Merge tag 'sound-4.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167 /*
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
170 */
171 blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177 int freeze_depth;
178
179 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180 WARN_ON_ONCE(freeze_depth < 0);
181 if (!freeze_depth) {
182 percpu_ref_reinit(&q->q_usage_counter);
183 wake_up_all(&q->mq_freeze_wq);
184 }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
191 */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(q->queue_lock, flags);
197 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 * @q: request queue.
205 *
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
210 */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213 struct blk_mq_hw_ctx *hctx;
214 unsigned int i;
215 bool rcu = false;
216
217 blk_mq_quiesce_queue_nowait(q);
218
219 queue_for_each_hw_ctx(q, hctx, i) {
220 if (hctx->flags & BLK_MQ_F_BLOCKING)
221 synchronize_srcu(hctx->queue_rq_srcu);
222 else
223 rcu = true;
224 }
225 if (rcu)
226 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232 * @q: request queue.
233 *
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
236 */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(q->queue_lock, flags);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243 spin_unlock_irqrestore(q->queue_lock, flags);
244
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252 struct blk_mq_hw_ctx *hctx;
253 unsigned int i;
254
255 queue_for_each_hw_ctx(q, hctx, i)
256 if (blk_mq_hw_queue_mapped(hctx))
257 blk_mq_tag_wakeup_all(hctx->tags, true);
258
259 /*
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
263 */
264 wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269 return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278
279 rq->rq_flags = 0;
280
281 if (data->flags & BLK_MQ_REQ_INTERNAL) {
282 rq->tag = -1;
283 rq->internal_tag = tag;
284 } else {
285 if (blk_mq_tag_busy(data->hctx)) {
286 rq->rq_flags = RQF_MQ_INFLIGHT;
287 atomic_inc(&data->hctx->nr_active);
288 }
289 rq->tag = tag;
290 rq->internal_tag = -1;
291 data->hctx->tags->rqs[rq->tag] = rq;
292 }
293
294 INIT_LIST_HEAD(&rq->queuelist);
295 /* csd/requeue_work/fifo_time is initialized before use */
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
298 rq->cmd_flags = op;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
302 rq->cpu = -1;
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309 rq->rl = NULL;
310 set_start_time_ns(rq);
311 rq->io_start_time_ns = 0;
312 #endif
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 rq->special = NULL;
318 /* tag was already set */
319 rq->extra_len = 0;
320
321 INIT_LIST_HEAD(&rq->timeout_list);
322 rq->timeout = 0;
323
324 rq->end_io = NULL;
325 rq->end_io_data = NULL;
326 rq->next_rq = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(op)]++;
329 return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333 struct bio *bio, unsigned int op,
334 struct blk_mq_alloc_data *data)
335 {
336 struct elevator_queue *e = q->elevator;
337 struct request *rq;
338 unsigned int tag;
339 struct blk_mq_ctx *local_ctx = NULL;
340
341 blk_queue_enter_live(q);
342 data->q = q;
343 if (likely(!data->ctx))
344 data->ctx = local_ctx = blk_mq_get_ctx(q);
345 if (likely(!data->hctx))
346 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 if (op & REQ_NOWAIT)
348 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350 if (e) {
351 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353 /*
354 * Flush requests are special and go directly to the
355 * dispatch list.
356 */
357 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358 e->type->ops.mq.limit_depth(op, data);
359 }
360
361 tag = blk_mq_get_tag(data);
362 if (tag == BLK_MQ_TAG_FAIL) {
363 if (local_ctx) {
364 blk_mq_put_ctx(local_ctx);
365 data->ctx = NULL;
366 }
367 blk_queue_exit(q);
368 return NULL;
369 }
370
371 rq = blk_mq_rq_ctx_init(data, tag, op);
372 if (!op_is_flush(op)) {
373 rq->elv.icq = NULL;
374 if (e && e->type->ops.mq.prepare_request) {
375 if (e->type->icq_cache && rq_ioc(bio))
376 blk_mq_sched_assign_ioc(rq, bio);
377
378 e->type->ops.mq.prepare_request(rq, bio);
379 rq->rq_flags |= RQF_ELVPRIV;
380 }
381 }
382 data->hctx->queued++;
383 return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387 unsigned int flags)
388 {
389 struct blk_mq_alloc_data alloc_data = { .flags = flags };
390 struct request *rq;
391 int ret;
392
393 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 if (ret)
395 return ERR_PTR(ret);
396
397 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398 blk_queue_exit(q);
399
400 if (!rq)
401 return ERR_PTR(-EWOULDBLOCK);
402
403 blk_mq_put_ctx(alloc_data.ctx);
404
405 rq->__data_len = 0;
406 rq->__sector = (sector_t) -1;
407 rq->bio = rq->biotail = NULL;
408 return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags };
416 struct request *rq;
417 unsigned int cpu;
418 int ret;
419
420 /*
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
424 * a specific queue.
425 */
426 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427 return ERR_PTR(-EINVAL);
428
429 if (hctx_idx >= q->nr_hw_queues)
430 return ERR_PTR(-EIO);
431
432 ret = blk_queue_enter(q, true);
433 if (ret)
434 return ERR_PTR(ret);
435
436 /*
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
439 */
440 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442 blk_queue_exit(q);
443 return ERR_PTR(-EXDEV);
444 }
445 cpu = cpumask_first(alloc_data.hctx->cpumask);
446 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449 blk_queue_exit(q);
450
451 if (!rq)
452 return ERR_PTR(-EWOULDBLOCK);
453
454 return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460 struct request_queue *q = rq->q;
461 struct elevator_queue *e = q->elevator;
462 struct blk_mq_ctx *ctx = rq->mq_ctx;
463 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464 const int sched_tag = rq->internal_tag;
465
466 if (rq->rq_flags & RQF_ELVPRIV) {
467 if (e && e->type->ops.mq.finish_request)
468 e->type->ops.mq.finish_request(rq);
469 if (rq->elv.icq) {
470 put_io_context(rq->elv.icq->ioc);
471 rq->elv.icq = NULL;
472 }
473 }
474
475 ctx->rq_completed[rq_is_sync(rq)]++;
476 if (rq->rq_flags & RQF_MQ_INFLIGHT)
477 atomic_dec(&hctx->nr_active);
478
479 wbt_done(q->rq_wb, &rq->issue_stat);
480
481 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
483 if (rq->tag != -1)
484 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
485 if (sched_tag != -1)
486 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
487 blk_mq_sched_restart(hctx);
488 blk_queue_exit(q);
489 }
490 EXPORT_SYMBOL_GPL(blk_mq_free_request);
491
492 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
493 {
494 blk_account_io_done(rq);
495
496 if (rq->end_io) {
497 wbt_done(rq->q->rq_wb, &rq->issue_stat);
498 rq->end_io(rq, error);
499 } else {
500 if (unlikely(blk_bidi_rq(rq)))
501 blk_mq_free_request(rq->next_rq);
502 blk_mq_free_request(rq);
503 }
504 }
505 EXPORT_SYMBOL(__blk_mq_end_request);
506
507 void blk_mq_end_request(struct request *rq, blk_status_t error)
508 {
509 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
510 BUG();
511 __blk_mq_end_request(rq, error);
512 }
513 EXPORT_SYMBOL(blk_mq_end_request);
514
515 static void __blk_mq_complete_request_remote(void *data)
516 {
517 struct request *rq = data;
518
519 rq->q->softirq_done_fn(rq);
520 }
521
522 static void __blk_mq_complete_request(struct request *rq)
523 {
524 struct blk_mq_ctx *ctx = rq->mq_ctx;
525 bool shared = false;
526 int cpu;
527
528 if (rq->internal_tag != -1)
529 blk_mq_sched_completed_request(rq);
530 if (rq->rq_flags & RQF_STATS) {
531 blk_mq_poll_stats_start(rq->q);
532 blk_stat_add(rq);
533 }
534
535 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
536 rq->q->softirq_done_fn(rq);
537 return;
538 }
539
540 cpu = get_cpu();
541 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
542 shared = cpus_share_cache(cpu, ctx->cpu);
543
544 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
545 rq->csd.func = __blk_mq_complete_request_remote;
546 rq->csd.info = rq;
547 rq->csd.flags = 0;
548 smp_call_function_single_async(ctx->cpu, &rq->csd);
549 } else {
550 rq->q->softirq_done_fn(rq);
551 }
552 put_cpu();
553 }
554
555 /**
556 * blk_mq_complete_request - end I/O on a request
557 * @rq: the request being processed
558 *
559 * Description:
560 * Ends all I/O on a request. It does not handle partial completions.
561 * The actual completion happens out-of-order, through a IPI handler.
562 **/
563 void blk_mq_complete_request(struct request *rq)
564 {
565 struct request_queue *q = rq->q;
566
567 if (unlikely(blk_should_fake_timeout(q)))
568 return;
569 if (!blk_mark_rq_complete(rq))
570 __blk_mq_complete_request(rq);
571 }
572 EXPORT_SYMBOL(blk_mq_complete_request);
573
574 int blk_mq_request_started(struct request *rq)
575 {
576 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
577 }
578 EXPORT_SYMBOL_GPL(blk_mq_request_started);
579
580 void blk_mq_start_request(struct request *rq)
581 {
582 struct request_queue *q = rq->q;
583
584 blk_mq_sched_started_request(rq);
585
586 trace_block_rq_issue(q, rq);
587
588 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
589 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
590 rq->rq_flags |= RQF_STATS;
591 wbt_issue(q->rq_wb, &rq->issue_stat);
592 }
593
594 blk_add_timer(rq);
595
596 /*
597 * Ensure that ->deadline is visible before set the started
598 * flag and clear the completed flag.
599 */
600 smp_mb__before_atomic();
601
602 /*
603 * Mark us as started and clear complete. Complete might have been
604 * set if requeue raced with timeout, which then marked it as
605 * complete. So be sure to clear complete again when we start
606 * the request, otherwise we'll ignore the completion event.
607 */
608 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
609 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
610 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
611 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
612
613 if (q->dma_drain_size && blk_rq_bytes(rq)) {
614 /*
615 * Make sure space for the drain appears. We know we can do
616 * this because max_hw_segments has been adjusted to be one
617 * fewer than the device can handle.
618 */
619 rq->nr_phys_segments++;
620 }
621 }
622 EXPORT_SYMBOL(blk_mq_start_request);
623
624 /*
625 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
626 * flag isn't set yet, so there may be race with timeout handler,
627 * but given rq->deadline is just set in .queue_rq() under
628 * this situation, the race won't be possible in reality because
629 * rq->timeout should be set as big enough to cover the window
630 * between blk_mq_start_request() called from .queue_rq() and
631 * clearing REQ_ATOM_STARTED here.
632 */
633 static void __blk_mq_requeue_request(struct request *rq)
634 {
635 struct request_queue *q = rq->q;
636
637 trace_block_rq_requeue(q, rq);
638 wbt_requeue(q->rq_wb, &rq->issue_stat);
639 blk_mq_sched_requeue_request(rq);
640
641 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
642 if (q->dma_drain_size && blk_rq_bytes(rq))
643 rq->nr_phys_segments--;
644 }
645 }
646
647 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
648 {
649 __blk_mq_requeue_request(rq);
650
651 BUG_ON(blk_queued_rq(rq));
652 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
653 }
654 EXPORT_SYMBOL(blk_mq_requeue_request);
655
656 static void blk_mq_requeue_work(struct work_struct *work)
657 {
658 struct request_queue *q =
659 container_of(work, struct request_queue, requeue_work.work);
660 LIST_HEAD(rq_list);
661 struct request *rq, *next;
662
663 spin_lock_irq(&q->requeue_lock);
664 list_splice_init(&q->requeue_list, &rq_list);
665 spin_unlock_irq(&q->requeue_lock);
666
667 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
668 if (!(rq->rq_flags & RQF_SOFTBARRIER))
669 continue;
670
671 rq->rq_flags &= ~RQF_SOFTBARRIER;
672 list_del_init(&rq->queuelist);
673 blk_mq_sched_insert_request(rq, true, false, false, true);
674 }
675
676 while (!list_empty(&rq_list)) {
677 rq = list_entry(rq_list.next, struct request, queuelist);
678 list_del_init(&rq->queuelist);
679 blk_mq_sched_insert_request(rq, false, false, false, true);
680 }
681
682 blk_mq_run_hw_queues(q, false);
683 }
684
685 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
686 bool kick_requeue_list)
687 {
688 struct request_queue *q = rq->q;
689 unsigned long flags;
690
691 /*
692 * We abuse this flag that is otherwise used by the I/O scheduler to
693 * request head insertation from the workqueue.
694 */
695 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
696
697 spin_lock_irqsave(&q->requeue_lock, flags);
698 if (at_head) {
699 rq->rq_flags |= RQF_SOFTBARRIER;
700 list_add(&rq->queuelist, &q->requeue_list);
701 } else {
702 list_add_tail(&rq->queuelist, &q->requeue_list);
703 }
704 spin_unlock_irqrestore(&q->requeue_lock, flags);
705
706 if (kick_requeue_list)
707 blk_mq_kick_requeue_list(q);
708 }
709 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
710
711 void blk_mq_kick_requeue_list(struct request_queue *q)
712 {
713 kblockd_schedule_delayed_work(&q->requeue_work, 0);
714 }
715 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
716
717 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
718 unsigned long msecs)
719 {
720 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
721 msecs_to_jiffies(msecs));
722 }
723 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
724
725 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
726 {
727 if (tag < tags->nr_tags) {
728 prefetch(tags->rqs[tag]);
729 return tags->rqs[tag];
730 }
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(blk_mq_tag_to_rq);
735
736 struct blk_mq_timeout_data {
737 unsigned long next;
738 unsigned int next_set;
739 };
740
741 void blk_mq_rq_timed_out(struct request *req, bool reserved)
742 {
743 const struct blk_mq_ops *ops = req->q->mq_ops;
744 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
745
746 /*
747 * We know that complete is set at this point. If STARTED isn't set
748 * anymore, then the request isn't active and the "timeout" should
749 * just be ignored. This can happen due to the bitflag ordering.
750 * Timeout first checks if STARTED is set, and if it is, assumes
751 * the request is active. But if we race with completion, then
752 * both flags will get cleared. So check here again, and ignore
753 * a timeout event with a request that isn't active.
754 */
755 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
756 return;
757
758 if (ops->timeout)
759 ret = ops->timeout(req, reserved);
760
761 switch (ret) {
762 case BLK_EH_HANDLED:
763 __blk_mq_complete_request(req);
764 break;
765 case BLK_EH_RESET_TIMER:
766 blk_add_timer(req);
767 blk_clear_rq_complete(req);
768 break;
769 case BLK_EH_NOT_HANDLED:
770 break;
771 default:
772 printk(KERN_ERR "block: bad eh return: %d\n", ret);
773 break;
774 }
775 }
776
777 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
778 struct request *rq, void *priv, bool reserved)
779 {
780 struct blk_mq_timeout_data *data = priv;
781
782 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
783 return;
784
785 /*
786 * The rq being checked may have been freed and reallocated
787 * out already here, we avoid this race by checking rq->deadline
788 * and REQ_ATOM_COMPLETE flag together:
789 *
790 * - if rq->deadline is observed as new value because of
791 * reusing, the rq won't be timed out because of timing.
792 * - if rq->deadline is observed as previous value,
793 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
794 * because we put a barrier between setting rq->deadline
795 * and clearing the flag in blk_mq_start_request(), so
796 * this rq won't be timed out too.
797 */
798 if (time_after_eq(jiffies, rq->deadline)) {
799 if (!blk_mark_rq_complete(rq))
800 blk_mq_rq_timed_out(rq, reserved);
801 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
802 data->next = rq->deadline;
803 data->next_set = 1;
804 }
805 }
806
807 static void blk_mq_timeout_work(struct work_struct *work)
808 {
809 struct request_queue *q =
810 container_of(work, struct request_queue, timeout_work);
811 struct blk_mq_timeout_data data = {
812 .next = 0,
813 .next_set = 0,
814 };
815 int i;
816
817 /* A deadlock might occur if a request is stuck requiring a
818 * timeout at the same time a queue freeze is waiting
819 * completion, since the timeout code would not be able to
820 * acquire the queue reference here.
821 *
822 * That's why we don't use blk_queue_enter here; instead, we use
823 * percpu_ref_tryget directly, because we need to be able to
824 * obtain a reference even in the short window between the queue
825 * starting to freeze, by dropping the first reference in
826 * blk_freeze_queue_start, and the moment the last request is
827 * consumed, marked by the instant q_usage_counter reaches
828 * zero.
829 */
830 if (!percpu_ref_tryget(&q->q_usage_counter))
831 return;
832
833 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
834
835 if (data.next_set) {
836 data.next = blk_rq_timeout(round_jiffies_up(data.next));
837 mod_timer(&q->timeout, data.next);
838 } else {
839 struct blk_mq_hw_ctx *hctx;
840
841 queue_for_each_hw_ctx(q, hctx, i) {
842 /* the hctx may be unmapped, so check it here */
843 if (blk_mq_hw_queue_mapped(hctx))
844 blk_mq_tag_idle(hctx);
845 }
846 }
847 blk_queue_exit(q);
848 }
849
850 struct flush_busy_ctx_data {
851 struct blk_mq_hw_ctx *hctx;
852 struct list_head *list;
853 };
854
855 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
856 {
857 struct flush_busy_ctx_data *flush_data = data;
858 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
859 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
860
861 sbitmap_clear_bit(sb, bitnr);
862 spin_lock(&ctx->lock);
863 list_splice_tail_init(&ctx->rq_list, flush_data->list);
864 spin_unlock(&ctx->lock);
865 return true;
866 }
867
868 /*
869 * Process software queues that have been marked busy, splicing them
870 * to the for-dispatch
871 */
872 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
873 {
874 struct flush_busy_ctx_data data = {
875 .hctx = hctx,
876 .list = list,
877 };
878
879 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
880 }
881 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
882
883 static inline unsigned int queued_to_index(unsigned int queued)
884 {
885 if (!queued)
886 return 0;
887
888 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
889 }
890
891 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
892 bool wait)
893 {
894 struct blk_mq_alloc_data data = {
895 .q = rq->q,
896 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
897 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
898 };
899
900 might_sleep_if(wait);
901
902 if (rq->tag != -1)
903 goto done;
904
905 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
906 data.flags |= BLK_MQ_REQ_RESERVED;
907
908 rq->tag = blk_mq_get_tag(&data);
909 if (rq->tag >= 0) {
910 if (blk_mq_tag_busy(data.hctx)) {
911 rq->rq_flags |= RQF_MQ_INFLIGHT;
912 atomic_inc(&data.hctx->nr_active);
913 }
914 data.hctx->tags->rqs[rq->tag] = rq;
915 }
916
917 done:
918 if (hctx)
919 *hctx = data.hctx;
920 return rq->tag != -1;
921 }
922
923 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
924 struct request *rq)
925 {
926 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
927 rq->tag = -1;
928
929 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
930 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
931 atomic_dec(&hctx->nr_active);
932 }
933 }
934
935 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
936 struct request *rq)
937 {
938 if (rq->tag == -1 || rq->internal_tag == -1)
939 return;
940
941 __blk_mq_put_driver_tag(hctx, rq);
942 }
943
944 static void blk_mq_put_driver_tag(struct request *rq)
945 {
946 struct blk_mq_hw_ctx *hctx;
947
948 if (rq->tag == -1 || rq->internal_tag == -1)
949 return;
950
951 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
952 __blk_mq_put_driver_tag(hctx, rq);
953 }
954
955 /*
956 * If we fail getting a driver tag because all the driver tags are already
957 * assigned and on the dispatch list, BUT the first entry does not have a
958 * tag, then we could deadlock. For that case, move entries with assigned
959 * driver tags to the front, leaving the set of tagged requests in the
960 * same order, and the untagged set in the same order.
961 */
962 static bool reorder_tags_to_front(struct list_head *list)
963 {
964 struct request *rq, *tmp, *first = NULL;
965
966 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
967 if (rq == first)
968 break;
969 if (rq->tag != -1) {
970 list_move(&rq->queuelist, list);
971 if (!first)
972 first = rq;
973 }
974 }
975
976 return first != NULL;
977 }
978
979 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
980 void *key)
981 {
982 struct blk_mq_hw_ctx *hctx;
983
984 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
985
986 list_del(&wait->entry);
987 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
988 blk_mq_run_hw_queue(hctx, true);
989 return 1;
990 }
991
992 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
993 {
994 struct sbq_wait_state *ws;
995
996 /*
997 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
998 * The thread which wins the race to grab this bit adds the hardware
999 * queue to the wait queue.
1000 */
1001 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1002 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1003 return false;
1004
1005 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1006 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1007
1008 /*
1009 * As soon as this returns, it's no longer safe to fiddle with
1010 * hctx->dispatch_wait, since a completion can wake up the wait queue
1011 * and unlock the bit.
1012 */
1013 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1014 return true;
1015 }
1016
1017 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1018 {
1019 struct blk_mq_hw_ctx *hctx;
1020 struct request *rq;
1021 int errors, queued;
1022
1023 if (list_empty(list))
1024 return false;
1025
1026 /*
1027 * Now process all the entries, sending them to the driver.
1028 */
1029 errors = queued = 0;
1030 do {
1031 struct blk_mq_queue_data bd;
1032 blk_status_t ret;
1033
1034 rq = list_first_entry(list, struct request, queuelist);
1035 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1036 if (!queued && reorder_tags_to_front(list))
1037 continue;
1038
1039 /*
1040 * The initial allocation attempt failed, so we need to
1041 * rerun the hardware queue when a tag is freed.
1042 */
1043 if (!blk_mq_dispatch_wait_add(hctx))
1044 break;
1045
1046 /*
1047 * It's possible that a tag was freed in the window
1048 * between the allocation failure and adding the
1049 * hardware queue to the wait queue.
1050 */
1051 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1052 break;
1053 }
1054
1055 list_del_init(&rq->queuelist);
1056
1057 bd.rq = rq;
1058
1059 /*
1060 * Flag last if we have no more requests, or if we have more
1061 * but can't assign a driver tag to it.
1062 */
1063 if (list_empty(list))
1064 bd.last = true;
1065 else {
1066 struct request *nxt;
1067
1068 nxt = list_first_entry(list, struct request, queuelist);
1069 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1070 }
1071
1072 ret = q->mq_ops->queue_rq(hctx, &bd);
1073 if (ret == BLK_STS_RESOURCE) {
1074 blk_mq_put_driver_tag_hctx(hctx, rq);
1075 list_add(&rq->queuelist, list);
1076 __blk_mq_requeue_request(rq);
1077 break;
1078 }
1079
1080 if (unlikely(ret != BLK_STS_OK)) {
1081 errors++;
1082 blk_mq_end_request(rq, BLK_STS_IOERR);
1083 continue;
1084 }
1085
1086 queued++;
1087 } while (!list_empty(list));
1088
1089 hctx->dispatched[queued_to_index(queued)]++;
1090
1091 /*
1092 * Any items that need requeuing? Stuff them into hctx->dispatch,
1093 * that is where we will continue on next queue run.
1094 */
1095 if (!list_empty(list)) {
1096 /*
1097 * If an I/O scheduler has been configured and we got a driver
1098 * tag for the next request already, free it again.
1099 */
1100 rq = list_first_entry(list, struct request, queuelist);
1101 blk_mq_put_driver_tag(rq);
1102
1103 spin_lock(&hctx->lock);
1104 list_splice_init(list, &hctx->dispatch);
1105 spin_unlock(&hctx->lock);
1106
1107 /*
1108 * If SCHED_RESTART was set by the caller of this function and
1109 * it is no longer set that means that it was cleared by another
1110 * thread and hence that a queue rerun is needed.
1111 *
1112 * If TAG_WAITING is set that means that an I/O scheduler has
1113 * been configured and another thread is waiting for a driver
1114 * tag. To guarantee fairness, do not rerun this hardware queue
1115 * but let the other thread grab the driver tag.
1116 *
1117 * If no I/O scheduler has been configured it is possible that
1118 * the hardware queue got stopped and restarted before requests
1119 * were pushed back onto the dispatch list. Rerun the queue to
1120 * avoid starvation. Notes:
1121 * - blk_mq_run_hw_queue() checks whether or not a queue has
1122 * been stopped before rerunning a queue.
1123 * - Some but not all block drivers stop a queue before
1124 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1125 * and dm-rq.
1126 */
1127 if (!blk_mq_sched_needs_restart(hctx) &&
1128 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1129 blk_mq_run_hw_queue(hctx, true);
1130 }
1131
1132 return (queued + errors) != 0;
1133 }
1134
1135 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1136 {
1137 int srcu_idx;
1138
1139 /*
1140 * We should be running this queue from one of the CPUs that
1141 * are mapped to it.
1142 */
1143 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1144 cpu_online(hctx->next_cpu));
1145
1146 /*
1147 * We can't run the queue inline with ints disabled. Ensure that
1148 * we catch bad users of this early.
1149 */
1150 WARN_ON_ONCE(in_interrupt());
1151
1152 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1153 rcu_read_lock();
1154 blk_mq_sched_dispatch_requests(hctx);
1155 rcu_read_unlock();
1156 } else {
1157 might_sleep();
1158
1159 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1160 blk_mq_sched_dispatch_requests(hctx);
1161 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1162 }
1163 }
1164
1165 /*
1166 * It'd be great if the workqueue API had a way to pass
1167 * in a mask and had some smarts for more clever placement.
1168 * For now we just round-robin here, switching for every
1169 * BLK_MQ_CPU_WORK_BATCH queued items.
1170 */
1171 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1172 {
1173 if (hctx->queue->nr_hw_queues == 1)
1174 return WORK_CPU_UNBOUND;
1175
1176 if (--hctx->next_cpu_batch <= 0) {
1177 int next_cpu;
1178
1179 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1180 if (next_cpu >= nr_cpu_ids)
1181 next_cpu = cpumask_first(hctx->cpumask);
1182
1183 hctx->next_cpu = next_cpu;
1184 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1185 }
1186
1187 return hctx->next_cpu;
1188 }
1189
1190 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1191 unsigned long msecs)
1192 {
1193 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1194 return;
1195
1196 if (unlikely(blk_mq_hctx_stopped(hctx)))
1197 return;
1198
1199 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1200 int cpu = get_cpu();
1201 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1202 __blk_mq_run_hw_queue(hctx);
1203 put_cpu();
1204 return;
1205 }
1206
1207 put_cpu();
1208 }
1209
1210 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1211 &hctx->run_work,
1212 msecs_to_jiffies(msecs));
1213 }
1214
1215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1216 {
1217 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1218 }
1219 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1220
1221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1222 {
1223 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1224 }
1225 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1226
1227 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1228 {
1229 struct blk_mq_hw_ctx *hctx;
1230 int i;
1231
1232 queue_for_each_hw_ctx(q, hctx, i) {
1233 if (!blk_mq_hctx_has_pending(hctx) ||
1234 blk_mq_hctx_stopped(hctx))
1235 continue;
1236
1237 blk_mq_run_hw_queue(hctx, async);
1238 }
1239 }
1240 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1241
1242 /**
1243 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1244 * @q: request queue.
1245 *
1246 * The caller is responsible for serializing this function against
1247 * blk_mq_{start,stop}_hw_queue().
1248 */
1249 bool blk_mq_queue_stopped(struct request_queue *q)
1250 {
1251 struct blk_mq_hw_ctx *hctx;
1252 int i;
1253
1254 queue_for_each_hw_ctx(q, hctx, i)
1255 if (blk_mq_hctx_stopped(hctx))
1256 return true;
1257
1258 return false;
1259 }
1260 EXPORT_SYMBOL(blk_mq_queue_stopped);
1261
1262 /*
1263 * This function is often used for pausing .queue_rq() by driver when
1264 * there isn't enough resource or some conditions aren't satisfied, and
1265 * BLK_STS_RESOURCE is usually returned.
1266 *
1267 * We do not guarantee that dispatch can be drained or blocked
1268 * after blk_mq_stop_hw_queue() returns. Please use
1269 * blk_mq_quiesce_queue() for that requirement.
1270 */
1271 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1272 {
1273 cancel_delayed_work(&hctx->run_work);
1274
1275 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1276 }
1277 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1278
1279 /*
1280 * This function is often used for pausing .queue_rq() by driver when
1281 * there isn't enough resource or some conditions aren't satisfied, and
1282 * BLK_STS_RESOURCE is usually returned.
1283 *
1284 * We do not guarantee that dispatch can be drained or blocked
1285 * after blk_mq_stop_hw_queues() returns. Please use
1286 * blk_mq_quiesce_queue() for that requirement.
1287 */
1288 void blk_mq_stop_hw_queues(struct request_queue *q)
1289 {
1290 struct blk_mq_hw_ctx *hctx;
1291 int i;
1292
1293 queue_for_each_hw_ctx(q, hctx, i)
1294 blk_mq_stop_hw_queue(hctx);
1295 }
1296 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1297
1298 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1299 {
1300 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1301
1302 blk_mq_run_hw_queue(hctx, false);
1303 }
1304 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1305
1306 void blk_mq_start_hw_queues(struct request_queue *q)
1307 {
1308 struct blk_mq_hw_ctx *hctx;
1309 int i;
1310
1311 queue_for_each_hw_ctx(q, hctx, i)
1312 blk_mq_start_hw_queue(hctx);
1313 }
1314 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1315
1316 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1317 {
1318 if (!blk_mq_hctx_stopped(hctx))
1319 return;
1320
1321 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1322 blk_mq_run_hw_queue(hctx, async);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1325
1326 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1327 {
1328 struct blk_mq_hw_ctx *hctx;
1329 int i;
1330
1331 queue_for_each_hw_ctx(q, hctx, i)
1332 blk_mq_start_stopped_hw_queue(hctx, async);
1333 }
1334 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1335
1336 static void blk_mq_run_work_fn(struct work_struct *work)
1337 {
1338 struct blk_mq_hw_ctx *hctx;
1339
1340 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1341
1342 /*
1343 * If we are stopped, don't run the queue. The exception is if
1344 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1345 * the STOPPED bit and run it.
1346 */
1347 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1348 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1349 return;
1350
1351 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1352 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1353 }
1354
1355 __blk_mq_run_hw_queue(hctx);
1356 }
1357
1358
1359 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1360 {
1361 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1362 return;
1363
1364 /*
1365 * Stop the hw queue, then modify currently delayed work.
1366 * This should prevent us from running the queue prematurely.
1367 * Mark the queue as auto-clearing STOPPED when it runs.
1368 */
1369 blk_mq_stop_hw_queue(hctx);
1370 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1371 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1372 &hctx->run_work,
1373 msecs_to_jiffies(msecs));
1374 }
1375 EXPORT_SYMBOL(blk_mq_delay_queue);
1376
1377 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1378 struct request *rq,
1379 bool at_head)
1380 {
1381 struct blk_mq_ctx *ctx = rq->mq_ctx;
1382
1383 lockdep_assert_held(&ctx->lock);
1384
1385 trace_block_rq_insert(hctx->queue, rq);
1386
1387 if (at_head)
1388 list_add(&rq->queuelist, &ctx->rq_list);
1389 else
1390 list_add_tail(&rq->queuelist, &ctx->rq_list);
1391 }
1392
1393 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1394 bool at_head)
1395 {
1396 struct blk_mq_ctx *ctx = rq->mq_ctx;
1397
1398 lockdep_assert_held(&ctx->lock);
1399
1400 __blk_mq_insert_req_list(hctx, rq, at_head);
1401 blk_mq_hctx_mark_pending(hctx, ctx);
1402 }
1403
1404 /*
1405 * Should only be used carefully, when the caller knows we want to
1406 * bypass a potential IO scheduler on the target device.
1407 */
1408 void blk_mq_request_bypass_insert(struct request *rq)
1409 {
1410 struct blk_mq_ctx *ctx = rq->mq_ctx;
1411 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1412
1413 spin_lock(&hctx->lock);
1414 list_add_tail(&rq->queuelist, &hctx->dispatch);
1415 spin_unlock(&hctx->lock);
1416
1417 blk_mq_run_hw_queue(hctx, false);
1418 }
1419
1420 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1421 struct list_head *list)
1422
1423 {
1424 /*
1425 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1426 * offline now
1427 */
1428 spin_lock(&ctx->lock);
1429 while (!list_empty(list)) {
1430 struct request *rq;
1431
1432 rq = list_first_entry(list, struct request, queuelist);
1433 BUG_ON(rq->mq_ctx != ctx);
1434 list_del_init(&rq->queuelist);
1435 __blk_mq_insert_req_list(hctx, rq, false);
1436 }
1437 blk_mq_hctx_mark_pending(hctx, ctx);
1438 spin_unlock(&ctx->lock);
1439 }
1440
1441 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1442 {
1443 struct request *rqa = container_of(a, struct request, queuelist);
1444 struct request *rqb = container_of(b, struct request, queuelist);
1445
1446 return !(rqa->mq_ctx < rqb->mq_ctx ||
1447 (rqa->mq_ctx == rqb->mq_ctx &&
1448 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1449 }
1450
1451 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1452 {
1453 struct blk_mq_ctx *this_ctx;
1454 struct request_queue *this_q;
1455 struct request *rq;
1456 LIST_HEAD(list);
1457 LIST_HEAD(ctx_list);
1458 unsigned int depth;
1459
1460 list_splice_init(&plug->mq_list, &list);
1461
1462 list_sort(NULL, &list, plug_ctx_cmp);
1463
1464 this_q = NULL;
1465 this_ctx = NULL;
1466 depth = 0;
1467
1468 while (!list_empty(&list)) {
1469 rq = list_entry_rq(list.next);
1470 list_del_init(&rq->queuelist);
1471 BUG_ON(!rq->q);
1472 if (rq->mq_ctx != this_ctx) {
1473 if (this_ctx) {
1474 trace_block_unplug(this_q, depth, from_schedule);
1475 blk_mq_sched_insert_requests(this_q, this_ctx,
1476 &ctx_list,
1477 from_schedule);
1478 }
1479
1480 this_ctx = rq->mq_ctx;
1481 this_q = rq->q;
1482 depth = 0;
1483 }
1484
1485 depth++;
1486 list_add_tail(&rq->queuelist, &ctx_list);
1487 }
1488
1489 /*
1490 * If 'this_ctx' is set, we know we have entries to complete
1491 * on 'ctx_list'. Do those.
1492 */
1493 if (this_ctx) {
1494 trace_block_unplug(this_q, depth, from_schedule);
1495 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1496 from_schedule);
1497 }
1498 }
1499
1500 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1501 {
1502 blk_init_request_from_bio(rq, bio);
1503
1504 blk_account_io_start(rq, true);
1505 }
1506
1507 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1508 {
1509 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1510 !blk_queue_nomerges(hctx->queue);
1511 }
1512
1513 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1514 struct blk_mq_ctx *ctx,
1515 struct request *rq)
1516 {
1517 spin_lock(&ctx->lock);
1518 __blk_mq_insert_request(hctx, rq, false);
1519 spin_unlock(&ctx->lock);
1520 }
1521
1522 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1523 {
1524 if (rq->tag != -1)
1525 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1526
1527 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1528 }
1529
1530 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1531 struct request *rq,
1532 blk_qc_t *cookie, bool may_sleep)
1533 {
1534 struct request_queue *q = rq->q;
1535 struct blk_mq_queue_data bd = {
1536 .rq = rq,
1537 .last = true,
1538 };
1539 blk_qc_t new_cookie;
1540 blk_status_t ret;
1541 bool run_queue = true;
1542
1543 /* RCU or SRCU read lock is needed before checking quiesced flag */
1544 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1545 run_queue = false;
1546 goto insert;
1547 }
1548
1549 if (q->elevator)
1550 goto insert;
1551
1552 if (!blk_mq_get_driver_tag(rq, NULL, false))
1553 goto insert;
1554
1555 new_cookie = request_to_qc_t(hctx, rq);
1556
1557 /*
1558 * For OK queue, we are done. For error, kill it. Any other
1559 * error (busy), just add it to our list as we previously
1560 * would have done
1561 */
1562 ret = q->mq_ops->queue_rq(hctx, &bd);
1563 switch (ret) {
1564 case BLK_STS_OK:
1565 *cookie = new_cookie;
1566 return;
1567 case BLK_STS_RESOURCE:
1568 __blk_mq_requeue_request(rq);
1569 goto insert;
1570 default:
1571 *cookie = BLK_QC_T_NONE;
1572 blk_mq_end_request(rq, ret);
1573 return;
1574 }
1575
1576 insert:
1577 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1578 }
1579
1580 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1581 struct request *rq, blk_qc_t *cookie)
1582 {
1583 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1584 rcu_read_lock();
1585 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1586 rcu_read_unlock();
1587 } else {
1588 unsigned int srcu_idx;
1589
1590 might_sleep();
1591
1592 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1593 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1594 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1595 }
1596 }
1597
1598 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1599 {
1600 const int is_sync = op_is_sync(bio->bi_opf);
1601 const int is_flush_fua = op_is_flush(bio->bi_opf);
1602 struct blk_mq_alloc_data data = { .flags = 0 };
1603 struct request *rq;
1604 unsigned int request_count = 0;
1605 struct blk_plug *plug;
1606 struct request *same_queue_rq = NULL;
1607 blk_qc_t cookie;
1608 unsigned int wb_acct;
1609
1610 blk_queue_bounce(q, &bio);
1611
1612 blk_queue_split(q, &bio);
1613
1614 if (!bio_integrity_prep(bio))
1615 return BLK_QC_T_NONE;
1616
1617 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1618 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1619 return BLK_QC_T_NONE;
1620
1621 if (blk_mq_sched_bio_merge(q, bio))
1622 return BLK_QC_T_NONE;
1623
1624 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1625
1626 trace_block_getrq(q, bio, bio->bi_opf);
1627
1628 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1629 if (unlikely(!rq)) {
1630 __wbt_done(q->rq_wb, wb_acct);
1631 if (bio->bi_opf & REQ_NOWAIT)
1632 bio_wouldblock_error(bio);
1633 return BLK_QC_T_NONE;
1634 }
1635
1636 wbt_track(&rq->issue_stat, wb_acct);
1637
1638 cookie = request_to_qc_t(data.hctx, rq);
1639
1640 plug = current->plug;
1641 if (unlikely(is_flush_fua)) {
1642 blk_mq_put_ctx(data.ctx);
1643 blk_mq_bio_to_request(rq, bio);
1644 if (q->elevator) {
1645 blk_mq_sched_insert_request(rq, false, true, true,
1646 true);
1647 } else {
1648 blk_insert_flush(rq);
1649 blk_mq_run_hw_queue(data.hctx, true);
1650 }
1651 } else if (plug && q->nr_hw_queues == 1) {
1652 struct request *last = NULL;
1653
1654 blk_mq_put_ctx(data.ctx);
1655 blk_mq_bio_to_request(rq, bio);
1656
1657 /*
1658 * @request_count may become stale because of schedule
1659 * out, so check the list again.
1660 */
1661 if (list_empty(&plug->mq_list))
1662 request_count = 0;
1663 else if (blk_queue_nomerges(q))
1664 request_count = blk_plug_queued_count(q);
1665
1666 if (!request_count)
1667 trace_block_plug(q);
1668 else
1669 last = list_entry_rq(plug->mq_list.prev);
1670
1671 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1672 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1673 blk_flush_plug_list(plug, false);
1674 trace_block_plug(q);
1675 }
1676
1677 list_add_tail(&rq->queuelist, &plug->mq_list);
1678 } else if (plug && !blk_queue_nomerges(q)) {
1679 blk_mq_bio_to_request(rq, bio);
1680
1681 /*
1682 * We do limited plugging. If the bio can be merged, do that.
1683 * Otherwise the existing request in the plug list will be
1684 * issued. So the plug list will have one request at most
1685 * The plug list might get flushed before this. If that happens,
1686 * the plug list is empty, and same_queue_rq is invalid.
1687 */
1688 if (list_empty(&plug->mq_list))
1689 same_queue_rq = NULL;
1690 if (same_queue_rq)
1691 list_del_init(&same_queue_rq->queuelist);
1692 list_add_tail(&rq->queuelist, &plug->mq_list);
1693
1694 blk_mq_put_ctx(data.ctx);
1695
1696 if (same_queue_rq) {
1697 data.hctx = blk_mq_map_queue(q,
1698 same_queue_rq->mq_ctx->cpu);
1699 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1700 &cookie);
1701 }
1702 } else if (q->nr_hw_queues > 1 && is_sync) {
1703 blk_mq_put_ctx(data.ctx);
1704 blk_mq_bio_to_request(rq, bio);
1705 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1706 } else if (q->elevator) {
1707 blk_mq_put_ctx(data.ctx);
1708 blk_mq_bio_to_request(rq, bio);
1709 blk_mq_sched_insert_request(rq, false, true, true, true);
1710 } else {
1711 blk_mq_put_ctx(data.ctx);
1712 blk_mq_bio_to_request(rq, bio);
1713 blk_mq_queue_io(data.hctx, data.ctx, rq);
1714 blk_mq_run_hw_queue(data.hctx, true);
1715 }
1716
1717 return cookie;
1718 }
1719
1720 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1721 unsigned int hctx_idx)
1722 {
1723 struct page *page;
1724
1725 if (tags->rqs && set->ops->exit_request) {
1726 int i;
1727
1728 for (i = 0; i < tags->nr_tags; i++) {
1729 struct request *rq = tags->static_rqs[i];
1730
1731 if (!rq)
1732 continue;
1733 set->ops->exit_request(set, rq, hctx_idx);
1734 tags->static_rqs[i] = NULL;
1735 }
1736 }
1737
1738 while (!list_empty(&tags->page_list)) {
1739 page = list_first_entry(&tags->page_list, struct page, lru);
1740 list_del_init(&page->lru);
1741 /*
1742 * Remove kmemleak object previously allocated in
1743 * blk_mq_init_rq_map().
1744 */
1745 kmemleak_free(page_address(page));
1746 __free_pages(page, page->private);
1747 }
1748 }
1749
1750 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1751 {
1752 kfree(tags->rqs);
1753 tags->rqs = NULL;
1754 kfree(tags->static_rqs);
1755 tags->static_rqs = NULL;
1756
1757 blk_mq_free_tags(tags);
1758 }
1759
1760 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1761 unsigned int hctx_idx,
1762 unsigned int nr_tags,
1763 unsigned int reserved_tags)
1764 {
1765 struct blk_mq_tags *tags;
1766 int node;
1767
1768 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1769 if (node == NUMA_NO_NODE)
1770 node = set->numa_node;
1771
1772 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1773 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1774 if (!tags)
1775 return NULL;
1776
1777 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779 node);
1780 if (!tags->rqs) {
1781 blk_mq_free_tags(tags);
1782 return NULL;
1783 }
1784
1785 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1786 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1787 node);
1788 if (!tags->static_rqs) {
1789 kfree(tags->rqs);
1790 blk_mq_free_tags(tags);
1791 return NULL;
1792 }
1793
1794 return tags;
1795 }
1796
1797 static size_t order_to_size(unsigned int order)
1798 {
1799 return (size_t)PAGE_SIZE << order;
1800 }
1801
1802 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1803 unsigned int hctx_idx, unsigned int depth)
1804 {
1805 unsigned int i, j, entries_per_page, max_order = 4;
1806 size_t rq_size, left;
1807 int node;
1808
1809 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1810 if (node == NUMA_NO_NODE)
1811 node = set->numa_node;
1812
1813 INIT_LIST_HEAD(&tags->page_list);
1814
1815 /*
1816 * rq_size is the size of the request plus driver payload, rounded
1817 * to the cacheline size
1818 */
1819 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1820 cache_line_size());
1821 left = rq_size * depth;
1822
1823 for (i = 0; i < depth; ) {
1824 int this_order = max_order;
1825 struct page *page;
1826 int to_do;
1827 void *p;
1828
1829 while (this_order && left < order_to_size(this_order - 1))
1830 this_order--;
1831
1832 do {
1833 page = alloc_pages_node(node,
1834 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1835 this_order);
1836 if (page)
1837 break;
1838 if (!this_order--)
1839 break;
1840 if (order_to_size(this_order) < rq_size)
1841 break;
1842 } while (1);
1843
1844 if (!page)
1845 goto fail;
1846
1847 page->private = this_order;
1848 list_add_tail(&page->lru, &tags->page_list);
1849
1850 p = page_address(page);
1851 /*
1852 * Allow kmemleak to scan these pages as they contain pointers
1853 * to additional allocations like via ops->init_request().
1854 */
1855 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1856 entries_per_page = order_to_size(this_order) / rq_size;
1857 to_do = min(entries_per_page, depth - i);
1858 left -= to_do * rq_size;
1859 for (j = 0; j < to_do; j++) {
1860 struct request *rq = p;
1861
1862 tags->static_rqs[i] = rq;
1863 if (set->ops->init_request) {
1864 if (set->ops->init_request(set, rq, hctx_idx,
1865 node)) {
1866 tags->static_rqs[i] = NULL;
1867 goto fail;
1868 }
1869 }
1870
1871 p += rq_size;
1872 i++;
1873 }
1874 }
1875 return 0;
1876
1877 fail:
1878 blk_mq_free_rqs(set, tags, hctx_idx);
1879 return -ENOMEM;
1880 }
1881
1882 /*
1883 * 'cpu' is going away. splice any existing rq_list entries from this
1884 * software queue to the hw queue dispatch list, and ensure that it
1885 * gets run.
1886 */
1887 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1888 {
1889 struct blk_mq_hw_ctx *hctx;
1890 struct blk_mq_ctx *ctx;
1891 LIST_HEAD(tmp);
1892
1893 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1894 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1895
1896 spin_lock(&ctx->lock);
1897 if (!list_empty(&ctx->rq_list)) {
1898 list_splice_init(&ctx->rq_list, &tmp);
1899 blk_mq_hctx_clear_pending(hctx, ctx);
1900 }
1901 spin_unlock(&ctx->lock);
1902
1903 if (list_empty(&tmp))
1904 return 0;
1905
1906 spin_lock(&hctx->lock);
1907 list_splice_tail_init(&tmp, &hctx->dispatch);
1908 spin_unlock(&hctx->lock);
1909
1910 blk_mq_run_hw_queue(hctx, true);
1911 return 0;
1912 }
1913
1914 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1915 {
1916 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1917 &hctx->cpuhp_dead);
1918 }
1919
1920 /* hctx->ctxs will be freed in queue's release handler */
1921 static void blk_mq_exit_hctx(struct request_queue *q,
1922 struct blk_mq_tag_set *set,
1923 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1924 {
1925 blk_mq_debugfs_unregister_hctx(hctx);
1926
1927 blk_mq_tag_idle(hctx);
1928
1929 if (set->ops->exit_request)
1930 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1931
1932 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1933
1934 if (set->ops->exit_hctx)
1935 set->ops->exit_hctx(hctx, hctx_idx);
1936
1937 if (hctx->flags & BLK_MQ_F_BLOCKING)
1938 cleanup_srcu_struct(hctx->queue_rq_srcu);
1939
1940 blk_mq_remove_cpuhp(hctx);
1941 blk_free_flush_queue(hctx->fq);
1942 sbitmap_free(&hctx->ctx_map);
1943 }
1944
1945 static void blk_mq_exit_hw_queues(struct request_queue *q,
1946 struct blk_mq_tag_set *set, int nr_queue)
1947 {
1948 struct blk_mq_hw_ctx *hctx;
1949 unsigned int i;
1950
1951 queue_for_each_hw_ctx(q, hctx, i) {
1952 if (i == nr_queue)
1953 break;
1954 blk_mq_exit_hctx(q, set, hctx, i);
1955 }
1956 }
1957
1958 static int blk_mq_init_hctx(struct request_queue *q,
1959 struct blk_mq_tag_set *set,
1960 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1961 {
1962 int node;
1963
1964 node = hctx->numa_node;
1965 if (node == NUMA_NO_NODE)
1966 node = hctx->numa_node = set->numa_node;
1967
1968 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1969 spin_lock_init(&hctx->lock);
1970 INIT_LIST_HEAD(&hctx->dispatch);
1971 hctx->queue = q;
1972 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1973
1974 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1975
1976 hctx->tags = set->tags[hctx_idx];
1977
1978 /*
1979 * Allocate space for all possible cpus to avoid allocation at
1980 * runtime
1981 */
1982 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1983 GFP_KERNEL, node);
1984 if (!hctx->ctxs)
1985 goto unregister_cpu_notifier;
1986
1987 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1988 node))
1989 goto free_ctxs;
1990
1991 hctx->nr_ctx = 0;
1992
1993 if (set->ops->init_hctx &&
1994 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1995 goto free_bitmap;
1996
1997 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1998 goto exit_hctx;
1999
2000 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2001 if (!hctx->fq)
2002 goto sched_exit_hctx;
2003
2004 if (set->ops->init_request &&
2005 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2006 node))
2007 goto free_fq;
2008
2009 if (hctx->flags & BLK_MQ_F_BLOCKING)
2010 init_srcu_struct(hctx->queue_rq_srcu);
2011
2012 blk_mq_debugfs_register_hctx(q, hctx);
2013
2014 return 0;
2015
2016 free_fq:
2017 kfree(hctx->fq);
2018 sched_exit_hctx:
2019 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2020 exit_hctx:
2021 if (set->ops->exit_hctx)
2022 set->ops->exit_hctx(hctx, hctx_idx);
2023 free_bitmap:
2024 sbitmap_free(&hctx->ctx_map);
2025 free_ctxs:
2026 kfree(hctx->ctxs);
2027 unregister_cpu_notifier:
2028 blk_mq_remove_cpuhp(hctx);
2029 return -1;
2030 }
2031
2032 static void blk_mq_init_cpu_queues(struct request_queue *q,
2033 unsigned int nr_hw_queues)
2034 {
2035 unsigned int i;
2036
2037 for_each_possible_cpu(i) {
2038 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2039 struct blk_mq_hw_ctx *hctx;
2040
2041 __ctx->cpu = i;
2042 spin_lock_init(&__ctx->lock);
2043 INIT_LIST_HEAD(&__ctx->rq_list);
2044 __ctx->queue = q;
2045
2046 /* If the cpu isn't present, the cpu is mapped to first hctx */
2047 if (!cpu_present(i))
2048 continue;
2049
2050 hctx = blk_mq_map_queue(q, i);
2051
2052 /*
2053 * Set local node, IFF we have more than one hw queue. If
2054 * not, we remain on the home node of the device
2055 */
2056 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2057 hctx->numa_node = local_memory_node(cpu_to_node(i));
2058 }
2059 }
2060
2061 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2062 {
2063 int ret = 0;
2064
2065 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2066 set->queue_depth, set->reserved_tags);
2067 if (!set->tags[hctx_idx])
2068 return false;
2069
2070 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2071 set->queue_depth);
2072 if (!ret)
2073 return true;
2074
2075 blk_mq_free_rq_map(set->tags[hctx_idx]);
2076 set->tags[hctx_idx] = NULL;
2077 return false;
2078 }
2079
2080 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2081 unsigned int hctx_idx)
2082 {
2083 if (set->tags[hctx_idx]) {
2084 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2085 blk_mq_free_rq_map(set->tags[hctx_idx]);
2086 set->tags[hctx_idx] = NULL;
2087 }
2088 }
2089
2090 static void blk_mq_map_swqueue(struct request_queue *q)
2091 {
2092 unsigned int i, hctx_idx;
2093 struct blk_mq_hw_ctx *hctx;
2094 struct blk_mq_ctx *ctx;
2095 struct blk_mq_tag_set *set = q->tag_set;
2096
2097 /*
2098 * Avoid others reading imcomplete hctx->cpumask through sysfs
2099 */
2100 mutex_lock(&q->sysfs_lock);
2101
2102 queue_for_each_hw_ctx(q, hctx, i) {
2103 cpumask_clear(hctx->cpumask);
2104 hctx->nr_ctx = 0;
2105 }
2106
2107 /*
2108 * Map software to hardware queues.
2109 *
2110 * If the cpu isn't present, the cpu is mapped to first hctx.
2111 */
2112 for_each_present_cpu(i) {
2113 hctx_idx = q->mq_map[i];
2114 /* unmapped hw queue can be remapped after CPU topo changed */
2115 if (!set->tags[hctx_idx] &&
2116 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2117 /*
2118 * If tags initialization fail for some hctx,
2119 * that hctx won't be brought online. In this
2120 * case, remap the current ctx to hctx[0] which
2121 * is guaranteed to always have tags allocated
2122 */
2123 q->mq_map[i] = 0;
2124 }
2125
2126 ctx = per_cpu_ptr(q->queue_ctx, i);
2127 hctx = blk_mq_map_queue(q, i);
2128
2129 cpumask_set_cpu(i, hctx->cpumask);
2130 ctx->index_hw = hctx->nr_ctx;
2131 hctx->ctxs[hctx->nr_ctx++] = ctx;
2132 }
2133
2134 mutex_unlock(&q->sysfs_lock);
2135
2136 queue_for_each_hw_ctx(q, hctx, i) {
2137 /*
2138 * If no software queues are mapped to this hardware queue,
2139 * disable it and free the request entries.
2140 */
2141 if (!hctx->nr_ctx) {
2142 /* Never unmap queue 0. We need it as a
2143 * fallback in case of a new remap fails
2144 * allocation
2145 */
2146 if (i && set->tags[i])
2147 blk_mq_free_map_and_requests(set, i);
2148
2149 hctx->tags = NULL;
2150 continue;
2151 }
2152
2153 hctx->tags = set->tags[i];
2154 WARN_ON(!hctx->tags);
2155
2156 /*
2157 * Set the map size to the number of mapped software queues.
2158 * This is more accurate and more efficient than looping
2159 * over all possibly mapped software queues.
2160 */
2161 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2162
2163 /*
2164 * Initialize batch roundrobin counts
2165 */
2166 hctx->next_cpu = cpumask_first(hctx->cpumask);
2167 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2168 }
2169 }
2170
2171 /*
2172 * Caller needs to ensure that we're either frozen/quiesced, or that
2173 * the queue isn't live yet.
2174 */
2175 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2176 {
2177 struct blk_mq_hw_ctx *hctx;
2178 int i;
2179
2180 queue_for_each_hw_ctx(q, hctx, i) {
2181 if (shared) {
2182 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2183 atomic_inc(&q->shared_hctx_restart);
2184 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2185 } else {
2186 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2187 atomic_dec(&q->shared_hctx_restart);
2188 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2189 }
2190 }
2191 }
2192
2193 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2194 bool shared)
2195 {
2196 struct request_queue *q;
2197
2198 lockdep_assert_held(&set->tag_list_lock);
2199
2200 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2201 blk_mq_freeze_queue(q);
2202 queue_set_hctx_shared(q, shared);
2203 blk_mq_unfreeze_queue(q);
2204 }
2205 }
2206
2207 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2208 {
2209 struct blk_mq_tag_set *set = q->tag_set;
2210
2211 mutex_lock(&set->tag_list_lock);
2212 list_del_rcu(&q->tag_set_list);
2213 INIT_LIST_HEAD(&q->tag_set_list);
2214 if (list_is_singular(&set->tag_list)) {
2215 /* just transitioned to unshared */
2216 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2217 /* update existing queue */
2218 blk_mq_update_tag_set_depth(set, false);
2219 }
2220 mutex_unlock(&set->tag_list_lock);
2221
2222 synchronize_rcu();
2223 }
2224
2225 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2226 struct request_queue *q)
2227 {
2228 q->tag_set = set;
2229
2230 mutex_lock(&set->tag_list_lock);
2231
2232 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2233 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2234 set->flags |= BLK_MQ_F_TAG_SHARED;
2235 /* update existing queue */
2236 blk_mq_update_tag_set_depth(set, true);
2237 }
2238 if (set->flags & BLK_MQ_F_TAG_SHARED)
2239 queue_set_hctx_shared(q, true);
2240 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2241
2242 mutex_unlock(&set->tag_list_lock);
2243 }
2244
2245 /*
2246 * It is the actual release handler for mq, but we do it from
2247 * request queue's release handler for avoiding use-after-free
2248 * and headache because q->mq_kobj shouldn't have been introduced,
2249 * but we can't group ctx/kctx kobj without it.
2250 */
2251 void blk_mq_release(struct request_queue *q)
2252 {
2253 struct blk_mq_hw_ctx *hctx;
2254 unsigned int i;
2255
2256 /* hctx kobj stays in hctx */
2257 queue_for_each_hw_ctx(q, hctx, i) {
2258 if (!hctx)
2259 continue;
2260 kobject_put(&hctx->kobj);
2261 }
2262
2263 q->mq_map = NULL;
2264
2265 kfree(q->queue_hw_ctx);
2266
2267 /*
2268 * release .mq_kobj and sw queue's kobject now because
2269 * both share lifetime with request queue.
2270 */
2271 blk_mq_sysfs_deinit(q);
2272
2273 free_percpu(q->queue_ctx);
2274 }
2275
2276 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2277 {
2278 struct request_queue *uninit_q, *q;
2279
2280 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2281 if (!uninit_q)
2282 return ERR_PTR(-ENOMEM);
2283
2284 q = blk_mq_init_allocated_queue(set, uninit_q);
2285 if (IS_ERR(q))
2286 blk_cleanup_queue(uninit_q);
2287
2288 return q;
2289 }
2290 EXPORT_SYMBOL(blk_mq_init_queue);
2291
2292 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2293 {
2294 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2295
2296 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2297 __alignof__(struct blk_mq_hw_ctx)) !=
2298 sizeof(struct blk_mq_hw_ctx));
2299
2300 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2301 hw_ctx_size += sizeof(struct srcu_struct);
2302
2303 return hw_ctx_size;
2304 }
2305
2306 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2307 struct request_queue *q)
2308 {
2309 int i, j;
2310 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2311
2312 blk_mq_sysfs_unregister(q);
2313 for (i = 0; i < set->nr_hw_queues; i++) {
2314 int node;
2315
2316 if (hctxs[i])
2317 continue;
2318
2319 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2320 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2321 GFP_KERNEL, node);
2322 if (!hctxs[i])
2323 break;
2324
2325 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2326 node)) {
2327 kfree(hctxs[i]);
2328 hctxs[i] = NULL;
2329 break;
2330 }
2331
2332 atomic_set(&hctxs[i]->nr_active, 0);
2333 hctxs[i]->numa_node = node;
2334 hctxs[i]->queue_num = i;
2335
2336 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2337 free_cpumask_var(hctxs[i]->cpumask);
2338 kfree(hctxs[i]);
2339 hctxs[i] = NULL;
2340 break;
2341 }
2342 blk_mq_hctx_kobj_init(hctxs[i]);
2343 }
2344 for (j = i; j < q->nr_hw_queues; j++) {
2345 struct blk_mq_hw_ctx *hctx = hctxs[j];
2346
2347 if (hctx) {
2348 if (hctx->tags)
2349 blk_mq_free_map_and_requests(set, j);
2350 blk_mq_exit_hctx(q, set, hctx, j);
2351 kobject_put(&hctx->kobj);
2352 hctxs[j] = NULL;
2353
2354 }
2355 }
2356 q->nr_hw_queues = i;
2357 blk_mq_sysfs_register(q);
2358 }
2359
2360 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2361 struct request_queue *q)
2362 {
2363 /* mark the queue as mq asap */
2364 q->mq_ops = set->ops;
2365
2366 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2367 blk_mq_poll_stats_bkt,
2368 BLK_MQ_POLL_STATS_BKTS, q);
2369 if (!q->poll_cb)
2370 goto err_exit;
2371
2372 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2373 if (!q->queue_ctx)
2374 goto err_exit;
2375
2376 /* init q->mq_kobj and sw queues' kobjects */
2377 blk_mq_sysfs_init(q);
2378
2379 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2380 GFP_KERNEL, set->numa_node);
2381 if (!q->queue_hw_ctx)
2382 goto err_percpu;
2383
2384 q->mq_map = set->mq_map;
2385
2386 blk_mq_realloc_hw_ctxs(set, q);
2387 if (!q->nr_hw_queues)
2388 goto err_hctxs;
2389
2390 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2391 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2392
2393 q->nr_queues = nr_cpu_ids;
2394
2395 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2396
2397 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2398 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2399
2400 q->sg_reserved_size = INT_MAX;
2401
2402 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2403 INIT_LIST_HEAD(&q->requeue_list);
2404 spin_lock_init(&q->requeue_lock);
2405
2406 blk_queue_make_request(q, blk_mq_make_request);
2407
2408 /*
2409 * Do this after blk_queue_make_request() overrides it...
2410 */
2411 q->nr_requests = set->queue_depth;
2412
2413 /*
2414 * Default to classic polling
2415 */
2416 q->poll_nsec = -1;
2417
2418 if (set->ops->complete)
2419 blk_queue_softirq_done(q, set->ops->complete);
2420
2421 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2422 blk_mq_add_queue_tag_set(set, q);
2423 blk_mq_map_swqueue(q);
2424
2425 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2426 int ret;
2427
2428 ret = blk_mq_sched_init(q);
2429 if (ret)
2430 return ERR_PTR(ret);
2431 }
2432
2433 return q;
2434
2435 err_hctxs:
2436 kfree(q->queue_hw_ctx);
2437 err_percpu:
2438 free_percpu(q->queue_ctx);
2439 err_exit:
2440 q->mq_ops = NULL;
2441 return ERR_PTR(-ENOMEM);
2442 }
2443 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2444
2445 void blk_mq_free_queue(struct request_queue *q)
2446 {
2447 struct blk_mq_tag_set *set = q->tag_set;
2448
2449 blk_mq_del_queue_tag_set(q);
2450 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2451 }
2452
2453 /* Basically redo blk_mq_init_queue with queue frozen */
2454 static void blk_mq_queue_reinit(struct request_queue *q)
2455 {
2456 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2457
2458 blk_mq_debugfs_unregister_hctxs(q);
2459 blk_mq_sysfs_unregister(q);
2460
2461 /*
2462 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2463 * we should change hctx numa_node according to new topology (this
2464 * involves free and re-allocate memory, worthy doing?)
2465 */
2466
2467 blk_mq_map_swqueue(q);
2468
2469 blk_mq_sysfs_register(q);
2470 blk_mq_debugfs_register_hctxs(q);
2471 }
2472
2473 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2474 {
2475 int i;
2476
2477 for (i = 0; i < set->nr_hw_queues; i++)
2478 if (!__blk_mq_alloc_rq_map(set, i))
2479 goto out_unwind;
2480
2481 return 0;
2482
2483 out_unwind:
2484 while (--i >= 0)
2485 blk_mq_free_rq_map(set->tags[i]);
2486
2487 return -ENOMEM;
2488 }
2489
2490 /*
2491 * Allocate the request maps associated with this tag_set. Note that this
2492 * may reduce the depth asked for, if memory is tight. set->queue_depth
2493 * will be updated to reflect the allocated depth.
2494 */
2495 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2496 {
2497 unsigned int depth;
2498 int err;
2499
2500 depth = set->queue_depth;
2501 do {
2502 err = __blk_mq_alloc_rq_maps(set);
2503 if (!err)
2504 break;
2505
2506 set->queue_depth >>= 1;
2507 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2508 err = -ENOMEM;
2509 break;
2510 }
2511 } while (set->queue_depth);
2512
2513 if (!set->queue_depth || err) {
2514 pr_err("blk-mq: failed to allocate request map\n");
2515 return -ENOMEM;
2516 }
2517
2518 if (depth != set->queue_depth)
2519 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2520 depth, set->queue_depth);
2521
2522 return 0;
2523 }
2524
2525 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2526 {
2527 if (set->ops->map_queues)
2528 return set->ops->map_queues(set);
2529 else
2530 return blk_mq_map_queues(set);
2531 }
2532
2533 /*
2534 * Alloc a tag set to be associated with one or more request queues.
2535 * May fail with EINVAL for various error conditions. May adjust the
2536 * requested depth down, if if it too large. In that case, the set
2537 * value will be stored in set->queue_depth.
2538 */
2539 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2540 {
2541 int ret;
2542
2543 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2544
2545 if (!set->nr_hw_queues)
2546 return -EINVAL;
2547 if (!set->queue_depth)
2548 return -EINVAL;
2549 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2550 return -EINVAL;
2551
2552 if (!set->ops->queue_rq)
2553 return -EINVAL;
2554
2555 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2556 pr_info("blk-mq: reduced tag depth to %u\n",
2557 BLK_MQ_MAX_DEPTH);
2558 set->queue_depth = BLK_MQ_MAX_DEPTH;
2559 }
2560
2561 /*
2562 * If a crashdump is active, then we are potentially in a very
2563 * memory constrained environment. Limit us to 1 queue and
2564 * 64 tags to prevent using too much memory.
2565 */
2566 if (is_kdump_kernel()) {
2567 set->nr_hw_queues = 1;
2568 set->queue_depth = min(64U, set->queue_depth);
2569 }
2570 /*
2571 * There is no use for more h/w queues than cpus.
2572 */
2573 if (set->nr_hw_queues > nr_cpu_ids)
2574 set->nr_hw_queues = nr_cpu_ids;
2575
2576 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2577 GFP_KERNEL, set->numa_node);
2578 if (!set->tags)
2579 return -ENOMEM;
2580
2581 ret = -ENOMEM;
2582 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2583 GFP_KERNEL, set->numa_node);
2584 if (!set->mq_map)
2585 goto out_free_tags;
2586
2587 ret = blk_mq_update_queue_map(set);
2588 if (ret)
2589 goto out_free_mq_map;
2590
2591 ret = blk_mq_alloc_rq_maps(set);
2592 if (ret)
2593 goto out_free_mq_map;
2594
2595 mutex_init(&set->tag_list_lock);
2596 INIT_LIST_HEAD(&set->tag_list);
2597
2598 return 0;
2599
2600 out_free_mq_map:
2601 kfree(set->mq_map);
2602 set->mq_map = NULL;
2603 out_free_tags:
2604 kfree(set->tags);
2605 set->tags = NULL;
2606 return ret;
2607 }
2608 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2609
2610 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2611 {
2612 int i;
2613
2614 for (i = 0; i < nr_cpu_ids; i++)
2615 blk_mq_free_map_and_requests(set, i);
2616
2617 kfree(set->mq_map);
2618 set->mq_map = NULL;
2619
2620 kfree(set->tags);
2621 set->tags = NULL;
2622 }
2623 EXPORT_SYMBOL(blk_mq_free_tag_set);
2624
2625 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2626 {
2627 struct blk_mq_tag_set *set = q->tag_set;
2628 struct blk_mq_hw_ctx *hctx;
2629 int i, ret;
2630
2631 if (!set)
2632 return -EINVAL;
2633
2634 blk_mq_freeze_queue(q);
2635
2636 ret = 0;
2637 queue_for_each_hw_ctx(q, hctx, i) {
2638 if (!hctx->tags)
2639 continue;
2640 /*
2641 * If we're using an MQ scheduler, just update the scheduler
2642 * queue depth. This is similar to what the old code would do.
2643 */
2644 if (!hctx->sched_tags) {
2645 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2646 min(nr, set->queue_depth),
2647 false);
2648 } else {
2649 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2650 nr, true);
2651 }
2652 if (ret)
2653 break;
2654 }
2655
2656 if (!ret)
2657 q->nr_requests = nr;
2658
2659 blk_mq_unfreeze_queue(q);
2660
2661 return ret;
2662 }
2663
2664 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2665 int nr_hw_queues)
2666 {
2667 struct request_queue *q;
2668
2669 lockdep_assert_held(&set->tag_list_lock);
2670
2671 if (nr_hw_queues > nr_cpu_ids)
2672 nr_hw_queues = nr_cpu_ids;
2673 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2674 return;
2675
2676 list_for_each_entry(q, &set->tag_list, tag_set_list)
2677 blk_mq_freeze_queue(q);
2678
2679 set->nr_hw_queues = nr_hw_queues;
2680 blk_mq_update_queue_map(set);
2681 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2682 blk_mq_realloc_hw_ctxs(set, q);
2683 blk_mq_queue_reinit(q);
2684 }
2685
2686 list_for_each_entry(q, &set->tag_list, tag_set_list)
2687 blk_mq_unfreeze_queue(q);
2688 }
2689
2690 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2691 {
2692 mutex_lock(&set->tag_list_lock);
2693 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2694 mutex_unlock(&set->tag_list_lock);
2695 }
2696 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2697
2698 /* Enable polling stats and return whether they were already enabled. */
2699 static bool blk_poll_stats_enable(struct request_queue *q)
2700 {
2701 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2702 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2703 return true;
2704 blk_stat_add_callback(q, q->poll_cb);
2705 return false;
2706 }
2707
2708 static void blk_mq_poll_stats_start(struct request_queue *q)
2709 {
2710 /*
2711 * We don't arm the callback if polling stats are not enabled or the
2712 * callback is already active.
2713 */
2714 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2715 blk_stat_is_active(q->poll_cb))
2716 return;
2717
2718 blk_stat_activate_msecs(q->poll_cb, 100);
2719 }
2720
2721 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2722 {
2723 struct request_queue *q = cb->data;
2724 int bucket;
2725
2726 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2727 if (cb->stat[bucket].nr_samples)
2728 q->poll_stat[bucket] = cb->stat[bucket];
2729 }
2730 }
2731
2732 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2733 struct blk_mq_hw_ctx *hctx,
2734 struct request *rq)
2735 {
2736 unsigned long ret = 0;
2737 int bucket;
2738
2739 /*
2740 * If stats collection isn't on, don't sleep but turn it on for
2741 * future users
2742 */
2743 if (!blk_poll_stats_enable(q))
2744 return 0;
2745
2746 /*
2747 * As an optimistic guess, use half of the mean service time
2748 * for this type of request. We can (and should) make this smarter.
2749 * For instance, if the completion latencies are tight, we can
2750 * get closer than just half the mean. This is especially
2751 * important on devices where the completion latencies are longer
2752 * than ~10 usec. We do use the stats for the relevant IO size
2753 * if available which does lead to better estimates.
2754 */
2755 bucket = blk_mq_poll_stats_bkt(rq);
2756 if (bucket < 0)
2757 return ret;
2758
2759 if (q->poll_stat[bucket].nr_samples)
2760 ret = (q->poll_stat[bucket].mean + 1) / 2;
2761
2762 return ret;
2763 }
2764
2765 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2766 struct blk_mq_hw_ctx *hctx,
2767 struct request *rq)
2768 {
2769 struct hrtimer_sleeper hs;
2770 enum hrtimer_mode mode;
2771 unsigned int nsecs;
2772 ktime_t kt;
2773
2774 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2775 return false;
2776
2777 /*
2778 * poll_nsec can be:
2779 *
2780 * -1: don't ever hybrid sleep
2781 * 0: use half of prev avg
2782 * >0: use this specific value
2783 */
2784 if (q->poll_nsec == -1)
2785 return false;
2786 else if (q->poll_nsec > 0)
2787 nsecs = q->poll_nsec;
2788 else
2789 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2790
2791 if (!nsecs)
2792 return false;
2793
2794 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2795
2796 /*
2797 * This will be replaced with the stats tracking code, using
2798 * 'avg_completion_time / 2' as the pre-sleep target.
2799 */
2800 kt = nsecs;
2801
2802 mode = HRTIMER_MODE_REL;
2803 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2804 hrtimer_set_expires(&hs.timer, kt);
2805
2806 hrtimer_init_sleeper(&hs, current);
2807 do {
2808 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2809 break;
2810 set_current_state(TASK_UNINTERRUPTIBLE);
2811 hrtimer_start_expires(&hs.timer, mode);
2812 if (hs.task)
2813 io_schedule();
2814 hrtimer_cancel(&hs.timer);
2815 mode = HRTIMER_MODE_ABS;
2816 } while (hs.task && !signal_pending(current));
2817
2818 __set_current_state(TASK_RUNNING);
2819 destroy_hrtimer_on_stack(&hs.timer);
2820 return true;
2821 }
2822
2823 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2824 {
2825 struct request_queue *q = hctx->queue;
2826 long state;
2827
2828 /*
2829 * If we sleep, have the caller restart the poll loop to reset
2830 * the state. Like for the other success return cases, the
2831 * caller is responsible for checking if the IO completed. If
2832 * the IO isn't complete, we'll get called again and will go
2833 * straight to the busy poll loop.
2834 */
2835 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2836 return true;
2837
2838 hctx->poll_considered++;
2839
2840 state = current->state;
2841 while (!need_resched()) {
2842 int ret;
2843
2844 hctx->poll_invoked++;
2845
2846 ret = q->mq_ops->poll(hctx, rq->tag);
2847 if (ret > 0) {
2848 hctx->poll_success++;
2849 set_current_state(TASK_RUNNING);
2850 return true;
2851 }
2852
2853 if (signal_pending_state(state, current))
2854 set_current_state(TASK_RUNNING);
2855
2856 if (current->state == TASK_RUNNING)
2857 return true;
2858 if (ret < 0)
2859 break;
2860 cpu_relax();
2861 }
2862
2863 return false;
2864 }
2865
2866 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2867 {
2868 struct blk_mq_hw_ctx *hctx;
2869 struct blk_plug *plug;
2870 struct request *rq;
2871
2872 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2873 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2874 return false;
2875
2876 plug = current->plug;
2877 if (plug)
2878 blk_flush_plug_list(plug, false);
2879
2880 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2881 if (!blk_qc_t_is_internal(cookie))
2882 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2883 else {
2884 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2885 /*
2886 * With scheduling, if the request has completed, we'll
2887 * get a NULL return here, as we clear the sched tag when
2888 * that happens. The request still remains valid, like always,
2889 * so we should be safe with just the NULL check.
2890 */
2891 if (!rq)
2892 return false;
2893 }
2894
2895 return __blk_mq_poll(hctx, rq);
2896 }
2897 EXPORT_SYMBOL_GPL(blk_mq_poll);
2898
2899 static int __init blk_mq_init(void)
2900 {
2901 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2902 blk_mq_hctx_notify_dead);
2903 return 0;
2904 }
2905 subsys_initcall(blk_mq_init);