Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19
20 unsigned long blk_max_pfn;
21
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
57 {
58 q->softirq_done_fn = fn;
59 }
60 EXPORT_SYMBOL(blk_queue_softirq_done);
61
62 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
63 {
64 q->rq_timeout = timeout;
65 }
66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
67
68 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
69 {
70 q->rq_timed_out_fn = fn;
71 }
72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
73
74 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
75 {
76 q->lld_busy_fn = fn;
77 }
78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
79
80 /**
81 * blk_set_default_limits - reset limits to default values
82 * @lim: the queue_limits structure to reset
83 *
84 * Description:
85 * Returns a queue_limit struct to its default state.
86 */
87 void blk_set_default_limits(struct queue_limits *lim)
88 {
89 lim->max_segments = BLK_MAX_SEGMENTS;
90 lim->max_integrity_segments = 0;
91 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
92 lim->virt_boundary_mask = 0;
93 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
94 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
95 lim->chunk_sectors = 0;
96 lim->max_write_same_sectors = 0;
97 lim->max_discard_sectors = 0;
98 lim->max_hw_discard_sectors = 0;
99 lim->discard_granularity = 0;
100 lim->discard_alignment = 0;
101 lim->discard_misaligned = 0;
102 lim->discard_zeroes_data = 0;
103 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
104 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
105 lim->alignment_offset = 0;
106 lim->io_opt = 0;
107 lim->misaligned = 0;
108 lim->cluster = 1;
109 }
110 EXPORT_SYMBOL(blk_set_default_limits);
111
112 /**
113 * blk_set_stacking_limits - set default limits for stacking devices
114 * @lim: the queue_limits structure to reset
115 *
116 * Description:
117 * Returns a queue_limit struct to its default state. Should be used
118 * by stacking drivers like DM that have no internal limits.
119 */
120 void blk_set_stacking_limits(struct queue_limits *lim)
121 {
122 blk_set_default_limits(lim);
123
124 /* Inherit limits from component devices */
125 lim->discard_zeroes_data = 1;
126 lim->max_segments = USHRT_MAX;
127 lim->max_hw_sectors = UINT_MAX;
128 lim->max_segment_size = UINT_MAX;
129 lim->max_sectors = UINT_MAX;
130 lim->max_write_same_sectors = UINT_MAX;
131 }
132 EXPORT_SYMBOL(blk_set_stacking_limits);
133
134 /**
135 * blk_queue_make_request - define an alternate make_request function for a device
136 * @q: the request queue for the device to be affected
137 * @mfn: the alternate make_request function
138 *
139 * Description:
140 * The normal way for &struct bios to be passed to a device
141 * driver is for them to be collected into requests on a request
142 * queue, and then to allow the device driver to select requests
143 * off that queue when it is ready. This works well for many block
144 * devices. However some block devices (typically virtual devices
145 * such as md or lvm) do not benefit from the processing on the
146 * request queue, and are served best by having the requests passed
147 * directly to them. This can be achieved by providing a function
148 * to blk_queue_make_request().
149 *
150 * Caveat:
151 * The driver that does this *must* be able to deal appropriately
152 * with buffers in "highmemory". This can be accomplished by either calling
153 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
154 * blk_queue_bounce() to create a buffer in normal memory.
155 **/
156 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
157 {
158 /*
159 * set defaults
160 */
161 q->nr_requests = BLKDEV_MAX_RQ;
162
163 q->make_request_fn = mfn;
164 blk_queue_dma_alignment(q, 511);
165 blk_queue_congestion_threshold(q);
166 q->nr_batching = BLK_BATCH_REQ;
167
168 blk_set_default_limits(&q->limits);
169
170 /*
171 * by default assume old behaviour and bounce for any highmem page
172 */
173 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
174 }
175 EXPORT_SYMBOL(blk_queue_make_request);
176
177 /**
178 * blk_queue_bounce_limit - set bounce buffer limit for queue
179 * @q: the request queue for the device
180 * @max_addr: the maximum address the device can handle
181 *
182 * Description:
183 * Different hardware can have different requirements as to what pages
184 * it can do I/O directly to. A low level driver can call
185 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
186 * buffers for doing I/O to pages residing above @max_addr.
187 **/
188 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
189 {
190 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
191 int dma = 0;
192
193 q->bounce_gfp = GFP_NOIO;
194 #if BITS_PER_LONG == 64
195 /*
196 * Assume anything <= 4GB can be handled by IOMMU. Actually
197 * some IOMMUs can handle everything, but I don't know of a
198 * way to test this here.
199 */
200 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
201 dma = 1;
202 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
203 #else
204 if (b_pfn < blk_max_low_pfn)
205 dma = 1;
206 q->limits.bounce_pfn = b_pfn;
207 #endif
208 if (dma) {
209 init_emergency_isa_pool();
210 q->bounce_gfp = GFP_NOIO | GFP_DMA;
211 q->limits.bounce_pfn = b_pfn;
212 }
213 }
214 EXPORT_SYMBOL(blk_queue_bounce_limit);
215
216 /**
217 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
218 * @limits: the queue limits
219 * @max_hw_sectors: max hardware sectors in the usual 512b unit
220 *
221 * Description:
222 * Enables a low level driver to set a hard upper limit,
223 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
224 * the device driver based upon the capabilities of the I/O
225 * controller.
226 *
227 * max_sectors is a soft limit imposed by the block layer for
228 * filesystem type requests. This value can be overridden on a
229 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
230 * The soft limit can not exceed max_hw_sectors.
231 **/
232 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
233 {
234 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
235 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
236 printk(KERN_INFO "%s: set to minimum %d\n",
237 __func__, max_hw_sectors);
238 }
239
240 limits->max_hw_sectors = max_hw_sectors;
241 limits->max_sectors = min_t(unsigned int, max_hw_sectors,
242 BLK_DEF_MAX_SECTORS);
243 }
244 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
245
246 /**
247 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
248 * @q: the request queue for the device
249 * @max_hw_sectors: max hardware sectors in the usual 512b unit
250 *
251 * Description:
252 * See description for blk_limits_max_hw_sectors().
253 **/
254 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
255 {
256 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
257 }
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
259
260 /**
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
264 *
265 * Description:
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
272 **/
273 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
274 {
275 BUG_ON(!is_power_of_2(chunk_sectors));
276 q->limits.chunk_sectors = chunk_sectors;
277 }
278 EXPORT_SYMBOL(blk_queue_chunk_sectors);
279
280 /**
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
284 **/
285 void blk_queue_max_discard_sectors(struct request_queue *q,
286 unsigned int max_discard_sectors)
287 {
288 q->limits.max_hw_discard_sectors = max_discard_sectors;
289 q->limits.max_discard_sectors = max_discard_sectors;
290 }
291 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
292
293 /**
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
297 **/
298 void blk_queue_max_write_same_sectors(struct request_queue *q,
299 unsigned int max_write_same_sectors)
300 {
301 q->limits.max_write_same_sectors = max_write_same_sectors;
302 }
303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
304
305 /**
306 * blk_queue_max_segments - set max hw segments for a request for this queue
307 * @q: the request queue for the device
308 * @max_segments: max number of segments
309 *
310 * Description:
311 * Enables a low level driver to set an upper limit on the number of
312 * hw data segments in a request.
313 **/
314 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
315 {
316 if (!max_segments) {
317 max_segments = 1;
318 printk(KERN_INFO "%s: set to minimum %d\n",
319 __func__, max_segments);
320 }
321
322 q->limits.max_segments = max_segments;
323 }
324 EXPORT_SYMBOL(blk_queue_max_segments);
325
326 /**
327 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
328 * @q: the request queue for the device
329 * @max_size: max size of segment in bytes
330 *
331 * Description:
332 * Enables a low level driver to set an upper limit on the size of a
333 * coalesced segment
334 **/
335 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
336 {
337 if (max_size < PAGE_CACHE_SIZE) {
338 max_size = PAGE_CACHE_SIZE;
339 printk(KERN_INFO "%s: set to minimum %d\n",
340 __func__, max_size);
341 }
342
343 q->limits.max_segment_size = max_size;
344 }
345 EXPORT_SYMBOL(blk_queue_max_segment_size);
346
347 /**
348 * blk_queue_logical_block_size - set logical block size for the queue
349 * @q: the request queue for the device
350 * @size: the logical block size, in bytes
351 *
352 * Description:
353 * This should be set to the lowest possible block size that the
354 * storage device can address. The default of 512 covers most
355 * hardware.
356 **/
357 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
358 {
359 q->limits.logical_block_size = size;
360
361 if (q->limits.physical_block_size < size)
362 q->limits.physical_block_size = size;
363
364 if (q->limits.io_min < q->limits.physical_block_size)
365 q->limits.io_min = q->limits.physical_block_size;
366 }
367 EXPORT_SYMBOL(blk_queue_logical_block_size);
368
369 /**
370 * blk_queue_physical_block_size - set physical block size for the queue
371 * @q: the request queue for the device
372 * @size: the physical block size, in bytes
373 *
374 * Description:
375 * This should be set to the lowest possible sector size that the
376 * hardware can operate on without reverting to read-modify-write
377 * operations.
378 */
379 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
380 {
381 q->limits.physical_block_size = size;
382
383 if (q->limits.physical_block_size < q->limits.logical_block_size)
384 q->limits.physical_block_size = q->limits.logical_block_size;
385
386 if (q->limits.io_min < q->limits.physical_block_size)
387 q->limits.io_min = q->limits.physical_block_size;
388 }
389 EXPORT_SYMBOL(blk_queue_physical_block_size);
390
391 /**
392 * blk_queue_alignment_offset - set physical block alignment offset
393 * @q: the request queue for the device
394 * @offset: alignment offset in bytes
395 *
396 * Description:
397 * Some devices are naturally misaligned to compensate for things like
398 * the legacy DOS partition table 63-sector offset. Low-level drivers
399 * should call this function for devices whose first sector is not
400 * naturally aligned.
401 */
402 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
403 {
404 q->limits.alignment_offset =
405 offset & (q->limits.physical_block_size - 1);
406 q->limits.misaligned = 0;
407 }
408 EXPORT_SYMBOL(blk_queue_alignment_offset);
409
410 /**
411 * blk_limits_io_min - set minimum request size for a device
412 * @limits: the queue limits
413 * @min: smallest I/O size in bytes
414 *
415 * Description:
416 * Some devices have an internal block size bigger than the reported
417 * hardware sector size. This function can be used to signal the
418 * smallest I/O the device can perform without incurring a performance
419 * penalty.
420 */
421 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
422 {
423 limits->io_min = min;
424
425 if (limits->io_min < limits->logical_block_size)
426 limits->io_min = limits->logical_block_size;
427
428 if (limits->io_min < limits->physical_block_size)
429 limits->io_min = limits->physical_block_size;
430 }
431 EXPORT_SYMBOL(blk_limits_io_min);
432
433 /**
434 * blk_queue_io_min - set minimum request size for the queue
435 * @q: the request queue for the device
436 * @min: smallest I/O size in bytes
437 *
438 * Description:
439 * Storage devices may report a granularity or preferred minimum I/O
440 * size which is the smallest request the device can perform without
441 * incurring a performance penalty. For disk drives this is often the
442 * physical block size. For RAID arrays it is often the stripe chunk
443 * size. A properly aligned multiple of minimum_io_size is the
444 * preferred request size for workloads where a high number of I/O
445 * operations is desired.
446 */
447 void blk_queue_io_min(struct request_queue *q, unsigned int min)
448 {
449 blk_limits_io_min(&q->limits, min);
450 }
451 EXPORT_SYMBOL(blk_queue_io_min);
452
453 /**
454 * blk_limits_io_opt - set optimal request size for a device
455 * @limits: the queue limits
456 * @opt: smallest I/O size in bytes
457 *
458 * Description:
459 * Storage devices may report an optimal I/O size, which is the
460 * device's preferred unit for sustained I/O. This is rarely reported
461 * for disk drives. For RAID arrays it is usually the stripe width or
462 * the internal track size. A properly aligned multiple of
463 * optimal_io_size is the preferred request size for workloads where
464 * sustained throughput is desired.
465 */
466 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
467 {
468 limits->io_opt = opt;
469 }
470 EXPORT_SYMBOL(blk_limits_io_opt);
471
472 /**
473 * blk_queue_io_opt - set optimal request size for the queue
474 * @q: the request queue for the device
475 * @opt: optimal request size in bytes
476 *
477 * Description:
478 * Storage devices may report an optimal I/O size, which is the
479 * device's preferred unit for sustained I/O. This is rarely reported
480 * for disk drives. For RAID arrays it is usually the stripe width or
481 * the internal track size. A properly aligned multiple of
482 * optimal_io_size is the preferred request size for workloads where
483 * sustained throughput is desired.
484 */
485 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
486 {
487 blk_limits_io_opt(&q->limits, opt);
488 }
489 EXPORT_SYMBOL(blk_queue_io_opt);
490
491 /**
492 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
493 * @t: the stacking driver (top)
494 * @b: the underlying device (bottom)
495 **/
496 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
497 {
498 blk_stack_limits(&t->limits, &b->limits, 0);
499 }
500 EXPORT_SYMBOL(blk_queue_stack_limits);
501
502 /**
503 * blk_stack_limits - adjust queue_limits for stacked devices
504 * @t: the stacking driver limits (top device)
505 * @b: the underlying queue limits (bottom, component device)
506 * @start: first data sector within component device
507 *
508 * Description:
509 * This function is used by stacking drivers like MD and DM to ensure
510 * that all component devices have compatible block sizes and
511 * alignments. The stacking driver must provide a queue_limits
512 * struct (top) and then iteratively call the stacking function for
513 * all component (bottom) devices. The stacking function will
514 * attempt to combine the values and ensure proper alignment.
515 *
516 * Returns 0 if the top and bottom queue_limits are compatible. The
517 * top device's block sizes and alignment offsets may be adjusted to
518 * ensure alignment with the bottom device. If no compatible sizes
519 * and alignments exist, -1 is returned and the resulting top
520 * queue_limits will have the misaligned flag set to indicate that
521 * the alignment_offset is undefined.
522 */
523 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
524 sector_t start)
525 {
526 unsigned int top, bottom, alignment, ret = 0;
527
528 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
529 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
530 t->max_write_same_sectors = min(t->max_write_same_sectors,
531 b->max_write_same_sectors);
532 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
533
534 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
535 b->seg_boundary_mask);
536 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
537 b->virt_boundary_mask);
538
539 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
540 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
541 b->max_integrity_segments);
542
543 t->max_segment_size = min_not_zero(t->max_segment_size,
544 b->max_segment_size);
545
546 t->misaligned |= b->misaligned;
547
548 alignment = queue_limit_alignment_offset(b, start);
549
550 /* Bottom device has different alignment. Check that it is
551 * compatible with the current top alignment.
552 */
553 if (t->alignment_offset != alignment) {
554
555 top = max(t->physical_block_size, t->io_min)
556 + t->alignment_offset;
557 bottom = max(b->physical_block_size, b->io_min) + alignment;
558
559 /* Verify that top and bottom intervals line up */
560 if (max(top, bottom) % min(top, bottom)) {
561 t->misaligned = 1;
562 ret = -1;
563 }
564 }
565
566 t->logical_block_size = max(t->logical_block_size,
567 b->logical_block_size);
568
569 t->physical_block_size = max(t->physical_block_size,
570 b->physical_block_size);
571
572 t->io_min = max(t->io_min, b->io_min);
573 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
574
575 t->cluster &= b->cluster;
576 t->discard_zeroes_data &= b->discard_zeroes_data;
577
578 /* Physical block size a multiple of the logical block size? */
579 if (t->physical_block_size & (t->logical_block_size - 1)) {
580 t->physical_block_size = t->logical_block_size;
581 t->misaligned = 1;
582 ret = -1;
583 }
584
585 /* Minimum I/O a multiple of the physical block size? */
586 if (t->io_min & (t->physical_block_size - 1)) {
587 t->io_min = t->physical_block_size;
588 t->misaligned = 1;
589 ret = -1;
590 }
591
592 /* Optimal I/O a multiple of the physical block size? */
593 if (t->io_opt & (t->physical_block_size - 1)) {
594 t->io_opt = 0;
595 t->misaligned = 1;
596 ret = -1;
597 }
598
599 t->raid_partial_stripes_expensive =
600 max(t->raid_partial_stripes_expensive,
601 b->raid_partial_stripes_expensive);
602
603 /* Find lowest common alignment_offset */
604 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
605 % max(t->physical_block_size, t->io_min);
606
607 /* Verify that new alignment_offset is on a logical block boundary */
608 if (t->alignment_offset & (t->logical_block_size - 1)) {
609 t->misaligned = 1;
610 ret = -1;
611 }
612
613 /* Discard alignment and granularity */
614 if (b->discard_granularity) {
615 alignment = queue_limit_discard_alignment(b, start);
616
617 if (t->discard_granularity != 0 &&
618 t->discard_alignment != alignment) {
619 top = t->discard_granularity + t->discard_alignment;
620 bottom = b->discard_granularity + alignment;
621
622 /* Verify that top and bottom intervals line up */
623 if ((max(top, bottom) % min(top, bottom)) != 0)
624 t->discard_misaligned = 1;
625 }
626
627 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
628 b->max_discard_sectors);
629 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
630 b->max_hw_discard_sectors);
631 t->discard_granularity = max(t->discard_granularity,
632 b->discard_granularity);
633 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
634 t->discard_granularity;
635 }
636
637 return ret;
638 }
639 EXPORT_SYMBOL(blk_stack_limits);
640
641 /**
642 * bdev_stack_limits - adjust queue limits for stacked drivers
643 * @t: the stacking driver limits (top device)
644 * @bdev: the component block_device (bottom)
645 * @start: first data sector within component device
646 *
647 * Description:
648 * Merges queue limits for a top device and a block_device. Returns
649 * 0 if alignment didn't change. Returns -1 if adding the bottom
650 * device caused misalignment.
651 */
652 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
653 sector_t start)
654 {
655 struct request_queue *bq = bdev_get_queue(bdev);
656
657 start += get_start_sect(bdev);
658
659 return blk_stack_limits(t, &bq->limits, start);
660 }
661 EXPORT_SYMBOL(bdev_stack_limits);
662
663 /**
664 * disk_stack_limits - adjust queue limits for stacked drivers
665 * @disk: MD/DM gendisk (top)
666 * @bdev: the underlying block device (bottom)
667 * @offset: offset to beginning of data within component device
668 *
669 * Description:
670 * Merges the limits for a top level gendisk and a bottom level
671 * block_device.
672 */
673 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
674 sector_t offset)
675 {
676 struct request_queue *t = disk->queue;
677
678 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
679 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
680
681 disk_name(disk, 0, top);
682 bdevname(bdev, bottom);
683
684 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
685 top, bottom);
686 }
687 }
688 EXPORT_SYMBOL(disk_stack_limits);
689
690 /**
691 * blk_queue_dma_pad - set pad mask
692 * @q: the request queue for the device
693 * @mask: pad mask
694 *
695 * Set dma pad mask.
696 *
697 * Appending pad buffer to a request modifies the last entry of a
698 * scatter list such that it includes the pad buffer.
699 **/
700 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
701 {
702 q->dma_pad_mask = mask;
703 }
704 EXPORT_SYMBOL(blk_queue_dma_pad);
705
706 /**
707 * blk_queue_update_dma_pad - update pad mask
708 * @q: the request queue for the device
709 * @mask: pad mask
710 *
711 * Update dma pad mask.
712 *
713 * Appending pad buffer to a request modifies the last entry of a
714 * scatter list such that it includes the pad buffer.
715 **/
716 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
717 {
718 if (mask > q->dma_pad_mask)
719 q->dma_pad_mask = mask;
720 }
721 EXPORT_SYMBOL(blk_queue_update_dma_pad);
722
723 /**
724 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
725 * @q: the request queue for the device
726 * @dma_drain_needed: fn which returns non-zero if drain is necessary
727 * @buf: physically contiguous buffer
728 * @size: size of the buffer in bytes
729 *
730 * Some devices have excess DMA problems and can't simply discard (or
731 * zero fill) the unwanted piece of the transfer. They have to have a
732 * real area of memory to transfer it into. The use case for this is
733 * ATAPI devices in DMA mode. If the packet command causes a transfer
734 * bigger than the transfer size some HBAs will lock up if there
735 * aren't DMA elements to contain the excess transfer. What this API
736 * does is adjust the queue so that the buf is always appended
737 * silently to the scatterlist.
738 *
739 * Note: This routine adjusts max_hw_segments to make room for appending
740 * the drain buffer. If you call blk_queue_max_segments() after calling
741 * this routine, you must set the limit to one fewer than your device
742 * can support otherwise there won't be room for the drain buffer.
743 */
744 int blk_queue_dma_drain(struct request_queue *q,
745 dma_drain_needed_fn *dma_drain_needed,
746 void *buf, unsigned int size)
747 {
748 if (queue_max_segments(q) < 2)
749 return -EINVAL;
750 /* make room for appending the drain */
751 blk_queue_max_segments(q, queue_max_segments(q) - 1);
752 q->dma_drain_needed = dma_drain_needed;
753 q->dma_drain_buffer = buf;
754 q->dma_drain_size = size;
755
756 return 0;
757 }
758 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
759
760 /**
761 * blk_queue_segment_boundary - set boundary rules for segment merging
762 * @q: the request queue for the device
763 * @mask: the memory boundary mask
764 **/
765 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
766 {
767 if (mask < PAGE_CACHE_SIZE - 1) {
768 mask = PAGE_CACHE_SIZE - 1;
769 printk(KERN_INFO "%s: set to minimum %lx\n",
770 __func__, mask);
771 }
772
773 q->limits.seg_boundary_mask = mask;
774 }
775 EXPORT_SYMBOL(blk_queue_segment_boundary);
776
777 /**
778 * blk_queue_virt_boundary - set boundary rules for bio merging
779 * @q: the request queue for the device
780 * @mask: the memory boundary mask
781 **/
782 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
783 {
784 q->limits.virt_boundary_mask = mask;
785 }
786 EXPORT_SYMBOL(blk_queue_virt_boundary);
787
788 /**
789 * blk_queue_dma_alignment - set dma length and memory alignment
790 * @q: the request queue for the device
791 * @mask: alignment mask
792 *
793 * description:
794 * set required memory and length alignment for direct dma transactions.
795 * this is used when building direct io requests for the queue.
796 *
797 **/
798 void blk_queue_dma_alignment(struct request_queue *q, int mask)
799 {
800 q->dma_alignment = mask;
801 }
802 EXPORT_SYMBOL(blk_queue_dma_alignment);
803
804 /**
805 * blk_queue_update_dma_alignment - update dma length and memory alignment
806 * @q: the request queue for the device
807 * @mask: alignment mask
808 *
809 * description:
810 * update required memory and length alignment for direct dma transactions.
811 * If the requested alignment is larger than the current alignment, then
812 * the current queue alignment is updated to the new value, otherwise it
813 * is left alone. The design of this is to allow multiple objects
814 * (driver, device, transport etc) to set their respective
815 * alignments without having them interfere.
816 *
817 **/
818 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
819 {
820 BUG_ON(mask > PAGE_SIZE);
821
822 if (mask > q->dma_alignment)
823 q->dma_alignment = mask;
824 }
825 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
826
827 /**
828 * blk_queue_flush - configure queue's cache flush capability
829 * @q: the request queue for the device
830 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
831 *
832 * Tell block layer cache flush capability of @q. If it supports
833 * flushing, REQ_FLUSH should be set. If it supports bypassing
834 * write cache for individual writes, REQ_FUA should be set.
835 */
836 void blk_queue_flush(struct request_queue *q, unsigned int flush)
837 {
838 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
839
840 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
841 flush &= ~REQ_FUA;
842
843 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
844 }
845 EXPORT_SYMBOL_GPL(blk_queue_flush);
846
847 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
848 {
849 q->flush_not_queueable = !queueable;
850 }
851 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
852
853 static int __init blk_settings_init(void)
854 {
855 blk_max_low_pfn = max_low_pfn - 1;
856 blk_max_pfn = max_pfn - 1;
857 return 0;
858 }
859 subsys_initcall(blk_settings_init);