2f91c53519498f6aee0f2b224720e6d6614aab65
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 8;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
48
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
51 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
52 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
53
54 #define RQ_CIC(rq) \
55 ((struct cfq_io_context *) (rq)->elevator_private)
56 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57
58 static struct kmem_cache *cfq_pool;
59 static struct kmem_cache *cfq_ioc_pool;
60
61 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62 static struct completion *ioc_gone;
63 static DEFINE_SPINLOCK(ioc_gone_lock);
64
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72 /*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78 struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
81 unsigned count;
82 unsigned total_weight;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 };
86 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87 .count = 0, .min_vdisktime = 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 unsigned int slice_dispatch;
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
124 unsigned long slice_end;
125 long slice_resid;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
136 pid_t pid;
137
138 u32 seek_history;
139 sector_t last_request_pos;
140
141 struct cfq_rb_root *service_tree;
142 struct cfq_queue *new_cfqq;
143 struct cfq_group *cfqg;
144 struct cfq_group *orig_cfqg;
145 /* Sectors dispatched in current dispatch round */
146 unsigned long nr_sectors;
147 };
148
149 /*
150 * First index in the service_trees.
151 * IDLE is handled separately, so it has negative index
152 */
153 enum wl_prio_t {
154 BE_WORKLOAD = 0,
155 RT_WORKLOAD = 1,
156 IDLE_WORKLOAD = 2,
157 };
158
159 /*
160 * Second index in the service_trees.
161 */
162 enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
166 };
167
168 /* This is per cgroup per device grouping structure */
169 struct cfq_group {
170 /* group service_tree member */
171 struct rb_node rb_node;
172
173 /* group service_tree key */
174 u64 vdisktime;
175 unsigned int weight;
176 bool on_st;
177
178 /* number of cfqq currently on this group */
179 int nr_cfqq;
180
181 /* Per group busy queus average. Useful for workload slice calc. */
182 unsigned int busy_queues_avg[2];
183 /*
184 * rr lists of queues with requests, onle rr for each priority class.
185 * Counts are embedded in the cfq_rb_root
186 */
187 struct cfq_rb_root service_trees[2][3];
188 struct cfq_rb_root service_tree_idle;
189
190 unsigned long saved_workload_slice;
191 enum wl_type_t saved_workload;
192 enum wl_prio_t saved_serving_prio;
193 struct blkio_group blkg;
194 #ifdef CONFIG_CFQ_GROUP_IOSCHED
195 struct hlist_node cfqd_node;
196 atomic_t ref;
197 #endif
198 };
199
200 /*
201 * Per block device queue structure
202 */
203 struct cfq_data {
204 struct request_queue *queue;
205 /* Root service tree for cfq_groups */
206 struct cfq_rb_root grp_service_tree;
207 struct cfq_group root_group;
208
209 /*
210 * The priority currently being served
211 */
212 enum wl_prio_t serving_prio;
213 enum wl_type_t serving_type;
214 unsigned long workload_expires;
215 struct cfq_group *serving_group;
216 bool noidle_tree_requires_idle;
217
218 /*
219 * Each priority tree is sorted by next_request position. These
220 * trees are used when determining if two or more queues are
221 * interleaving requests (see cfq_close_cooperator).
222 */
223 struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225 unsigned int busy_queues;
226
227 int rq_in_driver;
228 int rq_in_flight[2];
229
230 /*
231 * queue-depth detection
232 */
233 int rq_queued;
234 int hw_tag;
235 /*
236 * hw_tag can be
237 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239 * 0 => no NCQ
240 */
241 int hw_tag_est_depth;
242 unsigned int hw_tag_samples;
243
244 /*
245 * idle window management
246 */
247 struct timer_list idle_slice_timer;
248 struct work_struct unplug_work;
249
250 struct cfq_queue *active_queue;
251 struct cfq_io_context *active_cic;
252
253 /*
254 * async queue for each priority case
255 */
256 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257 struct cfq_queue *async_idle_cfqq;
258
259 sector_t last_position;
260
261 /*
262 * tunables, see top of file
263 */
264 unsigned int cfq_quantum;
265 unsigned int cfq_fifo_expire[2];
266 unsigned int cfq_back_penalty;
267 unsigned int cfq_back_max;
268 unsigned int cfq_slice[2];
269 unsigned int cfq_slice_async_rq;
270 unsigned int cfq_slice_idle;
271 unsigned int cfq_latency;
272 unsigned int cfq_group_isolation;
273
274 struct list_head cic_list;
275
276 /*
277 * Fallback dummy cfqq for extreme OOM conditions
278 */
279 struct cfq_queue oom_cfqq;
280
281 unsigned long last_delayed_sync;
282
283 /* List of cfq groups being managed on this device*/
284 struct hlist_head cfqg_list;
285 struct rcu_head rcu;
286 };
287
288 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291 enum wl_prio_t prio,
292 enum wl_type_t type)
293 {
294 if (!cfqg)
295 return NULL;
296
297 if (prio == IDLE_WORKLOAD)
298 return &cfqg->service_tree_idle;
299
300 return &cfqg->service_trees[prio][type];
301 }
302
303 enum cfqq_state_flags {
304 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
305 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
306 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
307 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
308 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
309 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
310 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
311 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
312 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
313 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
314 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
315 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
316 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
317 };
318
319 #define CFQ_CFQQ_FNS(name) \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 { \
322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 } \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 { \
326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 } \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 { \
330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(split_coop);
344 CFQ_CFQQ_FNS(deep);
345 CFQ_CFQQ_FNS(wait_busy);
346 #undef CFQ_CFQQ_FNS
347
348 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
349 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
350 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
356 blkg_path(&(cfqg)->blkg), ##args); \
357
358 #else
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #endif
363 #define cfq_log(cfqd, fmt, args...) \
364 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366 /* Traverses through cfq group service trees */
367 #define for_each_cfqg_st(cfqg, i, j, st) \
368 for (i = 0; i <= IDLE_WORKLOAD; i++) \
369 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370 : &cfqg->service_tree_idle; \
371 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372 (i == IDLE_WORKLOAD && j == 0); \
373 j++, st = i < IDLE_WORKLOAD ? \
374 &cfqg->service_trees[i][j]: NULL) \
375
376
377 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 {
379 if (cfq_class_idle(cfqq))
380 return IDLE_WORKLOAD;
381 if (cfq_class_rt(cfqq))
382 return RT_WORKLOAD;
383 return BE_WORKLOAD;
384 }
385
386
387 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388 {
389 if (!cfq_cfqq_sync(cfqq))
390 return ASYNC_WORKLOAD;
391 if (!cfq_cfqq_idle_window(cfqq))
392 return SYNC_NOIDLE_WORKLOAD;
393 return SYNC_WORKLOAD;
394 }
395
396 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397 struct cfq_data *cfqd,
398 struct cfq_group *cfqg)
399 {
400 if (wl == IDLE_WORKLOAD)
401 return cfqg->service_tree_idle.count;
402
403 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406 }
407
408 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409 struct cfq_group *cfqg)
410 {
411 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413 }
414
415 static void cfq_dispatch_insert(struct request_queue *, struct request *);
416 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417 struct io_context *, gfp_t);
418 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419 struct io_context *);
420
421 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422 bool is_sync)
423 {
424 return cic->cfqq[is_sync];
425 }
426
427 static inline void cic_set_cfqq(struct cfq_io_context *cic,
428 struct cfq_queue *cfqq, bool is_sync)
429 {
430 cic->cfqq[is_sync] = cfqq;
431 }
432
433 /*
434 * We regard a request as SYNC, if it's either a read or has the SYNC bit
435 * set (in which case it could also be direct WRITE).
436 */
437 static inline bool cfq_bio_sync(struct bio *bio)
438 {
439 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440 }
441
442 /*
443 * scheduler run of queue, if there are requests pending and no one in the
444 * driver that will restart queueing
445 */
446 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447 {
448 if (cfqd->busy_queues) {
449 cfq_log(cfqd, "schedule dispatch");
450 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451 }
452 }
453
454 static int cfq_queue_empty(struct request_queue *q)
455 {
456 struct cfq_data *cfqd = q->elevator->elevator_data;
457
458 return !cfqd->rq_queued;
459 }
460
461 /*
462 * Scale schedule slice based on io priority. Use the sync time slice only
463 * if a queue is marked sync and has sync io queued. A sync queue with async
464 * io only, should not get full sync slice length.
465 */
466 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467 unsigned short prio)
468 {
469 const int base_slice = cfqd->cfq_slice[sync];
470
471 WARN_ON(prio >= IOPRIO_BE_NR);
472
473 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474 }
475
476 static inline int
477 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 {
479 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480 }
481
482 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483 {
484 u64 d = delta << CFQ_SERVICE_SHIFT;
485
486 d = d * BLKIO_WEIGHT_DEFAULT;
487 do_div(d, cfqg->weight);
488 return d;
489 }
490
491 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492 {
493 s64 delta = (s64)(vdisktime - min_vdisktime);
494 if (delta > 0)
495 min_vdisktime = vdisktime;
496
497 return min_vdisktime;
498 }
499
500 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502 s64 delta = (s64)(vdisktime - min_vdisktime);
503 if (delta < 0)
504 min_vdisktime = vdisktime;
505
506 return min_vdisktime;
507 }
508
509 static void update_min_vdisktime(struct cfq_rb_root *st)
510 {
511 u64 vdisktime = st->min_vdisktime;
512 struct cfq_group *cfqg;
513
514 if (st->active) {
515 cfqg = rb_entry_cfqg(st->active);
516 vdisktime = cfqg->vdisktime;
517 }
518
519 if (st->left) {
520 cfqg = rb_entry_cfqg(st->left);
521 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522 }
523
524 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525 }
526
527 /*
528 * get averaged number of queues of RT/BE priority.
529 * average is updated, with a formula that gives more weight to higher numbers,
530 * to quickly follows sudden increases and decrease slowly
531 */
532
533 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534 struct cfq_group *cfqg, bool rt)
535 {
536 unsigned min_q, max_q;
537 unsigned mult = cfq_hist_divisor - 1;
538 unsigned round = cfq_hist_divisor / 2;
539 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541 min_q = min(cfqg->busy_queues_avg[rt], busy);
542 max_q = max(cfqg->busy_queues_avg[rt], busy);
543 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544 cfq_hist_divisor;
545 return cfqg->busy_queues_avg[rt];
546 }
547
548 static inline unsigned
549 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550 {
551 struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553 return cfq_target_latency * cfqg->weight / st->total_weight;
554 }
555
556 static inline void
557 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558 {
559 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560 if (cfqd->cfq_latency) {
561 /*
562 * interested queues (we consider only the ones with the same
563 * priority class in the cfq group)
564 */
565 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566 cfq_class_rt(cfqq));
567 unsigned sync_slice = cfqd->cfq_slice[1];
568 unsigned expect_latency = sync_slice * iq;
569 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571 if (expect_latency > group_slice) {
572 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573 /* scale low_slice according to IO priority
574 * and sync vs async */
575 unsigned low_slice =
576 min(slice, base_low_slice * slice / sync_slice);
577 /* the adapted slice value is scaled to fit all iqs
578 * into the target latency */
579 slice = max(slice * group_slice / expect_latency,
580 low_slice);
581 }
582 }
583 cfqq->slice_start = jiffies;
584 cfqq->slice_end = jiffies + slice;
585 cfqq->allocated_slice = slice;
586 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587 }
588
589 /*
590 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591 * isn't valid until the first request from the dispatch is activated
592 * and the slice time set.
593 */
594 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595 {
596 if (cfq_cfqq_slice_new(cfqq))
597 return 0;
598 if (time_before(jiffies, cfqq->slice_end))
599 return 0;
600
601 return 1;
602 }
603
604 /*
605 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606 * We choose the request that is closest to the head right now. Distance
607 * behind the head is penalized and only allowed to a certain extent.
608 */
609 static struct request *
610 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611 {
612 sector_t s1, s2, d1 = 0, d2 = 0;
613 unsigned long back_max;
614 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
615 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
616 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618 if (rq1 == NULL || rq1 == rq2)
619 return rq2;
620 if (rq2 == NULL)
621 return rq1;
622
623 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624 return rq1;
625 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626 return rq2;
627 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628 return rq1;
629 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630 return rq2;
631
632 s1 = blk_rq_pos(rq1);
633 s2 = blk_rq_pos(rq2);
634
635 /*
636 * by definition, 1KiB is 2 sectors
637 */
638 back_max = cfqd->cfq_back_max * 2;
639
640 /*
641 * Strict one way elevator _except_ in the case where we allow
642 * short backward seeks which are biased as twice the cost of a
643 * similar forward seek.
644 */
645 if (s1 >= last)
646 d1 = s1 - last;
647 else if (s1 + back_max >= last)
648 d1 = (last - s1) * cfqd->cfq_back_penalty;
649 else
650 wrap |= CFQ_RQ1_WRAP;
651
652 if (s2 >= last)
653 d2 = s2 - last;
654 else if (s2 + back_max >= last)
655 d2 = (last - s2) * cfqd->cfq_back_penalty;
656 else
657 wrap |= CFQ_RQ2_WRAP;
658
659 /* Found required data */
660
661 /*
662 * By doing switch() on the bit mask "wrap" we avoid having to
663 * check two variables for all permutations: --> faster!
664 */
665 switch (wrap) {
666 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667 if (d1 < d2)
668 return rq1;
669 else if (d2 < d1)
670 return rq2;
671 else {
672 if (s1 >= s2)
673 return rq1;
674 else
675 return rq2;
676 }
677
678 case CFQ_RQ2_WRAP:
679 return rq1;
680 case CFQ_RQ1_WRAP:
681 return rq2;
682 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683 default:
684 /*
685 * Since both rqs are wrapped,
686 * start with the one that's further behind head
687 * (--> only *one* back seek required),
688 * since back seek takes more time than forward.
689 */
690 if (s1 <= s2)
691 return rq1;
692 else
693 return rq2;
694 }
695 }
696
697 /*
698 * The below is leftmost cache rbtree addon
699 */
700 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701 {
702 /* Service tree is empty */
703 if (!root->count)
704 return NULL;
705
706 if (!root->left)
707 root->left = rb_first(&root->rb);
708
709 if (root->left)
710 return rb_entry(root->left, struct cfq_queue, rb_node);
711
712 return NULL;
713 }
714
715 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716 {
717 if (!root->left)
718 root->left = rb_first(&root->rb);
719
720 if (root->left)
721 return rb_entry_cfqg(root->left);
722
723 return NULL;
724 }
725
726 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727 {
728 rb_erase(n, root);
729 RB_CLEAR_NODE(n);
730 }
731
732 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733 {
734 if (root->left == n)
735 root->left = NULL;
736 rb_erase_init(n, &root->rb);
737 --root->count;
738 }
739
740 /*
741 * would be nice to take fifo expire time into account as well
742 */
743 static struct request *
744 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745 struct request *last)
746 {
747 struct rb_node *rbnext = rb_next(&last->rb_node);
748 struct rb_node *rbprev = rb_prev(&last->rb_node);
749 struct request *next = NULL, *prev = NULL;
750
751 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753 if (rbprev)
754 prev = rb_entry_rq(rbprev);
755
756 if (rbnext)
757 next = rb_entry_rq(rbnext);
758 else {
759 rbnext = rb_first(&cfqq->sort_list);
760 if (rbnext && rbnext != &last->rb_node)
761 next = rb_entry_rq(rbnext);
762 }
763
764 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765 }
766
767 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768 struct cfq_queue *cfqq)
769 {
770 /*
771 * just an approximation, should be ok.
772 */
773 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775 }
776
777 static inline s64
778 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779 {
780 return cfqg->vdisktime - st->min_vdisktime;
781 }
782
783 static void
784 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785 {
786 struct rb_node **node = &st->rb.rb_node;
787 struct rb_node *parent = NULL;
788 struct cfq_group *__cfqg;
789 s64 key = cfqg_key(st, cfqg);
790 int left = 1;
791
792 while (*node != NULL) {
793 parent = *node;
794 __cfqg = rb_entry_cfqg(parent);
795
796 if (key < cfqg_key(st, __cfqg))
797 node = &parent->rb_left;
798 else {
799 node = &parent->rb_right;
800 left = 0;
801 }
802 }
803
804 if (left)
805 st->left = &cfqg->rb_node;
806
807 rb_link_node(&cfqg->rb_node, parent, node);
808 rb_insert_color(&cfqg->rb_node, &st->rb);
809 }
810
811 static void
812 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813 {
814 struct cfq_rb_root *st = &cfqd->grp_service_tree;
815 struct cfq_group *__cfqg;
816 struct rb_node *n;
817
818 cfqg->nr_cfqq++;
819 if (cfqg->on_st)
820 return;
821
822 /*
823 * Currently put the group at the end. Later implement something
824 * so that groups get lesser vtime based on their weights, so that
825 * if group does not loose all if it was not continously backlogged.
826 */
827 n = rb_last(&st->rb);
828 if (n) {
829 __cfqg = rb_entry_cfqg(n);
830 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831 } else
832 cfqg->vdisktime = st->min_vdisktime;
833
834 __cfq_group_service_tree_add(st, cfqg);
835 cfqg->on_st = true;
836 st->total_weight += cfqg->weight;
837 }
838
839 static void
840 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841 {
842 struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844 if (st->active == &cfqg->rb_node)
845 st->active = NULL;
846
847 BUG_ON(cfqg->nr_cfqq < 1);
848 cfqg->nr_cfqq--;
849
850 /* If there are other cfq queues under this group, don't delete it */
851 if (cfqg->nr_cfqq)
852 return;
853
854 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855 cfqg->on_st = false;
856 st->total_weight -= cfqg->weight;
857 if (!RB_EMPTY_NODE(&cfqg->rb_node))
858 cfq_rb_erase(&cfqg->rb_node, st);
859 cfqg->saved_workload_slice = 0;
860 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
861 }
862
863 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864 {
865 unsigned int slice_used;
866
867 /*
868 * Queue got expired before even a single request completed or
869 * got expired immediately after first request completion.
870 */
871 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872 /*
873 * Also charge the seek time incurred to the group, otherwise
874 * if there are mutiple queues in the group, each can dispatch
875 * a single request on seeky media and cause lots of seek time
876 * and group will never know it.
877 */
878 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879 1);
880 } else {
881 slice_used = jiffies - cfqq->slice_start;
882 if (slice_used > cfqq->allocated_slice)
883 slice_used = cfqq->allocated_slice;
884 }
885
886 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887 cfqq->nr_sectors);
888 return slice_used;
889 }
890
891 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892 struct cfq_queue *cfqq)
893 {
894 struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 unsigned int used_sl, charge_sl;
896 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897 - cfqg->service_tree_idle.count;
898
899 BUG_ON(nr_sync < 0);
900 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
901
902 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903 charge_sl = cfqq->allocated_slice;
904
905 /* Can't update vdisktime while group is on service tree */
906 cfq_rb_erase(&cfqg->rb_node, st);
907 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
908 __cfq_group_service_tree_add(st, cfqg);
909
910 /* This group is being expired. Save the context */
911 if (time_after(cfqd->workload_expires, jiffies)) {
912 cfqg->saved_workload_slice = cfqd->workload_expires
913 - jiffies;
914 cfqg->saved_workload = cfqd->serving_type;
915 cfqg->saved_serving_prio = cfqd->serving_prio;
916 } else
917 cfqg->saved_workload_slice = 0;
918
919 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920 st->min_vdisktime);
921 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922 cfqq->nr_sectors);
923 }
924
925 #ifdef CONFIG_CFQ_GROUP_IOSCHED
926 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
927 {
928 if (blkg)
929 return container_of(blkg, struct cfq_group, blkg);
930 return NULL;
931 }
932
933 void
934 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
935 {
936 cfqg_of_blkg(blkg)->weight = weight;
937 }
938
939 static struct cfq_group *
940 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
941 {
942 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943 struct cfq_group *cfqg = NULL;
944 void *key = cfqd;
945 int i, j;
946 struct cfq_rb_root *st;
947 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948 unsigned int major, minor;
949
950 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
951 if (cfqg || !create)
952 goto done;
953
954 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
955 if (!cfqg)
956 goto done;
957
958 cfqg->weight = blkcg->weight;
959 for_each_cfqg_st(cfqg, i, j, st)
960 *st = CFQ_RB_ROOT;
961 RB_CLEAR_NODE(&cfqg->rb_node);
962
963 /*
964 * Take the initial reference that will be released on destroy
965 * This can be thought of a joint reference by cgroup and
966 * elevator which will be dropped by either elevator exit
967 * or cgroup deletion path depending on who is exiting first.
968 */
969 atomic_set(&cfqg->ref, 1);
970
971 /* Add group onto cgroup list */
972 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
973 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
974 MKDEV(major, minor));
975
976 /* Add group on cfqd list */
977 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
978
979 done:
980 return cfqg;
981 }
982
983 /*
984 * Search for the cfq group current task belongs to. If create = 1, then also
985 * create the cfq group if it does not exist. request_queue lock must be held.
986 */
987 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
988 {
989 struct cgroup *cgroup;
990 struct cfq_group *cfqg = NULL;
991
992 rcu_read_lock();
993 cgroup = task_cgroup(current, blkio_subsys_id);
994 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
995 if (!cfqg && create)
996 cfqg = &cfqd->root_group;
997 rcu_read_unlock();
998 return cfqg;
999 }
1000
1001 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1002 {
1003 /* Currently, all async queues are mapped to root group */
1004 if (!cfq_cfqq_sync(cfqq))
1005 cfqg = &cfqq->cfqd->root_group;
1006
1007 cfqq->cfqg = cfqg;
1008 /* cfqq reference on cfqg */
1009 atomic_inc(&cfqq->cfqg->ref);
1010 }
1011
1012 static void cfq_put_cfqg(struct cfq_group *cfqg)
1013 {
1014 struct cfq_rb_root *st;
1015 int i, j;
1016
1017 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1018 if (!atomic_dec_and_test(&cfqg->ref))
1019 return;
1020 for_each_cfqg_st(cfqg, i, j, st)
1021 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1022 kfree(cfqg);
1023 }
1024
1025 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1026 {
1027 /* Something wrong if we are trying to remove same group twice */
1028 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1029
1030 hlist_del_init(&cfqg->cfqd_node);
1031
1032 /*
1033 * Put the reference taken at the time of creation so that when all
1034 * queues are gone, group can be destroyed.
1035 */
1036 cfq_put_cfqg(cfqg);
1037 }
1038
1039 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1040 {
1041 struct hlist_node *pos, *n;
1042 struct cfq_group *cfqg;
1043
1044 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1045 /*
1046 * If cgroup removal path got to blk_group first and removed
1047 * it from cgroup list, then it will take care of destroying
1048 * cfqg also.
1049 */
1050 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1051 cfq_destroy_cfqg(cfqd, cfqg);
1052 }
1053 }
1054
1055 /*
1056 * Blk cgroup controller notification saying that blkio_group object is being
1057 * delinked as associated cgroup object is going away. That also means that
1058 * no new IO will come in this group. So get rid of this group as soon as
1059 * any pending IO in the group is finished.
1060 *
1061 * This function is called under rcu_read_lock(). key is the rcu protected
1062 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063 * read lock.
1064 *
1065 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1066 * it should not be NULL as even if elevator was exiting, cgroup deltion
1067 * path got to it first.
1068 */
1069 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1070 {
1071 unsigned long flags;
1072 struct cfq_data *cfqd = key;
1073
1074 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1075 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1076 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1077 }
1078
1079 #else /* GROUP_IOSCHED */
1080 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1081 {
1082 return &cfqd->root_group;
1083 }
1084 static inline void
1085 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1086 cfqq->cfqg = cfqg;
1087 }
1088
1089 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1090 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1091
1092 #endif /* GROUP_IOSCHED */
1093
1094 /*
1095 * The cfqd->service_trees holds all pending cfq_queue's that have
1096 * requests waiting to be processed. It is sorted in the order that
1097 * we will service the queues.
1098 */
1099 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100 bool add_front)
1101 {
1102 struct rb_node **p, *parent;
1103 struct cfq_queue *__cfqq;
1104 unsigned long rb_key;
1105 struct cfq_rb_root *service_tree;
1106 int left;
1107 int new_cfqq = 1;
1108 int group_changed = 0;
1109
1110 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1111 if (!cfqd->cfq_group_isolation
1112 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1113 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1114 /* Move this cfq to root group */
1115 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1116 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1117 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1118 cfqq->orig_cfqg = cfqq->cfqg;
1119 cfqq->cfqg = &cfqd->root_group;
1120 atomic_inc(&cfqd->root_group.ref);
1121 group_changed = 1;
1122 } else if (!cfqd->cfq_group_isolation
1123 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1124 /* cfqq is sequential now needs to go to its original group */
1125 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1126 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1127 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1128 cfq_put_cfqg(cfqq->cfqg);
1129 cfqq->cfqg = cfqq->orig_cfqg;
1130 cfqq->orig_cfqg = NULL;
1131 group_changed = 1;
1132 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1133 }
1134 #endif
1135
1136 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1137 cfqq_type(cfqq));
1138 if (cfq_class_idle(cfqq)) {
1139 rb_key = CFQ_IDLE_DELAY;
1140 parent = rb_last(&service_tree->rb);
1141 if (parent && parent != &cfqq->rb_node) {
1142 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1143 rb_key += __cfqq->rb_key;
1144 } else
1145 rb_key += jiffies;
1146 } else if (!add_front) {
1147 /*
1148 * Get our rb key offset. Subtract any residual slice
1149 * value carried from last service. A negative resid
1150 * count indicates slice overrun, and this should position
1151 * the next service time further away in the tree.
1152 */
1153 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1154 rb_key -= cfqq->slice_resid;
1155 cfqq->slice_resid = 0;
1156 } else {
1157 rb_key = -HZ;
1158 __cfqq = cfq_rb_first(service_tree);
1159 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1160 }
1161
1162 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1163 new_cfqq = 0;
1164 /*
1165 * same position, nothing more to do
1166 */
1167 if (rb_key == cfqq->rb_key &&
1168 cfqq->service_tree == service_tree)
1169 return;
1170
1171 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1172 cfqq->service_tree = NULL;
1173 }
1174
1175 left = 1;
1176 parent = NULL;
1177 cfqq->service_tree = service_tree;
1178 p = &service_tree->rb.rb_node;
1179 while (*p) {
1180 struct rb_node **n;
1181
1182 parent = *p;
1183 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1184
1185 /*
1186 * sort by key, that represents service time.
1187 */
1188 if (time_before(rb_key, __cfqq->rb_key))
1189 n = &(*p)->rb_left;
1190 else {
1191 n = &(*p)->rb_right;
1192 left = 0;
1193 }
1194
1195 p = n;
1196 }
1197
1198 if (left)
1199 service_tree->left = &cfqq->rb_node;
1200
1201 cfqq->rb_key = rb_key;
1202 rb_link_node(&cfqq->rb_node, parent, p);
1203 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1204 service_tree->count++;
1205 if ((add_front || !new_cfqq) && !group_changed)
1206 return;
1207 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1208 }
1209
1210 static struct cfq_queue *
1211 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1212 sector_t sector, struct rb_node **ret_parent,
1213 struct rb_node ***rb_link)
1214 {
1215 struct rb_node **p, *parent;
1216 struct cfq_queue *cfqq = NULL;
1217
1218 parent = NULL;
1219 p = &root->rb_node;
1220 while (*p) {
1221 struct rb_node **n;
1222
1223 parent = *p;
1224 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1225
1226 /*
1227 * Sort strictly based on sector. Smallest to the left,
1228 * largest to the right.
1229 */
1230 if (sector > blk_rq_pos(cfqq->next_rq))
1231 n = &(*p)->rb_right;
1232 else if (sector < blk_rq_pos(cfqq->next_rq))
1233 n = &(*p)->rb_left;
1234 else
1235 break;
1236 p = n;
1237 cfqq = NULL;
1238 }
1239
1240 *ret_parent = parent;
1241 if (rb_link)
1242 *rb_link = p;
1243 return cfqq;
1244 }
1245
1246 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1247 {
1248 struct rb_node **p, *parent;
1249 struct cfq_queue *__cfqq;
1250
1251 if (cfqq->p_root) {
1252 rb_erase(&cfqq->p_node, cfqq->p_root);
1253 cfqq->p_root = NULL;
1254 }
1255
1256 if (cfq_class_idle(cfqq))
1257 return;
1258 if (!cfqq->next_rq)
1259 return;
1260
1261 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1262 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1263 blk_rq_pos(cfqq->next_rq), &parent, &p);
1264 if (!__cfqq) {
1265 rb_link_node(&cfqq->p_node, parent, p);
1266 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1267 } else
1268 cfqq->p_root = NULL;
1269 }
1270
1271 /*
1272 * Update cfqq's position in the service tree.
1273 */
1274 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1275 {
1276 /*
1277 * Resorting requires the cfqq to be on the RR list already.
1278 */
1279 if (cfq_cfqq_on_rr(cfqq)) {
1280 cfq_service_tree_add(cfqd, cfqq, 0);
1281 cfq_prio_tree_add(cfqd, cfqq);
1282 }
1283 }
1284
1285 /*
1286 * add to busy list of queues for service, trying to be fair in ordering
1287 * the pending list according to last request service
1288 */
1289 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1290 {
1291 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1292 BUG_ON(cfq_cfqq_on_rr(cfqq));
1293 cfq_mark_cfqq_on_rr(cfqq);
1294 cfqd->busy_queues++;
1295
1296 cfq_resort_rr_list(cfqd, cfqq);
1297 }
1298
1299 /*
1300 * Called when the cfqq no longer has requests pending, remove it from
1301 * the service tree.
1302 */
1303 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1304 {
1305 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1306 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1307 cfq_clear_cfqq_on_rr(cfqq);
1308
1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311 cfqq->service_tree = NULL;
1312 }
1313 if (cfqq->p_root) {
1314 rb_erase(&cfqq->p_node, cfqq->p_root);
1315 cfqq->p_root = NULL;
1316 }
1317
1318 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1319 BUG_ON(!cfqd->busy_queues);
1320 cfqd->busy_queues--;
1321 }
1322
1323 /*
1324 * rb tree support functions
1325 */
1326 static void cfq_del_rq_rb(struct request *rq)
1327 {
1328 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1329 const int sync = rq_is_sync(rq);
1330
1331 BUG_ON(!cfqq->queued[sync]);
1332 cfqq->queued[sync]--;
1333
1334 elv_rb_del(&cfqq->sort_list, rq);
1335
1336 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1337 /*
1338 * Queue will be deleted from service tree when we actually
1339 * expire it later. Right now just remove it from prio tree
1340 * as it is empty.
1341 */
1342 if (cfqq->p_root) {
1343 rb_erase(&cfqq->p_node, cfqq->p_root);
1344 cfqq->p_root = NULL;
1345 }
1346 }
1347 }
1348
1349 static void cfq_add_rq_rb(struct request *rq)
1350 {
1351 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1352 struct cfq_data *cfqd = cfqq->cfqd;
1353 struct request *__alias, *prev;
1354
1355 cfqq->queued[rq_is_sync(rq)]++;
1356
1357 /*
1358 * looks a little odd, but the first insert might return an alias.
1359 * if that happens, put the alias on the dispatch list
1360 */
1361 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1362 cfq_dispatch_insert(cfqd->queue, __alias);
1363
1364 if (!cfq_cfqq_on_rr(cfqq))
1365 cfq_add_cfqq_rr(cfqd, cfqq);
1366
1367 /*
1368 * check if this request is a better next-serve candidate
1369 */
1370 prev = cfqq->next_rq;
1371 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1372
1373 /*
1374 * adjust priority tree position, if ->next_rq changes
1375 */
1376 if (prev != cfqq->next_rq)
1377 cfq_prio_tree_add(cfqd, cfqq);
1378
1379 BUG_ON(!cfqq->next_rq);
1380 }
1381
1382 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1383 {
1384 elv_rb_del(&cfqq->sort_list, rq);
1385 cfqq->queued[rq_is_sync(rq)]--;
1386 cfq_add_rq_rb(rq);
1387 }
1388
1389 static struct request *
1390 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1391 {
1392 struct task_struct *tsk = current;
1393 struct cfq_io_context *cic;
1394 struct cfq_queue *cfqq;
1395
1396 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1397 if (!cic)
1398 return NULL;
1399
1400 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1401 if (cfqq) {
1402 sector_t sector = bio->bi_sector + bio_sectors(bio);
1403
1404 return elv_rb_find(&cfqq->sort_list, sector);
1405 }
1406
1407 return NULL;
1408 }
1409
1410 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1411 {
1412 struct cfq_data *cfqd = q->elevator->elevator_data;
1413
1414 cfqd->rq_in_driver++;
1415 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1416 cfqd->rq_in_driver);
1417
1418 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1419 }
1420
1421 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1422 {
1423 struct cfq_data *cfqd = q->elevator->elevator_data;
1424
1425 WARN_ON(!cfqd->rq_in_driver);
1426 cfqd->rq_in_driver--;
1427 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1428 cfqd->rq_in_driver);
1429 }
1430
1431 static void cfq_remove_request(struct request *rq)
1432 {
1433 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1434
1435 if (cfqq->next_rq == rq)
1436 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1437
1438 list_del_init(&rq->queuelist);
1439 cfq_del_rq_rb(rq);
1440
1441 cfqq->cfqd->rq_queued--;
1442 if (rq_is_meta(rq)) {
1443 WARN_ON(!cfqq->meta_pending);
1444 cfqq->meta_pending--;
1445 }
1446 }
1447
1448 static int cfq_merge(struct request_queue *q, struct request **req,
1449 struct bio *bio)
1450 {
1451 struct cfq_data *cfqd = q->elevator->elevator_data;
1452 struct request *__rq;
1453
1454 __rq = cfq_find_rq_fmerge(cfqd, bio);
1455 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1456 *req = __rq;
1457 return ELEVATOR_FRONT_MERGE;
1458 }
1459
1460 return ELEVATOR_NO_MERGE;
1461 }
1462
1463 static void cfq_merged_request(struct request_queue *q, struct request *req,
1464 int type)
1465 {
1466 if (type == ELEVATOR_FRONT_MERGE) {
1467 struct cfq_queue *cfqq = RQ_CFQQ(req);
1468
1469 cfq_reposition_rq_rb(cfqq, req);
1470 }
1471 }
1472
1473 static void
1474 cfq_merged_requests(struct request_queue *q, struct request *rq,
1475 struct request *next)
1476 {
1477 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478 /*
1479 * reposition in fifo if next is older than rq
1480 */
1481 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1482 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1483 list_move(&rq->queuelist, &next->queuelist);
1484 rq_set_fifo_time(rq, rq_fifo_time(next));
1485 }
1486
1487 if (cfqq->next_rq == next)
1488 cfqq->next_rq = rq;
1489 cfq_remove_request(next);
1490 }
1491
1492 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1493 struct bio *bio)
1494 {
1495 struct cfq_data *cfqd = q->elevator->elevator_data;
1496 struct cfq_io_context *cic;
1497 struct cfq_queue *cfqq;
1498
1499 /*
1500 * Disallow merge of a sync bio into an async request.
1501 */
1502 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1503 return false;
1504
1505 /*
1506 * Lookup the cfqq that this bio will be queued with. Allow
1507 * merge only if rq is queued there.
1508 */
1509 cic = cfq_cic_lookup(cfqd, current->io_context);
1510 if (!cic)
1511 return false;
1512
1513 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1514 return cfqq == RQ_CFQQ(rq);
1515 }
1516
1517 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1518 struct cfq_queue *cfqq)
1519 {
1520 if (cfqq) {
1521 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1522 cfqd->serving_prio, cfqd->serving_type);
1523 cfqq->slice_start = 0;
1524 cfqq->dispatch_start = jiffies;
1525 cfqq->allocated_slice = 0;
1526 cfqq->slice_end = 0;
1527 cfqq->slice_dispatch = 0;
1528 cfqq->nr_sectors = 0;
1529
1530 cfq_clear_cfqq_wait_request(cfqq);
1531 cfq_clear_cfqq_must_dispatch(cfqq);
1532 cfq_clear_cfqq_must_alloc_slice(cfqq);
1533 cfq_clear_cfqq_fifo_expire(cfqq);
1534 cfq_mark_cfqq_slice_new(cfqq);
1535
1536 del_timer(&cfqd->idle_slice_timer);
1537 }
1538
1539 cfqd->active_queue = cfqq;
1540 }
1541
1542 /*
1543 * current cfqq expired its slice (or was too idle), select new one
1544 */
1545 static void
1546 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547 bool timed_out)
1548 {
1549 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1550
1551 if (cfq_cfqq_wait_request(cfqq))
1552 del_timer(&cfqd->idle_slice_timer);
1553
1554 cfq_clear_cfqq_wait_request(cfqq);
1555 cfq_clear_cfqq_wait_busy(cfqq);
1556
1557 /*
1558 * If this cfqq is shared between multiple processes, check to
1559 * make sure that those processes are still issuing I/Os within
1560 * the mean seek distance. If not, it may be time to break the
1561 * queues apart again.
1562 */
1563 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1564 cfq_mark_cfqq_split_coop(cfqq);
1565
1566 /*
1567 * store what was left of this slice, if the queue idled/timed out
1568 */
1569 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1570 cfqq->slice_resid = cfqq->slice_end - jiffies;
1571 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1572 }
1573
1574 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1575
1576 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1577 cfq_del_cfqq_rr(cfqd, cfqq);
1578
1579 cfq_resort_rr_list(cfqd, cfqq);
1580
1581 if (cfqq == cfqd->active_queue)
1582 cfqd->active_queue = NULL;
1583
1584 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1585 cfqd->grp_service_tree.active = NULL;
1586
1587 if (cfqd->active_cic) {
1588 put_io_context(cfqd->active_cic->ioc);
1589 cfqd->active_cic = NULL;
1590 }
1591 }
1592
1593 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1594 {
1595 struct cfq_queue *cfqq = cfqd->active_queue;
1596
1597 if (cfqq)
1598 __cfq_slice_expired(cfqd, cfqq, timed_out);
1599 }
1600
1601 /*
1602 * Get next queue for service. Unless we have a queue preemption,
1603 * we'll simply select the first cfqq in the service tree.
1604 */
1605 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1606 {
1607 struct cfq_rb_root *service_tree =
1608 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1609 cfqd->serving_type);
1610
1611 if (!cfqd->rq_queued)
1612 return NULL;
1613
1614 /* There is nothing to dispatch */
1615 if (!service_tree)
1616 return NULL;
1617 if (RB_EMPTY_ROOT(&service_tree->rb))
1618 return NULL;
1619 return cfq_rb_first(service_tree);
1620 }
1621
1622 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1623 {
1624 struct cfq_group *cfqg;
1625 struct cfq_queue *cfqq;
1626 int i, j;
1627 struct cfq_rb_root *st;
1628
1629 if (!cfqd->rq_queued)
1630 return NULL;
1631
1632 cfqg = cfq_get_next_cfqg(cfqd);
1633 if (!cfqg)
1634 return NULL;
1635
1636 for_each_cfqg_st(cfqg, i, j, st)
1637 if ((cfqq = cfq_rb_first(st)) != NULL)
1638 return cfqq;
1639 return NULL;
1640 }
1641
1642 /*
1643 * Get and set a new active queue for service.
1644 */
1645 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1646 struct cfq_queue *cfqq)
1647 {
1648 if (!cfqq)
1649 cfqq = cfq_get_next_queue(cfqd);
1650
1651 __cfq_set_active_queue(cfqd, cfqq);
1652 return cfqq;
1653 }
1654
1655 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1656 struct request *rq)
1657 {
1658 if (blk_rq_pos(rq) >= cfqd->last_position)
1659 return blk_rq_pos(rq) - cfqd->last_position;
1660 else
1661 return cfqd->last_position - blk_rq_pos(rq);
1662 }
1663
1664 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1665 struct request *rq)
1666 {
1667 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1668 }
1669
1670 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1671 struct cfq_queue *cur_cfqq)
1672 {
1673 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1674 struct rb_node *parent, *node;
1675 struct cfq_queue *__cfqq;
1676 sector_t sector = cfqd->last_position;
1677
1678 if (RB_EMPTY_ROOT(root))
1679 return NULL;
1680
1681 /*
1682 * First, if we find a request starting at the end of the last
1683 * request, choose it.
1684 */
1685 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1686 if (__cfqq)
1687 return __cfqq;
1688
1689 /*
1690 * If the exact sector wasn't found, the parent of the NULL leaf
1691 * will contain the closest sector.
1692 */
1693 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1694 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1695 return __cfqq;
1696
1697 if (blk_rq_pos(__cfqq->next_rq) < sector)
1698 node = rb_next(&__cfqq->p_node);
1699 else
1700 node = rb_prev(&__cfqq->p_node);
1701 if (!node)
1702 return NULL;
1703
1704 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1705 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1706 return __cfqq;
1707
1708 return NULL;
1709 }
1710
1711 /*
1712 * cfqd - obvious
1713 * cur_cfqq - passed in so that we don't decide that the current queue is
1714 * closely cooperating with itself.
1715 *
1716 * So, basically we're assuming that that cur_cfqq has dispatched at least
1717 * one request, and that cfqd->last_position reflects a position on the disk
1718 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1719 * assumption.
1720 */
1721 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1722 struct cfq_queue *cur_cfqq)
1723 {
1724 struct cfq_queue *cfqq;
1725
1726 if (!cfq_cfqq_sync(cur_cfqq))
1727 return NULL;
1728 if (CFQQ_SEEKY(cur_cfqq))
1729 return NULL;
1730
1731 /*
1732 * Don't search priority tree if it's the only queue in the group.
1733 */
1734 if (cur_cfqq->cfqg->nr_cfqq == 1)
1735 return NULL;
1736
1737 /*
1738 * We should notice if some of the queues are cooperating, eg
1739 * working closely on the same area of the disk. In that case,
1740 * we can group them together and don't waste time idling.
1741 */
1742 cfqq = cfqq_close(cfqd, cur_cfqq);
1743 if (!cfqq)
1744 return NULL;
1745
1746 /* If new queue belongs to different cfq_group, don't choose it */
1747 if (cur_cfqq->cfqg != cfqq->cfqg)
1748 return NULL;
1749
1750 /*
1751 * It only makes sense to merge sync queues.
1752 */
1753 if (!cfq_cfqq_sync(cfqq))
1754 return NULL;
1755 if (CFQQ_SEEKY(cfqq))
1756 return NULL;
1757
1758 /*
1759 * Do not merge queues of different priority classes
1760 */
1761 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1762 return NULL;
1763
1764 return cfqq;
1765 }
1766
1767 /*
1768 * Determine whether we should enforce idle window for this queue.
1769 */
1770
1771 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1772 {
1773 enum wl_prio_t prio = cfqq_prio(cfqq);
1774 struct cfq_rb_root *service_tree = cfqq->service_tree;
1775
1776 BUG_ON(!service_tree);
1777 BUG_ON(!service_tree->count);
1778
1779 /* We never do for idle class queues. */
1780 if (prio == IDLE_WORKLOAD)
1781 return false;
1782
1783 /* We do for queues that were marked with idle window flag. */
1784 if (cfq_cfqq_idle_window(cfqq) &&
1785 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1786 return true;
1787
1788 /*
1789 * Otherwise, we do only if they are the last ones
1790 * in their service tree.
1791 */
1792 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1793 return 1;
1794 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1795 service_tree->count);
1796 return 0;
1797 }
1798
1799 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1800 {
1801 struct cfq_queue *cfqq = cfqd->active_queue;
1802 struct cfq_io_context *cic;
1803 unsigned long sl;
1804
1805 /*
1806 * SSD device without seek penalty, disable idling. But only do so
1807 * for devices that support queuing, otherwise we still have a problem
1808 * with sync vs async workloads.
1809 */
1810 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1811 return;
1812
1813 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1814 WARN_ON(cfq_cfqq_slice_new(cfqq));
1815
1816 /*
1817 * idle is disabled, either manually or by past process history
1818 */
1819 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1820 return;
1821
1822 /*
1823 * still active requests from this queue, don't idle
1824 */
1825 if (cfqq->dispatched)
1826 return;
1827
1828 /*
1829 * task has exited, don't wait
1830 */
1831 cic = cfqd->active_cic;
1832 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1833 return;
1834
1835 /*
1836 * If our average think time is larger than the remaining time
1837 * slice, then don't idle. This avoids overrunning the allotted
1838 * time slice.
1839 */
1840 if (sample_valid(cic->ttime_samples) &&
1841 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1842 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1843 cic->ttime_mean);
1844 return;
1845 }
1846
1847 cfq_mark_cfqq_wait_request(cfqq);
1848
1849 sl = cfqd->cfq_slice_idle;
1850
1851 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1852 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1853 }
1854
1855 /*
1856 * Move request from internal lists to the request queue dispatch list.
1857 */
1858 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1859 {
1860 struct cfq_data *cfqd = q->elevator->elevator_data;
1861 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1862
1863 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1864
1865 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1866 cfq_remove_request(rq);
1867 cfqq->dispatched++;
1868 elv_dispatch_sort(q, rq);
1869
1870 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1871 cfqq->nr_sectors += blk_rq_sectors(rq);
1872 }
1873
1874 /*
1875 * return expired entry, or NULL to just start from scratch in rbtree
1876 */
1877 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1878 {
1879 struct request *rq = NULL;
1880
1881 if (cfq_cfqq_fifo_expire(cfqq))
1882 return NULL;
1883
1884 cfq_mark_cfqq_fifo_expire(cfqq);
1885
1886 if (list_empty(&cfqq->fifo))
1887 return NULL;
1888
1889 rq = rq_entry_fifo(cfqq->fifo.next);
1890 if (time_before(jiffies, rq_fifo_time(rq)))
1891 rq = NULL;
1892
1893 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1894 return rq;
1895 }
1896
1897 static inline int
1898 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1899 {
1900 const int base_rq = cfqd->cfq_slice_async_rq;
1901
1902 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1903
1904 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1905 }
1906
1907 /*
1908 * Must be called with the queue_lock held.
1909 */
1910 static int cfqq_process_refs(struct cfq_queue *cfqq)
1911 {
1912 int process_refs, io_refs;
1913
1914 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1915 process_refs = atomic_read(&cfqq->ref) - io_refs;
1916 BUG_ON(process_refs < 0);
1917 return process_refs;
1918 }
1919
1920 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1921 {
1922 int process_refs, new_process_refs;
1923 struct cfq_queue *__cfqq;
1924
1925 /* Avoid a circular list and skip interim queue merges */
1926 while ((__cfqq = new_cfqq->new_cfqq)) {
1927 if (__cfqq == cfqq)
1928 return;
1929 new_cfqq = __cfqq;
1930 }
1931
1932 process_refs = cfqq_process_refs(cfqq);
1933 /*
1934 * If the process for the cfqq has gone away, there is no
1935 * sense in merging the queues.
1936 */
1937 if (process_refs == 0)
1938 return;
1939
1940 /*
1941 * Merge in the direction of the lesser amount of work.
1942 */
1943 new_process_refs = cfqq_process_refs(new_cfqq);
1944 if (new_process_refs >= process_refs) {
1945 cfqq->new_cfqq = new_cfqq;
1946 atomic_add(process_refs, &new_cfqq->ref);
1947 } else {
1948 new_cfqq->new_cfqq = cfqq;
1949 atomic_add(new_process_refs, &cfqq->ref);
1950 }
1951 }
1952
1953 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1954 struct cfq_group *cfqg, enum wl_prio_t prio)
1955 {
1956 struct cfq_queue *queue;
1957 int i;
1958 bool key_valid = false;
1959 unsigned long lowest_key = 0;
1960 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1961
1962 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1963 /* select the one with lowest rb_key */
1964 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1965 if (queue &&
1966 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1967 lowest_key = queue->rb_key;
1968 cur_best = i;
1969 key_valid = true;
1970 }
1971 }
1972
1973 return cur_best;
1974 }
1975
1976 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1977 {
1978 unsigned slice;
1979 unsigned count;
1980 struct cfq_rb_root *st;
1981 unsigned group_slice;
1982
1983 if (!cfqg) {
1984 cfqd->serving_prio = IDLE_WORKLOAD;
1985 cfqd->workload_expires = jiffies + 1;
1986 return;
1987 }
1988
1989 /* Choose next priority. RT > BE > IDLE */
1990 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1991 cfqd->serving_prio = RT_WORKLOAD;
1992 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1993 cfqd->serving_prio = BE_WORKLOAD;
1994 else {
1995 cfqd->serving_prio = IDLE_WORKLOAD;
1996 cfqd->workload_expires = jiffies + 1;
1997 return;
1998 }
1999
2000 /*
2001 * For RT and BE, we have to choose also the type
2002 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2003 * expiration time
2004 */
2005 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2006 count = st->count;
2007
2008 /*
2009 * check workload expiration, and that we still have other queues ready
2010 */
2011 if (count && !time_after(jiffies, cfqd->workload_expires))
2012 return;
2013
2014 /* otherwise select new workload type */
2015 cfqd->serving_type =
2016 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2017 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2018 count = st->count;
2019
2020 /*
2021 * the workload slice is computed as a fraction of target latency
2022 * proportional to the number of queues in that workload, over
2023 * all the queues in the same priority class
2024 */
2025 group_slice = cfq_group_slice(cfqd, cfqg);
2026
2027 slice = group_slice * count /
2028 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2029 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2030
2031 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2032 unsigned int tmp;
2033
2034 /*
2035 * Async queues are currently system wide. Just taking
2036 * proportion of queues with-in same group will lead to higher
2037 * async ratio system wide as generally root group is going
2038 * to have higher weight. A more accurate thing would be to
2039 * calculate system wide asnc/sync ratio.
2040 */
2041 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2042 tmp = tmp/cfqd->busy_queues;
2043 slice = min_t(unsigned, slice, tmp);
2044
2045 /* async workload slice is scaled down according to
2046 * the sync/async slice ratio. */
2047 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2048 } else
2049 /* sync workload slice is at least 2 * cfq_slice_idle */
2050 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2051
2052 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2053 cfq_log(cfqd, "workload slice:%d", slice);
2054 cfqd->workload_expires = jiffies + slice;
2055 cfqd->noidle_tree_requires_idle = false;
2056 }
2057
2058 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2059 {
2060 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2061 struct cfq_group *cfqg;
2062
2063 if (RB_EMPTY_ROOT(&st->rb))
2064 return NULL;
2065 cfqg = cfq_rb_first_group(st);
2066 st->active = &cfqg->rb_node;
2067 update_min_vdisktime(st);
2068 return cfqg;
2069 }
2070
2071 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2072 {
2073 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2074
2075 cfqd->serving_group = cfqg;
2076
2077 /* Restore the workload type data */
2078 if (cfqg->saved_workload_slice) {
2079 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2080 cfqd->serving_type = cfqg->saved_workload;
2081 cfqd->serving_prio = cfqg->saved_serving_prio;
2082 } else
2083 cfqd->workload_expires = jiffies - 1;
2084
2085 choose_service_tree(cfqd, cfqg);
2086 }
2087
2088 /*
2089 * Select a queue for service. If we have a current active queue,
2090 * check whether to continue servicing it, or retrieve and set a new one.
2091 */
2092 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2093 {
2094 struct cfq_queue *cfqq, *new_cfqq = NULL;
2095
2096 cfqq = cfqd->active_queue;
2097 if (!cfqq)
2098 goto new_queue;
2099
2100 if (!cfqd->rq_queued)
2101 return NULL;
2102
2103 /*
2104 * We were waiting for group to get backlogged. Expire the queue
2105 */
2106 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2107 goto expire;
2108
2109 /*
2110 * The active queue has run out of time, expire it and select new.
2111 */
2112 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2113 /*
2114 * If slice had not expired at the completion of last request
2115 * we might not have turned on wait_busy flag. Don't expire
2116 * the queue yet. Allow the group to get backlogged.
2117 *
2118 * The very fact that we have used the slice, that means we
2119 * have been idling all along on this queue and it should be
2120 * ok to wait for this request to complete.
2121 */
2122 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2123 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2124 cfqq = NULL;
2125 goto keep_queue;
2126 } else
2127 goto expire;
2128 }
2129
2130 /*
2131 * The active queue has requests and isn't expired, allow it to
2132 * dispatch.
2133 */
2134 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2135 goto keep_queue;
2136
2137 /*
2138 * If another queue has a request waiting within our mean seek
2139 * distance, let it run. The expire code will check for close
2140 * cooperators and put the close queue at the front of the service
2141 * tree. If possible, merge the expiring queue with the new cfqq.
2142 */
2143 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2144 if (new_cfqq) {
2145 if (!cfqq->new_cfqq)
2146 cfq_setup_merge(cfqq, new_cfqq);
2147 goto expire;
2148 }
2149
2150 /*
2151 * No requests pending. If the active queue still has requests in
2152 * flight or is idling for a new request, allow either of these
2153 * conditions to happen (or time out) before selecting a new queue.
2154 */
2155 if (timer_pending(&cfqd->idle_slice_timer) ||
2156 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2157 cfqq = NULL;
2158 goto keep_queue;
2159 }
2160
2161 expire:
2162 cfq_slice_expired(cfqd, 0);
2163 new_queue:
2164 /*
2165 * Current queue expired. Check if we have to switch to a new
2166 * service tree
2167 */
2168 if (!new_cfqq)
2169 cfq_choose_cfqg(cfqd);
2170
2171 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2172 keep_queue:
2173 return cfqq;
2174 }
2175
2176 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2177 {
2178 int dispatched = 0;
2179
2180 while (cfqq->next_rq) {
2181 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2182 dispatched++;
2183 }
2184
2185 BUG_ON(!list_empty(&cfqq->fifo));
2186
2187 /* By default cfqq is not expired if it is empty. Do it explicitly */
2188 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2189 return dispatched;
2190 }
2191
2192 /*
2193 * Drain our current requests. Used for barriers and when switching
2194 * io schedulers on-the-fly.
2195 */
2196 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2197 {
2198 struct cfq_queue *cfqq;
2199 int dispatched = 0;
2200
2201 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2202 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2203
2204 cfq_slice_expired(cfqd, 0);
2205 BUG_ON(cfqd->busy_queues);
2206
2207 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2208 return dispatched;
2209 }
2210
2211 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2212 struct cfq_queue *cfqq)
2213 {
2214 /* the queue hasn't finished any request, can't estimate */
2215 if (cfq_cfqq_slice_new(cfqq))
2216 return 1;
2217 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2218 cfqq->slice_end))
2219 return 1;
2220
2221 return 0;
2222 }
2223
2224 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2225 {
2226 unsigned int max_dispatch;
2227
2228 /*
2229 * Drain async requests before we start sync IO
2230 */
2231 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2232 return false;
2233
2234 /*
2235 * If this is an async queue and we have sync IO in flight, let it wait
2236 */
2237 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2238 return false;
2239
2240 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2241 if (cfq_class_idle(cfqq))
2242 max_dispatch = 1;
2243
2244 /*
2245 * Does this cfqq already have too much IO in flight?
2246 */
2247 if (cfqq->dispatched >= max_dispatch) {
2248 /*
2249 * idle queue must always only have a single IO in flight
2250 */
2251 if (cfq_class_idle(cfqq))
2252 return false;
2253
2254 /*
2255 * We have other queues, don't allow more IO from this one
2256 */
2257 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2258 return false;
2259
2260 /*
2261 * Sole queue user, no limit
2262 */
2263 if (cfqd->busy_queues == 1)
2264 max_dispatch = -1;
2265 else
2266 /*
2267 * Normally we start throttling cfqq when cfq_quantum/2
2268 * requests have been dispatched. But we can drive
2269 * deeper queue depths at the beginning of slice
2270 * subjected to upper limit of cfq_quantum.
2271 * */
2272 max_dispatch = cfqd->cfq_quantum;
2273 }
2274
2275 /*
2276 * Async queues must wait a bit before being allowed dispatch.
2277 * We also ramp up the dispatch depth gradually for async IO,
2278 * based on the last sync IO we serviced
2279 */
2280 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2281 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2282 unsigned int depth;
2283
2284 depth = last_sync / cfqd->cfq_slice[1];
2285 if (!depth && !cfqq->dispatched)
2286 depth = 1;
2287 if (depth < max_dispatch)
2288 max_dispatch = depth;
2289 }
2290
2291 /*
2292 * If we're below the current max, allow a dispatch
2293 */
2294 return cfqq->dispatched < max_dispatch;
2295 }
2296
2297 /*
2298 * Dispatch a request from cfqq, moving them to the request queue
2299 * dispatch list.
2300 */
2301 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2302 {
2303 struct request *rq;
2304
2305 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2306
2307 if (!cfq_may_dispatch(cfqd, cfqq))
2308 return false;
2309
2310 /*
2311 * follow expired path, else get first next available
2312 */
2313 rq = cfq_check_fifo(cfqq);
2314 if (!rq)
2315 rq = cfqq->next_rq;
2316
2317 /*
2318 * insert request into driver dispatch list
2319 */
2320 cfq_dispatch_insert(cfqd->queue, rq);
2321
2322 if (!cfqd->active_cic) {
2323 struct cfq_io_context *cic = RQ_CIC(rq);
2324
2325 atomic_long_inc(&cic->ioc->refcount);
2326 cfqd->active_cic = cic;
2327 }
2328
2329 return true;
2330 }
2331
2332 /*
2333 * Find the cfqq that we need to service and move a request from that to the
2334 * dispatch list
2335 */
2336 static int cfq_dispatch_requests(struct request_queue *q, int force)
2337 {
2338 struct cfq_data *cfqd = q->elevator->elevator_data;
2339 struct cfq_queue *cfqq;
2340
2341 if (!cfqd->busy_queues)
2342 return 0;
2343
2344 if (unlikely(force))
2345 return cfq_forced_dispatch(cfqd);
2346
2347 cfqq = cfq_select_queue(cfqd);
2348 if (!cfqq)
2349 return 0;
2350
2351 /*
2352 * Dispatch a request from this cfqq, if it is allowed
2353 */
2354 if (!cfq_dispatch_request(cfqd, cfqq))
2355 return 0;
2356
2357 cfqq->slice_dispatch++;
2358 cfq_clear_cfqq_must_dispatch(cfqq);
2359
2360 /*
2361 * expire an async queue immediately if it has used up its slice. idle
2362 * queue always expire after 1 dispatch round.
2363 */
2364 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2365 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2366 cfq_class_idle(cfqq))) {
2367 cfqq->slice_end = jiffies + 1;
2368 cfq_slice_expired(cfqd, 0);
2369 }
2370
2371 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2372 return 1;
2373 }
2374
2375 /*
2376 * task holds one reference to the queue, dropped when task exits. each rq
2377 * in-flight on this queue also holds a reference, dropped when rq is freed.
2378 *
2379 * Each cfq queue took a reference on the parent group. Drop it now.
2380 * queue lock must be held here.
2381 */
2382 static void cfq_put_queue(struct cfq_queue *cfqq)
2383 {
2384 struct cfq_data *cfqd = cfqq->cfqd;
2385 struct cfq_group *cfqg, *orig_cfqg;
2386
2387 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2388
2389 if (!atomic_dec_and_test(&cfqq->ref))
2390 return;
2391
2392 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2393 BUG_ON(rb_first(&cfqq->sort_list));
2394 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2395 cfqg = cfqq->cfqg;
2396 orig_cfqg = cfqq->orig_cfqg;
2397
2398 if (unlikely(cfqd->active_queue == cfqq)) {
2399 __cfq_slice_expired(cfqd, cfqq, 0);
2400 cfq_schedule_dispatch(cfqd);
2401 }
2402
2403 BUG_ON(cfq_cfqq_on_rr(cfqq));
2404 kmem_cache_free(cfq_pool, cfqq);
2405 cfq_put_cfqg(cfqg);
2406 if (orig_cfqg)
2407 cfq_put_cfqg(orig_cfqg);
2408 }
2409
2410 /*
2411 * Must always be called with the rcu_read_lock() held
2412 */
2413 static void
2414 __call_for_each_cic(struct io_context *ioc,
2415 void (*func)(struct io_context *, struct cfq_io_context *))
2416 {
2417 struct cfq_io_context *cic;
2418 struct hlist_node *n;
2419
2420 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2421 func(ioc, cic);
2422 }
2423
2424 /*
2425 * Call func for each cic attached to this ioc.
2426 */
2427 static void
2428 call_for_each_cic(struct io_context *ioc,
2429 void (*func)(struct io_context *, struct cfq_io_context *))
2430 {
2431 rcu_read_lock();
2432 __call_for_each_cic(ioc, func);
2433 rcu_read_unlock();
2434 }
2435
2436 static void cfq_cic_free_rcu(struct rcu_head *head)
2437 {
2438 struct cfq_io_context *cic;
2439
2440 cic = container_of(head, struct cfq_io_context, rcu_head);
2441
2442 kmem_cache_free(cfq_ioc_pool, cic);
2443 elv_ioc_count_dec(cfq_ioc_count);
2444
2445 if (ioc_gone) {
2446 /*
2447 * CFQ scheduler is exiting, grab exit lock and check
2448 * the pending io context count. If it hits zero,
2449 * complete ioc_gone and set it back to NULL
2450 */
2451 spin_lock(&ioc_gone_lock);
2452 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2453 complete(ioc_gone);
2454 ioc_gone = NULL;
2455 }
2456 spin_unlock(&ioc_gone_lock);
2457 }
2458 }
2459
2460 static void cfq_cic_free(struct cfq_io_context *cic)
2461 {
2462 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2463 }
2464
2465 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2466 {
2467 unsigned long flags;
2468
2469 BUG_ON(!cic->dead_key);
2470
2471 spin_lock_irqsave(&ioc->lock, flags);
2472 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2473 hlist_del_rcu(&cic->cic_list);
2474 spin_unlock_irqrestore(&ioc->lock, flags);
2475
2476 cfq_cic_free(cic);
2477 }
2478
2479 /*
2480 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2481 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2482 * and ->trim() which is called with the task lock held
2483 */
2484 static void cfq_free_io_context(struct io_context *ioc)
2485 {
2486 /*
2487 * ioc->refcount is zero here, or we are called from elv_unregister(),
2488 * so no more cic's are allowed to be linked into this ioc. So it
2489 * should be ok to iterate over the known list, we will see all cic's
2490 * since no new ones are added.
2491 */
2492 __call_for_each_cic(ioc, cic_free_func);
2493 }
2494
2495 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2496 {
2497 struct cfq_queue *__cfqq, *next;
2498
2499 if (unlikely(cfqq == cfqd->active_queue)) {
2500 __cfq_slice_expired(cfqd, cfqq, 0);
2501 cfq_schedule_dispatch(cfqd);
2502 }
2503
2504 /*
2505 * If this queue was scheduled to merge with another queue, be
2506 * sure to drop the reference taken on that queue (and others in
2507 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2508 */
2509 __cfqq = cfqq->new_cfqq;
2510 while (__cfqq) {
2511 if (__cfqq == cfqq) {
2512 WARN(1, "cfqq->new_cfqq loop detected\n");
2513 break;
2514 }
2515 next = __cfqq->new_cfqq;
2516 cfq_put_queue(__cfqq);
2517 __cfqq = next;
2518 }
2519
2520 cfq_put_queue(cfqq);
2521 }
2522
2523 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2524 struct cfq_io_context *cic)
2525 {
2526 struct io_context *ioc = cic->ioc;
2527
2528 list_del_init(&cic->queue_list);
2529
2530 /*
2531 * Make sure key == NULL is seen for dead queues
2532 */
2533 smp_wmb();
2534 cic->dead_key = (unsigned long) cic->key;
2535 cic->key = NULL;
2536
2537 if (ioc->ioc_data == cic)
2538 rcu_assign_pointer(ioc->ioc_data, NULL);
2539
2540 if (cic->cfqq[BLK_RW_ASYNC]) {
2541 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2542 cic->cfqq[BLK_RW_ASYNC] = NULL;
2543 }
2544
2545 if (cic->cfqq[BLK_RW_SYNC]) {
2546 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2547 cic->cfqq[BLK_RW_SYNC] = NULL;
2548 }
2549 }
2550
2551 static void cfq_exit_single_io_context(struct io_context *ioc,
2552 struct cfq_io_context *cic)
2553 {
2554 struct cfq_data *cfqd = cic->key;
2555
2556 if (cfqd) {
2557 struct request_queue *q = cfqd->queue;
2558 unsigned long flags;
2559
2560 spin_lock_irqsave(q->queue_lock, flags);
2561
2562 /*
2563 * Ensure we get a fresh copy of the ->key to prevent
2564 * race between exiting task and queue
2565 */
2566 smp_read_barrier_depends();
2567 if (cic->key)
2568 __cfq_exit_single_io_context(cfqd, cic);
2569
2570 spin_unlock_irqrestore(q->queue_lock, flags);
2571 }
2572 }
2573
2574 /*
2575 * The process that ioc belongs to has exited, we need to clean up
2576 * and put the internal structures we have that belongs to that process.
2577 */
2578 static void cfq_exit_io_context(struct io_context *ioc)
2579 {
2580 call_for_each_cic(ioc, cfq_exit_single_io_context);
2581 }
2582
2583 static struct cfq_io_context *
2584 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2585 {
2586 struct cfq_io_context *cic;
2587
2588 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2589 cfqd->queue->node);
2590 if (cic) {
2591 cic->last_end_request = jiffies;
2592 INIT_LIST_HEAD(&cic->queue_list);
2593 INIT_HLIST_NODE(&cic->cic_list);
2594 cic->dtor = cfq_free_io_context;
2595 cic->exit = cfq_exit_io_context;
2596 elv_ioc_count_inc(cfq_ioc_count);
2597 }
2598
2599 return cic;
2600 }
2601
2602 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2603 {
2604 struct task_struct *tsk = current;
2605 int ioprio_class;
2606
2607 if (!cfq_cfqq_prio_changed(cfqq))
2608 return;
2609
2610 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2611 switch (ioprio_class) {
2612 default:
2613 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2614 case IOPRIO_CLASS_NONE:
2615 /*
2616 * no prio set, inherit CPU scheduling settings
2617 */
2618 cfqq->ioprio = task_nice_ioprio(tsk);
2619 cfqq->ioprio_class = task_nice_ioclass(tsk);
2620 break;
2621 case IOPRIO_CLASS_RT:
2622 cfqq->ioprio = task_ioprio(ioc);
2623 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2624 break;
2625 case IOPRIO_CLASS_BE:
2626 cfqq->ioprio = task_ioprio(ioc);
2627 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2628 break;
2629 case IOPRIO_CLASS_IDLE:
2630 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2631 cfqq->ioprio = 7;
2632 cfq_clear_cfqq_idle_window(cfqq);
2633 break;
2634 }
2635
2636 /*
2637 * keep track of original prio settings in case we have to temporarily
2638 * elevate the priority of this queue
2639 */
2640 cfqq->org_ioprio = cfqq->ioprio;
2641 cfqq->org_ioprio_class = cfqq->ioprio_class;
2642 cfq_clear_cfqq_prio_changed(cfqq);
2643 }
2644
2645 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2646 {
2647 struct cfq_data *cfqd = cic->key;
2648 struct cfq_queue *cfqq;
2649 unsigned long flags;
2650
2651 if (unlikely(!cfqd))
2652 return;
2653
2654 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2655
2656 cfqq = cic->cfqq[BLK_RW_ASYNC];
2657 if (cfqq) {
2658 struct cfq_queue *new_cfqq;
2659 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2660 GFP_ATOMIC);
2661 if (new_cfqq) {
2662 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2663 cfq_put_queue(cfqq);
2664 }
2665 }
2666
2667 cfqq = cic->cfqq[BLK_RW_SYNC];
2668 if (cfqq)
2669 cfq_mark_cfqq_prio_changed(cfqq);
2670
2671 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2672 }
2673
2674 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2675 {
2676 call_for_each_cic(ioc, changed_ioprio);
2677 ioc->ioprio_changed = 0;
2678 }
2679
2680 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2681 pid_t pid, bool is_sync)
2682 {
2683 RB_CLEAR_NODE(&cfqq->rb_node);
2684 RB_CLEAR_NODE(&cfqq->p_node);
2685 INIT_LIST_HEAD(&cfqq->fifo);
2686
2687 atomic_set(&cfqq->ref, 0);
2688 cfqq->cfqd = cfqd;
2689
2690 cfq_mark_cfqq_prio_changed(cfqq);
2691
2692 if (is_sync) {
2693 if (!cfq_class_idle(cfqq))
2694 cfq_mark_cfqq_idle_window(cfqq);
2695 cfq_mark_cfqq_sync(cfqq);
2696 }
2697 cfqq->pid = pid;
2698 }
2699
2700 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2701 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2702 {
2703 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2704 struct cfq_data *cfqd = cic->key;
2705 unsigned long flags;
2706 struct request_queue *q;
2707
2708 if (unlikely(!cfqd))
2709 return;
2710
2711 q = cfqd->queue;
2712
2713 spin_lock_irqsave(q->queue_lock, flags);
2714
2715 if (sync_cfqq) {
2716 /*
2717 * Drop reference to sync queue. A new sync queue will be
2718 * assigned in new group upon arrival of a fresh request.
2719 */
2720 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2721 cic_set_cfqq(cic, NULL, 1);
2722 cfq_put_queue(sync_cfqq);
2723 }
2724
2725 spin_unlock_irqrestore(q->queue_lock, flags);
2726 }
2727
2728 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2729 {
2730 call_for_each_cic(ioc, changed_cgroup);
2731 ioc->cgroup_changed = 0;
2732 }
2733 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2734
2735 static struct cfq_queue *
2736 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2737 struct io_context *ioc, gfp_t gfp_mask)
2738 {
2739 struct cfq_queue *cfqq, *new_cfqq = NULL;
2740 struct cfq_io_context *cic;
2741 struct cfq_group *cfqg;
2742
2743 retry:
2744 cfqg = cfq_get_cfqg(cfqd, 1);
2745 cic = cfq_cic_lookup(cfqd, ioc);
2746 /* cic always exists here */
2747 cfqq = cic_to_cfqq(cic, is_sync);
2748
2749 /*
2750 * Always try a new alloc if we fell back to the OOM cfqq
2751 * originally, since it should just be a temporary situation.
2752 */
2753 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2754 cfqq = NULL;
2755 if (new_cfqq) {
2756 cfqq = new_cfqq;
2757 new_cfqq = NULL;
2758 } else if (gfp_mask & __GFP_WAIT) {
2759 spin_unlock_irq(cfqd->queue->queue_lock);
2760 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2761 gfp_mask | __GFP_ZERO,
2762 cfqd->queue->node);
2763 spin_lock_irq(cfqd->queue->queue_lock);
2764 if (new_cfqq)
2765 goto retry;
2766 } else {
2767 cfqq = kmem_cache_alloc_node(cfq_pool,
2768 gfp_mask | __GFP_ZERO,
2769 cfqd->queue->node);
2770 }
2771
2772 if (cfqq) {
2773 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2774 cfq_init_prio_data(cfqq, ioc);
2775 cfq_link_cfqq_cfqg(cfqq, cfqg);
2776 cfq_log_cfqq(cfqd, cfqq, "alloced");
2777 } else
2778 cfqq = &cfqd->oom_cfqq;
2779 }
2780
2781 if (new_cfqq)
2782 kmem_cache_free(cfq_pool, new_cfqq);
2783
2784 return cfqq;
2785 }
2786
2787 static struct cfq_queue **
2788 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2789 {
2790 switch (ioprio_class) {
2791 case IOPRIO_CLASS_RT:
2792 return &cfqd->async_cfqq[0][ioprio];
2793 case IOPRIO_CLASS_BE:
2794 return &cfqd->async_cfqq[1][ioprio];
2795 case IOPRIO_CLASS_IDLE:
2796 return &cfqd->async_idle_cfqq;
2797 default:
2798 BUG();
2799 }
2800 }
2801
2802 static struct cfq_queue *
2803 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2804 gfp_t gfp_mask)
2805 {
2806 const int ioprio = task_ioprio(ioc);
2807 const int ioprio_class = task_ioprio_class(ioc);
2808 struct cfq_queue **async_cfqq = NULL;
2809 struct cfq_queue *cfqq = NULL;
2810
2811 if (!is_sync) {
2812 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2813 cfqq = *async_cfqq;
2814 }
2815
2816 if (!cfqq)
2817 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2818
2819 /*
2820 * pin the queue now that it's allocated, scheduler exit will prune it
2821 */
2822 if (!is_sync && !(*async_cfqq)) {
2823 atomic_inc(&cfqq->ref);
2824 *async_cfqq = cfqq;
2825 }
2826
2827 atomic_inc(&cfqq->ref);
2828 return cfqq;
2829 }
2830
2831 /*
2832 * We drop cfq io contexts lazily, so we may find a dead one.
2833 */
2834 static void
2835 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2836 struct cfq_io_context *cic)
2837 {
2838 unsigned long flags;
2839
2840 WARN_ON(!list_empty(&cic->queue_list));
2841
2842 spin_lock_irqsave(&ioc->lock, flags);
2843
2844 BUG_ON(ioc->ioc_data == cic);
2845
2846 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2847 hlist_del_rcu(&cic->cic_list);
2848 spin_unlock_irqrestore(&ioc->lock, flags);
2849
2850 cfq_cic_free(cic);
2851 }
2852
2853 static struct cfq_io_context *
2854 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2855 {
2856 struct cfq_io_context *cic;
2857 unsigned long flags;
2858 void *k;
2859
2860 if (unlikely(!ioc))
2861 return NULL;
2862
2863 rcu_read_lock();
2864
2865 /*
2866 * we maintain a last-hit cache, to avoid browsing over the tree
2867 */
2868 cic = rcu_dereference(ioc->ioc_data);
2869 if (cic && cic->key == cfqd) {
2870 rcu_read_unlock();
2871 return cic;
2872 }
2873
2874 do {
2875 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2876 rcu_read_unlock();
2877 if (!cic)
2878 break;
2879 /* ->key must be copied to avoid race with cfq_exit_queue() */
2880 k = cic->key;
2881 if (unlikely(!k)) {
2882 cfq_drop_dead_cic(cfqd, ioc, cic);
2883 rcu_read_lock();
2884 continue;
2885 }
2886
2887 spin_lock_irqsave(&ioc->lock, flags);
2888 rcu_assign_pointer(ioc->ioc_data, cic);
2889 spin_unlock_irqrestore(&ioc->lock, flags);
2890 break;
2891 } while (1);
2892
2893 return cic;
2894 }
2895
2896 /*
2897 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2898 * the process specific cfq io context when entered from the block layer.
2899 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2900 */
2901 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2902 struct cfq_io_context *cic, gfp_t gfp_mask)
2903 {
2904 unsigned long flags;
2905 int ret;
2906
2907 ret = radix_tree_preload(gfp_mask);
2908 if (!ret) {
2909 cic->ioc = ioc;
2910 cic->key = cfqd;
2911
2912 spin_lock_irqsave(&ioc->lock, flags);
2913 ret = radix_tree_insert(&ioc->radix_root,
2914 (unsigned long) cfqd, cic);
2915 if (!ret)
2916 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2917 spin_unlock_irqrestore(&ioc->lock, flags);
2918
2919 radix_tree_preload_end();
2920
2921 if (!ret) {
2922 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2923 list_add(&cic->queue_list, &cfqd->cic_list);
2924 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2925 }
2926 }
2927
2928 if (ret)
2929 printk(KERN_ERR "cfq: cic link failed!\n");
2930
2931 return ret;
2932 }
2933
2934 /*
2935 * Setup general io context and cfq io context. There can be several cfq
2936 * io contexts per general io context, if this process is doing io to more
2937 * than one device managed by cfq.
2938 */
2939 static struct cfq_io_context *
2940 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2941 {
2942 struct io_context *ioc = NULL;
2943 struct cfq_io_context *cic;
2944
2945 might_sleep_if(gfp_mask & __GFP_WAIT);
2946
2947 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2948 if (!ioc)
2949 return NULL;
2950
2951 cic = cfq_cic_lookup(cfqd, ioc);
2952 if (cic)
2953 goto out;
2954
2955 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2956 if (cic == NULL)
2957 goto err;
2958
2959 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2960 goto err_free;
2961
2962 out:
2963 smp_read_barrier_depends();
2964 if (unlikely(ioc->ioprio_changed))
2965 cfq_ioc_set_ioprio(ioc);
2966
2967 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2968 if (unlikely(ioc->cgroup_changed))
2969 cfq_ioc_set_cgroup(ioc);
2970 #endif
2971 return cic;
2972 err_free:
2973 cfq_cic_free(cic);
2974 err:
2975 put_io_context(ioc);
2976 return NULL;
2977 }
2978
2979 static void
2980 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2981 {
2982 unsigned long elapsed = jiffies - cic->last_end_request;
2983 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2984
2985 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2986 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2987 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2988 }
2989
2990 static void
2991 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2992 struct request *rq)
2993 {
2994 sector_t sdist = 0;
2995 sector_t n_sec = blk_rq_sectors(rq);
2996 if (cfqq->last_request_pos) {
2997 if (cfqq->last_request_pos < blk_rq_pos(rq))
2998 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2999 else
3000 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3001 }
3002
3003 cfqq->seek_history <<= 1;
3004 if (blk_queue_nonrot(cfqd->queue))
3005 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3006 else
3007 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3008 }
3009
3010 /*
3011 * Disable idle window if the process thinks too long or seeks so much that
3012 * it doesn't matter
3013 */
3014 static void
3015 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3016 struct cfq_io_context *cic)
3017 {
3018 int old_idle, enable_idle;
3019
3020 /*
3021 * Don't idle for async or idle io prio class
3022 */
3023 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3024 return;
3025
3026 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3027
3028 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3029 cfq_mark_cfqq_deep(cfqq);
3030
3031 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3032 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3033 enable_idle = 0;
3034 else if (sample_valid(cic->ttime_samples)) {
3035 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3036 enable_idle = 0;
3037 else
3038 enable_idle = 1;
3039 }
3040
3041 if (old_idle != enable_idle) {
3042 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3043 if (enable_idle)
3044 cfq_mark_cfqq_idle_window(cfqq);
3045 else
3046 cfq_clear_cfqq_idle_window(cfqq);
3047 }
3048 }
3049
3050 /*
3051 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3052 * no or if we aren't sure, a 1 will cause a preempt.
3053 */
3054 static bool
3055 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3056 struct request *rq)
3057 {
3058 struct cfq_queue *cfqq;
3059
3060 cfqq = cfqd->active_queue;
3061 if (!cfqq)
3062 return false;
3063
3064 if (cfq_class_idle(new_cfqq))
3065 return false;
3066
3067 if (cfq_class_idle(cfqq))
3068 return true;
3069
3070 /*
3071 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3072 */
3073 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3074 return false;
3075
3076 /*
3077 * if the new request is sync, but the currently running queue is
3078 * not, let the sync request have priority.
3079 */
3080 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3081 return true;
3082
3083 if (new_cfqq->cfqg != cfqq->cfqg)
3084 return false;
3085
3086 if (cfq_slice_used(cfqq))
3087 return true;
3088
3089 /* Allow preemption only if we are idling on sync-noidle tree */
3090 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3091 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3092 new_cfqq->service_tree->count == 2 &&
3093 RB_EMPTY_ROOT(&cfqq->sort_list))
3094 return true;
3095
3096 /*
3097 * So both queues are sync. Let the new request get disk time if
3098 * it's a metadata request and the current queue is doing regular IO.
3099 */
3100 if (rq_is_meta(rq) && !cfqq->meta_pending)
3101 return true;
3102
3103 /*
3104 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3105 */
3106 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3107 return true;
3108
3109 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3110 return false;
3111
3112 /*
3113 * if this request is as-good as one we would expect from the
3114 * current cfqq, let it preempt
3115 */
3116 if (cfq_rq_close(cfqd, cfqq, rq))
3117 return true;
3118
3119 return false;
3120 }
3121
3122 /*
3123 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3124 * let it have half of its nominal slice.
3125 */
3126 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3127 {
3128 cfq_log_cfqq(cfqd, cfqq, "preempt");
3129 cfq_slice_expired(cfqd, 1);
3130
3131 /*
3132 * Put the new queue at the front of the of the current list,
3133 * so we know that it will be selected next.
3134 */
3135 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3136
3137 cfq_service_tree_add(cfqd, cfqq, 1);
3138
3139 cfqq->slice_end = 0;
3140 cfq_mark_cfqq_slice_new(cfqq);
3141 }
3142
3143 /*
3144 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3145 * something we should do about it
3146 */
3147 static void
3148 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3149 struct request *rq)
3150 {
3151 struct cfq_io_context *cic = RQ_CIC(rq);
3152
3153 cfqd->rq_queued++;
3154 if (rq_is_meta(rq))
3155 cfqq->meta_pending++;
3156
3157 cfq_update_io_thinktime(cfqd, cic);
3158 cfq_update_io_seektime(cfqd, cfqq, rq);
3159 cfq_update_idle_window(cfqd, cfqq, cic);
3160
3161 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3162
3163 if (cfqq == cfqd->active_queue) {
3164 /*
3165 * Remember that we saw a request from this process, but
3166 * don't start queuing just yet. Otherwise we risk seeing lots
3167 * of tiny requests, because we disrupt the normal plugging
3168 * and merging. If the request is already larger than a single
3169 * page, let it rip immediately. For that case we assume that
3170 * merging is already done. Ditto for a busy system that
3171 * has other work pending, don't risk delaying until the
3172 * idle timer unplug to continue working.
3173 */
3174 if (cfq_cfqq_wait_request(cfqq)) {
3175 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3176 cfqd->busy_queues > 1) {
3177 del_timer(&cfqd->idle_slice_timer);
3178 cfq_clear_cfqq_wait_request(cfqq);
3179 __blk_run_queue(cfqd->queue);
3180 } else
3181 cfq_mark_cfqq_must_dispatch(cfqq);
3182 }
3183 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3184 /*
3185 * not the active queue - expire current slice if it is
3186 * idle and has expired it's mean thinktime or this new queue
3187 * has some old slice time left and is of higher priority or
3188 * this new queue is RT and the current one is BE
3189 */
3190 cfq_preempt_queue(cfqd, cfqq);
3191 __blk_run_queue(cfqd->queue);
3192 }
3193 }
3194
3195 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3196 {
3197 struct cfq_data *cfqd = q->elevator->elevator_data;
3198 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3199
3200 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3201 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3202
3203 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3204 list_add_tail(&rq->queuelist, &cfqq->fifo);
3205 cfq_add_rq_rb(rq);
3206
3207 cfq_rq_enqueued(cfqd, cfqq, rq);
3208 }
3209
3210 /*
3211 * Update hw_tag based on peak queue depth over 50 samples under
3212 * sufficient load.
3213 */
3214 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3215 {
3216 struct cfq_queue *cfqq = cfqd->active_queue;
3217
3218 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3219 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3220
3221 if (cfqd->hw_tag == 1)
3222 return;
3223
3224 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3225 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3226 return;
3227
3228 /*
3229 * If active queue hasn't enough requests and can idle, cfq might not
3230 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3231 * case
3232 */
3233 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3234 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3235 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3236 return;
3237
3238 if (cfqd->hw_tag_samples++ < 50)
3239 return;
3240
3241 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3242 cfqd->hw_tag = 1;
3243 else
3244 cfqd->hw_tag = 0;
3245 }
3246
3247 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3248 {
3249 struct cfq_io_context *cic = cfqd->active_cic;
3250
3251 /* If there are other queues in the group, don't wait */
3252 if (cfqq->cfqg->nr_cfqq > 1)
3253 return false;
3254
3255 if (cfq_slice_used(cfqq))
3256 return true;
3257
3258 /* if slice left is less than think time, wait busy */
3259 if (cic && sample_valid(cic->ttime_samples)
3260 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3261 return true;
3262
3263 /*
3264 * If think times is less than a jiffy than ttime_mean=0 and above
3265 * will not be true. It might happen that slice has not expired yet
3266 * but will expire soon (4-5 ns) during select_queue(). To cover the
3267 * case where think time is less than a jiffy, mark the queue wait
3268 * busy if only 1 jiffy is left in the slice.
3269 */
3270 if (cfqq->slice_end - jiffies == 1)
3271 return true;
3272
3273 return false;
3274 }
3275
3276 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3277 {
3278 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3279 struct cfq_data *cfqd = cfqq->cfqd;
3280 const int sync = rq_is_sync(rq);
3281 unsigned long now;
3282
3283 now = jiffies;
3284 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3285
3286 cfq_update_hw_tag(cfqd);
3287
3288 WARN_ON(!cfqd->rq_in_driver);
3289 WARN_ON(!cfqq->dispatched);
3290 cfqd->rq_in_driver--;
3291 cfqq->dispatched--;
3292
3293 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3294
3295 if (sync) {
3296 RQ_CIC(rq)->last_end_request = now;
3297 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3298 cfqd->last_delayed_sync = now;
3299 }
3300
3301 /*
3302 * If this is the active queue, check if it needs to be expired,
3303 * or if we want to idle in case it has no pending requests.
3304 */
3305 if (cfqd->active_queue == cfqq) {
3306 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3307
3308 if (cfq_cfqq_slice_new(cfqq)) {
3309 cfq_set_prio_slice(cfqd, cfqq);
3310 cfq_clear_cfqq_slice_new(cfqq);
3311 }
3312
3313 /*
3314 * Should we wait for next request to come in before we expire
3315 * the queue.
3316 */
3317 if (cfq_should_wait_busy(cfqd, cfqq)) {
3318 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3319 cfq_mark_cfqq_wait_busy(cfqq);
3320 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3321 }
3322
3323 /*
3324 * Idling is not enabled on:
3325 * - expired queues
3326 * - idle-priority queues
3327 * - async queues
3328 * - queues with still some requests queued
3329 * - when there is a close cooperator
3330 */
3331 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3332 cfq_slice_expired(cfqd, 1);
3333 else if (sync && cfqq_empty &&
3334 !cfq_close_cooperator(cfqd, cfqq)) {
3335 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3336 /*
3337 * Idling is enabled for SYNC_WORKLOAD.
3338 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3339 * only if we processed at least one !rq_noidle request
3340 */
3341 if (cfqd->serving_type == SYNC_WORKLOAD
3342 || cfqd->noidle_tree_requires_idle
3343 || cfqq->cfqg->nr_cfqq == 1)
3344 cfq_arm_slice_timer(cfqd);
3345 }
3346 }
3347
3348 if (!cfqd->rq_in_driver)
3349 cfq_schedule_dispatch(cfqd);
3350 }
3351
3352 /*
3353 * we temporarily boost lower priority queues if they are holding fs exclusive
3354 * resources. they are boosted to normal prio (CLASS_BE/4)
3355 */
3356 static void cfq_prio_boost(struct cfq_queue *cfqq)
3357 {
3358 if (has_fs_excl()) {
3359 /*
3360 * boost idle prio on transactions that would lock out other
3361 * users of the filesystem
3362 */
3363 if (cfq_class_idle(cfqq))
3364 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3365 if (cfqq->ioprio > IOPRIO_NORM)
3366 cfqq->ioprio = IOPRIO_NORM;
3367 } else {
3368 /*
3369 * unboost the queue (if needed)
3370 */
3371 cfqq->ioprio_class = cfqq->org_ioprio_class;
3372 cfqq->ioprio = cfqq->org_ioprio;
3373 }
3374 }
3375
3376 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3377 {
3378 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3379 cfq_mark_cfqq_must_alloc_slice(cfqq);
3380 return ELV_MQUEUE_MUST;
3381 }
3382
3383 return ELV_MQUEUE_MAY;
3384 }
3385
3386 static int cfq_may_queue(struct request_queue *q, int rw)
3387 {
3388 struct cfq_data *cfqd = q->elevator->elevator_data;
3389 struct task_struct *tsk = current;
3390 struct cfq_io_context *cic;
3391 struct cfq_queue *cfqq;
3392
3393 /*
3394 * don't force setup of a queue from here, as a call to may_queue
3395 * does not necessarily imply that a request actually will be queued.
3396 * so just lookup a possibly existing queue, or return 'may queue'
3397 * if that fails
3398 */
3399 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3400 if (!cic)
3401 return ELV_MQUEUE_MAY;
3402
3403 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3404 if (cfqq) {
3405 cfq_init_prio_data(cfqq, cic->ioc);
3406 cfq_prio_boost(cfqq);
3407
3408 return __cfq_may_queue(cfqq);
3409 }
3410
3411 return ELV_MQUEUE_MAY;
3412 }
3413
3414 /*
3415 * queue lock held here
3416 */
3417 static void cfq_put_request(struct request *rq)
3418 {
3419 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3420
3421 if (cfqq) {
3422 const int rw = rq_data_dir(rq);
3423
3424 BUG_ON(!cfqq->allocated[rw]);
3425 cfqq->allocated[rw]--;
3426
3427 put_io_context(RQ_CIC(rq)->ioc);
3428
3429 rq->elevator_private = NULL;
3430 rq->elevator_private2 = NULL;
3431
3432 cfq_put_queue(cfqq);
3433 }
3434 }
3435
3436 static struct cfq_queue *
3437 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3438 struct cfq_queue *cfqq)
3439 {
3440 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3441 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3442 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3443 cfq_put_queue(cfqq);
3444 return cic_to_cfqq(cic, 1);
3445 }
3446
3447 /*
3448 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3449 * was the last process referring to said cfqq.
3450 */
3451 static struct cfq_queue *
3452 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3453 {
3454 if (cfqq_process_refs(cfqq) == 1) {
3455 cfqq->pid = current->pid;
3456 cfq_clear_cfqq_coop(cfqq);
3457 cfq_clear_cfqq_split_coop(cfqq);
3458 return cfqq;
3459 }
3460
3461 cic_set_cfqq(cic, NULL, 1);
3462 cfq_put_queue(cfqq);
3463 return NULL;
3464 }
3465 /*
3466 * Allocate cfq data structures associated with this request.
3467 */
3468 static int
3469 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3470 {
3471 struct cfq_data *cfqd = q->elevator->elevator_data;
3472 struct cfq_io_context *cic;
3473 const int rw = rq_data_dir(rq);
3474 const bool is_sync = rq_is_sync(rq);
3475 struct cfq_queue *cfqq;
3476 unsigned long flags;
3477
3478 might_sleep_if(gfp_mask & __GFP_WAIT);
3479
3480 cic = cfq_get_io_context(cfqd, gfp_mask);
3481
3482 spin_lock_irqsave(q->queue_lock, flags);
3483
3484 if (!cic)
3485 goto queue_fail;
3486
3487 new_queue:
3488 cfqq = cic_to_cfqq(cic, is_sync);
3489 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3490 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3491 cic_set_cfqq(cic, cfqq, is_sync);
3492 } else {
3493 /*
3494 * If the queue was seeky for too long, break it apart.
3495 */
3496 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3497 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3498 cfqq = split_cfqq(cic, cfqq);
3499 if (!cfqq)
3500 goto new_queue;
3501 }
3502
3503 /*
3504 * Check to see if this queue is scheduled to merge with
3505 * another, closely cooperating queue. The merging of
3506 * queues happens here as it must be done in process context.
3507 * The reference on new_cfqq was taken in merge_cfqqs.
3508 */
3509 if (cfqq->new_cfqq)
3510 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3511 }
3512
3513 cfqq->allocated[rw]++;
3514 atomic_inc(&cfqq->ref);
3515
3516 spin_unlock_irqrestore(q->queue_lock, flags);
3517
3518 rq->elevator_private = cic;
3519 rq->elevator_private2 = cfqq;
3520 return 0;
3521
3522 queue_fail:
3523 if (cic)
3524 put_io_context(cic->ioc);
3525
3526 cfq_schedule_dispatch(cfqd);
3527 spin_unlock_irqrestore(q->queue_lock, flags);
3528 cfq_log(cfqd, "set_request fail");
3529 return 1;
3530 }
3531
3532 static void cfq_kick_queue(struct work_struct *work)
3533 {
3534 struct cfq_data *cfqd =
3535 container_of(work, struct cfq_data, unplug_work);
3536 struct request_queue *q = cfqd->queue;
3537
3538 spin_lock_irq(q->queue_lock);
3539 __blk_run_queue(cfqd->queue);
3540 spin_unlock_irq(q->queue_lock);
3541 }
3542
3543 /*
3544 * Timer running if the active_queue is currently idling inside its time slice
3545 */
3546 static void cfq_idle_slice_timer(unsigned long data)
3547 {
3548 struct cfq_data *cfqd = (struct cfq_data *) data;
3549 struct cfq_queue *cfqq;
3550 unsigned long flags;
3551 int timed_out = 1;
3552
3553 cfq_log(cfqd, "idle timer fired");
3554
3555 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3556
3557 cfqq = cfqd->active_queue;
3558 if (cfqq) {
3559 timed_out = 0;
3560
3561 /*
3562 * We saw a request before the queue expired, let it through
3563 */
3564 if (cfq_cfqq_must_dispatch(cfqq))
3565 goto out_kick;
3566
3567 /*
3568 * expired
3569 */
3570 if (cfq_slice_used(cfqq))
3571 goto expire;
3572
3573 /*
3574 * only expire and reinvoke request handler, if there are
3575 * other queues with pending requests
3576 */
3577 if (!cfqd->busy_queues)
3578 goto out_cont;
3579
3580 /*
3581 * not expired and it has a request pending, let it dispatch
3582 */
3583 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3584 goto out_kick;
3585
3586 /*
3587 * Queue depth flag is reset only when the idle didn't succeed
3588 */
3589 cfq_clear_cfqq_deep(cfqq);
3590 }
3591 expire:
3592 cfq_slice_expired(cfqd, timed_out);
3593 out_kick:
3594 cfq_schedule_dispatch(cfqd);
3595 out_cont:
3596 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3597 }
3598
3599 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3600 {
3601 del_timer_sync(&cfqd->idle_slice_timer);
3602 cancel_work_sync(&cfqd->unplug_work);
3603 }
3604
3605 static void cfq_put_async_queues(struct cfq_data *cfqd)
3606 {
3607 int i;
3608
3609 for (i = 0; i < IOPRIO_BE_NR; i++) {
3610 if (cfqd->async_cfqq[0][i])
3611 cfq_put_queue(cfqd->async_cfqq[0][i]);
3612 if (cfqd->async_cfqq[1][i])
3613 cfq_put_queue(cfqd->async_cfqq[1][i]);
3614 }
3615
3616 if (cfqd->async_idle_cfqq)
3617 cfq_put_queue(cfqd->async_idle_cfqq);
3618 }
3619
3620 static void cfq_cfqd_free(struct rcu_head *head)
3621 {
3622 kfree(container_of(head, struct cfq_data, rcu));
3623 }
3624
3625 static void cfq_exit_queue(struct elevator_queue *e)
3626 {
3627 struct cfq_data *cfqd = e->elevator_data;
3628 struct request_queue *q = cfqd->queue;
3629
3630 cfq_shutdown_timer_wq(cfqd);
3631
3632 spin_lock_irq(q->queue_lock);
3633
3634 if (cfqd->active_queue)
3635 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3636
3637 while (!list_empty(&cfqd->cic_list)) {
3638 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3639 struct cfq_io_context,
3640 queue_list);
3641
3642 __cfq_exit_single_io_context(cfqd, cic);
3643 }
3644
3645 cfq_put_async_queues(cfqd);
3646 cfq_release_cfq_groups(cfqd);
3647 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3648
3649 spin_unlock_irq(q->queue_lock);
3650
3651 cfq_shutdown_timer_wq(cfqd);
3652
3653 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3654 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3655 }
3656
3657 static void *cfq_init_queue(struct request_queue *q)
3658 {
3659 struct cfq_data *cfqd;
3660 int i, j;
3661 struct cfq_group *cfqg;
3662 struct cfq_rb_root *st;
3663
3664 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3665 if (!cfqd)
3666 return NULL;
3667
3668 /* Init root service tree */
3669 cfqd->grp_service_tree = CFQ_RB_ROOT;
3670
3671 /* Init root group */
3672 cfqg = &cfqd->root_group;
3673 for_each_cfqg_st(cfqg, i, j, st)
3674 *st = CFQ_RB_ROOT;
3675 RB_CLEAR_NODE(&cfqg->rb_node);
3676
3677 /* Give preference to root group over other groups */
3678 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3679
3680 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3681 /*
3682 * Take a reference to root group which we never drop. This is just
3683 * to make sure that cfq_put_cfqg() does not try to kfree root group
3684 */
3685 atomic_set(&cfqg->ref, 1);
3686 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3687 0);
3688 #endif
3689 /*
3690 * Not strictly needed (since RB_ROOT just clears the node and we
3691 * zeroed cfqd on alloc), but better be safe in case someone decides
3692 * to add magic to the rb code
3693 */
3694 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3695 cfqd->prio_trees[i] = RB_ROOT;
3696
3697 /*
3698 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3699 * Grab a permanent reference to it, so that the normal code flow
3700 * will not attempt to free it.
3701 */
3702 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3703 atomic_inc(&cfqd->oom_cfqq.ref);
3704 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3705
3706 INIT_LIST_HEAD(&cfqd->cic_list);
3707
3708 cfqd->queue = q;
3709
3710 init_timer(&cfqd->idle_slice_timer);
3711 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3712 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3713
3714 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3715
3716 cfqd->cfq_quantum = cfq_quantum;
3717 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3718 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3719 cfqd->cfq_back_max = cfq_back_max;
3720 cfqd->cfq_back_penalty = cfq_back_penalty;
3721 cfqd->cfq_slice[0] = cfq_slice_async;
3722 cfqd->cfq_slice[1] = cfq_slice_sync;
3723 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3724 cfqd->cfq_slice_idle = cfq_slice_idle;
3725 cfqd->cfq_latency = 1;
3726 cfqd->cfq_group_isolation = 0;
3727 cfqd->hw_tag = -1;
3728 /*
3729 * we optimistically start assuming sync ops weren't delayed in last
3730 * second, in order to have larger depth for async operations.
3731 */
3732 cfqd->last_delayed_sync = jiffies - HZ;
3733 INIT_RCU_HEAD(&cfqd->rcu);
3734 return cfqd;
3735 }
3736
3737 static void cfq_slab_kill(void)
3738 {
3739 /*
3740 * Caller already ensured that pending RCU callbacks are completed,
3741 * so we should have no busy allocations at this point.
3742 */
3743 if (cfq_pool)
3744 kmem_cache_destroy(cfq_pool);
3745 if (cfq_ioc_pool)
3746 kmem_cache_destroy(cfq_ioc_pool);
3747 }
3748
3749 static int __init cfq_slab_setup(void)
3750 {
3751 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3752 if (!cfq_pool)
3753 goto fail;
3754
3755 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3756 if (!cfq_ioc_pool)
3757 goto fail;
3758
3759 return 0;
3760 fail:
3761 cfq_slab_kill();
3762 return -ENOMEM;
3763 }
3764
3765 /*
3766 * sysfs parts below -->
3767 */
3768 static ssize_t
3769 cfq_var_show(unsigned int var, char *page)
3770 {
3771 return sprintf(page, "%d\n", var);
3772 }
3773
3774 static ssize_t
3775 cfq_var_store(unsigned int *var, const char *page, size_t count)
3776 {
3777 char *p = (char *) page;
3778
3779 *var = simple_strtoul(p, &p, 10);
3780 return count;
3781 }
3782
3783 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3784 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3785 { \
3786 struct cfq_data *cfqd = e->elevator_data; \
3787 unsigned int __data = __VAR; \
3788 if (__CONV) \
3789 __data = jiffies_to_msecs(__data); \
3790 return cfq_var_show(__data, (page)); \
3791 }
3792 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3793 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3794 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3795 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3796 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3797 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3798 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3799 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3800 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3801 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3802 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3803 #undef SHOW_FUNCTION
3804
3805 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3806 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3807 { \
3808 struct cfq_data *cfqd = e->elevator_data; \
3809 unsigned int __data; \
3810 int ret = cfq_var_store(&__data, (page), count); \
3811 if (__data < (MIN)) \
3812 __data = (MIN); \
3813 else if (__data > (MAX)) \
3814 __data = (MAX); \
3815 if (__CONV) \
3816 *(__PTR) = msecs_to_jiffies(__data); \
3817 else \
3818 *(__PTR) = __data; \
3819 return ret; \
3820 }
3821 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3822 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3823 UINT_MAX, 1);
3824 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3825 UINT_MAX, 1);
3826 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3827 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3828 UINT_MAX, 0);
3829 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3830 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3831 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3832 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3833 UINT_MAX, 0);
3834 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3835 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3836 #undef STORE_FUNCTION
3837
3838 #define CFQ_ATTR(name) \
3839 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3840
3841 static struct elv_fs_entry cfq_attrs[] = {
3842 CFQ_ATTR(quantum),
3843 CFQ_ATTR(fifo_expire_sync),
3844 CFQ_ATTR(fifo_expire_async),
3845 CFQ_ATTR(back_seek_max),
3846 CFQ_ATTR(back_seek_penalty),
3847 CFQ_ATTR(slice_sync),
3848 CFQ_ATTR(slice_async),
3849 CFQ_ATTR(slice_async_rq),
3850 CFQ_ATTR(slice_idle),
3851 CFQ_ATTR(low_latency),
3852 CFQ_ATTR(group_isolation),
3853 __ATTR_NULL
3854 };
3855
3856 static struct elevator_type iosched_cfq = {
3857 .ops = {
3858 .elevator_merge_fn = cfq_merge,
3859 .elevator_merged_fn = cfq_merged_request,
3860 .elevator_merge_req_fn = cfq_merged_requests,
3861 .elevator_allow_merge_fn = cfq_allow_merge,
3862 .elevator_dispatch_fn = cfq_dispatch_requests,
3863 .elevator_add_req_fn = cfq_insert_request,
3864 .elevator_activate_req_fn = cfq_activate_request,
3865 .elevator_deactivate_req_fn = cfq_deactivate_request,
3866 .elevator_queue_empty_fn = cfq_queue_empty,
3867 .elevator_completed_req_fn = cfq_completed_request,
3868 .elevator_former_req_fn = elv_rb_former_request,
3869 .elevator_latter_req_fn = elv_rb_latter_request,
3870 .elevator_set_req_fn = cfq_set_request,
3871 .elevator_put_req_fn = cfq_put_request,
3872 .elevator_may_queue_fn = cfq_may_queue,
3873 .elevator_init_fn = cfq_init_queue,
3874 .elevator_exit_fn = cfq_exit_queue,
3875 .trim = cfq_free_io_context,
3876 },
3877 .elevator_attrs = cfq_attrs,
3878 .elevator_name = "cfq",
3879 .elevator_owner = THIS_MODULE,
3880 };
3881
3882 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3883 static struct blkio_policy_type blkio_policy_cfq = {
3884 .ops = {
3885 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
3886 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3887 },
3888 };
3889 #else
3890 static struct blkio_policy_type blkio_policy_cfq;
3891 #endif
3892
3893 static int __init cfq_init(void)
3894 {
3895 /*
3896 * could be 0 on HZ < 1000 setups
3897 */
3898 if (!cfq_slice_async)
3899 cfq_slice_async = 1;
3900 if (!cfq_slice_idle)
3901 cfq_slice_idle = 1;
3902
3903 if (cfq_slab_setup())
3904 return -ENOMEM;
3905
3906 elv_register(&iosched_cfq);
3907 blkio_policy_register(&blkio_policy_cfq);
3908
3909 return 0;
3910 }
3911
3912 static void __exit cfq_exit(void)
3913 {
3914 DECLARE_COMPLETION_ONSTACK(all_gone);
3915 blkio_policy_unregister(&blkio_policy_cfq);
3916 elv_unregister(&iosched_cfq);
3917 ioc_gone = &all_gone;
3918 /* ioc_gone's update must be visible before reading ioc_count */
3919 smp_wmb();
3920
3921 /*
3922 * this also protects us from entering cfq_slab_kill() with
3923 * pending RCU callbacks
3924 */
3925 if (elv_ioc_count_read(cfq_ioc_count))
3926 wait_for_completion(&all_gone);
3927 cfq_slab_kill();
3928 }
3929
3930 module_init(cfq_init);
3931 module_exit(cfq_exit);
3932
3933 MODULE_AUTHOR("Jens Axboe");
3934 MODULE_LICENSE("GPL");
3935 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");