else {
792 node = &parent->rb_right;
793 left = 0;
794 }
795 }
796
797 if (left)
798 st->left = &cfqg->rb_node;
799
800 rb_link_node(&cfqg->rb_node, parent, node);
801 rb_insert_color(&cfqg->rb_node, &st->rb);
802 }
803
804 static void
805 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
806 {
807 struct cfq_rb_root *st = &cfqd->grp_service_tree;
808 struct cfq_group *__cfqg;
809 struct rb_node *n;
810
811 cfqg->nr_cfqq++;
812 if (cfqg->on_st)
813 return;
814
815 /*
816 * Currently put the group at the end. Later implement something
817 * so that groups get lesser vtime based on their weights, so that
818 * if group does not loose all if it was not continously backlogged.
819 */
820 n = rb_last(&st->rb);
821 if (n) {
822 __cfqg = rb_entry_cfqg(n);
823 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
824 } else
825 cfqg->vdisktime = st->min_vdisktime;
826
827 __cfq_group_service_tree_add(st, cfqg);
828 cfqg->on_st = true;
829 cfqd->nr_groups++;
830 st->total_weight += cfqg->weight;
831 }
832
833 static void
834 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
835 {
836 struct cfq_rb_root *st = &cfqd->grp_service_tree;
837
838 if (st->active == &cfqg->rb_node)
839 st->active = NULL;
840
841 BUG_ON(cfqg->nr_cfqq < 1);
842 cfqg->nr_cfqq--;
843
844 /* If there are other cfq queues under this group, don't delete it */
845 if (cfqg->nr_cfqq)
846 return;
847
848 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
849 cfqg->on_st = false;
850 cfqd->nr_groups--;
851 st->total_weight -= cfqg->weight;
852 if (!RB_EMPTY_NODE(&cfqg->rb_node))
853 cfq_rb_erase(&cfqg->rb_node, st);
854 cfqg->saved_workload_slice = 0;
855 }
856
857 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
858 {
859 unsigned int slice_used, allocated_slice;
860
861 /*
862 * Queue got expired before even a single request completed or
863 * got expired immediately after first request completion.
864 */
865 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
866 /*
867 * Also charge the seek time incurred to the group, otherwise
868 * if there are mutiple queues in the group, each can dispatch
869 * a single request on seeky media and cause lots of seek time
870 * and group will never know it.
871 */
872 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
873 1);
874 } else {
875 slice_used = jiffies - cfqq->slice_start;
876 allocated_slice = cfqq->slice_end - cfqq->slice_start;
877 if (slice_used > allocated_slice)
878 slice_used = allocated_slice;
879 }
880
881 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
882 return slice_used;
883 }
884
885 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
886 struct cfq_queue *cfqq)
887 {
888 struct cfq_rb_root *st = &cfqd->grp_service_tree;
889 unsigned int used_sl;
890
891 used_sl = cfq_cfqq_slice_usage(cfqq);
892
893 /* Can't update vdisktime while group is on service tree */
894 cfq_rb_erase(&cfqg->rb_node, st);
895 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
896 __cfq_group_service_tree_add(st, cfqg);
897
898 /* This group is being expired. Save the context */
899 if (time_after(cfqd->workload_expires, jiffies)) {
900 cfqg->saved_workload_slice = cfqd->workload_expires
901 - jiffies;
902 cfqg->saved_workload = cfqd->serving_type;
903 cfqg->saved_serving_prio = cfqd->serving_prio;
904 } else
905 cfqg->saved_workload_slice = 0;
906
907 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
908 st->min_vdisktime);
909 }
910
911 #ifdef CONFIG_CFQ_GROUP_IOSCHED
912 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
913 {
914 if (blkg)
915 return container_of(blkg, struct cfq_group, blkg);
916 return NULL;
917 }
918
919 static struct cfq_group *
920 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
921 {
922 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
923 struct cfq_group *cfqg = NULL;
924 void *key = cfqd;
925 int i, j;
926 struct cfq_rb_root *st;
927
928 /* Do we need to take this reference */
929 if (!css_tryget(&blkcg->css))
930 return NULL;;
931
932 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
933 if (cfqg || !create)
934 goto done;
935
936 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
937 if (!cfqg)
938 goto done;
939
940 cfqg->weight = blkcg->weight;
941 for_each_cfqg_st(cfqg, i, j, st)
942 *st = CFQ_RB_ROOT;
943 RB_CLEAR_NODE(&cfqg->rb_node);
944
945 /*
946 * Take the initial reference that will be released on destroy
947 * This can be thought of a joint reference by cgroup and
948 * elevator which will be dropped by either elevator exit
949 * or cgroup deletion path depending on who is exiting first.
950 */
951 atomic_set(&cfqg->ref, 1);
952
953 /* Add group onto cgroup list */
954 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd);
955
956 /* Add group on cfqd list */
957 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
958
959 done:
960 css_put(&blkcg->css);
961 return cfqg;
962 }
963
964 /*
965 * Search for the cfq group current task belongs to. If create = 1, then also
966 * create the cfq group if it does not exist. request_queue lock must be held.
967 */
968 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
969 {
970 struct cgroup *cgroup;
971 struct cfq_group *cfqg = NULL;
972
973 rcu_read_lock();
974 cgroup = task_cgroup(current, blkio_subsys_id);
975 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
976 if (!cfqg && create)
977 cfqg = &cfqd->root_group;
978 rcu_read_unlock();
979 return cfqg;
980 }
981
982 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
983 {
984 /* Currently, all async queues are mapped to root group */
985 if (!cfq_cfqq_sync(cfqq))
986 cfqg = &cfqq->cfqd->root_group;
987
988 cfqq->cfqg = cfqg;
989 /* cfqq reference on cfqg */
990 atomic_inc(&cfqq->cfqg->ref);
991 }
992
993 static void cfq_put_cfqg(struct cfq_group *cfqg)
994 {
995 struct cfq_rb_root *st;
996 int i, j;
997
998 BUG_ON(atomic_read(&cfqg->ref) <= 0);
999 if (!atomic_dec_and_test(&cfqg->ref))
1000 return;
1001 for_each_cfqg_st(cfqg, i, j, st)
1002 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1003 kfree(cfqg);
1004 }
1005
1006 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1007 {
1008 /* Something wrong if we are trying to remove same group twice */
1009 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1010
1011 hlist_del_init(&cfqg->cfqd_node);
1012
1013 /*
1014 * Put the reference taken at the time of creation so that when all
1015 * queues are gone, group can be destroyed.
1016 */
1017 cfq_put_cfqg(cfqg);
1018 }
1019
1020 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1021 {
1022 struct hlist_node *pos, *n;
1023 struct cfq_group *cfqg;
1024
1025 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1026 /*
1027 * If cgroup removal path got to blk_group first and removed
1028 * it from cgroup list, then it will take care of destroying
1029 * cfqg also.
1030 */
1031 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1032 cfq_destroy_cfqg(cfqd, cfqg);
1033 }
1034 }
1035
1036 /*
1037 * Blk cgroup controller notification saying that blkio_group object is being
1038 * delinked as associated cgroup object is going away. That also means that
1039 * no new IO will come in this group. So get rid of this group as soon as
1040 * any pending IO in the group is finished.
1041 *
1042 * This function is called under rcu_read_lock(). key is the rcu protected
1043 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1044 * read lock.
1045 *
1046 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1047 * it should not be NULL as even if elevator was exiting, cgroup deltion
1048 * path got to it first.
1049 */
1050 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1051 {
1052 unsigned long flags;
1053 struct cfq_data *cfqd = key;
1054
1055 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1056 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1057 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1058 }
1059
1060 #else /* GROUP_IOSCHED */
1061 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1062 {
1063 return &cfqd->root_group;
1064 }
1065 static inline void
1066 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1067 cfqq->cfqg = cfqg;
1068 }
1069
1070 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1071 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1072
1073 #endif /* GROUP_IOSCHED */
1074
1075 /*
1076 * The cfqd->service_trees holds all pending cfq_queue's that have
1077 * requests waiting to be processed. It is sorted in the order that
1078 * we will service the queues.
1079 */
1080 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1081 bool add_front)
1082 {
1083 struct rb_node **p, *parent;
1084 struct cfq_queue *__cfqq;
1085 unsigned long rb_key;
1086 struct cfq_rb_root *service_tree;
1087 int left;
1088 int new_cfqq = 1;
1089
1090 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1091 cfqq_type(cfqq), cfqd);
1092 if (cfq_class_idle(cfqq)) {
1093 rb_key = CFQ_IDLE_DELAY;
1094 parent = rb_last(&service_tree->rb);
1095 if (parent && parent != &cfqq->rb_node) {
1096 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1097 rb_key += __cfqq->rb_key;
1098 } else
1099 rb_key += jiffies;
1100 } else if (!add_front) {
1101 /*
1102 * Get our rb key offset. Subtract any residual slice
1103 * value carried from last service. A negative resid
1104 * count indicates slice overrun, and this should position
1105 * the next service time further away in the tree.
1106 */
1107 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1108 rb_key -= cfqq->slice_resid;
1109 cfqq->slice_resid = 0;
1110 } else {
1111 rb_key = -HZ;
1112 __cfqq = cfq_rb_first(service_tree);
1113 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1114 }
1115
1116 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1117 new_cfqq = 0;
1118 /*
1119 * same position, nothing more to do
1120 */
1121 if (rb_key == cfqq->rb_key &&
1122 cfqq->service_tree == service_tree)
1123 return;
1124
1125 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1126 cfqq->service_tree = NULL;
1127 }
1128
1129 left = 1;
1130 parent = NULL;
1131 cfqq->service_tree = service_tree;
1132 p = &service_tree->rb.rb_node;
1133 while (*p) {
1134 struct rb_node **n;
1135
1136 parent = *p;
1137 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1138
1139 /*
1140 * sort by key, that represents service time.
1141 */
1142 if (time_before(rb_key, __cfqq->rb_key))
1143 n = &(*p)->rb_left;
1144 else {
1145 n = &(*p)->rb_right;
1146 left = 0;
1147 }
1148
1149 p = n;
1150 }
1151
1152 if (left)
1153 service_tree->left = &cfqq->rb_node;
1154
1155 cfqq->rb_key = rb_key;
1156 rb_link_node(&cfqq->rb_node, parent, p);
1157 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1158 service_tree->count++;
1159 if (add_front || !new_cfqq)
1160 return;
1161 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1162 }
1163
1164 static struct cfq_queue *
1165 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1166 sector_t sector, struct rb_node **ret_parent,
1167 struct rb_node ***rb_link)
1168 {
1169 struct rb_node **p, *parent;
1170 struct cfq_queue *cfqq = NULL;
1171
1172 parent = NULL;
1173 p = &root->rb_node;
1174 while (*p) {
1175 struct rb_node **n;
1176
1177 parent = *p;
1178 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1179
1180 /*
1181 * Sort strictly based on sector. Smallest to the left,
1182 * largest to the right.
1183 */
1184 if (sector > blk_rq_pos(cfqq->next_rq))
1185 n = &(*p)->rb_right;
1186 else if (sector < blk_rq_pos(cfqq->next_rq))
1187 n = &(*p)->rb_left;
1188 else
1189 break;
1190 p = n;
1191 cfqq = NULL;
1192 }
1193
1194 *ret_parent = parent;
1195 if (rb_link)
1196 *rb_link = p;
1197 return cfqq;
1198 }
1199
1200 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1201 {
1202 struct rb_node **p, *parent;
1203 struct cfq_queue *__cfqq;
1204
1205 if (cfqq->p_root) {
1206 rb_erase(&cfqq->p_node, cfqq->p_root);
1207 cfqq->p_root = NULL;
1208 }
1209
1210 if (cfq_class_idle(cfqq))
1211 return;
1212 if (!cfqq->next_rq)
1213 return;
1214
1215 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1216 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1217 blk_rq_pos(cfqq->next_rq), &parent, &p);
1218 if (!__cfqq) {
1219 rb_link_node(&cfqq->p_node, parent, p);
1220 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1221 } else
1222 cfqq->p_root = NULL;
1223 }
1224
1225 /*
1226 * Update cfqq's position in the service tree.
1227 */
1228 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1229 {
1230 /*
1231 * Resorting requires the cfqq to be on the RR list already.
1232 */
1233 if (cfq_cfqq_on_rr(cfqq)) {
1234 cfq_service_tree_add(cfqd, cfqq, 0);
1235 cfq_prio_tree_add(cfqd, cfqq);
1236 }
1237 }
1238
1239 /*
1240 * add to busy list of queues for service, trying to be fair in ordering
1241 * the pending list according to last request service
1242 */
1243 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1244 {
1245 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1246 BUG_ON(cfq_cfqq_on_rr(cfqq));
1247 cfq_mark_cfqq_on_rr(cfqq);
1248 cfqd->busy_queues++;
1249
1250 cfq_resort_rr_list(cfqd, cfqq);
1251 }
1252
1253 /*
1254 * Called when the cfqq no longer has requests pending, remove it from
1255 * the service tree.
1256 */
1257 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1258 {
1259 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1260 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1261 cfq_clear_cfqq_on_rr(cfqq);
1262
1263 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1264 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1265 cfqq->service_tree = NULL;
1266 }
1267 if (cfqq->p_root) {
1268 rb_erase(&cfqq->p_node, cfqq->p_root);
1269 cfqq->p_root = NULL;
1270 }
1271
1272 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1273 BUG_ON(!cfqd->busy_queues);
1274 cfqd->busy_queues--;
1275 }
1276
1277 /*
1278 * rb tree support functions
1279 */
1280 static void cfq_del_rq_rb(struct request *rq)
1281 {
1282 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1283 const int sync = rq_is_sync(rq);
1284
1285 BUG_ON(!cfqq->queued[sync]);
1286 cfqq->queued[sync]--;
1287
1288 elv_rb_del(&cfqq->sort_list, rq);
1289
1290 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1291 /*
1292 * Queue will be deleted from service tree when we actually
1293 * expire it later. Right now just remove it from prio tree
1294 * as it is empty.
1295 */
1296 if (cfqq->p_root) {
1297 rb_erase(&cfqq->p_node, cfqq->p_root);
1298 cfqq->p_root = NULL;
1299 }
1300 }
1301 }
1302
1303 static void cfq_add_rq_rb(struct request *rq)
1304 {
1305 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1306 struct cfq_data *cfqd = cfqq->cfqd;
1307 struct request *__alias, *prev;
1308
1309 cfqq->queued[rq_is_sync(rq)]++;
1310
1311 /*
1312 * looks a little odd, but the first insert might return an alias.
1313 * if that happens, put the alias on the dispatch list
1314 */
1315 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1316 cfq_dispatch_insert(cfqd->queue, __alias);
1317
1318 if (!cfq_cfqq_on_rr(cfqq))
1319 cfq_add_cfqq_rr(cfqd, cfqq);
1320
1321 /*
1322 * check if this request is a better next-serve candidate
1323 */
1324 prev = cfqq->next_rq;
1325 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1326
1327 /*
1328 * adjust priority tree position, if ->next_rq changes
1329 */
1330 if (prev != cfqq->next_rq)
1331 cfq_prio_tree_add(cfqd, cfqq);
1332
1333 BUG_ON(!cfqq->next_rq);
1334 }
1335
1336 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1337 {
1338 elv_rb_del(&cfqq->sort_list, rq);
1339 cfqq->queued[rq_is_sync(rq)]--;
1340 cfq_add_rq_rb(rq);
1341 }
1342
1343 static struct request *
1344 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1345 {
1346 struct task_struct *tsk = current;
1347 struct cfq_io_context *cic;
1348 struct cfq_queue *cfqq;
1349
1350 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1351 if (!cic)
1352 return NULL;
1353
1354 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1355 if (cfqq) {
1356 sector_t sector = bio->bi_sector + bio_sectors(bio);
1357
1358 return elv_rb_find(&cfqq->sort_list, sector);
1359 }
1360
1361 return NULL;
1362 }
1363
1364 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1365 {
1366 struct cfq_data *cfqd = q->elevator->elevator_data;
1367
1368 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1369 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1370 rq_in_driver(cfqd));
1371
1372 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1373 }
1374
1375 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1376 {
1377 struct cfq_data *cfqd = q->elevator->elevator_data;
1378 const int sync = rq_is_sync(rq);
1379
1380 WARN_ON(!cfqd->rq_in_driver[sync]);
1381 cfqd->rq_in_driver[sync]--;
1382 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1383 rq_in_driver(cfqd));
1384 }
1385
1386 static void cfq_remove_request(struct request *rq)
1387 {
1388 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1389
1390 if (cfqq->next_rq == rq)
1391 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1392
1393 list_del_init(&rq->queuelist);
1394 cfq_del_rq_rb(rq);
1395
1396 cfqq->cfqd->rq_queued--;
1397 if (rq_is_meta(rq)) {
1398 WARN_ON(!cfqq->meta_pending);
1399 cfqq->meta_pending--;
1400 }
1401 }
1402
1403 static int cfq_merge(struct request_queue *q, struct request **req,
1404 struct bio *bio)
1405 {
1406 struct cfq_data *cfqd = q->elevator->elevator_data;
1407 struct request *__rq;
1408
1409 __rq = cfq_find_rq_fmerge(cfqd, bio);
1410 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1411 *req = __rq;
1412 return ELEVATOR_FRONT_MERGE;
1413 }
1414
1415 return ELEVATOR_NO_MERGE;
1416 }
1417
1418 static void cfq_merged_request(struct request_queue *q, struct request *req,
1419 int type)
1420 {
1421 if (type == ELEVATOR_FRONT_MERGE) {
1422 struct cfq_queue *cfqq = RQ_CFQQ(req);
1423
1424 cfq_reposition_rq_rb(cfqq, req);
1425 }
1426 }
1427
1428 static void
1429 cfq_merged_requests(struct request_queue *q, struct request *rq,
1430 struct request *next)
1431 {
1432 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1433 /*
1434 * reposition in fifo if next is older than rq
1435 */
1436 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1437 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1438 list_move(&rq->queuelist, &next->queuelist);
1439 rq_set_fifo_time(rq, rq_fifo_time(next));
1440 }
1441
1442 if (cfqq->next_rq == next)
1443 cfqq->next_rq = rq;
1444 cfq_remove_request(next);
1445 }
1446
1447 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1448 struct bio *bio)
1449 {
1450 struct cfq_data *cfqd = q->elevator->elevator_data;
1451 struct cfq_io_context *cic;
1452 struct cfq_queue *cfqq;
1453
1454 /*
1455 * Disallow merge of a sync bio into an async request.
1456 */
1457 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1458 return false;
1459
1460 /*
1461 * Lookup the cfqq that this bio will be queued with. Allow
1462 * merge only if rq is queued there.
1463 */
1464 cic = cfq_cic_lookup(cfqd, current->io_context);
1465 if (!cic)
1466 return false;
1467
1468 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1469 return cfqq == RQ_CFQQ(rq);
1470 }
1471
1472 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1473 struct cfq_queue *cfqq)
1474 {
1475 if (cfqq) {
1476 cfq_log_cfqq(cfqd, cfqq, "set_active");
1477 cfqq->slice_start = 0;
1478 cfqq->dispatch_start = jiffies;
1479 cfqq->slice_end = 0;
1480 cfqq->slice_dispatch = 0;
1481
1482 cfq_clear_cfqq_wait_request(cfqq);
1483 cfq_clear_cfqq_must_dispatch(cfqq);
1484 cfq_clear_cfqq_must_alloc_slice(cfqq);
1485 cfq_clear_cfqq_fifo_expire(cfqq);
1486 cfq_mark_cfqq_slice_new(cfqq);
1487
1488 del_timer(&cfqd->idle_slice_timer);
1489 }
1490
1491 cfqd->active_queue = cfqq;
1492 }
1493
1494 /*
1495 * current cfqq expired its slice (or was too idle), select new one
1496 */
1497 static void
1498 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1499 bool timed_out)
1500 {
1501 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1502
1503 if (cfq_cfqq_wait_request(cfqq))
1504 del_timer(&cfqd->idle_slice_timer);
1505
1506 cfq_clear_cfqq_wait_request(cfqq);
1507
1508 /*
1509 * store what was left of this slice, if the queue idled/timed out
1510 */
1511 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1512 cfqq->slice_resid = cfqq->slice_end - jiffies;
1513 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1514 }
1515
1516 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1517
1518 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1519 cfq_del_cfqq_rr(cfqd, cfqq);
1520
1521 cfq_resort_rr_list(cfqd, cfqq);
1522
1523 if (cfqq == cfqd->active_queue)
1524 cfqd->active_queue = NULL;
1525
1526 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1527 cfqd->grp_service_tree.active = NULL;
1528
1529 if (cfqd->active_cic) {
1530 put_io_context(cfqd->active_cic->ioc);
1531 cfqd->active_cic = NULL;
1532 }
1533 }
1534
1535 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1536 {
1537 struct cfq_queue *cfqq = cfqd->active_queue;
1538
1539 if (cfqq)
1540 __cfq_slice_expired(cfqd, cfqq, timed_out);
1541 }
1542
1543 /*
1544 * Get next queue for service. Unless we have a queue preemption,
1545 * we'll simply select the first cfqq in the service tree.
1546 */
1547 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1548 {
1549 struct cfq_rb_root *service_tree =
1550 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1551 cfqd->serving_type, cfqd);
1552
1553 if (!cfqd->rq_queued)
1554 return NULL;
1555
1556 /* There is nothing to dispatch */
1557 if (!service_tree)
1558 return NULL;
1559 if (RB_EMPTY_ROOT(&service_tree->rb))
1560 return NULL;
1561 return cfq_rb_first(service_tree);
1562 }
1563
1564 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1565 {
1566 struct cfq_group *cfqg;
1567 struct cfq_queue *cfqq;
1568 int i, j;
1569 struct cfq_rb_root *st;
1570
1571 if (!cfqd->rq_queued)
1572 return NULL;
1573
1574 cfqg = cfq_get_next_cfqg(cfqd);
1575 if (!cfqg)
1576 return NULL;
1577
1578 for_each_cfqg_st(cfqg, i, j, st)
1579 if ((cfqq = cfq_rb_first(st)) != NULL)
1580 return cfqq;
1581 return NULL;
1582 }
1583
1584 /*
1585 * Get and set a new active queue for service.
1586 */
1587 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1588 struct cfq_queue *cfqq)
1589 {
1590 if (!cfqq)
1591 cfqq = cfq_get_next_queue(cfqd);
1592
1593 __cfq_set_active_queue(cfqd, cfqq);
1594 return cfqq;
1595 }
1596
1597 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1598 struct request *rq)
1599 {
1600 if (blk_rq_pos(rq) >= cfqd->last_position)
1601 return blk_rq_pos(rq) - cfqd->last_position;
1602 else
1603 return cfqd->last_position - blk_rq_pos(rq);
1604 }
1605
1606 #define CFQQ_SEEK_THR 8 * 1024
1607 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1608
1609 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1610 struct request *rq)
1611 {
1612 sector_t sdist = cfqq->seek_mean;
1613
1614 if (!sample_valid(cfqq->seek_samples))
1615 sdist = CFQQ_SEEK_THR;
1616
1617 return cfq_dist_from_last(cfqd, rq) <= sdist;
1618 }
1619
1620 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1621 struct cfq_queue *cur_cfqq)
1622 {
1623 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1624 struct rb_node *parent, *node;
1625 struct cfq_queue *__cfqq;
1626 sector_t sector = cfqd->last_position;
1627
1628 if (RB_EMPTY_ROOT(root))
1629 return NULL;
1630
1631 /*
1632 * First, if we find a request starting at the end of the last
1633 * request, choose it.
1634 */
1635 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1636 if (__cfqq)
1637 return __cfqq;
1638
1639 /*
1640 * If the exact sector wasn't found, the parent of the NULL leaf
1641 * will contain the closest sector.
1642 */
1643 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1644 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1645 return __cfqq;
1646
1647 if (blk_rq_pos(__cfqq->next_rq) < sector)
1648 node = rb_next(&__cfqq->p_node);
1649 else
1650 node = rb_prev(&__cfqq->p_node);
1651 if (!node)
1652 return NULL;
1653
1654 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1655 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1656 return __cfqq;
1657
1658 return NULL;
1659 }
1660
1661 /*
1662 * cfqd - obvious
1663 * cur_cfqq - passed in so that we don't decide that the current queue is
1664 * closely cooperating with itself.
1665 *
1666 * So, basically we're assuming that that cur_cfqq has dispatched at least
1667 * one request, and that cfqd->last_position reflects a position on the disk
1668 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1669 * assumption.
1670 */
1671 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1672 struct cfq_queue *cur_cfqq)
1673 {
1674 struct cfq_queue *cfqq;
1675
1676 if (!cfq_cfqq_sync(cur_cfqq))
1677 return NULL;
1678 if (CFQQ_SEEKY(cur_cfqq))
1679 return NULL;
1680
1681 /*
1682 * We should notice if some of the queues are cooperating, eg
1683 * working closely on the same area of the disk. In that case,
1684 * we can group them together and don't waste time idling.
1685 */
1686 cfqq = cfqq_close(cfqd, cur_cfqq);
1687 if (!cfqq)
1688 return NULL;
1689
1690 /*
1691 * It only makes sense to merge sync queues.
1692 */
1693 if (!cfq_cfqq_sync(cfqq))
1694 return NULL;
1695 if (CFQQ_SEEKY(cfqq))
1696 return NULL;
1697
1698 /*
1699 * Do not merge queues of different priority classes
1700 */
1701 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1702 return NULL;
1703
1704 return cfqq;
1705 }
1706
1707 /*
1708 * Determine whether we should enforce idle window for this queue.
1709 */
1710
1711 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1712 {
1713 enum wl_prio_t prio = cfqq_prio(cfqq);
1714 struct cfq_rb_root *service_tree = cfqq->service_tree;
1715
1716 BUG_ON(!service_tree);
1717 BUG_ON(!service_tree->count);
1718
1719 /* We never do for idle class queues. */
1720 if (prio == IDLE_WORKLOAD)
1721 return false;
1722
1723 /* We do for queues that were marked with idle window flag. */
1724 if (cfq_cfqq_idle_window(cfqq))
1725 return true;
1726
1727 /*
1728 * Otherwise, we do only if they are the last ones
1729 * in their service tree.
1730 */
1731 return service_tree->count == 1;
1732 }
1733
1734 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1735 {
1736 struct cfq_queue *cfqq = cfqd->active_queue;
1737 struct cfq_io_context *cic;
1738 unsigned long sl;
1739
1740 /*
1741 * SSD device without seek penalty, disable idling. But only do so
1742 * for devices that support queuing, otherwise we still have a problem
1743 * with sync vs async workloads.
1744 */
1745 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1746 return;
1747
1748 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1749 WARN_ON(cfq_cfqq_slice_new(cfqq));
1750
1751 /*
1752 * idle is disabled, either manually or by past process history
1753 */
1754 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1755 return;
1756
1757 /*
1758 * still active requests from this queue, don't idle
1759 */
1760 if (cfqq->dispatched)
1761 return;
1762
1763 /*
1764 * task has exited, don't wait
1765 */
1766 cic = cfqd->active_cic;
1767 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1768 return;
1769
1770 /*
1771 * If our average think time is larger than the remaining time
1772 * slice, then don't idle. This avoids overrunning the allotted
1773 * time slice.
1774 */
1775 if (sample_valid(cic->ttime_samples) &&
1776 (cfqq->slice_end - jiffies < cic->ttime_mean))
1777 return;
1778
1779 cfq_mark_cfqq_wait_request(cfqq);
1780
1781 sl = cfqd->cfq_slice_idle;
1782
1783 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1784 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1785 }
1786
1787 /*
1788 * Move request from internal lists to the request queue dispatch list.
1789 */
1790 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1791 {
1792 struct cfq_data *cfqd = q->elevator->elevator_data;
1793 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1794
1795 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1796
1797 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1798 cfq_remove_request(rq);
1799 cfqq->dispatched++;
1800 elv_dispatch_sort(q, rq);
1801
1802 if (cfq_cfqq_sync(cfqq))
1803 cfqd->sync_flight++;
1804 }
1805
1806 /*
1807 * return expired entry, or NULL to just start from scratch in rbtree
1808 */
1809 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1810 {
1811 struct request *rq = NULL;
1812
1813 if (cfq_cfqq_fifo_expire(cfqq))
1814 return NULL;
1815
1816 cfq_mark_cfqq_fifo_expire(cfqq);
1817
1818 if (list_empty(&cfqq->fifo))
1819 return NULL;
1820
1821 rq = rq_entry_fifo(cfqq->fifo.next);
1822 if (time_before(jiffies, rq_fifo_time(rq)))
1823 rq = NULL;
1824
1825 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1826 return rq;
1827 }
1828
1829 static inline int
1830 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1831 {
1832 const int base_rq = cfqd->cfq_slice_async_rq;
1833
1834 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1835
1836 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1837 }
1838
1839 /*
1840 * Must be called with the queue_lock held.
1841 */
1842 static int cfqq_process_refs(struct cfq_queue *cfqq)
1843 {
1844 int process_refs, io_refs;
1845
1846 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1847 process_refs = atomic_read(&cfqq->ref) - io_refs;
1848 BUG_ON(process_refs < 0);
1849 return process_refs;
1850 }
1851
1852 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1853 {
1854 int process_refs, new_process_refs;
1855 struct cfq_queue *__cfqq;
1856
1857 /* Avoid a circular list and skip interim queue merges */
1858 while ((__cfqq = new_cfqq->new_cfqq)) {
1859 if (__cfqq == cfqq)
1860 return;
1861 new_cfqq = __cfqq;
1862 }
1863
1864 process_refs = cfqq_process_refs(cfqq);
1865 /*
1866 * If the process for the cfqq has gone away, there is no
1867 * sense in merging the queues.
1868 */
1869 if (process_refs == 0)
1870 return;
1871
1872 /*
1873 * Merge in the direction of the lesser amount of work.
1874 */
1875 new_process_refs = cfqq_process_refs(new_cfqq);
1876 if (new_process_refs >= process_refs) {
1877 cfqq->new_cfqq = new_cfqq;
1878 atomic_add(process_refs, &new_cfqq->ref);
1879 } else {
1880 new_cfqq->new_cfqq = cfqq;
1881 atomic_add(new_process_refs, &cfqq->ref);
1882 }
1883 }
1884
1885 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1886 struct cfq_group *cfqg, enum wl_prio_t prio,
1887 bool prio_changed)
1888 {
1889 struct cfq_queue *queue;
1890 int i;
1891 bool key_valid = false;
1892 unsigned long lowest_key = 0;
1893 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1894
1895 if (prio_changed) {
1896 /*
1897 * When priorities switched, we prefer starting
1898 * from SYNC_NOIDLE (first choice), or just SYNC
1899 * over ASYNC
1900 */
1901 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1902 return cur_best;
1903 cur_best = SYNC_WORKLOAD;
1904 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1905 return cur_best;
1906
1907 return ASYNC_WORKLOAD;
1908 }
1909
1910 for (i = 0; i < 3; ++i) {
1911 /* otherwise, select the one with lowest rb_key */
1912 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1913 if (queue &&
1914 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1915 lowest_key = queue->rb_key;
1916 cur_best = i;
1917 key_valid = true;
1918 }
1919 }
1920
1921 return cur_best;
1922 }
1923
1924 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1925 {
1926 enum wl_prio_t previous_prio = cfqd->serving_prio;
1927 bool prio_changed;
1928 unsigned slice;
1929 unsigned count;
1930 struct cfq_rb_root *st;
1931 unsigned group_slice;
1932
1933 if (!cfqg) {
1934 cfqd->serving_prio = IDLE_WORKLOAD;
1935 cfqd->workload_expires = jiffies + 1;
1936 return;
1937 }
1938
1939 /* Choose next priority. RT > BE > IDLE */
1940 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1941 cfqd->serving_prio = RT_WORKLOAD;
1942 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1943 cfqd->serving_prio = BE_WORKLOAD;
1944 else {
1945 cfqd->serving_prio = IDLE_WORKLOAD;
1946 cfqd->workload_expires = jiffies + 1;
1947 return;
1948 }
1949
1950 /*
1951 * For RT and BE, we have to choose also the type
1952 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1953 * expiration time
1954 */
1955 prio_changed = (cfqd->serving_prio != previous_prio);
1956 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1957 cfqd);
1958 count = st->count;
1959
1960 /*
1961 * If priority didn't change, check workload expiration,
1962 * and that we still have other queues ready
1963 */
1964 if (!prio_changed && count &&
1965 !time_after(jiffies, cfqd->workload_expires))
1966 return;
1967
1968 /* otherwise select new workload type */
1969 cfqd->serving_type =
1970 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1971 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1972 cfqd);
1973 count = st->count;
1974
1975 /*
1976 * the workload slice is computed as a fraction of target latency
1977 * proportional to the number of queues in that workload, over
1978 * all the queues in the same priority class
1979 */
1980 group_slice = cfq_group_slice(cfqd, cfqg);
1981
1982 slice = group_slice * count /
1983 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1984 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1985
1986 if (cfqd->serving_type == ASYNC_WORKLOAD)
1987 /* async workload slice is scaled down according to
1988 * the sync/async slice ratio. */
1989 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1990 else
1991 /* sync workload slice is at least 2 * cfq_slice_idle */
1992 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1993
1994 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1995 cfqd->workload_expires = jiffies + slice;
1996 cfqd->noidle_tree_requires_idle = false;
1997 }
1998
1999 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2000 {
2001 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2002 struct cfq_group *cfqg;
2003
2004 if (RB_EMPTY_ROOT(&st->rb))
2005 return NULL;
2006 cfqg = cfq_rb_first_group(st);
2007 st->active = &cfqg->rb_node;
2008 update_min_vdisktime(st);
2009 return cfqg;
2010 }
2011
2012 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2013 {
2014 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2015
2016 cfqd->serving_group = cfqg;
2017
2018 /* Restore the workload type data */
2019 if (cfqg->saved_workload_slice) {
2020 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2021 cfqd->serving_type = cfqg->saved_workload;
2022 cfqd->serving_prio = cfqg->saved_serving_prio;
2023 }
2024 choose_service_tree(cfqd, cfqg);
2025 }
2026
2027 /*
2028 * Select a queue for service. If we have a current active queue,
2029 * check whether to continue servicing it, or retrieve and set a new one.
2030 */
2031 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2032 {
2033 struct cfq_queue *cfqq, *new_cfqq = NULL;
2034
2035 cfqq = cfqd->active_queue;
2036 if (!cfqq)
2037 goto new_queue;
2038
2039 if (!cfqd->rq_queued)
2040 return NULL;
2041 /*
2042 * The active queue has run out of time, expire it and select new.
2043 */
2044 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
2045 goto expire;
2046
2047 /*
2048 * The active queue has requests and isn't expired, allow it to
2049 * dispatch.
2050 */
2051 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2052 goto keep_queue;
2053
2054 /*
2055 * If another queue has a request waiting within our mean seek
2056 * distance, let it run. The expire code will check for close
2057 * cooperators and put the close queue at the front of the service
2058 * tree. If possible, merge the expiring queue with the new cfqq.
2059 */
2060 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2061 if (new_cfqq) {
2062 if (!cfqq->new_cfqq)
2063 cfq_setup_merge(cfqq, new_cfqq);
2064 goto expire;
2065 }
2066
2067 /*
2068 * No requests pending. If the active queue still has requests in
2069 * flight or is idling for a new request, allow either of these
2070 * conditions to happen (or time out) before selecting a new queue.
2071 */
2072 if (timer_pending(&cfqd->idle_slice_timer) ||
2073 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2074 cfqq = NULL;
2075 goto keep_queue;
2076 }
2077
2078 expire:
2079 cfq_slice_expired(cfqd, 0);
2080 new_queue:
2081 /*
2082 * Current queue expired. Check if we have to switch to a new
2083 * service tree
2084 */
2085 if (!new_cfqq)
2086 cfq_choose_cfqg(cfqd);
2087
2088 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2089 keep_queue:
2090 return cfqq;
2091 }
2092
2093 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2094 {
2095 int dispatched = 0;
2096
2097 while (cfqq->next_rq) {
2098 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2099 dispatched++;
2100 }
2101
2102 BUG_ON(!list_empty(&cfqq->fifo));
2103
2104 /* By default cfqq is not expired if it is empty. Do it explicitly */
2105 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2106 return dispatched;
2107 }
2108
2109 /*
2110 * Drain our current requests. Used for barriers and when switching
2111 * io schedulers on-the-fly.
2112 */
2113 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2114 {
2115 struct cfq_queue *cfqq;
2116 int dispatched = 0;
2117
2118 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2119 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2120
2121 cfq_slice_expired(cfqd, 0);
2122 BUG_ON(cfqd->busy_queues);
2123
2124 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2125 return dispatched;
2126 }
2127
2128 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2129 {
2130 unsigned int max_dispatch;
2131
2132 /*
2133 * Drain async requests before we start sync IO
2134 */
2135 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2136 return false;
2137
2138 /*
2139 * If this is an async queue and we have sync IO in flight, let it wait
2140 */
2141 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2142 return false;
2143
2144 max_dispatch = cfqd->cfq_quantum;
2145 if (cfq_class_idle(cfqq))
2146 max_dispatch = 1;
2147
2148 /*
2149 * Does this cfqq already have too much IO in flight?
2150 */
2151 if (cfqq->dispatched >= max_dispatch) {
2152 /*
2153 * idle queue must always only have a single IO in flight
2154 */
2155 if (cfq_class_idle(cfqq))
2156 return false;
2157
2158 /*
2159 * We have other queues, don't allow more IO from this one
2160 */
2161 if (cfqd->busy_queues > 1)
2162 return false;
2163
2164 /*
2165 * Sole queue user, no limit
2166 */
2167 max_dispatch = -1;
2168 }
2169
2170 /*
2171 * Async queues must wait a bit before being allowed dispatch.
2172 * We also ramp up the dispatch depth gradually for async IO,
2173 * based on the last sync IO we serviced
2174 */
2175 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2176 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2177 unsigned int depth;
2178
2179 depth = last_sync / cfqd->cfq_slice[1];
2180 if (!depth && !cfqq->dispatched)
2181 depth = 1;
2182 if (depth < max_dispatch)
2183 max_dispatch = depth;
2184 }
2185
2186 /*
2187 * If we're below the current max, allow a dispatch
2188 */
2189 return cfqq->dispatched < max_dispatch;
2190 }
2191
2192 /*
2193 * Dispatch a request from cfqq, moving them to the request queue
2194 * dispatch list.
2195 */
2196 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2197 {
2198 struct request *rq;
2199
2200 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2201
2202 if (!cfq_may_dispatch(cfqd, cfqq))
2203 return false;
2204
2205 /*
2206 * follow expired path, else get first next available
2207 */
2208 rq = cfq_check_fifo(cfqq);
2209 if (!rq)
2210 rq = cfqq->next_rq;
2211
2212 /*
2213 * insert request into driver dispatch list
2214 */
2215 cfq_dispatch_insert(cfqd->queue, rq);
2216
2217 if (!cfqd->active_cic) {
2218 struct cfq_io_context *cic = RQ_CIC(rq);
2219
2220 atomic_long_inc(&cic->ioc->refcount);
2221 cfqd->active_cic = cic;
2222 }
2223
2224 return true;
2225 }
2226
2227 /*
2228 * Find the cfqq that we need to service and move a request from that to the
2229 * dispatch list
2230 */
2231 static int cfq_dispatch_requests(struct request_queue *q, int force)
2232 {
2233 struct cfq_data *cfqd = q->elevator->elevator_data;
2234 struct cfq_queue *cfqq;
2235
2236 if (!cfqd->busy_queues)
2237 return 0;
2238
2239 if (unlikely(force))
2240 return cfq_forced_dispatch(cfqd);
2241
2242 cfqq = cfq_select_queue(cfqd);
2243 if (!cfqq)
2244 return 0;
2245
2246 /*
2247 * Dispatch a request from this cfqq, if it is allowed
2248 */
2249 if (!cfq_dispatch_request(cfqd, cfqq))
2250 return 0;
2251
2252 cfqq->slice_dispatch++;
2253 cfq_clear_cfqq_must_dispatch(cfqq);
2254
2255 /*
2256 * expire an async queue immediately if it has used up its slice. idle
2257 * queue always expire after 1 dispatch round.
2258 */
2259 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2260 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2261 cfq_class_idle(cfqq))) {
2262 cfqq->slice_end = jiffies + 1;
2263 cfq_slice_expired(cfqd, 0);
2264 }
2265
2266 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2267 return 1;
2268 }
2269
2270 /*
2271 * task holds one reference to the queue, dropped when task exits. each rq
2272 * in-flight on this queue also holds a reference, dropped when rq is freed.
2273 *
2274 * Each cfq queue took a reference on the parent group. Drop it now.
2275 * queue lock must be held here.
2276 */
2277 static void cfq_put_queue(struct cfq_queue *cfqq)
2278 {
2279 struct cfq_data *cfqd = cfqq->cfqd;
2280 struct cfq_group *cfqg;
2281
2282 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2283
2284 if (!atomic_dec_and_test(&cfqq->ref))
2285 return;
2286
2287 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2288 BUG_ON(rb_first(&cfqq->sort_list));
2289 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2290 cfqg = cfqq->cfqg;
2291
2292 if (unlikely(cfqd->active_queue == cfqq)) {
2293 __cfq_slice_expired(cfqd, cfqq, 0);
2294 cfq_schedule_dispatch(cfqd);
2295 }
2296
2297 BUG_ON(cfq_cfqq_on_rr(cfqq));
2298 kmem_cache_free(cfq_pool, cfqq);
2299 cfq_put_cfqg(cfqg);
2300 }
2301
2302 /*
2303 * Must always be called with the rcu_read_lock() held
2304 */
2305 static void
2306 __call_for_each_cic(struct io_context *ioc,
2307 void (*func)(struct io_context *, struct cfq_io_context *))
2308 {
2309 struct cfq_io_context *cic;
2310 struct hlist_node *n;
2311
2312 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2313 func(ioc, cic);
2314 }
2315
2316 /*
2317 * Call func for each cic attached to this ioc.
2318 */
2319 static void
2320 call_for_each_cic(struct io_context *ioc,
2321 void (*func)(struct io_context *, struct cfq_io_context *))
2322 {
2323 rcu_read_lock();
2324 __call_for_each_cic(ioc, func);
2325 rcu_read_unlock();
2326 }
2327
2328 static void cfq_cic_free_rcu(struct rcu_head *head)
2329 {
2330 struct cfq_io_context *cic;
2331
2332 cic = container_of(head, struct cfq_io_context, rcu_head);
2333
2334 kmem_cache_free(cfq_ioc_pool, cic);
2335 elv_ioc_count_dec(cfq_ioc_count);
2336
2337 if (ioc_gone) {
2338 /*
2339 * CFQ scheduler is exiting, grab exit lock and check
2340 * the pending io context count. If it hits zero,
2341 * complete ioc_gone and set it back to NULL
2342 */
2343 spin_lock(&ioc_gone_lock);
2344 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2345 complete(ioc_gone);
2346 ioc_gone = NULL;
2347 }
2348 spin_unlock(&ioc_gone_lock);
2349 }
2350 }
2351
2352 static void cfq_cic_free(struct cfq_io_context *cic)
2353 {
2354 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2355 }
2356
2357 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2358 {
2359 unsigned long flags;
2360
2361 BUG_ON(!cic->dead_key);
2362
2363 spin_lock_irqsave(&ioc->lock, flags);
2364 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2365 hlist_del_rcu(&cic->cic_list);
2366 spin_unlock_irqrestore(&ioc->lock, flags);
2367
2368 cfq_cic_free(cic);
2369 }
2370
2371 /*
2372 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2373 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2374 * and ->trim() which is called with the task lock held
2375 */
2376 static void cfq_free_io_context(struct io_context *ioc)
2377 {
2378 /*
2379 * ioc->refcount is zero here, or we are called from elv_unregister(),
2380 * so no more cic's are allowed to be linked into this ioc. So it
2381 * should be ok to iterate over the known list, we will see all cic's
2382 * since no new ones are added.
2383 */
2384 __call_for_each_cic(ioc, cic_free_func);
2385 }
2386
2387 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2388 {
2389 struct cfq_queue *__cfqq, *next;
2390
2391 if (unlikely(cfqq == cfqd->active_queue)) {
2392 __cfq_slice_expired(cfqd, cfqq, 0);
2393 cfq_schedule_dispatch(cfqd);
2394 }
2395
2396 /*
2397 * If this queue was scheduled to merge with another queue, be
2398 * sure to drop the reference taken on that queue (and others in
2399 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2400 */
2401 __cfqq = cfqq->new_cfqq;
2402 while (__cfqq) {
2403 if (__cfqq == cfqq) {
2404 WARN(1, "cfqq->new_cfqq loop detected\n");
2405 break;
2406 }
2407 next = __cfqq->new_cfqq;
2408 cfq_put_queue(__cfqq);
2409 __cfqq = next;
2410 }
2411
2412 cfq_put_queue(cfqq);
2413 }
2414
2415 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2416 struct cfq_io_context *cic)
2417 {
2418 struct io_context *ioc = cic->ioc;
2419
2420 list_del_init(&cic->queue_list);
2421
2422 /*
2423 * Make sure key == NULL is seen for dead queues
2424 */
2425 smp_wmb();
2426 cic->dead_key = (unsigned long) cic->key;
2427 cic->key = NULL;
2428
2429 if (ioc->ioc_data == cic)
2430 rcu_assign_pointer(ioc->ioc_data, NULL);
2431
2432 if (cic->cfqq[BLK_RW_ASYNC]) {
2433 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2434 cic->cfqq[BLK_RW_ASYNC] = NULL;
2435 }
2436
2437 if (cic->cfqq[BLK_RW_SYNC]) {
2438 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2439 cic->cfqq[BLK_RW_SYNC] = NULL;
2440 }
2441 }
2442
2443 static void cfq_exit_single_io_context(struct io_context *ioc,
2444 struct cfq_io_context *cic)
2445 {
2446 struct cfq_data *cfqd = cic->key;
2447
2448 if (cfqd) {
2449 struct request_queue *q = cfqd->queue;
2450 unsigned long flags;
2451
2452 spin_lock_irqsave(q->queue_lock, flags);
2453
2454 /*
2455 * Ensure we get a fresh copy of the ->key to prevent
2456 * race between exiting task and queue
2457 */
2458 smp_read_barrier_depends();
2459 if (cic->key)
2460 __cfq_exit_single_io_context(cfqd, cic);
2461
2462 spin_unlock_irqrestore(q->queue_lock, flags);
2463 }
2464 }
2465
2466 /*
2467 * The process that ioc belongs to has exited, we need to clean up
2468 * and put the internal structures we have that belongs to that process.
2469 */
2470 static void cfq_exit_io_context(struct io_context *ioc)
2471 {
2472 call_for_each_cic(ioc, cfq_exit_single_io_context);
2473 }
2474
2475 static struct cfq_io_context *
2476 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2477 {
2478 struct cfq_io_context *cic;
2479
2480 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2481 cfqd->queue->node);
2482 if (cic) {
2483 cic->last_end_request = jiffies;
2484 INIT_LIST_HEAD(&cic->queue_list);
2485 INIT_HLIST_NODE(&cic->cic_list);
2486 cic->dtor = cfq_free_io_context;
2487 cic->exit = cfq_exit_io_context;
2488 elv_ioc_count_inc(cfq_ioc_count);
2489 }
2490
2491 return cic;
2492 }
2493
2494 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2495 {
2496 struct task_struct *tsk = current;
2497 int ioprio_class;
2498
2499 if (!cfq_cfqq_prio_changed(cfqq))
2500 return;
2501
2502 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2503 switch (ioprio_class) {
2504 default:
2505 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2506 case IOPRIO_CLASS_NONE:
2507 /*
2508 * no prio set, inherit CPU scheduling settings
2509 */
2510 cfqq->ioprio = task_nice_ioprio(tsk);
2511 cfqq->ioprio_class = task_nice_ioclass(tsk);
2512 break;
2513 case IOPRIO_CLASS_RT:
2514 cfqq->ioprio = task_ioprio(ioc);
2515 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2516 break;
2517 case IOPRIO_CLASS_BE:
2518 cfqq->ioprio = task_ioprio(ioc);
2519 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2520 break;
2521 case IOPRIO_CLASS_IDLE:
2522 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2523 cfqq->ioprio = 7;
2524 cfq_clear_cfqq_idle_window(cfqq);
2525 break;
2526 }
2527
2528 /*
2529 * keep track of original prio settings in case we have to temporarily
2530 * elevate the priority of this queue
2531 */
2532 cfqq->org_ioprio = cfqq->ioprio;
2533 cfqq->org_ioprio_class = cfqq->ioprio_class;
2534 cfq_clear_cfqq_prio_changed(cfqq);
2535 }
2536
2537 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2538 {
2539 struct cfq_data *cfqd = cic->key;
2540 struct cfq_queue *cfqq;
2541 unsigned long flags;
2542
2543 if (unlikely(!cfqd))
2544 return;
2545
2546 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2547
2548 cfqq = cic->cfqq[BLK_RW_ASYNC];
2549 if (cfqq) {
2550 struct cfq_queue *new_cfqq;
2551 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2552 GFP_ATOMIC);
2553 if (new_cfqq) {
2554 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2555 cfq_put_queue(cfqq);
2556 }
2557 }
2558
2559 cfqq = cic->cfqq[BLK_RW_SYNC];
2560 if (cfqq)
2561 cfq_mark_cfqq_prio_changed(cfqq);
2562
2563 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2564 }
2565
2566 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2567 {
2568 call_for_each_cic(ioc, changed_ioprio);
2569 ioc->ioprio_changed = 0;
2570 }
2571
2572 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2573 pid_t pid, bool is_sync)
2574 {
2575 RB_CLEAR_NODE(&cfqq->rb_node);
2576 RB_CLEAR_NODE(&cfqq->p_node);
2577 INIT_LIST_HEAD(&cfqq->fifo);
2578
2579 atomic_set(&cfqq->ref, 0);
2580 cfqq->cfqd = cfqd;
2581
2582 cfq_mark_cfqq_prio_changed(cfqq);
2583
2584 if (is_sync) {
2585 if (!cfq_class_idle(cfqq))
2586 cfq_mark_cfqq_idle_window(cfqq);
2587 cfq_mark_cfqq_sync(cfqq);
2588 }
2589 cfqq->pid = pid;
2590 }
2591
2592 static struct cfq_queue *
2593 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2594 struct io_context *ioc, gfp_t gfp_mask)
2595 {
2596 struct cfq_queue *cfqq, *new_cfqq = NULL;
2597 struct cfq_io_context *cic;
2598 struct cfq_group *cfqg;
2599
2600 retry:
2601 cfqg = cfq_get_cfqg(cfqd, 1);
2602 cic = cfq_cic_lookup(cfqd, ioc);
2603 /* cic always exists here */
2604 cfqq = cic_to_cfqq(cic, is_sync);
2605
2606 /*
2607 * Always try a new alloc if we fell back to the OOM cfqq
2608 * originally, since it should just be a temporary situation.
2609 */
2610 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2611 cfqq = NULL;
2612 if (new_cfqq) {
2613 cfqq = new_cfqq;
2614 new_cfqq = NULL;
2615 } else if (gfp_mask & __GFP_WAIT) {
2616 spin_unlock_irq(cfqd->queue->queue_lock);
2617 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2618 gfp_mask | __GFP_ZERO,
2619 cfqd->queue->node);
2620 spin_lock_irq(cfqd->queue->queue_lock);
2621 if (new_cfqq)
2622 goto retry;
2623 } else {
2624 cfqq = kmem_cache_alloc_node(cfq_pool,
2625 gfp_mask | __GFP_ZERO,
2626 cfqd->queue->node);
2627 }
2628
2629 if (cfqq) {
2630 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2631 cfq_init_prio_data(cfqq, ioc);
2632 cfq_link_cfqq_cfqg(cfqq, cfqg);
2633 cfq_log_cfqq(cfqd, cfqq, "alloced");
2634 } else
2635 cfqq = &cfqd->oom_cfqq;
2636 }
2637
2638 if (new_cfqq)
2639 kmem_cache_free(cfq_pool, new_cfqq);
2640
2641 return cfqq;
2642 }
2643
2644 static struct cfq_queue **
2645 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2646 {
2647 switch (ioprio_class) {
2648 case IOPRIO_CLASS_RT:
2649 return &cfqd->async_cfqq[0][ioprio];
2650 case IOPRIO_CLASS_BE:
2651 return &cfqd->async_cfqq[1][ioprio];
2652 case IOPRIO_CLASS_IDLE:
2653 return &cfqd->async_idle_cfqq;
2654 default:
2655 BUG();
2656 }
2657 }
2658
2659 static struct cfq_queue *
2660 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2661 gfp_t gfp_mask)
2662 {
2663 const int ioprio = task_ioprio(ioc);
2664 const int ioprio_class = task_ioprio_class(ioc);
2665 struct cfq_queue **async_cfqq = NULL;
2666 struct cfq_queue *cfqq = NULL;
2667
2668 if (!is_sync) {
2669 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2670 cfqq = *async_cfqq;
2671 }
2672
2673 if (!cfqq)
2674 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2675
2676 /*
2677 * pin the queue now that it's allocated, scheduler exit will prune it
2678 */
2679 if (!is_sync && !(*async_cfqq)) {
2680 atomic_inc(&cfqq->ref);
2681 *async_cfqq = cfqq;
2682 }
2683
2684 atomic_inc(&cfqq->ref);
2685 return cfqq;
2686 }
2687
2688 /*
2689 * We drop cfq io contexts lazily, so we may find a dead one.
2690 */
2691 static void
2692 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2693 struct cfq_io_context *cic)
2694 {
2695 unsigned long flags;
2696
2697 WARN_ON(!list_empty(&cic->queue_list));
2698
2699 spin_lock_irqsave(&ioc->lock, flags);
2700
2701 BUG_ON(ioc->ioc_data == cic);
2702
2703 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2704 hlist_del_rcu(&cic->cic_list);
2705 spin_unlock_irqrestore(&ioc->lock, flags);
2706
2707 cfq_cic_free(cic);
2708 }
2709
2710 static struct cfq_io_context *
2711 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2712 {
2713 struct cfq_io_context *cic;
2714 unsigned long flags;
2715 void *k;
2716
2717 if (unlikely(!ioc))
2718 return NULL;
2719
2720 rcu_read_lock();
2721
2722 /*
2723 * we maintain a last-hit cache, to avoid browsing over the tree
2724 */
2725 cic = rcu_dereference(ioc->ioc_data);
2726 if (cic && cic->key == cfqd) {
2727 rcu_read_unlock();
2728 return cic;
2729 }
2730
2731 do {
2732 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2733 rcu_read_unlock();
2734 if (!cic)
2735 break;
2736 /* ->key must be copied to avoid race with cfq_exit_queue() */
2737 k = cic->key;
2738 if (unlikely(!k)) {
2739 cfq_drop_dead_cic(cfqd, ioc, cic);
2740 rcu_read_lock();
2741 continue;
2742 }
2743
2744 spin_lock_irqsave(&ioc->lock, flags);
2745 rcu_assign_pointer(ioc->ioc_data, cic);
2746 spin_unlock_irqrestore(&ioc->lock, flags);
2747 break;
2748 } while (1);
2749
2750 return cic;
2751 }
2752
2753 /*
2754 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2755 * the process specific cfq io context when entered from the block layer.
2756 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2757 */
2758 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2759 struct cfq_io_context *cic, gfp_t gfp_mask)
2760 {
2761 unsigned long flags;
2762 int ret;
2763
2764 ret = radix_tree_preload(gfp_mask);
2765 if (!ret) {
2766 cic->ioc = ioc;
2767 cic->key = cfqd;
2768
2769 spin_lock_irqsave(&ioc->lock, flags);
2770 ret = radix_tree_insert(&ioc->radix_root,
2771 (unsigned long) cfqd, cic);
2772 if (!ret)
2773 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2774 spin_unlock_irqrestore(&ioc->lock, flags);
2775
2776 radix_tree_preload_end();
2777
2778 if (!ret) {
2779 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2780 list_add(&cic->queue_list, &cfqd->cic_list);
2781 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2782 }
2783 }
2784
2785 if (ret)
2786 printk(KERN_ERR "cfq: cic link failed!\n");
2787
2788 return ret;
2789 }
2790
2791 /*
2792 * Setup general io context and cfq io context. There can be several cfq
2793 * io contexts per general io context, if this process is doing io to more
2794 * than one device managed by cfq.
2795 */
2796 static struct cfq_io_context *
2797 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2798 {
2799 struct io_context *ioc = NULL;
2800 struct cfq_io_context *cic;
2801
2802 might_sleep_if(gfp_mask & __GFP_WAIT);
2803
2804 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2805 if (!ioc)
2806 return NULL;
2807
2808 cic = cfq_cic_lookup(cfqd, ioc);
2809 if (cic)
2810 goto out;
2811
2812 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2813 if (cic == NULL)
2814 goto err;
2815
2816 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2817 goto err_free;
2818
2819 out:
2820 smp_read_barrier_depends();
2821 if (unlikely(ioc->ioprio_changed))
2822 cfq_ioc_set_ioprio(ioc);
2823
2824 return cic;
2825 err_free:
2826 cfq_cic_free(cic);
2827 err:
2828 put_io_context(ioc);
2829 return NULL;
2830 }
2831
2832 static void
2833 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2834 {
2835 unsigned long elapsed = jiffies - cic->last_end_request;
2836 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2837
2838 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2839 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2840 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2841 }
2842
2843 static void
2844 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2845 struct request *rq)
2846 {
2847 sector_t sdist;
2848 u64 total;
2849
2850 if (!cfqq->last_request_pos)
2851 sdist = 0;
2852 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2853 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2854 else
2855 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2856
2857 /*
2858 * Don't allow the seek distance to get too large from the
2859 * odd fragment, pagein, etc
2860 */
2861 if (cfqq->seek_samples <= 60) /* second&third seek */
2862 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2863 else
2864 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2865
2866 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2867 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2868 total = cfqq->seek_total + (cfqq->seek_samples/2);
2869 do_div(total, cfqq->seek_samples);
2870 cfqq->seek_mean = (sector_t)total;
2871
2872 /*
2873 * If this cfqq is shared between multiple processes, check to
2874 * make sure that those processes are still issuing I/Os within
2875 * the mean seek distance. If not, it may be time to break the
2876 * queues apart again.
2877 */
2878 if (cfq_cfqq_coop(cfqq)) {
2879 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2880 cfqq->seeky_start = jiffies;
2881 else if (!CFQQ_SEEKY(cfqq))
2882 cfqq->seeky_start = 0;
2883 }
2884 }
2885
2886 /*
2887 * Disable idle window if the process thinks too long or seeks so much that
2888 * it doesn't matter
2889 */
2890 static void
2891 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2892 struct cfq_io_context *cic)
2893 {
2894 int old_idle, enable_idle;
2895
2896 /*
2897 * Don't idle for async or idle io prio class
2898 */
2899 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2900 return;
2901
2902 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2903
2904 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2905 cfq_mark_cfqq_deep(cfqq);
2906
2907 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2908 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2909 && CFQQ_SEEKY(cfqq)))
2910 enable_idle = 0;
2911 else if (sample_valid(cic->ttime_samples)) {
2912 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2913 enable_idle = 0;
2914 else
2915 enable_idle = 1;
2916 }
2917
2918 if (old_idle != enable_idle) {
2919 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2920 if (enable_idle)
2921 cfq_mark_cfqq_idle_window(cfqq);
2922 else
2923 cfq_clear_cfqq_idle_window(cfqq);
2924 }
2925 }
2926
2927 /*
2928 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2929 * no or if we aren't sure, a 1 will cause a preempt.
2930 */
2931 static bool
2932 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2933 struct request *rq)
2934 {
2935 struct cfq_queue *cfqq;
2936
2937 cfqq = cfqd->active_queue;
2938 if (!cfqq)
2939 return false;
2940
2941 if (cfq_slice_used(cfqq))
2942 return true;
2943
2944 if (cfq_class_idle(new_cfqq))
2945 return false;
2946
2947 if (cfq_class_idle(cfqq))
2948 return true;
2949
2950 /* Allow preemption only if we are idling on sync-noidle tree */
2951 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2952 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2953 new_cfqq->service_tree->count == 2 &&
2954 RB_EMPTY_ROOT(&cfqq->sort_list))
2955 return true;
2956
2957 /*
2958 * if the new request is sync, but the currently running queue is
2959 * not, let the sync request have priority.
2960 */
2961 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2962 return true;
2963
2964 /*
2965 * So both queues are sync. Let the new request get disk time if
2966 * it's a metadata request and the current queue is doing regular IO.
2967 */
2968 if (rq_is_meta(rq) && !cfqq->meta_pending)
2969 return true;
2970
2971 /*
2972 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2973 */
2974 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2975 return true;
2976
2977 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2978 return false;
2979
2980 /*
2981 * if this request is as-good as one we would expect from the
2982 * current cfqq, let it preempt
2983 */
2984 if (cfq_rq_close(cfqd, cfqq, rq))
2985 return true;
2986
2987 return false;
2988 }
2989
2990 /*
2991 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2992 * let it have half of its nominal slice.
2993 */
2994 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2995 {
2996 cfq_log_cfqq(cfqd, cfqq, "preempt");
2997 cfq_slice_expired(cfqd, 1);
2998
2999 /*
3000 * Put the new queue at the front of the of the current list,
3001 * so we know that it will be selected next.
3002 */
3003 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3004
3005 cfq_service_tree_add(cfqd, cfqq, 1);
3006
3007 cfqq->slice_end = 0;
3008 cfq_mark_cfqq_slice_new(cfqq);
3009 }
3010
3011 /*
3012 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3013 * something we should do about it
3014 */
3015 static void
3016 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3017 struct request *rq)
3018 {
3019 struct cfq_io_context *cic = RQ_CIC(rq);
3020
3021 cfqd->rq_queued++;
3022 if (rq_is_meta(rq))
3023 cfqq->meta_pending++;
3024
3025 cfq_update_io_thinktime(cfqd, cic);
3026 cfq_update_io_seektime(cfqd, cfqq, rq);
3027 cfq_update_idle_window(cfqd, cfqq, cic);
3028
3029 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3030
3031 if (cfqq == cfqd->active_queue) {
3032 /*
3033 * Remember that we saw a request from this process, but
3034 * don't start queuing just yet. Otherwise we risk seeing lots
3035 * of tiny requests, because we disrupt the normal plugging
3036 * and merging. If the request is already larger than a single
3037 * page, let it rip immediately. For that case we assume that
3038 * merging is already done. Ditto for a busy system that
3039 * has other work pending, don't risk delaying until the
3040 * idle timer unplug to continue working.
3041 */
3042 if (cfq_cfqq_wait_request(cfqq)) {
3043 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3044 cfqd->busy_queues > 1) {
3045 del_timer(&cfqd->idle_slice_timer);
3046 __blk_run_queue(cfqd->queue);
3047 } else
3048 cfq_mark_cfqq_must_dispatch(cfqq);
3049 }
3050 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3051 /*
3052 * not the active queue - expire current slice if it is
3053 * idle and has expired it's mean thinktime or this new queue
3054 * has some old slice time left and is of higher priority or
3055 * this new queue is RT and the current one is BE
3056 */
3057 cfq_preempt_queue(cfqd, cfqq);
3058 __blk_run_queue(cfqd->queue);
3059 }
3060 }
3061
3062 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3063 {
3064 struct cfq_data *cfqd = q->elevator->elevator_data;
3065 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3066
3067 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3068 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3069
3070 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3071 list_add_tail(&rq->queuelist, &cfqq->fifo);
3072 cfq_add_rq_rb(rq);
3073
3074 cfq_rq_enqueued(cfqd, cfqq, rq);
3075 }
3076
3077 /*
3078 * Update hw_tag based on peak queue depth over 50 samples under
3079 * sufficient load.
3080 */
3081 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3082 {
3083 struct cfq_queue *cfqq = cfqd->active_queue;
3084
3085 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3086 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3087
3088 if (cfqd->hw_tag == 1)
3089 return;
3090
3091 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3092 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3093 return;
3094
3095 /*
3096 * If active queue hasn't enough requests and can idle, cfq might not
3097 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3098 * case
3099 */
3100 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3101 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3102 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3103 return;
3104
3105 if (cfqd->hw_tag_samples++ < 50)
3106 return;
3107
3108 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3109 cfqd->hw_tag = 1;
3110 else
3111 cfqd->hw_tag = 0;
3112 }
3113
3114 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3115 {
3116 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3117 struct cfq_data *cfqd = cfqq->cfqd;
3118 const int sync = rq_is_sync(rq);
3119 unsigned long now;
3120
3121 now = jiffies;
3122 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3123
3124 cfq_update_hw_tag(cfqd);
3125
3126 WARN_ON(!cfqd->rq_in_driver[sync]);
3127 WARN_ON(!cfqq->dispatched);
3128 cfqd->rq_in_driver[sync]--;
3129 cfqq->dispatched--;
3130
3131 if (cfq_cfqq_sync(cfqq))
3132 cfqd->sync_flight--;
3133
3134 if (sync) {
3135 RQ_CIC(rq)->last_end_request = now;
3136 cfqd->last_end_sync_rq = now;
3137 }
3138
3139 /*
3140 * If this is the active queue, check if it needs to be expired,
3141 * or if we want to idle in case it has no pending requests.
3142 */
3143 if (cfqd->active_queue == cfqq) {
3144 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3145
3146 if (cfq_cfqq_slice_new(cfqq)) {
3147 cfq_set_prio_slice(cfqd, cfqq);
3148 cfq_clear_cfqq_slice_new(cfqq);
3149 }
3150 /*
3151 * Idling is not enabled on:
3152 * - expired queues
3153 * - idle-priority queues
3154 * - async queues
3155 * - queues with still some requests queued
3156 * - when there is a close cooperator
3157 */
3158 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3159 cfq_slice_expired(cfqd, 1);
3160 else if (sync && cfqq_empty &&
3161 !cfq_close_cooperator(cfqd, cfqq)) {
3162 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3163 /*
3164 * Idling is enabled for SYNC_WORKLOAD.
3165 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3166 * only if we processed at least one !rq_noidle request
3167 */
3168 if (cfqd->serving_type == SYNC_WORKLOAD
3169 || cfqd->noidle_tree_requires_idle)
3170 cfq_arm_slice_timer(cfqd);
3171 }
3172 }
3173
3174 if (!rq_in_driver(cfqd))
3175 cfq_schedule_dispatch(cfqd);
3176 }
3177
3178 /*
3179 * we temporarily boost lower priority queues if they are holding fs exclusive
3180 * resources. they are boosted to normal prio (CLASS_BE/4)
3181 */
3182 static void cfq_prio_boost(struct cfq_queue *cfqq)
3183 {
3184 if (has_fs_excl()) {
3185 /*
3186 * boost idle prio on transactions that would lock out other
3187 * users of the filesystem
3188 */
3189 if (cfq_class_idle(cfqq))
3190 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3191 if (cfqq->ioprio > IOPRIO_NORM)
3192 cfqq->ioprio = IOPRIO_NORM;
3193 } else {
3194 /*
3195 * unboost the queue (if needed)
3196 */
3197 cfqq->ioprio_class = cfqq->org_ioprio_class;
3198 cfqq->ioprio = cfqq->org_ioprio;
3199 }
3200 }
3201
3202 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3203 {
3204 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3205 cfq_mark_cfqq_must_alloc_slice(cfqq);
3206 return ELV_MQUEUE_MUST;
3207 }
3208
3209 return ELV_MQUEUE_MAY;
3210 }
3211
3212 static int cfq_may_queue(struct request_queue *q, int rw)
3213 {
3214 struct cfq_data *cfqd = q->elevator->elevator_data;
3215 struct task_struct *tsk = current;
3216 struct cfq_io_context *cic;
3217 struct cfq_queue *cfqq;
3218
3219 /*
3220 * don't force setup of a queue from here, as a call to may_queue
3221 * does not necessarily imply that a request actually will be queued.
3222 * so just lookup a possibly existing queue, or return 'may queue'
3223 * if that fails
3224 */
3225 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3226 if (!cic)
3227 return ELV_MQUEUE_MAY;
3228
3229 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3230 if (cfqq) {
3231 cfq_init_prio_data(cfqq, cic->ioc);
3232 cfq_prio_boost(cfqq);
3233
3234 return __cfq_may_queue(cfqq);
3235 }
3236
3237 return ELV_MQUEUE_MAY;
3238 }
3239
3240 /*
3241 * queue lock held here
3242 */
3243 static void cfq_put_request(struct request *rq)
3244 {
3245 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3246
3247 if (cfqq) {
3248 const int rw = rq_data_dir(rq);
3249
3250 BUG_ON(!cfqq->allocated[rw]);
3251 cfqq->allocated[rw]--;
3252
3253 put_io_context(RQ_CIC(rq)->ioc);
3254
3255 rq->elevator_private = NULL;
3256 rq->elevator_private2 = NULL;
3257
3258 cfq_put_queue(cfqq);
3259 }
3260 }
3261
3262 static struct cfq_queue *
3263 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3264 struct cfq_queue *cfqq)
3265 {
3266 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3267 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3268 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3269 cfq_put_queue(cfqq);
3270 return cic_to_cfqq(cic, 1);
3271 }
3272
3273 static int should_split_cfqq(struct cfq_queue *cfqq)
3274 {
3275 if (cfqq->seeky_start &&
3276 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3277 return 1;
3278 return 0;
3279 }
3280
3281 /*
3282 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3283 * was the last process referring to said cfqq.
3284 */
3285 static struct cfq_queue *
3286 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3287 {
3288 if (cfqq_process_refs(cfqq) == 1) {
3289 cfqq->seeky_start = 0;
3290 cfqq->pid = current->pid;
3291 cfq_clear_cfqq_coop(cfqq);
3292 return cfqq;
3293 }
3294
3295 cic_set_cfqq(cic, NULL, 1);
3296 cfq_put_queue(cfqq);
3297 return NULL;
3298 }
3299 /*
3300 * Allocate cfq data structures associated with this request.
3301 */
3302 static int
3303 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3304 {
3305 struct cfq_data *cfqd = q->elevator->elevator_data;
3306 struct cfq_io_context *cic;
3307 const int rw = rq_data_dir(rq);
3308 const bool is_sync = rq_is_sync(rq);
3309 struct cfq_queue *cfqq;
3310 unsigned long flags;
3311
3312 might_sleep_if(gfp_mask & __GFP_WAIT);
3313
3314 cic = cfq_get_io_context(cfqd, gfp_mask);
3315
3316 spin_lock_irqsave(q->queue_lock, flags);
3317
3318 if (!cic)
3319 goto queue_fail;
3320
3321 new_queue:
3322 cfqq = cic_to_cfqq(cic, is_sync);
3323 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3324 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3325 cic_set_cfqq(cic, cfqq, is_sync);
3326 } else {
3327 /*
3328 * If the queue was seeky for too long, break it apart.
3329 */
3330 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3331 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3332 cfqq = split_cfqq(cic, cfqq);
3333 if (!cfqq)
3334 goto new_queue;
3335 }
3336
3337 /*
3338 * Check to see if this queue is scheduled to merge with
3339 * another, closely cooperating queue. The merging of
3340 * queues happens here as it must be done in process context.
3341 * The reference on new_cfqq was taken in merge_cfqqs.
3342 */
3343 if (cfqq->new_cfqq)
3344 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3345 }
3346
3347 cfqq->allocated[rw]++;
3348 atomic_inc(&cfqq->ref);
3349
3350 spin_unlock_irqrestore(q->queue_lock, flags);
3351
3352 rq->elevator_private = cic;
3353 rq->elevator_private2 = cfqq;
3354 return 0;
3355
3356 queue_fail:
3357 if (cic)
3358 put_io_context(cic->ioc);
3359
3360 cfq_schedule_dispatch(cfqd);
3361 spin_unlock_irqrestore(q->queue_lock, flags);
3362 cfq_log(cfqd, "set_request fail");
3363 return 1;
3364 }
3365
3366 static void cfq_kick_queue(struct work_struct *work)
3367 {
3368 struct cfq_data *cfqd =
3369 container_of(work, struct cfq_data, unplug_work);
3370 struct request_queue *q = cfqd->queue;
3371
3372 spin_lock_irq(q->queue_lock);
3373 __blk_run_queue(cfqd->queue);
3374 spin_unlock_irq(q->queue_lock);
3375 }
3376
3377 /*
3378 * Timer running if the active_queue is currently idling inside its time slice
3379 */
3380 static void cfq_idle_slice_timer(unsigned long data)
3381 {
3382 struct cfq_data *cfqd = (struct cfq_data *) data;
3383 struct cfq_queue *cfqq;
3384 unsigned long flags;
3385 int timed_out = 1;
3386
3387 cfq_log(cfqd, "idle timer fired");
3388
3389 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3390
3391 cfqq = cfqd->active_queue;
3392 if (cfqq) {
3393 timed_out = 0;
3394
3395 /*
3396 * We saw a request before the queue expired, let it through
3397 */
3398 if (cfq_cfqq_must_dispatch(cfqq))
3399 goto out_kick;
3400
3401 /*
3402 * expired
3403 */
3404 if (cfq_slice_used(cfqq))
3405 goto expire;
3406
3407 /*
3408 * only expire and reinvoke request handler, if there are
3409 * other queues with pending requests
3410 */
3411 if (!cfqd->busy_queues)
3412 goto out_cont;
3413
3414 /*
3415 * not expired and it has a request pending, let it dispatch
3416 */
3417 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3418 goto out_kick;
3419
3420 /*
3421 * Queue depth flag is reset only when the idle didn't succeed
3422 */
3423 cfq_clear_cfqq_deep(cfqq);
3424 }
3425 expire:
3426 cfq_slice_expired(cfqd, timed_out);
3427 out_kick:
3428 cfq_schedule_dispatch(cfqd);
3429 out_cont:
3430 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3431 }
3432
3433 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3434 {
3435 del_timer_sync(&cfqd->idle_slice_timer);
3436 cancel_work_sync(&cfqd->unplug_work);
3437 }
3438
3439 static void cfq_put_async_queues(struct cfq_data *cfqd)
3440 {
3441 int i;
3442
3443 for (i = 0; i < IOPRIO_BE_NR; i++) {
3444 if (cfqd->async_cfqq[0][i])
3445 cfq_put_queue(cfqd->async_cfqq[0][i]);
3446 if (cfqd->async_cfqq[1][i])
3447 cfq_put_queue(cfqd->async_cfqq[1][i]);
3448 }
3449
3450 if (cfqd->async_idle_cfqq)
3451 cfq_put_queue(cfqd->async_idle_cfqq);
3452 }
3453
3454 static void cfq_exit_queue(struct elevator_queue *e)
3455 {
3456 struct cfq_data *cfqd = e->elevator_data;
3457 struct request_queue *q = cfqd->queue;
3458
3459 cfq_shutdown_timer_wq(cfqd);
3460
3461 spin_lock_irq(q->queue_lock);
3462
3463 if (cfqd->active_queue)
3464 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3465
3466 while (!list_empty(&cfqd->cic_list)) {
3467 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3468 struct cfq_io_context,
3469 queue_list);
3470
3471 __cfq_exit_single_io_context(cfqd, cic);
3472 }
3473
3474 cfq_put_async_queues(cfqd);
3475 cfq_release_cfq_groups(cfqd);
3476 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3477
3478 spin_unlock_irq(q->queue_lock);
3479
3480 cfq_shutdown_timer_wq(cfqd);
3481
3482 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3483 synchronize_rcu();
3484 kfree(cfqd);
3485 }
3486
3487 static void *cfq_init_queue(struct request_queue *q)
3488 {
3489 struct cfq_data *cfqd;
3490 int i, j;
3491 struct cfq_group *cfqg;
3492 struct cfq_rb_root *st;
3493
3494 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3495 if (!cfqd)
3496 return NULL;
3497
3498 /* Init root service tree */
3499 cfqd->grp_service_tree = CFQ_RB_ROOT;
3500
3501 /* Init root group */
3502 cfqg = &cfqd->root_group;
3503 for_each_cfqg_st(cfqg, i, j, st)
3504 *st = CFQ_RB_ROOT;
3505 RB_CLEAR_NODE(&cfqg->rb_node);
3506
3507 /* Give preference to root group over other groups */
3508 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3509
3510 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3511 /*
3512 * Take a reference to root group which we never drop. This is just
3513 * to make sure that cfq_put_cfqg() does not try to kfree root group
3514 */
3515 atomic_set(&cfqg->ref, 1);
3516 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd);
3517 #endif
3518 /*
3519 * Not strictly needed (since RB_ROOT just clears the node and we
3520 * zeroed cfqd on alloc), but better be safe in case someone decides
3521 * to add magic to the rb code
3522 */
3523 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3524 cfqd->prio_trees[i] = RB_ROOT;
3525
3526 /*
3527 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3528 * Grab a permanent reference to it, so that the normal code flow
3529 * will not attempt to free it.
3530 */
3531 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3532 atomic_inc(&cfqd->oom_cfqq.ref);
3533 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3534
3535 INIT_LIST_HEAD(&cfqd->cic_list);
3536
3537 cfqd->queue = q;
3538
3539 init_timer(&cfqd->idle_slice_timer);
3540 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3541 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3542
3543 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3544
3545 cfqd->cfq_quantum = cfq_quantum;
3546 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3547 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3548 cfqd->cfq_back_max = cfq_back_max;
3549 cfqd->cfq_back_penalty = cfq_back_penalty;
3550 cfqd->cfq_slice[0] = cfq_slice_async;
3551 cfqd->cfq_slice[1] = cfq_slice_sync;
3552 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3553 cfqd->cfq_slice_idle = cfq_slice_idle;
3554 cfqd->cfq_latency = 1;
3555 cfqd->hw_tag = -1;
3556 cfqd->last_end_sync_rq = jiffies;
3557 return cfqd;
3558 }
3559
3560 static void cfq_slab_kill(void)
3561 {
3562 /*
3563 * Caller already ensured that pending RCU callbacks are completed,
3564 * so we should have no busy allocations at this point.
3565 */
3566 if (cfq_pool)
3567 kmem_cache_destroy(cfq_pool);
3568 if (cfq_ioc_pool)
3569 kmem_cache_destroy(cfq_ioc_pool);
3570 }
3571
3572 static int __init cfq_slab_setup(void)
3573 {
3574 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3575 if (!cfq_pool)
3576 goto fail;
3577
3578 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3579 if (!cfq_ioc_pool)
3580 goto fail;
3581
3582 return 0;
3583 fail:
3584 cfq_slab_kill();
3585 return -ENOMEM;
3586 }
3587
3588 /*
3589 * sysfs parts below -->
3590 */
3591 static ssize_t
3592 cfq_var_show(unsigned int var, char *page)
3593 {
3594 return sprintf(page, "%d\n", var);
3595 }
3596
3597 static ssize_t
3598 cfq_var_store(unsigned int *var, const char *page, size_t count)
3599 {
3600 char *p = (char *) page;
3601
3602 *var = simple_strtoul(p, &p, 10);
3603 return count;
3604 }
3605
3606 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3607 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3608 { \
3609 struct cfq_data *cfqd = e->elevator_data; \
3610 unsigned int __data = __VAR; \
3611 if (__CONV) \
3612 __data = jiffies_to_msecs(__data); \
3613 return cfq_var_show(__data, (page)); \
3614 }
3615 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3616 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3617 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3618 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3619 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3620 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3621 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3622 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3623 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3624 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3625 #undef SHOW_FUNCTION
3626
3627 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3628 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3629 { \
3630 struct cfq_data *cfqd = e->elevator_data; \
3631 unsigned int __data; \
3632 int ret = cfq_var_store(&__data, (page), count); \
3633 if (__data < (MIN)) \
3634 __data = (MIN); \
3635 else if (__data > (MAX)) \
3636 __data = (MAX); \
3637 if (__CONV) \
3638 *(__PTR) = msecs_to_jiffies(__data); \
3639 else \
3640 *(__PTR) = __data; \
3641 return ret; \
3642 }
3643 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3644 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3645 UINT_MAX, 1);
3646 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3647 UINT_MAX, 1);
3648 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3649 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3650 UINT_MAX, 0);
3651 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3652 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3653 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3654 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3655 UINT_MAX, 0);
3656 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3657 #undef STORE_FUNCTION
3658
3659 #define CFQ_ATTR(name) \
3660 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3661
3662 static struct elv_fs_entry cfq_attrs[] = {
3663 CFQ_ATTR(quantum),
3664 CFQ_ATTR(fifo_expire_sync),
3665 CFQ_ATTR(fifo_expire_async),
3666 CFQ_ATTR(back_seek_max),
3667 CFQ_ATTR(back_seek_penalty),
3668 CFQ_ATTR(slice_sync),
3669 CFQ_ATTR(slice_async),
3670 CFQ_ATTR(slice_async_rq),
3671 CFQ_ATTR(slice_idle),
3672 CFQ_ATTR(low_latency),
3673 __ATTR_NULL
3674 };
3675
3676 static struct elevator_type iosched_cfq = {
3677 .ops = {
3678 .elevator_merge_fn = cfq_merge,
3679 .elevator_merged_fn = cfq_merged_request,
3680 .elevator_merge_req_fn = cfq_merged_requests,
3681 .elevator_allow_merge_fn = cfq_allow_merge,
3682 .elevator_dispatch_fn = cfq_dispatch_requests,
3683 .elevator_add_req_fn = cfq_insert_request,
3684 .elevator_activate_req_fn = cfq_activate_request,
3685 .elevator_deactivate_req_fn = cfq_deactivate_request,
3686 .elevator_queue_empty_fn = cfq_queue_empty,
3687 .elevator_completed_req_fn = cfq_completed_request,
3688 .elevator_former_req_fn = elv_rb_former_request,
3689 .elevator_latter_req_fn = elv_rb_latter_request,
3690 .elevator_set_req_fn = cfq_set_request,
3691 .elevator_put_req_fn = cfq_put_request,
3692 .elevator_may_queue_fn = cfq_may_queue,
3693 .elevator_init_fn = cfq_init_queue,
3694 .elevator_exit_fn = cfq_exit_queue,
3695 .trim = cfq_free_io_context,
3696 },
3697 .elevator_attrs = cfq_attrs,
3698 .elevator_name = "cfq",
3699 .elevator_owner = THIS_MODULE,
3700 };
3701
3702 static int __init cfq_init(void)
3703 {
3704 /*
3705 * could be 0 on HZ < 1000 setups
3706 */
3707 if (!cfq_slice_async)
3708 cfq_slice_async = 1;
3709 if (!cfq_slice_idle)
3710 cfq_slice_idle = 1;
3711
3712 if (cfq_slab_setup())
3713 return -ENOMEM;
3714
3715 elv_register(&iosched_cfq);
3716
3717 return 0;
3718 }
3719
3720 static void __exit cfq_exit(void)
3721 {
3722 DECLARE_COMPLETION_ONSTACK(all_gone);
3723 elv_unregister(&iosched_cfq);
3724 ioc_gone = &all_gone;
3725 /* ioc_gone's update must be visible before reading ioc_count */
3726 smp_wmb();
3727
3728 /*
3729 * this also protects us from entering cfq_slab_kill() with
3730 * pending RCU callbacks
3731 */
3732 if (elv_ioc_count_read(cfq_ioc_count))
3733 wait_for_completion(&all_gone);
3734 cfq_slab_kill();
3735 }
3736
3737 module_init(cfq_init);
3738 module_exit(cfq_exit);
3739
3740 MODULE_AUTHOR("Jens Axboe");
3741 MODULE_LICENSE("GPL");
3742 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");