block: Fix overrun in lcm() and move it to lib
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13
14 #include "blk.h"
15
16 unsigned long blk_max_low_pfn;
17 EXPORT_SYMBOL(blk_max_low_pfn);
18
19 unsigned long blk_max_pfn;
20
21 /**
22 * blk_queue_prep_rq - set a prepare_request function for queue
23 * @q: queue
24 * @pfn: prepare_request function
25 *
26 * It's possible for a queue to register a prepare_request callback which
27 * is invoked before the request is handed to the request_fn. The goal of
28 * the function is to prepare a request for I/O, it can be used to build a
29 * cdb from the request data for instance.
30 *
31 */
32 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
33 {
34 q->prep_rq_fn = pfn;
35 }
36 EXPORT_SYMBOL(blk_queue_prep_rq);
37
38 /**
39 * blk_queue_merge_bvec - set a merge_bvec function for queue
40 * @q: queue
41 * @mbfn: merge_bvec_fn
42 *
43 * Usually queues have static limitations on the max sectors or segments that
44 * we can put in a request. Stacking drivers may have some settings that
45 * are dynamic, and thus we have to query the queue whether it is ok to
46 * add a new bio_vec to a bio at a given offset or not. If the block device
47 * has such limitations, it needs to register a merge_bvec_fn to control
48 * the size of bio's sent to it. Note that a block device *must* allow a
49 * single page to be added to an empty bio. The block device driver may want
50 * to use the bio_split() function to deal with these bio's. By default
51 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
52 * honored.
53 */
54 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
55 {
56 q->merge_bvec_fn = mbfn;
57 }
58 EXPORT_SYMBOL(blk_queue_merge_bvec);
59
60 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
61 {
62 q->softirq_done_fn = fn;
63 }
64 EXPORT_SYMBOL(blk_queue_softirq_done);
65
66 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
67 {
68 q->rq_timeout = timeout;
69 }
70 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
71
72 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
73 {
74 q->rq_timed_out_fn = fn;
75 }
76 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
77
78 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
79 {
80 q->lld_busy_fn = fn;
81 }
82 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
83
84 /**
85 * blk_set_default_limits - reset limits to default values
86 * @lim: the queue_limits structure to reset
87 *
88 * Description:
89 * Returns a queue_limit struct to its default state. Can be used by
90 * stacking drivers like DM that stage table swaps and reuse an
91 * existing device queue.
92 */
93 void blk_set_default_limits(struct queue_limits *lim)
94 {
95 lim->max_segments = BLK_MAX_SEGMENTS;
96 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
97 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
98 lim->max_sectors = BLK_DEF_MAX_SECTORS;
99 lim->max_hw_sectors = INT_MAX;
100 lim->max_discard_sectors = 0;
101 lim->discard_granularity = 0;
102 lim->discard_alignment = 0;
103 lim->discard_misaligned = 0;
104 lim->discard_zeroes_data = -1;
105 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
106 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
107 lim->alignment_offset = 0;
108 lim->io_opt = 0;
109 lim->misaligned = 0;
110 lim->no_cluster = 0;
111 }
112 EXPORT_SYMBOL(blk_set_default_limits);
113
114 /**
115 * blk_queue_make_request - define an alternate make_request function for a device
116 * @q: the request queue for the device to be affected
117 * @mfn: the alternate make_request function
118 *
119 * Description:
120 * The normal way for &struct bios to be passed to a device
121 * driver is for them to be collected into requests on a request
122 * queue, and then to allow the device driver to select requests
123 * off that queue when it is ready. This works well for many block
124 * devices. However some block devices (typically virtual devices
125 * such as md or lvm) do not benefit from the processing on the
126 * request queue, and are served best by having the requests passed
127 * directly to them. This can be achieved by providing a function
128 * to blk_queue_make_request().
129 *
130 * Caveat:
131 * The driver that does this *must* be able to deal appropriately
132 * with buffers in "highmemory". This can be accomplished by either calling
133 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
134 * blk_queue_bounce() to create a buffer in normal memory.
135 **/
136 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
137 {
138 /*
139 * set defaults
140 */
141 q->nr_requests = BLKDEV_MAX_RQ;
142
143 q->make_request_fn = mfn;
144 blk_queue_dma_alignment(q, 511);
145 blk_queue_congestion_threshold(q);
146 q->nr_batching = BLK_BATCH_REQ;
147
148 q->unplug_thresh = 4; /* hmm */
149 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
150 if (q->unplug_delay == 0)
151 q->unplug_delay = 1;
152
153 q->unplug_timer.function = blk_unplug_timeout;
154 q->unplug_timer.data = (unsigned long)q;
155
156 blk_set_default_limits(&q->limits);
157 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
158
159 /*
160 * If the caller didn't supply a lock, fall back to our embedded
161 * per-queue locks
162 */
163 if (!q->queue_lock)
164 q->queue_lock = &q->__queue_lock;
165
166 /*
167 * by default assume old behaviour and bounce for any highmem page
168 */
169 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
170 }
171 EXPORT_SYMBOL(blk_queue_make_request);
172
173 /**
174 * blk_queue_bounce_limit - set bounce buffer limit for queue
175 * @q: the request queue for the device
176 * @dma_mask: the maximum address the device can handle
177 *
178 * Description:
179 * Different hardware can have different requirements as to what pages
180 * it can do I/O directly to. A low level driver can call
181 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
182 * buffers for doing I/O to pages residing above @dma_mask.
183 **/
184 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
185 {
186 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
187 int dma = 0;
188
189 q->bounce_gfp = GFP_NOIO;
190 #if BITS_PER_LONG == 64
191 /*
192 * Assume anything <= 4GB can be handled by IOMMU. Actually
193 * some IOMMUs can handle everything, but I don't know of a
194 * way to test this here.
195 */
196 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
197 dma = 1;
198 q->limits.bounce_pfn = max_low_pfn;
199 #else
200 if (b_pfn < blk_max_low_pfn)
201 dma = 1;
202 q->limits.bounce_pfn = b_pfn;
203 #endif
204 if (dma) {
205 init_emergency_isa_pool();
206 q->bounce_gfp = GFP_NOIO | GFP_DMA;
207 q->limits.bounce_pfn = b_pfn;
208 }
209 }
210 EXPORT_SYMBOL(blk_queue_bounce_limit);
211
212 /**
213 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
214 * @q: the request queue for the device
215 * @max_hw_sectors: max hardware sectors in the usual 512b unit
216 *
217 * Description:
218 * Enables a low level driver to set a hard upper limit,
219 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
220 * the device driver based upon the combined capabilities of I/O
221 * controller and storage device.
222 *
223 * max_sectors is a soft limit imposed by the block layer for
224 * filesystem type requests. This value can be overridden on a
225 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
226 * The soft limit can not exceed max_hw_sectors.
227 **/
228 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
229 {
230 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
231 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
232 printk(KERN_INFO "%s: set to minimum %d\n",
233 __func__, max_hw_sectors);
234 }
235
236 q->limits.max_hw_sectors = max_hw_sectors;
237 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
238 BLK_DEF_MAX_SECTORS);
239 }
240 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
241
242 /**
243 * blk_queue_max_discard_sectors - set max sectors for a single discard
244 * @q: the request queue for the device
245 * @max_discard_sectors: maximum number of sectors to discard
246 **/
247 void blk_queue_max_discard_sectors(struct request_queue *q,
248 unsigned int max_discard_sectors)
249 {
250 q->limits.max_discard_sectors = max_discard_sectors;
251 }
252 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
253
254 /**
255 * blk_queue_max_segments - set max hw segments for a request for this queue
256 * @q: the request queue for the device
257 * @max_segments: max number of segments
258 *
259 * Description:
260 * Enables a low level driver to set an upper limit on the number of
261 * hw data segments in a request.
262 **/
263 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
264 {
265 if (!max_segments) {
266 max_segments = 1;
267 printk(KERN_INFO "%s: set to minimum %d\n",
268 __func__, max_segments);
269 }
270
271 q->limits.max_segments = max_segments;
272 }
273 EXPORT_SYMBOL(blk_queue_max_segments);
274
275 /**
276 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
277 * @q: the request queue for the device
278 * @max_size: max size of segment in bytes
279 *
280 * Description:
281 * Enables a low level driver to set an upper limit on the size of a
282 * coalesced segment
283 **/
284 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
285 {
286 if (max_size < PAGE_CACHE_SIZE) {
287 max_size = PAGE_CACHE_SIZE;
288 printk(KERN_INFO "%s: set to minimum %d\n",
289 __func__, max_size);
290 }
291
292 q->limits.max_segment_size = max_size;
293 }
294 EXPORT_SYMBOL(blk_queue_max_segment_size);
295
296 /**
297 * blk_queue_logical_block_size - set logical block size for the queue
298 * @q: the request queue for the device
299 * @size: the logical block size, in bytes
300 *
301 * Description:
302 * This should be set to the lowest possible block size that the
303 * storage device can address. The default of 512 covers most
304 * hardware.
305 **/
306 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
307 {
308 q->limits.logical_block_size = size;
309
310 if (q->limits.physical_block_size < size)
311 q->limits.physical_block_size = size;
312
313 if (q->limits.io_min < q->limits.physical_block_size)
314 q->limits.io_min = q->limits.physical_block_size;
315 }
316 EXPORT_SYMBOL(blk_queue_logical_block_size);
317
318 /**
319 * blk_queue_physical_block_size - set physical block size for the queue
320 * @q: the request queue for the device
321 * @size: the physical block size, in bytes
322 *
323 * Description:
324 * This should be set to the lowest possible sector size that the
325 * hardware can operate on without reverting to read-modify-write
326 * operations.
327 */
328 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
329 {
330 q->limits.physical_block_size = size;
331
332 if (q->limits.physical_block_size < q->limits.logical_block_size)
333 q->limits.physical_block_size = q->limits.logical_block_size;
334
335 if (q->limits.io_min < q->limits.physical_block_size)
336 q->limits.io_min = q->limits.physical_block_size;
337 }
338 EXPORT_SYMBOL(blk_queue_physical_block_size);
339
340 /**
341 * blk_queue_alignment_offset - set physical block alignment offset
342 * @q: the request queue for the device
343 * @offset: alignment offset in bytes
344 *
345 * Description:
346 * Some devices are naturally misaligned to compensate for things like
347 * the legacy DOS partition table 63-sector offset. Low-level drivers
348 * should call this function for devices whose first sector is not
349 * naturally aligned.
350 */
351 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
352 {
353 q->limits.alignment_offset =
354 offset & (q->limits.physical_block_size - 1);
355 q->limits.misaligned = 0;
356 }
357 EXPORT_SYMBOL(blk_queue_alignment_offset);
358
359 /**
360 * blk_limits_io_min - set minimum request size for a device
361 * @limits: the queue limits
362 * @min: smallest I/O size in bytes
363 *
364 * Description:
365 * Some devices have an internal block size bigger than the reported
366 * hardware sector size. This function can be used to signal the
367 * smallest I/O the device can perform without incurring a performance
368 * penalty.
369 */
370 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
371 {
372 limits->io_min = min;
373
374 if (limits->io_min < limits->logical_block_size)
375 limits->io_min = limits->logical_block_size;
376
377 if (limits->io_min < limits->physical_block_size)
378 limits->io_min = limits->physical_block_size;
379 }
380 EXPORT_SYMBOL(blk_limits_io_min);
381
382 /**
383 * blk_queue_io_min - set minimum request size for the queue
384 * @q: the request queue for the device
385 * @min: smallest I/O size in bytes
386 *
387 * Description:
388 * Storage devices may report a granularity or preferred minimum I/O
389 * size which is the smallest request the device can perform without
390 * incurring a performance penalty. For disk drives this is often the
391 * physical block size. For RAID arrays it is often the stripe chunk
392 * size. A properly aligned multiple of minimum_io_size is the
393 * preferred request size for workloads where a high number of I/O
394 * operations is desired.
395 */
396 void blk_queue_io_min(struct request_queue *q, unsigned int min)
397 {
398 blk_limits_io_min(&q->limits, min);
399 }
400 EXPORT_SYMBOL(blk_queue_io_min);
401
402 /**
403 * blk_limits_io_opt - set optimal request size for a device
404 * @limits: the queue limits
405 * @opt: smallest I/O size in bytes
406 *
407 * Description:
408 * Storage devices may report an optimal I/O size, which is the
409 * device's preferred unit for sustained I/O. This is rarely reported
410 * for disk drives. For RAID arrays it is usually the stripe width or
411 * the internal track size. A properly aligned multiple of
412 * optimal_io_size is the preferred request size for workloads where
413 * sustained throughput is desired.
414 */
415 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
416 {
417 limits->io_opt = opt;
418 }
419 EXPORT_SYMBOL(blk_limits_io_opt);
420
421 /**
422 * blk_queue_io_opt - set optimal request size for the queue
423 * @q: the request queue for the device
424 * @opt: optimal request size in bytes
425 *
426 * Description:
427 * Storage devices may report an optimal I/O size, which is the
428 * device's preferred unit for sustained I/O. This is rarely reported
429 * for disk drives. For RAID arrays it is usually the stripe width or
430 * the internal track size. A properly aligned multiple of
431 * optimal_io_size is the preferred request size for workloads where
432 * sustained throughput is desired.
433 */
434 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
435 {
436 blk_limits_io_opt(&q->limits, opt);
437 }
438 EXPORT_SYMBOL(blk_queue_io_opt);
439
440 /*
441 * Returns the minimum that is _not_ zero, unless both are zero.
442 */
443 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
444
445 /**
446 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
447 * @t: the stacking driver (top)
448 * @b: the underlying device (bottom)
449 **/
450 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
451 {
452 blk_stack_limits(&t->limits, &b->limits, 0);
453
454 if (!t->queue_lock)
455 WARN_ON_ONCE(1);
456 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
457 unsigned long flags;
458 spin_lock_irqsave(t->queue_lock, flags);
459 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
460 spin_unlock_irqrestore(t->queue_lock, flags);
461 }
462 }
463 EXPORT_SYMBOL(blk_queue_stack_limits);
464
465 /**
466 * blk_stack_limits - adjust queue_limits for stacked devices
467 * @t: the stacking driver limits (top device)
468 * @b: the underlying queue limits (bottom, component device)
469 * @start: first data sector within component device
470 *
471 * Description:
472 * This function is used by stacking drivers like MD and DM to ensure
473 * that all component devices have compatible block sizes and
474 * alignments. The stacking driver must provide a queue_limits
475 * struct (top) and then iteratively call the stacking function for
476 * all component (bottom) devices. The stacking function will
477 * attempt to combine the values and ensure proper alignment.
478 *
479 * Returns 0 if the top and bottom queue_limits are compatible. The
480 * top device's block sizes and alignment offsets may be adjusted to
481 * ensure alignment with the bottom device. If no compatible sizes
482 * and alignments exist, -1 is returned and the resulting top
483 * queue_limits will have the misaligned flag set to indicate that
484 * the alignment_offset is undefined.
485 */
486 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
487 sector_t start)
488 {
489 unsigned int top, bottom, alignment, ret = 0;
490
491 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
492 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
493 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
494
495 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
496 b->seg_boundary_mask);
497
498 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
499
500 t->max_segment_size = min_not_zero(t->max_segment_size,
501 b->max_segment_size);
502
503 t->misaligned |= b->misaligned;
504
505 alignment = queue_limit_alignment_offset(b, start);
506
507 /* Bottom device has different alignment. Check that it is
508 * compatible with the current top alignment.
509 */
510 if (t->alignment_offset != alignment) {
511
512 top = max(t->physical_block_size, t->io_min)
513 + t->alignment_offset;
514 bottom = max(b->physical_block_size, b->io_min) + alignment;
515
516 /* Verify that top and bottom intervals line up */
517 if (max(top, bottom) & (min(top, bottom) - 1)) {
518 t->misaligned = 1;
519 ret = -1;
520 }
521 }
522
523 t->logical_block_size = max(t->logical_block_size,
524 b->logical_block_size);
525
526 t->physical_block_size = max(t->physical_block_size,
527 b->physical_block_size);
528
529 t->io_min = max(t->io_min, b->io_min);
530 t->io_opt = lcm(t->io_opt, b->io_opt);
531
532 t->no_cluster |= b->no_cluster;
533 t->discard_zeroes_data &= b->discard_zeroes_data;
534
535 /* Physical block size a multiple of the logical block size? */
536 if (t->physical_block_size & (t->logical_block_size - 1)) {
537 t->physical_block_size = t->logical_block_size;
538 t->misaligned = 1;
539 ret = -1;
540 }
541
542 /* Minimum I/O a multiple of the physical block size? */
543 if (t->io_min & (t->physical_block_size - 1)) {
544 t->io_min = t->physical_block_size;
545 t->misaligned = 1;
546 ret = -1;
547 }
548
549 /* Optimal I/O a multiple of the physical block size? */
550 if (t->io_opt & (t->physical_block_size - 1)) {
551 t->io_opt = 0;
552 t->misaligned = 1;
553 ret = -1;
554 }
555
556 /* Find lowest common alignment_offset */
557 t->alignment_offset = lcm(t->alignment_offset, alignment)
558 & (max(t->physical_block_size, t->io_min) - 1);
559
560 /* Verify that new alignment_offset is on a logical block boundary */
561 if (t->alignment_offset & (t->logical_block_size - 1)) {
562 t->misaligned = 1;
563 ret = -1;
564 }
565
566 /* Discard alignment and granularity */
567 if (b->discard_granularity) {
568 alignment = queue_limit_discard_alignment(b, start);
569
570 if (t->discard_granularity != 0 &&
571 t->discard_alignment != alignment) {
572 top = t->discard_granularity + t->discard_alignment;
573 bottom = b->discard_granularity + alignment;
574
575 /* Verify that top and bottom intervals line up */
576 if (max(top, bottom) & (min(top, bottom) - 1))
577 t->discard_misaligned = 1;
578 }
579
580 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
581 b->max_discard_sectors);
582 t->discard_granularity = max(t->discard_granularity,
583 b->discard_granularity);
584 t->discard_alignment = lcm(t->discard_alignment, alignment) &
585 (t->discard_granularity - 1);
586 }
587
588 return ret;
589 }
590 EXPORT_SYMBOL(blk_stack_limits);
591
592 /**
593 * bdev_stack_limits - adjust queue limits for stacked drivers
594 * @t: the stacking driver limits (top device)
595 * @bdev: the component block_device (bottom)
596 * @start: first data sector within component device
597 *
598 * Description:
599 * Merges queue limits for a top device and a block_device. Returns
600 * 0 if alignment didn't change. Returns -1 if adding the bottom
601 * device caused misalignment.
602 */
603 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
604 sector_t start)
605 {
606 struct request_queue *bq = bdev_get_queue(bdev);
607
608 start += get_start_sect(bdev);
609
610 return blk_stack_limits(t, &bq->limits, start);
611 }
612 EXPORT_SYMBOL(bdev_stack_limits);
613
614 /**
615 * disk_stack_limits - adjust queue limits for stacked drivers
616 * @disk: MD/DM gendisk (top)
617 * @bdev: the underlying block device (bottom)
618 * @offset: offset to beginning of data within component device
619 *
620 * Description:
621 * Merges the limits for a top level gendisk and a bottom level
622 * block_device.
623 */
624 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
625 sector_t offset)
626 {
627 struct request_queue *t = disk->queue;
628 struct request_queue *b = bdev_get_queue(bdev);
629
630 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
631 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
632
633 disk_name(disk, 0, top);
634 bdevname(bdev, bottom);
635
636 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
637 top, bottom);
638 }
639
640 if (!t->queue_lock)
641 WARN_ON_ONCE(1);
642 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
643 unsigned long flags;
644
645 spin_lock_irqsave(t->queue_lock, flags);
646 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
647 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
648 spin_unlock_irqrestore(t->queue_lock, flags);
649 }
650 }
651 EXPORT_SYMBOL(disk_stack_limits);
652
653 /**
654 * blk_queue_dma_pad - set pad mask
655 * @q: the request queue for the device
656 * @mask: pad mask
657 *
658 * Set dma pad mask.
659 *
660 * Appending pad buffer to a request modifies the last entry of a
661 * scatter list such that it includes the pad buffer.
662 **/
663 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
664 {
665 q->dma_pad_mask = mask;
666 }
667 EXPORT_SYMBOL(blk_queue_dma_pad);
668
669 /**
670 * blk_queue_update_dma_pad - update pad mask
671 * @q: the request queue for the device
672 * @mask: pad mask
673 *
674 * Update dma pad mask.
675 *
676 * Appending pad buffer to a request modifies the last entry of a
677 * scatter list such that it includes the pad buffer.
678 **/
679 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
680 {
681 if (mask > q->dma_pad_mask)
682 q->dma_pad_mask = mask;
683 }
684 EXPORT_SYMBOL(blk_queue_update_dma_pad);
685
686 /**
687 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
688 * @q: the request queue for the device
689 * @dma_drain_needed: fn which returns non-zero if drain is necessary
690 * @buf: physically contiguous buffer
691 * @size: size of the buffer in bytes
692 *
693 * Some devices have excess DMA problems and can't simply discard (or
694 * zero fill) the unwanted piece of the transfer. They have to have a
695 * real area of memory to transfer it into. The use case for this is
696 * ATAPI devices in DMA mode. If the packet command causes a transfer
697 * bigger than the transfer size some HBAs will lock up if there
698 * aren't DMA elements to contain the excess transfer. What this API
699 * does is adjust the queue so that the buf is always appended
700 * silently to the scatterlist.
701 *
702 * Note: This routine adjusts max_hw_segments to make room for appending
703 * the drain buffer. If you call blk_queue_max_segments() after calling
704 * this routine, you must set the limit to one fewer than your device
705 * can support otherwise there won't be room for the drain buffer.
706 */
707 int blk_queue_dma_drain(struct request_queue *q,
708 dma_drain_needed_fn *dma_drain_needed,
709 void *buf, unsigned int size)
710 {
711 if (queue_max_segments(q) < 2)
712 return -EINVAL;
713 /* make room for appending the drain */
714 blk_queue_max_segments(q, queue_max_segments(q) - 1);
715 q->dma_drain_needed = dma_drain_needed;
716 q->dma_drain_buffer = buf;
717 q->dma_drain_size = size;
718
719 return 0;
720 }
721 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
722
723 /**
724 * blk_queue_segment_boundary - set boundary rules for segment merging
725 * @q: the request queue for the device
726 * @mask: the memory boundary mask
727 **/
728 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
729 {
730 if (mask < PAGE_CACHE_SIZE - 1) {
731 mask = PAGE_CACHE_SIZE - 1;
732 printk(KERN_INFO "%s: set to minimum %lx\n",
733 __func__, mask);
734 }
735
736 q->limits.seg_boundary_mask = mask;
737 }
738 EXPORT_SYMBOL(blk_queue_segment_boundary);
739
740 /**
741 * blk_queue_dma_alignment - set dma length and memory alignment
742 * @q: the request queue for the device
743 * @mask: alignment mask
744 *
745 * description:
746 * set required memory and length alignment for direct dma transactions.
747 * this is used when building direct io requests for the queue.
748 *
749 **/
750 void blk_queue_dma_alignment(struct request_queue *q, int mask)
751 {
752 q->dma_alignment = mask;
753 }
754 EXPORT_SYMBOL(blk_queue_dma_alignment);
755
756 /**
757 * blk_queue_update_dma_alignment - update dma length and memory alignment
758 * @q: the request queue for the device
759 * @mask: alignment mask
760 *
761 * description:
762 * update required memory and length alignment for direct dma transactions.
763 * If the requested alignment is larger than the current alignment, then
764 * the current queue alignment is updated to the new value, otherwise it
765 * is left alone. The design of this is to allow multiple objects
766 * (driver, device, transport etc) to set their respective
767 * alignments without having them interfere.
768 *
769 **/
770 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
771 {
772 BUG_ON(mask > PAGE_SIZE);
773
774 if (mask > q->dma_alignment)
775 q->dma_alignment = mask;
776 }
777 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
778
779 static int __init blk_settings_init(void)
780 {
781 blk_max_low_pfn = max_low_pfn - 1;
782 blk_max_pfn = max_pfn - 1;
783 return 0;
784 }
785 subsys_initcall(blk_settings_init);