Add missing blk_trace_remove_sysfs to be in pair with blk_trace_init_sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11
12 #include "blk.h"
13
14 unsigned long blk_max_low_pfn;
15 EXPORT_SYMBOL(blk_max_low_pfn);
16
17 unsigned long blk_max_pfn;
18
19 /**
20 * blk_queue_prep_rq - set a prepare_request function for queue
21 * @q: queue
22 * @pfn: prepare_request function
23 *
24 * It's possible for a queue to register a prepare_request callback which
25 * is invoked before the request is handed to the request_fn. The goal of
26 * the function is to prepare a request for I/O, it can be used to build a
27 * cdb from the request data for instance.
28 *
29 */
30 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
31 {
32 q->prep_rq_fn = pfn;
33 }
34 EXPORT_SYMBOL(blk_queue_prep_rq);
35
36 /**
37 * blk_queue_set_discard - set a discard_sectors function for queue
38 * @q: queue
39 * @dfn: prepare_discard function
40 *
41 * It's possible for a queue to register a discard callback which is used
42 * to transform a discard request into the appropriate type for the
43 * hardware. If none is registered, then discard requests are failed
44 * with %EOPNOTSUPP.
45 *
46 */
47 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
48 {
49 q->prepare_discard_fn = dfn;
50 }
51 EXPORT_SYMBOL(blk_queue_set_discard);
52
53 /**
54 * blk_queue_merge_bvec - set a merge_bvec function for queue
55 * @q: queue
56 * @mbfn: merge_bvec_fn
57 *
58 * Usually queues have static limitations on the max sectors or segments that
59 * we can put in a request. Stacking drivers may have some settings that
60 * are dynamic, and thus we have to query the queue whether it is ok to
61 * add a new bio_vec to a bio at a given offset or not. If the block device
62 * has such limitations, it needs to register a merge_bvec_fn to control
63 * the size of bio's sent to it. Note that a block device *must* allow a
64 * single page to be added to an empty bio. The block device driver may want
65 * to use the bio_split() function to deal with these bio's. By default
66 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
67 * honored.
68 */
69 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
70 {
71 q->merge_bvec_fn = mbfn;
72 }
73 EXPORT_SYMBOL(blk_queue_merge_bvec);
74
75 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
76 {
77 q->softirq_done_fn = fn;
78 }
79 EXPORT_SYMBOL(blk_queue_softirq_done);
80
81 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
82 {
83 q->rq_timeout = timeout;
84 }
85 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
86
87 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
88 {
89 q->rq_timed_out_fn = fn;
90 }
91 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
92
93 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
94 {
95 q->lld_busy_fn = fn;
96 }
97 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
98
99 /**
100 * blk_set_default_limits - reset limits to default values
101 * @lim: the queue_limits structure to reset
102 *
103 * Description:
104 * Returns a queue_limit struct to its default state. Can be used by
105 * stacking drivers like DM that stage table swaps and reuse an
106 * existing device queue.
107 */
108 void blk_set_default_limits(struct queue_limits *lim)
109 {
110 lim->max_phys_segments = MAX_PHYS_SEGMENTS;
111 lim->max_hw_segments = MAX_HW_SEGMENTS;
112 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
113 lim->max_segment_size = MAX_SEGMENT_SIZE;
114 lim->max_sectors = BLK_DEF_MAX_SECTORS;
115 lim->max_hw_sectors = INT_MAX;
116 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
117 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
118 lim->alignment_offset = 0;
119 lim->io_opt = 0;
120 lim->misaligned = 0;
121 lim->no_cluster = 0;
122 }
123 EXPORT_SYMBOL(blk_set_default_limits);
124
125 /**
126 * blk_queue_make_request - define an alternate make_request function for a device
127 * @q: the request queue for the device to be affected
128 * @mfn: the alternate make_request function
129 *
130 * Description:
131 * The normal way for &struct bios to be passed to a device
132 * driver is for them to be collected into requests on a request
133 * queue, and then to allow the device driver to select requests
134 * off that queue when it is ready. This works well for many block
135 * devices. However some block devices (typically virtual devices
136 * such as md or lvm) do not benefit from the processing on the
137 * request queue, and are served best by having the requests passed
138 * directly to them. This can be achieved by providing a function
139 * to blk_queue_make_request().
140 *
141 * Caveat:
142 * The driver that does this *must* be able to deal appropriately
143 * with buffers in "highmemory". This can be accomplished by either calling
144 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
145 * blk_queue_bounce() to create a buffer in normal memory.
146 **/
147 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
148 {
149 /*
150 * set defaults
151 */
152 q->nr_requests = BLKDEV_MAX_RQ;
153
154 q->make_request_fn = mfn;
155 blk_queue_dma_alignment(q, 511);
156 blk_queue_congestion_threshold(q);
157 q->nr_batching = BLK_BATCH_REQ;
158
159 q->unplug_thresh = 4; /* hmm */
160 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
161 if (q->unplug_delay == 0)
162 q->unplug_delay = 1;
163
164 q->unplug_timer.function = blk_unplug_timeout;
165 q->unplug_timer.data = (unsigned long)q;
166
167 blk_set_default_limits(&q->limits);
168 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
169
170 /*
171 * If the caller didn't supply a lock, fall back to our embedded
172 * per-queue locks
173 */
174 if (!q->queue_lock)
175 q->queue_lock = &q->__queue_lock;
176
177 /*
178 * by default assume old behaviour and bounce for any highmem page
179 */
180 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
181 }
182 EXPORT_SYMBOL(blk_queue_make_request);
183
184 /**
185 * blk_queue_bounce_limit - set bounce buffer limit for queue
186 * @q: the request queue for the device
187 * @dma_mask: the maximum address the device can handle
188 *
189 * Description:
190 * Different hardware can have different requirements as to what pages
191 * it can do I/O directly to. A low level driver can call
192 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
193 * buffers for doing I/O to pages residing above @dma_mask.
194 **/
195 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
196 {
197 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
198 int dma = 0;
199
200 q->bounce_gfp = GFP_NOIO;
201 #if BITS_PER_LONG == 64
202 /*
203 * Assume anything <= 4GB can be handled by IOMMU. Actually
204 * some IOMMUs can handle everything, but I don't know of a
205 * way to test this here.
206 */
207 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
208 dma = 1;
209 q->limits.bounce_pfn = max_low_pfn;
210 #else
211 if (b_pfn < blk_max_low_pfn)
212 dma = 1;
213 q->limits.bounce_pfn = b_pfn;
214 #endif
215 if (dma) {
216 init_emergency_isa_pool();
217 q->bounce_gfp = GFP_NOIO | GFP_DMA;
218 q->limits.bounce_pfn = b_pfn;
219 }
220 }
221 EXPORT_SYMBOL(blk_queue_bounce_limit);
222
223 /**
224 * blk_queue_max_sectors - set max sectors for a request for this queue
225 * @q: the request queue for the device
226 * @max_sectors: max sectors in the usual 512b unit
227 *
228 * Description:
229 * Enables a low level driver to set an upper limit on the size of
230 * received requests.
231 **/
232 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
233 {
234 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
235 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
236 printk(KERN_INFO "%s: set to minimum %d\n",
237 __func__, max_sectors);
238 }
239
240 if (BLK_DEF_MAX_SECTORS > max_sectors)
241 q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors;
242 else {
243 q->limits.max_sectors = BLK_DEF_MAX_SECTORS;
244 q->limits.max_hw_sectors = max_sectors;
245 }
246 }
247 EXPORT_SYMBOL(blk_queue_max_sectors);
248
249 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors)
250 {
251 if (BLK_DEF_MAX_SECTORS > max_sectors)
252 q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS;
253 else
254 q->limits.max_hw_sectors = max_sectors;
255 }
256 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
257
258 /**
259 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
260 * @q: the request queue for the device
261 * @max_segments: max number of segments
262 *
263 * Description:
264 * Enables a low level driver to set an upper limit on the number of
265 * physical data segments in a request. This would be the largest sized
266 * scatter list the driver could handle.
267 **/
268 void blk_queue_max_phys_segments(struct request_queue *q,
269 unsigned short max_segments)
270 {
271 if (!max_segments) {
272 max_segments = 1;
273 printk(KERN_INFO "%s: set to minimum %d\n",
274 __func__, max_segments);
275 }
276
277 q->limits.max_phys_segments = max_segments;
278 }
279 EXPORT_SYMBOL(blk_queue_max_phys_segments);
280
281 /**
282 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
283 * @q: the request queue for the device
284 * @max_segments: max number of segments
285 *
286 * Description:
287 * Enables a low level driver to set an upper limit on the number of
288 * hw data segments in a request. This would be the largest number of
289 * address/length pairs the host adapter can actually give at once
290 * to the device.
291 **/
292 void blk_queue_max_hw_segments(struct request_queue *q,
293 unsigned short max_segments)
294 {
295 if (!max_segments) {
296 max_segments = 1;
297 printk(KERN_INFO "%s: set to minimum %d\n",
298 __func__, max_segments);
299 }
300
301 q->limits.max_hw_segments = max_segments;
302 }
303 EXPORT_SYMBOL(blk_queue_max_hw_segments);
304
305 /**
306 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
307 * @q: the request queue for the device
308 * @max_size: max size of segment in bytes
309 *
310 * Description:
311 * Enables a low level driver to set an upper limit on the size of a
312 * coalesced segment
313 **/
314 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
315 {
316 if (max_size < PAGE_CACHE_SIZE) {
317 max_size = PAGE_CACHE_SIZE;
318 printk(KERN_INFO "%s: set to minimum %d\n",
319 __func__, max_size);
320 }
321
322 q->limits.max_segment_size = max_size;
323 }
324 EXPORT_SYMBOL(blk_queue_max_segment_size);
325
326 /**
327 * blk_queue_logical_block_size - set logical block size for the queue
328 * @q: the request queue for the device
329 * @size: the logical block size, in bytes
330 *
331 * Description:
332 * This should be set to the lowest possible block size that the
333 * storage device can address. The default of 512 covers most
334 * hardware.
335 **/
336 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
337 {
338 q->limits.logical_block_size = size;
339
340 if (q->limits.physical_block_size < size)
341 q->limits.physical_block_size = size;
342
343 if (q->limits.io_min < q->limits.physical_block_size)
344 q->limits.io_min = q->limits.physical_block_size;
345 }
346 EXPORT_SYMBOL(blk_queue_logical_block_size);
347
348 /**
349 * blk_queue_physical_block_size - set physical block size for the queue
350 * @q: the request queue for the device
351 * @size: the physical block size, in bytes
352 *
353 * Description:
354 * This should be set to the lowest possible sector size that the
355 * hardware can operate on without reverting to read-modify-write
356 * operations.
357 */
358 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
359 {
360 q->limits.physical_block_size = size;
361
362 if (q->limits.physical_block_size < q->limits.logical_block_size)
363 q->limits.physical_block_size = q->limits.logical_block_size;
364
365 if (q->limits.io_min < q->limits.physical_block_size)
366 q->limits.io_min = q->limits.physical_block_size;
367 }
368 EXPORT_SYMBOL(blk_queue_physical_block_size);
369
370 /**
371 * blk_queue_alignment_offset - set physical block alignment offset
372 * @q: the request queue for the device
373 * @offset: alignment offset in bytes
374 *
375 * Description:
376 * Some devices are naturally misaligned to compensate for things like
377 * the legacy DOS partition table 63-sector offset. Low-level drivers
378 * should call this function for devices whose first sector is not
379 * naturally aligned.
380 */
381 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
382 {
383 q->limits.alignment_offset =
384 offset & (q->limits.physical_block_size - 1);
385 q->limits.misaligned = 0;
386 }
387 EXPORT_SYMBOL(blk_queue_alignment_offset);
388
389 /**
390 * blk_limits_io_min - set minimum request size for a device
391 * @limits: the queue limits
392 * @min: smallest I/O size in bytes
393 *
394 * Description:
395 * Some devices have an internal block size bigger than the reported
396 * hardware sector size. This function can be used to signal the
397 * smallest I/O the device can perform without incurring a performance
398 * penalty.
399 */
400 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
401 {
402 limits->io_min = min;
403
404 if (limits->io_min < limits->logical_block_size)
405 limits->io_min = limits->logical_block_size;
406
407 if (limits->io_min < limits->physical_block_size)
408 limits->io_min = limits->physical_block_size;
409 }
410 EXPORT_SYMBOL(blk_limits_io_min);
411
412 /**
413 * blk_queue_io_min - set minimum request size for the queue
414 * @q: the request queue for the device
415 * @min: smallest I/O size in bytes
416 *
417 * Description:
418 * Storage devices may report a granularity or preferred minimum I/O
419 * size which is the smallest request the device can perform without
420 * incurring a performance penalty. For disk drives this is often the
421 * physical block size. For RAID arrays it is often the stripe chunk
422 * size. A properly aligned multiple of minimum_io_size is the
423 * preferred request size for workloads where a high number of I/O
424 * operations is desired.
425 */
426 void blk_queue_io_min(struct request_queue *q, unsigned int min)
427 {
428 blk_limits_io_min(&q->limits, min);
429 }
430 EXPORT_SYMBOL(blk_queue_io_min);
431
432 /**
433 * blk_limits_io_opt - set optimal request size for a device
434 * @limits: the queue limits
435 * @opt: smallest I/O size in bytes
436 *
437 * Description:
438 * Storage devices may report an optimal I/O size, which is the
439 * device's preferred unit for sustained I/O. This is rarely reported
440 * for disk drives. For RAID arrays it is usually the stripe width or
441 * the internal track size. A properly aligned multiple of
442 * optimal_io_size is the preferred request size for workloads where
443 * sustained throughput is desired.
444 */
445 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
446 {
447 limits->io_opt = opt;
448 }
449 EXPORT_SYMBOL(blk_limits_io_opt);
450
451 /**
452 * blk_queue_io_opt - set optimal request size for the queue
453 * @q: the request queue for the device
454 * @opt: optimal request size in bytes
455 *
456 * Description:
457 * Storage devices may report an optimal I/O size, which is the
458 * device's preferred unit for sustained I/O. This is rarely reported
459 * for disk drives. For RAID arrays it is usually the stripe width or
460 * the internal track size. A properly aligned multiple of
461 * optimal_io_size is the preferred request size for workloads where
462 * sustained throughput is desired.
463 */
464 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
465 {
466 blk_limits_io_opt(&q->limits, opt);
467 }
468 EXPORT_SYMBOL(blk_queue_io_opt);
469
470 /*
471 * Returns the minimum that is _not_ zero, unless both are zero.
472 */
473 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
474
475 /**
476 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
477 * @t: the stacking driver (top)
478 * @b: the underlying device (bottom)
479 **/
480 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
481 {
482 blk_stack_limits(&t->limits, &b->limits, 0);
483
484 if (!t->queue_lock)
485 WARN_ON_ONCE(1);
486 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
487 unsigned long flags;
488 spin_lock_irqsave(t->queue_lock, flags);
489 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
490 spin_unlock_irqrestore(t->queue_lock, flags);
491 }
492 }
493 EXPORT_SYMBOL(blk_queue_stack_limits);
494
495 /**
496 * blk_stack_limits - adjust queue_limits for stacked devices
497 * @t: the stacking driver limits (top)
498 * @b: the underlying queue limits (bottom)
499 * @offset: offset to beginning of data within component device
500 *
501 * Description:
502 * Merges two queue_limit structs. Returns 0 if alignment didn't
503 * change. Returns -1 if adding the bottom device caused
504 * misalignment.
505 */
506 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
507 sector_t offset)
508 {
509 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
510 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
511 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
512
513 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
514 b->seg_boundary_mask);
515
516 t->max_phys_segments = min_not_zero(t->max_phys_segments,
517 b->max_phys_segments);
518
519 t->max_hw_segments = min_not_zero(t->max_hw_segments,
520 b->max_hw_segments);
521
522 t->max_segment_size = min_not_zero(t->max_segment_size,
523 b->max_segment_size);
524
525 t->logical_block_size = max(t->logical_block_size,
526 b->logical_block_size);
527
528 t->physical_block_size = max(t->physical_block_size,
529 b->physical_block_size);
530
531 t->io_min = max(t->io_min, b->io_min);
532 t->no_cluster |= b->no_cluster;
533
534 /* Bottom device offset aligned? */
535 if (offset &&
536 (offset & (b->physical_block_size - 1)) != b->alignment_offset) {
537 t->misaligned = 1;
538 return -1;
539 }
540
541 /* If top has no alignment offset, inherit from bottom */
542 if (!t->alignment_offset)
543 t->alignment_offset =
544 b->alignment_offset & (b->physical_block_size - 1);
545
546 /* Top device aligned on logical block boundary? */
547 if (t->alignment_offset & (t->logical_block_size - 1)) {
548 t->misaligned = 1;
549 return -1;
550 }
551
552 /* Find lcm() of optimal I/O size */
553 if (t->io_opt && b->io_opt)
554 t->io_opt = (t->io_opt * b->io_opt) / gcd(t->io_opt, b->io_opt);
555 else if (b->io_opt)
556 t->io_opt = b->io_opt;
557
558 /* Verify that optimal I/O size is a multiple of io_min */
559 if (t->io_min && t->io_opt % t->io_min)
560 return -1;
561
562 return 0;
563 }
564 EXPORT_SYMBOL(blk_stack_limits);
565
566 /**
567 * disk_stack_limits - adjust queue limits for stacked drivers
568 * @disk: MD/DM gendisk (top)
569 * @bdev: the underlying block device (bottom)
570 * @offset: offset to beginning of data within component device
571 *
572 * Description:
573 * Merges the limits for two queues. Returns 0 if alignment
574 * didn't change. Returns -1 if adding the bottom device caused
575 * misalignment.
576 */
577 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
578 sector_t offset)
579 {
580 struct request_queue *t = disk->queue;
581 struct request_queue *b = bdev_get_queue(bdev);
582
583 offset += get_start_sect(bdev) << 9;
584
585 if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) {
586 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
587
588 disk_name(disk, 0, top);
589 bdevname(bdev, bottom);
590
591 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
592 top, bottom);
593 }
594
595 if (!t->queue_lock)
596 WARN_ON_ONCE(1);
597 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
598 unsigned long flags;
599
600 spin_lock_irqsave(t->queue_lock, flags);
601 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
602 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
603 spin_unlock_irqrestore(t->queue_lock, flags);
604 }
605 }
606 EXPORT_SYMBOL(disk_stack_limits);
607
608 /**
609 * blk_queue_dma_pad - set pad mask
610 * @q: the request queue for the device
611 * @mask: pad mask
612 *
613 * Set dma pad mask.
614 *
615 * Appending pad buffer to a request modifies the last entry of a
616 * scatter list such that it includes the pad buffer.
617 **/
618 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
619 {
620 q->dma_pad_mask = mask;
621 }
622 EXPORT_SYMBOL(blk_queue_dma_pad);
623
624 /**
625 * blk_queue_update_dma_pad - update pad mask
626 * @q: the request queue for the device
627 * @mask: pad mask
628 *
629 * Update dma pad mask.
630 *
631 * Appending pad buffer to a request modifies the last entry of a
632 * scatter list such that it includes the pad buffer.
633 **/
634 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
635 {
636 if (mask > q->dma_pad_mask)
637 q->dma_pad_mask = mask;
638 }
639 EXPORT_SYMBOL(blk_queue_update_dma_pad);
640
641 /**
642 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
643 * @q: the request queue for the device
644 * @dma_drain_needed: fn which returns non-zero if drain is necessary
645 * @buf: physically contiguous buffer
646 * @size: size of the buffer in bytes
647 *
648 * Some devices have excess DMA problems and can't simply discard (or
649 * zero fill) the unwanted piece of the transfer. They have to have a
650 * real area of memory to transfer it into. The use case for this is
651 * ATAPI devices in DMA mode. If the packet command causes a transfer
652 * bigger than the transfer size some HBAs will lock up if there
653 * aren't DMA elements to contain the excess transfer. What this API
654 * does is adjust the queue so that the buf is always appended
655 * silently to the scatterlist.
656 *
657 * Note: This routine adjusts max_hw_segments to make room for
658 * appending the drain buffer. If you call
659 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
660 * calling this routine, you must set the limit to one fewer than your
661 * device can support otherwise there won't be room for the drain
662 * buffer.
663 */
664 int blk_queue_dma_drain(struct request_queue *q,
665 dma_drain_needed_fn *dma_drain_needed,
666 void *buf, unsigned int size)
667 {
668 if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2)
669 return -EINVAL;
670 /* make room for appending the drain */
671 blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1);
672 blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1);
673 q->dma_drain_needed = dma_drain_needed;
674 q->dma_drain_buffer = buf;
675 q->dma_drain_size = size;
676
677 return 0;
678 }
679 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
680
681 /**
682 * blk_queue_segment_boundary - set boundary rules for segment merging
683 * @q: the request queue for the device
684 * @mask: the memory boundary mask
685 **/
686 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
687 {
688 if (mask < PAGE_CACHE_SIZE - 1) {
689 mask = PAGE_CACHE_SIZE - 1;
690 printk(KERN_INFO "%s: set to minimum %lx\n",
691 __func__, mask);
692 }
693
694 q->limits.seg_boundary_mask = mask;
695 }
696 EXPORT_SYMBOL(blk_queue_segment_boundary);
697
698 /**
699 * blk_queue_dma_alignment - set dma length and memory alignment
700 * @q: the request queue for the device
701 * @mask: alignment mask
702 *
703 * description:
704 * set required memory and length alignment for direct dma transactions.
705 * this is used when building direct io requests for the queue.
706 *
707 **/
708 void blk_queue_dma_alignment(struct request_queue *q, int mask)
709 {
710 q->dma_alignment = mask;
711 }
712 EXPORT_SYMBOL(blk_queue_dma_alignment);
713
714 /**
715 * blk_queue_update_dma_alignment - update dma length and memory alignment
716 * @q: the request queue for the device
717 * @mask: alignment mask
718 *
719 * description:
720 * update required memory and length alignment for direct dma transactions.
721 * If the requested alignment is larger than the current alignment, then
722 * the current queue alignment is updated to the new value, otherwise it
723 * is left alone. The design of this is to allow multiple objects
724 * (driver, device, transport etc) to set their respective
725 * alignments without having them interfere.
726 *
727 **/
728 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
729 {
730 BUG_ON(mask > PAGE_SIZE);
731
732 if (mask > q->dma_alignment)
733 q->dma_alignment = mask;
734 }
735 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
736
737 static int __init blk_settings_init(void)
738 {
739 blk_max_low_pfn = max_low_pfn - 1;
740 blk_max_pfn = max_pfn - 1;
741 return 0;
742 }
743 subsys_initcall(blk_settings_init);