Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 if (!q->mq_ops)
163 blk_drain_queue(q);
164 blk_mq_freeze_queue_wait(q);
165 }
166
167 void blk_mq_freeze_queue(struct request_queue *q)
168 {
169 /*
170 * ...just an alias to keep freeze and unfreeze actions balanced
171 * in the blk_mq_* namespace
172 */
173 blk_freeze_queue(q);
174 }
175 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176
177 void blk_mq_unfreeze_queue(struct request_queue *q)
178 {
179 int freeze_depth;
180
181 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
182 WARN_ON_ONCE(freeze_depth < 0);
183 if (!freeze_depth) {
184 percpu_ref_reinit(&q->q_usage_counter);
185 wake_up_all(&q->mq_freeze_wq);
186 }
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189
190 /*
191 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
192 * mpt3sas driver such that this function can be removed.
193 */
194 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
195 {
196 unsigned long flags;
197
198 spin_lock_irqsave(q->queue_lock, flags);
199 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
200 spin_unlock_irqrestore(q->queue_lock, flags);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
203
204 /**
205 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 * @q: request queue.
207 *
208 * Note: this function does not prevent that the struct request end_io()
209 * callback function is invoked. Once this function is returned, we make
210 * sure no dispatch can happen until the queue is unquiesced via
211 * blk_mq_unquiesce_queue().
212 */
213 void blk_mq_quiesce_queue(struct request_queue *q)
214 {
215 struct blk_mq_hw_ctx *hctx;
216 unsigned int i;
217 bool rcu = false;
218
219 blk_mq_quiesce_queue_nowait(q);
220
221 queue_for_each_hw_ctx(q, hctx, i) {
222 if (hctx->flags & BLK_MQ_F_BLOCKING)
223 synchronize_srcu(hctx->queue_rq_srcu);
224 else
225 rcu = true;
226 }
227 if (rcu)
228 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
231
232 /*
233 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
234 * @q: request queue.
235 *
236 * This function recovers queue into the state before quiescing
237 * which is done by blk_mq_quiesce_queue.
238 */
239 void blk_mq_unquiesce_queue(struct request_queue *q)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(q->queue_lock, flags);
244 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245 spin_unlock_irqrestore(q->queue_lock, flags);
246
247 /* dispatch requests which are inserted during quiescing */
248 blk_mq_run_hw_queues(q, true);
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
251
252 void blk_mq_wake_waiters(struct request_queue *q)
253 {
254 struct blk_mq_hw_ctx *hctx;
255 unsigned int i;
256
257 queue_for_each_hw_ctx(q, hctx, i)
258 if (blk_mq_hw_queue_mapped(hctx))
259 blk_mq_tag_wakeup_all(hctx->tags, true);
260
261 /*
262 * If we are called because the queue has now been marked as
263 * dying, we need to ensure that processes currently waiting on
264 * the queue are notified as well.
265 */
266 wake_up_all(&q->mq_freeze_wq);
267 }
268
269 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
270 {
271 return blk_mq_has_free_tags(hctx->tags);
272 }
273 EXPORT_SYMBOL(blk_mq_can_queue);
274
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 unsigned int tag, unsigned int op)
277 {
278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 struct request *rq = tags->static_rqs[tag];
280
281 rq->rq_flags = 0;
282
283 if (data->flags & BLK_MQ_REQ_INTERNAL) {
284 rq->tag = -1;
285 rq->internal_tag = tag;
286 } else {
287 if (blk_mq_tag_busy(data->hctx)) {
288 rq->rq_flags = RQF_MQ_INFLIGHT;
289 atomic_inc(&data->hctx->nr_active);
290 }
291 rq->tag = tag;
292 rq->internal_tag = -1;
293 data->hctx->tags->rqs[rq->tag] = rq;
294 }
295
296 INIT_LIST_HEAD(&rq->queuelist);
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->cmd_flags = op;
301 if (blk_queue_io_stat(data->q))
302 rq->rq_flags |= RQF_IO_STAT;
303 /* do not touch atomic flags, it needs atomic ops against the timer */
304 rq->cpu = -1;
305 INIT_HLIST_NODE(&rq->hash);
306 RB_CLEAR_NODE(&rq->rb_node);
307 rq->rq_disk = NULL;
308 rq->part = NULL;
309 rq->start_time = jiffies;
310 #ifdef CONFIG_BLK_CGROUP
311 rq->rl = NULL;
312 set_start_time_ns(rq);
313 rq->io_start_time_ns = 0;
314 #endif
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 rq->special = NULL;
320 /* tag was already set */
321 rq->extra_len = 0;
322
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
325
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
329
330 data->ctx->rq_dispatched[op_is_sync(op)]++;
331 return rq;
332 }
333
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 struct bio *bio, unsigned int op,
336 struct blk_mq_alloc_data *data)
337 {
338 struct elevator_queue *e = q->elevator;
339 struct request *rq;
340 unsigned int tag;
341 struct blk_mq_ctx *local_ctx = NULL;
342
343 blk_queue_enter_live(q);
344 data->q = q;
345 if (likely(!data->ctx))
346 data->ctx = local_ctx = blk_mq_get_ctx(q);
347 if (likely(!data->hctx))
348 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
349 if (op & REQ_NOWAIT)
350 data->flags |= BLK_MQ_REQ_NOWAIT;
351
352 if (e) {
353 data->flags |= BLK_MQ_REQ_INTERNAL;
354
355 /*
356 * Flush requests are special and go directly to the
357 * dispatch list.
358 */
359 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
360 e->type->ops.mq.limit_depth(op, data);
361 }
362
363 tag = blk_mq_get_tag(data);
364 if (tag == BLK_MQ_TAG_FAIL) {
365 if (local_ctx) {
366 blk_mq_put_ctx(local_ctx);
367 data->ctx = NULL;
368 }
369 blk_queue_exit(q);
370 return NULL;
371 }
372
373 rq = blk_mq_rq_ctx_init(data, tag, op);
374 if (!op_is_flush(op)) {
375 rq->elv.icq = NULL;
376 if (e && e->type->ops.mq.prepare_request) {
377 if (e->type->icq_cache && rq_ioc(bio))
378 blk_mq_sched_assign_ioc(rq, bio);
379
380 e->type->ops.mq.prepare_request(rq, bio);
381 rq->rq_flags |= RQF_ELVPRIV;
382 }
383 }
384 data->hctx->queued++;
385 return rq;
386 }
387
388 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
389 unsigned int flags)
390 {
391 struct blk_mq_alloc_data alloc_data = { .flags = flags };
392 struct request *rq;
393 int ret;
394
395 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
396 if (ret)
397 return ERR_PTR(ret);
398
399 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
400 blk_queue_exit(q);
401
402 if (!rq)
403 return ERR_PTR(-EWOULDBLOCK);
404
405 blk_mq_put_ctx(alloc_data.ctx);
406
407 rq->__data_len = 0;
408 rq->__sector = (sector_t) -1;
409 rq->bio = rq->biotail = NULL;
410 return rq;
411 }
412 EXPORT_SYMBOL(blk_mq_alloc_request);
413
414 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
415 unsigned int op, unsigned int flags, unsigned int hctx_idx)
416 {
417 struct blk_mq_alloc_data alloc_data = { .flags = flags };
418 struct request *rq;
419 unsigned int cpu;
420 int ret;
421
422 /*
423 * If the tag allocator sleeps we could get an allocation for a
424 * different hardware context. No need to complicate the low level
425 * allocator for this for the rare use case of a command tied to
426 * a specific queue.
427 */
428 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
429 return ERR_PTR(-EINVAL);
430
431 if (hctx_idx >= q->nr_hw_queues)
432 return ERR_PTR(-EIO);
433
434 ret = blk_queue_enter(q, true);
435 if (ret)
436 return ERR_PTR(ret);
437
438 /*
439 * Check if the hardware context is actually mapped to anything.
440 * If not tell the caller that it should skip this queue.
441 */
442 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
443 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
444 blk_queue_exit(q);
445 return ERR_PTR(-EXDEV);
446 }
447 cpu = cpumask_first(alloc_data.hctx->cpumask);
448 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
449
450 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
451 blk_queue_exit(q);
452
453 if (!rq)
454 return ERR_PTR(-EWOULDBLOCK);
455
456 return rq;
457 }
458 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
459
460 void blk_mq_free_request(struct request *rq)
461 {
462 struct request_queue *q = rq->q;
463 struct elevator_queue *e = q->elevator;
464 struct blk_mq_ctx *ctx = rq->mq_ctx;
465 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
466 const int sched_tag = rq->internal_tag;
467
468 if (rq->rq_flags & RQF_ELVPRIV) {
469 if (e && e->type->ops.mq.finish_request)
470 e->type->ops.mq.finish_request(rq);
471 if (rq->elv.icq) {
472 put_io_context(rq->elv.icq->ioc);
473 rq->elv.icq = NULL;
474 }
475 }
476
477 ctx->rq_completed[rq_is_sync(rq)]++;
478 if (rq->rq_flags & RQF_MQ_INFLIGHT)
479 atomic_dec(&hctx->nr_active);
480
481 wbt_done(q->rq_wb, &rq->issue_stat);
482
483 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
484 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
485 if (rq->tag != -1)
486 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
487 if (sched_tag != -1)
488 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
489 blk_mq_sched_restart(hctx);
490 blk_queue_exit(q);
491 }
492 EXPORT_SYMBOL_GPL(blk_mq_free_request);
493
494 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
495 {
496 blk_account_io_done(rq);
497
498 if (rq->end_io) {
499 wbt_done(rq->q->rq_wb, &rq->issue_stat);
500 rq->end_io(rq, error);
501 } else {
502 if (unlikely(blk_bidi_rq(rq)))
503 blk_mq_free_request(rq->next_rq);
504 blk_mq_free_request(rq);
505 }
506 }
507 EXPORT_SYMBOL(__blk_mq_end_request);
508
509 void blk_mq_end_request(struct request *rq, blk_status_t error)
510 {
511 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
512 BUG();
513 __blk_mq_end_request(rq, error);
514 }
515 EXPORT_SYMBOL(blk_mq_end_request);
516
517 static void __blk_mq_complete_request_remote(void *data)
518 {
519 struct request *rq = data;
520
521 rq->q->softirq_done_fn(rq);
522 }
523
524 static void __blk_mq_complete_request(struct request *rq)
525 {
526 struct blk_mq_ctx *ctx = rq->mq_ctx;
527 bool shared = false;
528 int cpu;
529
530 if (rq->internal_tag != -1)
531 blk_mq_sched_completed_request(rq);
532 if (rq->rq_flags & RQF_STATS) {
533 blk_mq_poll_stats_start(rq->q);
534 blk_stat_add(rq);
535 }
536
537 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
538 rq->q->softirq_done_fn(rq);
539 return;
540 }
541
542 cpu = get_cpu();
543 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
544 shared = cpus_share_cache(cpu, ctx->cpu);
545
546 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
547 rq->csd.func = __blk_mq_complete_request_remote;
548 rq->csd.info = rq;
549 rq->csd.flags = 0;
550 smp_call_function_single_async(ctx->cpu, &rq->csd);
551 } else {
552 rq->q->softirq_done_fn(rq);
553 }
554 put_cpu();
555 }
556
557 /**
558 * blk_mq_complete_request - end I/O on a request
559 * @rq: the request being processed
560 *
561 * Description:
562 * Ends all I/O on a request. It does not handle partial completions.
563 * The actual completion happens out-of-order, through a IPI handler.
564 **/
565 void blk_mq_complete_request(struct request *rq)
566 {
567 struct request_queue *q = rq->q;
568
569 if (unlikely(blk_should_fake_timeout(q)))
570 return;
571 if (!blk_mark_rq_complete(rq))
572 __blk_mq_complete_request(rq);
573 }
574 EXPORT_SYMBOL(blk_mq_complete_request);
575
576 int blk_mq_request_started(struct request *rq)
577 {
578 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
579 }
580 EXPORT_SYMBOL_GPL(blk_mq_request_started);
581
582 void blk_mq_start_request(struct request *rq)
583 {
584 struct request_queue *q = rq->q;
585
586 blk_mq_sched_started_request(rq);
587
588 trace_block_rq_issue(q, rq);
589
590 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
591 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
592 rq->rq_flags |= RQF_STATS;
593 wbt_issue(q->rq_wb, &rq->issue_stat);
594 }
595
596 blk_add_timer(rq);
597
598 /*
599 * Ensure that ->deadline is visible before set the started
600 * flag and clear the completed flag.
601 */
602 smp_mb__before_atomic();
603
604 /*
605 * Mark us as started and clear complete. Complete might have been
606 * set if requeue raced with timeout, which then marked it as
607 * complete. So be sure to clear complete again when we start
608 * the request, otherwise we'll ignore the completion event.
609 */
610 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
611 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
612 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
613 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
614
615 if (q->dma_drain_size && blk_rq_bytes(rq)) {
616 /*
617 * Make sure space for the drain appears. We know we can do
618 * this because max_hw_segments has been adjusted to be one
619 * fewer than the device can handle.
620 */
621 rq->nr_phys_segments++;
622 }
623 }
624 EXPORT_SYMBOL(blk_mq_start_request);
625
626 /*
627 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
628 * flag isn't set yet, so there may be race with timeout handler,
629 * but given rq->deadline is just set in .queue_rq() under
630 * this situation, the race won't be possible in reality because
631 * rq->timeout should be set as big enough to cover the window
632 * between blk_mq_start_request() called from .queue_rq() and
633 * clearing REQ_ATOM_STARTED here.
634 */
635 static void __blk_mq_requeue_request(struct request *rq)
636 {
637 struct request_queue *q = rq->q;
638
639 trace_block_rq_requeue(q, rq);
640 wbt_requeue(q->rq_wb, &rq->issue_stat);
641 blk_mq_sched_requeue_request(rq);
642
643 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
644 if (q->dma_drain_size && blk_rq_bytes(rq))
645 rq->nr_phys_segments--;
646 }
647 }
648
649 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
650 {
651 __blk_mq_requeue_request(rq);
652
653 BUG_ON(blk_queued_rq(rq));
654 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
655 }
656 EXPORT_SYMBOL(blk_mq_requeue_request);
657
658 static void blk_mq_requeue_work(struct work_struct *work)
659 {
660 struct request_queue *q =
661 container_of(work, struct request_queue, requeue_work.work);
662 LIST_HEAD(rq_list);
663 struct request *rq, *next;
664
665 spin_lock_irq(&q->requeue_lock);
666 list_splice_init(&q->requeue_list, &rq_list);
667 spin_unlock_irq(&q->requeue_lock);
668
669 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
670 if (!(rq->rq_flags & RQF_SOFTBARRIER))
671 continue;
672
673 rq->rq_flags &= ~RQF_SOFTBARRIER;
674 list_del_init(&rq->queuelist);
675 blk_mq_sched_insert_request(rq, true, false, false, true);
676 }
677
678 while (!list_empty(&rq_list)) {
679 rq = list_entry(rq_list.next, struct request, queuelist);
680 list_del_init(&rq->queuelist);
681 blk_mq_sched_insert_request(rq, false, false, false, true);
682 }
683
684 blk_mq_run_hw_queues(q, false);
685 }
686
687 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
688 bool kick_requeue_list)
689 {
690 struct request_queue *q = rq->q;
691 unsigned long flags;
692
693 /*
694 * We abuse this flag that is otherwise used by the I/O scheduler to
695 * request head insertation from the workqueue.
696 */
697 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
698
699 spin_lock_irqsave(&q->requeue_lock, flags);
700 if (at_head) {
701 rq->rq_flags |= RQF_SOFTBARRIER;
702 list_add(&rq->queuelist, &q->requeue_list);
703 } else {
704 list_add_tail(&rq->queuelist, &q->requeue_list);
705 }
706 spin_unlock_irqrestore(&q->requeue_lock, flags);
707
708 if (kick_requeue_list)
709 blk_mq_kick_requeue_list(q);
710 }
711 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
712
713 void blk_mq_kick_requeue_list(struct request_queue *q)
714 {
715 kblockd_schedule_delayed_work(&q->requeue_work, 0);
716 }
717 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
718
719 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
720 unsigned long msecs)
721 {
722 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
723 msecs_to_jiffies(msecs));
724 }
725 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
726
727 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
728 {
729 if (tag < tags->nr_tags) {
730 prefetch(tags->rqs[tag]);
731 return tags->rqs[tag];
732 }
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(blk_mq_tag_to_rq);
737
738 struct blk_mq_timeout_data {
739 unsigned long next;
740 unsigned int next_set;
741 };
742
743 void blk_mq_rq_timed_out(struct request *req, bool reserved)
744 {
745 const struct blk_mq_ops *ops = req->q->mq_ops;
746 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
747
748 /*
749 * We know that complete is set at this point. If STARTED isn't set
750 * anymore, then the request isn't active and the "timeout" should
751 * just be ignored. This can happen due to the bitflag ordering.
752 * Timeout first checks if STARTED is set, and if it is, assumes
753 * the request is active. But if we race with completion, then
754 * both flags will get cleared. So check here again, and ignore
755 * a timeout event with a request that isn't active.
756 */
757 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
758 return;
759
760 if (ops->timeout)
761 ret = ops->timeout(req, reserved);
762
763 switch (ret) {
764 case BLK_EH_HANDLED:
765 __blk_mq_complete_request(req);
766 break;
767 case BLK_EH_RESET_TIMER:
768 blk_add_timer(req);
769 blk_clear_rq_complete(req);
770 break;
771 case BLK_EH_NOT_HANDLED:
772 break;
773 default:
774 printk(KERN_ERR "block: bad eh return: %d\n", ret);
775 break;
776 }
777 }
778
779 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
780 struct request *rq, void *priv, bool reserved)
781 {
782 struct blk_mq_timeout_data *data = priv;
783
784 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
785 return;
786
787 /*
788 * The rq being checked may have been freed and reallocated
789 * out already here, we avoid this race by checking rq->deadline
790 * and REQ_ATOM_COMPLETE flag together:
791 *
792 * - if rq->deadline is observed as new value because of
793 * reusing, the rq won't be timed out because of timing.
794 * - if rq->deadline is observed as previous value,
795 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
796 * because we put a barrier between setting rq->deadline
797 * and clearing the flag in blk_mq_start_request(), so
798 * this rq won't be timed out too.
799 */
800 if (time_after_eq(jiffies, rq->deadline)) {
801 if (!blk_mark_rq_complete(rq))
802 blk_mq_rq_timed_out(rq, reserved);
803 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
804 data->next = rq->deadline;
805 data->next_set = 1;
806 }
807 }
808
809 static void blk_mq_timeout_work(struct work_struct *work)
810 {
811 struct request_queue *q =
812 container_of(work, struct request_queue, timeout_work);
813 struct blk_mq_timeout_data data = {
814 .next = 0,
815 .next_set = 0,
816 };
817 int i;
818
819 /* A deadlock might occur if a request is stuck requiring a
820 * timeout at the same time a queue freeze is waiting
821 * completion, since the timeout code would not be able to
822 * acquire the queue reference here.
823 *
824 * That's why we don't use blk_queue_enter here; instead, we use
825 * percpu_ref_tryget directly, because we need to be able to
826 * obtain a reference even in the short window between the queue
827 * starting to freeze, by dropping the first reference in
828 * blk_freeze_queue_start, and the moment the last request is
829 * consumed, marked by the instant q_usage_counter reaches
830 * zero.
831 */
832 if (!percpu_ref_tryget(&q->q_usage_counter))
833 return;
834
835 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
836
837 if (data.next_set) {
838 data.next = blk_rq_timeout(round_jiffies_up(data.next));
839 mod_timer(&q->timeout, data.next);
840 } else {
841 struct blk_mq_hw_ctx *hctx;
842
843 queue_for_each_hw_ctx(q, hctx, i) {
844 /* the hctx may be unmapped, so check it here */
845 if (blk_mq_hw_queue_mapped(hctx))
846 blk_mq_tag_idle(hctx);
847 }
848 }
849 blk_queue_exit(q);
850 }
851
852 struct flush_busy_ctx_data {
853 struct blk_mq_hw_ctx *hctx;
854 struct list_head *list;
855 };
856
857 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
858 {
859 struct flush_busy_ctx_data *flush_data = data;
860 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
861 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
862
863 sbitmap_clear_bit(sb, bitnr);
864 spin_lock(&ctx->lock);
865 list_splice_tail_init(&ctx->rq_list, flush_data->list);
866 spin_unlock(&ctx->lock);
867 return true;
868 }
869
870 /*
871 * Process software queues that have been marked busy, splicing them
872 * to the for-dispatch
873 */
874 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
875 {
876 struct flush_busy_ctx_data data = {
877 .hctx = hctx,
878 .list = list,
879 };
880
881 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
884
885 static inline unsigned int queued_to_index(unsigned int queued)
886 {
887 if (!queued)
888 return 0;
889
890 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
891 }
892
893 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
894 bool wait)
895 {
896 struct blk_mq_alloc_data data = {
897 .q = rq->q,
898 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
899 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
900 };
901
902 might_sleep_if(wait);
903
904 if (rq->tag != -1)
905 goto done;
906
907 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
908 data.flags |= BLK_MQ_REQ_RESERVED;
909
910 rq->tag = blk_mq_get_tag(&data);
911 if (rq->tag >= 0) {
912 if (blk_mq_tag_busy(data.hctx)) {
913 rq->rq_flags |= RQF_MQ_INFLIGHT;
914 atomic_inc(&data.hctx->nr_active);
915 }
916 data.hctx->tags->rqs[rq->tag] = rq;
917 }
918
919 done:
920 if (hctx)
921 *hctx = data.hctx;
922 return rq->tag != -1;
923 }
924
925 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
926 struct request *rq)
927 {
928 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
929 rq->tag = -1;
930
931 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
932 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
933 atomic_dec(&hctx->nr_active);
934 }
935 }
936
937 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
938 struct request *rq)
939 {
940 if (rq->tag == -1 || rq->internal_tag == -1)
941 return;
942
943 __blk_mq_put_driver_tag(hctx, rq);
944 }
945
946 static void blk_mq_put_driver_tag(struct request *rq)
947 {
948 struct blk_mq_hw_ctx *hctx;
949
950 if (rq->tag == -1 || rq->internal_tag == -1)
951 return;
952
953 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
954 __blk_mq_put_driver_tag(hctx, rq);
955 }
956
957 /*
958 * If we fail getting a driver tag because all the driver tags are already
959 * assigned and on the dispatch list, BUT the first entry does not have a
960 * tag, then we could deadlock. For that case, move entries with assigned
961 * driver tags to the front, leaving the set of tagged requests in the
962 * same order, and the untagged set in the same order.
963 */
964 static bool reorder_tags_to_front(struct list_head *list)
965 {
966 struct request *rq, *tmp, *first = NULL;
967
968 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
969 if (rq == first)
970 break;
971 if (rq->tag != -1) {
972 list_move(&rq->queuelist, list);
973 if (!first)
974 first = rq;
975 }
976 }
977
978 return first != NULL;
979 }
980
981 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
982 void *key)
983 {
984 struct blk_mq_hw_ctx *hctx;
985
986 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
987
988 list_del(&wait->entry);
989 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
990 blk_mq_run_hw_queue(hctx, true);
991 return 1;
992 }
993
994 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
995 {
996 struct sbq_wait_state *ws;
997
998 /*
999 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1000 * The thread which wins the race to grab this bit adds the hardware
1001 * queue to the wait queue.
1002 */
1003 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1004 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1005 return false;
1006
1007 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1008 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1009
1010 /*
1011 * As soon as this returns, it's no longer safe to fiddle with
1012 * hctx->dispatch_wait, since a completion can wake up the wait queue
1013 * and unlock the bit.
1014 */
1015 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1016 return true;
1017 }
1018
1019 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1020 {
1021 struct blk_mq_hw_ctx *hctx;
1022 struct request *rq;
1023 int errors, queued;
1024
1025 if (list_empty(list))
1026 return false;
1027
1028 /*
1029 * Now process all the entries, sending them to the driver.
1030 */
1031 errors = queued = 0;
1032 do {
1033 struct blk_mq_queue_data bd;
1034 blk_status_t ret;
1035
1036 rq = list_first_entry(list, struct request, queuelist);
1037 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1038 if (!queued && reorder_tags_to_front(list))
1039 continue;
1040
1041 /*
1042 * The initial allocation attempt failed, so we need to
1043 * rerun the hardware queue when a tag is freed.
1044 */
1045 if (!blk_mq_dispatch_wait_add(hctx))
1046 break;
1047
1048 /*
1049 * It's possible that a tag was freed in the window
1050 * between the allocation failure and adding the
1051 * hardware queue to the wait queue.
1052 */
1053 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1054 break;
1055 }
1056
1057 list_del_init(&rq->queuelist);
1058
1059 bd.rq = rq;
1060
1061 /*
1062 * Flag last if we have no more requests, or if we have more
1063 * but can't assign a driver tag to it.
1064 */
1065 if (list_empty(list))
1066 bd.last = true;
1067 else {
1068 struct request *nxt;
1069
1070 nxt = list_first_entry(list, struct request, queuelist);
1071 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1072 }
1073
1074 ret = q->mq_ops->queue_rq(hctx, &bd);
1075 if (ret == BLK_STS_RESOURCE) {
1076 blk_mq_put_driver_tag_hctx(hctx, rq);
1077 list_add(&rq->queuelist, list);
1078 __blk_mq_requeue_request(rq);
1079 break;
1080 }
1081
1082 if (unlikely(ret != BLK_STS_OK)) {
1083 errors++;
1084 blk_mq_end_request(rq, BLK_STS_IOERR);
1085 continue;
1086 }
1087
1088 queued++;
1089 } while (!list_empty(list));
1090
1091 hctx->dispatched[queued_to_index(queued)]++;
1092
1093 /*
1094 * Any items that need requeuing? Stuff them into hctx->dispatch,
1095 * that is where we will continue on next queue run.
1096 */
1097 if (!list_empty(list)) {
1098 /*
1099 * If an I/O scheduler has been configured and we got a driver
1100 * tag for the next request already, free it again.
1101 */
1102 rq = list_first_entry(list, struct request, queuelist);
1103 blk_mq_put_driver_tag(rq);
1104
1105 spin_lock(&hctx->lock);
1106 list_splice_init(list, &hctx->dispatch);
1107 spin_unlock(&hctx->lock);
1108
1109 /*
1110 * If SCHED_RESTART was set by the caller of this function and
1111 * it is no longer set that means that it was cleared by another
1112 * thread and hence that a queue rerun is needed.
1113 *
1114 * If TAG_WAITING is set that means that an I/O scheduler has
1115 * been configured and another thread is waiting for a driver
1116 * tag. To guarantee fairness, do not rerun this hardware queue
1117 * but let the other thread grab the driver tag.
1118 *
1119 * If no I/O scheduler has been configured it is possible that
1120 * the hardware queue got stopped and restarted before requests
1121 * were pushed back onto the dispatch list. Rerun the queue to
1122 * avoid starvation. Notes:
1123 * - blk_mq_run_hw_queue() checks whether or not a queue has
1124 * been stopped before rerunning a queue.
1125 * - Some but not all block drivers stop a queue before
1126 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1127 * and dm-rq.
1128 */
1129 if (!blk_mq_sched_needs_restart(hctx) &&
1130 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1131 blk_mq_run_hw_queue(hctx, true);
1132 }
1133
1134 return (queued + errors) != 0;
1135 }
1136
1137 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1138 {
1139 int srcu_idx;
1140
1141 /*
1142 * We should be running this queue from one of the CPUs that
1143 * are mapped to it.
1144 */
1145 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1146 cpu_online(hctx->next_cpu));
1147
1148 /*
1149 * We can't run the queue inline with ints disabled. Ensure that
1150 * we catch bad users of this early.
1151 */
1152 WARN_ON_ONCE(in_interrupt());
1153
1154 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1155 rcu_read_lock();
1156 blk_mq_sched_dispatch_requests(hctx);
1157 rcu_read_unlock();
1158 } else {
1159 might_sleep();
1160
1161 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1162 blk_mq_sched_dispatch_requests(hctx);
1163 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1164 }
1165 }
1166
1167 /*
1168 * It'd be great if the workqueue API had a way to pass
1169 * in a mask and had some smarts for more clever placement.
1170 * For now we just round-robin here, switching for every
1171 * BLK_MQ_CPU_WORK_BATCH queued items.
1172 */
1173 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1174 {
1175 if (hctx->queue->nr_hw_queues == 1)
1176 return WORK_CPU_UNBOUND;
1177
1178 if (--hctx->next_cpu_batch <= 0) {
1179 int next_cpu;
1180
1181 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1182 if (next_cpu >= nr_cpu_ids)
1183 next_cpu = cpumask_first(hctx->cpumask);
1184
1185 hctx->next_cpu = next_cpu;
1186 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1187 }
1188
1189 return hctx->next_cpu;
1190 }
1191
1192 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1193 unsigned long msecs)
1194 {
1195 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1196 return;
1197
1198 if (unlikely(blk_mq_hctx_stopped(hctx)))
1199 return;
1200
1201 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1202 int cpu = get_cpu();
1203 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1204 __blk_mq_run_hw_queue(hctx);
1205 put_cpu();
1206 return;
1207 }
1208
1209 put_cpu();
1210 }
1211
1212 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1213 &hctx->run_work,
1214 msecs_to_jiffies(msecs));
1215 }
1216
1217 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1218 {
1219 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1220 }
1221 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1222
1223 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1224 {
1225 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1226 }
1227 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1228
1229 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1230 {
1231 struct blk_mq_hw_ctx *hctx;
1232 int i;
1233
1234 queue_for_each_hw_ctx(q, hctx, i) {
1235 if (!blk_mq_hctx_has_pending(hctx) ||
1236 blk_mq_hctx_stopped(hctx))
1237 continue;
1238
1239 blk_mq_run_hw_queue(hctx, async);
1240 }
1241 }
1242 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1243
1244 /**
1245 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1246 * @q: request queue.
1247 *
1248 * The caller is responsible for serializing this function against
1249 * blk_mq_{start,stop}_hw_queue().
1250 */
1251 bool blk_mq_queue_stopped(struct request_queue *q)
1252 {
1253 struct blk_mq_hw_ctx *hctx;
1254 int i;
1255
1256 queue_for_each_hw_ctx(q, hctx, i)
1257 if (blk_mq_hctx_stopped(hctx))
1258 return true;
1259
1260 return false;
1261 }
1262 EXPORT_SYMBOL(blk_mq_queue_stopped);
1263
1264 /*
1265 * This function is often used for pausing .queue_rq() by driver when
1266 * there isn't enough resource or some conditions aren't satisfied, and
1267 * BLK_STS_RESOURCE is usually returned.
1268 *
1269 * We do not guarantee that dispatch can be drained or blocked
1270 * after blk_mq_stop_hw_queue() returns. Please use
1271 * blk_mq_quiesce_queue() for that requirement.
1272 */
1273 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1274 {
1275 cancel_delayed_work(&hctx->run_work);
1276
1277 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278 }
1279 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1280
1281 /*
1282 * This function is often used for pausing .queue_rq() by driver when
1283 * there isn't enough resource or some conditions aren't satisfied, and
1284 * BLK_STS_RESOURCE is usually returned.
1285 *
1286 * We do not guarantee that dispatch can be drained or blocked
1287 * after blk_mq_stop_hw_queues() returns. Please use
1288 * blk_mq_quiesce_queue() for that requirement.
1289 */
1290 void blk_mq_stop_hw_queues(struct request_queue *q)
1291 {
1292 struct blk_mq_hw_ctx *hctx;
1293 int i;
1294
1295 queue_for_each_hw_ctx(q, hctx, i)
1296 blk_mq_stop_hw_queue(hctx);
1297 }
1298 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1299
1300 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1301 {
1302 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1303
1304 blk_mq_run_hw_queue(hctx, false);
1305 }
1306 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1307
1308 void blk_mq_start_hw_queues(struct request_queue *q)
1309 {
1310 struct blk_mq_hw_ctx *hctx;
1311 int i;
1312
1313 queue_for_each_hw_ctx(q, hctx, i)
1314 blk_mq_start_hw_queue(hctx);
1315 }
1316 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1317
1318 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1319 {
1320 if (!blk_mq_hctx_stopped(hctx))
1321 return;
1322
1323 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1324 blk_mq_run_hw_queue(hctx, async);
1325 }
1326 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1327
1328 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1329 {
1330 struct blk_mq_hw_ctx *hctx;
1331 int i;
1332
1333 queue_for_each_hw_ctx(q, hctx, i)
1334 blk_mq_start_stopped_hw_queue(hctx, async);
1335 }
1336 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1337
1338 static void blk_mq_run_work_fn(struct work_struct *work)
1339 {
1340 struct blk_mq_hw_ctx *hctx;
1341
1342 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1343
1344 /*
1345 * If we are stopped, don't run the queue. The exception is if
1346 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1347 * the STOPPED bit and run it.
1348 */
1349 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1350 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1351 return;
1352
1353 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1354 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1355 }
1356
1357 __blk_mq_run_hw_queue(hctx);
1358 }
1359
1360
1361 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1362 {
1363 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1364 return;
1365
1366 /*
1367 * Stop the hw queue, then modify currently delayed work.
1368 * This should prevent us from running the queue prematurely.
1369 * Mark the queue as auto-clearing STOPPED when it runs.
1370 */
1371 blk_mq_stop_hw_queue(hctx);
1372 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1373 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1374 &hctx->run_work,
1375 msecs_to_jiffies(msecs));
1376 }
1377 EXPORT_SYMBOL(blk_mq_delay_queue);
1378
1379 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1380 struct request *rq,
1381 bool at_head)
1382 {
1383 struct blk_mq_ctx *ctx = rq->mq_ctx;
1384
1385 lockdep_assert_held(&ctx->lock);
1386
1387 trace_block_rq_insert(hctx->queue, rq);
1388
1389 if (at_head)
1390 list_add(&rq->queuelist, &ctx->rq_list);
1391 else
1392 list_add_tail(&rq->queuelist, &ctx->rq_list);
1393 }
1394
1395 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1396 bool at_head)
1397 {
1398 struct blk_mq_ctx *ctx = rq->mq_ctx;
1399
1400 lockdep_assert_held(&ctx->lock);
1401
1402 __blk_mq_insert_req_list(hctx, rq, at_head);
1403 blk_mq_hctx_mark_pending(hctx, ctx);
1404 }
1405
1406 /*
1407 * Should only be used carefully, when the caller knows we want to
1408 * bypass a potential IO scheduler on the target device.
1409 */
1410 void blk_mq_request_bypass_insert(struct request *rq)
1411 {
1412 struct blk_mq_ctx *ctx = rq->mq_ctx;
1413 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1414
1415 spin_lock(&hctx->lock);
1416 list_add_tail(&rq->queuelist, &hctx->dispatch);
1417 spin_unlock(&hctx->lock);
1418
1419 blk_mq_run_hw_queue(hctx, false);
1420 }
1421
1422 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1423 struct list_head *list)
1424
1425 {
1426 /*
1427 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1428 * offline now
1429 */
1430 spin_lock(&ctx->lock);
1431 while (!list_empty(list)) {
1432 struct request *rq;
1433
1434 rq = list_first_entry(list, struct request, queuelist);
1435 BUG_ON(rq->mq_ctx != ctx);
1436 list_del_init(&rq->queuelist);
1437 __blk_mq_insert_req_list(hctx, rq, false);
1438 }
1439 blk_mq_hctx_mark_pending(hctx, ctx);
1440 spin_unlock(&ctx->lock);
1441 }
1442
1443 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1444 {
1445 struct request *rqa = container_of(a, struct request, queuelist);
1446 struct request *rqb = container_of(b, struct request, queuelist);
1447
1448 return !(rqa->mq_ctx < rqb->mq_ctx ||
1449 (rqa->mq_ctx == rqb->mq_ctx &&
1450 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1451 }
1452
1453 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1454 {
1455 struct blk_mq_ctx *this_ctx;
1456 struct request_queue *this_q;
1457 struct request *rq;
1458 LIST_HEAD(list);
1459 LIST_HEAD(ctx_list);
1460 unsigned int depth;
1461
1462 list_splice_init(&plug->mq_list, &list);
1463
1464 list_sort(NULL, &list, plug_ctx_cmp);
1465
1466 this_q = NULL;
1467 this_ctx = NULL;
1468 depth = 0;
1469
1470 while (!list_empty(&list)) {
1471 rq = list_entry_rq(list.next);
1472 list_del_init(&rq->queuelist);
1473 BUG_ON(!rq->q);
1474 if (rq->mq_ctx != this_ctx) {
1475 if (this_ctx) {
1476 trace_block_unplug(this_q, depth, from_schedule);
1477 blk_mq_sched_insert_requests(this_q, this_ctx,
1478 &ctx_list,
1479 from_schedule);
1480 }
1481
1482 this_ctx = rq->mq_ctx;
1483 this_q = rq->q;
1484 depth = 0;
1485 }
1486
1487 depth++;
1488 list_add_tail(&rq->queuelist, &ctx_list);
1489 }
1490
1491 /*
1492 * If 'this_ctx' is set, we know we have entries to complete
1493 * on 'ctx_list'. Do those.
1494 */
1495 if (this_ctx) {
1496 trace_block_unplug(this_q, depth, from_schedule);
1497 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1498 from_schedule);
1499 }
1500 }
1501
1502 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1503 {
1504 blk_init_request_from_bio(rq, bio);
1505
1506 blk_account_io_start(rq, true);
1507 }
1508
1509 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1510 {
1511 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1512 !blk_queue_nomerges(hctx->queue);
1513 }
1514
1515 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1516 struct blk_mq_ctx *ctx,
1517 struct request *rq)
1518 {
1519 spin_lock(&ctx->lock);
1520 __blk_mq_insert_request(hctx, rq, false);
1521 spin_unlock(&ctx->lock);
1522 }
1523
1524 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1525 {
1526 if (rq->tag != -1)
1527 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1528
1529 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1530 }
1531
1532 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1533 struct request *rq,
1534 blk_qc_t *cookie, bool may_sleep)
1535 {
1536 struct request_queue *q = rq->q;
1537 struct blk_mq_queue_data bd = {
1538 .rq = rq,
1539 .last = true,
1540 };
1541 blk_qc_t new_cookie;
1542 blk_status_t ret;
1543 bool run_queue = true;
1544
1545 /* RCU or SRCU read lock is needed before checking quiesced flag */
1546 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1547 run_queue = false;
1548 goto insert;
1549 }
1550
1551 if (q->elevator)
1552 goto insert;
1553
1554 if (!blk_mq_get_driver_tag(rq, NULL, false))
1555 goto insert;
1556
1557 new_cookie = request_to_qc_t(hctx, rq);
1558
1559 /*
1560 * For OK queue, we are done. For error, kill it. Any other
1561 * error (busy), just add it to our list as we previously
1562 * would have done
1563 */
1564 ret = q->mq_ops->queue_rq(hctx, &bd);
1565 switch (ret) {
1566 case BLK_STS_OK:
1567 *cookie = new_cookie;
1568 return;
1569 case BLK_STS_RESOURCE:
1570 __blk_mq_requeue_request(rq);
1571 goto insert;
1572 default:
1573 *cookie = BLK_QC_T_NONE;
1574 blk_mq_end_request(rq, ret);
1575 return;
1576 }
1577
1578 insert:
1579 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1580 }
1581
1582 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1583 struct request *rq, blk_qc_t *cookie)
1584 {
1585 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1586 rcu_read_lock();
1587 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1588 rcu_read_unlock();
1589 } else {
1590 unsigned int srcu_idx;
1591
1592 might_sleep();
1593
1594 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1595 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1596 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1597 }
1598 }
1599
1600 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1601 {
1602 const int is_sync = op_is_sync(bio->bi_opf);
1603 const int is_flush_fua = op_is_flush(bio->bi_opf);
1604 struct blk_mq_alloc_data data = { .flags = 0 };
1605 struct request *rq;
1606 unsigned int request_count = 0;
1607 struct blk_plug *plug;
1608 struct request *same_queue_rq = NULL;
1609 blk_qc_t cookie;
1610 unsigned int wb_acct;
1611
1612 blk_queue_bounce(q, &bio);
1613
1614 blk_queue_split(q, &bio);
1615
1616 if (!bio_integrity_prep(bio))
1617 return BLK_QC_T_NONE;
1618
1619 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1620 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1621 return BLK_QC_T_NONE;
1622
1623 if (blk_mq_sched_bio_merge(q, bio))
1624 return BLK_QC_T_NONE;
1625
1626 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1627
1628 trace_block_getrq(q, bio, bio->bi_opf);
1629
1630 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1631 if (unlikely(!rq)) {
1632 __wbt_done(q->rq_wb, wb_acct);
1633 if (bio->bi_opf & REQ_NOWAIT)
1634 bio_wouldblock_error(bio);
1635 return BLK_QC_T_NONE;
1636 }
1637
1638 wbt_track(&rq->issue_stat, wb_acct);
1639
1640 cookie = request_to_qc_t(data.hctx, rq);
1641
1642 plug = current->plug;
1643 if (unlikely(is_flush_fua)) {
1644 blk_mq_put_ctx(data.ctx);
1645 blk_mq_bio_to_request(rq, bio);
1646 if (q->elevator) {
1647 blk_mq_sched_insert_request(rq, false, true, true,
1648 true);
1649 } else {
1650 blk_insert_flush(rq);
1651 blk_mq_run_hw_queue(data.hctx, true);
1652 }
1653 } else if (plug && q->nr_hw_queues == 1) {
1654 struct request *last = NULL;
1655
1656 blk_mq_put_ctx(data.ctx);
1657 blk_mq_bio_to_request(rq, bio);
1658
1659 /*
1660 * @request_count may become stale because of schedule
1661 * out, so check the list again.
1662 */
1663 if (list_empty(&plug->mq_list))
1664 request_count = 0;
1665 else if (blk_queue_nomerges(q))
1666 request_count = blk_plug_queued_count(q);
1667
1668 if (!request_count)
1669 trace_block_plug(q);
1670 else
1671 last = list_entry_rq(plug->mq_list.prev);
1672
1673 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1674 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1675 blk_flush_plug_list(plug, false);
1676 trace_block_plug(q);
1677 }
1678
1679 list_add_tail(&rq->queuelist, &plug->mq_list);
1680 } else if (plug && !blk_queue_nomerges(q)) {
1681 blk_mq_bio_to_request(rq, bio);
1682
1683 /*
1684 * We do limited plugging. If the bio can be merged, do that.
1685 * Otherwise the existing request in the plug list will be
1686 * issued. So the plug list will have one request at most
1687 * The plug list might get flushed before this. If that happens,
1688 * the plug list is empty, and same_queue_rq is invalid.
1689 */
1690 if (list_empty(&plug->mq_list))
1691 same_queue_rq = NULL;
1692 if (same_queue_rq)
1693 list_del_init(&same_queue_rq->queuelist);
1694 list_add_tail(&rq->queuelist, &plug->mq_list);
1695
1696 blk_mq_put_ctx(data.ctx);
1697
1698 if (same_queue_rq) {
1699 data.hctx = blk_mq_map_queue(q,
1700 same_queue_rq->mq_ctx->cpu);
1701 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1702 &cookie);
1703 }
1704 } else if (q->nr_hw_queues > 1 && is_sync) {
1705 blk_mq_put_ctx(data.ctx);
1706 blk_mq_bio_to_request(rq, bio);
1707 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1708 } else if (q->elevator) {
1709 blk_mq_put_ctx(data.ctx);
1710 blk_mq_bio_to_request(rq, bio);
1711 blk_mq_sched_insert_request(rq, false, true, true, true);
1712 } else {
1713 blk_mq_put_ctx(data.ctx);
1714 blk_mq_bio_to_request(rq, bio);
1715 blk_mq_queue_io(data.hctx, data.ctx, rq);
1716 blk_mq_run_hw_queue(data.hctx, true);
1717 }
1718
1719 return cookie;
1720 }
1721
1722 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1723 unsigned int hctx_idx)
1724 {
1725 struct page *page;
1726
1727 if (tags->rqs && set->ops->exit_request) {
1728 int i;
1729
1730 for (i = 0; i < tags->nr_tags; i++) {
1731 struct request *rq = tags->static_rqs[i];
1732
1733 if (!rq)
1734 continue;
1735 set->ops->exit_request(set, rq, hctx_idx);
1736 tags->static_rqs[i] = NULL;
1737 }
1738 }
1739
1740 while (!list_empty(&tags->page_list)) {
1741 page = list_first_entry(&tags->page_list, struct page, lru);
1742 list_del_init(&page->lru);
1743 /*
1744 * Remove kmemleak object previously allocated in
1745 * blk_mq_init_rq_map().
1746 */
1747 kmemleak_free(page_address(page));
1748 __free_pages(page, page->private);
1749 }
1750 }
1751
1752 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1753 {
1754 kfree(tags->rqs);
1755 tags->rqs = NULL;
1756 kfree(tags->static_rqs);
1757 tags->static_rqs = NULL;
1758
1759 blk_mq_free_tags(tags);
1760 }
1761
1762 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1763 unsigned int hctx_idx,
1764 unsigned int nr_tags,
1765 unsigned int reserved_tags)
1766 {
1767 struct blk_mq_tags *tags;
1768 int node;
1769
1770 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1771 if (node == NUMA_NO_NODE)
1772 node = set->numa_node;
1773
1774 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1775 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1776 if (!tags)
1777 return NULL;
1778
1779 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1780 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1781 node);
1782 if (!tags->rqs) {
1783 blk_mq_free_tags(tags);
1784 return NULL;
1785 }
1786
1787 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1788 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1789 node);
1790 if (!tags->static_rqs) {
1791 kfree(tags->rqs);
1792 blk_mq_free_tags(tags);
1793 return NULL;
1794 }
1795
1796 return tags;
1797 }
1798
1799 static size_t order_to_size(unsigned int order)
1800 {
1801 return (size_t)PAGE_SIZE << order;
1802 }
1803
1804 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1805 unsigned int hctx_idx, unsigned int depth)
1806 {
1807 unsigned int i, j, entries_per_page, max_order = 4;
1808 size_t rq_size, left;
1809 int node;
1810
1811 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1812 if (node == NUMA_NO_NODE)
1813 node = set->numa_node;
1814
1815 INIT_LIST_HEAD(&tags->page_list);
1816
1817 /*
1818 * rq_size is the size of the request plus driver payload, rounded
1819 * to the cacheline size
1820 */
1821 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1822 cache_line_size());
1823 left = rq_size * depth;
1824
1825 for (i = 0; i < depth; ) {
1826 int this_order = max_order;
1827 struct page *page;
1828 int to_do;
1829 void *p;
1830
1831 while (this_order && left < order_to_size(this_order - 1))
1832 this_order--;
1833
1834 do {
1835 page = alloc_pages_node(node,
1836 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1837 this_order);
1838 if (page)
1839 break;
1840 if (!this_order--)
1841 break;
1842 if (order_to_size(this_order) < rq_size)
1843 break;
1844 } while (1);
1845
1846 if (!page)
1847 goto fail;
1848
1849 page->private = this_order;
1850 list_add_tail(&page->lru, &tags->page_list);
1851
1852 p = page_address(page);
1853 /*
1854 * Allow kmemleak to scan these pages as they contain pointers
1855 * to additional allocations like via ops->init_request().
1856 */
1857 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1858 entries_per_page = order_to_size(this_order) / rq_size;
1859 to_do = min(entries_per_page, depth - i);
1860 left -= to_do * rq_size;
1861 for (j = 0; j < to_do; j++) {
1862 struct request *rq = p;
1863
1864 tags->static_rqs[i] = rq;
1865 if (set->ops->init_request) {
1866 if (set->ops->init_request(set, rq, hctx_idx,
1867 node)) {
1868 tags->static_rqs[i] = NULL;
1869 goto fail;
1870 }
1871 }
1872
1873 p += rq_size;
1874 i++;
1875 }
1876 }
1877 return 0;
1878
1879 fail:
1880 blk_mq_free_rqs(set, tags, hctx_idx);
1881 return -ENOMEM;
1882 }
1883
1884 /*
1885 * 'cpu' is going away. splice any existing rq_list entries from this
1886 * software queue to the hw queue dispatch list, and ensure that it
1887 * gets run.
1888 */
1889 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1890 {
1891 struct blk_mq_hw_ctx *hctx;
1892 struct blk_mq_ctx *ctx;
1893 LIST_HEAD(tmp);
1894
1895 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1896 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1897
1898 spin_lock(&ctx->lock);
1899 if (!list_empty(&ctx->rq_list)) {
1900 list_splice_init(&ctx->rq_list, &tmp);
1901 blk_mq_hctx_clear_pending(hctx, ctx);
1902 }
1903 spin_unlock(&ctx->lock);
1904
1905 if (list_empty(&tmp))
1906 return 0;
1907
1908 spin_lock(&hctx->lock);
1909 list_splice_tail_init(&tmp, &hctx->dispatch);
1910 spin_unlock(&hctx->lock);
1911
1912 blk_mq_run_hw_queue(hctx, true);
1913 return 0;
1914 }
1915
1916 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1917 {
1918 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1919 &hctx->cpuhp_dead);
1920 }
1921
1922 /* hctx->ctxs will be freed in queue's release handler */
1923 static void blk_mq_exit_hctx(struct request_queue *q,
1924 struct blk_mq_tag_set *set,
1925 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1926 {
1927 blk_mq_debugfs_unregister_hctx(hctx);
1928
1929 blk_mq_tag_idle(hctx);
1930
1931 if (set->ops->exit_request)
1932 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1933
1934 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1935
1936 if (set->ops->exit_hctx)
1937 set->ops->exit_hctx(hctx, hctx_idx);
1938
1939 if (hctx->flags & BLK_MQ_F_BLOCKING)
1940 cleanup_srcu_struct(hctx->queue_rq_srcu);
1941
1942 blk_mq_remove_cpuhp(hctx);
1943 blk_free_flush_queue(hctx->fq);
1944 sbitmap_free(&hctx->ctx_map);
1945 }
1946
1947 static void blk_mq_exit_hw_queues(struct request_queue *q,
1948 struct blk_mq_tag_set *set, int nr_queue)
1949 {
1950 struct blk_mq_hw_ctx *hctx;
1951 unsigned int i;
1952
1953 queue_for_each_hw_ctx(q, hctx, i) {
1954 if (i == nr_queue)
1955 break;
1956 blk_mq_exit_hctx(q, set, hctx, i);
1957 }
1958 }
1959
1960 static int blk_mq_init_hctx(struct request_queue *q,
1961 struct blk_mq_tag_set *set,
1962 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1963 {
1964 int node;
1965
1966 node = hctx->numa_node;
1967 if (node == NUMA_NO_NODE)
1968 node = hctx->numa_node = set->numa_node;
1969
1970 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1971 spin_lock_init(&hctx->lock);
1972 INIT_LIST_HEAD(&hctx->dispatch);
1973 hctx->queue = q;
1974 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1975
1976 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1977
1978 hctx->tags = set->tags[hctx_idx];
1979
1980 /*
1981 * Allocate space for all possible cpus to avoid allocation at
1982 * runtime
1983 */
1984 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1985 GFP_KERNEL, node);
1986 if (!hctx->ctxs)
1987 goto unregister_cpu_notifier;
1988
1989 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1990 node))
1991 goto free_ctxs;
1992
1993 hctx->nr_ctx = 0;
1994
1995 if (set->ops->init_hctx &&
1996 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1997 goto free_bitmap;
1998
1999 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2000 goto exit_hctx;
2001
2002 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2003 if (!hctx->fq)
2004 goto sched_exit_hctx;
2005
2006 if (set->ops->init_request &&
2007 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2008 node))
2009 goto free_fq;
2010
2011 if (hctx->flags & BLK_MQ_F_BLOCKING)
2012 init_srcu_struct(hctx->queue_rq_srcu);
2013
2014 blk_mq_debugfs_register_hctx(q, hctx);
2015
2016 return 0;
2017
2018 free_fq:
2019 kfree(hctx->fq);
2020 sched_exit_hctx:
2021 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2022 exit_hctx:
2023 if (set->ops->exit_hctx)
2024 set->ops->exit_hctx(hctx, hctx_idx);
2025 free_bitmap:
2026 sbitmap_free(&hctx->ctx_map);
2027 free_ctxs:
2028 kfree(hctx->ctxs);
2029 unregister_cpu_notifier:
2030 blk_mq_remove_cpuhp(hctx);
2031 return -1;
2032 }
2033
2034 static void blk_mq_init_cpu_queues(struct request_queue *q,
2035 unsigned int nr_hw_queues)
2036 {
2037 unsigned int i;
2038
2039 for_each_possible_cpu(i) {
2040 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2041 struct blk_mq_hw_ctx *hctx;
2042
2043 __ctx->cpu = i;
2044 spin_lock_init(&__ctx->lock);
2045 INIT_LIST_HEAD(&__ctx->rq_list);
2046 __ctx->queue = q;
2047
2048 /* If the cpu isn't present, the cpu is mapped to first hctx */
2049 if (!cpu_present(i))
2050 continue;
2051
2052 hctx = blk_mq_map_queue(q, i);
2053
2054 /*
2055 * Set local node, IFF we have more than one hw queue. If
2056 * not, we remain on the home node of the device
2057 */
2058 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2059 hctx->numa_node = local_memory_node(cpu_to_node(i));
2060 }
2061 }
2062
2063 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2064 {
2065 int ret = 0;
2066
2067 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2068 set->queue_depth, set->reserved_tags);
2069 if (!set->tags[hctx_idx])
2070 return false;
2071
2072 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2073 set->queue_depth);
2074 if (!ret)
2075 return true;
2076
2077 blk_mq_free_rq_map(set->tags[hctx_idx]);
2078 set->tags[hctx_idx] = NULL;
2079 return false;
2080 }
2081
2082 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2083 unsigned int hctx_idx)
2084 {
2085 if (set->tags[hctx_idx]) {
2086 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2087 blk_mq_free_rq_map(set->tags[hctx_idx]);
2088 set->tags[hctx_idx] = NULL;
2089 }
2090 }
2091
2092 static void blk_mq_map_swqueue(struct request_queue *q)
2093 {
2094 unsigned int i, hctx_idx;
2095 struct blk_mq_hw_ctx *hctx;
2096 struct blk_mq_ctx *ctx;
2097 struct blk_mq_tag_set *set = q->tag_set;
2098
2099 /*
2100 * Avoid others reading imcomplete hctx->cpumask through sysfs
2101 */
2102 mutex_lock(&q->sysfs_lock);
2103
2104 queue_for_each_hw_ctx(q, hctx, i) {
2105 cpumask_clear(hctx->cpumask);
2106 hctx->nr_ctx = 0;
2107 }
2108
2109 /*
2110 * Map software to hardware queues.
2111 *
2112 * If the cpu isn't present, the cpu is mapped to first hctx.
2113 */
2114 for_each_present_cpu(i) {
2115 hctx_idx = q->mq_map[i];
2116 /* unmapped hw queue can be remapped after CPU topo changed */
2117 if (!set->tags[hctx_idx] &&
2118 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2119 /*
2120 * If tags initialization fail for some hctx,
2121 * that hctx won't be brought online. In this
2122 * case, remap the current ctx to hctx[0] which
2123 * is guaranteed to always have tags allocated
2124 */
2125 q->mq_map[i] = 0;
2126 }
2127
2128 ctx = per_cpu_ptr(q->queue_ctx, i);
2129 hctx = blk_mq_map_queue(q, i);
2130
2131 cpumask_set_cpu(i, hctx->cpumask);
2132 ctx->index_hw = hctx->nr_ctx;
2133 hctx->ctxs[hctx->nr_ctx++] = ctx;
2134 }
2135
2136 mutex_unlock(&q->sysfs_lock);
2137
2138 queue_for_each_hw_ctx(q, hctx, i) {
2139 /*
2140 * If no software queues are mapped to this hardware queue,
2141 * disable it and free the request entries.
2142 */
2143 if (!hctx->nr_ctx) {
2144 /* Never unmap queue 0. We need it as a
2145 * fallback in case of a new remap fails
2146 * allocation
2147 */
2148 if (i && set->tags[i])
2149 blk_mq_free_map_and_requests(set, i);
2150
2151 hctx->tags = NULL;
2152 continue;
2153 }
2154
2155 hctx->tags = set->tags[i];
2156 WARN_ON(!hctx->tags);
2157
2158 /*
2159 * Set the map size to the number of mapped software queues.
2160 * This is more accurate and more efficient than looping
2161 * over all possibly mapped software queues.
2162 */
2163 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2164
2165 /*
2166 * Initialize batch roundrobin counts
2167 */
2168 hctx->next_cpu = cpumask_first(hctx->cpumask);
2169 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2170 }
2171 }
2172
2173 /*
2174 * Caller needs to ensure that we're either frozen/quiesced, or that
2175 * the queue isn't live yet.
2176 */
2177 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2178 {
2179 struct blk_mq_hw_ctx *hctx;
2180 int i;
2181
2182 queue_for_each_hw_ctx(q, hctx, i) {
2183 if (shared) {
2184 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2185 atomic_inc(&q->shared_hctx_restart);
2186 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2187 } else {
2188 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2189 atomic_dec(&q->shared_hctx_restart);
2190 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2191 }
2192 }
2193 }
2194
2195 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2196 bool shared)
2197 {
2198 struct request_queue *q;
2199
2200 lockdep_assert_held(&set->tag_list_lock);
2201
2202 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2203 blk_mq_freeze_queue(q);
2204 queue_set_hctx_shared(q, shared);
2205 blk_mq_unfreeze_queue(q);
2206 }
2207 }
2208
2209 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2210 {
2211 struct blk_mq_tag_set *set = q->tag_set;
2212
2213 mutex_lock(&set->tag_list_lock);
2214 list_del_rcu(&q->tag_set_list);
2215 INIT_LIST_HEAD(&q->tag_set_list);
2216 if (list_is_singular(&set->tag_list)) {
2217 /* just transitioned to unshared */
2218 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2219 /* update existing queue */
2220 blk_mq_update_tag_set_depth(set, false);
2221 }
2222 mutex_unlock(&set->tag_list_lock);
2223
2224 synchronize_rcu();
2225 }
2226
2227 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2228 struct request_queue *q)
2229 {
2230 q->tag_set = set;
2231
2232 mutex_lock(&set->tag_list_lock);
2233
2234 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2235 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2236 set->flags |= BLK_MQ_F_TAG_SHARED;
2237 /* update existing queue */
2238 blk_mq_update_tag_set_depth(set, true);
2239 }
2240 if (set->flags & BLK_MQ_F_TAG_SHARED)
2241 queue_set_hctx_shared(q, true);
2242 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2243
2244 mutex_unlock(&set->tag_list_lock);
2245 }
2246
2247 /*
2248 * It is the actual release handler for mq, but we do it from
2249 * request queue's release handler for avoiding use-after-free
2250 * and headache because q->mq_kobj shouldn't have been introduced,
2251 * but we can't group ctx/kctx kobj without it.
2252 */
2253 void blk_mq_release(struct request_queue *q)
2254 {
2255 struct blk_mq_hw_ctx *hctx;
2256 unsigned int i;
2257
2258 /* hctx kobj stays in hctx */
2259 queue_for_each_hw_ctx(q, hctx, i) {
2260 if (!hctx)
2261 continue;
2262 kobject_put(&hctx->kobj);
2263 }
2264
2265 q->mq_map = NULL;
2266
2267 kfree(q->queue_hw_ctx);
2268
2269 /*
2270 * release .mq_kobj and sw queue's kobject now because
2271 * both share lifetime with request queue.
2272 */
2273 blk_mq_sysfs_deinit(q);
2274
2275 free_percpu(q->queue_ctx);
2276 }
2277
2278 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2279 {
2280 struct request_queue *uninit_q, *q;
2281
2282 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2283 if (!uninit_q)
2284 return ERR_PTR(-ENOMEM);
2285
2286 q = blk_mq_init_allocated_queue(set, uninit_q);
2287 if (IS_ERR(q))
2288 blk_cleanup_queue(uninit_q);
2289
2290 return q;
2291 }
2292 EXPORT_SYMBOL(blk_mq_init_queue);
2293
2294 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2295 {
2296 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2297
2298 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2299 __alignof__(struct blk_mq_hw_ctx)) !=
2300 sizeof(struct blk_mq_hw_ctx));
2301
2302 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2303 hw_ctx_size += sizeof(struct srcu_struct);
2304
2305 return hw_ctx_size;
2306 }
2307
2308 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2309 struct request_queue *q)
2310 {
2311 int i, j;
2312 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2313
2314 blk_mq_sysfs_unregister(q);
2315 for (i = 0; i < set->nr_hw_queues; i++) {
2316 int node;
2317
2318 if (hctxs[i])
2319 continue;
2320
2321 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2322 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2323 GFP_KERNEL, node);
2324 if (!hctxs[i])
2325 break;
2326
2327 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2328 node)) {
2329 kfree(hctxs[i]);
2330 hctxs[i] = NULL;
2331 break;
2332 }
2333
2334 atomic_set(&hctxs[i]->nr_active, 0);
2335 hctxs[i]->numa_node = node;
2336 hctxs[i]->queue_num = i;
2337
2338 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2339 free_cpumask_var(hctxs[i]->cpumask);
2340 kfree(hctxs[i]);
2341 hctxs[i] = NULL;
2342 break;
2343 }
2344 blk_mq_hctx_kobj_init(hctxs[i]);
2345 }
2346 for (j = i; j < q->nr_hw_queues; j++) {
2347 struct blk_mq_hw_ctx *hctx = hctxs[j];
2348
2349 if (hctx) {
2350 if (hctx->tags)
2351 blk_mq_free_map_and_requests(set, j);
2352 blk_mq_exit_hctx(q, set, hctx, j);
2353 kobject_put(&hctx->kobj);
2354 hctxs[j] = NULL;
2355
2356 }
2357 }
2358 q->nr_hw_queues = i;
2359 blk_mq_sysfs_register(q);
2360 }
2361
2362 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2363 struct request_queue *q)
2364 {
2365 /* mark the queue as mq asap */
2366 q->mq_ops = set->ops;
2367
2368 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2369 blk_mq_poll_stats_bkt,
2370 BLK_MQ_POLL_STATS_BKTS, q);
2371 if (!q->poll_cb)
2372 goto err_exit;
2373
2374 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2375 if (!q->queue_ctx)
2376 goto err_exit;
2377
2378 /* init q->mq_kobj and sw queues' kobjects */
2379 blk_mq_sysfs_init(q);
2380
2381 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2382 GFP_KERNEL, set->numa_node);
2383 if (!q->queue_hw_ctx)
2384 goto err_percpu;
2385
2386 q->mq_map = set->mq_map;
2387
2388 blk_mq_realloc_hw_ctxs(set, q);
2389 if (!q->nr_hw_queues)
2390 goto err_hctxs;
2391
2392 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2393 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2394
2395 q->nr_queues = nr_cpu_ids;
2396
2397 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2398
2399 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2400 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2401
2402 q->sg_reserved_size = INT_MAX;
2403
2404 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2405 INIT_LIST_HEAD(&q->requeue_list);
2406 spin_lock_init(&q->requeue_lock);
2407
2408 blk_queue_make_request(q, blk_mq_make_request);
2409
2410 /*
2411 * Do this after blk_queue_make_request() overrides it...
2412 */
2413 q->nr_requests = set->queue_depth;
2414
2415 /*
2416 * Default to classic polling
2417 */
2418 q->poll_nsec = -1;
2419
2420 if (set->ops->complete)
2421 blk_queue_softirq_done(q, set->ops->complete);
2422
2423 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2424 blk_mq_add_queue_tag_set(set, q);
2425 blk_mq_map_swqueue(q);
2426
2427 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2428 int ret;
2429
2430 ret = blk_mq_sched_init(q);
2431 if (ret)
2432 return ERR_PTR(ret);
2433 }
2434
2435 return q;
2436
2437 err_hctxs:
2438 kfree(q->queue_hw_ctx);
2439 err_percpu:
2440 free_percpu(q->queue_ctx);
2441 err_exit:
2442 q->mq_ops = NULL;
2443 return ERR_PTR(-ENOMEM);
2444 }
2445 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2446
2447 void blk_mq_free_queue(struct request_queue *q)
2448 {
2449 struct blk_mq_tag_set *set = q->tag_set;
2450
2451 blk_mq_del_queue_tag_set(q);
2452 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2453 }
2454
2455 /* Basically redo blk_mq_init_queue with queue frozen */
2456 static void blk_mq_queue_reinit(struct request_queue *q)
2457 {
2458 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2459
2460 blk_mq_debugfs_unregister_hctxs(q);
2461 blk_mq_sysfs_unregister(q);
2462
2463 /*
2464 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2465 * we should change hctx numa_node according to new topology (this
2466 * involves free and re-allocate memory, worthy doing?)
2467 */
2468
2469 blk_mq_map_swqueue(q);
2470
2471 blk_mq_sysfs_register(q);
2472 blk_mq_debugfs_register_hctxs(q);
2473 }
2474
2475 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2476 {
2477 int i;
2478
2479 for (i = 0; i < set->nr_hw_queues; i++)
2480 if (!__blk_mq_alloc_rq_map(set, i))
2481 goto out_unwind;
2482
2483 return 0;
2484
2485 out_unwind:
2486 while (--i >= 0)
2487 blk_mq_free_rq_map(set->tags[i]);
2488
2489 return -ENOMEM;
2490 }
2491
2492 /*
2493 * Allocate the request maps associated with this tag_set. Note that this
2494 * may reduce the depth asked for, if memory is tight. set->queue_depth
2495 * will be updated to reflect the allocated depth.
2496 */
2497 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2498 {
2499 unsigned int depth;
2500 int err;
2501
2502 depth = set->queue_depth;
2503 do {
2504 err = __blk_mq_alloc_rq_maps(set);
2505 if (!err)
2506 break;
2507
2508 set->queue_depth >>= 1;
2509 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2510 err = -ENOMEM;
2511 break;
2512 }
2513 } while (set->queue_depth);
2514
2515 if (!set->queue_depth || err) {
2516 pr_err("blk-mq: failed to allocate request map\n");
2517 return -ENOMEM;
2518 }
2519
2520 if (depth != set->queue_depth)
2521 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2522 depth, set->queue_depth);
2523
2524 return 0;
2525 }
2526
2527 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2528 {
2529 if (set->ops->map_queues)
2530 return set->ops->map_queues(set);
2531 else
2532 return blk_mq_map_queues(set);
2533 }
2534
2535 /*
2536 * Alloc a tag set to be associated with one or more request queues.
2537 * May fail with EINVAL for various error conditions. May adjust the
2538 * requested depth down, if if it too large. In that case, the set
2539 * value will be stored in set->queue_depth.
2540 */
2541 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2542 {
2543 int ret;
2544
2545 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2546
2547 if (!set->nr_hw_queues)
2548 return -EINVAL;
2549 if (!set->queue_depth)
2550 return -EINVAL;
2551 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2552 return -EINVAL;
2553
2554 if (!set->ops->queue_rq)
2555 return -EINVAL;
2556
2557 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2558 pr_info("blk-mq: reduced tag depth to %u\n",
2559 BLK_MQ_MAX_DEPTH);
2560 set->queue_depth = BLK_MQ_MAX_DEPTH;
2561 }
2562
2563 /*
2564 * If a crashdump is active, then we are potentially in a very
2565 * memory constrained environment. Limit us to 1 queue and
2566 * 64 tags to prevent using too much memory.
2567 */
2568 if (is_kdump_kernel()) {
2569 set->nr_hw_queues = 1;
2570 set->queue_depth = min(64U, set->queue_depth);
2571 }
2572 /*
2573 * There is no use for more h/w queues than cpus.
2574 */
2575 if (set->nr_hw_queues > nr_cpu_ids)
2576 set->nr_hw_queues = nr_cpu_ids;
2577
2578 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2579 GFP_KERNEL, set->numa_node);
2580 if (!set->tags)
2581 return -ENOMEM;
2582
2583 ret = -ENOMEM;
2584 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2585 GFP_KERNEL, set->numa_node);
2586 if (!set->mq_map)
2587 goto out_free_tags;
2588
2589 ret = blk_mq_update_queue_map(set);
2590 if (ret)
2591 goto out_free_mq_map;
2592
2593 ret = blk_mq_alloc_rq_maps(set);
2594 if (ret)
2595 goto out_free_mq_map;
2596
2597 mutex_init(&set->tag_list_lock);
2598 INIT_LIST_HEAD(&set->tag_list);
2599
2600 return 0;
2601
2602 out_free_mq_map:
2603 kfree(set->mq_map);
2604 set->mq_map = NULL;
2605 out_free_tags:
2606 kfree(set->tags);
2607 set->tags = NULL;
2608 return ret;
2609 }
2610 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2611
2612 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2613 {
2614 int i;
2615
2616 for (i = 0; i < nr_cpu_ids; i++)
2617 blk_mq_free_map_and_requests(set, i);
2618
2619 kfree(set->mq_map);
2620 set->mq_map = NULL;
2621
2622 kfree(set->tags);
2623 set->tags = NULL;
2624 }
2625 EXPORT_SYMBOL(blk_mq_free_tag_set);
2626
2627 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2628 {
2629 struct blk_mq_tag_set *set = q->tag_set;
2630 struct blk_mq_hw_ctx *hctx;
2631 int i, ret;
2632
2633 if (!set)
2634 return -EINVAL;
2635
2636 blk_mq_freeze_queue(q);
2637
2638 ret = 0;
2639 queue_for_each_hw_ctx(q, hctx, i) {
2640 if (!hctx->tags)
2641 continue;
2642 /*
2643 * If we're using an MQ scheduler, just update the scheduler
2644 * queue depth. This is similar to what the old code would do.
2645 */
2646 if (!hctx->sched_tags) {
2647 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2648 min(nr, set->queue_depth),
2649 false);
2650 } else {
2651 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2652 nr, true);
2653 }
2654 if (ret)
2655 break;
2656 }
2657
2658 if (!ret)
2659 q->nr_requests = nr;
2660
2661 blk_mq_unfreeze_queue(q);
2662
2663 return ret;
2664 }
2665
2666 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2667 int nr_hw_queues)
2668 {
2669 struct request_queue *q;
2670
2671 lockdep_assert_held(&set->tag_list_lock);
2672
2673 if (nr_hw_queues > nr_cpu_ids)
2674 nr_hw_queues = nr_cpu_ids;
2675 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2676 return;
2677
2678 list_for_each_entry(q, &set->tag_list, tag_set_list)
2679 blk_mq_freeze_queue(q);
2680
2681 set->nr_hw_queues = nr_hw_queues;
2682 blk_mq_update_queue_map(set);
2683 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2684 blk_mq_realloc_hw_ctxs(set, q);
2685 blk_mq_queue_reinit(q);
2686 }
2687
2688 list_for_each_entry(q, &set->tag_list, tag_set_list)
2689 blk_mq_unfreeze_queue(q);
2690 }
2691
2692 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2693 {
2694 mutex_lock(&set->tag_list_lock);
2695 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2696 mutex_unlock(&set->tag_list_lock);
2697 }
2698 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2699
2700 /* Enable polling stats and return whether they were already enabled. */
2701 static bool blk_poll_stats_enable(struct request_queue *q)
2702 {
2703 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2704 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2705 return true;
2706 blk_stat_add_callback(q, q->poll_cb);
2707 return false;
2708 }
2709
2710 static void blk_mq_poll_stats_start(struct request_queue *q)
2711 {
2712 /*
2713 * We don't arm the callback if polling stats are not enabled or the
2714 * callback is already active.
2715 */
2716 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2717 blk_stat_is_active(q->poll_cb))
2718 return;
2719
2720 blk_stat_activate_msecs(q->poll_cb, 100);
2721 }
2722
2723 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2724 {
2725 struct request_queue *q = cb->data;
2726 int bucket;
2727
2728 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2729 if (cb->stat[bucket].nr_samples)
2730 q->poll_stat[bucket] = cb->stat[bucket];
2731 }
2732 }
2733
2734 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2735 struct blk_mq_hw_ctx *hctx,
2736 struct request *rq)
2737 {
2738 unsigned long ret = 0;
2739 int bucket;
2740
2741 /*
2742 * If stats collection isn't on, don't sleep but turn it on for
2743 * future users
2744 */
2745 if (!blk_poll_stats_enable(q))
2746 return 0;
2747
2748 /*
2749 * As an optimistic guess, use half of the mean service time
2750 * for this type of request. We can (and should) make this smarter.
2751 * For instance, if the completion latencies are tight, we can
2752 * get closer than just half the mean. This is especially
2753 * important on devices where the completion latencies are longer
2754 * than ~10 usec. We do use the stats for the relevant IO size
2755 * if available which does lead to better estimates.
2756 */
2757 bucket = blk_mq_poll_stats_bkt(rq);
2758 if (bucket < 0)
2759 return ret;
2760
2761 if (q->poll_stat[bucket].nr_samples)
2762 ret = (q->poll_stat[bucket].mean + 1) / 2;
2763
2764 return ret;
2765 }
2766
2767 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2768 struct blk_mq_hw_ctx *hctx,
2769 struct request *rq)
2770 {
2771 struct hrtimer_sleeper hs;
2772 enum hrtimer_mode mode;
2773 unsigned int nsecs;
2774 ktime_t kt;
2775
2776 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2777 return false;
2778
2779 /*
2780 * poll_nsec can be:
2781 *
2782 * -1: don't ever hybrid sleep
2783 * 0: use half of prev avg
2784 * >0: use this specific value
2785 */
2786 if (q->poll_nsec == -1)
2787 return false;
2788 else if (q->poll_nsec > 0)
2789 nsecs = q->poll_nsec;
2790 else
2791 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2792
2793 if (!nsecs)
2794 return false;
2795
2796 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2797
2798 /*
2799 * This will be replaced with the stats tracking code, using
2800 * 'avg_completion_time / 2' as the pre-sleep target.
2801 */
2802 kt = nsecs;
2803
2804 mode = HRTIMER_MODE_REL;
2805 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2806 hrtimer_set_expires(&hs.timer, kt);
2807
2808 hrtimer_init_sleeper(&hs, current);
2809 do {
2810 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2811 break;
2812 set_current_state(TASK_UNINTERRUPTIBLE);
2813 hrtimer_start_expires(&hs.timer, mode);
2814 if (hs.task)
2815 io_schedule();
2816 hrtimer_cancel(&hs.timer);
2817 mode = HRTIMER_MODE_ABS;
2818 } while (hs.task && !signal_pending(current));
2819
2820 __set_current_state(TASK_RUNNING);
2821 destroy_hrtimer_on_stack(&hs.timer);
2822 return true;
2823 }
2824
2825 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2826 {
2827 struct request_queue *q = hctx->queue;
2828 long state;
2829
2830 /*
2831 * If we sleep, have the caller restart the poll loop to reset
2832 * the state. Like for the other success return cases, the
2833 * caller is responsible for checking if the IO completed. If
2834 * the IO isn't complete, we'll get called again and will go
2835 * straight to the busy poll loop.
2836 */
2837 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2838 return true;
2839
2840 hctx->poll_considered++;
2841
2842 state = current->state;
2843 while (!need_resched()) {
2844 int ret;
2845
2846 hctx->poll_invoked++;
2847
2848 ret = q->mq_ops->poll(hctx, rq->tag);
2849 if (ret > 0) {
2850 hctx->poll_success++;
2851 set_current_state(TASK_RUNNING);
2852 return true;
2853 }
2854
2855 if (signal_pending_state(state, current))
2856 set_current_state(TASK_RUNNING);
2857
2858 if (current->state == TASK_RUNNING)
2859 return true;
2860 if (ret < 0)
2861 break;
2862 cpu_relax();
2863 }
2864
2865 return false;
2866 }
2867
2868 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2869 {
2870 struct blk_mq_hw_ctx *hctx;
2871 struct blk_plug *plug;
2872 struct request *rq;
2873
2874 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2875 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2876 return false;
2877
2878 plug = current->plug;
2879 if (plug)
2880 blk_flush_plug_list(plug, false);
2881
2882 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2883 if (!blk_qc_t_is_internal(cookie))
2884 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2885 else {
2886 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2887 /*
2888 * With scheduling, if the request has completed, we'll
2889 * get a NULL return here, as we clear the sched tag when
2890 * that happens. The request still remains valid, like always,
2891 * so we should be safe with just the NULL check.
2892 */
2893 if (!rq)
2894 return false;
2895 }
2896
2897 return __blk_mq_poll(hctx, rq);
2898 }
2899 EXPORT_SYMBOL_GPL(blk_mq_poll);
2900
2901 static int __init blk_mq_init(void)
2902 {
2903 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2904 blk_mq_hctx_notify_dead);
2905 return 0;
2906 }
2907 subsys_initcall(blk_mq_init);