blkio: Wait on sync-noidle queue even if rq_noidle = 1
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / cfq-iosched.c
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19 * tunables
20 */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36 * offset from end of service tree
37 */
38 #define CFQ_IDLE_DELAY (HZ / 5)
39
40 /*
41 * below this threshold, we consider thinktime immediate
42 */
43 #define CFQ_MIN_TT (2)
44
45 /*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49 #define CFQQ_COOP_TOUT (HZ)
50
51 #define CFQ_SLICE_SCALE (5)
52 #define CFQ_HW_QUEUE_MIN (5)
53 #define CFQ_SERVICE_SHIFT 12
54
55 #define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples) ((samples) > 80)
71 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79 struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90 * Per process-grouping structure
91 */
92 struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 unsigned int allocated_slice;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start;
123 unsigned long slice_end;
124 long slice_resid;
125 unsigned int slice_dispatch;
126
127 /* pending metadata requests */
128 int meta_pending;
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
134 unsigned short ioprio_class, org_ioprio_class;
135
136 unsigned int seek_samples;
137 u64 seek_total;
138 sector_t seek_mean;
139 sector_t last_request_pos;
140 unsigned long seeky_start;
141
142 pid_t pid;
143
144 struct cfq_rb_root *service_tree;
145 struct cfq_queue *new_cfqq;
146 struct cfq_group *cfqg;
147 struct cfq_group *orig_cfqg;
148 /* Sectors dispatched in current dispatch round */
149 unsigned long nr_sectors;
150 };
151
152 /*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
160 };
161
162 /*
163 * Second index in the service_trees.
164 */
165 enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
178 unsigned int weight;
179 bool on_st;
180
181 /* number of cfqq currently on this group */
182 int nr_cfqq;
183
184 /* Per group busy queus average. Useful for workload slice calc. */
185 unsigned int busy_queues_avg[2];
186 /*
187 * rr lists of queues with requests, onle rr for each priority class.
188 * Counts are embedded in the cfq_rb_root
189 */
190 struct cfq_rb_root service_trees[2][3];
191 struct cfq_rb_root service_tree_idle;
192
193 unsigned long saved_workload_slice;
194 enum wl_type_t saved_workload;
195 enum wl_prio_t saved_serving_prio;
196 struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198 struct hlist_node cfqd_node;
199 atomic_t ref;
200 #endif
201 };
202
203 /*
204 * Per block device queue structure
205 */
206 struct cfq_data {
207 struct request_queue *queue;
208 /* Root service tree for cfq_groups */
209 struct cfq_rb_root grp_service_tree;
210 struct cfq_group root_group;
211 /* Number of active cfq groups on group service tree */
212 int nr_groups;
213
214 /*
215 * The priority currently being served
216 */
217 enum wl_prio_t serving_prio;
218 enum wl_type_t serving_type;
219 unsigned long workload_expires;
220 struct cfq_group *serving_group;
221 bool noidle_tree_requires_idle;
222
223 /*
224 * Each priority tree is sorted by next_request position. These
225 * trees are used when determining if two or more queues are
226 * interleaving requests (see cfq_close_cooperator).
227 */
228 struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
230 unsigned int busy_queues;
231
232 int rq_in_driver[2];
233 int sync_flight;
234
235 /*
236 * queue-depth detection
237 */
238 int rq_queued;
239 int hw_tag;
240 /*
241 * hw_tag can be
242 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244 * 0 => no NCQ
245 */
246 int hw_tag_est_depth;
247 unsigned int hw_tag_samples;
248
249 /*
250 * idle window management
251 */
252 struct timer_list idle_slice_timer;
253 struct work_struct unplug_work;
254
255 struct cfq_queue *active_queue;
256 struct cfq_io_context *active_cic;
257
258 /*
259 * async queue for each priority case
260 */
261 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262 struct cfq_queue *async_idle_cfqq;
263
264 sector_t last_position;
265
266 /*
267 * tunables, see top of file
268 */
269 unsigned int cfq_quantum;
270 unsigned int cfq_fifo_expire[2];
271 unsigned int cfq_back_penalty;
272 unsigned int cfq_back_max;
273 unsigned int cfq_slice[2];
274 unsigned int cfq_slice_async_rq;
275 unsigned int cfq_slice_idle;
276 unsigned int cfq_latency;
277 unsigned int cfq_group_isolation;
278
279 struct list_head cic_list;
280
281 /*
282 * Fallback dummy cfqq for extreme OOM conditions
283 */
284 struct cfq_queue oom_cfqq;
285
286 unsigned long last_end_sync_rq;
287
288 /* List of cfq groups being managed on this device*/
289 struct hlist_head cfqg_list;
290 };
291
292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
294 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295 enum wl_prio_t prio,
296 enum wl_type_t type,
297 struct cfq_data *cfqd)
298 {
299 if (!cfqg)
300 return NULL;
301
302 if (prio == IDLE_WORKLOAD)
303 return &cfqg->service_tree_idle;
304
305 return &cfqg->service_trees[prio][type];
306 }
307
308 enum cfqq_state_flags {
309 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
310 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
311 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
312 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
313 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
314 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
315 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
316 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
317 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
318 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
319 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
320 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
321 CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
322 };
323
324 #define CFQ_CFQQ_FNS(name) \
325 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
326 { \
327 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
328 } \
329 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
330 { \
331 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
332 } \
333 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
334 { \
335 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
336 }
337
338 CFQ_CFQQ_FNS(on_rr);
339 CFQ_CFQQ_FNS(wait_request);
340 CFQ_CFQQ_FNS(must_dispatch);
341 CFQ_CFQQ_FNS(must_alloc_slice);
342 CFQ_CFQQ_FNS(fifo_expire);
343 CFQ_CFQQ_FNS(idle_window);
344 CFQ_CFQQ_FNS(prio_changed);
345 CFQ_CFQQ_FNS(slice_new);
346 CFQ_CFQQ_FNS(sync);
347 CFQ_CFQQ_FNS(coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 CFQ_CFQQ_FNS(wait_busy_done);
351 #undef CFQ_CFQQ_FNS
352
353 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
354 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
355 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
356 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
357 blkg_path(&(cfqq)->cfqg->blkg), ##args);
358
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
361 blkg_path(&(cfqg)->blkg), ##args); \
362
363 #else
364 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
366 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
367 #endif
368 #define cfq_log(cfqd, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370
371 /* Traverses through cfq group service trees */
372 #define for_each_cfqg_st(cfqg, i, j, st) \
373 for (i = 0; i <= IDLE_WORKLOAD; i++) \
374 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
375 : &cfqg->service_tree_idle; \
376 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
377 (i == IDLE_WORKLOAD && j == 0); \
378 j++, st = i < IDLE_WORKLOAD ? \
379 &cfqg->service_trees[i][j]: NULL) \
380
381
382 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383 {
384 if (cfq_class_idle(cfqq))
385 return IDLE_WORKLOAD;
386 if (cfq_class_rt(cfqq))
387 return RT_WORKLOAD;
388 return BE_WORKLOAD;
389 }
390
391
392 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393 {
394 if (!cfq_cfqq_sync(cfqq))
395 return ASYNC_WORKLOAD;
396 if (!cfq_cfqq_idle_window(cfqq))
397 return SYNC_NOIDLE_WORKLOAD;
398 return SYNC_WORKLOAD;
399 }
400
401 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
402 struct cfq_data *cfqd,
403 struct cfq_group *cfqg)
404 {
405 if (wl == IDLE_WORKLOAD)
406 return cfqg->service_tree_idle.count;
407
408 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
409 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
410 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
411 }
412
413 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
414 struct cfq_group *cfqg)
415 {
416 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
417 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
418 }
419
420 static void cfq_dispatch_insert(struct request_queue *, struct request *);
421 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
422 struct io_context *, gfp_t);
423 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
424 struct io_context *);
425
426 static inline int rq_in_driver(struct cfq_data *cfqd)
427 {
428 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
429 }
430
431 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
432 bool is_sync)
433 {
434 return cic->cfqq[is_sync];
435 }
436
437 static inline void cic_set_cfqq(struct cfq_io_context *cic,
438 struct cfq_queue *cfqq, bool is_sync)
439 {
440 cic->cfqq[is_sync] = cfqq;
441 }
442
443 /*
444 * We regard a request as SYNC, if it's either a read or has the SYNC bit
445 * set (in which case it could also be direct WRITE).
446 */
447 static inline bool cfq_bio_sync(struct bio *bio)
448 {
449 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
450 }
451
452 /*
453 * scheduler run of queue, if there are requests pending and no one in the
454 * driver that will restart queueing
455 */
456 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
457 {
458 if (cfqd->busy_queues) {
459 cfq_log(cfqd, "schedule dispatch");
460 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
461 }
462 }
463
464 static int cfq_queue_empty(struct request_queue *q)
465 {
466 struct cfq_data *cfqd = q->elevator->elevator_data;
467
468 return !cfqd->rq_queued;
469 }
470
471 /*
472 * Scale schedule slice based on io priority. Use the sync time slice only
473 * if a queue is marked sync and has sync io queued. A sync queue with async
474 * io only, should not get full sync slice length.
475 */
476 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
477 unsigned short prio)
478 {
479 const int base_slice = cfqd->cfq_slice[sync];
480
481 WARN_ON(prio >= IOPRIO_BE_NR);
482
483 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
484 }
485
486 static inline int
487 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
488 {
489 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
490 }
491
492 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
493 {
494 u64 d = delta << CFQ_SERVICE_SHIFT;
495
496 d = d * BLKIO_WEIGHT_DEFAULT;
497 do_div(d, cfqg->weight);
498 return d;
499 }
500
501 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
502 {
503 s64 delta = (s64)(vdisktime - min_vdisktime);
504 if (delta > 0)
505 min_vdisktime = vdisktime;
506
507 return min_vdisktime;
508 }
509
510 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
511 {
512 s64 delta = (s64)(vdisktime - min_vdisktime);
513 if (delta < 0)
514 min_vdisktime = vdisktime;
515
516 return min_vdisktime;
517 }
518
519 static void update_min_vdisktime(struct cfq_rb_root *st)
520 {
521 u64 vdisktime = st->min_vdisktime;
522 struct cfq_group *cfqg;
523
524 if (st->active) {
525 cfqg = rb_entry_cfqg(st->active);
526 vdisktime = cfqg->vdisktime;
527 }
528
529 if (st->left) {
530 cfqg = rb_entry_cfqg(st->left);
531 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
532 }
533
534 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
535 }
536
537 /*
538 * get averaged number of queues of RT/BE priority.
539 * average is updated, with a formula that gives more weight to higher numbers,
540 * to quickly follows sudden increases and decrease slowly
541 */
542
543 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
544 struct cfq_group *cfqg, bool rt)
545 {
546 unsigned min_q, max_q;
547 unsigned mult = cfq_hist_divisor - 1;
548 unsigned round = cfq_hist_divisor / 2;
549 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
550
551 min_q = min(cfqg->busy_queues_avg[rt], busy);
552 max_q = max(cfqg->busy_queues_avg[rt], busy);
553 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
554 cfq_hist_divisor;
555 return cfqg->busy_queues_avg[rt];
556 }
557
558 static inline unsigned
559 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
560 {
561 struct cfq_rb_root *st = &cfqd->grp_service_tree;
562
563 return cfq_target_latency * cfqg->weight / st->total_weight;
564 }
565
566 static inline void
567 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
568 {
569 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
570 if (cfqd->cfq_latency) {
571 /*
572 * interested queues (we consider only the ones with the same
573 * priority class in the cfq group)
574 */
575 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
576 cfq_class_rt(cfqq));
577 unsigned sync_slice = cfqd->cfq_slice[1];
578 unsigned expect_latency = sync_slice * iq;
579 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
580
581 if (expect_latency > group_slice) {
582 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
583 /* scale low_slice according to IO priority
584 * and sync vs async */
585 unsigned low_slice =
586 min(slice, base_low_slice * slice / sync_slice);
587 /* the adapted slice value is scaled to fit all iqs
588 * into the target latency */
589 slice = max(slice * group_slice / expect_latency,
590 low_slice);
591 }
592 }
593 cfqq->slice_start = jiffies;
594 cfqq->slice_end = jiffies + slice;
595 cfqq->allocated_slice = slice;
596 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
597 }
598
599 /*
600 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
601 * isn't valid until the first request from the dispatch is activated
602 * and the slice time set.
603 */
604 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
605 {
606 if (cfq_cfqq_slice_new(cfqq))
607 return 0;
608 if (time_before(jiffies, cfqq->slice_end))
609 return 0;
610
611 return 1;
612 }
613
614 /*
615 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
616 * We choose the request that is closest to the head right now. Distance
617 * behind the head is penalized and only allowed to a certain extent.
618 */
619 static struct request *
620 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
621 {
622 sector_t s1, s2, d1 = 0, d2 = 0;
623 unsigned long back_max;
624 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
625 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
626 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
627
628 if (rq1 == NULL || rq1 == rq2)
629 return rq2;
630 if (rq2 == NULL)
631 return rq1;
632
633 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
634 return rq1;
635 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
636 return rq2;
637 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
638 return rq1;
639 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
640 return rq2;
641
642 s1 = blk_rq_pos(rq1);
643 s2 = blk_rq_pos(rq2);
644
645 /*
646 * by definition, 1KiB is 2 sectors
647 */
648 back_max = cfqd->cfq_back_max * 2;
649
650 /*
651 * Strict one way elevator _except_ in the case where we allow
652 * short backward seeks which are biased as twice the cost of a
653 * similar forward seek.
654 */
655 if (s1 >= last)
656 d1 = s1 - last;
657 else if (s1 + back_max >= last)
658 d1 = (last - s1) * cfqd->cfq_back_penalty;
659 else
660 wrap |= CFQ_RQ1_WRAP;
661
662 if (s2 >= last)
663 d2 = s2 - last;
664 else if (s2 + back_max >= last)
665 d2 = (last - s2) * cfqd->cfq_back_penalty;
666 else
667 wrap |= CFQ_RQ2_WRAP;
668
669 /* Found required data */
670
671 /*
672 * By doing switch() on the bit mask "wrap" we avoid having to
673 * check two variables for all permutations: --> faster!
674 */
675 switch (wrap) {
676 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
677 if (d1 < d2)
678 return rq1;
679 else if (d2 < d1)
680 return rq2;
681 else {
682 if (s1 >= s2)
683 return rq1;
684 else
685 return rq2;
686 }
687
688 case CFQ_RQ2_WRAP:
689 return rq1;
690 case CFQ_RQ1_WRAP:
691 return rq2;
692 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
693 default:
694 /*
695 * Since both rqs are wrapped,
696 * start with the one that's further behind head
697 * (--> only *one* back seek required),
698 * since back seek takes more time than forward.
699 */
700 if (s1 <= s2)
701 return rq1;
702 else
703 return rq2;
704 }
705 }
706
707 /*
708 * The below is leftmost cache rbtree addon
709 */
710 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
711 {
712 /* Service tree is empty */
713 if (!root->count)
714 return NULL;
715
716 if (!root->left)
717 root->left = rb_first(&root->rb);
718
719 if (root->left)
720 return rb_entry(root->left, struct cfq_queue, rb_node);
721
722 return NULL;
723 }
724
725 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
726 {
727 if (!root->left)
728 root->left = rb_first(&root->rb);
729
730 if (root->left)
731 return rb_entry_cfqg(root->left);
732
733 return NULL;
734 }
735
736 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
737 {
738 rb_erase(n, root);
739 RB_CLEAR_NODE(n);
740 }
741
742 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
743 {
744 if (root->left == n)
745 root->left = NULL;
746 rb_erase_init(n, &root->rb);
747 --root->count;
748 }
749
750 /*
751 * would be nice to take fifo expire time into account as well
752 */
753 static struct request *
754 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755 struct request *last)
756 {
757 struct rb_node *rbnext = rb_next(&last->rb_node);
758 struct rb_node *rbprev = rb_prev(&last->rb_node);
759 struct request *next = NULL, *prev = NULL;
760
761 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
762
763 if (rbprev)
764 prev = rb_entry_rq(rbprev);
765
766 if (rbnext)
767 next = rb_entry_rq(rbnext);
768 else {
769 rbnext = rb_first(&cfqq->sort_list);
770 if (rbnext && rbnext != &last->rb_node)
771 next = rb_entry_rq(rbnext);
772 }
773
774 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
775 }
776
777 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
778 struct cfq_queue *cfqq)
779 {
780 /*
781 * just an approximation, should be ok.
782 */
783 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
784 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
785 }
786
787 static inline s64
788 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
789 {
790 return cfqg->vdisktime - st->min_vdisktime;
791 }
792
793 static void
794 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
795 {
796 struct rb_node **node = &st->rb.rb_node;
797 struct rb_node *parent = NULL;
798 struct cfq_group *__cfqg;
799 s64 key = cfqg_key(st, cfqg);
800 int left = 1;
801
802 while (*node != NULL) {
803 parent = *node;
804 __cfqg = rb_entry_cfqg(parent);
805
806 if (key < cfqg_key(st, __cfqg))
807 node = &parent->rb_left;
808 else {
809 node = &parent->rb_right;
810 left = 0;
811 }
812 }
813
814 if (left)
815 st->left = &cfqg->rb_node;
816
817 rb_link_node(&cfqg->rb_node, parent, node);
818 rb_insert_color(&cfqg->rb_node, &st->rb);
819 }
820
821 static void
822 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
823 {
824 struct cfq_rb_root *st = &cfqd->grp_service_tree;
825 struct cfq_group *__cfqg;
826 struct rb_node *n;
827
828 cfqg->nr_cfqq++;
829 if (cfqg->on_st)
830 return;
831
832 /*
833 * Currently put the group at the end. Later implement something
834 * so that groups get lesser vtime based on their weights, so that
835 * if group does not loose all if it was not continously backlogged.
836 */
837 n = rb_last(&st->rb);
838 if (n) {
839 __cfqg = rb_entry_cfqg(n);
840 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
841 } else
842 cfqg->vdisktime = st->min_vdisktime;
843
844 __cfq_group_service_tree_add(st, cfqg);
845 cfqg->on_st = true;
846 cfqd->nr_groups++;
847 st->total_weight += cfqg->weight;
848 }
849
850 static void
851 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
852 {
853 struct cfq_rb_root *st = &cfqd->grp_service_tree;
854
855 if (st->active == &cfqg->rb_node)
856 st->active = NULL;
857
858 BUG_ON(cfqg->nr_cfqq < 1);
859 cfqg->nr_cfqq--;
860
861 /* If there are other cfq queues under this group, don't delete it */
862 if (cfqg->nr_cfqq)
863 return;
864
865 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
866 cfqg->on_st = false;
867 cfqd->nr_groups--;
868 st->total_weight -= cfqg->weight;
869 if (!RB_EMPTY_NODE(&cfqg->rb_node))
870 cfq_rb_erase(&cfqg->rb_node, st);
871 cfqg->saved_workload_slice = 0;
872 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
873 }
874
875 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
876 {
877 unsigned int slice_used;
878
879 /*
880 * Queue got expired before even a single request completed or
881 * got expired immediately after first request completion.
882 */
883 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
884 /*
885 * Also charge the seek time incurred to the group, otherwise
886 * if there are mutiple queues in the group, each can dispatch
887 * a single request on seeky media and cause lots of seek time
888 * and group will never know it.
889 */
890 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
891 1);
892 } else {
893 slice_used = jiffies - cfqq->slice_start;
894 if (slice_used > cfqq->allocated_slice)
895 slice_used = cfqq->allocated_slice;
896 }
897
898 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
899 cfqq->nr_sectors);
900 return slice_used;
901 }
902
903 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
904 struct cfq_queue *cfqq)
905 {
906 struct cfq_rb_root *st = &cfqd->grp_service_tree;
907 unsigned int used_sl, charge_sl;
908 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
909 - cfqg->service_tree_idle.count;
910
911 BUG_ON(nr_sync < 0);
912 used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
913
914 if (!cfq_cfqq_sync(cfqq) && !nr_sync)
915 charge_sl = cfqq->allocated_slice;
916
917 /* Can't update vdisktime while group is on service tree */
918 cfq_rb_erase(&cfqg->rb_node, st);
919 cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
920 __cfq_group_service_tree_add(st, cfqg);
921
922 /* This group is being expired. Save the context */
923 if (time_after(cfqd->workload_expires, jiffies)) {
924 cfqg->saved_workload_slice = cfqd->workload_expires
925 - jiffies;
926 cfqg->saved_workload = cfqd->serving_type;
927 cfqg->saved_serving_prio = cfqd->serving_prio;
928 } else
929 cfqg->saved_workload_slice = 0;
930
931 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
932 st->min_vdisktime);
933 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
934 cfqq->nr_sectors);
935 }
936
937 #ifdef CONFIG_CFQ_GROUP_IOSCHED
938 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
939 {
940 if (blkg)
941 return container_of(blkg, struct cfq_group, blkg);
942 return NULL;
943 }
944
945 void
946 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
947 {
948 cfqg_of_blkg(blkg)->weight = weight;
949 }
950
951 static struct cfq_group *
952 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
953 {
954 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
955 struct cfq_group *cfqg = NULL;
956 void *key = cfqd;
957 int i, j;
958 struct cfq_rb_root *st;
959 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
960 unsigned int major, minor;
961
962 /* Do we need to take this reference */
963 if (!css_tryget(&blkcg->css))
964 return NULL;;
965
966 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
967 if (cfqg || !create)
968 goto done;
969
970 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
971 if (!cfqg)
972 goto done;
973
974 cfqg->weight = blkcg->weight;
975 for_each_cfqg_st(cfqg, i, j, st)
976 *st = CFQ_RB_ROOT;
977 RB_CLEAR_NODE(&cfqg->rb_node);
978
979 /*
980 * Take the initial reference that will be released on destroy
981 * This can be thought of a joint reference by cgroup and
982 * elevator which will be dropped by either elevator exit
983 * or cgroup deletion path depending on who is exiting first.
984 */
985 atomic_set(&cfqg->ref, 1);
986
987 /* Add group onto cgroup list */
988 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
989 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
990 MKDEV(major, minor));
991
992 /* Add group on cfqd list */
993 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
994
995 done:
996 css_put(&blkcg->css);
997 return cfqg;
998 }
999
1000 /*
1001 * Search for the cfq group current task belongs to. If create = 1, then also
1002 * create the cfq group if it does not exist. request_queue lock must be held.
1003 */
1004 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1005 {
1006 struct cgroup *cgroup;
1007 struct cfq_group *cfqg = NULL;
1008
1009 rcu_read_lock();
1010 cgroup = task_cgroup(current, blkio_subsys_id);
1011 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1012 if (!cfqg && create)
1013 cfqg = &cfqd->root_group;
1014 rcu_read_unlock();
1015 return cfqg;
1016 }
1017
1018 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1019 {
1020 /* Currently, all async queues are mapped to root group */
1021 if (!cfq_cfqq_sync(cfqq))
1022 cfqg = &cfqq->cfqd->root_group;
1023
1024 cfqq->cfqg = cfqg;
1025 /* cfqq reference on cfqg */
1026 atomic_inc(&cfqq->cfqg->ref);
1027 }
1028
1029 static void cfq_put_cfqg(struct cfq_group *cfqg)
1030 {
1031 struct cfq_rb_root *st;
1032 int i, j;
1033
1034 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1035 if (!atomic_dec_and_test(&cfqg->ref))
1036 return;
1037 for_each_cfqg_st(cfqg, i, j, st)
1038 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1039 kfree(cfqg);
1040 }
1041
1042 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1043 {
1044 /* Something wrong if we are trying to remove same group twice */
1045 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1046
1047 hlist_del_init(&cfqg->cfqd_node);
1048
1049 /*
1050 * Put the reference taken at the time of creation so that when all
1051 * queues are gone, group can be destroyed.
1052 */
1053 cfq_put_cfqg(cfqg);
1054 }
1055
1056 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1057 {
1058 struct hlist_node *pos, *n;
1059 struct cfq_group *cfqg;
1060
1061 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1062 /*
1063 * If cgroup removal path got to blk_group first and removed
1064 * it from cgroup list, then it will take care of destroying
1065 * cfqg also.
1066 */
1067 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1068 cfq_destroy_cfqg(cfqd, cfqg);
1069 }
1070 }
1071
1072 /*
1073 * Blk cgroup controller notification saying that blkio_group object is being
1074 * delinked as associated cgroup object is going away. That also means that
1075 * no new IO will come in this group. So get rid of this group as soon as
1076 * any pending IO in the group is finished.
1077 *
1078 * This function is called under rcu_read_lock(). key is the rcu protected
1079 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1080 * read lock.
1081 *
1082 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1083 * it should not be NULL as even if elevator was exiting, cgroup deltion
1084 * path got to it first.
1085 */
1086 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1087 {
1088 unsigned long flags;
1089 struct cfq_data *cfqd = key;
1090
1091 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1092 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1093 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1094 }
1095
1096 #else /* GROUP_IOSCHED */
1097 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1098 {
1099 return &cfqd->root_group;
1100 }
1101 static inline void
1102 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1103 cfqq->cfqg = cfqg;
1104 }
1105
1106 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1107 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1108
1109 #endif /* GROUP_IOSCHED */
1110
1111 /*
1112 * The cfqd->service_trees holds all pending cfq_queue's that have
1113 * requests waiting to be processed. It is sorted in the order that
1114 * we will service the queues.
1115 */
1116 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1117 bool add_front)
1118 {
1119 struct rb_node **p, *parent;
1120 struct cfq_queue *__cfqq;
1121 unsigned long rb_key;
1122 struct cfq_rb_root *service_tree;
1123 int left;
1124 int new_cfqq = 1;
1125 int group_changed = 0;
1126
1127 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1128 if (!cfqd->cfq_group_isolation
1129 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1130 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1131 /* Move this cfq to root group */
1132 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1133 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1134 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1135 cfqq->orig_cfqg = cfqq->cfqg;
1136 cfqq->cfqg = &cfqd->root_group;
1137 atomic_inc(&cfqd->root_group.ref);
1138 group_changed = 1;
1139 } else if (!cfqd->cfq_group_isolation
1140 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1141 /* cfqq is sequential now needs to go to its original group */
1142 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1143 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1144 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1145 cfq_put_cfqg(cfqq->cfqg);
1146 cfqq->cfqg = cfqq->orig_cfqg;
1147 cfqq->orig_cfqg = NULL;
1148 group_changed = 1;
1149 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1150 }
1151 #endif
1152
1153 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1154 cfqq_type(cfqq), cfqd);
1155 if (cfq_class_idle(cfqq)) {
1156 rb_key = CFQ_IDLE_DELAY;
1157 parent = rb_last(&service_tree->rb);
1158 if (parent && parent != &cfqq->rb_node) {
1159 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1160 rb_key += __cfqq->rb_key;
1161 } else
1162 rb_key += jiffies;
1163 } else if (!add_front) {
1164 /*
1165 * Get our rb key offset. Subtract any residual slice
1166 * value carried from last service. A negative resid
1167 * count indicates slice overrun, and this should position
1168 * the next service time further away in the tree.
1169 */
1170 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1171 rb_key -= cfqq->slice_resid;
1172 cfqq->slice_resid = 0;
1173 } else {
1174 rb_key = -HZ;
1175 __cfqq = cfq_rb_first(service_tree);
1176 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1177 }
1178
1179 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1180 new_cfqq = 0;
1181 /*
1182 * same position, nothing more to do
1183 */
1184 if (rb_key == cfqq->rb_key &&
1185 cfqq->service_tree == service_tree)
1186 return;
1187
1188 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1189 cfqq->service_tree = NULL;
1190 }
1191
1192 left = 1;
1193 parent = NULL;
1194 cfqq->service_tree = service_tree;
1195 p = &service_tree->rb.rb_node;
1196 while (*p) {
1197 struct rb_node **n;
1198
1199 parent = *p;
1200 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1201
1202 /*
1203 * sort by key, that represents service time.
1204 */
1205 if (time_before(rb_key, __cfqq->rb_key))
1206 n = &(*p)->rb_left;
1207 else {
1208 n = &(*p)->rb_right;
1209 left = 0;
1210 }
1211
1212 p = n;
1213 }
1214
1215 if (left)
1216 service_tree->left = &cfqq->rb_node;
1217
1218 cfqq->rb_key = rb_key;
1219 rb_link_node(&cfqq->rb_node, parent, p);
1220 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1221 service_tree->count++;
1222 if ((add_front || !new_cfqq) && !group_changed)
1223 return;
1224 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1225 }
1226
1227 static struct cfq_queue *
1228 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1229 sector_t sector, struct rb_node **ret_parent,
1230 struct rb_node ***rb_link)
1231 {
1232 struct rb_node **p, *parent;
1233 struct cfq_queue *cfqq = NULL;
1234
1235 parent = NULL;
1236 p = &root->rb_node;
1237 while (*p) {
1238 struct rb_node **n;
1239
1240 parent = *p;
1241 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1242
1243 /*
1244 * Sort strictly based on sector. Smallest to the left,
1245 * largest to the right.
1246 */
1247 if (sector > blk_rq_pos(cfqq->next_rq))
1248 n = &(*p)->rb_right;
1249 else if (sector < blk_rq_pos(cfqq->next_rq))
1250 n = &(*p)->rb_left;
1251 else
1252 break;
1253 p = n;
1254 cfqq = NULL;
1255 }
1256
1257 *ret_parent = parent;
1258 if (rb_link)
1259 *rb_link = p;
1260 return cfqq;
1261 }
1262
1263 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1264 {
1265 struct rb_node **p, *parent;
1266 struct cfq_queue *__cfqq;
1267
1268 if (cfqq->p_root) {
1269 rb_erase(&cfqq->p_node, cfqq->p_root);
1270 cfqq->p_root = NULL;
1271 }
1272
1273 if (cfq_class_idle(cfqq))
1274 return;
1275 if (!cfqq->next_rq)
1276 return;
1277
1278 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1279 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1280 blk_rq_pos(cfqq->next_rq), &parent, &p);
1281 if (!__cfqq) {
1282 rb_link_node(&cfqq->p_node, parent, p);
1283 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1284 } else
1285 cfqq->p_root = NULL;
1286 }
1287
1288 /*
1289 * Update cfqq's position in the service tree.
1290 */
1291 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1292 {
1293 /*
1294 * Resorting requires the cfqq to be on the RR list already.
1295 */
1296 if (cfq_cfqq_on_rr(cfqq)) {
1297 cfq_service_tree_add(cfqd, cfqq, 0);
1298 cfq_prio_tree_add(cfqd, cfqq);
1299 }
1300 }
1301
1302 /*
1303 * add to busy list of queues for service, trying to be fair in ordering
1304 * the pending list according to last request service
1305 */
1306 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1307 {
1308 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1309 BUG_ON(cfq_cfqq_on_rr(cfqq));
1310 cfq_mark_cfqq_on_rr(cfqq);
1311 cfqd->busy_queues++;
1312
1313 cfq_resort_rr_list(cfqd, cfqq);
1314 }
1315
1316 /*
1317 * Called when the cfqq no longer has requests pending, remove it from
1318 * the service tree.
1319 */
1320 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321 {
1322 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1323 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1324 cfq_clear_cfqq_on_rr(cfqq);
1325
1326 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1328 cfqq->service_tree = NULL;
1329 }
1330 if (cfqq->p_root) {
1331 rb_erase(&cfqq->p_node, cfqq->p_root);
1332 cfqq->p_root = NULL;
1333 }
1334
1335 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1336 BUG_ON(!cfqd->busy_queues);
1337 cfqd->busy_queues--;
1338 }
1339
1340 /*
1341 * rb tree support functions
1342 */
1343 static void cfq_del_rq_rb(struct request *rq)
1344 {
1345 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1346 const int sync = rq_is_sync(rq);
1347
1348 BUG_ON(!cfqq->queued[sync]);
1349 cfqq->queued[sync]--;
1350
1351 elv_rb_del(&cfqq->sort_list, rq);
1352
1353 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1354 /*
1355 * Queue will be deleted from service tree when we actually
1356 * expire it later. Right now just remove it from prio tree
1357 * as it is empty.
1358 */
1359 if (cfqq->p_root) {
1360 rb_erase(&cfqq->p_node, cfqq->p_root);
1361 cfqq->p_root = NULL;
1362 }
1363 }
1364 }
1365
1366 static void cfq_add_rq_rb(struct request *rq)
1367 {
1368 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1369 struct cfq_data *cfqd = cfqq->cfqd;
1370 struct request *__alias, *prev;
1371
1372 cfqq->queued[rq_is_sync(rq)]++;
1373
1374 /*
1375 * looks a little odd, but the first insert might return an alias.
1376 * if that happens, put the alias on the dispatch list
1377 */
1378 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1379 cfq_dispatch_insert(cfqd->queue, __alias);
1380
1381 if (!cfq_cfqq_on_rr(cfqq))
1382 cfq_add_cfqq_rr(cfqd, cfqq);
1383
1384 /*
1385 * check if this request is a better next-serve candidate
1386 */
1387 prev = cfqq->next_rq;
1388 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1389
1390 /*
1391 * adjust priority tree position, if ->next_rq changes
1392 */
1393 if (prev != cfqq->next_rq)
1394 cfq_prio_tree_add(cfqd, cfqq);
1395
1396 BUG_ON(!cfqq->next_rq);
1397 }
1398
1399 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1400 {
1401 elv_rb_del(&cfqq->sort_list, rq);
1402 cfqq->queued[rq_is_sync(rq)]--;
1403 cfq_add_rq_rb(rq);
1404 }
1405
1406 static struct request *
1407 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1408 {
1409 struct task_struct *tsk = current;
1410 struct cfq_io_context *cic;
1411 struct cfq_queue *cfqq;
1412
1413 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1414 if (!cic)
1415 return NULL;
1416
1417 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1418 if (cfqq) {
1419 sector_t sector = bio->bi_sector + bio_sectors(bio);
1420
1421 return elv_rb_find(&cfqq->sort_list, sector);
1422 }
1423
1424 return NULL;
1425 }
1426
1427 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1428 {
1429 struct cfq_data *cfqd = q->elevator->elevator_data;
1430
1431 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1432 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1433 rq_in_driver(cfqd));
1434
1435 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1436 }
1437
1438 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1439 {
1440 struct cfq_data *cfqd = q->elevator->elevator_data;
1441 const int sync = rq_is_sync(rq);
1442
1443 WARN_ON(!cfqd->rq_in_driver[sync]);
1444 cfqd->rq_in_driver[sync]--;
1445 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1446 rq_in_driver(cfqd));
1447 }
1448
1449 static void cfq_remove_request(struct request *rq)
1450 {
1451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1452
1453 if (cfqq->next_rq == rq)
1454 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1455
1456 list_del_init(&rq->queuelist);
1457 cfq_del_rq_rb(rq);
1458
1459 cfqq->cfqd->rq_queued--;
1460 if (rq_is_meta(rq)) {
1461 WARN_ON(!cfqq->meta_pending);
1462 cfqq->meta_pending--;
1463 }
1464 }
1465
1466 static int cfq_merge(struct request_queue *q, struct request **req,
1467 struct bio *bio)
1468 {
1469 struct cfq_data *cfqd = q->elevator->elevator_data;
1470 struct request *__rq;
1471
1472 __rq = cfq_find_rq_fmerge(cfqd, bio);
1473 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1474 *req = __rq;
1475 return ELEVATOR_FRONT_MERGE;
1476 }
1477
1478 return ELEVATOR_NO_MERGE;
1479 }
1480
1481 static void cfq_merged_request(struct request_queue *q, struct request *req,
1482 int type)
1483 {
1484 if (type == ELEVATOR_FRONT_MERGE) {
1485 struct cfq_queue *cfqq = RQ_CFQQ(req);
1486
1487 cfq_reposition_rq_rb(cfqq, req);
1488 }
1489 }
1490
1491 static void
1492 cfq_merged_requests(struct request_queue *q, struct request *rq,
1493 struct request *next)
1494 {
1495 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1496 /*
1497 * reposition in fifo if next is older than rq
1498 */
1499 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1500 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1501 list_move(&rq->queuelist, &next->queuelist);
1502 rq_set_fifo_time(rq, rq_fifo_time(next));
1503 }
1504
1505 if (cfqq->next_rq == next)
1506 cfqq->next_rq = rq;
1507 cfq_remove_request(next);
1508 }
1509
1510 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1511 struct bio *bio)
1512 {
1513 struct cfq_data *cfqd = q->elevator->elevator_data;
1514 struct cfq_io_context *cic;
1515 struct cfq_queue *cfqq;
1516
1517 /* Deny merge if bio and rq don't belong to same cfq group */
1518 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1519 return false;
1520 /*
1521 * Disallow merge of a sync bio into an async request.
1522 */
1523 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1524 return false;
1525
1526 /*
1527 * Lookup the cfqq that this bio will be queued with. Allow
1528 * merge only if rq is queued there.
1529 */
1530 cic = cfq_cic_lookup(cfqd, current->io_context);
1531 if (!cic)
1532 return false;
1533
1534 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1535 return cfqq == RQ_CFQQ(rq);
1536 }
1537
1538 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1539 struct cfq_queue *cfqq)
1540 {
1541 if (cfqq) {
1542 cfq_log_cfqq(cfqd, cfqq, "set_active");
1543 cfqq->slice_start = 0;
1544 cfqq->dispatch_start = jiffies;
1545 cfqq->allocated_slice = 0;
1546 cfqq->slice_end = 0;
1547 cfqq->slice_dispatch = 0;
1548 cfqq->nr_sectors = 0;
1549
1550 cfq_clear_cfqq_wait_request(cfqq);
1551 cfq_clear_cfqq_must_dispatch(cfqq);
1552 cfq_clear_cfqq_must_alloc_slice(cfqq);
1553 cfq_clear_cfqq_fifo_expire(cfqq);
1554 cfq_mark_cfqq_slice_new(cfqq);
1555
1556 del_timer(&cfqd->idle_slice_timer);
1557 }
1558
1559 cfqd->active_queue = cfqq;
1560 }
1561
1562 /*
1563 * current cfqq expired its slice (or was too idle), select new one
1564 */
1565 static void
1566 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1567 bool timed_out)
1568 {
1569 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1570
1571 if (cfq_cfqq_wait_request(cfqq))
1572 del_timer(&cfqd->idle_slice_timer);
1573
1574 cfq_clear_cfqq_wait_request(cfqq);
1575 cfq_clear_cfqq_wait_busy(cfqq);
1576 cfq_clear_cfqq_wait_busy_done(cfqq);
1577
1578 /*
1579 * store what was left of this slice, if the queue idled/timed out
1580 */
1581 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1582 cfqq->slice_resid = cfqq->slice_end - jiffies;
1583 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1584 }
1585
1586 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1587
1588 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1589 cfq_del_cfqq_rr(cfqd, cfqq);
1590
1591 cfq_resort_rr_list(cfqd, cfqq);
1592
1593 if (cfqq == cfqd->active_queue)
1594 cfqd->active_queue = NULL;
1595
1596 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1597 cfqd->grp_service_tree.active = NULL;
1598
1599 if (cfqd->active_cic) {
1600 put_io_context(cfqd->active_cic->ioc);
1601 cfqd->active_cic = NULL;
1602 }
1603 }
1604
1605 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1606 {
1607 struct cfq_queue *cfqq = cfqd->active_queue;
1608
1609 if (cfqq)
1610 __cfq_slice_expired(cfqd, cfqq, timed_out);
1611 }
1612
1613 /*
1614 * Get next queue for service. Unless we have a queue preemption,
1615 * we'll simply select the first cfqq in the service tree.
1616 */
1617 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1618 {
1619 struct cfq_rb_root *service_tree =
1620 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1621 cfqd->serving_type, cfqd);
1622
1623 if (!cfqd->rq_queued)
1624 return NULL;
1625
1626 /* There is nothing to dispatch */
1627 if (!service_tree)
1628 return NULL;
1629 if (RB_EMPTY_ROOT(&service_tree->rb))
1630 return NULL;
1631 return cfq_rb_first(service_tree);
1632 }
1633
1634 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1635 {
1636 struct cfq_group *cfqg;
1637 struct cfq_queue *cfqq;
1638 int i, j;
1639 struct cfq_rb_root *st;
1640
1641 if (!cfqd->rq_queued)
1642 return NULL;
1643
1644 cfqg = cfq_get_next_cfqg(cfqd);
1645 if (!cfqg)
1646 return NULL;
1647
1648 for_each_cfqg_st(cfqg, i, j, st)
1649 if ((cfqq = cfq_rb_first(st)) != NULL)
1650 return cfqq;
1651 return NULL;
1652 }
1653
1654 /*
1655 * Get and set a new active queue for service.
1656 */
1657 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1658 struct cfq_queue *cfqq)
1659 {
1660 if (!cfqq)
1661 cfqq = cfq_get_next_queue(cfqd);
1662
1663 __cfq_set_active_queue(cfqd, cfqq);
1664 return cfqq;
1665 }
1666
1667 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1668 struct request *rq)
1669 {
1670 if (blk_rq_pos(rq) >= cfqd->last_position)
1671 return blk_rq_pos(rq) - cfqd->last_position;
1672 else
1673 return cfqd->last_position - blk_rq_pos(rq);
1674 }
1675
1676 #define CFQQ_SEEK_THR 8 * 1024
1677 #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1678
1679 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1680 struct request *rq)
1681 {
1682 sector_t sdist = cfqq->seek_mean;
1683
1684 if (!sample_valid(cfqq->seek_samples))
1685 sdist = CFQQ_SEEK_THR;
1686
1687 return cfq_dist_from_last(cfqd, rq) <= sdist;
1688 }
1689
1690 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1691 struct cfq_queue *cur_cfqq)
1692 {
1693 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1694 struct rb_node *parent, *node;
1695 struct cfq_queue *__cfqq;
1696 sector_t sector = cfqd->last_position;
1697
1698 if (RB_EMPTY_ROOT(root))
1699 return NULL;
1700
1701 /*
1702 * First, if we find a request starting at the end of the last
1703 * request, choose it.
1704 */
1705 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1706 if (__cfqq)
1707 return __cfqq;
1708
1709 /*
1710 * If the exact sector wasn't found, the parent of the NULL leaf
1711 * will contain the closest sector.
1712 */
1713 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1714 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1715 return __cfqq;
1716
1717 if (blk_rq_pos(__cfqq->next_rq) < sector)
1718 node = rb_next(&__cfqq->p_node);
1719 else
1720 node = rb_prev(&__cfqq->p_node);
1721 if (!node)
1722 return NULL;
1723
1724 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1725 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1726 return __cfqq;
1727
1728 return NULL;
1729 }
1730
1731 /*
1732 * cfqd - obvious
1733 * cur_cfqq - passed in so that we don't decide that the current queue is
1734 * closely cooperating with itself.
1735 *
1736 * So, basically we're assuming that that cur_cfqq has dispatched at least
1737 * one request, and that cfqd->last_position reflects a position on the disk
1738 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1739 * assumption.
1740 */
1741 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1742 struct cfq_queue *cur_cfqq)
1743 {
1744 struct cfq_queue *cfqq;
1745
1746 if (!cfq_cfqq_sync(cur_cfqq))
1747 return NULL;
1748 if (CFQQ_SEEKY(cur_cfqq))
1749 return NULL;
1750
1751 /*
1752 * We should notice if some of the queues are cooperating, eg
1753 * working closely on the same area of the disk. In that case,
1754 * we can group them together and don't waste time idling.
1755 */
1756 cfqq = cfqq_close(cfqd, cur_cfqq);
1757 if (!cfqq)
1758 return NULL;
1759
1760 /* If new queue belongs to different cfq_group, don't choose it */
1761 if (cur_cfqq->cfqg != cfqq->cfqg)
1762 return NULL;
1763
1764 /*
1765 * It only makes sense to merge sync queues.
1766 */
1767 if (!cfq_cfqq_sync(cfqq))
1768 return NULL;
1769 if (CFQQ_SEEKY(cfqq))
1770 return NULL;
1771
1772 /*
1773 * Do not merge queues of different priority classes
1774 */
1775 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1776 return NULL;
1777
1778 return cfqq;
1779 }
1780
1781 /*
1782 * Determine whether we should enforce idle window for this queue.
1783 */
1784
1785 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1786 {
1787 enum wl_prio_t prio = cfqq_prio(cfqq);
1788 struct cfq_rb_root *service_tree = cfqq->service_tree;
1789
1790 BUG_ON(!service_tree);
1791 BUG_ON(!service_tree->count);
1792
1793 /* We never do for idle class queues. */
1794 if (prio == IDLE_WORKLOAD)
1795 return false;
1796
1797 /* We do for queues that were marked with idle window flag. */
1798 if (cfq_cfqq_idle_window(cfqq))
1799 return true;
1800
1801 /*
1802 * Otherwise, we do only if they are the last ones
1803 * in their service tree.
1804 */
1805 return service_tree->count == 1;
1806 }
1807
1808 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1809 {
1810 struct cfq_queue *cfqq = cfqd->active_queue;
1811 struct cfq_io_context *cic;
1812 unsigned long sl;
1813
1814 /*
1815 * SSD device without seek penalty, disable idling. But only do so
1816 * for devices that support queuing, otherwise we still have a problem
1817 * with sync vs async workloads.
1818 */
1819 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1820 return;
1821
1822 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1823 WARN_ON(cfq_cfqq_slice_new(cfqq));
1824
1825 /*
1826 * idle is disabled, either manually or by past process history
1827 */
1828 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1829 return;
1830
1831 /*
1832 * still active requests from this queue, don't idle
1833 */
1834 if (cfqq->dispatched)
1835 return;
1836
1837 /*
1838 * task has exited, don't wait
1839 */
1840 cic = cfqd->active_cic;
1841 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1842 return;
1843
1844 /*
1845 * If our average think time is larger than the remaining time
1846 * slice, then don't idle. This avoids overrunning the allotted
1847 * time slice.
1848 */
1849 if (sample_valid(cic->ttime_samples) &&
1850 (cfqq->slice_end - jiffies < cic->ttime_mean))
1851 return;
1852
1853 cfq_mark_cfqq_wait_request(cfqq);
1854
1855 sl = cfqd->cfq_slice_idle;
1856
1857 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1858 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1859 }
1860
1861 /*
1862 * Move request from internal lists to the request queue dispatch list.
1863 */
1864 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1865 {
1866 struct cfq_data *cfqd = q->elevator->elevator_data;
1867 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1868
1869 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1870
1871 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1872 cfq_remove_request(rq);
1873 cfqq->dispatched++;
1874 elv_dispatch_sort(q, rq);
1875
1876 if (cfq_cfqq_sync(cfqq))
1877 cfqd->sync_flight++;
1878 cfqq->nr_sectors += blk_rq_sectors(rq);
1879 }
1880
1881 /*
1882 * return expired entry, or NULL to just start from scratch in rbtree
1883 */
1884 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1885 {
1886 struct request *rq = NULL;
1887
1888 if (cfq_cfqq_fifo_expire(cfqq))
1889 return NULL;
1890
1891 cfq_mark_cfqq_fifo_expire(cfqq);
1892
1893 if (list_empty(&cfqq->fifo))
1894 return NULL;
1895
1896 rq = rq_entry_fifo(cfqq->fifo.next);
1897 if (time_before(jiffies, rq_fifo_time(rq)))
1898 rq = NULL;
1899
1900 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1901 return rq;
1902 }
1903
1904 static inline int
1905 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1906 {
1907 const int base_rq = cfqd->cfq_slice_async_rq;
1908
1909 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1910
1911 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1912 }
1913
1914 /*
1915 * Must be called with the queue_lock held.
1916 */
1917 static int cfqq_process_refs(struct cfq_queue *cfqq)
1918 {
1919 int process_refs, io_refs;
1920
1921 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1922 process_refs = atomic_read(&cfqq->ref) - io_refs;
1923 BUG_ON(process_refs < 0);
1924 return process_refs;
1925 }
1926
1927 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1928 {
1929 int process_refs, new_process_refs;
1930 struct cfq_queue *__cfqq;
1931
1932 /* Avoid a circular list and skip interim queue merges */
1933 while ((__cfqq = new_cfqq->new_cfqq)) {
1934 if (__cfqq == cfqq)
1935 return;
1936 new_cfqq = __cfqq;
1937 }
1938
1939 process_refs = cfqq_process_refs(cfqq);
1940 /*
1941 * If the process for the cfqq has gone away, there is no
1942 * sense in merging the queues.
1943 */
1944 if (process_refs == 0)
1945 return;
1946
1947 /*
1948 * Merge in the direction of the lesser amount of work.
1949 */
1950 new_process_refs = cfqq_process_refs(new_cfqq);
1951 if (new_process_refs >= process_refs) {
1952 cfqq->new_cfqq = new_cfqq;
1953 atomic_add(process_refs, &new_cfqq->ref);
1954 } else {
1955 new_cfqq->new_cfqq = cfqq;
1956 atomic_add(new_process_refs, &cfqq->ref);
1957 }
1958 }
1959
1960 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1961 struct cfq_group *cfqg, enum wl_prio_t prio,
1962 bool prio_changed)
1963 {
1964 struct cfq_queue *queue;
1965 int i;
1966 bool key_valid = false;
1967 unsigned long lowest_key = 0;
1968 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1969
1970 if (prio_changed) {
1971 /*
1972 * When priorities switched, we prefer starting
1973 * from SYNC_NOIDLE (first choice), or just SYNC
1974 * over ASYNC
1975 */
1976 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1977 return cur_best;
1978 cur_best = SYNC_WORKLOAD;
1979 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1980 return cur_best;
1981
1982 return ASYNC_WORKLOAD;
1983 }
1984
1985 for (i = 0; i < 3; ++i) {
1986 /* otherwise, select the one with lowest rb_key */
1987 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1988 if (queue &&
1989 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1990 lowest_key = queue->rb_key;
1991 cur_best = i;
1992 key_valid = true;
1993 }
1994 }
1995
1996 return cur_best;
1997 }
1998
1999 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2000 {
2001 enum wl_prio_t previous_prio = cfqd->serving_prio;
2002 bool prio_changed;
2003 unsigned slice;
2004 unsigned count;
2005 struct cfq_rb_root *st;
2006 unsigned group_slice;
2007
2008 if (!cfqg) {
2009 cfqd->serving_prio = IDLE_WORKLOAD;
2010 cfqd->workload_expires = jiffies + 1;
2011 return;
2012 }
2013
2014 /* Choose next priority. RT > BE > IDLE */
2015 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2016 cfqd->serving_prio = RT_WORKLOAD;
2017 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2018 cfqd->serving_prio = BE_WORKLOAD;
2019 else {
2020 cfqd->serving_prio = IDLE_WORKLOAD;
2021 cfqd->workload_expires = jiffies + 1;
2022 return;
2023 }
2024
2025 /*
2026 * For RT and BE, we have to choose also the type
2027 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2028 * expiration time
2029 */
2030 prio_changed = (cfqd->serving_prio != previous_prio);
2031 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2032 cfqd);
2033 count = st->count;
2034
2035 /*
2036 * If priority didn't change, check workload expiration,
2037 * and that we still have other queues ready
2038 */
2039 if (!prio_changed && count &&
2040 !time_after(jiffies, cfqd->workload_expires))
2041 return;
2042
2043 /* otherwise select new workload type */
2044 cfqd->serving_type =
2045 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2046 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2047 cfqd);
2048 count = st->count;
2049
2050 /*
2051 * the workload slice is computed as a fraction of target latency
2052 * proportional to the number of queues in that workload, over
2053 * all the queues in the same priority class
2054 */
2055 group_slice = cfq_group_slice(cfqd, cfqg);
2056
2057 slice = group_slice * count /
2058 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2059 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2060
2061 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2062 unsigned int tmp;
2063
2064 /*
2065 * Async queues are currently system wide. Just taking
2066 * proportion of queues with-in same group will lead to higher
2067 * async ratio system wide as generally root group is going
2068 * to have higher weight. A more accurate thing would be to
2069 * calculate system wide asnc/sync ratio.
2070 */
2071 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2072 tmp = tmp/cfqd->busy_queues;
2073 slice = min_t(unsigned, slice, tmp);
2074
2075 /* async workload slice is scaled down according to
2076 * the sync/async slice ratio. */
2077 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2078 } else
2079 /* sync workload slice is at least 2 * cfq_slice_idle */
2080 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2081
2082 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2083 cfqd->workload_expires = jiffies + slice;
2084 cfqd->noidle_tree_requires_idle = false;
2085 }
2086
2087 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2088 {
2089 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2090 struct cfq_group *cfqg;
2091
2092 if (RB_EMPTY_ROOT(&st->rb))
2093 return NULL;
2094 cfqg = cfq_rb_first_group(st);
2095 st->active = &cfqg->rb_node;
2096 update_min_vdisktime(st);
2097 return cfqg;
2098 }
2099
2100 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2101 {
2102 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2103
2104 cfqd->serving_group = cfqg;
2105
2106 /* Restore the workload type data */
2107 if (cfqg->saved_workload_slice) {
2108 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2109 cfqd->serving_type = cfqg->saved_workload;
2110 cfqd->serving_prio = cfqg->saved_serving_prio;
2111 }
2112 choose_service_tree(cfqd, cfqg);
2113 }
2114
2115 /*
2116 * Select a queue for service. If we have a current active queue,
2117 * check whether to continue servicing it, or retrieve and set a new one.
2118 */
2119 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2120 {
2121 struct cfq_queue *cfqq, *new_cfqq = NULL;
2122
2123 cfqq = cfqd->active_queue;
2124 if (!cfqq)
2125 goto new_queue;
2126
2127 if (!cfqd->rq_queued)
2128 return NULL;
2129 /*
2130 * The active queue has run out of time, expire it and select new.
2131 */
2132 if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2133 && !cfq_cfqq_must_dispatch(cfqq))
2134 goto expire;
2135
2136 /*
2137 * The active queue has requests and isn't expired, allow it to
2138 * dispatch.
2139 */
2140 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2141 goto keep_queue;
2142
2143 /*
2144 * If another queue has a request waiting within our mean seek
2145 * distance, let it run. The expire code will check for close
2146 * cooperators and put the close queue at the front of the service
2147 * tree. If possible, merge the expiring queue with the new cfqq.
2148 */
2149 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2150 if (new_cfqq) {
2151 if (!cfqq->new_cfqq)
2152 cfq_setup_merge(cfqq, new_cfqq);
2153 goto expire;
2154 }
2155
2156 /*
2157 * No requests pending. If the active queue still has requests in
2158 * flight or is idling for a new request, allow either of these
2159 * conditions to happen (or time out) before selecting a new queue.
2160 */
2161 if (timer_pending(&cfqd->idle_slice_timer) ||
2162 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2163 cfqq = NULL;
2164 goto keep_queue;
2165 }
2166
2167 expire:
2168 cfq_slice_expired(cfqd, 0);
2169 new_queue:
2170 /*
2171 * Current queue expired. Check if we have to switch to a new
2172 * service tree
2173 */
2174 if (!new_cfqq)
2175 cfq_choose_cfqg(cfqd);
2176
2177 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2178 keep_queue:
2179 return cfqq;
2180 }
2181
2182 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2183 {
2184 int dispatched = 0;
2185
2186 while (cfqq->next_rq) {
2187 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2188 dispatched++;
2189 }
2190
2191 BUG_ON(!list_empty(&cfqq->fifo));
2192
2193 /* By default cfqq is not expired if it is empty. Do it explicitly */
2194 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2195 return dispatched;
2196 }
2197
2198 /*
2199 * Drain our current requests. Used for barriers and when switching
2200 * io schedulers on-the-fly.
2201 */
2202 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2203 {
2204 struct cfq_queue *cfqq;
2205 int dispatched = 0;
2206
2207 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2208 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2209
2210 cfq_slice_expired(cfqd, 0);
2211 BUG_ON(cfqd->busy_queues);
2212
2213 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2214 return dispatched;
2215 }
2216
2217 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2218 {
2219 unsigned int max_dispatch;
2220
2221 /*
2222 * Drain async requests before we start sync IO
2223 */
2224 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2225 return false;
2226
2227 /*
2228 * If this is an async queue and we have sync IO in flight, let it wait
2229 */
2230 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2231 return false;
2232
2233 max_dispatch = cfqd->cfq_quantum;
2234 if (cfq_class_idle(cfqq))
2235 max_dispatch = 1;
2236
2237 /*
2238 * Does this cfqq already have too much IO in flight?
2239 */
2240 if (cfqq->dispatched >= max_dispatch) {
2241 /*
2242 * idle queue must always only have a single IO in flight
2243 */
2244 if (cfq_class_idle(cfqq))
2245 return false;
2246
2247 /*
2248 * We have other queues, don't allow more IO from this one
2249 */
2250 if (cfqd->busy_queues > 1)
2251 return false;
2252
2253 /*
2254 * Sole queue user, no limit
2255 */
2256 max_dispatch = -1;
2257 }
2258
2259 /*
2260 * Async queues must wait a bit before being allowed dispatch.
2261 * We also ramp up the dispatch depth gradually for async IO,
2262 * based on the last sync IO we serviced
2263 */
2264 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2265 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2266 unsigned int depth;
2267
2268 depth = last_sync / cfqd->cfq_slice[1];
2269 if (!depth && !cfqq->dispatched)
2270 depth = 1;
2271 if (depth < max_dispatch)
2272 max_dispatch = depth;
2273 }
2274
2275 /*
2276 * If we're below the current max, allow a dispatch
2277 */
2278 return cfqq->dispatched < max_dispatch;
2279 }
2280
2281 /*
2282 * Dispatch a request from cfqq, moving them to the request queue
2283 * dispatch list.
2284 */
2285 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2286 {
2287 struct request *rq;
2288
2289 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2290
2291 if (!cfq_may_dispatch(cfqd, cfqq))
2292 return false;
2293
2294 /*
2295 * follow expired path, else get first next available
2296 */
2297 rq = cfq_check_fifo(cfqq);
2298 if (!rq)
2299 rq = cfqq->next_rq;
2300
2301 /*
2302 * insert request into driver dispatch list
2303 */
2304 cfq_dispatch_insert(cfqd->queue, rq);
2305
2306 if (!cfqd->active_cic) {
2307 struct cfq_io_context *cic = RQ_CIC(rq);
2308
2309 atomic_long_inc(&cic->ioc->refcount);
2310 cfqd->active_cic = cic;
2311 }
2312
2313 return true;
2314 }
2315
2316 /*
2317 * Find the cfqq that we need to service and move a request from that to the
2318 * dispatch list
2319 */
2320 static int cfq_dispatch_requests(struct request_queue *q, int force)
2321 {
2322 struct cfq_data *cfqd = q->elevator->elevator_data;
2323 struct cfq_queue *cfqq;
2324
2325 if (!cfqd->busy_queues)
2326 return 0;
2327
2328 if (unlikely(force))
2329 return cfq_forced_dispatch(cfqd);
2330
2331 cfqq = cfq_select_queue(cfqd);
2332 if (!cfqq)
2333 return 0;
2334
2335 /*
2336 * Dispatch a request from this cfqq, if it is allowed
2337 */
2338 if (!cfq_dispatch_request(cfqd, cfqq))
2339 return 0;
2340
2341 cfqq->slice_dispatch++;
2342 cfq_clear_cfqq_must_dispatch(cfqq);
2343
2344 /*
2345 * expire an async queue immediately if it has used up its slice. idle
2346 * queue always expire after 1 dispatch round.
2347 */
2348 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2349 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2350 cfq_class_idle(cfqq))) {
2351 cfqq->slice_end = jiffies + 1;
2352 cfq_slice_expired(cfqd, 0);
2353 }
2354
2355 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2356 return 1;
2357 }
2358
2359 /*
2360 * task holds one reference to the queue, dropped when task exits. each rq
2361 * in-flight on this queue also holds a reference, dropped when rq is freed.
2362 *
2363 * Each cfq queue took a reference on the parent group. Drop it now.
2364 * queue lock must be held here.
2365 */
2366 static void cfq_put_queue(struct cfq_queue *cfqq)
2367 {
2368 struct cfq_data *cfqd = cfqq->cfqd;
2369 struct cfq_group *cfqg;
2370
2371 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2372
2373 if (!atomic_dec_and_test(&cfqq->ref))
2374 return;
2375
2376 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2377 BUG_ON(rb_first(&cfqq->sort_list));
2378 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2379 cfqg = cfqq->cfqg;
2380
2381 if (unlikely(cfqd->active_queue == cfqq)) {
2382 __cfq_slice_expired(cfqd, cfqq, 0);
2383 cfq_schedule_dispatch(cfqd);
2384 }
2385
2386 BUG_ON(cfq_cfqq_on_rr(cfqq));
2387 kmem_cache_free(cfq_pool, cfqq);
2388 cfq_put_cfqg(cfqg);
2389 if (cfqq->orig_cfqg)
2390 cfq_put_cfqg(cfqq->orig_cfqg);
2391 }
2392
2393 /*
2394 * Must always be called with the rcu_read_lock() held
2395 */
2396 static void
2397 __call_for_each_cic(struct io_context *ioc,
2398 void (*func)(struct io_context *, struct cfq_io_context *))
2399 {
2400 struct cfq_io_context *cic;
2401 struct hlist_node *n;
2402
2403 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2404 func(ioc, cic);
2405 }
2406
2407 /*
2408 * Call func for each cic attached to this ioc.
2409 */
2410 static void
2411 call_for_each_cic(struct io_context *ioc,
2412 void (*func)(struct io_context *, struct cfq_io_context *))
2413 {
2414 rcu_read_lock();
2415 __call_for_each_cic(ioc, func);
2416 rcu_read_unlock();
2417 }
2418
2419 static void cfq_cic_free_rcu(struct rcu_head *head)
2420 {
2421 struct cfq_io_context *cic;
2422
2423 cic = container_of(head, struct cfq_io_context, rcu_head);
2424
2425 kmem_cache_free(cfq_ioc_pool, cic);
2426 elv_ioc_count_dec(cfq_ioc_count);
2427
2428 if (ioc_gone) {
2429 /*
2430 * CFQ scheduler is exiting, grab exit lock and check
2431 * the pending io context count. If it hits zero,
2432 * complete ioc_gone and set it back to NULL
2433 */
2434 spin_lock(&ioc_gone_lock);
2435 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2436 complete(ioc_gone);
2437 ioc_gone = NULL;
2438 }
2439 spin_unlock(&ioc_gone_lock);
2440 }
2441 }
2442
2443 static void cfq_cic_free(struct cfq_io_context *cic)
2444 {
2445 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2446 }
2447
2448 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2449 {
2450 unsigned long flags;
2451
2452 BUG_ON(!cic->dead_key);
2453
2454 spin_lock_irqsave(&ioc->lock, flags);
2455 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2456 hlist_del_rcu(&cic->cic_list);
2457 spin_unlock_irqrestore(&ioc->lock, flags);
2458
2459 cfq_cic_free(cic);
2460 }
2461
2462 /*
2463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2465 * and ->trim() which is called with the task lock held
2466 */
2467 static void cfq_free_io_context(struct io_context *ioc)
2468 {
2469 /*
2470 * ioc->refcount is zero here, or we are called from elv_unregister(),
2471 * so no more cic's are allowed to be linked into this ioc. So it
2472 * should be ok to iterate over the known list, we will see all cic's
2473 * since no new ones are added.
2474 */
2475 __call_for_each_cic(ioc, cic_free_func);
2476 }
2477
2478 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2479 {
2480 struct cfq_queue *__cfqq, *next;
2481
2482 if (unlikely(cfqq == cfqd->active_queue)) {
2483 __cfq_slice_expired(cfqd, cfqq, 0);
2484 cfq_schedule_dispatch(cfqd);
2485 }
2486
2487 /*
2488 * If this queue was scheduled to merge with another queue, be
2489 * sure to drop the reference taken on that queue (and others in
2490 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2491 */
2492 __cfqq = cfqq->new_cfqq;
2493 while (__cfqq) {
2494 if (__cfqq == cfqq) {
2495 WARN(1, "cfqq->new_cfqq loop detected\n");
2496 break;
2497 }
2498 next = __cfqq->new_cfqq;
2499 cfq_put_queue(__cfqq);
2500 __cfqq = next;
2501 }
2502
2503 cfq_put_queue(cfqq);
2504 }
2505
2506 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2507 struct cfq_io_context *cic)
2508 {
2509 struct io_context *ioc = cic->ioc;
2510
2511 list_del_init(&cic->queue_list);
2512
2513 /*
2514 * Make sure key == NULL is seen for dead queues
2515 */
2516 smp_wmb();
2517 cic->dead_key = (unsigned long) cic->key;
2518 cic->key = NULL;
2519
2520 if (ioc->ioc_data == cic)
2521 rcu_assign_pointer(ioc->ioc_data, NULL);
2522
2523 if (cic->cfqq[BLK_RW_ASYNC]) {
2524 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2525 cic->cfqq[BLK_RW_ASYNC] = NULL;
2526 }
2527
2528 if (cic->cfqq[BLK_RW_SYNC]) {
2529 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2530 cic->cfqq[BLK_RW_SYNC] = NULL;
2531 }
2532 }
2533
2534 static void cfq_exit_single_io_context(struct io_context *ioc,
2535 struct cfq_io_context *cic)
2536 {
2537 struct cfq_data *cfqd = cic->key;
2538
2539 if (cfqd) {
2540 struct request_queue *q = cfqd->queue;
2541 unsigned long flags;
2542
2543 spin_lock_irqsave(q->queue_lock, flags);
2544
2545 /*
2546 * Ensure we get a fresh copy of the ->key to prevent
2547 * race between exiting task and queue
2548 */
2549 smp_read_barrier_depends();
2550 if (cic->key)
2551 __cfq_exit_single_io_context(cfqd, cic);
2552
2553 spin_unlock_irqrestore(q->queue_lock, flags);
2554 }
2555 }
2556
2557 /*
2558 * The process that ioc belongs to has exited, we need to clean up
2559 * and put the internal structures we have that belongs to that process.
2560 */
2561 static void cfq_exit_io_context(struct io_context *ioc)
2562 {
2563 call_for_each_cic(ioc, cfq_exit_single_io_context);
2564 }
2565
2566 static struct cfq_io_context *
2567 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2568 {
2569 struct cfq_io_context *cic;
2570
2571 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2572 cfqd->queue->node);
2573 if (cic) {
2574 cic->last_end_request = jiffies;
2575 INIT_LIST_HEAD(&cic->queue_list);
2576 INIT_HLIST_NODE(&cic->cic_list);
2577 cic->dtor = cfq_free_io_context;
2578 cic->exit = cfq_exit_io_context;
2579 elv_ioc_count_inc(cfq_ioc_count);
2580 }
2581
2582 return cic;
2583 }
2584
2585 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2586 {
2587 struct task_struct *tsk = current;
2588 int ioprio_class;
2589
2590 if (!cfq_cfqq_prio_changed(cfqq))
2591 return;
2592
2593 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2594 switch (ioprio_class) {
2595 default:
2596 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2597 case IOPRIO_CLASS_NONE:
2598 /*
2599 * no prio set, inherit CPU scheduling settings
2600 */
2601 cfqq->ioprio = task_nice_ioprio(tsk);
2602 cfqq->ioprio_class = task_nice_ioclass(tsk);
2603 break;
2604 case IOPRIO_CLASS_RT:
2605 cfqq->ioprio = task_ioprio(ioc);
2606 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2607 break;
2608 case IOPRIO_CLASS_BE:
2609 cfqq->ioprio = task_ioprio(ioc);
2610 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2611 break;
2612 case IOPRIO_CLASS_IDLE:
2613 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2614 cfqq->ioprio = 7;
2615 cfq_clear_cfqq_idle_window(cfqq);
2616 break;
2617 }
2618
2619 /*
2620 * keep track of original prio settings in case we have to temporarily
2621 * elevate the priority of this queue
2622 */
2623 cfqq->org_ioprio = cfqq->ioprio;
2624 cfqq->org_ioprio_class = cfqq->ioprio_class;
2625 cfq_clear_cfqq_prio_changed(cfqq);
2626 }
2627
2628 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2629 {
2630 struct cfq_data *cfqd = cic->key;
2631 struct cfq_queue *cfqq;
2632 unsigned long flags;
2633
2634 if (unlikely(!cfqd))
2635 return;
2636
2637 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2638
2639 cfqq = cic->cfqq[BLK_RW_ASYNC];
2640 if (cfqq) {
2641 struct cfq_queue *new_cfqq;
2642 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2643 GFP_ATOMIC);
2644 if (new_cfqq) {
2645 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2646 cfq_put_queue(cfqq);
2647 }
2648 }
2649
2650 cfqq = cic->cfqq[BLK_RW_SYNC];
2651 if (cfqq)
2652 cfq_mark_cfqq_prio_changed(cfqq);
2653
2654 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2655 }
2656
2657 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2658 {
2659 call_for_each_cic(ioc, changed_ioprio);
2660 ioc->ioprio_changed = 0;
2661 }
2662
2663 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2664 pid_t pid, bool is_sync)
2665 {
2666 RB_CLEAR_NODE(&cfqq->rb_node);
2667 RB_CLEAR_NODE(&cfqq->p_node);
2668 INIT_LIST_HEAD(&cfqq->fifo);
2669
2670 atomic_set(&cfqq->ref, 0);
2671 cfqq->cfqd = cfqd;
2672
2673 cfq_mark_cfqq_prio_changed(cfqq);
2674
2675 if (is_sync) {
2676 if (!cfq_class_idle(cfqq))
2677 cfq_mark_cfqq_idle_window(cfqq);
2678 cfq_mark_cfqq_sync(cfqq);
2679 }
2680 cfqq->pid = pid;
2681 }
2682
2683 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2684 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2685 {
2686 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2687 struct cfq_data *cfqd = cic->key;
2688 unsigned long flags;
2689 struct request_queue *q;
2690
2691 if (unlikely(!cfqd))
2692 return;
2693
2694 q = cfqd->queue;
2695
2696 spin_lock_irqsave(q->queue_lock, flags);
2697
2698 if (sync_cfqq) {
2699 /*
2700 * Drop reference to sync queue. A new sync queue will be
2701 * assigned in new group upon arrival of a fresh request.
2702 */
2703 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2704 cic_set_cfqq(cic, NULL, 1);
2705 cfq_put_queue(sync_cfqq);
2706 }
2707
2708 spin_unlock_irqrestore(q->queue_lock, flags);
2709 }
2710
2711 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2712 {
2713 call_for_each_cic(ioc, changed_cgroup);
2714 ioc->cgroup_changed = 0;
2715 }
2716 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2717
2718 static struct cfq_queue *
2719 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2720 struct io_context *ioc, gfp_t gfp_mask)
2721 {
2722 struct cfq_queue *cfqq, *new_cfqq = NULL;
2723 struct cfq_io_context *cic;
2724 struct cfq_group *cfqg;
2725
2726 retry:
2727 cfqg = cfq_get_cfqg(cfqd, 1);
2728 cic = cfq_cic_lookup(cfqd, ioc);
2729 /* cic always exists here */
2730 cfqq = cic_to_cfqq(cic, is_sync);
2731
2732 /*
2733 * Always try a new alloc if we fell back to the OOM cfqq
2734 * originally, since it should just be a temporary situation.
2735 */
2736 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2737 cfqq = NULL;
2738 if (new_cfqq) {
2739 cfqq = new_cfqq;
2740 new_cfqq = NULL;
2741 } else if (gfp_mask & __GFP_WAIT) {
2742 spin_unlock_irq(cfqd->queue->queue_lock);
2743 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2744 gfp_mask | __GFP_ZERO,
2745 cfqd->queue->node);
2746 spin_lock_irq(cfqd->queue->queue_lock);
2747 if (new_cfqq)
2748 goto retry;
2749 } else {
2750 cfqq = kmem_cache_alloc_node(cfq_pool,
2751 gfp_mask | __GFP_ZERO,
2752 cfqd->queue->node);
2753 }
2754
2755 if (cfqq) {
2756 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2757 cfq_init_prio_data(cfqq, ioc);
2758 cfq_link_cfqq_cfqg(cfqq, cfqg);
2759 cfq_log_cfqq(cfqd, cfqq, "alloced");
2760 } else
2761 cfqq = &cfqd->oom_cfqq;
2762 }
2763
2764 if (new_cfqq)
2765 kmem_cache_free(cfq_pool, new_cfqq);
2766
2767 return cfqq;
2768 }
2769
2770 static struct cfq_queue **
2771 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2772 {
2773 switch (ioprio_class) {
2774 case IOPRIO_CLASS_RT:
2775 return &cfqd->async_cfqq[0][ioprio];
2776 case IOPRIO_CLASS_BE:
2777 return &cfqd->async_cfqq[1][ioprio];
2778 case IOPRIO_CLASS_IDLE:
2779 return &cfqd->async_idle_cfqq;
2780 default:
2781 BUG();
2782 }
2783 }
2784
2785 static struct cfq_queue *
2786 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2787 gfp_t gfp_mask)
2788 {
2789 const int ioprio = task_ioprio(ioc);
2790 const int ioprio_class = task_ioprio_class(ioc);
2791 struct cfq_queue **async_cfqq = NULL;
2792 struct cfq_queue *cfqq = NULL;
2793
2794 if (!is_sync) {
2795 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2796 cfqq = *async_cfqq;
2797 }
2798
2799 if (!cfqq)
2800 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2801
2802 /*
2803 * pin the queue now that it's allocated, scheduler exit will prune it
2804 */
2805 if (!is_sync && !(*async_cfqq)) {
2806 atomic_inc(&cfqq->ref);
2807 *async_cfqq = cfqq;
2808 }
2809
2810 atomic_inc(&cfqq->ref);
2811 return cfqq;
2812 }
2813
2814 /*
2815 * We drop cfq io contexts lazily, so we may find a dead one.
2816 */
2817 static void
2818 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2819 struct cfq_io_context *cic)
2820 {
2821 unsigned long flags;
2822
2823 WARN_ON(!list_empty(&cic->queue_list));
2824
2825 spin_lock_irqsave(&ioc->lock, flags);
2826
2827 BUG_ON(ioc->ioc_data == cic);
2828
2829 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2830 hlist_del_rcu(&cic->cic_list);
2831 spin_unlock_irqrestore(&ioc->lock, flags);
2832
2833 cfq_cic_free(cic);
2834 }
2835
2836 static struct cfq_io_context *
2837 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2838 {
2839 struct cfq_io_context *cic;
2840 unsigned long flags;
2841 void *k;
2842
2843 if (unlikely(!ioc))
2844 return NULL;
2845
2846 rcu_read_lock();
2847
2848 /*
2849 * we maintain a last-hit cache, to avoid browsing over the tree
2850 */
2851 cic = rcu_dereference(ioc->ioc_data);
2852 if (cic && cic->key == cfqd) {
2853 rcu_read_unlock();
2854 return cic;
2855 }
2856
2857 do {
2858 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2859 rcu_read_unlock();
2860 if (!cic)
2861 break;
2862 /* ->key must be copied to avoid race with cfq_exit_queue() */
2863 k = cic->key;
2864 if (unlikely(!k)) {
2865 cfq_drop_dead_cic(cfqd, ioc, cic);
2866 rcu_read_lock();
2867 continue;
2868 }
2869
2870 spin_lock_irqsave(&ioc->lock, flags);
2871 rcu_assign_pointer(ioc->ioc_data, cic);
2872 spin_unlock_irqrestore(&ioc->lock, flags);
2873 break;
2874 } while (1);
2875
2876 return cic;
2877 }
2878
2879 /*
2880 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2881 * the process specific cfq io context when entered from the block layer.
2882 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2883 */
2884 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2885 struct cfq_io_context *cic, gfp_t gfp_mask)
2886 {
2887 unsigned long flags;
2888 int ret;
2889
2890 ret = radix_tree_preload(gfp_mask);
2891 if (!ret) {
2892 cic->ioc = ioc;
2893 cic->key = cfqd;
2894
2895 spin_lock_irqsave(&ioc->lock, flags);
2896 ret = radix_tree_insert(&ioc->radix_root,
2897 (unsigned long) cfqd, cic);
2898 if (!ret)
2899 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2900 spin_unlock_irqrestore(&ioc->lock, flags);
2901
2902 radix_tree_preload_end();
2903
2904 if (!ret) {
2905 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2906 list_add(&cic->queue_list, &cfqd->cic_list);
2907 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2908 }
2909 }
2910
2911 if (ret)
2912 printk(KERN_ERR "cfq: cic link failed!\n");
2913
2914 return ret;
2915 }
2916
2917 /*
2918 * Setup general io context and cfq io context. There can be several cfq
2919 * io contexts per general io context, if this process is doing io to more
2920 * than one device managed by cfq.
2921 */
2922 static struct cfq_io_context *
2923 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2924 {
2925 struct io_context *ioc = NULL;
2926 struct cfq_io_context *cic;
2927
2928 might_sleep_if(gfp_mask & __GFP_WAIT);
2929
2930 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2931 if (!ioc)
2932 return NULL;
2933
2934 cic = cfq_cic_lookup(cfqd, ioc);
2935 if (cic)
2936 goto out;
2937
2938 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2939 if (cic == NULL)
2940 goto err;
2941
2942 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2943 goto err_free;
2944
2945 out:
2946 smp_read_barrier_depends();
2947 if (unlikely(ioc->ioprio_changed))
2948 cfq_ioc_set_ioprio(ioc);
2949
2950 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2951 if (unlikely(ioc->cgroup_changed))
2952 cfq_ioc_set_cgroup(ioc);
2953 #endif
2954 return cic;
2955 err_free:
2956 cfq_cic_free(cic);
2957 err:
2958 put_io_context(ioc);
2959 return NULL;
2960 }
2961
2962 static void
2963 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2964 {
2965 unsigned long elapsed = jiffies - cic->last_end_request;
2966 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2967
2968 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2969 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2970 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2971 }
2972
2973 static void
2974 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2975 struct request *rq)
2976 {
2977 sector_t sdist;
2978 u64 total;
2979
2980 if (!cfqq->last_request_pos)
2981 sdist = 0;
2982 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2983 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2984 else
2985 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2986
2987 /*
2988 * Don't allow the seek distance to get too large from the
2989 * odd fragment, pagein, etc
2990 */
2991 if (cfqq->seek_samples <= 60) /* second&third seek */
2992 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2993 else
2994 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2995
2996 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2997 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2998 total = cfqq->seek_total + (cfqq->seek_samples/2);
2999 do_div(total, cfqq->seek_samples);
3000 cfqq->seek_mean = (sector_t)total;
3001
3002 /*
3003 * If this cfqq is shared between multiple processes, check to
3004 * make sure that those processes are still issuing I/Os within
3005 * the mean seek distance. If not, it may be time to break the
3006 * queues apart again.
3007 */
3008 if (cfq_cfqq_coop(cfqq)) {
3009 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3010 cfqq->seeky_start = jiffies;
3011 else if (!CFQQ_SEEKY(cfqq))
3012 cfqq->seeky_start = 0;
3013 }
3014 }
3015
3016 /*
3017 * Disable idle window if the process thinks too long or seeks so much that
3018 * it doesn't matter
3019 */
3020 static void
3021 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3022 struct cfq_io_context *cic)
3023 {
3024 int old_idle, enable_idle;
3025
3026 /*
3027 * Don't idle for async or idle io prio class
3028 */
3029 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3030 return;
3031
3032 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3033
3034 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3035 cfq_mark_cfqq_deep(cfqq);
3036
3037 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3038 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3039 && CFQQ_SEEKY(cfqq)))
3040 enable_idle = 0;
3041 else if (sample_valid(cic->ttime_samples)) {
3042 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3043 enable_idle = 0;
3044 else
3045 enable_idle = 1;
3046 }
3047
3048 if (old_idle != enable_idle) {
3049 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3050 if (enable_idle)
3051 cfq_mark_cfqq_idle_window(cfqq);
3052 else
3053 cfq_clear_cfqq_idle_window(cfqq);
3054 }
3055 }
3056
3057 /*
3058 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3059 * no or if we aren't sure, a 1 will cause a preempt.
3060 */
3061 static bool
3062 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3063 struct request *rq)
3064 {
3065 struct cfq_queue *cfqq;
3066
3067 cfqq = cfqd->active_queue;
3068 if (!cfqq)
3069 return false;
3070
3071 if (cfq_class_idle(new_cfqq))
3072 return false;
3073
3074 if (cfq_class_idle(cfqq))
3075 return true;
3076
3077 /*
3078 * if the new request is sync, but the currently running queue is
3079 * not, let the sync request have priority.
3080 */
3081 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3082 return true;
3083
3084 if (new_cfqq->cfqg != cfqq->cfqg)
3085 return false;
3086
3087 if (cfq_slice_used(cfqq))
3088 return true;
3089
3090 /* Allow preemption only if we are idling on sync-noidle tree */
3091 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3092 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3093 new_cfqq->service_tree->count == 2 &&
3094 RB_EMPTY_ROOT(&cfqq->sort_list))
3095 return true;
3096
3097 /*
3098 * So both queues are sync. Let the new request get disk time if
3099 * it's a metadata request and the current queue is doing regular IO.
3100 */
3101 if (rq_is_meta(rq) && !cfqq->meta_pending)
3102 return true;
3103
3104 /*
3105 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3106 */
3107 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3108 return true;
3109
3110 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3111 return false;
3112
3113 /*
3114 * if this request is as-good as one we would expect from the
3115 * current cfqq, let it preempt
3116 */
3117 if (cfq_rq_close(cfqd, cfqq, rq))
3118 return true;
3119
3120 return false;
3121 }
3122
3123 /*
3124 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3125 * let it have half of its nominal slice.
3126 */
3127 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3128 {
3129 cfq_log_cfqq(cfqd, cfqq, "preempt");
3130 cfq_slice_expired(cfqd, 1);
3131
3132 /*
3133 * Put the new queue at the front of the of the current list,
3134 * so we know that it will be selected next.
3135 */
3136 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3137
3138 cfq_service_tree_add(cfqd, cfqq, 1);
3139
3140 cfqq->slice_end = 0;
3141 cfq_mark_cfqq_slice_new(cfqq);
3142 }
3143
3144 /*
3145 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3146 * something we should do about it
3147 */
3148 static void
3149 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3150 struct request *rq)
3151 {
3152 struct cfq_io_context *cic = RQ_CIC(rq);
3153
3154 cfqd->rq_queued++;
3155 if (rq_is_meta(rq))
3156 cfqq->meta_pending++;
3157
3158 cfq_update_io_thinktime(cfqd, cic);
3159 cfq_update_io_seektime(cfqd, cfqq, rq);
3160 cfq_update_idle_window(cfqd, cfqq, cic);
3161
3162 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3163
3164 if (cfqq == cfqd->active_queue) {
3165 if (cfq_cfqq_wait_busy(cfqq)) {
3166 cfq_clear_cfqq_wait_busy(cfqq);
3167 cfq_mark_cfqq_wait_busy_done(cfqq);
3168 }
3169 /*
3170 * Remember that we saw a request from this process, but
3171 * don't start queuing just yet. Otherwise we risk seeing lots
3172 * of tiny requests, because we disrupt the normal plugging
3173 * and merging. If the request is already larger than a single
3174 * page, let it rip immediately. For that case we assume that
3175 * merging is already done. Ditto for a busy system that
3176 * has other work pending, don't risk delaying until the
3177 * idle timer unplug to continue working.
3178 */
3179 if (cfq_cfqq_wait_request(cfqq)) {
3180 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3181 cfqd->busy_queues > 1) {
3182 del_timer(&cfqd->idle_slice_timer);
3183 __blk_run_queue(cfqd->queue);
3184 } else
3185 cfq_mark_cfqq_must_dispatch(cfqq);
3186 }
3187 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3188 /*
3189 * not the active queue - expire current slice if it is
3190 * idle and has expired it's mean thinktime or this new queue
3191 * has some old slice time left and is of higher priority or
3192 * this new queue is RT and the current one is BE
3193 */
3194 cfq_preempt_queue(cfqd, cfqq);
3195 __blk_run_queue(cfqd->queue);
3196 }
3197 }
3198
3199 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3200 {
3201 struct cfq_data *cfqd = q->elevator->elevator_data;
3202 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3203
3204 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3205 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3206
3207 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3208 list_add_tail(&rq->queuelist, &cfqq->fifo);
3209 cfq_add_rq_rb(rq);
3210
3211 cfq_rq_enqueued(cfqd, cfqq, rq);
3212 }
3213
3214 /*
3215 * Update hw_tag based on peak queue depth over 50 samples under
3216 * sufficient load.
3217 */
3218 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3219 {
3220 struct cfq_queue *cfqq = cfqd->active_queue;
3221
3222 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3223 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3224
3225 if (cfqd->hw_tag == 1)
3226 return;
3227
3228 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3229 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3230 return;
3231
3232 /*
3233 * If active queue hasn't enough requests and can idle, cfq might not
3234 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3235 * case
3236 */
3237 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3238 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3239 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3240 return;
3241
3242 if (cfqd->hw_tag_samples++ < 50)
3243 return;
3244
3245 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3246 cfqd->hw_tag = 1;
3247 else
3248 cfqd->hw_tag = 0;
3249 }
3250
3251 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3252 {
3253 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3254 struct cfq_data *cfqd = cfqq->cfqd;
3255 const int sync = rq_is_sync(rq);
3256 unsigned long now;
3257
3258 now = jiffies;
3259 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3260
3261 cfq_update_hw_tag(cfqd);
3262
3263 WARN_ON(!cfqd->rq_in_driver[sync]);
3264 WARN_ON(!cfqq->dispatched);
3265 cfqd->rq_in_driver[sync]--;
3266 cfqq->dispatched--;
3267
3268 if (cfq_cfqq_sync(cfqq))
3269 cfqd->sync_flight--;
3270
3271 if (sync) {
3272 RQ_CIC(rq)->last_end_request = now;
3273 cfqd->last_end_sync_rq = now;
3274 }
3275
3276 /*
3277 * If this is the active queue, check if it needs to be expired,
3278 * or if we want to idle in case it has no pending requests.
3279 */
3280 if (cfqd->active_queue == cfqq) {
3281 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3282
3283 if (cfq_cfqq_slice_new(cfqq)) {
3284 cfq_set_prio_slice(cfqd, cfqq);
3285 cfq_clear_cfqq_slice_new(cfqq);
3286 }
3287
3288 /*
3289 * If this queue consumed its slice and this is last queue
3290 * in the group, wait for next request before we expire
3291 * the queue
3292 */
3293 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3294 cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3295 cfq_mark_cfqq_wait_busy(cfqq);
3296 }
3297
3298 /*
3299 * Idling is not enabled on:
3300 * - expired queues
3301 * - idle-priority queues
3302 * - async queues
3303 * - queues with still some requests queued
3304 * - when there is a close cooperator
3305 */
3306 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3307 cfq_slice_expired(cfqd, 1);
3308 else if (sync && cfqq_empty &&
3309 !cfq_close_cooperator(cfqd, cfqq)) {
3310 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3311 /*
3312 * Idling is enabled for SYNC_WORKLOAD.
3313 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3314 * only if we processed at least one !rq_noidle request
3315 */
3316 if (cfqd->serving_type == SYNC_WORKLOAD
3317 || cfqd->noidle_tree_requires_idle
3318 || cfqq->cfqg->nr_cfqq == 1)
3319 cfq_arm_slice_timer(cfqd);
3320 }
3321 }
3322
3323 if (!rq_in_driver(cfqd))
3324 cfq_schedule_dispatch(cfqd);
3325 }
3326
3327 /*
3328 * we temporarily boost lower priority queues if they are holding fs exclusive
3329 * resources. they are boosted to normal prio (CLASS_BE/4)
3330 */
3331 static void cfq_prio_boost(struct cfq_queue *cfqq)
3332 {
3333 if (has_fs_excl()) {
3334 /*
3335 * boost idle prio on transactions that would lock out other
3336 * users of the filesystem
3337 */
3338 if (cfq_class_idle(cfqq))
3339 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3340 if (cfqq->ioprio > IOPRIO_NORM)
3341 cfqq->ioprio = IOPRIO_NORM;
3342 } else {
3343 /*
3344 * unboost the queue (if needed)
3345 */
3346 cfqq->ioprio_class = cfqq->org_ioprio_class;
3347 cfqq->ioprio = cfqq->org_ioprio;
3348 }
3349 }
3350
3351 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3352 {
3353 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3354 cfq_mark_cfqq_must_alloc_slice(cfqq);
3355 return ELV_MQUEUE_MUST;
3356 }
3357
3358 return ELV_MQUEUE_MAY;
3359 }
3360
3361 static int cfq_may_queue(struct request_queue *q, int rw)
3362 {
3363 struct cfq_data *cfqd = q->elevator->elevator_data;
3364 struct task_struct *tsk = current;
3365 struct cfq_io_context *cic;
3366 struct cfq_queue *cfqq;
3367
3368 /*
3369 * don't force setup of a queue from here, as a call to may_queue
3370 * does not necessarily imply that a request actually will be queued.
3371 * so just lookup a possibly existing queue, or return 'may queue'
3372 * if that fails
3373 */
3374 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3375 if (!cic)
3376 return ELV_MQUEUE_MAY;
3377
3378 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3379 if (cfqq) {
3380 cfq_init_prio_data(cfqq, cic->ioc);
3381 cfq_prio_boost(cfqq);
3382
3383 return __cfq_may_queue(cfqq);
3384 }
3385
3386 return ELV_MQUEUE_MAY;
3387 }
3388
3389 /*
3390 * queue lock held here
3391 */
3392 static void cfq_put_request(struct request *rq)
3393 {
3394 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3395
3396 if (cfqq) {
3397 const int rw = rq_data_dir(rq);
3398
3399 BUG_ON(!cfqq->allocated[rw]);
3400 cfqq->allocated[rw]--;
3401
3402 put_io_context(RQ_CIC(rq)->ioc);
3403
3404 rq->elevator_private = NULL;
3405 rq->elevator_private2 = NULL;
3406
3407 cfq_put_queue(cfqq);
3408 }
3409 }
3410
3411 static struct cfq_queue *
3412 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3413 struct cfq_queue *cfqq)
3414 {
3415 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3416 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3417 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3418 cfq_put_queue(cfqq);
3419 return cic_to_cfqq(cic, 1);
3420 }
3421
3422 static int should_split_cfqq(struct cfq_queue *cfqq)
3423 {
3424 if (cfqq->seeky_start &&
3425 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3426 return 1;
3427 return 0;
3428 }
3429
3430 /*
3431 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3432 * was the last process referring to said cfqq.
3433 */
3434 static struct cfq_queue *
3435 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3436 {
3437 if (cfqq_process_refs(cfqq) == 1) {
3438 cfqq->seeky_start = 0;
3439 cfqq->pid = current->pid;
3440 cfq_clear_cfqq_coop(cfqq);
3441 return cfqq;
3442 }
3443
3444 cic_set_cfqq(cic, NULL, 1);
3445 cfq_put_queue(cfqq);
3446 return NULL;
3447 }
3448 /*
3449 * Allocate cfq data structures associated with this request.
3450 */
3451 static int
3452 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3453 {
3454 struct cfq_data *cfqd = q->elevator->elevator_data;
3455 struct cfq_io_context *cic;
3456 const int rw = rq_data_dir(rq);
3457 const bool is_sync = rq_is_sync(rq);
3458 struct cfq_queue *cfqq;
3459 unsigned long flags;
3460
3461 might_sleep_if(gfp_mask & __GFP_WAIT);
3462
3463 cic = cfq_get_io_context(cfqd, gfp_mask);
3464
3465 spin_lock_irqsave(q->queue_lock, flags);
3466
3467 if (!cic)
3468 goto queue_fail;
3469
3470 new_queue:
3471 cfqq = cic_to_cfqq(cic, is_sync);
3472 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3473 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3474 cic_set_cfqq(cic, cfqq, is_sync);
3475 } else {
3476 /*
3477 * If the queue was seeky for too long, break it apart.
3478 */
3479 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3480 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3481 cfqq = split_cfqq(cic, cfqq);
3482 if (!cfqq)
3483 goto new_queue;
3484 }
3485
3486 /*
3487 * Check to see if this queue is scheduled to merge with
3488 * another, closely cooperating queue. The merging of
3489 * queues happens here as it must be done in process context.
3490 * The reference on new_cfqq was taken in merge_cfqqs.
3491 */
3492 if (cfqq->new_cfqq)
3493 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3494 }
3495
3496 cfqq->allocated[rw]++;
3497 atomic_inc(&cfqq->ref);
3498
3499 spin_unlock_irqrestore(q->queue_lock, flags);
3500
3501 rq->elevator_private = cic;
3502 rq->elevator_private2 = cfqq;
3503 return 0;
3504
3505 queue_fail:
3506 if (cic)
3507 put_io_context(cic->ioc);
3508
3509 cfq_schedule_dispatch(cfqd);
3510 spin_unlock_irqrestore(q->queue_lock, flags);
3511 cfq_log(cfqd, "set_request fail");
3512 return 1;
3513 }
3514
3515 static void cfq_kick_queue(struct work_struct *work)
3516 {
3517 struct cfq_data *cfqd =
3518 container_of(work, struct cfq_data, unplug_work);
3519 struct request_queue *q = cfqd->queue;
3520
3521 spin_lock_irq(q->queue_lock);
3522 __blk_run_queue(cfqd->queue);
3523 spin_unlock_irq(q->queue_lock);
3524 }
3525
3526 /*
3527 * Timer running if the active_queue is currently idling inside its time slice
3528 */
3529 static void cfq_idle_slice_timer(unsigned long data)
3530 {
3531 struct cfq_data *cfqd = (struct cfq_data *) data;
3532 struct cfq_queue *cfqq;
3533 unsigned long flags;
3534 int timed_out = 1;
3535
3536 cfq_log(cfqd, "idle timer fired");
3537
3538 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3539
3540 cfqq = cfqd->active_queue;
3541 if (cfqq) {
3542 timed_out = 0;
3543
3544 /*
3545 * We saw a request before the queue expired, let it through
3546 */
3547 if (cfq_cfqq_must_dispatch(cfqq))
3548 goto out_kick;
3549
3550 /*
3551 * expired
3552 */
3553 if (cfq_slice_used(cfqq))
3554 goto expire;
3555
3556 /*
3557 * only expire and reinvoke request handler, if there are
3558 * other queues with pending requests
3559 */
3560 if (!cfqd->busy_queues)
3561 goto out_cont;
3562
3563 /*
3564 * not expired and it has a request pending, let it dispatch
3565 */
3566 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3567 goto out_kick;
3568
3569 /*
3570 * Queue depth flag is reset only when the idle didn't succeed
3571 */
3572 cfq_clear_cfqq_deep(cfqq);
3573 }
3574 expire:
3575 cfq_slice_expired(cfqd, timed_out);
3576 out_kick:
3577 cfq_schedule_dispatch(cfqd);
3578 out_cont:
3579 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3580 }
3581
3582 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3583 {
3584 del_timer_sync(&cfqd->idle_slice_timer);
3585 cancel_work_sync(&cfqd->unplug_work);
3586 }
3587
3588 static void cfq_put_async_queues(struct cfq_data *cfqd)
3589 {
3590 int i;
3591
3592 for (i = 0; i < IOPRIO_BE_NR; i++) {
3593 if (cfqd->async_cfqq[0][i])
3594 cfq_put_queue(cfqd->async_cfqq[0][i]);
3595 if (cfqd->async_cfqq[1][i])
3596 cfq_put_queue(cfqd->async_cfqq[1][i]);
3597 }
3598
3599 if (cfqd->async_idle_cfqq)
3600 cfq_put_queue(cfqd->async_idle_cfqq);
3601 }
3602
3603 static void cfq_exit_queue(struct elevator_queue *e)
3604 {
3605 struct cfq_data *cfqd = e->elevator_data;
3606 struct request_queue *q = cfqd->queue;
3607
3608 cfq_shutdown_timer_wq(cfqd);
3609
3610 spin_lock_irq(q->queue_lock);
3611
3612 if (cfqd->active_queue)
3613 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3614
3615 while (!list_empty(&cfqd->cic_list)) {
3616 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3617 struct cfq_io_context,
3618 queue_list);
3619
3620 __cfq_exit_single_io_context(cfqd, cic);
3621 }
3622
3623 cfq_put_async_queues(cfqd);
3624 cfq_release_cfq_groups(cfqd);
3625 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3626
3627 spin_unlock_irq(q->queue_lock);
3628
3629 cfq_shutdown_timer_wq(cfqd);
3630
3631 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3632 synchronize_rcu();
3633 kfree(cfqd);
3634 }
3635
3636 static void *cfq_init_queue(struct request_queue *q)
3637 {
3638 struct cfq_data *cfqd;
3639 int i, j;
3640 struct cfq_group *cfqg;
3641 struct cfq_rb_root *st;
3642
3643 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3644 if (!cfqd)
3645 return NULL;
3646
3647 /* Init root service tree */
3648 cfqd->grp_service_tree = CFQ_RB_ROOT;
3649
3650 /* Init root group */
3651 cfqg = &cfqd->root_group;
3652 for_each_cfqg_st(cfqg, i, j, st)
3653 *st = CFQ_RB_ROOT;
3654 RB_CLEAR_NODE(&cfqg->rb_node);
3655
3656 /* Give preference to root group over other groups */
3657 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3658
3659 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3660 /*
3661 * Take a reference to root group which we never drop. This is just
3662 * to make sure that cfq_put_cfqg() does not try to kfree root group
3663 */
3664 atomic_set(&cfqg->ref, 1);
3665 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3666 0);
3667 #endif
3668 /*
3669 * Not strictly needed (since RB_ROOT just clears the node and we
3670 * zeroed cfqd on alloc), but better be safe in case someone decides
3671 * to add magic to the rb code
3672 */
3673 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3674 cfqd->prio_trees[i] = RB_ROOT;
3675
3676 /*
3677 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3678 * Grab a permanent reference to it, so that the normal code flow
3679 * will not attempt to free it.
3680 */
3681 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3682 atomic_inc(&cfqd->oom_cfqq.ref);
3683 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3684
3685 INIT_LIST_HEAD(&cfqd->cic_list);
3686
3687 cfqd->queue = q;
3688
3689 init_timer(&cfqd->idle_slice_timer);
3690 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3691 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3692
3693 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3694
3695 cfqd->cfq_quantum = cfq_quantum;
3696 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3697 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3698 cfqd->cfq_back_max = cfq_back_max;
3699 cfqd->cfq_back_penalty = cfq_back_penalty;
3700 cfqd->cfq_slice[0] = cfq_slice_async;
3701 cfqd->cfq_slice[1] = cfq_slice_sync;
3702 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3703 cfqd->cfq_slice_idle = cfq_slice_idle;
3704 cfqd->cfq_latency = 1;
3705 cfqd->cfq_group_isolation = 0;
3706 cfqd->hw_tag = -1;
3707 cfqd->last_end_sync_rq = jiffies;
3708 return cfqd;
3709 }
3710
3711 static void cfq_slab_kill(void)
3712 {
3713 /*
3714 * Caller already ensured that pending RCU callbacks are completed,
3715 * so we should have no busy allocations at this point.
3716 */
3717 if (cfq_pool)
3718 kmem_cache_destroy(cfq_pool);
3719 if (cfq_ioc_pool)
3720 kmem_cache_destroy(cfq_ioc_pool);
3721 }
3722
3723 static int __init cfq_slab_setup(void)
3724 {
3725 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3726 if (!cfq_pool)
3727 goto fail;
3728
3729 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3730 if (!cfq_ioc_pool)
3731 goto fail;
3732
3733 return 0;
3734 fail:
3735 cfq_slab_kill();
3736 return -ENOMEM;
3737 }
3738
3739 /*
3740 * sysfs parts below -->
3741 */
3742 static ssize_t
3743 cfq_var_show(unsigned int var, char *page)
3744 {
3745 return sprintf(page, "%d\n", var);
3746 }
3747
3748 static ssize_t
3749 cfq_var_store(unsigned int *var, const char *page, size_t count)
3750 {
3751 char *p = (char *) page;
3752
3753 *var = simple_strtoul(p, &p, 10);
3754 return count;
3755 }
3756
3757 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3758 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3759 { \
3760 struct cfq_data *cfqd = e->elevator_data; \
3761 unsigned int __data = __VAR; \
3762 if (__CONV) \
3763 __data = jiffies_to_msecs(__data); \
3764 return cfq_var_show(__data, (page)); \
3765 }
3766 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3767 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3768 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3769 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3770 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3771 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3772 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3773 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3774 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3775 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3776 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3777 #undef SHOW_FUNCTION
3778
3779 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3780 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3781 { \
3782 struct cfq_data *cfqd = e->elevator_data; \
3783 unsigned int __data; \
3784 int ret = cfq_var_store(&__data, (page), count); \
3785 if (__data < (MIN)) \
3786 __data = (MIN); \
3787 else if (__data > (MAX)) \
3788 __data = (MAX); \
3789 if (__CONV) \
3790 *(__PTR) = msecs_to_jiffies(__data); \
3791 else \
3792 *(__PTR) = __data; \
3793 return ret; \
3794 }
3795 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3796 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3797 UINT_MAX, 1);
3798 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3799 UINT_MAX, 1);
3800 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3801 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3802 UINT_MAX, 0);
3803 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3804 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3805 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3806 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3807 UINT_MAX, 0);
3808 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3809 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3810 #undef STORE_FUNCTION
3811
3812 #define CFQ_ATTR(name) \
3813 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3814
3815 static struct elv_fs_entry cfq_attrs[] = {
3816 CFQ_ATTR(quantum),
3817 CFQ_ATTR(fifo_expire_sync),
3818 CFQ_ATTR(fifo_expire_async),
3819 CFQ_ATTR(back_seek_max),
3820 CFQ_ATTR(back_seek_penalty),
3821 CFQ_ATTR(slice_sync),
3822 CFQ_ATTR(slice_async),
3823 CFQ_ATTR(slice_async_rq),
3824 CFQ_ATTR(slice_idle),
3825 CFQ_ATTR(low_latency),
3826 CFQ_ATTR(group_isolation),
3827 __ATTR_NULL
3828 };
3829
3830 static struct elevator_type iosched_cfq = {
3831 .ops = {
3832 .elevator_merge_fn = cfq_merge,
3833 .elevator_merged_fn = cfq_merged_request,
3834 .elevator_merge_req_fn = cfq_merged_requests,
3835 .elevator_allow_merge_fn = cfq_allow_merge,
3836 .elevator_dispatch_fn = cfq_dispatch_requests,
3837 .elevator_add_req_fn = cfq_insert_request,
3838 .elevator_activate_req_fn = cfq_activate_request,
3839 .elevator_deactivate_req_fn = cfq_deactivate_request,
3840 .elevator_queue_empty_fn = cfq_queue_empty,
3841 .elevator_completed_req_fn = cfq_completed_request,
3842 .elevator_former_req_fn = elv_rb_former_request,
3843 .elevator_latter_req_fn = elv_rb_latter_request,
3844 .elevator_set_req_fn = cfq_set_request,
3845 .elevator_put_req_fn = cfq_put_request,
3846 .elevator_may_queue_fn = cfq_may_queue,
3847 .elevator_init_fn = cfq_init_queue,
3848 .elevator_exit_fn = cfq_exit_queue,
3849 .trim = cfq_free_io_context,
3850 },
3851 .elevator_attrs = cfq_attrs,
3852 .elevator_name = "cfq",
3853 .elevator_owner = THIS_MODULE,
3854 };
3855
3856 static int __init cfq_init(void)
3857 {
3858 /*
3859 * could be 0 on HZ < 1000 setups
3860 */
3861 if (!cfq_slice_async)
3862 cfq_slice_async = 1;
3863 if (!cfq_slice_idle)
3864 cfq_slice_idle = 1;
3865
3866 if (cfq_slab_setup())
3867 return -ENOMEM;
3868
3869 elv_register(&iosched_cfq);
3870
3871 return 0;
3872 }
3873
3874 static void __exit cfq_exit(void)
3875 {
3876 DECLARE_COMPLETION_ONSTACK(all_gone);
3877 elv_unregister(&iosched_cfq);
3878 ioc_gone = &all_gone;
3879 /* ioc_gone's update must be visible before reading ioc_count */
3880 smp_wmb();
3881
3882 /*
3883 * this also protects us from entering cfq_slab_kill() with
3884 * pending RCU callbacks
3885 */
3886 if (elv_ioc_count_read(cfq_ioc_count))
3887 wait_for_completion(&all_gone);
3888 cfq_slab_kill();
3889 }
3890
3891 module_init(cfq_init);
3892 module_exit(cfq_exit);
3893
3894 MODULE_AUTHOR("Jens Axboe");
3895 MODULE_LICENSE("GPL");
3896 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");