Merge branch 'for-linus' into for-3.18/core
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 while (true) {
82 int ret;
83
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
86
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98 percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115 bool freeze;
116
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
120
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 }
127
128 static void blk_mq_unfreeze_queue(struct request_queue *q)
129 {
130 bool wake;
131
132 spin_lock_irq(q->queue_lock);
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
135 spin_unlock_irq(q->queue_lock);
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
138 wake_up_all(&q->mq_freeze_wq);
139 }
140 }
141
142 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143 {
144 return blk_mq_has_free_tags(hctx->tags);
145 }
146 EXPORT_SYMBOL(blk_mq_can_queue);
147
148 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
150 {
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
157 rq->mq_ctx = ctx;
158 rq->cmd_flags |= rw_flags;
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
163 rq->rq_disk = NULL;
164 rq->part = NULL;
165 rq->start_time = jiffies;
166 #ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
168 set_start_time_ns(rq);
169 rq->io_start_time_ns = 0;
170 #endif
171 rq->nr_phys_segments = 0;
172 #if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174 #endif
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
178
179 rq->cmd = rq->__cmd;
180
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
186 INIT_LIST_HEAD(&rq->timeout_list);
187 rq->timeout = 0;
188
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194 }
195
196 static struct request *
197 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198 {
199 struct request *rq;
200 unsigned int tag;
201
202 tag = blk_mq_get_tag(data);
203 if (tag != BLK_MQ_TAG_FAIL) {
204 rq = data->hctx->tags->rqs[tag];
205
206 if (blk_mq_tag_busy(data->hctx)) {
207 rq->cmd_flags = REQ_MQ_INFLIGHT;
208 atomic_inc(&data->hctx->nr_active);
209 }
210
211 rq->tag = tag;
212 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
213 return rq;
214 }
215
216 return NULL;
217 }
218
219 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220 bool reserved)
221 {
222 struct blk_mq_ctx *ctx;
223 struct blk_mq_hw_ctx *hctx;
224 struct request *rq;
225 struct blk_mq_alloc_data alloc_data;
226 int ret;
227
228 ret = blk_mq_queue_enter(q);
229 if (ret)
230 return ERR_PTR(ret);
231
232 ctx = blk_mq_get_ctx(q);
233 hctx = q->mq_ops->map_queue(q, ctx->cpu);
234 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
235 reserved, ctx, hctx);
236
237 rq = __blk_mq_alloc_request(&alloc_data, rw);
238 if (!rq && (gfp & __GFP_WAIT)) {
239 __blk_mq_run_hw_queue(hctx);
240 blk_mq_put_ctx(ctx);
241
242 ctx = blk_mq_get_ctx(q);
243 hctx = q->mq_ops->map_queue(q, ctx->cpu);
244 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
245 hctx);
246 rq = __blk_mq_alloc_request(&alloc_data, rw);
247 ctx = alloc_data.ctx;
248 }
249 blk_mq_put_ctx(ctx);
250 if (!rq)
251 return ERR_PTR(-EWOULDBLOCK);
252 return rq;
253 }
254 EXPORT_SYMBOL(blk_mq_alloc_request);
255
256 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
257 struct blk_mq_ctx *ctx, struct request *rq)
258 {
259 const int tag = rq->tag;
260 struct request_queue *q = rq->q;
261
262 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
263 atomic_dec(&hctx->nr_active);
264 rq->cmd_flags = 0;
265
266 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
267 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
268 blk_mq_queue_exit(q);
269 }
270
271 void blk_mq_free_request(struct request *rq)
272 {
273 struct blk_mq_ctx *ctx = rq->mq_ctx;
274 struct blk_mq_hw_ctx *hctx;
275 struct request_queue *q = rq->q;
276
277 ctx->rq_completed[rq_is_sync(rq)]++;
278
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 __blk_mq_free_request(hctx, ctx, rq);
281 }
282
283 /*
284 * Clone all relevant state from a request that has been put on hold in
285 * the flush state machine into the preallocated flush request that hangs
286 * off the request queue.
287 *
288 * For a driver the flush request should be invisible, that's why we are
289 * impersonating the original request here.
290 */
291 void blk_mq_clone_flush_request(struct request *flush_rq,
292 struct request *orig_rq)
293 {
294 struct blk_mq_hw_ctx *hctx =
295 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
296
297 flush_rq->mq_ctx = orig_rq->mq_ctx;
298 flush_rq->tag = orig_rq->tag;
299 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
300 hctx->cmd_size);
301 }
302
303 inline void __blk_mq_end_io(struct request *rq, int error)
304 {
305 blk_account_io_done(rq);
306
307 if (rq->end_io) {
308 rq->end_io(rq, error);
309 } else {
310 if (unlikely(blk_bidi_rq(rq)))
311 blk_mq_free_request(rq->next_rq);
312 blk_mq_free_request(rq);
313 }
314 }
315 EXPORT_SYMBOL(__blk_mq_end_io);
316
317 void blk_mq_end_io(struct request *rq, int error)
318 {
319 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
320 BUG();
321 __blk_mq_end_io(rq, error);
322 }
323 EXPORT_SYMBOL(blk_mq_end_io);
324
325 static void __blk_mq_complete_request_remote(void *data)
326 {
327 struct request *rq = data;
328
329 rq->q->softirq_done_fn(rq);
330 }
331
332 static void blk_mq_ipi_complete_request(struct request *rq)
333 {
334 struct blk_mq_ctx *ctx = rq->mq_ctx;
335 bool shared = false;
336 int cpu;
337
338 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
339 rq->q->softirq_done_fn(rq);
340 return;
341 }
342
343 cpu = get_cpu();
344 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
345 shared = cpus_share_cache(cpu, ctx->cpu);
346
347 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
348 rq->csd.func = __blk_mq_complete_request_remote;
349 rq->csd.info = rq;
350 rq->csd.flags = 0;
351 smp_call_function_single_async(ctx->cpu, &rq->csd);
352 } else {
353 rq->q->softirq_done_fn(rq);
354 }
355 put_cpu();
356 }
357
358 void __blk_mq_complete_request(struct request *rq)
359 {
360 struct request_queue *q = rq->q;
361
362 if (!q->softirq_done_fn)
363 blk_mq_end_io(rq, rq->errors);
364 else
365 blk_mq_ipi_complete_request(rq);
366 }
367
368 /**
369 * blk_mq_complete_request - end I/O on a request
370 * @rq: the request being processed
371 *
372 * Description:
373 * Ends all I/O on a request. It does not handle partial completions.
374 * The actual completion happens out-of-order, through a IPI handler.
375 **/
376 void blk_mq_complete_request(struct request *rq)
377 {
378 struct request_queue *q = rq->q;
379
380 if (unlikely(blk_should_fake_timeout(q)))
381 return;
382 if (!blk_mark_rq_complete(rq))
383 __blk_mq_complete_request(rq);
384 }
385 EXPORT_SYMBOL(blk_mq_complete_request);
386
387 static void blk_mq_start_request(struct request *rq, bool last)
388 {
389 struct request_queue *q = rq->q;
390
391 trace_block_rq_issue(q, rq);
392
393 rq->resid_len = blk_rq_bytes(rq);
394 if (unlikely(blk_bidi_rq(rq)))
395 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
396
397 blk_add_timer(rq);
398
399 /*
400 * Ensure that ->deadline is visible before set the started
401 * flag and clear the completed flag.
402 */
403 smp_mb__before_atomic();
404
405 /*
406 * Mark us as started and clear complete. Complete might have been
407 * set if requeue raced with timeout, which then marked it as
408 * complete. So be sure to clear complete again when we start
409 * the request, otherwise we'll ignore the completion event.
410 */
411 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
412 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
414 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
415
416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
417 /*
418 * Make sure space for the drain appears. We know we can do
419 * this because max_hw_segments has been adjusted to be one
420 * fewer than the device can handle.
421 */
422 rq->nr_phys_segments++;
423 }
424
425 /*
426 * Flag the last request in the series so that drivers know when IO
427 * should be kicked off, if they don't do it on a per-request basis.
428 *
429 * Note: the flag isn't the only condition drivers should do kick off.
430 * If drive is busy, the last request might not have the bit set.
431 */
432 if (last)
433 rq->cmd_flags |= REQ_END;
434 }
435
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
441 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
442
443 rq->cmd_flags &= ~REQ_END;
444
445 if (q->dma_drain_size && blk_rq_bytes(rq))
446 rq->nr_phys_segments--;
447 }
448
449 void blk_mq_requeue_request(struct request *rq)
450 {
451 __blk_mq_requeue_request(rq);
452 blk_clear_rq_complete(rq);
453
454 BUG_ON(blk_queued_rq(rq));
455 blk_mq_add_to_requeue_list(rq, true);
456 }
457 EXPORT_SYMBOL(blk_mq_requeue_request);
458
459 static void blk_mq_requeue_work(struct work_struct *work)
460 {
461 struct request_queue *q =
462 container_of(work, struct request_queue, requeue_work);
463 LIST_HEAD(rq_list);
464 struct request *rq, *next;
465 unsigned long flags;
466
467 spin_lock_irqsave(&q->requeue_lock, flags);
468 list_splice_init(&q->requeue_list, &rq_list);
469 spin_unlock_irqrestore(&q->requeue_lock, flags);
470
471 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 continue;
474
475 rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 list_del_init(&rq->queuelist);
477 blk_mq_insert_request(rq, true, false, false);
478 }
479
480 while (!list_empty(&rq_list)) {
481 rq = list_entry(rq_list.next, struct request, queuelist);
482 list_del_init(&rq->queuelist);
483 blk_mq_insert_request(rq, false, false, false);
484 }
485
486 /*
487 * Use the start variant of queue running here, so that running
488 * the requeue work will kick stopped queues.
489 */
490 blk_mq_start_hw_queues(q);
491 }
492
493 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494 {
495 struct request_queue *q = rq->q;
496 unsigned long flags;
497
498 /*
499 * We abuse this flag that is otherwise used by the I/O scheduler to
500 * request head insertation from the workqueue.
501 */
502 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503
504 spin_lock_irqsave(&q->requeue_lock, flags);
505 if (at_head) {
506 rq->cmd_flags |= REQ_SOFTBARRIER;
507 list_add(&rq->queuelist, &q->requeue_list);
508 } else {
509 list_add_tail(&rq->queuelist, &q->requeue_list);
510 }
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512 }
513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514
515 void blk_mq_kick_requeue_list(struct request_queue *q)
516 {
517 kblockd_schedule_work(&q->requeue_work);
518 }
519 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
520
521 static inline bool is_flush_request(struct request *rq, unsigned int tag)
522 {
523 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
524 rq->q->flush_rq->tag == tag);
525 }
526
527 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
528 {
529 struct request *rq = tags->rqs[tag];
530
531 if (!is_flush_request(rq, tag))
532 return rq;
533
534 return rq->q->flush_rq;
535 }
536 EXPORT_SYMBOL(blk_mq_tag_to_rq);
537
538 struct blk_mq_timeout_data {
539 struct blk_mq_hw_ctx *hctx;
540 unsigned long *next;
541 unsigned int *next_set;
542 };
543
544 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
545 {
546 struct blk_mq_timeout_data *data = __data;
547 struct blk_mq_hw_ctx *hctx = data->hctx;
548 unsigned int tag;
549
550 /* It may not be in flight yet (this is where
551 * the REQ_ATOMIC_STARTED flag comes in). The requests are
552 * statically allocated, so we know it's always safe to access the
553 * memory associated with a bit offset into ->rqs[].
554 */
555 tag = 0;
556 do {
557 struct request *rq;
558
559 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
560 if (tag >= hctx->tags->nr_tags)
561 break;
562
563 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
564 if (rq->q != hctx->queue)
565 continue;
566 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
567 continue;
568
569 blk_rq_check_expired(rq, data->next, data->next_set);
570 } while (1);
571 }
572
573 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
574 unsigned long *next,
575 unsigned int *next_set)
576 {
577 struct blk_mq_timeout_data data = {
578 .hctx = hctx,
579 .next = next,
580 .next_set = next_set,
581 };
582
583 /*
584 * Ask the tagging code to iterate busy requests, so we can
585 * check them for timeout.
586 */
587 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
588 }
589
590 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
591 {
592 struct request_queue *q = rq->q;
593
594 /*
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
602 */
603 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
604 return BLK_EH_NOT_HANDLED;
605
606 if (!q->mq_ops->timeout)
607 return BLK_EH_RESET_TIMER;
608
609 return q->mq_ops->timeout(rq);
610 }
611
612 static void blk_mq_rq_timer(unsigned long data)
613 {
614 struct request_queue *q = (struct request_queue *) data;
615 struct blk_mq_hw_ctx *hctx;
616 unsigned long next = 0;
617 int i, next_set = 0;
618
619 queue_for_each_hw_ctx(q, hctx, i) {
620 /*
621 * If not software queues are currently mapped to this
622 * hardware queue, there's nothing to check
623 */
624 if (!hctx->nr_ctx || !hctx->tags)
625 continue;
626
627 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
628 }
629
630 if (next_set) {
631 next = blk_rq_timeout(round_jiffies_up(next));
632 mod_timer(&q->timeout, next);
633 } else {
634 queue_for_each_hw_ctx(q, hctx, i)
635 blk_mq_tag_idle(hctx);
636 }
637 }
638
639 /*
640 * Reverse check our software queue for entries that we could potentially
641 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
642 * too much time checking for merges.
643 */
644 static bool blk_mq_attempt_merge(struct request_queue *q,
645 struct blk_mq_ctx *ctx, struct bio *bio)
646 {
647 struct request *rq;
648 int checked = 8;
649
650 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
651 int el_ret;
652
653 if (!checked--)
654 break;
655
656 if (!blk_rq_merge_ok(rq, bio))
657 continue;
658
659 el_ret = blk_try_merge(rq, bio);
660 if (el_ret == ELEVATOR_BACK_MERGE) {
661 if (bio_attempt_back_merge(q, rq, bio)) {
662 ctx->rq_merged++;
663 return true;
664 }
665 break;
666 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
667 if (bio_attempt_front_merge(q, rq, bio)) {
668 ctx->rq_merged++;
669 return true;
670 }
671 break;
672 }
673 }
674
675 return false;
676 }
677
678 /*
679 * Process software queues that have been marked busy, splicing them
680 * to the for-dispatch
681 */
682 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
683 {
684 struct blk_mq_ctx *ctx;
685 int i;
686
687 for (i = 0; i < hctx->ctx_map.map_size; i++) {
688 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
689 unsigned int off, bit;
690
691 if (!bm->word)
692 continue;
693
694 bit = 0;
695 off = i * hctx->ctx_map.bits_per_word;
696 do {
697 bit = find_next_bit(&bm->word, bm->depth, bit);
698 if (bit >= bm->depth)
699 break;
700
701 ctx = hctx->ctxs[bit + off];
702 clear_bit(bit, &bm->word);
703 spin_lock(&ctx->lock);
704 list_splice_tail_init(&ctx->rq_list, list);
705 spin_unlock(&ctx->lock);
706
707 bit++;
708 } while (1);
709 }
710 }
711
712 /*
713 * Run this hardware queue, pulling any software queues mapped to it in.
714 * Note that this function currently has various problems around ordering
715 * of IO. In particular, we'd like FIFO behaviour on handling existing
716 * items on the hctx->dispatch list. Ignore that for now.
717 */
718 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
719 {
720 struct request_queue *q = hctx->queue;
721 struct request *rq;
722 LIST_HEAD(rq_list);
723 int queued;
724
725 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
726
727 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
728 return;
729
730 hctx->run++;
731
732 /*
733 * Touch any software queue that has pending entries.
734 */
735 flush_busy_ctxs(hctx, &rq_list);
736
737 /*
738 * If we have previous entries on our dispatch list, grab them
739 * and stuff them at the front for more fair dispatch.
740 */
741 if (!list_empty_careful(&hctx->dispatch)) {
742 spin_lock(&hctx->lock);
743 if (!list_empty(&hctx->dispatch))
744 list_splice_init(&hctx->dispatch, &rq_list);
745 spin_unlock(&hctx->lock);
746 }
747
748 /*
749 * Now process all the entries, sending them to the driver.
750 */
751 queued = 0;
752 while (!list_empty(&rq_list)) {
753 int ret;
754
755 rq = list_first_entry(&rq_list, struct request, queuelist);
756 list_del_init(&rq->queuelist);
757
758 blk_mq_start_request(rq, list_empty(&rq_list));
759
760 ret = q->mq_ops->queue_rq(hctx, rq);
761 switch (ret) {
762 case BLK_MQ_RQ_QUEUE_OK:
763 queued++;
764 continue;
765 case BLK_MQ_RQ_QUEUE_BUSY:
766 list_add(&rq->queuelist, &rq_list);
767 __blk_mq_requeue_request(rq);
768 break;
769 default:
770 pr_err("blk-mq: bad return on queue: %d\n", ret);
771 case BLK_MQ_RQ_QUEUE_ERROR:
772 rq->errors = -EIO;
773 blk_mq_end_io(rq, rq->errors);
774 break;
775 }
776
777 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
778 break;
779 }
780
781 if (!queued)
782 hctx->dispatched[0]++;
783 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
784 hctx->dispatched[ilog2(queued) + 1]++;
785
786 /*
787 * Any items that need requeuing? Stuff them into hctx->dispatch,
788 * that is where we will continue on next queue run.
789 */
790 if (!list_empty(&rq_list)) {
791 spin_lock(&hctx->lock);
792 list_splice(&rq_list, &hctx->dispatch);
793 spin_unlock(&hctx->lock);
794 }
795 }
796
797 /*
798 * It'd be great if the workqueue API had a way to pass
799 * in a mask and had some smarts for more clever placement.
800 * For now we just round-robin here, switching for every
801 * BLK_MQ_CPU_WORK_BATCH queued items.
802 */
803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
804 {
805 int cpu = hctx->next_cpu;
806
807 if (--hctx->next_cpu_batch <= 0) {
808 int next_cpu;
809
810 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
811 if (next_cpu >= nr_cpu_ids)
812 next_cpu = cpumask_first(hctx->cpumask);
813
814 hctx->next_cpu = next_cpu;
815 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
816 }
817
818 return cpu;
819 }
820
821 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
822 {
823 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
824 return;
825
826 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
827 __blk_mq_run_hw_queue(hctx);
828 else if (hctx->queue->nr_hw_queues == 1)
829 kblockd_schedule_delayed_work(&hctx->run_work, 0);
830 else {
831 unsigned int cpu;
832
833 cpu = blk_mq_hctx_next_cpu(hctx);
834 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
835 }
836 }
837
838 void blk_mq_run_queues(struct request_queue *q, bool async)
839 {
840 struct blk_mq_hw_ctx *hctx;
841 int i;
842
843 queue_for_each_hw_ctx(q, hctx, i) {
844 if ((!blk_mq_hctx_has_pending(hctx) &&
845 list_empty_careful(&hctx->dispatch)) ||
846 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
847 continue;
848
849 preempt_disable();
850 blk_mq_run_hw_queue(hctx, async);
851 preempt_enable();
852 }
853 }
854 EXPORT_SYMBOL(blk_mq_run_queues);
855
856 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
857 {
858 cancel_delayed_work(&hctx->run_work);
859 cancel_delayed_work(&hctx->delay_work);
860 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
861 }
862 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
863
864 void blk_mq_stop_hw_queues(struct request_queue *q)
865 {
866 struct blk_mq_hw_ctx *hctx;
867 int i;
868
869 queue_for_each_hw_ctx(q, hctx, i)
870 blk_mq_stop_hw_queue(hctx);
871 }
872 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
873
874 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
875 {
876 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
877
878 preempt_disable();
879 blk_mq_run_hw_queue(hctx, false);
880 preempt_enable();
881 }
882 EXPORT_SYMBOL(blk_mq_start_hw_queue);
883
884 void blk_mq_start_hw_queues(struct request_queue *q)
885 {
886 struct blk_mq_hw_ctx *hctx;
887 int i;
888
889 queue_for_each_hw_ctx(q, hctx, i)
890 blk_mq_start_hw_queue(hctx);
891 }
892 EXPORT_SYMBOL(blk_mq_start_hw_queues);
893
894
895 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
896 {
897 struct blk_mq_hw_ctx *hctx;
898 int i;
899
900 queue_for_each_hw_ctx(q, hctx, i) {
901 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
902 continue;
903
904 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
905 preempt_disable();
906 blk_mq_run_hw_queue(hctx, async);
907 preempt_enable();
908 }
909 }
910 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
911
912 static void blk_mq_run_work_fn(struct work_struct *work)
913 {
914 struct blk_mq_hw_ctx *hctx;
915
916 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
917
918 __blk_mq_run_hw_queue(hctx);
919 }
920
921 static void blk_mq_delay_work_fn(struct work_struct *work)
922 {
923 struct blk_mq_hw_ctx *hctx;
924
925 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
926
927 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
928 __blk_mq_run_hw_queue(hctx);
929 }
930
931 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
932 {
933 unsigned long tmo = msecs_to_jiffies(msecs);
934
935 if (hctx->queue->nr_hw_queues == 1)
936 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
937 else {
938 unsigned int cpu;
939
940 cpu = blk_mq_hctx_next_cpu(hctx);
941 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
942 }
943 }
944 EXPORT_SYMBOL(blk_mq_delay_queue);
945
946 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
947 struct request *rq, bool at_head)
948 {
949 struct blk_mq_ctx *ctx = rq->mq_ctx;
950
951 trace_block_rq_insert(hctx->queue, rq);
952
953 if (at_head)
954 list_add(&rq->queuelist, &ctx->rq_list);
955 else
956 list_add_tail(&rq->queuelist, &ctx->rq_list);
957
958 blk_mq_hctx_mark_pending(hctx, ctx);
959 }
960
961 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
962 bool async)
963 {
964 struct request_queue *q = rq->q;
965 struct blk_mq_hw_ctx *hctx;
966 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
967
968 current_ctx = blk_mq_get_ctx(q);
969 if (!cpu_online(ctx->cpu))
970 rq->mq_ctx = ctx = current_ctx;
971
972 hctx = q->mq_ops->map_queue(q, ctx->cpu);
973
974 spin_lock(&ctx->lock);
975 __blk_mq_insert_request(hctx, rq, at_head);
976 spin_unlock(&ctx->lock);
977
978 if (run_queue)
979 blk_mq_run_hw_queue(hctx, async);
980
981 blk_mq_put_ctx(current_ctx);
982 }
983
984 static void blk_mq_insert_requests(struct request_queue *q,
985 struct blk_mq_ctx *ctx,
986 struct list_head *list,
987 int depth,
988 bool from_schedule)
989
990 {
991 struct blk_mq_hw_ctx *hctx;
992 struct blk_mq_ctx *current_ctx;
993
994 trace_block_unplug(q, depth, !from_schedule);
995
996 current_ctx = blk_mq_get_ctx(q);
997
998 if (!cpu_online(ctx->cpu))
999 ctx = current_ctx;
1000 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1001
1002 /*
1003 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1004 * offline now
1005 */
1006 spin_lock(&ctx->lock);
1007 while (!list_empty(list)) {
1008 struct request *rq;
1009
1010 rq = list_first_entry(list, struct request, queuelist);
1011 list_del_init(&rq->queuelist);
1012 rq->mq_ctx = ctx;
1013 __blk_mq_insert_request(hctx, rq, false);
1014 }
1015 spin_unlock(&ctx->lock);
1016
1017 blk_mq_run_hw_queue(hctx, from_schedule);
1018 blk_mq_put_ctx(current_ctx);
1019 }
1020
1021 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1022 {
1023 struct request *rqa = container_of(a, struct request, queuelist);
1024 struct request *rqb = container_of(b, struct request, queuelist);
1025
1026 return !(rqa->mq_ctx < rqb->mq_ctx ||
1027 (rqa->mq_ctx == rqb->mq_ctx &&
1028 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1029 }
1030
1031 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1032 {
1033 struct blk_mq_ctx *this_ctx;
1034 struct request_queue *this_q;
1035 struct request *rq;
1036 LIST_HEAD(list);
1037 LIST_HEAD(ctx_list);
1038 unsigned int depth;
1039
1040 list_splice_init(&plug->mq_list, &list);
1041
1042 list_sort(NULL, &list, plug_ctx_cmp);
1043
1044 this_q = NULL;
1045 this_ctx = NULL;
1046 depth = 0;
1047
1048 while (!list_empty(&list)) {
1049 rq = list_entry_rq(list.next);
1050 list_del_init(&rq->queuelist);
1051 BUG_ON(!rq->q);
1052 if (rq->mq_ctx != this_ctx) {
1053 if (this_ctx) {
1054 blk_mq_insert_requests(this_q, this_ctx,
1055 &ctx_list, depth,
1056 from_schedule);
1057 }
1058
1059 this_ctx = rq->mq_ctx;
1060 this_q = rq->q;
1061 depth = 0;
1062 }
1063
1064 depth++;
1065 list_add_tail(&rq->queuelist, &ctx_list);
1066 }
1067
1068 /*
1069 * If 'this_ctx' is set, we know we have entries to complete
1070 * on 'ctx_list'. Do those.
1071 */
1072 if (this_ctx) {
1073 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1074 from_schedule);
1075 }
1076 }
1077
1078 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1079 {
1080 init_request_from_bio(rq, bio);
1081
1082 if (blk_do_io_stat(rq))
1083 blk_account_io_start(rq, 1);
1084 }
1085
1086 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1087 {
1088 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1089 !blk_queue_nomerges(hctx->queue);
1090 }
1091
1092 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1093 struct blk_mq_ctx *ctx,
1094 struct request *rq, struct bio *bio)
1095 {
1096 if (!hctx_allow_merges(hctx)) {
1097 blk_mq_bio_to_request(rq, bio);
1098 spin_lock(&ctx->lock);
1099 insert_rq:
1100 __blk_mq_insert_request(hctx, rq, false);
1101 spin_unlock(&ctx->lock);
1102 return false;
1103 } else {
1104 struct request_queue *q = hctx->queue;
1105
1106 spin_lock(&ctx->lock);
1107 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1108 blk_mq_bio_to_request(rq, bio);
1109 goto insert_rq;
1110 }
1111
1112 spin_unlock(&ctx->lock);
1113 __blk_mq_free_request(hctx, ctx, rq);
1114 return true;
1115 }
1116 }
1117
1118 struct blk_map_ctx {
1119 struct blk_mq_hw_ctx *hctx;
1120 struct blk_mq_ctx *ctx;
1121 };
1122
1123 static struct request *blk_mq_map_request(struct request_queue *q,
1124 struct bio *bio,
1125 struct blk_map_ctx *data)
1126 {
1127 struct blk_mq_hw_ctx *hctx;
1128 struct blk_mq_ctx *ctx;
1129 struct request *rq;
1130 int rw = bio_data_dir(bio);
1131 struct blk_mq_alloc_data alloc_data;
1132
1133 if (unlikely(blk_mq_queue_enter(q))) {
1134 bio_endio(bio, -EIO);
1135 return NULL;
1136 }
1137
1138 ctx = blk_mq_get_ctx(q);
1139 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1140
1141 if (rw_is_sync(bio->bi_rw))
1142 rw |= REQ_SYNC;
1143
1144 trace_block_getrq(q, bio, rw);
1145 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1146 hctx);
1147 rq = __blk_mq_alloc_request(&alloc_data, rw);
1148 if (unlikely(!rq)) {
1149 __blk_mq_run_hw_queue(hctx);
1150 blk_mq_put_ctx(ctx);
1151 trace_block_sleeprq(q, bio, rw);
1152
1153 ctx = blk_mq_get_ctx(q);
1154 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1155 blk_mq_set_alloc_data(&alloc_data, q,
1156 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1157 rq = __blk_mq_alloc_request(&alloc_data, rw);
1158 ctx = alloc_data.ctx;
1159 hctx = alloc_data.hctx;
1160 }
1161
1162 hctx->queued++;
1163 data->hctx = hctx;
1164 data->ctx = ctx;
1165 return rq;
1166 }
1167
1168 /*
1169 * Multiple hardware queue variant. This will not use per-process plugs,
1170 * but will attempt to bypass the hctx queueing if we can go straight to
1171 * hardware for SYNC IO.
1172 */
1173 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1174 {
1175 const int is_sync = rw_is_sync(bio->bi_rw);
1176 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1177 struct blk_map_ctx data;
1178 struct request *rq;
1179
1180 blk_queue_bounce(q, &bio);
1181
1182 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1183 bio_endio(bio, -EIO);
1184 return;
1185 }
1186
1187 rq = blk_mq_map_request(q, bio, &data);
1188 if (unlikely(!rq))
1189 return;
1190
1191 if (unlikely(is_flush_fua)) {
1192 blk_mq_bio_to_request(rq, bio);
1193 blk_insert_flush(rq);
1194 goto run_queue;
1195 }
1196
1197 if (is_sync) {
1198 int ret;
1199
1200 blk_mq_bio_to_request(rq, bio);
1201 blk_mq_start_request(rq, true);
1202
1203 /*
1204 * For OK queue, we are done. For error, kill it. Any other
1205 * error (busy), just add it to our list as we previously
1206 * would have done
1207 */
1208 ret = q->mq_ops->queue_rq(data.hctx, rq);
1209 if (ret == BLK_MQ_RQ_QUEUE_OK)
1210 goto done;
1211 else {
1212 __blk_mq_requeue_request(rq);
1213
1214 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1215 rq->errors = -EIO;
1216 blk_mq_end_io(rq, rq->errors);
1217 goto done;
1218 }
1219 }
1220 }
1221
1222 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1223 /*
1224 * For a SYNC request, send it to the hardware immediately. For
1225 * an ASYNC request, just ensure that we run it later on. The
1226 * latter allows for merging opportunities and more efficient
1227 * dispatching.
1228 */
1229 run_queue:
1230 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1231 }
1232 done:
1233 blk_mq_put_ctx(data.ctx);
1234 }
1235
1236 /*
1237 * Single hardware queue variant. This will attempt to use any per-process
1238 * plug for merging and IO deferral.
1239 */
1240 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1241 {
1242 const int is_sync = rw_is_sync(bio->bi_rw);
1243 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1244 unsigned int use_plug, request_count = 0;
1245 struct blk_map_ctx data;
1246 struct request *rq;
1247
1248 /*
1249 * If we have multiple hardware queues, just go directly to
1250 * one of those for sync IO.
1251 */
1252 use_plug = !is_flush_fua && !is_sync;
1253
1254 blk_queue_bounce(q, &bio);
1255
1256 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1257 bio_endio(bio, -EIO);
1258 return;
1259 }
1260
1261 if (use_plug && !blk_queue_nomerges(q) &&
1262 blk_attempt_plug_merge(q, bio, &request_count))
1263 return;
1264
1265 rq = blk_mq_map_request(q, bio, &data);
1266 if (unlikely(!rq))
1267 return;
1268
1269 if (unlikely(is_flush_fua)) {
1270 blk_mq_bio_to_request(rq, bio);
1271 blk_insert_flush(rq);
1272 goto run_queue;
1273 }
1274
1275 /*
1276 * A task plug currently exists. Since this is completely lockless,
1277 * utilize that to temporarily store requests until the task is
1278 * either done or scheduled away.
1279 */
1280 if (use_plug) {
1281 struct blk_plug *plug = current->plug;
1282
1283 if (plug) {
1284 blk_mq_bio_to_request(rq, bio);
1285 if (list_empty(&plug->mq_list))
1286 trace_block_plug(q);
1287 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1288 blk_flush_plug_list(plug, false);
1289 trace_block_plug(q);
1290 }
1291 list_add_tail(&rq->queuelist, &plug->mq_list);
1292 blk_mq_put_ctx(data.ctx);
1293 return;
1294 }
1295 }
1296
1297 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1298 /*
1299 * For a SYNC request, send it to the hardware immediately. For
1300 * an ASYNC request, just ensure that we run it later on. The
1301 * latter allows for merging opportunities and more efficient
1302 * dispatching.
1303 */
1304 run_queue:
1305 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1306 }
1307
1308 blk_mq_put_ctx(data.ctx);
1309 }
1310
1311 /*
1312 * Default mapping to a software queue, since we use one per CPU.
1313 */
1314 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1315 {
1316 return q->queue_hw_ctx[q->mq_map[cpu]];
1317 }
1318 EXPORT_SYMBOL(blk_mq_map_queue);
1319
1320 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1321 struct blk_mq_tags *tags, unsigned int hctx_idx)
1322 {
1323 struct page *page;
1324
1325 if (tags->rqs && set->ops->exit_request) {
1326 int i;
1327
1328 for (i = 0; i < tags->nr_tags; i++) {
1329 if (!tags->rqs[i])
1330 continue;
1331 set->ops->exit_request(set->driver_data, tags->rqs[i],
1332 hctx_idx, i);
1333 tags->rqs[i] = NULL;
1334 }
1335 }
1336
1337 while (!list_empty(&tags->page_list)) {
1338 page = list_first_entry(&tags->page_list, struct page, lru);
1339 list_del_init(&page->lru);
1340 __free_pages(page, page->private);
1341 }
1342
1343 kfree(tags->rqs);
1344
1345 blk_mq_free_tags(tags);
1346 }
1347
1348 static size_t order_to_size(unsigned int order)
1349 {
1350 return (size_t)PAGE_SIZE << order;
1351 }
1352
1353 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1354 unsigned int hctx_idx)
1355 {
1356 struct blk_mq_tags *tags;
1357 unsigned int i, j, entries_per_page, max_order = 4;
1358 size_t rq_size, left;
1359
1360 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1361 set->numa_node);
1362 if (!tags)
1363 return NULL;
1364
1365 INIT_LIST_HEAD(&tags->page_list);
1366
1367 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1368 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1369 set->numa_node);
1370 if (!tags->rqs) {
1371 blk_mq_free_tags(tags);
1372 return NULL;
1373 }
1374
1375 /*
1376 * rq_size is the size of the request plus driver payload, rounded
1377 * to the cacheline size
1378 */
1379 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1380 cache_line_size());
1381 left = rq_size * set->queue_depth;
1382
1383 for (i = 0; i < set->queue_depth; ) {
1384 int this_order = max_order;
1385 struct page *page;
1386 int to_do;
1387 void *p;
1388
1389 while (left < order_to_size(this_order - 1) && this_order)
1390 this_order--;
1391
1392 do {
1393 page = alloc_pages_node(set->numa_node,
1394 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1395 this_order);
1396 if (page)
1397 break;
1398 if (!this_order--)
1399 break;
1400 if (order_to_size(this_order) < rq_size)
1401 break;
1402 } while (1);
1403
1404 if (!page)
1405 goto fail;
1406
1407 page->private = this_order;
1408 list_add_tail(&page->lru, &tags->page_list);
1409
1410 p = page_address(page);
1411 entries_per_page = order_to_size(this_order) / rq_size;
1412 to_do = min(entries_per_page, set->queue_depth - i);
1413 left -= to_do * rq_size;
1414 for (j = 0; j < to_do; j++) {
1415 tags->rqs[i] = p;
1416 tags->rqs[i]->atomic_flags = 0;
1417 tags->rqs[i]->cmd_flags = 0;
1418 if (set->ops->init_request) {
1419 if (set->ops->init_request(set->driver_data,
1420 tags->rqs[i], hctx_idx, i,
1421 set->numa_node)) {
1422 tags->rqs[i] = NULL;
1423 goto fail;
1424 }
1425 }
1426
1427 p += rq_size;
1428 i++;
1429 }
1430 }
1431
1432 return tags;
1433
1434 fail:
1435 blk_mq_free_rq_map(set, tags, hctx_idx);
1436 return NULL;
1437 }
1438
1439 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1440 {
1441 kfree(bitmap->map);
1442 }
1443
1444 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1445 {
1446 unsigned int bpw = 8, total, num_maps, i;
1447
1448 bitmap->bits_per_word = bpw;
1449
1450 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1451 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1452 GFP_KERNEL, node);
1453 if (!bitmap->map)
1454 return -ENOMEM;
1455
1456 bitmap->map_size = num_maps;
1457
1458 total = nr_cpu_ids;
1459 for (i = 0; i < num_maps; i++) {
1460 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1461 total -= bitmap->map[i].depth;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1468 {
1469 struct request_queue *q = hctx->queue;
1470 struct blk_mq_ctx *ctx;
1471 LIST_HEAD(tmp);
1472
1473 /*
1474 * Move ctx entries to new CPU, if this one is going away.
1475 */
1476 ctx = __blk_mq_get_ctx(q, cpu);
1477
1478 spin_lock(&ctx->lock);
1479 if (!list_empty(&ctx->rq_list)) {
1480 list_splice_init(&ctx->rq_list, &tmp);
1481 blk_mq_hctx_clear_pending(hctx, ctx);
1482 }
1483 spin_unlock(&ctx->lock);
1484
1485 if (list_empty(&tmp))
1486 return NOTIFY_OK;
1487
1488 ctx = blk_mq_get_ctx(q);
1489 spin_lock(&ctx->lock);
1490
1491 while (!list_empty(&tmp)) {
1492 struct request *rq;
1493
1494 rq = list_first_entry(&tmp, struct request, queuelist);
1495 rq->mq_ctx = ctx;
1496 list_move_tail(&rq->queuelist, &ctx->rq_list);
1497 }
1498
1499 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1500 blk_mq_hctx_mark_pending(hctx, ctx);
1501
1502 spin_unlock(&ctx->lock);
1503
1504 blk_mq_run_hw_queue(hctx, true);
1505 blk_mq_put_ctx(ctx);
1506 return NOTIFY_OK;
1507 }
1508
1509 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1510 {
1511 struct request_queue *q = hctx->queue;
1512 struct blk_mq_tag_set *set = q->tag_set;
1513
1514 if (set->tags[hctx->queue_num])
1515 return NOTIFY_OK;
1516
1517 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1518 if (!set->tags[hctx->queue_num])
1519 return NOTIFY_STOP;
1520
1521 hctx->tags = set->tags[hctx->queue_num];
1522 return NOTIFY_OK;
1523 }
1524
1525 static int blk_mq_hctx_notify(void *data, unsigned long action,
1526 unsigned int cpu)
1527 {
1528 struct blk_mq_hw_ctx *hctx = data;
1529
1530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1531 return blk_mq_hctx_cpu_offline(hctx, cpu);
1532 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1533 return blk_mq_hctx_cpu_online(hctx, cpu);
1534
1535 return NOTIFY_OK;
1536 }
1537
1538 static void blk_mq_exit_hw_queues(struct request_queue *q,
1539 struct blk_mq_tag_set *set, int nr_queue)
1540 {
1541 struct blk_mq_hw_ctx *hctx;
1542 unsigned int i;
1543
1544 queue_for_each_hw_ctx(q, hctx, i) {
1545 if (i == nr_queue)
1546 break;
1547
1548 blk_mq_tag_idle(hctx);
1549
1550 if (set->ops->exit_hctx)
1551 set->ops->exit_hctx(hctx, i);
1552
1553 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1554 kfree(hctx->ctxs);
1555 blk_mq_free_bitmap(&hctx->ctx_map);
1556 }
1557
1558 }
1559
1560 static void blk_mq_free_hw_queues(struct request_queue *q,
1561 struct blk_mq_tag_set *set)
1562 {
1563 struct blk_mq_hw_ctx *hctx;
1564 unsigned int i;
1565
1566 queue_for_each_hw_ctx(q, hctx, i) {
1567 free_cpumask_var(hctx->cpumask);
1568 kfree(hctx);
1569 }
1570 }
1571
1572 static int blk_mq_init_hw_queues(struct request_queue *q,
1573 struct blk_mq_tag_set *set)
1574 {
1575 struct blk_mq_hw_ctx *hctx;
1576 unsigned int i;
1577
1578 /*
1579 * Initialize hardware queues
1580 */
1581 queue_for_each_hw_ctx(q, hctx, i) {
1582 int node;
1583
1584 node = hctx->numa_node;
1585 if (node == NUMA_NO_NODE)
1586 node = hctx->numa_node = set->numa_node;
1587
1588 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1589 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1590 spin_lock_init(&hctx->lock);
1591 INIT_LIST_HEAD(&hctx->dispatch);
1592 hctx->queue = q;
1593 hctx->queue_num = i;
1594 hctx->flags = set->flags;
1595 hctx->cmd_size = set->cmd_size;
1596
1597 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1598 blk_mq_hctx_notify, hctx);
1599 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1600
1601 hctx->tags = set->tags[i];
1602
1603 /*
1604 * Allocate space for all possible cpus to avoid allocation at
1605 * runtime
1606 */
1607 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1608 GFP_KERNEL, node);
1609 if (!hctx->ctxs)
1610 break;
1611
1612 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1613 break;
1614
1615 hctx->nr_ctx = 0;
1616
1617 if (set->ops->init_hctx &&
1618 set->ops->init_hctx(hctx, set->driver_data, i))
1619 break;
1620 }
1621
1622 if (i == q->nr_hw_queues)
1623 return 0;
1624
1625 /*
1626 * Init failed
1627 */
1628 blk_mq_exit_hw_queues(q, set, i);
1629
1630 return 1;
1631 }
1632
1633 static void blk_mq_init_cpu_queues(struct request_queue *q,
1634 unsigned int nr_hw_queues)
1635 {
1636 unsigned int i;
1637
1638 for_each_possible_cpu(i) {
1639 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1640 struct blk_mq_hw_ctx *hctx;
1641
1642 memset(__ctx, 0, sizeof(*__ctx));
1643 __ctx->cpu = i;
1644 spin_lock_init(&__ctx->lock);
1645 INIT_LIST_HEAD(&__ctx->rq_list);
1646 __ctx->queue = q;
1647
1648 /* If the cpu isn't online, the cpu is mapped to first hctx */
1649 if (!cpu_online(i))
1650 continue;
1651
1652 hctx = q->mq_ops->map_queue(q, i);
1653 cpumask_set_cpu(i, hctx->cpumask);
1654 hctx->nr_ctx++;
1655
1656 /*
1657 * Set local node, IFF we have more than one hw queue. If
1658 * not, we remain on the home node of the device
1659 */
1660 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1661 hctx->numa_node = cpu_to_node(i);
1662 }
1663 }
1664
1665 static void blk_mq_map_swqueue(struct request_queue *q)
1666 {
1667 unsigned int i;
1668 struct blk_mq_hw_ctx *hctx;
1669 struct blk_mq_ctx *ctx;
1670
1671 queue_for_each_hw_ctx(q, hctx, i) {
1672 cpumask_clear(hctx->cpumask);
1673 hctx->nr_ctx = 0;
1674 }
1675
1676 /*
1677 * Map software to hardware queues
1678 */
1679 queue_for_each_ctx(q, ctx, i) {
1680 /* If the cpu isn't online, the cpu is mapped to first hctx */
1681 if (!cpu_online(i))
1682 continue;
1683
1684 hctx = q->mq_ops->map_queue(q, i);
1685 cpumask_set_cpu(i, hctx->cpumask);
1686 ctx->index_hw = hctx->nr_ctx;
1687 hctx->ctxs[hctx->nr_ctx++] = ctx;
1688 }
1689
1690 queue_for_each_hw_ctx(q, hctx, i) {
1691 /*
1692 * If no software queues are mapped to this hardware queue,
1693 * disable it and free the request entries.
1694 */
1695 if (!hctx->nr_ctx) {
1696 struct blk_mq_tag_set *set = q->tag_set;
1697
1698 if (set->tags[i]) {
1699 blk_mq_free_rq_map(set, set->tags[i], i);
1700 set->tags[i] = NULL;
1701 hctx->tags = NULL;
1702 }
1703 continue;
1704 }
1705
1706 /*
1707 * Initialize batch roundrobin counts
1708 */
1709 hctx->next_cpu = cpumask_first(hctx->cpumask);
1710 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1711 }
1712 }
1713
1714 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1715 {
1716 struct blk_mq_hw_ctx *hctx;
1717 struct request_queue *q;
1718 bool shared;
1719 int i;
1720
1721 if (set->tag_list.next == set->tag_list.prev)
1722 shared = false;
1723 else
1724 shared = true;
1725
1726 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1727 blk_mq_freeze_queue(q);
1728
1729 queue_for_each_hw_ctx(q, hctx, i) {
1730 if (shared)
1731 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1732 else
1733 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1734 }
1735 blk_mq_unfreeze_queue(q);
1736 }
1737 }
1738
1739 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1740 {
1741 struct blk_mq_tag_set *set = q->tag_set;
1742
1743 mutex_lock(&set->tag_list_lock);
1744 list_del_init(&q->tag_set_list);
1745 blk_mq_update_tag_set_depth(set);
1746 mutex_unlock(&set->tag_list_lock);
1747 }
1748
1749 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1750 struct request_queue *q)
1751 {
1752 q->tag_set = set;
1753
1754 mutex_lock(&set->tag_list_lock);
1755 list_add_tail(&q->tag_set_list, &set->tag_list);
1756 blk_mq_update_tag_set_depth(set);
1757 mutex_unlock(&set->tag_list_lock);
1758 }
1759
1760 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1761 {
1762 struct blk_mq_hw_ctx **hctxs;
1763 struct blk_mq_ctx __percpu *ctx;
1764 struct request_queue *q;
1765 unsigned int *map;
1766 int i;
1767
1768 ctx = alloc_percpu(struct blk_mq_ctx);
1769 if (!ctx)
1770 return ERR_PTR(-ENOMEM);
1771
1772 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1773 set->numa_node);
1774
1775 if (!hctxs)
1776 goto err_percpu;
1777
1778 map = blk_mq_make_queue_map(set);
1779 if (!map)
1780 goto err_map;
1781
1782 for (i = 0; i < set->nr_hw_queues; i++) {
1783 int node = blk_mq_hw_queue_to_node(map, i);
1784
1785 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1786 GFP_KERNEL, node);
1787 if (!hctxs[i])
1788 goto err_hctxs;
1789
1790 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1791 goto err_hctxs;
1792
1793 atomic_set(&hctxs[i]->nr_active, 0);
1794 hctxs[i]->numa_node = node;
1795 hctxs[i]->queue_num = i;
1796 }
1797
1798 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1799 if (!q)
1800 goto err_hctxs;
1801
1802 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1803 goto err_map;
1804
1805 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1806 blk_queue_rq_timeout(q, 30000);
1807
1808 q->nr_queues = nr_cpu_ids;
1809 q->nr_hw_queues = set->nr_hw_queues;
1810 q->mq_map = map;
1811
1812 q->queue_ctx = ctx;
1813 q->queue_hw_ctx = hctxs;
1814
1815 q->mq_ops = set->ops;
1816 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1817
1818 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1819 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1820
1821 q->sg_reserved_size = INT_MAX;
1822
1823 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1824 INIT_LIST_HEAD(&q->requeue_list);
1825 spin_lock_init(&q->requeue_lock);
1826
1827 if (q->nr_hw_queues > 1)
1828 blk_queue_make_request(q, blk_mq_make_request);
1829 else
1830 blk_queue_make_request(q, blk_sq_make_request);
1831
1832 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1833 if (set->timeout)
1834 blk_queue_rq_timeout(q, set->timeout);
1835
1836 /*
1837 * Do this after blk_queue_make_request() overrides it...
1838 */
1839 q->nr_requests = set->queue_depth;
1840
1841 if (set->ops->complete)
1842 blk_queue_softirq_done(q, set->ops->complete);
1843
1844 blk_mq_init_flush(q);
1845 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1846
1847 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1848 set->cmd_size, cache_line_size()),
1849 GFP_KERNEL);
1850 if (!q->flush_rq)
1851 goto err_hw;
1852
1853 if (blk_mq_init_hw_queues(q, set))
1854 goto err_flush_rq;
1855
1856 mutex_lock(&all_q_mutex);
1857 list_add_tail(&q->all_q_node, &all_q_list);
1858 mutex_unlock(&all_q_mutex);
1859
1860 blk_mq_add_queue_tag_set(set, q);
1861
1862 blk_mq_map_swqueue(q);
1863
1864 return q;
1865
1866 err_flush_rq:
1867 kfree(q->flush_rq);
1868 err_hw:
1869 blk_cleanup_queue(q);
1870 err_hctxs:
1871 kfree(map);
1872 for (i = 0; i < set->nr_hw_queues; i++) {
1873 if (!hctxs[i])
1874 break;
1875 free_cpumask_var(hctxs[i]->cpumask);
1876 kfree(hctxs[i]);
1877 }
1878 err_map:
1879 kfree(hctxs);
1880 err_percpu:
1881 free_percpu(ctx);
1882 return ERR_PTR(-ENOMEM);
1883 }
1884 EXPORT_SYMBOL(blk_mq_init_queue);
1885
1886 void blk_mq_free_queue(struct request_queue *q)
1887 {
1888 struct blk_mq_tag_set *set = q->tag_set;
1889
1890 blk_mq_del_queue_tag_set(q);
1891
1892 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1893 blk_mq_free_hw_queues(q, set);
1894
1895 percpu_ref_exit(&q->mq_usage_counter);
1896
1897 free_percpu(q->queue_ctx);
1898 kfree(q->queue_hw_ctx);
1899 kfree(q->mq_map);
1900
1901 q->queue_ctx = NULL;
1902 q->queue_hw_ctx = NULL;
1903 q->mq_map = NULL;
1904
1905 mutex_lock(&all_q_mutex);
1906 list_del_init(&q->all_q_node);
1907 mutex_unlock(&all_q_mutex);
1908 }
1909
1910 /* Basically redo blk_mq_init_queue with queue frozen */
1911 static void blk_mq_queue_reinit(struct request_queue *q)
1912 {
1913 blk_mq_freeze_queue(q);
1914
1915 blk_mq_sysfs_unregister(q);
1916
1917 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1918
1919 /*
1920 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1921 * we should change hctx numa_node according to new topology (this
1922 * involves free and re-allocate memory, worthy doing?)
1923 */
1924
1925 blk_mq_map_swqueue(q);
1926
1927 blk_mq_sysfs_register(q);
1928
1929 blk_mq_unfreeze_queue(q);
1930 }
1931
1932 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1933 unsigned long action, void *hcpu)
1934 {
1935 struct request_queue *q;
1936
1937 /*
1938 * Before new mappings are established, hotadded cpu might already
1939 * start handling requests. This doesn't break anything as we map
1940 * offline CPUs to first hardware queue. We will re-init the queue
1941 * below to get optimal settings.
1942 */
1943 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1944 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1945 return NOTIFY_OK;
1946
1947 mutex_lock(&all_q_mutex);
1948 list_for_each_entry(q, &all_q_list, all_q_node)
1949 blk_mq_queue_reinit(q);
1950 mutex_unlock(&all_q_mutex);
1951 return NOTIFY_OK;
1952 }
1953
1954 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1955 {
1956 int i;
1957
1958 for (i = 0; i < set->nr_hw_queues; i++) {
1959 set->tags[i] = blk_mq_init_rq_map(set, i);
1960 if (!set->tags[i])
1961 goto out_unwind;
1962 }
1963
1964 return 0;
1965
1966 out_unwind:
1967 while (--i >= 0)
1968 blk_mq_free_rq_map(set, set->tags[i], i);
1969
1970 return -ENOMEM;
1971 }
1972
1973 /*
1974 * Allocate the request maps associated with this tag_set. Note that this
1975 * may reduce the depth asked for, if memory is tight. set->queue_depth
1976 * will be updated to reflect the allocated depth.
1977 */
1978 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1979 {
1980 unsigned int depth;
1981 int err;
1982
1983 depth = set->queue_depth;
1984 do {
1985 err = __blk_mq_alloc_rq_maps(set);
1986 if (!err)
1987 break;
1988
1989 set->queue_depth >>= 1;
1990 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1991 err = -ENOMEM;
1992 break;
1993 }
1994 } while (set->queue_depth);
1995
1996 if (!set->queue_depth || err) {
1997 pr_err("blk-mq: failed to allocate request map\n");
1998 return -ENOMEM;
1999 }
2000
2001 if (depth != set->queue_depth)
2002 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2003 depth, set->queue_depth);
2004
2005 return 0;
2006 }
2007
2008 /*
2009 * Alloc a tag set to be associated with one or more request queues.
2010 * May fail with EINVAL for various error conditions. May adjust the
2011 * requested depth down, if if it too large. In that case, the set
2012 * value will be stored in set->queue_depth.
2013 */
2014 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2015 {
2016 if (!set->nr_hw_queues)
2017 return -EINVAL;
2018 if (!set->queue_depth)
2019 return -EINVAL;
2020 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2021 return -EINVAL;
2022
2023 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2024 return -EINVAL;
2025
2026 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2027 pr_info("blk-mq: reduced tag depth to %u\n",
2028 BLK_MQ_MAX_DEPTH);
2029 set->queue_depth = BLK_MQ_MAX_DEPTH;
2030 }
2031
2032 set->tags = kmalloc_node(set->nr_hw_queues *
2033 sizeof(struct blk_mq_tags *),
2034 GFP_KERNEL, set->numa_node);
2035 if (!set->tags)
2036 return -ENOMEM;
2037
2038 if (blk_mq_alloc_rq_maps(set))
2039 goto enomem;
2040
2041 mutex_init(&set->tag_list_lock);
2042 INIT_LIST_HEAD(&set->tag_list);
2043
2044 return 0;
2045 enomem:
2046 kfree(set->tags);
2047 set->tags = NULL;
2048 return -ENOMEM;
2049 }
2050 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2051
2052 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2053 {
2054 int i;
2055
2056 for (i = 0; i < set->nr_hw_queues; i++) {
2057 if (set->tags[i])
2058 blk_mq_free_rq_map(set, set->tags[i], i);
2059 }
2060
2061 kfree(set->tags);
2062 set->tags = NULL;
2063 }
2064 EXPORT_SYMBOL(blk_mq_free_tag_set);
2065
2066 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2067 {
2068 struct blk_mq_tag_set *set = q->tag_set;
2069 struct blk_mq_hw_ctx *hctx;
2070 int i, ret;
2071
2072 if (!set || nr > set->queue_depth)
2073 return -EINVAL;
2074
2075 ret = 0;
2076 queue_for_each_hw_ctx(q, hctx, i) {
2077 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2078 if (ret)
2079 break;
2080 }
2081
2082 if (!ret)
2083 q->nr_requests = nr;
2084
2085 return ret;
2086 }
2087
2088 void blk_mq_disable_hotplug(void)
2089 {
2090 mutex_lock(&all_q_mutex);
2091 }
2092
2093 void blk_mq_enable_hotplug(void)
2094 {
2095 mutex_unlock(&all_q_mutex);
2096 }
2097
2098 static int __init blk_mq_init(void)
2099 {
2100 blk_mq_cpu_init();
2101
2102 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2103
2104 return 0;
2105 }
2106 subsys_initcall(blk_mq_init);