cfq-iosched: move IO controller declerations to a header file
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17 #include "cfq-iosched.h"
18
19 /*
20 * tunables
21 */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 4;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34 static const int cfq_hist_divisor = 4;
35
36 /*
37 * offset from end of service tree
38 */
39 #define CFQ_IDLE_DELAY (HZ / 5)
40
41 /*
42 * below this threshold, we consider thinktime immediate
43 */
44 #define CFQ_MIN_TT (2)
45
46 /*
47 * Allow merged cfqqs to perform this amount of seeky I/O before
48 * deciding to break the queues up again.
49 */
50 #define CFQQ_COOP_TOUT (HZ)
51
52 #define CFQ_SLICE_SCALE (5)
53 #define CFQ_HW_QUEUE_MIN (5)
54 #define CFQ_SERVICE_SHIFT 12
55
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59
60 static struct kmem_cache *cfq_pool;
61 static struct kmem_cache *cfq_ioc_pool;
62
63 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64 static struct completion *ioc_gone;
65 static DEFINE_SPINLOCK(ioc_gone_lock);
66
67 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
68 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
71 #define sample_valid(samples) ((samples) > 80)
72 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
73
74 /*
75 * Most of our rbtree usage is for sorting with min extraction, so
76 * if we cache the leftmost node we don't have to walk down the tree
77 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
78 * move this into the elevator for the rq sorting as well.
79 */
80 struct cfq_rb_root {
81 struct rb_root rb;
82 struct rb_node *left;
83 unsigned count;
84 u64 min_vdisktime;
85 struct rb_node *active;
86 unsigned total_weight;
87 };
88 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
89
90 /*
91 * Per process-grouping structure
92 */
93 struct cfq_queue {
94 /* reference count */
95 atomic_t ref;
96 /* various state flags, see below */
97 unsigned int flags;
98 /* parent cfq_data */
99 struct cfq_data *cfqd;
100 /* service_tree member */
101 struct rb_node rb_node;
102 /* service_tree key */
103 unsigned long rb_key;
104 /* prio tree member */
105 struct rb_node p_node;
106 /* prio tree root we belong to, if any */
107 struct rb_root *p_root;
108 /* sorted list of pending requests */
109 struct rb_root sort_list;
110 /* if fifo isn't expired, next request to serve */
111 struct request *next_rq;
112 /* requests queued in sort_list */
113 int queued[2];
114 /* currently allocated requests */
115 int allocated[2];
116 /* fifo list of requests in sort_list */
117 struct list_head fifo;
118
119 /* time when queue got scheduled in to dispatch first request. */
120 unsigned long dispatch_start;
121 unsigned int allocated_slice;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
126 unsigned int slice_dispatch;
127
128 /* pending metadata requests */
129 int meta_pending;
130 /* number of requests that are on the dispatch list or inside driver */
131 int dispatched;
132
133 /* io prio of this group */
134 unsigned short ioprio, org_ioprio;
135 unsigned short ioprio_class, org_ioprio_class;
136
137 unsigned int seek_samples;
138 u64 seek_total;
139 sector_t seek_mean;
140 sector_t last_request_pos;
141 unsigned long seeky_start;
142
143 pid_t pid;
144
145 struct cfq_rb_root *service_tree;
146 struct cfq_queue *new_cfqq;
147 struct cfq_group *cfqg;
148 struct cfq_group *orig_cfqg;
149 /* Sectors dispatched in current dispatch round */
150 unsigned long nr_sectors;
151 };
152
153 /*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157 enum wl_prio_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 };
162
163 /*
164 * Second index in the service_trees.
165 */
166 enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
170 };
171
172 /* This is per cgroup per device grouping structure */
173 struct cfq_group {
174 /* group service_tree member */
175 struct rb_node rb_node;
176
177 /* group service_tree key */
178 u64 vdisktime;
179 unsigned int weight;
180 bool on_st;
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
185 /* Per group busy queus average. Useful for workload slice calc. */
186 unsigned int busy_queues_avg[2];
187 /*
188 * rr lists of queues with requests, onle rr for each priority class.
189 * Counts are embedded in the cfq_rb_root
190 */
191 struct cfq_rb_root service_trees[2][3];
192 struct cfq_rb_root service_tree_idle;
193
194 unsigned long saved_workload_slice;
195 enum wl_type_t saved_workload;
196 enum wl_prio_t saved_serving_prio;
197 struct blkio_group blkg;
198 #ifdef CONFIG_CFQ_GROUP_IOSCHED
199 struct hlist_node cfqd_node;
200 atomic_t ref;
201 #endif
202 };
203
204 /*
205 * Per block device queue structure
206 */
207 struct cfq_data {
208 struct request_queue *queue;
209 /* Root service tree for cfq_groups */
210 struct cfq_rb_root grp_service_tree;
211 struct cfq_group root_group;
212 /* Number of active cfq groups on group service tree */
213 int nr_groups;
214
215 /*
216 * The priority currently being served
217 */
218 enum wl_prio_t serving_prio;
219 enum wl_type_t serving_type;
220 unsigned long workload_expires;
221 struct cfq_group *serving_group;
222 bool noidle_tree_requires_idle;
223
224 /*
225 * Each priority tree is sorted by next_request position. These
226 * trees are used when determining if two or more queues are
227 * interleaving requests (see cfq_close_cooperator).
228 */
229 struct rb_root prio_trees[CFQ_PRIO_LISTS];
230
231 unsigned int busy_queues;
232
233 int rq_in_driver[2];
234 int sync_flight;
235
236 /*
237 * queue-depth detection
238 */
239 int rq_queued;
240 int hw_tag;
241 /*
242 * hw_tag can be
243 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
244 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
245 * 0 => no NCQ
246 */
247 int hw_tag_est_depth;
248 unsigned int hw_tag_samples;
249
250 /*
251 * idle window management
252 */
253 struct timer_list idle_slice_timer;
254 struct work_struct unplug_work;
255
256 struct cfq_queue *active_queue;
257 struct cfq_io_context *active_cic;
258
259 /*
260 * async queue for each priority case
261 */
262 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
263 struct cfq_queue *async_idle_cfqq;
264
265 sector_t last_position;
266
267 /*
268 * tunables, see top of file
269 */
270 unsigned int cfq_quantum;
271 unsigned int cfq_fifo_expire[2];
272 unsigned int cfq_back_penalty;
273 unsigned int cfq_back_max;
274 unsigned int cfq_slice[2];
275 unsigned int cfq_slice_async_rq;
276 unsigned int cfq_slice_idle;
277 unsigned int cfq_latency;
278 unsigned int cfq_group_isolation;
279
280 struct list_head cic_list;
281
282 /*
283 * Fallback dummy cfqq for extreme OOM conditions
284 */
285 struct cfq_queue oom_cfqq;
286
287 unsigned long last_end_sync_rq;
288
289 /* List of cfq groups being managed on this device*/
290 struct hlist_head cfqg_list;
291 };
292
293 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
295 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296 enum wl_prio_t prio,
297 enum wl_type_t type,
298 struct cfq_data *cfqd)
299 {
300 if (!cfqg)
301 return NULL;
302
303 if (prio == IDLE_WORKLOAD)
304 return &cfqg->service_tree_idle;
305
306 return &cfqg->service_trees[prio][type];
307 }
308
309 enum cfqq_state_flags {
310 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
311 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
312 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
313 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
314 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
315 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
316 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
317 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
318 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
319 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
320 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
321 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
322 CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
323 };
324
325 #define CFQ_CFQQ_FNS(name) \
326 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
327 { \
328 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
329 } \
330 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
331 { \
332 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
333 } \
334 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
335 { \
336 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
337 }
338
339 CFQ_CFQQ_FNS(on_rr);
340 CFQ_CFQQ_FNS(wait_request);
341 CFQ_CFQQ_FNS(must_dispatch);
342 CFQ_CFQQ_FNS(must_alloc_slice);
343 CFQ_CFQQ_FNS(fifo_expire);
344 CFQ_CFQQ_FNS(idle_window);
345 CFQ_CFQQ_FNS(prio_changed);
346 CFQ_CFQQ_FNS(slice_new);
347 CFQ_CFQQ_FNS(sync);
348 CFQ_CFQQ_FNS(coop);
349 CFQ_CFQQ_FNS(deep);
350 CFQ_CFQQ_FNS(wait_busy);
351 CFQ_CFQQ_FNS(wait_busy_done);
352 #undef CFQ_CFQQ_FNS
353
354 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
355 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
356 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
357 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
358 blkg_path(&(cfqq)->cfqg->blkg), ##args);
359
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
361 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
362 blkg_path(&(cfqg)->blkg), ##args); \
363
364 #else
365 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
367 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
368 #endif
369 #define cfq_log(cfqd, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
371
372 /* Traverses through cfq group service trees */
373 #define for_each_cfqg_st(cfqg, i, j, st) \
374 for (i = 0; i <= IDLE_WORKLOAD; i++) \
375 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
376 : &cfqg->service_tree_idle; \
377 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
378 (i == IDLE_WORKLOAD && j == 0); \
379 j++, st = i < IDLE_WORKLOAD ? \
380 &cfqg->service_trees[i][j]: NULL) \
381
382
383 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
384 {
385 if (cfq_class_idle(cfqq))
386 return IDLE_WORKLOAD;
387 if (cfq_class_rt(cfqq))
388 return RT_WORKLOAD;
389 return BE_WORKLOAD;
390 }
391
392
393 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
394 {
395 if (!cfq_cfqq_sync(cfqq))
396 return ASYNC_WORKLOAD;
397 if (!cfq_cfqq_idle_window(cfqq))
398 return SYNC_NOIDLE_WORKLOAD;
399 return SYNC_WORKLOAD;
400 }
401
402 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
403 struct cfq_data *cfqd,
404 struct cfq_group *cfqg)
405 {
406 if (wl == IDLE_WORKLOAD)
407 return cfqg->service_tree_idle.count;
408
409 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
410 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
411 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 }
413
414 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
415 struct cfq_group *cfqg)
416 {
417 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
418 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419 }
420
421 static void cfq_dispatch_insert(struct request_queue *, struct request *);
422 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
423 struct io_context *, gfp_t);
424 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
425 struct io_context *);
426
427 static inline int rq_in_driver(struct cfq_data *cfqd)
428 {
429 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
430 }
431
432 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
433 bool is_sync)
434 {
435 return cic->cfqq[is_sync];
436 }
437
438 static inline void cic_set_cfqq(struct cfq_io_context *cic,
439 struct cfq_queue *cfqq, bool is_sync)
440 {
441 cic->cfqq[is_sync] = cfqq;
442 }
443
444 /*
445 * We regard a request as SYNC, if it's either a read or has the SYNC bit
446 * set (in which case it could also be direct WRITE).
447 */
448 static inline bool cfq_bio_sync(struct bio *bio)
449 {
450 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
451 }
452
453 /*
454 * scheduler run of queue, if there are requests pending and no one in the
455 * driver that will restart queueing
456 */
457 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
458 {
459 if (cfqd->busy_queues) {
460 cfq_log(cfqd, "schedule dispatch");
461 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
462 }
463 }
464
465 static int cfq_queue_empty(struct request_queue *q)
466 {
467 struct cfq_data *cfqd = q->elevator->elevator_data;
468
469 return !cfqd->rq_queued;
470 }
471
472 /*
473 * Scale schedule slice based on io priority. Use the sync time slice only
474 * if a queue is marked sync and has sync io queued. A sync queue with async
475 * io only, should not get full sync slice length.
476 */
477 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
478 unsigned short prio)
479 {
480 const int base_slice = cfqd->cfq_slice[sync];
481
482 WARN_ON(prio >= IOPRIO_BE_NR);
483
484 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
485 }
486
487 static inline int
488 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
489 {
490 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
491 }
492
493 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
494 {
495 u64 d = delta << CFQ_SERVICE_SHIFT;
496
497 d = d * BLKIO_WEIGHT_DEFAULT;
498 do_div(d, cfqg->weight);
499 return d;
500 }
501
502 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
503 {
504 s64 delta = (s64)(vdisktime - min_vdisktime);
505 if (delta > 0)
506 min_vdisktime = vdisktime;
507
508 return min_vdisktime;
509 }
510
511 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
512 {
513 s64 delta = (s64)(vdisktime - min_vdisktime);
514 if (delta < 0)
515 min_vdisktime = vdisktime;
516
517 return min_vdisktime;
518 }
519
520 static void update_min_vdisktime(struct cfq_rb_root *st)
521 {
522 u64 vdisktime = st->min_vdisktime;
523 struct cfq_group *cfqg;
524
525 if (st->active) {
526 cfqg = rb_entry_cfqg(st->active);
527 vdisktime = cfqg->vdisktime;
528 }
529
530 if (st->left) {
531 cfqg = rb_entry_cfqg(st->left);
532 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
533 }
534
535 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
536 }
537
538 /*
539 * get averaged number of queues of RT/BE priority.
540 * average is updated, with a formula that gives more weight to higher numbers,
541 * to quickly follows sudden increases and decrease slowly
542 */
543
544 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
545 struct cfq_group *cfqg, bool rt)
546 {
547 unsigned min_q, max_q;
548 unsigned mult = cfq_hist_divisor - 1;
549 unsigned round = cfq_hist_divisor / 2;
550 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
551
552 min_q = min(cfqg->busy_queues_avg[rt], busy);
553 max_q = max(cfqg->busy_queues_avg[rt], busy);
554 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
555 cfq_hist_divisor;
556 return cfqg->busy_queues_avg[rt];
557 }
558
559 static inline unsigned
560 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
561 {
562 struct cfq_rb_root *st = &cfqd->grp_service_tree;
563
564 return cfq_target_latency * cfqg->weight / st->total_weight;
565 }
566
567 static inline void
568 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
569 {
570 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
571 if (cfqd->cfq_latency) {
572 /*
573 * interested queues (we consider only the ones with the same
574 * priority class in the cfq group)
575 */
576 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
577 cfq_class_rt(cfqq));
578 unsigned sync_slice = cfqd->cfq_slice[1];
579 unsigned expect_latency = sync_slice * iq;
580 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
581
582 if (expect_latency > group_slice) {
583 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
584 /* scale low_slice according to IO priority
585 * and sync vs async */
586 unsigned low_slice =
587 min(slice, base_low_slice * slice / sync_slice);
588 /* the adapted slice value is scaled to fit all iqs
589 * into the target latency */
590 slice = max(slice * group_slice / expect_latency,
591 low_slice);
592 }
593 }
594 cfqq->slice_start = jiffies;
595 cfqq->slice_end = jiffies + slice;
596 cfqq->allocated_slice = slice;
597 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
598 }
599
600 /*
601 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
602 * isn't valid until the first request from the dispatch is activated
603 * and the slice time set.
604 */
605 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
606 {
607 if (cfq_cfqq_slice_new(cfqq))
608 return 0;
609 if (time_before(jiffies, cfqq->slice_end))
610 return 0;
611
612 return 1;
613 }
614
615 /*
616 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
617 * We choose the request that is closest to the head right now. Distance
618 * behind the head is penalized and only allowed to a certain extent.
619 */
620 static struct request *
621 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
622 {
623 sector_t s1, s2, d1 = 0, d2 = 0;
624 unsigned long back_max;
625 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
626 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
627 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
628
629 if (rq1 == NULL || rq1 == rq2)
630 return rq2;
631 if (rq2 == NULL)
632 return rq1;
633
634 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
635 return rq1;
636 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
637 return rq2;
638 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
639 return rq1;
640 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
641 return rq2;
642
643 s1 = blk_rq_pos(rq1);
644 s2 = blk_rq_pos(rq2);
645
646 /*
647 * by definition, 1KiB is 2 sectors
648 */
649 back_max = cfqd->cfq_back_max * 2;
650
651 /*
652 * Strict one way elevator _except_ in the case where we allow
653 * short backward seeks which are biased as twice the cost of a
654 * similar forward seek.
655 */
656 if (s1 >= last)
657 d1 = s1 - last;
658 else if (s1 + back_max >= last)
659 d1 = (last - s1) * cfqd->cfq_back_penalty;
660 else
661 wrap |= CFQ_RQ1_WRAP;
662
663 if (s2 >= last)
664 d2 = s2 - last;
665 else if (s2 + back_max >= last)
666 d2 = (last - s2) * cfqd->cfq_back_penalty;
667 else
668 wrap |= CFQ_RQ2_WRAP;
669
670 /* Found required data */
671
672 /*
673 * By doing switch() on the bit mask "wrap" we avoid having to
674 * check two variables for all permutations: --> faster!
675 */
676 switch (wrap) {
677 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
678 if (d1 < d2)
679 return rq1;
680 else if (d2 < d1)
681 return rq2;
682 else {
683 if (s1 >= s2)
684 return rq1;
685 else
686 return rq2;
687 }
688
689 case CFQ_RQ2_WRAP:
690 return rq1;
691 case CFQ_RQ1_WRAP:
692 return rq2;
693 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
694 default:
695 /*
696 * Since both rqs are wrapped,
697 * start with the one that's further behind head
698 * (--> only *one* back seek required),
699 * since back seek takes more time than forward.
700 */
701 if (s1 <= s2)
702 return rq1;
703 else
704 return rq2;
705 }
706 }
707
708 /*
709 * The below is leftmost cache rbtree addon
710 */
711 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
712 {
713 /* Service tree is empty */
714 if (!root->count)
715 return NULL;
716
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
720 if (root->left)
721 return rb_entry(root->left, struct cfq_queue, rb_node);
722
723 return NULL;
724 }
725
726 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
727 {
728 if (!root->left)
729 root->left = rb_first(&root->rb);
730
731 if (root->left)
732 return rb_entry_cfqg(root->left);
733
734 return NULL;
735 }
736
737 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
738 {
739 rb_erase(n, root);
740 RB_CLEAR_NODE(n);
741 }
742
743 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
744 {
745 if (root->left == n)
746 root->left = NULL;
747 rb_erase_init(n, &root->rb);
748 --root->count;
749 }
750
751 /*
752 * would be nice to take fifo expire time into account as well
753 */
754 static struct request *
755 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
756 struct request *last)
757 {
758 struct rb_node *rbnext = rb_next(&last->rb_node);
759 struct rb_node *rbprev = rb_prev(&last->rb_node);
760 struct request *next = NULL, *prev = NULL;
761
762 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
763
764 if (rbprev)
765 prev = rb_entry_rq(rbprev);
766
767 if (rbnext)
768 next = rb_entry_rq(rbnext);
769 else {
770 rbnext = rb_first(&cfqq->sort_list);
771 if (rbnext && rbnext != &last->rb_node)
772 next = rb_entry_rq(rbnext);
773 }
774
775 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
776 }
777
778 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
779 struct cfq_queue *cfqq)
780 {
781 /*
782 * just an approximation, should be ok.
783 */
784 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
785 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
786 }
787
788 static inline s64
789 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
790 {
791 return cfqg->vdisktime - st->min_vdisktime;
792 }
793
794 static void
795 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
796 {
797 struct rb_node **node = &st->rb.rb_node;
798 struct rb_node *parent = NULL;
799 struct cfq_group *__cfqg;
800 s64 key = cfqg_key(st, cfqg);
801 int left = 1;
802
803 while (*node != NULL) {
804 parent = *node;
805 __cfqg = rb_entry_cfqg(parent);
806
807 if (key < cfqg_key(st, __cfqg))
808 node = &parent->rb_left;
809 else {
810 node = &parent->rb_right;
811 left = 0;
812 }
813 }
814
815 if (left)
816 st->left = &cfqg->rb_node;
817
818 rb_link_node(&cfqg->rb_node, parent, node);
819 rb_insert_color(&cfqg->rb_node, &st->rb);
820 }
821
822 static void
823 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
824 {
825 struct cfq_rb_root *st = &cfqd->grp_service_tree;
826 struct cfq_group *__cfqg;
827 struct rb_node *n;
828
829 cfqg->nr_cfqq++;
830 if (cfqg->on_st)
831 return;
832
833 /*
834 * Currently put the group at the end. Later implement something
835 * so that groups get lesser vtime based on their weights, so that
836 * if group does not loose all if it was not continously backlogged.
837 */
838 n = rb_last(&st->rb);
839 if (n) {
840 __cfqg = rb_entry_cfqg(n);
841 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
842 } else
843 cfqg->vdisktime = st->min_vdisktime;
844
845 __cfq_group_service_tree_add(st, cfqg);
846 cfqg->on_st = true;
847 cfqd->nr_groups++;
848 st->total_weight += cfqg->weight;
849 }
850
851 static void
852 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
853 {
854 struct cfq_rb_root *st = &cfqd->grp_service_tree;
855
856 if (st->active == &cfqg->rb_node)
857 st->active = NULL;
858
859 BUG_ON(cfqg->nr_cfqq < 1);
860 cfqg->nr_cfqq--;
861
862 /* If there are other cfq queues under this group, don't delete it */
863 if (cfqg->nr_cfqq)
864 return;
865
866 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
867 cfqg->on_st = false;
868 cfqd->nr_groups--;
869 st->total_weight -= cfqg->weight;
870 if (!RB_EMPTY_NODE(&cfqg->rb_node))
871 cfq_rb_erase(&cfqg->rb_node, st);
872 cfqg->saved_workload_slice = 0;
873 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
874 }
875
876 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
877 {
878 unsigned int slice_used;
879
880 /*
881 * Queue got expired before even a single request completed or
882 * got expired immediately after first request completion.
883 */
884 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
885 /*
886 * Also charge the seek time incurred to the group, otherwise
887 * if there are mutiple queues in the group, each can dispatch
888 * a single request on seeky media and cause lots of seek time
889 * and group will never know it.
890 */
891 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
892 1);
893 } else {
894 slice_used = jiffies - cfqq->slice_start;
895 if (slice_used > cfqq->allocated_slice)
896 slice_used = cfqq->allocated_slice;
897 }
898
899 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
900 cfqq->nr_sectors);
901 return slice_used;
902 }
903
904 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
905 struct cfq_queue *cfqq)
906 {
907 struct cfq_rb_root *st = &cfqd->grp_service_tree;
908 unsigned int used_sl, charge_sl;
909 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
910 - cfqg->service_tree_idle.count;
911
912 BUG_ON(nr_sync < 0);
913 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
914
915 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
916 charge_sl = cfqq->allocated_slice;
917
918 /* Can't update vdisktime while group is on service tree */
919 cfq_rb_erase(&cfqg->rb_node, st);
920 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
921 __cfq_group_service_tree_add(st, cfqg);
922
923 /* This group is being expired. Save the context */
924 if (time_after(cfqd->workload_expires, jiffies)) {
925 cfqg->saved_workload_slice = cfqd->workload_expires
926 - jiffies;
927 cfqg->saved_workload = cfqd->serving_type;
928 cfqg->saved_serving_prio = cfqd->serving_prio;
929 } else
930 cfqg->saved_workload_slice = 0;
931
932 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
933 st->min_vdisktime);
934 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
935 cfqq->nr_sectors);
936 }
937
938 #ifdef CONFIG_CFQ_GROUP_IOSCHED
939 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
940 {
941 if (blkg)
942 return container_of(blkg, struct cfq_group, blkg);
943 return NULL;
944 }
945
946 void
947 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
948 {
949 cfqg_of_blkg(blkg)->weight = weight;
950 }
951
952 static struct cfq_group *
953 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
954 {
955 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
956 struct cfq_group *cfqg = NULL;
957 void *key = cfqd;
958 int i, j;
959 struct cfq_rb_root *st;
960 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
961 unsigned int major, minor;
962
963 /* Do we need to take this reference */
964 if (!css_tryget(&blkcg->css))
965 return NULL;;
966
967 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
968 if (cfqg || !create)
969 goto done;
970
971 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
972 if (!cfqg)
973 goto done;
974
975 cfqg->weight = blkcg->weight;
976 for_each_cfqg_st(cfqg, i, j, st)
977 *st = CFQ_RB_ROOT;
978 RB_CLEAR_NODE(&cfqg->rb_node);
979
980 /*
981 * Take the initial reference that will be released on destroy
982 * This can be thought of a joint reference by cgroup and
983 * elevator which will be dropped by either elevator exit
984 * or cgroup deletion path depending on who is exiting first.
985 */
986 atomic_set(&cfqg->ref, 1);
987
988 /* Add group onto cgroup list */
989 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
990 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
991 MKDEV(major, minor));
992
993 /* Add group on cfqd list */
994 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
995
996 done:
997 css_put(&blkcg->css);
998 return cfqg;
999 }
1000
1001 /*
1002 * Search for the cfq group current task belongs to. If create = 1, then also
1003 * create the cfq group if it does not exist. request_queue lock must be held.
1004 */
1005 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1006 {
1007 struct cgroup *cgroup;
1008 struct cfq_group *cfqg = NULL;
1009
1010 rcu_read_lock();
1011 cgroup = task_cgroup(current, blkio_subsys_id);
1012 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1013 if (!cfqg && create)
1014 cfqg = &cfqd->root_group;
1015 rcu_read_unlock();
1016 return cfqg;
1017 }
1018
1019 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1020 {
1021 /* Currently, all async queues are mapped to root group */
1022 if (!cfq_cfqq_sync(cfqq))
1023 cfqg = &cfqq->cfqd->root_group;
1024
1025 cfqq->cfqg = cfqg;
1026 /* cfqq reference on cfqg */
1027 atomic_inc(&cfqq->cfqg->ref);
1028 }
1029
1030 static void cfq_put_cfqg(struct cfq_group *cfqg)
1031 {
1032 struct cfq_rb_root *st;
1033 int i, j;
1034
1035 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1036 if (!atomic_dec_and_test(&cfqg->ref))
1037 return;
1038 for_each_cfqg_st(cfqg, i, j, st)
1039 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1040 kfree(cfqg);
1041 }
1042
1043 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1044 {
1045 /* Something wrong if we are trying to remove same group twice */
1046 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1047
1048 hlist_del_init(&cfqg->cfqd_node);
1049
1050 /*
1051 * Put the reference taken at the time of creation so that when all
1052 * queues are gone, group can be destroyed.
1053 */
1054 cfq_put_cfqg(cfqg);
1055 }
1056
1057 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1058 {
1059 struct hlist_node *pos, *n;
1060 struct cfq_group *cfqg;
1061
1062 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1063 /*
1064 * If cgroup removal path got to blk_group first and removed
1065 * it from cgroup list, then it will take care of destroying
1066 * cfqg also.
1067 */
1068 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1069 cfq_destroy_cfqg(cfqd, cfqg);
1070 }
1071 }
1072
1073 /*
1074 * Blk cgroup controller notification saying that blkio_group object is being
1075 * delinked as associated cgroup object is going away. That also means that
1076 * no new IO will come in this group. So get rid of this group as soon as
1077 * any pending IO in the group is finished.
1078 *
1079 * This function is called under rcu_read_lock(). key is the rcu protected
1080 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081 * read lock.
1082 *
1083 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1084 * it should not be NULL as even if elevator was exiting, cgroup deltion
1085 * path got to it first.
1086 */
1087 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1088 {
1089 unsigned long flags;
1090 struct cfq_data *cfqd = key;
1091
1092 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1093 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1094 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1095 }
1096
1097 #else /* GROUP_IOSCHED */
1098 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1099 {
1100 return &cfqd->root_group;
1101 }
1102 static inline void
1103 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1104 cfqq->cfqg = cfqg;
1105 }
1106
1107 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1108 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1109
1110 #endif /* GROUP_IOSCHED */
1111
1112 /*
1113 * The cfqd->service_trees holds all pending cfq_queue's that have
1114 * requests waiting to be processed. It is sorted in the order that
1115 * we will service the queues.
1116 */
1117 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1118 bool add_front)
1119 {
1120 struct rb_node **p, *parent;
1121 struct cfq_queue *__cfqq;
1122 unsigned long rb_key;
1123 struct cfq_rb_root *service_tree;
1124 int left;
1125 int new_cfqq = 1;
1126 int group_changed = 0;
1127
1128 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1129 if (!cfqd->cfq_group_isolation
1130 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1131 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1132 /* Move this cfq to root group */
1133 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1134 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1135 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1136 cfqq->orig_cfqg = cfqq->cfqg;
1137 cfqq->cfqg = &cfqd->root_group;
1138 atomic_inc(&cfqd->root_group.ref);
1139 group_changed = 1;
1140 } else if (!cfqd->cfq_group_isolation
1141 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1142 /* cfqq is sequential now needs to go to its original group */
1143 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1144 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1145 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1146 cfq_put_cfqg(cfqq->cfqg);
1147 cfqq->cfqg = cfqq->orig_cfqg;
1148 cfqq->orig_cfqg = NULL;
1149 group_changed = 1;
1150 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1151 }
1152 #endif
1153
1154 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1155 cfqq_type(cfqq), cfqd);
1156 if (cfq_class_idle(cfqq)) {
1157 rb_key = CFQ_IDLE_DELAY;
1158 parent = rb_last(&service_tree->rb);
1159 if (parent && parent != &cfqq->rb_node) {
1160 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1161 rb_key += __cfqq->rb_key;
1162 } else
1163 rb_key += jiffies;
1164 } else if (!add_front) {
1165 /*
1166 * Get our rb key offset. Subtract any residual slice
1167 * value carried from last service. A negative resid
1168 * count indicates slice overrun, and this should position
1169 * the next service time further away in the tree.
1170 */
1171 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1172 rb_key -= cfqq->slice_resid;
1173 cfqq->slice_resid = 0;
1174 } else {
1175 rb_key = -HZ;
1176 __cfqq = cfq_rb_first(service_tree);
1177 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1178 }
1179
1180 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1181 new_cfqq = 0;
1182 /*
1183 * same position, nothing more to do
1184 */
1185 if (rb_key == cfqq->rb_key &&
1186 cfqq->service_tree == service_tree)
1187 return;
1188
1189 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1190 cfqq->service_tree = NULL;
1191 }
1192
1193 left = 1;
1194 parent = NULL;
1195 cfqq->service_tree = service_tree;
1196 p = &service_tree->rb.rb_node;
1197 while (*p) {
1198 struct rb_node **n;
1199
1200 parent = *p;
1201 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1202
1203 /*
1204 * sort by key, that represents service time.
1205 */
1206 if (time_before(rb_key, __cfqq->rb_key))
1207 n = &(*p)->rb_left;
1208 else {
1209 n = &(*p)->rb_right;
1210 left = 0;
1211 }
1212
1213 p = n;
1214 }
1215
1216 if (left)
1217 service_tree->left = &cfqq->rb_node;
1218
1219 cfqq->rb_key = rb_key;
1220 rb_link_node(&cfqq->rb_node, parent, p);
1221 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1222 service_tree->count++;
1223 if ((add_front || !new_cfqq) && !group_changed)
1224 return;
1225 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1226 }
1227
1228 static struct cfq_queue *
1229 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1230 sector_t sector, struct rb_node **ret_parent,
1231 struct rb_node ***rb_link)
1232 {
1233 struct rb_node **p, *parent;
1234 struct cfq_queue *cfqq = NULL;
1235
1236 parent = NULL;
1237 p = &root->rb_node;
1238 while (*p) {
1239 struct rb_node **n;
1240
1241 parent = *p;
1242 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1243
1244 /*
1245 * Sort strictly based on sector. Smallest to the left,
1246 * largest to the right.
1247 */
1248 if (sector > blk_rq_pos(cfqq->next_rq))
1249 n = &(*p)->rb_right;
1250 else if (sector < blk_rq_pos(cfqq->next_rq))
1251 n = &(*p)->rb_left;
1252 else
1253 break;
1254 p = n;
1255 cfqq = NULL;
1256 }
1257
1258 *ret_parent = parent;
1259 if (rb_link)
1260 *rb_link = p;
1261 return cfqq;
1262 }
1263
1264 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265 {
1266 struct rb_node **p, *parent;
1267 struct cfq_queue *__cfqq;
1268
1269 if (cfqq->p_root) {
1270 rb_erase(&cfqq->p_node, cfqq->p_root);
1271 cfqq->p_root = NULL;
1272 }
1273
1274 if (cfq_class_idle(cfqq))
1275 return;
1276 if (!cfqq->next_rq)
1277 return;
1278
1279 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1280 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1281 blk_rq_pos(cfqq->next_rq), &parent, &p);
1282 if (!__cfqq) {
1283 rb_link_node(&cfqq->p_node, parent, p);
1284 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1285 } else
1286 cfqq->p_root = NULL;
1287 }
1288
1289 /*
1290 * Update cfqq's position in the service tree.
1291 */
1292 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1293 {
1294 /*
1295 * Resorting requires the cfqq to be on the RR list already.
1296 */
1297 if (cfq_cfqq_on_rr(cfqq)) {
1298 cfq_service_tree_add(cfqd, cfqq, 0);
1299 cfq_prio_tree_add(cfqd, cfqq);
1300 }
1301 }
1302
1303 /*
1304 * add to busy list of queues for service, trying to be fair in ordering
1305 * the pending list according to last request service
1306 */
1307 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1308 {
1309 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1310 BUG_ON(cfq_cfqq_on_rr(cfqq));
1311 cfq_mark_cfqq_on_rr(cfqq);
1312 cfqd->busy_queues++;
1313
1314 cfq_resort_rr_list(cfqd, cfqq);
1315 }
1316
1317 /*
1318 * Called when the cfqq no longer has requests pending, remove it from
1319 * the service tree.
1320 */
1321 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1322 {
1323 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1324 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1325 cfq_clear_cfqq_on_rr(cfqq);
1326
1327 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1328 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1329 cfqq->service_tree = NULL;
1330 }
1331 if (cfqq->p_root) {
1332 rb_erase(&cfqq->p_node, cfqq->p_root);
1333 cfqq->p_root = NULL;
1334 }
1335
1336 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1337 BUG_ON(!cfqd->busy_queues);
1338 cfqd->busy_queues--;
1339 }
1340
1341 /*
1342 * rb tree support functions
1343 */
1344 static void cfq_del_rq_rb(struct request *rq)
1345 {
1346 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1347 const int sync = rq_is_sync(rq);
1348
1349 BUG_ON(!cfqq->queued[sync]);
1350 cfqq->queued[sync]--;
1351
1352 elv_rb_del(&cfqq->sort_list, rq);
1353
1354 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1355 /*
1356 * Queue will be deleted from service tree when we actually
1357 * expire it later. Right now just remove it from prio tree
1358 * as it is empty.
1359 */
1360 if (cfqq->p_root) {
1361 rb_erase(&cfqq->p_node, cfqq->p_root);
1362 cfqq->p_root = NULL;
1363 }
1364 }
1365 }
1366
1367 static void cfq_add_rq_rb(struct request *rq)
1368 {
1369 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1370 struct cfq_data *cfqd = cfqq->cfqd;
1371 struct request *__alias, *prev;
1372
1373 cfqq->queued[rq_is_sync(rq)]++;
1374
1375 /*
1376 * looks a little odd, but the first insert might return an alias.
1377 * if that happens, put the alias on the dispatch list
1378 */
1379 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1380 cfq_dispatch_insert(cfqd->queue, __alias);
1381
1382 if (!cfq_cfqq_on_rr(cfqq))
1383 cfq_add_cfqq_rr(cfqd, cfqq);
1384
1385 /*
1386 * check if this request is a better next-serve candidate
1387 */
1388 prev = cfqq->next_rq;
1389 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1390
1391 /*
1392 * adjust priority tree position, if ->next_rq changes
1393 */
1394 if (prev != cfqq->next_rq)
1395 cfq_prio_tree_add(cfqd, cfqq);
1396
1397 BUG_ON(!cfqq->next_rq);
1398 }
1399
1400 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1401 {
1402 elv_rb_del(&cfqq->sort_list, rq);
1403 cfqq->queued[rq_is_sync(rq)]--;
1404 cfq_add_rq_rb(rq);
1405 }
1406
1407 static struct request *
1408 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1409 {
1410 struct task_struct *tsk = current;
1411 struct cfq_io_context *cic;
1412 struct cfq_queue *cfqq;
1413
1414 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1415 if (!cic)
1416 return NULL;
1417
1418 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1419 if (cfqq) {
1420 sector_t sector = bio->bi_sector + bio_sectors(bio);
1421
1422 return elv_rb_find(&cfqq->sort_list, sector);
1423 }
1424
1425 return NULL;
1426 }
1427
1428 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1429 {
1430 struct cfq_data *cfqd = q->elevator->elevator_data;
1431
1432 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1433 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1434 rq_in_driver(cfqd));
1435
1436 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1437 }
1438
1439 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1440 {
1441 struct cfq_data *cfqd = q->elevator->elevator_data;
1442 const int sync = rq_is_sync(rq);
1443
1444 WARN_ON(!cfqd->rq_in_driver[sync]);
1445 cfqd->rq_in_driver[sync]--;
1446 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1447 rq_in_driver(cfqd));
1448 }
1449
1450 static void cfq_remove_request(struct request *rq)
1451 {
1452 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1453
1454 if (cfqq->next_rq == rq)
1455 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1456
1457 list_del_init(&rq->queuelist);
1458 cfq_del_rq_rb(rq);
1459
1460 cfqq->cfqd->rq_queued--;
1461 if (rq_is_meta(rq)) {
1462 WARN_ON(!cfqq->meta_pending);
1463 cfqq->meta_pending--;
1464 }
1465 }
1466
1467 static int cfq_merge(struct request_queue *q, struct request **req,
1468 struct bio *bio)
1469 {
1470 struct cfq_data *cfqd = q->elevator->elevator_data;
1471 struct request *__rq;
1472
1473 __rq = cfq_find_rq_fmerge(cfqd, bio);
1474 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1475 *req = __rq;
1476 return ELEVATOR_FRONT_MERGE;
1477 }
1478
1479 return ELEVATOR_NO_MERGE;
1480 }
1481
1482 static void cfq_merged_request(struct request_queue *q, struct request *req,
1483 int type)
1484 {
1485 if (type == ELEVATOR_FRONT_MERGE) {
1486 struct cfq_queue *cfqq = RQ_CFQQ(req);
1487
1488 cfq_reposition_rq_rb(cfqq, req);
1489 }
1490 }
1491
1492 static void
1493 cfq_merged_requests(struct request_queue *q, struct request *rq,
1494 struct request *next)
1495 {
1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497 /*
1498 * reposition in fifo if next is older than rq
1499 */
1500 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1501 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1502 list_move(&rq->queuelist, &next->queuelist);
1503 rq_set_fifo_time(rq, rq_fifo_time(next));
1504 }
1505
1506 if (cfqq->next_rq == next)
1507 cfqq->next_rq = rq;
1508 cfq_remove_request(next);
1509 }
1510
1511 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1512 struct bio *bio)
1513 {
1514 struct cfq_data *cfqd = q->elevator->elevator_data;
1515 struct cfq_io_context *cic;
1516 struct cfq_queue *cfqq;
1517
1518 /* Deny merge if bio and rq don't belong to same cfq group */
1519 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1520 return false;
1521 /*
1522 * Disallow merge of a sync bio into an async request.
1523 */
1524 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1525 return false;
1526
1527 /*
1528 * Lookup the cfqq that this bio will be queued with. Allow
1529 * merge only if rq is queued there.
1530 */
1531 cic = cfq_cic_lookup(cfqd, current->io_context);
1532 if (!cic)
1533 return false;
1534
1535 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1536 return cfqq == RQ_CFQQ(rq);
1537 }
1538
1539 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1540 struct cfq_queue *cfqq)
1541 {
1542 if (cfqq) {
1543 cfq_log_cfqq(cfqd, cfqq, "set_active");
1544 cfqq->slice_start = 0;
1545 cfqq->dispatch_start = jiffies;
1546 cfqq->allocated_slice = 0;
1547 cfqq->slice_end = 0;
1548 cfqq->slice_dispatch = 0;
1549 cfqq->nr_sectors = 0;
1550
1551 cfq_clear_cfqq_wait_request(cfqq);
1552 cfq_clear_cfqq_must_dispatch(cfqq);
1553 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554 cfq_clear_cfqq_fifo_expire(cfqq);
1555 cfq_mark_cfqq_slice_new(cfqq);
1556
1557 del_timer(&cfqd->idle_slice_timer);
1558 }
1559
1560 cfqd->active_queue = cfqq;
1561 }
1562
1563 /*
1564 * current cfqq expired its slice (or was too idle), select new one
1565 */
1566 static void
1567 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568 bool timed_out)
1569 {
1570 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
1572 if (cfq_cfqq_wait_request(cfqq))
1573 del_timer(&cfqd->idle_slice_timer);
1574
1575 cfq_clear_cfqq_wait_request(cfqq);
1576 cfq_clear_cfqq_wait_busy(cfqq);
1577 cfq_clear_cfqq_wait_busy_done(cfqq);
1578
1579 /*
1580 * store what was left of this slice, if the queue idled/timed out
1581 */
1582 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1583 cfqq->slice_resid = cfqq->slice_end - jiffies;
1584 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1585 }
1586
1587 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1588
1589 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1590 cfq_del_cfqq_rr(cfqd, cfqq);
1591
1592 cfq_resort_rr_list(cfqd, cfqq);
1593
1594 if (cfqq == cfqd->active_queue)
1595 cfqd->active_queue = NULL;
1596
1597 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1598 cfqd->grp_service_tree.active = NULL;
1599
1600 if (cfqd->active_cic) {
1601 put_io_context(cfqd->active_cic->ioc);
1602 cfqd->active_cic = NULL;
1603 }
1604 }
1605
1606 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1607 {
1608 struct cfq_queue *cfqq = cfqd->active_queue;
1609
1610 if (cfqq)
1611 __cfq_slice_expired(cfqd, cfqq, timed_out);
1612 }
1613
1614 /*
1615 * Get next queue for service. Unless we have a queue preemption,
1616 * we'll simply select the first cfqq in the service tree.
1617 */
1618 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1619 {
1620 struct cfq_rb_root *service_tree =
1621 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1622 cfqd->serving_type, cfqd);
1623
1624 if (!cfqd->rq_queued)
1625 return NULL;
1626
1627 /* There is nothing to dispatch */
1628 if (!service_tree)
1629 return NULL;
1630 if (RB_EMPTY_ROOT(&service_tree->rb))
1631 return NULL;
1632 return cfq_rb_first(service_tree);
1633 }
1634
1635 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1636 {
1637 struct cfq_group *cfqg;
1638 struct cfq_queue *cfqq;
1639 int i, j;
1640 struct cfq_rb_root *st;
1641
1642 if (!cfqd->rq_queued)
1643 return NULL;
1644
1645 cfqg = cfq_get_next_cfqg(cfqd);
1646 if (!cfqg)
1647 return NULL;
1648
1649 for_each_cfqg_st(cfqg, i, j, st)
1650 if ((cfqq = cfq_rb_first(st)) != NULL)
1651 return cfqq;
1652 return NULL;
1653 }
1654
1655 /*
1656 * Get and set a new active queue for service.
1657 */
1658 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1659 struct cfq_queue *cfqq)
1660 {
1661 if (!cfqq)
1662 cfqq = cfq_get_next_queue(cfqd);
1663
1664 __cfq_set_active_queue(cfqd, cfqq);
1665 return cfqq;
1666 }
1667
1668 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1669 struct request *rq)
1670 {
1671 if (blk_rq_pos(rq) >= cfqd->last_position)
1672 return blk_rq_pos(rq) - cfqd->last_position;
1673 else
1674 return cfqd->last_position - blk_rq_pos(rq);
1675 }
1676
1677 #define CFQQ_SEEK_THR 8 * 1024
1678 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1679
1680 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1681 struct request *rq)
1682 {
1683 sector_t sdist = cfqq->seek_mean;
1684
1685 if (!sample_valid(cfqq->seek_samples))
1686 sdist = CFQQ_SEEK_THR;
1687
1688 return cfq_dist_from_last(cfqd, rq) <= sdist;
1689 }
1690
1691 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1692 struct cfq_queue *cur_cfqq)
1693 {
1694 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1695 struct rb_node *parent, *node;
1696 struct cfq_queue *__cfqq;
1697 sector_t sector = cfqd->last_position;
1698
1699 if (RB_EMPTY_ROOT(root))
1700 return NULL;
1701
1702 /*
1703 * First, if we find a request starting at the end of the last
1704 * request, choose it.
1705 */
1706 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1707 if (__cfqq)
1708 return __cfqq;
1709
1710 /*
1711 * If the exact sector wasn't found, the parent of the NULL leaf
1712 * will contain the closest sector.
1713 */
1714 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1715 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1716 return __cfqq;
1717
1718 if (blk_rq_pos(__cfqq->next_rq) < sector)
1719 node = rb_next(&__cfqq->p_node);
1720 else
1721 node = rb_prev(&__cfqq->p_node);
1722 if (!node)
1723 return NULL;
1724
1725 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1726 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1727 return __cfqq;
1728
1729 return NULL;
1730 }
1731
1732 /*
1733 * cfqd - obvious
1734 * cur_cfqq - passed in so that we don't decide that the current queue is
1735 * closely cooperating with itself.
1736 *
1737 * So, basically we're assuming that that cur_cfqq has dispatched at least
1738 * one request, and that cfqd->last_position reflects a position on the disk
1739 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1740 * assumption.
1741 */
1742 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1743 struct cfq_queue *cur_cfqq)
1744 {
1745 struct cfq_queue *cfqq;
1746
1747 if (!cfq_cfqq_sync(cur_cfqq))
1748 return NULL;
1749 if (CFQQ_SEEKY(cur_cfqq))
1750 return NULL;
1751
1752 /*
1753 * We should notice if some of the queues are cooperating, eg
1754 * working closely on the same area of the disk. In that case,
1755 * we can group them together and don't waste time idling.
1756 */
1757 cfqq = cfqq_close(cfqd, cur_cfqq);
1758 if (!cfqq)
1759 return NULL;
1760
1761 /* If new queue belongs to different cfq_group, don't choose it */
1762 if (cur_cfqq->cfqg != cfqq->cfqg)
1763 return NULL;
1764
1765 /*
1766 * It only makes sense to merge sync queues.
1767 */
1768 if (!cfq_cfqq_sync(cfqq))
1769 return NULL;
1770 if (CFQQ_SEEKY(cfqq))
1771 return NULL;
1772
1773 /*
1774 * Do not merge queues of different priority classes
1775 */
1776 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1777 return NULL;
1778
1779 return cfqq;
1780 }
1781
1782 /*
1783 * Determine whether we should enforce idle window for this queue.
1784 */
1785
1786 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1787 {
1788 enum wl_prio_t prio = cfqq_prio(cfqq);
1789 struct cfq_rb_root *service_tree = cfqq->service_tree;
1790
1791 BUG_ON(!service_tree);
1792 BUG_ON(!service_tree->count);
1793
1794 /* We never do for idle class queues. */
1795 if (prio == IDLE_WORKLOAD)
1796 return false;
1797
1798 /* We do for queues that were marked with idle window flag. */
1799 if (cfq_cfqq_idle_window(cfqq))
1800 return true;
1801
1802 /*
1803 * Otherwise, we do only if they are the last ones
1804 * in their service tree.
1805 */
1806 return service_tree->count == 1;
1807 }
1808
1809 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1810 {
1811 struct cfq_queue *cfqq = cfqd->active_queue;
1812 struct cfq_io_context *cic;
1813 unsigned long sl;
1814
1815 /*
1816 * SSD device without seek penalty, disable idling. But only do so
1817 * for devices that support queuing, otherwise we still have a problem
1818 * with sync vs async workloads.
1819 */
1820 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1821 return;
1822
1823 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1824 WARN_ON(cfq_cfqq_slice_new(cfqq));
1825
1826 /*
1827 * idle is disabled, either manually or by past process history
1828 */
1829 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1830 return;
1831
1832 /*
1833 * still active requests from this queue, don't idle
1834 */
1835 if (cfqq->dispatched)
1836 return;
1837
1838 /*
1839 * task has exited, don't wait
1840 */
1841 cic = cfqd->active_cic;
1842 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1843 return;
1844
1845 /*
1846 * If our average think time is larger than the remaining time
1847 * slice, then don't idle. This avoids overrunning the allotted
1848 * time slice.
1849 */
1850 if (sample_valid(cic->ttime_samples) &&
1851 (cfqq->slice_end - jiffies < cic->ttime_mean))
1852 return;
1853
1854 cfq_mark_cfqq_wait_request(cfqq);
1855
1856 sl = cfqd->cfq_slice_idle;
1857
1858 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1859 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1860 }
1861
1862 /*
1863 * Move request from internal lists to the request queue dispatch list.
1864 */
1865 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1866 {
1867 struct cfq_data *cfqd = q->elevator->elevator_data;
1868 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1869
1870 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1871
1872 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1873 cfq_remove_request(rq);
1874 cfqq->dispatched++;
1875 elv_dispatch_sort(q, rq);
1876
1877 if (cfq_cfqq_sync(cfqq))
1878 cfqd->sync_flight++;
1879 cfqq->nr_sectors += blk_rq_sectors(rq);
1880 }
1881
1882 /*
1883 * return expired entry, or NULL to just start from scratch in rbtree
1884 */
1885 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1886 {
1887 struct request *rq = NULL;
1888
1889 if (cfq_cfqq_fifo_expire(cfqq))
1890 return NULL;
1891
1892 cfq_mark_cfqq_fifo_expire(cfqq);
1893
1894 if (list_empty(&cfqq->fifo))
1895 return NULL;
1896
1897 rq = rq_entry_fifo(cfqq->fifo.next);
1898 if (time_before(jiffies, rq_fifo_time(rq)))
1899 rq = NULL;
1900
1901 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1902 return rq;
1903 }
1904
1905 static inline int
1906 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1907 {
1908 const int base_rq = cfqd->cfq_slice_async_rq;
1909
1910 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1911
1912 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1913 }
1914
1915 /*
1916 * Must be called with the queue_lock held.
1917 */
1918 static int cfqq_process_refs(struct cfq_queue *cfqq)
1919 {
1920 int process_refs, io_refs;
1921
1922 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1923 process_refs = atomic_read(&cfqq->ref) - io_refs;
1924 BUG_ON(process_refs < 0);
1925 return process_refs;
1926 }
1927
1928 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1929 {
1930 int process_refs, new_process_refs;
1931 struct cfq_queue *__cfqq;
1932
1933 /* Avoid a circular list and skip interim queue merges */
1934 while ((__cfqq = new_cfqq->new_cfqq)) {
1935 if (__cfqq == cfqq)
1936 return;
1937 new_cfqq = __cfqq;
1938 }
1939
1940 process_refs = cfqq_process_refs(cfqq);
1941 /*
1942 * If the process for the cfqq has gone away, there is no
1943 * sense in merging the queues.
1944 */
1945 if (process_refs == 0)
1946 return;
1947
1948 /*
1949 * Merge in the direction of the lesser amount of work.
1950 */
1951 new_process_refs = cfqq_process_refs(new_cfqq);
1952 if (new_process_refs >= process_refs) {
1953 cfqq->new_cfqq = new_cfqq;
1954 atomic_add(process_refs, &new_cfqq->ref);
1955 } else {
1956 new_cfqq->new_cfqq = cfqq;
1957 atomic_add(new_process_refs, &cfqq->ref);
1958 }
1959 }
1960
1961 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1962 struct cfq_group *cfqg, enum wl_prio_t prio,
1963 bool prio_changed)
1964 {
1965 struct cfq_queue *queue;
1966 int i;
1967 bool key_valid = false;
1968 unsigned long lowest_key = 0;
1969 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1970
1971 if (prio_changed) {
1972 /*
1973 * When priorities switched, we prefer starting
1974 * from SYNC_NOIDLE (first choice), or just SYNC
1975 * over ASYNC
1976 */
1977 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1978 return cur_best;
1979 cur_best = SYNC_WORKLOAD;
1980 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1981 return cur_best;
1982
1983 return ASYNC_WORKLOAD;
1984 }
1985
1986 for (i = 0; i < 3; ++i) {
1987 /* otherwise, select the one with lowest rb_key */
1988 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1989 if (queue &&
1990 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1991 lowest_key = queue->rb_key;
1992 cur_best = i;
1993 key_valid = true;
1994 }
1995 }
1996
1997 return cur_best;
1998 }
1999
2000 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2001 {
2002 enum wl_prio_t previous_prio = cfqd->serving_prio;
2003 bool prio_changed;
2004 unsigned slice;
2005 unsigned count;
2006 struct cfq_rb_root *st;
2007 unsigned group_slice;
2008
2009 if (!cfqg) {
2010 cfqd->serving_prio = IDLE_WORKLOAD;
2011 cfqd->workload_expires = jiffies + 1;
2012 return;
2013 }
2014
2015 /* Choose next priority. RT > BE > IDLE */
2016 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2017 cfqd->serving_prio = RT_WORKLOAD;
2018 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2019 cfqd->serving_prio = BE_WORKLOAD;
2020 else {
2021 cfqd->serving_prio = IDLE_WORKLOAD;
2022 cfqd->workload_expires = jiffies + 1;
2023 return;
2024 }
2025
2026 /*
2027 * For RT and BE, we have to choose also the type
2028 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2029 * expiration time
2030 */
2031 prio_changed = (cfqd->serving_prio != previous_prio);
2032 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2033 cfqd);
2034 count = st->count;
2035
2036 /*
2037 * If priority didn't change, check workload expiration,
2038 * and that we still have other queues ready
2039 */
2040 if (!prio_changed && count &&
2041 !time_after(jiffies, cfqd->workload_expires))
2042 return;
2043
2044 /* otherwise select new workload type */
2045 cfqd->serving_type =
2046 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2047 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2048 cfqd);
2049 count = st->count;
2050
2051 /*
2052 * the workload slice is computed as a fraction of target latency
2053 * proportional to the number of queues in that workload, over
2054 * all the queues in the same priority class
2055 */
2056 group_slice = cfq_group_slice(cfqd, cfqg);
2057
2058 slice = group_slice * count /
2059 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2060 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2061
2062 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2063 unsigned int tmp;
2064
2065 /*
2066 * Async queues are currently system wide. Just taking
2067 * proportion of queues with-in same group will lead to higher
2068 * async ratio system wide as generally root group is going
2069 * to have higher weight. A more accurate thing would be to
2070 * calculate system wide asnc/sync ratio.
2071 */
2072 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2073 tmp = tmp/cfqd->busy_queues;
2074 slice = min_t(unsigned, slice, tmp);
2075
2076 /* async workload slice is scaled down according to
2077 * the sync/async slice ratio. */
2078 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2079 } else
2080 /* sync workload slice is at least 2 * cfq_slice_idle */
2081 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2082
2083 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2084 cfqd->workload_expires = jiffies + slice;
2085 cfqd->noidle_tree_requires_idle = false;
2086 }
2087
2088 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2089 {
2090 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2091 struct cfq_group *cfqg;
2092
2093 if (RB_EMPTY_ROOT(&st->rb))
2094 return NULL;
2095 cfqg = cfq_rb_first_group(st);
2096 st->active = &cfqg->rb_node;
2097 update_min_vdisktime(st);
2098 return cfqg;
2099 }
2100
2101 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2102 {
2103 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2104
2105 cfqd->serving_group = cfqg;
2106
2107 /* Restore the workload type data */
2108 if (cfqg->saved_workload_slice) {
2109 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2110 cfqd->serving_type = cfqg->saved_workload;
2111 cfqd->serving_prio = cfqg->saved_serving_prio;
2112 }
2113 choose_service_tree(cfqd, cfqg);
2114 }
2115
2116 /*
2117 * Select a queue for service. If we have a current active queue,
2118 * check whether to continue servicing it, or retrieve and set a new one.
2119 */
2120 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2121 {
2122 struct cfq_queue *cfqq, *new_cfqq = NULL;
2123
2124 cfqq = cfqd->active_queue;
2125 if (!cfqq)
2126 goto new_queue;
2127
2128 if (!cfqd->rq_queued)
2129 return NULL;
2130 /*
2131 * The active queue has run out of time, expire it and select new.
2132 */
2133 if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2134 && !cfq_cfqq_must_dispatch(cfqq))
2135 goto expire;
2136
2137 /*
2138 * The active queue has requests and isn't expired, allow it to
2139 * dispatch.
2140 */
2141 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2142 goto keep_queue;
2143
2144 /*
2145 * If another queue has a request waiting within our mean seek
2146 * distance, let it run. The expire code will check for close
2147 * cooperators and put the close queue at the front of the service
2148 * tree. If possible, merge the expiring queue with the new cfqq.
2149 */
2150 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2151 if (new_cfqq) {
2152 if (!cfqq->new_cfqq)
2153 cfq_setup_merge(cfqq, new_cfqq);
2154 goto expire;
2155 }
2156
2157 /*
2158 * No requests pending. If the active queue still has requests in
2159 * flight or is idling for a new request, allow either of these
2160 * conditions to happen (or time out) before selecting a new queue.
2161 */
2162 if (timer_pending(&cfqd->idle_slice_timer) ||
2163 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2164 cfqq = NULL;
2165 goto keep_queue;
2166 }
2167
2168 expire:
2169 cfq_slice_expired(cfqd, 0);
2170 new_queue:
2171 /*
2172 * Current queue expired. Check if we have to switch to a new
2173 * service tree
2174 */
2175 if (!new_cfqq)
2176 cfq_choose_cfqg(cfqd);
2177
2178 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2179 keep_queue:
2180 return cfqq;
2181 }
2182
2183 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2184 {
2185 int dispatched = 0;
2186
2187 while (cfqq->next_rq) {
2188 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2189 dispatched++;
2190 }
2191
2192 BUG_ON(!list_empty(&cfqq->fifo));
2193
2194 /* By default cfqq is not expired if it is empty. Do it explicitly */
2195 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2196 return dispatched;
2197 }
2198
2199 /*
2200 * Drain our current requests. Used for barriers and when switching
2201 * io schedulers on-the-fly.
2202 */
2203 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2204 {
2205 struct cfq_queue *cfqq;
2206 int dispatched = 0;
2207
2208 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2209 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2210
2211 cfq_slice_expired(cfqd, 0);
2212 BUG_ON(cfqd->busy_queues);
2213
2214 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2215 return dispatched;
2216 }
2217
2218 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2219 {
2220 unsigned int max_dispatch;
2221
2222 /*
2223 * Drain async requests before we start sync IO
2224 */
2225 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2226 return false;
2227
2228 /*
2229 * If this is an async queue and we have sync IO in flight, let it wait
2230 */
2231 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2232 return false;
2233
2234 max_dispatch = cfqd->cfq_quantum;
2235 if (cfq_class_idle(cfqq))
2236 max_dispatch = 1;
2237
2238 /*
2239 * Does this cfqq already have too much IO in flight?
2240 */
2241 if (cfqq->dispatched >= max_dispatch) {
2242 /*
2243 * idle queue must always only have a single IO in flight
2244 */
2245 if (cfq_class_idle(cfqq))
2246 return false;
2247
2248 /*
2249 * We have other queues, don't allow more IO from this one
2250 */
2251 if (cfqd->busy_queues > 1)
2252 return false;
2253
2254 /*
2255 * Sole queue user, no limit
2256 */
2257 max_dispatch = -1;
2258 }
2259
2260 /*
2261 * Async queues must wait a bit before being allowed dispatch.
2262 * We also ramp up the dispatch depth gradually for async IO,
2263 * based on the last sync IO we serviced
2264 */
2265 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2266 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2267 unsigned int depth;
2268
2269 depth = last_sync / cfqd->cfq_slice[1];
2270 if (!depth && !cfqq->dispatched)
2271 depth = 1;
2272 if (depth < max_dispatch)
2273 max_dispatch = depth;
2274 }
2275
2276 /*
2277 * If we're below the current max, allow a dispatch
2278 */
2279 return cfqq->dispatched < max_dispatch;
2280 }
2281
2282 /*
2283 * Dispatch a request from cfqq, moving them to the request queue
2284 * dispatch list.
2285 */
2286 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2287 {
2288 struct request *rq;
2289
2290 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2291
2292 if (!cfq_may_dispatch(cfqd, cfqq))
2293 return false;
2294
2295 /*
2296 * follow expired path, else get first next available
2297 */
2298 rq = cfq_check_fifo(cfqq);
2299 if (!rq)
2300 rq = cfqq->next_rq;
2301
2302 /*
2303 * insert request into driver dispatch list
2304 */
2305 cfq_dispatch_insert(cfqd->queue, rq);
2306
2307 if (!cfqd->active_cic) {
2308 struct cfq_io_context *cic = RQ_CIC(rq);
2309
2310 atomic_long_inc(&cic->ioc->refcount);
2311 cfqd->active_cic = cic;
2312 }
2313
2314 return true;
2315 }
2316
2317 /*
2318 * Find the cfqq that we need to service and move a request from that to the
2319 * dispatch list
2320 */
2321 static int cfq_dispatch_requests(struct request_queue *q, int force)
2322 {
2323 struct cfq_data *cfqd = q->elevator->elevator_data;
2324 struct cfq_queue *cfqq;
2325
2326 if (!cfqd->busy_queues)
2327 return 0;
2328
2329 if (unlikely(force))
2330 return cfq_forced_dispatch(cfqd);
2331
2332 cfqq = cfq_select_queue(cfqd);
2333 if (!cfqq)
2334 return 0;
2335
2336 /*
2337 * Dispatch a request from this cfqq, if it is allowed
2338 */
2339 if (!cfq_dispatch_request(cfqd, cfqq))
2340 return 0;
2341
2342 cfqq->slice_dispatch++;
2343 cfq_clear_cfqq_must_dispatch(cfqq);
2344
2345 /*
2346 * expire an async queue immediately if it has used up its slice. idle
2347 * queue always expire after 1 dispatch round.
2348 */
2349 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2350 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2351 cfq_class_idle(cfqq))) {
2352 cfqq->slice_end = jiffies + 1;
2353 cfq_slice_expired(cfqd, 0);
2354 }
2355
2356 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2357 return 1;
2358 }
2359
2360 /*
2361 * task holds one reference to the queue, dropped when task exits. each rq
2362 * in-flight on this queue also holds a reference, dropped when rq is freed.
2363 *
2364 * Each cfq queue took a reference on the parent group. Drop it now.
2365 * queue lock must be held here.
2366 */
2367 static void cfq_put_queue(struct cfq_queue *cfqq)
2368 {
2369 struct cfq_data *cfqd = cfqq->cfqd;
2370 struct cfq_group *cfqg;
2371
2372 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2373
2374 if (!atomic_dec_and_test(&cfqq->ref))
2375 return;
2376
2377 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2378 BUG_ON(rb_first(&cfqq->sort_list));
2379 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2380 cfqg = cfqq->cfqg;
2381
2382 if (unlikely(cfqd->active_queue == cfqq)) {
2383 __cfq_slice_expired(cfqd, cfqq, 0);
2384 cfq_schedule_dispatch(cfqd);
2385 }
2386
2387 BUG_ON(cfq_cfqq_on_rr(cfqq));
2388 kmem_cache_free(cfq_pool, cfqq);
2389 cfq_put_cfqg(cfqg);
2390 if (cfqq->orig_cfqg)
2391 cfq_put_cfqg(cfqq->orig_cfqg);
2392 }
2393
2394 /*
2395 * Must always be called with the rcu_read_lock() held
2396 */
2397 static void
2398 __call_for_each_cic(struct io_context *ioc,
2399 void (*func)(struct io_context *, struct cfq_io_context *))
2400 {
2401 struct cfq_io_context *cic;
2402 struct hlist_node *n;
2403
2404 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2405 func(ioc, cic);
2406 }
2407
2408 /*
2409 * Call func for each cic attached to this ioc.
2410 */
2411 static void
2412 call_for_each_cic(struct io_context *ioc,
2413 void (*func)(struct io_context *, struct cfq_io_context *))
2414 {
2415 rcu_read_lock();
2416 __call_for_each_cic(ioc, func);
2417 rcu_read_unlock();
2418 }
2419
2420 static void cfq_cic_free_rcu(struct rcu_head *head)
2421 {
2422 struct cfq_io_context *cic;
2423
2424 cic = container_of(head, struct cfq_io_context, rcu_head);
2425
2426 kmem_cache_free(cfq_ioc_pool, cic);
2427 elv_ioc_count_dec(cfq_ioc_count);
2428
2429 if (ioc_gone) {
2430 /*
2431 * CFQ scheduler is exiting, grab exit lock and check
2432 * the pending io context count. If it hits zero,
2433 * complete ioc_gone and set it back to NULL
2434 */
2435 spin_lock(&ioc_gone_lock);
2436 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2437 complete(ioc_gone);
2438 ioc_gone = NULL;
2439 }
2440 spin_unlock(&ioc_gone_lock);
2441 }
2442 }
2443
2444 static void cfq_cic_free(struct cfq_io_context *cic)
2445 {
2446 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2447 }
2448
2449 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2450 {
2451 unsigned long flags;
2452
2453 BUG_ON(!cic->dead_key);
2454
2455 spin_lock_irqsave(&ioc->lock, flags);
2456 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2457 hlist_del_rcu(&cic->cic_list);
2458 spin_unlock_irqrestore(&ioc->lock, flags);
2459
2460 cfq_cic_free(cic);
2461 }
2462
2463 /*
2464 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2465 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2466 * and ->trim() which is called with the task lock held
2467 */
2468 static void cfq_free_io_context(struct io_context *ioc)
2469 {
2470 /*
2471 * ioc->refcount is zero here, or we are called from elv_unregister(),
2472 * so no more cic's are allowed to be linked into this ioc. So it
2473 * should be ok to iterate over the known list, we will see all cic's
2474 * since no new ones are added.
2475 */
2476 __call_for_each_cic(ioc, cic_free_func);
2477 }
2478
2479 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2480 {
2481 struct cfq_queue *__cfqq, *next;
2482
2483 if (unlikely(cfqq == cfqd->active_queue)) {
2484 __cfq_slice_expired(cfqd, cfqq, 0);
2485 cfq_schedule_dispatch(cfqd);
2486 }
2487
2488 /*
2489 * If this queue was scheduled to merge with another queue, be
2490 * sure to drop the reference taken on that queue (and others in
2491 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2492 */
2493 __cfqq = cfqq->new_cfqq;
2494 while (__cfqq) {
2495 if (__cfqq == cfqq) {
2496 WARN(1, "cfqq->new_cfqq loop detected\n");
2497 break;
2498 }
2499 next = __cfqq->new_cfqq;
2500 cfq_put_queue(__cfqq);
2501 __cfqq = next;
2502 }
2503
2504 cfq_put_queue(cfqq);
2505 }
2506
2507 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2508 struct cfq_io_context *cic)
2509 {
2510 struct io_context *ioc = cic->ioc;
2511
2512 list_del_init(&cic->queue_list);
2513
2514 /*
2515 * Make sure key == NULL is seen for dead queues
2516 */
2517 smp_wmb();
2518 cic->dead_key = (unsigned long) cic->key;
2519 cic->key = NULL;
2520
2521 if (ioc->ioc_data == cic)
2522 rcu_assign_pointer(ioc->ioc_data, NULL);
2523
2524 if (cic->cfqq[BLK_RW_ASYNC]) {
2525 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2526 cic->cfqq[BLK_RW_ASYNC] = NULL;
2527 }
2528
2529 if (cic->cfqq[BLK_RW_SYNC]) {
2530 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2531 cic->cfqq[BLK_RW_SYNC] = NULL;
2532 }
2533 }
2534
2535 static void cfq_exit_single_io_context(struct io_context *ioc,
2536 struct cfq_io_context *cic)
2537 {
2538 struct cfq_data *cfqd = cic->key;
2539
2540 if (cfqd) {
2541 struct request_queue *q = cfqd->queue;
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(q->queue_lock, flags);
2545
2546 /*
2547 * Ensure we get a fresh copy of the ->key to prevent
2548 * race between exiting task and queue
2549 */
2550 smp_read_barrier_depends();
2551 if (cic->key)
2552 __cfq_exit_single_io_context(cfqd, cic);
2553
2554 spin_unlock_irqrestore(q->queue_lock, flags);
2555 }
2556 }
2557
2558 /*
2559 * The process that ioc belongs to has exited, we need to clean up
2560 * and put the internal structures we have that belongs to that process.
2561 */
2562 static void cfq_exit_io_context(struct io_context *ioc)
2563 {
2564 call_for_each_cic(ioc, cfq_exit_single_io_context);
2565 }
2566
2567 static struct cfq_io_context *
2568 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2569 {
2570 struct cfq_io_context *cic;
2571
2572 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2573 cfqd->queue->node);
2574 if (cic) {
2575 cic->last_end_request = jiffies;
2576 INIT_LIST_HEAD(&cic->queue_list);
2577 INIT_HLIST_NODE(&cic->cic_list);
2578 cic->dtor = cfq_free_io_context;
2579 cic->exit = cfq_exit_io_context;
2580 elv_ioc_count_inc(cfq_ioc_count);
2581 }
2582
2583 return cic;
2584 }
2585
2586 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2587 {
2588 struct task_struct *tsk = current;
2589 int ioprio_class;
2590
2591 if (!cfq_cfqq_prio_changed(cfqq))
2592 return;
2593
2594 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2595 switch (ioprio_class) {
2596 default:
2597 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2598 case IOPRIO_CLASS_NONE:
2599 /*
2600 * no prio set, inherit CPU scheduling settings
2601 */
2602 cfqq->ioprio = task_nice_ioprio(tsk);
2603 cfqq->ioprio_class = task_nice_ioclass(tsk);
2604 break;
2605 case IOPRIO_CLASS_RT:
2606 cfqq->ioprio = task_ioprio(ioc);
2607 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2608 break;
2609 case IOPRIO_CLASS_BE:
2610 cfqq->ioprio = task_ioprio(ioc);
2611 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2612 break;
2613 case IOPRIO_CLASS_IDLE:
2614 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2615 cfqq->ioprio = 7;
2616 cfq_clear_cfqq_idle_window(cfqq);
2617 break;
2618 }
2619
2620 /*
2621 * keep track of original prio settings in case we have to temporarily
2622 * elevate the priority of this queue
2623 */
2624 cfqq->org_ioprio = cfqq->ioprio;
2625 cfqq->org_ioprio_class = cfqq->ioprio_class;
2626 cfq_clear_cfqq_prio_changed(cfqq);
2627 }
2628
2629 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2630 {
2631 struct cfq_data *cfqd = cic->key;
2632 struct cfq_queue *cfqq;
2633 unsigned long flags;
2634
2635 if (unlikely(!cfqd))
2636 return;
2637
2638 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2639
2640 cfqq = cic->cfqq[BLK_RW_ASYNC];
2641 if (cfqq) {
2642 struct cfq_queue *new_cfqq;
2643 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2644 GFP_ATOMIC);
2645 if (new_cfqq) {
2646 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2647 cfq_put_queue(cfqq);
2648 }
2649 }
2650
2651 cfqq = cic->cfqq[BLK_RW_SYNC];
2652 if (cfqq)
2653 cfq_mark_cfqq_prio_changed(cfqq);
2654
2655 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2656 }
2657
2658 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2659 {
2660 call_for_each_cic(ioc, changed_ioprio);
2661 ioc->ioprio_changed = 0;
2662 }
2663
2664 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2665 pid_t pid, bool is_sync)
2666 {
2667 RB_CLEAR_NODE(&cfqq->rb_node);
2668 RB_CLEAR_NODE(&cfqq->p_node);
2669 INIT_LIST_HEAD(&cfqq->fifo);
2670
2671 atomic_set(&cfqq->ref, 0);
2672 cfqq->cfqd = cfqd;
2673
2674 cfq_mark_cfqq_prio_changed(cfqq);
2675
2676 if (is_sync) {
2677 if (!cfq_class_idle(cfqq))
2678 cfq_mark_cfqq_idle_window(cfqq);
2679 cfq_mark_cfqq_sync(cfqq);
2680 }
2681 cfqq->pid = pid;
2682 }
2683
2684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2685 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2686 {
2687 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2688 struct cfq_data *cfqd = cic->key;
2689 unsigned long flags;
2690 struct request_queue *q;
2691
2692 if (unlikely(!cfqd))
2693 return;
2694
2695 q = cfqd->queue;
2696
2697 spin_lock_irqsave(q->queue_lock, flags);
2698
2699 if (sync_cfqq) {
2700 /*
2701 * Drop reference to sync queue. A new sync queue will be
2702 * assigned in new group upon arrival of a fresh request.
2703 */
2704 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2705 cic_set_cfqq(cic, NULL, 1);
2706 cfq_put_queue(sync_cfqq);
2707 }
2708
2709 spin_unlock_irqrestore(q->queue_lock, flags);
2710 }
2711
2712 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2713 {
2714 call_for_each_cic(ioc, changed_cgroup);
2715 ioc->cgroup_changed = 0;
2716 }
2717 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2718
2719 static struct cfq_queue *
2720 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2721 struct io_context *ioc, gfp_t gfp_mask)
2722 {
2723 struct cfq_queue *cfqq, *new_cfqq = NULL;
2724 struct cfq_io_context *cic;
2725 struct cfq_group *cfqg;
2726
2727 retry:
2728 cfqg = cfq_get_cfqg(cfqd, 1);
2729 cic = cfq_cic_lookup(cfqd, ioc);
2730 /* cic always exists here */
2731 cfqq = cic_to_cfqq(cic, is_sync);
2732
2733 /*
2734 * Always try a new alloc if we fell back to the OOM cfqq
2735 * originally, since it should just be a temporary situation.
2736 */
2737 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2738 cfqq = NULL;
2739 if (new_cfqq) {
2740 cfqq = new_cfqq;
2741 new_cfqq = NULL;
2742 } else if (gfp_mask & __GFP_WAIT) {
2743 spin_unlock_irq(cfqd->queue->queue_lock);
2744 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2745 gfp_mask | __GFP_ZERO,
2746 cfqd->queue->node);
2747 spin_lock_irq(cfqd->queue->queue_lock);
2748 if (new_cfqq)
2749 goto retry;
2750 } else {
2751 cfqq = kmem_cache_alloc_node(cfq_pool,
2752 gfp_mask | __GFP_ZERO,
2753 cfqd->queue->node);
2754 }
2755
2756 if (cfqq) {
2757 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2758 cfq_init_prio_data(cfqq, ioc);
2759 cfq_link_cfqq_cfqg(cfqq, cfqg);
2760 cfq_log_cfqq(cfqd, cfqq, "alloced");
2761 } else
2762 cfqq = &cfqd->oom_cfqq;
2763 }
2764
2765 if (new_cfqq)
2766 kmem_cache_free(cfq_pool, new_cfqq);
2767
2768 return cfqq;
2769 }
2770
2771 static struct cfq_queue **
2772 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2773 {
2774 switch (ioprio_class) {
2775 case IOPRIO_CLASS_RT:
2776 return &cfqd->async_cfqq[0][ioprio];
2777 case IOPRIO_CLASS_BE:
2778 return &cfqd->async_cfqq[1][ioprio];
2779 case IOPRIO_CLASS_IDLE:
2780 return &cfqd->async_idle_cfqq;
2781 default:
2782 BUG();
2783 }
2784 }
2785
2786 static struct cfq_queue *
2787 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2788 gfp_t gfp_mask)
2789 {
2790 const int ioprio = task_ioprio(ioc);
2791 const int ioprio_class = task_ioprio_class(ioc);
2792 struct cfq_queue **async_cfqq = NULL;
2793 struct cfq_queue *cfqq = NULL;
2794
2795 if (!is_sync) {
2796 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2797 cfqq = *async_cfqq;
2798 }
2799
2800 if (!cfqq)
2801 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2802
2803 /*
2804 * pin the queue now that it's allocated, scheduler exit will prune it
2805 */
2806 if (!is_sync && !(*async_cfqq)) {
2807 atomic_inc(&cfqq->ref);
2808 *async_cfqq = cfqq;
2809 }
2810
2811 atomic_inc(&cfqq->ref);
2812 return cfqq;
2813 }
2814
2815 /*
2816 * We drop cfq io contexts lazily, so we may find a dead one.
2817 */
2818 static void
2819 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2820 struct cfq_io_context *cic)
2821 {
2822 unsigned long flags;
2823
2824 WARN_ON(!list_empty(&cic->queue_list));
2825
2826 spin_lock_irqsave(&ioc->lock, flags);
2827
2828 BUG_ON(ioc->ioc_data == cic);
2829
2830 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2831 hlist_del_rcu(&cic->cic_list);
2832 spin_unlock_irqrestore(&ioc->lock, flags);
2833
2834 cfq_cic_free(cic);
2835 }
2836
2837 static struct cfq_io_context *
2838 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2839 {
2840 struct cfq_io_context *cic;
2841 unsigned long flags;
2842 void *k;
2843
2844 if (unlikely(!ioc))
2845 return NULL;
2846
2847 rcu_read_lock();
2848
2849 /*
2850 * we maintain a last-hit cache, to avoid browsing over the tree
2851 */
2852 cic = rcu_dereference(ioc->ioc_data);
2853 if (cic && cic->key == cfqd) {
2854 rcu_read_unlock();
2855 return cic;
2856 }
2857
2858 do {
2859 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2860 rcu_read_unlock();
2861 if (!cic)
2862 break;
2863 /* ->key must be copied to avoid race with cfq_exit_queue() */
2864 k = cic->key;
2865 if (unlikely(!k)) {
2866 cfq_drop_dead_cic(cfqd, ioc, cic);
2867 rcu_read_lock();
2868 continue;
2869 }
2870
2871 spin_lock_irqsave(&ioc->lock, flags);
2872 rcu_assign_pointer(ioc->ioc_data, cic);
2873 spin_unlock_irqrestore(&ioc->lock, flags);
2874 break;
2875 } while (1);
2876
2877 return cic;
2878 }
2879
2880 /*
2881 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2882 * the process specific cfq io context when entered from the block layer.
2883 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2884 */
2885 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2886 struct cfq_io_context *cic, gfp_t gfp_mask)
2887 {
2888 unsigned long flags;
2889 int ret;
2890
2891 ret = radix_tree_preload(gfp_mask);
2892 if (!ret) {
2893 cic->ioc = ioc;
2894 cic->key = cfqd;
2895
2896 spin_lock_irqsave(&ioc->lock, flags);
2897 ret = radix_tree_insert(&ioc->radix_root,
2898 (unsigned long) cfqd, cic);
2899 if (!ret)
2900 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2901 spin_unlock_irqrestore(&ioc->lock, flags);
2902
2903 radix_tree_preload_end();
2904
2905 if (!ret) {
2906 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2907 list_add(&cic->queue_list, &cfqd->cic_list);
2908 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2909 }
2910 }
2911
2912 if (ret)
2913 printk(KERN_ERR "cfq: cic link failed!\n");
2914
2915 return ret;
2916 }
2917
2918 /*
2919 * Setup general io context and cfq io context. There can be several cfq
2920 * io contexts per general io context, if this process is doing io to more
2921 * than one device managed by cfq.
2922 */
2923 static struct cfq_io_context *
2924 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2925 {
2926 struct io_context *ioc = NULL;
2927 struct cfq_io_context *cic;
2928
2929 might_sleep_if(gfp_mask & __GFP_WAIT);
2930
2931 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2932 if (!ioc)
2933 return NULL;
2934
2935 cic = cfq_cic_lookup(cfqd, ioc);
2936 if (cic)
2937 goto out;
2938
2939 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2940 if (cic == NULL)
2941 goto err;
2942
2943 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2944 goto err_free;
2945
2946 out:
2947 smp_read_barrier_depends();
2948 if (unlikely(ioc->ioprio_changed))
2949 cfq_ioc_set_ioprio(ioc);
2950
2951 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2952 if (unlikely(ioc->cgroup_changed))
2953 cfq_ioc_set_cgroup(ioc);
2954 #endif
2955 return cic;
2956 err_free:
2957 cfq_cic_free(cic);
2958 err:
2959 put_io_context(ioc);
2960 return NULL;
2961 }
2962
2963 static void
2964 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2965 {
2966 unsigned long elapsed = jiffies - cic->last_end_request;
2967 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2968
2969 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2970 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2971 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2972 }
2973
2974 static void
2975 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2976 struct request *rq)
2977 {
2978 sector_t sdist;
2979 u64 total;
2980
2981 if (!cfqq->last_request_pos)
2982 sdist = 0;
2983 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2984 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2985 else
2986 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2987
2988 /*
2989 * Don't allow the seek distance to get too large from the
2990 * odd fragment, pagein, etc
2991 */
2992 if (cfqq->seek_samples <= 60) /* second&third seek */
2993 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2994 else
2995 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2996
2997 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2998 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2999 total = cfqq->seek_total + (cfqq->seek_samples/2);
3000 do_div(total, cfqq->seek_samples);
3001 cfqq->seek_mean = (sector_t)total;
3002
3003 /*
3004 * If this cfqq is shared between multiple processes, check to
3005 * make sure that those processes are still issuing I/Os within
3006 * the mean seek distance. If not, it may be time to break the
3007 * queues apart again.
3008 */
3009 if (cfq_cfqq_coop(cfqq)) {
3010 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3011 cfqq->seeky_start = jiffies;
3012 else if (!CFQQ_SEEKY(cfqq))
3013 cfqq->seeky_start = 0;
3014 }
3015 }
3016
3017 /*
3018 * Disable idle window if the process thinks too long or seeks so much that
3019 * it doesn't matter
3020 */
3021 static void
3022 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3023 struct cfq_io_context *cic)
3024 {
3025 int old_idle, enable_idle;
3026
3027 /*
3028 * Don't idle for async or idle io prio class
3029 */
3030 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3031 return;
3032
3033 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3034
3035 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3036 cfq_mark_cfqq_deep(cfqq);
3037
3038 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3039 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3040 && CFQQ_SEEKY(cfqq)))
3041 enable_idle = 0;
3042 else if (sample_valid(cic->ttime_samples)) {
3043 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3044 enable_idle = 0;
3045 else
3046 enable_idle = 1;
3047 }
3048
3049 if (old_idle != enable_idle) {
3050 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3051 if (enable_idle)
3052 cfq_mark_cfqq_idle_window(cfqq);
3053 else
3054 cfq_clear_cfqq_idle_window(cfqq);
3055 }
3056 }
3057
3058 /*
3059 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3060 * no or if we aren't sure, a 1 will cause a preempt.
3061 */
3062 static bool
3063 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3064 struct request *rq)
3065 {
3066 struct cfq_queue *cfqq;
3067
3068 cfqq = cfqd->active_queue;
3069 if (!cfqq)
3070 return false;
3071
3072 if (cfq_class_idle(new_cfqq))
3073 return false;
3074
3075 if (cfq_class_idle(cfqq))
3076 return true;
3077
3078 /*
3079 * if the new request is sync, but the currently running queue is
3080 * not, let the sync request have priority.
3081 */
3082 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3083 return true;
3084
3085 if (new_cfqq->cfqg != cfqq->cfqg)
3086 return false;
3087
3088 if (cfq_slice_used(cfqq))
3089 return true;
3090
3091 /* Allow preemption only if we are idling on sync-noidle tree */
3092 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3093 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3094 new_cfqq->service_tree->count == 2 &&
3095 RB_EMPTY_ROOT(&cfqq->sort_list))
3096 return true;
3097
3098 /*
3099 * So both queues are sync. Let the new request get disk time if
3100 * it's a metadata request and the current queue is doing regular IO.
3101 */
3102 if (rq_is_meta(rq) && !cfqq->meta_pending)
3103 return true;
3104
3105 /*
3106 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3107 */
3108 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3109 return true;
3110
3111 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3112 return false;
3113
3114 /*
3115 * if this request is as-good as one we would expect from the
3116 * current cfqq, let it preempt
3117 */
3118 if (cfq_rq_close(cfqd, cfqq, rq))
3119 return true;
3120
3121 return false;
3122 }
3123
3124 /*
3125 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3126 * let it have half of its nominal slice.
3127 */
3128 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3129 {
3130 cfq_log_cfqq(cfqd, cfqq, "preempt");
3131 cfq_slice_expired(cfqd, 1);
3132
3133 /*
3134 * Put the new queue at the front of the of the current list,
3135 * so we know that it will be selected next.
3136 */
3137 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3138
3139 cfq_service_tree_add(cfqd, cfqq, 1);
3140
3141 cfqq->slice_end = 0;
3142 cfq_mark_cfqq_slice_new(cfqq);
3143 }
3144
3145 /*
3146 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3147 * something we should do about it
3148 */
3149 static void
3150 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3151 struct request *rq)
3152 {
3153 struct cfq_io_context *cic = RQ_CIC(rq);
3154
3155 cfqd->rq_queued++;
3156 if (rq_is_meta(rq))
3157 cfqq->meta_pending++;
3158
3159 cfq_update_io_thinktime(cfqd, cic);
3160 cfq_update_io_seektime(cfqd, cfqq, rq);
3161 cfq_update_idle_window(cfqd, cfqq, cic);
3162
3163 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3164
3165 if (cfqq == cfqd->active_queue) {
3166 if (cfq_cfqq_wait_busy(cfqq)) {
3167 cfq_clear_cfqq_wait_busy(cfqq);
3168 cfq_mark_cfqq_wait_busy_done(cfqq);
3169 }
3170 /*
3171 * Remember that we saw a request from this process, but
3172 * don't start queuing just yet. Otherwise we risk seeing lots
3173 * of tiny requests, because we disrupt the normal plugging
3174 * and merging. If the request is already larger than a single
3175 * page, let it rip immediately. For that case we assume that
3176 * merging is already done. Ditto for a busy system that
3177 * has other work pending, don't risk delaying until the
3178 * idle timer unplug to continue working.
3179 */
3180 if (cfq_cfqq_wait_request(cfqq)) {
3181 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3182 cfqd->busy_queues > 1) {
3183 del_timer(&cfqd->idle_slice_timer);
3184 __blk_run_queue(cfqd->queue);
3185 } else
3186 cfq_mark_cfqq_must_dispatch(cfqq);
3187 }
3188 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3189 /*
3190 * not the active queue - expire current slice if it is
3191 * idle and has expired it's mean thinktime or this new queue
3192 * has some old slice time left and is of higher priority or
3193 * this new queue is RT and the current one is BE
3194 */
3195 cfq_preempt_queue(cfqd, cfqq);
3196 __blk_run_queue(cfqd->queue);
3197 }
3198 }
3199
3200 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3201 {
3202 struct cfq_data *cfqd = q->elevator->elevator_data;
3203 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3204
3205 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3206 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3207
3208 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3209 list_add_tail(&rq->queuelist, &cfqq->fifo);
3210 cfq_add_rq_rb(rq);
3211
3212 cfq_rq_enqueued(cfqd, cfqq, rq);
3213 }
3214
3215 /*
3216 * Update hw_tag based on peak queue depth over 50 samples under
3217 * sufficient load.
3218 */
3219 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3220 {
3221 struct cfq_queue *cfqq = cfqd->active_queue;
3222
3223 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3224 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3225
3226 if (cfqd->hw_tag == 1)
3227 return;
3228
3229 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3230 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3231 return;
3232
3233 /*
3234 * If active queue hasn't enough requests and can idle, cfq might not
3235 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3236 * case
3237 */
3238 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3239 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3240 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3241 return;
3242
3243 if (cfqd->hw_tag_samples++ < 50)
3244 return;
3245
3246 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3247 cfqd->hw_tag = 1;
3248 else
3249 cfqd->hw_tag = 0;
3250 }
3251
3252 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3253 {
3254 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3255 struct cfq_data *cfqd = cfqq->cfqd;
3256 const int sync = rq_is_sync(rq);
3257 unsigned long now;
3258
3259 now = jiffies;
3260 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3261
3262 cfq_update_hw_tag(cfqd);
3263
3264 WARN_ON(!cfqd->rq_in_driver[sync]);
3265 WARN_ON(!cfqq->dispatched);
3266 cfqd->rq_in_driver[sync]--;
3267 cfqq->dispatched--;
3268
3269 if (cfq_cfqq_sync(cfqq))
3270 cfqd->sync_flight--;
3271
3272 if (sync) {
3273 RQ_CIC(rq)->last_end_request = now;
3274 cfqd->last_end_sync_rq = now;
3275 }
3276
3277 /*
3278 * If this is the active queue, check if it needs to be expired,
3279 * or if we want to idle in case it has no pending requests.
3280 */
3281 if (cfqd->active_queue == cfqq) {
3282 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3283
3284 if (cfq_cfqq_slice_new(cfqq)) {
3285 cfq_set_prio_slice(cfqd, cfqq);
3286 cfq_clear_cfqq_slice_new(cfqq);
3287 }
3288
3289 /*
3290 * If this queue consumed its slice and this is last queue
3291 * in the group, wait for next request before we expire
3292 * the queue
3293 */
3294 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3295 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3296 cfq_mark_cfqq_wait_busy(cfqq);
3297 }
3298
3299 /*
3300 * Idling is not enabled on:
3301 * - expired queues
3302 * - idle-priority queues
3303 * - async queues
3304 * - queues with still some requests queued
3305 * - when there is a close cooperator
3306 */
3307 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3308 cfq_slice_expired(cfqd, 1);
3309 else if (sync && cfqq_empty &&
3310 !cfq_close_cooperator(cfqd, cfqq)) {
3311 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3312 /*
3313 * Idling is enabled for SYNC_WORKLOAD.
3314 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3315 * only if we processed at least one !rq_noidle request
3316 */
3317 if (cfqd->serving_type == SYNC_WORKLOAD
3318 || cfqd->noidle_tree_requires_idle
3319 || cfqq->cfqg->nr_cfqq == 1)
3320 cfq_arm_slice_timer(cfqd);
3321 }
3322 }
3323
3324 if (!rq_in_driver(cfqd))
3325 cfq_schedule_dispatch(cfqd);
3326 }
3327
3328 /*
3329 * we temporarily boost lower priority queues if they are holding fs exclusive
3330 * resources. they are boosted to normal prio (CLASS_BE/4)
3331 */
3332 static void cfq_prio_boost(struct cfq_queue *cfqq)
3333 {
3334 if (has_fs_excl()) {
3335 /*
3336 * boost idle prio on transactions that would lock out other
3337 * users of the filesystem
3338 */
3339 if (cfq_class_idle(cfqq))
3340 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3341 if (cfqq->ioprio > IOPRIO_NORM)
3342 cfqq->ioprio = IOPRIO_NORM;
3343 } else {
3344 /*
3345 * unboost the queue (if needed)
3346 */
3347 cfqq->ioprio_class = cfqq->org_ioprio_class;
3348 cfqq->ioprio = cfqq->org_ioprio;
3349 }
3350 }
3351
3352 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3353 {
3354 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3355 cfq_mark_cfqq_must_alloc_slice(cfqq);
3356 return ELV_MQUEUE_MUST;
3357 }
3358
3359 return ELV_MQUEUE_MAY;
3360 }
3361
3362 static int cfq_may_queue(struct request_queue *q, int rw)
3363 {
3364 struct cfq_data *cfqd = q->elevator->elevator_data;
3365 struct task_struct *tsk = current;
3366 struct cfq_io_context *cic;
3367 struct cfq_queue *cfqq;
3368
3369 /*
3370 * don't force setup of a queue from here, as a call to may_queue
3371 * does not necessarily imply that a request actually will be queued.
3372 * so just lookup a possibly existing queue, or return 'may queue'
3373 * if that fails
3374 */
3375 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3376 if (!cic)
3377 return ELV_MQUEUE_MAY;
3378
3379 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3380 if (cfqq) {
3381 cfq_init_prio_data(cfqq, cic->ioc);
3382 cfq_prio_boost(cfqq);
3383
3384 return __cfq_may_queue(cfqq);
3385 }
3386
3387 return ELV_MQUEUE_MAY;
3388 }
3389
3390 /*
3391 * queue lock held here
3392 */
3393 static void cfq_put_request(struct request *rq)
3394 {
3395 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3396
3397 if (cfqq) {
3398 const int rw = rq_data_dir(rq);
3399
3400 BUG_ON(!cfqq->allocated[rw]);
3401 cfqq->allocated[rw]--;
3402
3403 put_io_context(RQ_CIC(rq)->ioc);
3404
3405 rq->elevator_private = NULL;
3406 rq->elevator_private2 = NULL;
3407
3408 cfq_put_queue(cfqq);
3409 }
3410 }
3411
3412 static struct cfq_queue *
3413 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3414 struct cfq_queue *cfqq)
3415 {
3416 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3417 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3418 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3419 cfq_put_queue(cfqq);
3420 return cic_to_cfqq(cic, 1);
3421 }
3422
3423 static int should_split_cfqq(struct cfq_queue *cfqq)
3424 {
3425 if (cfqq->seeky_start &&
3426 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3427 return 1;
3428 return 0;
3429 }
3430
3431 /*
3432 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3433 * was the last process referring to said cfqq.
3434 */
3435 static struct cfq_queue *
3436 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3437 {
3438 if (cfqq_process_refs(cfqq) == 1) {
3439 cfqq->seeky_start = 0;
3440 cfqq->pid = current->pid;
3441 cfq_clear_cfqq_coop(cfqq);
3442 return cfqq;
3443 }
3444
3445 cic_set_cfqq(cic, NULL, 1);
3446 cfq_put_queue(cfqq);
3447 return NULL;
3448 }
3449 /*
3450 * Allocate cfq data structures associated with this request.
3451 */
3452 static int
3453 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3454 {
3455 struct cfq_data *cfqd = q->elevator->elevator_data;
3456 struct cfq_io_context *cic;
3457 const int rw = rq_data_dir(rq);
3458 const bool is_sync = rq_is_sync(rq);
3459 struct cfq_queue *cfqq;
3460 unsigned long flags;
3461
3462 might_sleep_if(gfp_mask & __GFP_WAIT);
3463
3464 cic = cfq_get_io_context(cfqd, gfp_mask);
3465
3466 spin_lock_irqsave(q->queue_lock, flags);
3467
3468 if (!cic)
3469 goto queue_fail;
3470
3471 new_queue:
3472 cfqq = cic_to_cfqq(cic, is_sync);
3473 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3474 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3475 cic_set_cfqq(cic, cfqq, is_sync);
3476 } else {
3477 /*
3478 * If the queue was seeky for too long, break it apart.
3479 */
3480 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3481 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3482 cfqq = split_cfqq(cic, cfqq);
3483 if (!cfqq)
3484 goto new_queue;
3485 }
3486
3487 /*
3488 * Check to see if this queue is scheduled to merge with
3489 * another, closely cooperating queue. The merging of
3490 * queues happens here as it must be done in process context.
3491 * The reference on new_cfqq was taken in merge_cfqqs.
3492 */
3493 if (cfqq->new_cfqq)
3494 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3495 }
3496
3497 cfqq->allocated[rw]++;
3498 atomic_inc(&cfqq->ref);
3499
3500 spin_unlock_irqrestore(q->queue_lock, flags);
3501
3502 rq->elevator_private = cic;
3503 rq->elevator_private2 = cfqq;
3504 return 0;
3505
3506 queue_fail:
3507 if (cic)
3508 put_io_context(cic->ioc);
3509
3510 cfq_schedule_dispatch(cfqd);
3511 spin_unlock_irqrestore(q->queue_lock, flags);
3512 cfq_log(cfqd, "set_request fail");
3513 return 1;
3514 }
3515
3516 static void cfq_kick_queue(struct work_struct *work)
3517 {
3518 struct cfq_data *cfqd =
3519 container_of(work, struct cfq_data, unplug_work);
3520 struct request_queue *q = cfqd->queue;
3521
3522 spin_lock_irq(q->queue_lock);
3523 __blk_run_queue(cfqd->queue);
3524 spin_unlock_irq(q->queue_lock);
3525 }
3526
3527 /*
3528 * Timer running if the active_queue is currently idling inside its time slice
3529 */
3530 static void cfq_idle_slice_timer(unsigned long data)
3531 {
3532 struct cfq_data *cfqd = (struct cfq_data *) data;
3533 struct cfq_queue *cfqq;
3534 unsigned long flags;
3535 int timed_out = 1;
3536
3537 cfq_log(cfqd, "idle timer fired");
3538
3539 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3540
3541 cfqq = cfqd->active_queue;
3542 if (cfqq) {
3543 timed_out = 0;
3544
3545 /*
3546 * We saw a request before the queue expired, let it through
3547 */
3548 if (cfq_cfqq_must_dispatch(cfqq))
3549 goto out_kick;
3550
3551 /*
3552 * expired
3553 */
3554 if (cfq_slice_used(cfqq))
3555 goto expire;
3556
3557 /*
3558 * only expire and reinvoke request handler, if there are
3559 * other queues with pending requests
3560 */
3561 if (!cfqd->busy_queues)
3562 goto out_cont;
3563
3564 /*
3565 * not expired and it has a request pending, let it dispatch
3566 */
3567 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3568 goto out_kick;
3569
3570 /*
3571 * Queue depth flag is reset only when the idle didn't succeed
3572 */
3573 cfq_clear_cfqq_deep(cfqq);
3574 }
3575 expire:
3576 cfq_slice_expired(cfqd, timed_out);
3577 out_kick:
3578 cfq_schedule_dispatch(cfqd);
3579 out_cont:
3580 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3581 }
3582
3583 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3584 {
3585 del_timer_sync(&cfqd->idle_slice_timer);
3586 cancel_work_sync(&cfqd->unplug_work);
3587 }
3588
3589 static void cfq_put_async_queues(struct cfq_data *cfqd)
3590 {
3591 int i;
3592
3593 for (i = 0; i < IOPRIO_BE_NR; i++) {
3594 if (cfqd->async_cfqq[0][i])
3595 cfq_put_queue(cfqd->async_cfqq[0][i]);
3596 if (cfqd->async_cfqq[1][i])
3597 cfq_put_queue(cfqd->async_cfqq[1][i]);
3598 }
3599
3600 if (cfqd->async_idle_cfqq)
3601 cfq_put_queue(cfqd->async_idle_cfqq);
3602 }
3603
3604 static void cfq_exit_queue(struct elevator_queue *e)
3605 {
3606 struct cfq_data *cfqd = e->elevator_data;
3607 struct request_queue *q = cfqd->queue;
3608
3609 cfq_shutdown_timer_wq(cfqd);
3610
3611 spin_lock_irq(q->queue_lock);
3612
3613 if (cfqd->active_queue)
3614 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3615
3616 while (!list_empty(&cfqd->cic_list)) {
3617 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3618 struct cfq_io_context,
3619 queue_list);
3620
3621 __cfq_exit_single_io_context(cfqd, cic);
3622 }
3623
3624 cfq_put_async_queues(cfqd);
3625 cfq_release_cfq_groups(cfqd);
3626 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3627
3628 spin_unlock_irq(q->queue_lock);
3629
3630 cfq_shutdown_timer_wq(cfqd);
3631
3632 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3633 synchronize_rcu();
3634 kfree(cfqd);
3635 }
3636
3637 static void *cfq_init_queue(struct request_queue *q)
3638 {
3639 struct cfq_data *cfqd;
3640 int i, j;
3641 struct cfq_group *cfqg;
3642 struct cfq_rb_root *st;
3643
3644 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3645 if (!cfqd)
3646 return NULL;
3647
3648 /* Init root service tree */
3649 cfqd->grp_service_tree = CFQ_RB_ROOT;
3650
3651 /* Init root group */
3652 cfqg = &cfqd->root_group;
3653 for_each_cfqg_st(cfqg, i, j, st)
3654 *st = CFQ_RB_ROOT;
3655 RB_CLEAR_NODE(&cfqg->rb_node);
3656
3657 /* Give preference to root group over other groups */
3658 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3659
3660 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3661 /*
3662 * Take a reference to root group which we never drop. This is just
3663 * to make sure that cfq_put_cfqg() does not try to kfree root group
3664 */
3665 atomic_set(&cfqg->ref, 1);
3666 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3667 0);
3668 #endif
3669 /*
3670 * Not strictly needed (since RB_ROOT just clears the node and we
3671 * zeroed cfqd on alloc), but better be safe in case someone decides
3672 * to add magic to the rb code
3673 */
3674 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3675 cfqd->prio_trees[i] = RB_ROOT;
3676
3677 /*
3678 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3679 * Grab a permanent reference to it, so that the normal code flow
3680 * will not attempt to free it.
3681 */
3682 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3683 atomic_inc(&cfqd->oom_cfqq.ref);
3684 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3685
3686 INIT_LIST_HEAD(&cfqd->cic_list);
3687
3688 cfqd->queue = q;
3689
3690 init_timer(&cfqd->idle_slice_timer);
3691 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3692 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3693
3694 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3695
3696 cfqd->cfq_quantum = cfq_quantum;
3697 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3698 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3699 cfqd->cfq_back_max = cfq_back_max;
3700 cfqd->cfq_back_penalty = cfq_back_penalty;
3701 cfqd->cfq_slice[0] = cfq_slice_async;
3702 cfqd->cfq_slice[1] = cfq_slice_sync;
3703 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3704 cfqd->cfq_slice_idle = cfq_slice_idle;
3705 cfqd->cfq_latency = 1;
3706 cfqd->cfq_group_isolation = 0;
3707 cfqd->hw_tag = -1;
3708 cfqd->last_end_sync_rq = jiffies;
3709 return cfqd;
3710 }
3711
3712 static void cfq_slab_kill(void)
3713 {
3714 /*
3715 * Caller already ensured that pending RCU callbacks are completed,
3716 * so we should have no busy allocations at this point.
3717 */
3718 if (cfq_pool)
3719 kmem_cache_destroy(cfq_pool);
3720 if (cfq_ioc_pool)
3721 kmem_cache_destroy(cfq_ioc_pool);
3722 }
3723
3724 static int __init cfq_slab_setup(void)
3725 {
3726 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3727 if (!cfq_pool)
3728 goto fail;
3729
3730 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3731 if (!cfq_ioc_pool)
3732 goto fail;
3733
3734 return 0;
3735 fail:
3736 cfq_slab_kill();
3737 return -ENOMEM;
3738 }
3739
3740 /*
3741 * sysfs parts below -->
3742 */
3743 static ssize_t
3744 cfq_var_show(unsigned int var, char *page)
3745 {
3746 return sprintf(page, "%d\n", var);
3747 }
3748
3749 static ssize_t
3750 cfq_var_store(unsigned int *var, const char *page, size_t count)
3751 {
3752 char *p = (char *) page;
3753
3754 *var = simple_strtoul(p, &p, 10);
3755 return count;
3756 }
3757
3758 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3759 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3760 { \
3761 struct cfq_data *cfqd = e->elevator_data; \
3762 unsigned int __data = __VAR; \
3763 if (__CONV) \
3764 __data = jiffies_to_msecs(__data); \
3765 return cfq_var_show(__data, (page)); \
3766 }
3767 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3768 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3769 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3770 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3771 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3772 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3773 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3774 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3775 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3776 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3777 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3778 #undef SHOW_FUNCTION
3779
3780 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3781 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3782 { \
3783 struct cfq_data *cfqd = e->elevator_data; \
3784 unsigned int __data; \
3785 int ret = cfq_var_store(&__data, (page), count); \
3786 if (__data < (MIN)) \
3787 __data = (MIN); \
3788 else if (__data > (MAX)) \
3789 __data = (MAX); \
3790 if (__CONV) \
3791 *(__PTR) = msecs_to_jiffies(__data); \
3792 else \
3793 *(__PTR) = __data; \
3794 return ret; \
3795 }
3796 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3797 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3798 UINT_MAX, 1);
3799 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3800 UINT_MAX, 1);
3801 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3802 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3803 UINT_MAX, 0);
3804 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3805 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3806 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3807 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3808 UINT_MAX, 0);
3809 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3810 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3811 #undef STORE_FUNCTION
3812
3813 #define CFQ_ATTR(name) \
3814 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3815
3816 static struct elv_fs_entry cfq_attrs[] = {
3817 CFQ_ATTR(quantum),
3818 CFQ_ATTR(fifo_expire_sync),
3819 CFQ_ATTR(fifo_expire_async),
3820 CFQ_ATTR(back_seek_max),
3821 CFQ_ATTR(back_seek_penalty),
3822 CFQ_ATTR(slice_sync),
3823 CFQ_ATTR(slice_async),
3824 CFQ_ATTR(slice_async_rq),
3825 CFQ_ATTR(slice_idle),
3826 CFQ_ATTR(low_latency),
3827 CFQ_ATTR(group_isolation),
3828 __ATTR_NULL
3829 };
3830
3831 static struct elevator_type iosched_cfq = {
3832 .ops = {
3833 .elevator_merge_fn = cfq_merge,
3834 .elevator_merged_fn = cfq_merged_request,
3835 .elevator_merge_req_fn = cfq_merged_requests,
3836 .elevator_allow_merge_fn = cfq_allow_merge,
3837 .elevator_dispatch_fn = cfq_dispatch_requests,
3838 .elevator_add_req_fn = cfq_insert_request,
3839 .elevator_activate_req_fn = cfq_activate_request,
3840 .elevator_deactivate_req_fn = cfq_deactivate_request,
3841 .elevator_queue_empty_fn = cfq_queue_empty,
3842 .elevator_completed_req_fn = cfq_completed_request,
3843 .elevator_former_req_fn = elv_rb_former_request,
3844 .elevator_latter_req_fn = elv_rb_latter_request,
3845 .elevator_set_req_fn = cfq_set_request,
3846 .elevator_put_req_fn = cfq_put_request,
3847 .elevator_may_queue_fn = cfq_may_queue,
3848 .elevator_init_fn = cfq_init_queue,
3849 .elevator_exit_fn = cfq_exit_queue,
3850 .trim = cfq_free_io_context,
3851 },
3852 .elevator_attrs = cfq_attrs,
3853 .elevator_name = "cfq",
3854 .elevator_owner = THIS_MODULE,
3855 };
3856
3857 static int __init cfq_init(void)
3858 {
3859 /*
3860 * could be 0 on HZ < 1000 setups
3861 */
3862 if (!cfq_slice_async)
3863 cfq_slice_async = 1;
3864 if (!cfq_slice_idle)
3865 cfq_slice_idle = 1;
3866
3867 if (cfq_slab_setup())
3868 return -ENOMEM;
3869
3870 elv_register(&iosched_cfq);
3871
3872 return 0;
3873 }
3874
3875 static void __exit cfq_exit(void)
3876 {
3877 DECLARE_COMPLETION_ONSTACK(all_gone);
3878 elv_unregister(&iosched_cfq);
3879 ioc_gone = &all_gone;
3880 /* ioc_gone's update must be visible before reading ioc_count */
3881 smp_wmb();
3882
3883 /*
3884 * this also protects us from entering cfq_slab_kill() with
3885 * pending RCU callbacks
3886 */
3887 if (elv_ioc_count_read(cfq_ioc_count))
3888 wait_for_completion(&all_gone);
3889 cfq_slab_kill();
3890 }
3891
3892 module_init(cfq_init);
3893 module_exit(cfq_exit);
3894
3895 MODULE_AUTHOR("Jens Axboe");
3896 MODULE_LICENSE("GPL");
3897 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");