block: optimize generic_unplug_device()
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 #include "blk.h"
35
36 static int __make_request(struct request_queue *q, struct bio *bio);
37
38 /*
39 * For the allocated request tables
40 */
41 static struct kmem_cache *request_cachep;
42
43 /*
44 * For queue allocation
45 */
46 struct kmem_cache *blk_requestq_cachep;
47
48 /*
49 * Controlling structure to kblockd
50 */
51 static struct workqueue_struct *kblockd_workqueue;
52
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 int rw = rq_data_dir(rq);
58
59 if (!blk_fs_request(rq) || !rq->rq_disk)
60 return;
61
62 if (!new_io) {
63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector);
64 } else {
65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector);
66 disk_round_stats(rq->rq_disk);
67 rq->rq_disk->in_flight++;
68 if (part) {
69 part_round_stats(part);
70 part->in_flight++;
71 }
72 }
73 }
74
75 void blk_queue_congestion_threshold(struct request_queue *q)
76 {
77 int nr;
78
79 nr = q->nr_requests - (q->nr_requests / 8) + 1;
80 if (nr > q->nr_requests)
81 nr = q->nr_requests;
82 q->nr_congestion_on = nr;
83
84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
85 if (nr < 1)
86 nr = 1;
87 q->nr_congestion_off = nr;
88 }
89
90 /**
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
92 * @bdev: device
93 *
94 * Locates the passed device's request queue and returns the address of its
95 * backing_dev_info
96 *
97 * Will return NULL if the request queue cannot be located.
98 */
99 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
100 {
101 struct backing_dev_info *ret = NULL;
102 struct request_queue *q = bdev_get_queue(bdev);
103
104 if (q)
105 ret = &q->backing_dev_info;
106 return ret;
107 }
108 EXPORT_SYMBOL(blk_get_backing_dev_info);
109
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 memset(rq, 0, sizeof(*rq));
113
114 INIT_LIST_HEAD(&rq->queuelist);
115 INIT_LIST_HEAD(&rq->donelist);
116 rq->q = q;
117 rq->sector = rq->hard_sector = (sector_t) -1;
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
120 rq->cmd = rq->__cmd;
121 rq->tag = -1;
122 rq->ref_count = 1;
123 }
124 EXPORT_SYMBOL(blk_rq_init);
125
126 static void req_bio_endio(struct request *rq, struct bio *bio,
127 unsigned int nbytes, int error)
128 {
129 struct request_queue *q = rq->q;
130
131 if (&q->bar_rq != rq) {
132 if (error)
133 clear_bit(BIO_UPTODATE, &bio->bi_flags);
134 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
135 error = -EIO;
136
137 if (unlikely(nbytes > bio->bi_size)) {
138 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
139 __func__, nbytes, bio->bi_size);
140 nbytes = bio->bi_size;
141 }
142
143 bio->bi_size -= nbytes;
144 bio->bi_sector += (nbytes >> 9);
145 if (bio->bi_size == 0)
146 bio_endio(bio, error);
147 } else {
148
149 /*
150 * Okay, this is the barrier request in progress, just
151 * record the error;
152 */
153 if (error && !q->orderr)
154 q->orderr = error;
155 }
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
167 (unsigned long long)rq->sector,
168 rq->nr_sectors,
169 rq->current_nr_sectors);
170 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
171 rq->bio, rq->biotail,
172 rq->buffer, rq->data,
173 rq->data_len);
174
175 if (blk_pc_request(rq)) {
176 printk(KERN_INFO " cdb: ");
177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181 }
182 EXPORT_SYMBOL(blk_dump_rq_flags);
183
184 /*
185 * "plug" the device if there are no outstanding requests: this will
186 * force the transfer to start only after we have put all the requests
187 * on the list.
188 *
189 * This is called with interrupts off and no requests on the queue and
190 * with the queue lock held.
191 */
192 void blk_plug_device(struct request_queue *q)
193 {
194 WARN_ON(!irqs_disabled());
195
196 /*
197 * don't plug a stopped queue, it must be paired with blk_start_queue()
198 * which will restart the queueing
199 */
200 if (blk_queue_stopped(q))
201 return;
202
203 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
204 __set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
205 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
206 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
207 }
208 }
209 EXPORT_SYMBOL(blk_plug_device);
210
211 /*
212 * remove the queue from the plugged list, if present. called with
213 * queue lock held and interrupts disabled.
214 */
215 int blk_remove_plug(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
220 return 0;
221
222 queue_flag_clear(QUEUE_FLAG_PLUGGED, q);
223 del_timer(&q->unplug_timer);
224 return 1;
225 }
226 EXPORT_SYMBOL(blk_remove_plug);
227
228 /*
229 * remove the plug and let it rip..
230 */
231 void __generic_unplug_device(struct request_queue *q)
232 {
233 if (unlikely(blk_queue_stopped(q)))
234 return;
235
236 if (!blk_remove_plug(q))
237 return;
238
239 q->request_fn(q);
240 }
241 EXPORT_SYMBOL(__generic_unplug_device);
242
243 /**
244 * generic_unplug_device - fire a request queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * Linux uses plugging to build bigger requests queues before letting
249 * the device have at them. If a queue is plugged, the I/O scheduler
250 * is still adding and merging requests on the queue. Once the queue
251 * gets unplugged, the request_fn defined for the queue is invoked and
252 * transfers started.
253 **/
254 void generic_unplug_device(struct request_queue *q)
255 {
256 if (blk_queue_plugged(q)) {
257 spin_lock_irq(q->queue_lock);
258 __generic_unplug_device(q);
259 spin_unlock_irq(q->queue_lock);
260 }
261 }
262 EXPORT_SYMBOL(generic_unplug_device);
263
264 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
265 struct page *page)
266 {
267 struct request_queue *q = bdi->unplug_io_data;
268
269 blk_unplug(q);
270 }
271
272 void blk_unplug_work(struct work_struct *work)
273 {
274 struct request_queue *q =
275 container_of(work, struct request_queue, unplug_work);
276
277 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
278 q->rq.count[READ] + q->rq.count[WRITE]);
279
280 q->unplug_fn(q);
281 }
282
283 void blk_unplug_timeout(unsigned long data)
284 {
285 struct request_queue *q = (struct request_queue *)data;
286
287 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
288 q->rq.count[READ] + q->rq.count[WRITE]);
289
290 kblockd_schedule_work(&q->unplug_work);
291 }
292
293 void blk_unplug(struct request_queue *q)
294 {
295 /*
296 * devices don't necessarily have an ->unplug_fn defined
297 */
298 if (q->unplug_fn) {
299 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
300 q->rq.count[READ] + q->rq.count[WRITE]);
301
302 q->unplug_fn(q);
303 }
304 }
305 EXPORT_SYMBOL(blk_unplug);
306
307 /**
308 * blk_start_queue - restart a previously stopped queue
309 * @q: The &struct request_queue in question
310 *
311 * Description:
312 * blk_start_queue() will clear the stop flag on the queue, and call
313 * the request_fn for the queue if it was in a stopped state when
314 * entered. Also see blk_stop_queue(). Queue lock must be held.
315 **/
316 void blk_start_queue(struct request_queue *q)
317 {
318 WARN_ON(!irqs_disabled());
319
320 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
321
322 /*
323 * one level of recursion is ok and is much faster than kicking
324 * the unplug handling
325 */
326 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
327 queue_flag_set(QUEUE_FLAG_REENTER, q);
328 q->request_fn(q);
329 queue_flag_clear(QUEUE_FLAG_REENTER, q);
330 } else {
331 blk_plug_device(q);
332 kblockd_schedule_work(&q->unplug_work);
333 }
334 }
335 EXPORT_SYMBOL(blk_start_queue);
336
337 /**
338 * blk_stop_queue - stop a queue
339 * @q: The &struct request_queue in question
340 *
341 * Description:
342 * The Linux block layer assumes that a block driver will consume all
343 * entries on the request queue when the request_fn strategy is called.
344 * Often this will not happen, because of hardware limitations (queue
345 * depth settings). If a device driver gets a 'queue full' response,
346 * or if it simply chooses not to queue more I/O at one point, it can
347 * call this function to prevent the request_fn from being called until
348 * the driver has signalled it's ready to go again. This happens by calling
349 * blk_start_queue() to restart queue operations. Queue lock must be held.
350 **/
351 void blk_stop_queue(struct request_queue *q)
352 {
353 blk_remove_plug(q);
354 queue_flag_set(QUEUE_FLAG_STOPPED, q);
355 }
356 EXPORT_SYMBOL(blk_stop_queue);
357
358 /**
359 * blk_sync_queue - cancel any pending callbacks on a queue
360 * @q: the queue
361 *
362 * Description:
363 * The block layer may perform asynchronous callback activity
364 * on a queue, such as calling the unplug function after a timeout.
365 * A block device may call blk_sync_queue to ensure that any
366 * such activity is cancelled, thus allowing it to release resources
367 * that the callbacks might use. The caller must already have made sure
368 * that its ->make_request_fn will not re-add plugging prior to calling
369 * this function.
370 *
371 */
372 void blk_sync_queue(struct request_queue *q)
373 {
374 del_timer_sync(&q->unplug_timer);
375 kblockd_flush_work(&q->unplug_work);
376 }
377 EXPORT_SYMBOL(blk_sync_queue);
378
379 /**
380 * blk_run_queue - run a single device queue
381 * @q: The queue to run
382 */
383 void __blk_run_queue(struct request_queue *q)
384 {
385 blk_remove_plug(q);
386
387 /*
388 * Only recurse once to avoid overrunning the stack, let the unplug
389 * handling reinvoke the handler shortly if we already got there.
390 */
391 if (!elv_queue_empty(q)) {
392 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
393 queue_flag_set(QUEUE_FLAG_REENTER, q);
394 q->request_fn(q);
395 queue_flag_clear(QUEUE_FLAG_REENTER, q);
396 } else {
397 blk_plug_device(q);
398 kblockd_schedule_work(&q->unplug_work);
399 }
400 }
401 }
402 EXPORT_SYMBOL(__blk_run_queue);
403
404 /**
405 * blk_run_queue - run a single device queue
406 * @q: The queue to run
407 */
408 void blk_run_queue(struct request_queue *q)
409 {
410 unsigned long flags;
411
412 spin_lock_irqsave(q->queue_lock, flags);
413 __blk_run_queue(q);
414 spin_unlock_irqrestore(q->queue_lock, flags);
415 }
416 EXPORT_SYMBOL(blk_run_queue);
417
418 void blk_put_queue(struct request_queue *q)
419 {
420 kobject_put(&q->kobj);
421 }
422
423 void blk_cleanup_queue(struct request_queue *q)
424 {
425 mutex_lock(&q->sysfs_lock);
426 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
427 mutex_unlock(&q->sysfs_lock);
428
429 if (q->elevator)
430 elevator_exit(q->elevator);
431
432 blk_put_queue(q);
433 }
434 EXPORT_SYMBOL(blk_cleanup_queue);
435
436 static int blk_init_free_list(struct request_queue *q)
437 {
438 struct request_list *rl = &q->rq;
439
440 rl->count[READ] = rl->count[WRITE] = 0;
441 rl->starved[READ] = rl->starved[WRITE] = 0;
442 rl->elvpriv = 0;
443 init_waitqueue_head(&rl->wait[READ]);
444 init_waitqueue_head(&rl->wait[WRITE]);
445
446 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
447 mempool_free_slab, request_cachep, q->node);
448
449 if (!rl->rq_pool)
450 return -ENOMEM;
451
452 return 0;
453 }
454
455 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
456 {
457 return blk_alloc_queue_node(gfp_mask, -1);
458 }
459 EXPORT_SYMBOL(blk_alloc_queue);
460
461 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
462 {
463 struct request_queue *q;
464 int err;
465
466 q = kmem_cache_alloc_node(blk_requestq_cachep,
467 gfp_mask | __GFP_ZERO, node_id);
468 if (!q)
469 return NULL;
470
471 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
472 q->backing_dev_info.unplug_io_data = q;
473 err = bdi_init(&q->backing_dev_info);
474 if (err) {
475 kmem_cache_free(blk_requestq_cachep, q);
476 return NULL;
477 }
478
479 init_timer(&q->unplug_timer);
480
481 kobject_init(&q->kobj, &blk_queue_ktype);
482
483 mutex_init(&q->sysfs_lock);
484
485 return q;
486 }
487 EXPORT_SYMBOL(blk_alloc_queue_node);
488
489 /**
490 * blk_init_queue - prepare a request queue for use with a block device
491 * @rfn: The function to be called to process requests that have been
492 * placed on the queue.
493 * @lock: Request queue spin lock
494 *
495 * Description:
496 * If a block device wishes to use the standard request handling procedures,
497 * which sorts requests and coalesces adjacent requests, then it must
498 * call blk_init_queue(). The function @rfn will be called when there
499 * are requests on the queue that need to be processed. If the device
500 * supports plugging, then @rfn may not be called immediately when requests
501 * are available on the queue, but may be called at some time later instead.
502 * Plugged queues are generally unplugged when a buffer belonging to one
503 * of the requests on the queue is needed, or due to memory pressure.
504 *
505 * @rfn is not required, or even expected, to remove all requests off the
506 * queue, but only as many as it can handle at a time. If it does leave
507 * requests on the queue, it is responsible for arranging that the requests
508 * get dealt with eventually.
509 *
510 * The queue spin lock must be held while manipulating the requests on the
511 * request queue; this lock will be taken also from interrupt context, so irq
512 * disabling is needed for it.
513 *
514 * Function returns a pointer to the initialized request queue, or NULL if
515 * it didn't succeed.
516 *
517 * Note:
518 * blk_init_queue() must be paired with a blk_cleanup_queue() call
519 * when the block device is deactivated (such as at module unload).
520 **/
521
522 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
523 {
524 return blk_init_queue_node(rfn, lock, -1);
525 }
526 EXPORT_SYMBOL(blk_init_queue);
527
528 struct request_queue *
529 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
530 {
531 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
532
533 if (!q)
534 return NULL;
535
536 q->node = node_id;
537 if (blk_init_free_list(q)) {
538 kmem_cache_free(blk_requestq_cachep, q);
539 return NULL;
540 }
541
542 /*
543 * if caller didn't supply a lock, they get per-queue locking with
544 * our embedded lock
545 */
546 if (!lock) {
547 spin_lock_init(&q->__queue_lock);
548 lock = &q->__queue_lock;
549 }
550
551 q->request_fn = rfn;
552 q->prep_rq_fn = NULL;
553 q->unplug_fn = generic_unplug_device;
554 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
555 q->queue_lock = lock;
556
557 blk_queue_segment_boundary(q, 0xffffffff);
558
559 blk_queue_make_request(q, __make_request);
560 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
561
562 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
563 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
564
565 q->sg_reserved_size = INT_MAX;
566
567 /*
568 * all done
569 */
570 if (!elevator_init(q, NULL)) {
571 blk_queue_congestion_threshold(q);
572 return q;
573 }
574
575 blk_put_queue(q);
576 return NULL;
577 }
578 EXPORT_SYMBOL(blk_init_queue_node);
579
580 int blk_get_queue(struct request_queue *q)
581 {
582 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
583 kobject_get(&q->kobj);
584 return 0;
585 }
586
587 return 1;
588 }
589
590 static inline void blk_free_request(struct request_queue *q, struct request *rq)
591 {
592 if (rq->cmd_flags & REQ_ELVPRIV)
593 elv_put_request(q, rq);
594 mempool_free(rq, q->rq.rq_pool);
595 }
596
597 static struct request *
598 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
599 {
600 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
601
602 if (!rq)
603 return NULL;
604
605 blk_rq_init(q, rq);
606
607 /*
608 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
609 * see bio.h and blkdev.h
610 */
611 rq->cmd_flags = rw | REQ_ALLOCED;
612
613 if (priv) {
614 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
615 mempool_free(rq, q->rq.rq_pool);
616 return NULL;
617 }
618 rq->cmd_flags |= REQ_ELVPRIV;
619 }
620
621 return rq;
622 }
623
624 /*
625 * ioc_batching returns true if the ioc is a valid batching request and
626 * should be given priority access to a request.
627 */
628 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
629 {
630 if (!ioc)
631 return 0;
632
633 /*
634 * Make sure the process is able to allocate at least 1 request
635 * even if the batch times out, otherwise we could theoretically
636 * lose wakeups.
637 */
638 return ioc->nr_batch_requests == q->nr_batching ||
639 (ioc->nr_batch_requests > 0
640 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
641 }
642
643 /*
644 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
645 * will cause the process to be a "batcher" on all queues in the system. This
646 * is the behaviour we want though - once it gets a wakeup it should be given
647 * a nice run.
648 */
649 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
650 {
651 if (!ioc || ioc_batching(q, ioc))
652 return;
653
654 ioc->nr_batch_requests = q->nr_batching;
655 ioc->last_waited = jiffies;
656 }
657
658 static void __freed_request(struct request_queue *q, int rw)
659 {
660 struct request_list *rl = &q->rq;
661
662 if (rl->count[rw] < queue_congestion_off_threshold(q))
663 blk_clear_queue_congested(q, rw);
664
665 if (rl->count[rw] + 1 <= q->nr_requests) {
666 if (waitqueue_active(&rl->wait[rw]))
667 wake_up(&rl->wait[rw]);
668
669 blk_clear_queue_full(q, rw);
670 }
671 }
672
673 /*
674 * A request has just been released. Account for it, update the full and
675 * congestion status, wake up any waiters. Called under q->queue_lock.
676 */
677 static void freed_request(struct request_queue *q, int rw, int priv)
678 {
679 struct request_list *rl = &q->rq;
680
681 rl->count[rw]--;
682 if (priv)
683 rl->elvpriv--;
684
685 __freed_request(q, rw);
686
687 if (unlikely(rl->starved[rw ^ 1]))
688 __freed_request(q, rw ^ 1);
689 }
690
691 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
692 /*
693 * Get a free request, queue_lock must be held.
694 * Returns NULL on failure, with queue_lock held.
695 * Returns !NULL on success, with queue_lock *not held*.
696 */
697 static struct request *get_request(struct request_queue *q, int rw_flags,
698 struct bio *bio, gfp_t gfp_mask)
699 {
700 struct request *rq = NULL;
701 struct request_list *rl = &q->rq;
702 struct io_context *ioc = NULL;
703 const int rw = rw_flags & 0x01;
704 int may_queue, priv;
705
706 may_queue = elv_may_queue(q, rw_flags);
707 if (may_queue == ELV_MQUEUE_NO)
708 goto rq_starved;
709
710 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
711 if (rl->count[rw]+1 >= q->nr_requests) {
712 ioc = current_io_context(GFP_ATOMIC, q->node);
713 /*
714 * The queue will fill after this allocation, so set
715 * it as full, and mark this process as "batching".
716 * This process will be allowed to complete a batch of
717 * requests, others will be blocked.
718 */
719 if (!blk_queue_full(q, rw)) {
720 ioc_set_batching(q, ioc);
721 blk_set_queue_full(q, rw);
722 } else {
723 if (may_queue != ELV_MQUEUE_MUST
724 && !ioc_batching(q, ioc)) {
725 /*
726 * The queue is full and the allocating
727 * process is not a "batcher", and not
728 * exempted by the IO scheduler
729 */
730 goto out;
731 }
732 }
733 }
734 blk_set_queue_congested(q, rw);
735 }
736
737 /*
738 * Only allow batching queuers to allocate up to 50% over the defined
739 * limit of requests, otherwise we could have thousands of requests
740 * allocated with any setting of ->nr_requests
741 */
742 if (rl->count[rw] >= (3 * q->nr_requests / 2))
743 goto out;
744
745 rl->count[rw]++;
746 rl->starved[rw] = 0;
747
748 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
749 if (priv)
750 rl->elvpriv++;
751
752 spin_unlock_irq(q->queue_lock);
753
754 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
755 if (unlikely(!rq)) {
756 /*
757 * Allocation failed presumably due to memory. Undo anything
758 * we might have messed up.
759 *
760 * Allocating task should really be put onto the front of the
761 * wait queue, but this is pretty rare.
762 */
763 spin_lock_irq(q->queue_lock);
764 freed_request(q, rw, priv);
765
766 /*
767 * in the very unlikely event that allocation failed and no
768 * requests for this direction was pending, mark us starved
769 * so that freeing of a request in the other direction will
770 * notice us. another possible fix would be to split the
771 * rq mempool into READ and WRITE
772 */
773 rq_starved:
774 if (unlikely(rl->count[rw] == 0))
775 rl->starved[rw] = 1;
776
777 goto out;
778 }
779
780 /*
781 * ioc may be NULL here, and ioc_batching will be false. That's
782 * OK, if the queue is under the request limit then requests need
783 * not count toward the nr_batch_requests limit. There will always
784 * be some limit enforced by BLK_BATCH_TIME.
785 */
786 if (ioc_batching(q, ioc))
787 ioc->nr_batch_requests--;
788
789 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
790 out:
791 return rq;
792 }
793
794 /*
795 * No available requests for this queue, unplug the device and wait for some
796 * requests to become available.
797 *
798 * Called with q->queue_lock held, and returns with it unlocked.
799 */
800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
801 struct bio *bio)
802 {
803 const int rw = rw_flags & 0x01;
804 struct request *rq;
805
806 rq = get_request(q, rw_flags, bio, GFP_NOIO);
807 while (!rq) {
808 DEFINE_WAIT(wait);
809 struct request_list *rl = &q->rq;
810
811 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
812 TASK_UNINTERRUPTIBLE);
813
814 rq = get_request(q, rw_flags, bio, GFP_NOIO);
815
816 if (!rq) {
817 struct io_context *ioc;
818
819 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
820
821 __generic_unplug_device(q);
822 spin_unlock_irq(q->queue_lock);
823 io_schedule();
824
825 /*
826 * After sleeping, we become a "batching" process and
827 * will be able to allocate at least one request, and
828 * up to a big batch of them for a small period time.
829 * See ioc_batching, ioc_set_batching
830 */
831 ioc = current_io_context(GFP_NOIO, q->node);
832 ioc_set_batching(q, ioc);
833
834 spin_lock_irq(q->queue_lock);
835 }
836 finish_wait(&rl->wait[rw], &wait);
837 }
838
839 return rq;
840 }
841
842 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
843 {
844 struct request *rq;
845
846 BUG_ON(rw != READ && rw != WRITE);
847
848 spin_lock_irq(q->queue_lock);
849 if (gfp_mask & __GFP_WAIT) {
850 rq = get_request_wait(q, rw, NULL);
851 } else {
852 rq = get_request(q, rw, NULL, gfp_mask);
853 if (!rq)
854 spin_unlock_irq(q->queue_lock);
855 }
856 /* q->queue_lock is unlocked at this point */
857
858 return rq;
859 }
860 EXPORT_SYMBOL(blk_get_request);
861
862 /**
863 * blk_start_queueing - initiate dispatch of requests to device
864 * @q: request queue to kick into gear
865 *
866 * This is basically a helper to remove the need to know whether a queue
867 * is plugged or not if someone just wants to initiate dispatch of requests
868 * for this queue.
869 *
870 * The queue lock must be held with interrupts disabled.
871 */
872 void blk_start_queueing(struct request_queue *q)
873 {
874 if (!blk_queue_plugged(q))
875 q->request_fn(q);
876 else
877 __generic_unplug_device(q);
878 }
879 EXPORT_SYMBOL(blk_start_queueing);
880
881 /**
882 * blk_requeue_request - put a request back on queue
883 * @q: request queue where request should be inserted
884 * @rq: request to be inserted
885 *
886 * Description:
887 * Drivers often keep queueing requests until the hardware cannot accept
888 * more, when that condition happens we need to put the request back
889 * on the queue. Must be called with queue lock held.
890 */
891 void blk_requeue_request(struct request_queue *q, struct request *rq)
892 {
893 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
894
895 if (blk_rq_tagged(rq))
896 blk_queue_end_tag(q, rq);
897
898 elv_requeue_request(q, rq);
899 }
900 EXPORT_SYMBOL(blk_requeue_request);
901
902 /**
903 * blk_insert_request - insert a special request in to a request queue
904 * @q: request queue where request should be inserted
905 * @rq: request to be inserted
906 * @at_head: insert request at head or tail of queue
907 * @data: private data
908 *
909 * Description:
910 * Many block devices need to execute commands asynchronously, so they don't
911 * block the whole kernel from preemption during request execution. This is
912 * accomplished normally by inserting aritficial requests tagged as
913 * REQ_SPECIAL in to the corresponding request queue, and letting them be
914 * scheduled for actual execution by the request queue.
915 *
916 * We have the option of inserting the head or the tail of the queue.
917 * Typically we use the tail for new ioctls and so forth. We use the head
918 * of the queue for things like a QUEUE_FULL message from a device, or a
919 * host that is unable to accept a particular command.
920 */
921 void blk_insert_request(struct request_queue *q, struct request *rq,
922 int at_head, void *data)
923 {
924 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
925 unsigned long flags;
926
927 /*
928 * tell I/O scheduler that this isn't a regular read/write (ie it
929 * must not attempt merges on this) and that it acts as a soft
930 * barrier
931 */
932 rq->cmd_type = REQ_TYPE_SPECIAL;
933 rq->cmd_flags |= REQ_SOFTBARRIER;
934
935 rq->special = data;
936
937 spin_lock_irqsave(q->queue_lock, flags);
938
939 /*
940 * If command is tagged, release the tag
941 */
942 if (blk_rq_tagged(rq))
943 blk_queue_end_tag(q, rq);
944
945 drive_stat_acct(rq, 1);
946 __elv_add_request(q, rq, where, 0);
947 blk_start_queueing(q);
948 spin_unlock_irqrestore(q->queue_lock, flags);
949 }
950 EXPORT_SYMBOL(blk_insert_request);
951
952 /*
953 * add-request adds a request to the linked list.
954 * queue lock is held and interrupts disabled, as we muck with the
955 * request queue list.
956 */
957 static inline void add_request(struct request_queue *q, struct request *req)
958 {
959 drive_stat_acct(req, 1);
960
961 /*
962 * elevator indicated where it wants this request to be
963 * inserted at elevator_merge time
964 */
965 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
966 }
967
968 /*
969 * disk_round_stats() - Round off the performance stats on a struct
970 * disk_stats.
971 *
972 * The average IO queue length and utilisation statistics are maintained
973 * by observing the current state of the queue length and the amount of
974 * time it has been in this state for.
975 *
976 * Normally, that accounting is done on IO completion, but that can result
977 * in more than a second's worth of IO being accounted for within any one
978 * second, leading to >100% utilisation. To deal with that, we call this
979 * function to do a round-off before returning the results when reading
980 * /proc/diskstats. This accounts immediately for all queue usage up to
981 * the current jiffies and restarts the counters again.
982 */
983 void disk_round_stats(struct gendisk *disk)
984 {
985 unsigned long now = jiffies;
986
987 if (now == disk->stamp)
988 return;
989
990 if (disk->in_flight) {
991 __disk_stat_add(disk, time_in_queue,
992 disk->in_flight * (now - disk->stamp));
993 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
994 }
995 disk->stamp = now;
996 }
997 EXPORT_SYMBOL_GPL(disk_round_stats);
998
999 void part_round_stats(struct hd_struct *part)
1000 {
1001 unsigned long now = jiffies;
1002
1003 if (now == part->stamp)
1004 return;
1005
1006 if (part->in_flight) {
1007 __part_stat_add(part, time_in_queue,
1008 part->in_flight * (now - part->stamp));
1009 __part_stat_add(part, io_ticks, (now - part->stamp));
1010 }
1011 part->stamp = now;
1012 }
1013
1014 /*
1015 * queue lock must be held
1016 */
1017 void __blk_put_request(struct request_queue *q, struct request *req)
1018 {
1019 if (unlikely(!q))
1020 return;
1021 if (unlikely(--req->ref_count))
1022 return;
1023
1024 elv_completed_request(q, req);
1025
1026 /*
1027 * Request may not have originated from ll_rw_blk. if not,
1028 * it didn't come out of our reserved rq pools
1029 */
1030 if (req->cmd_flags & REQ_ALLOCED) {
1031 int rw = rq_data_dir(req);
1032 int priv = req->cmd_flags & REQ_ELVPRIV;
1033
1034 BUG_ON(!list_empty(&req->queuelist));
1035 BUG_ON(!hlist_unhashed(&req->hash));
1036
1037 blk_free_request(q, req);
1038 freed_request(q, rw, priv);
1039 }
1040 }
1041 EXPORT_SYMBOL_GPL(__blk_put_request);
1042
1043 void blk_put_request(struct request *req)
1044 {
1045 unsigned long flags;
1046 struct request_queue *q = req->q;
1047
1048 /*
1049 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1050 * following if (q) test.
1051 */
1052 if (q) {
1053 spin_lock_irqsave(q->queue_lock, flags);
1054 __blk_put_request(q, req);
1055 spin_unlock_irqrestore(q->queue_lock, flags);
1056 }
1057 }
1058 EXPORT_SYMBOL(blk_put_request);
1059
1060 void init_request_from_bio(struct request *req, struct bio *bio)
1061 {
1062 req->cmd_type = REQ_TYPE_FS;
1063
1064 /*
1065 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1066 */
1067 if (bio_rw_ahead(bio) || bio_failfast(bio))
1068 req->cmd_flags |= REQ_FAILFAST;
1069
1070 /*
1071 * REQ_BARRIER implies no merging, but lets make it explicit
1072 */
1073 if (unlikely(bio_barrier(bio)))
1074 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1075
1076 if (bio_sync(bio))
1077 req->cmd_flags |= REQ_RW_SYNC;
1078 if (bio_rw_meta(bio))
1079 req->cmd_flags |= REQ_RW_META;
1080
1081 req->errors = 0;
1082 req->hard_sector = req->sector = bio->bi_sector;
1083 req->ioprio = bio_prio(bio);
1084 req->start_time = jiffies;
1085 blk_rq_bio_prep(req->q, req, bio);
1086 }
1087
1088 static int __make_request(struct request_queue *q, struct bio *bio)
1089 {
1090 struct request *req;
1091 int el_ret, nr_sectors, barrier, err;
1092 const unsigned short prio = bio_prio(bio);
1093 const int sync = bio_sync(bio);
1094 int rw_flags;
1095
1096 nr_sectors = bio_sectors(bio);
1097
1098 /*
1099 * low level driver can indicate that it wants pages above a
1100 * certain limit bounced to low memory (ie for highmem, or even
1101 * ISA dma in theory)
1102 */
1103 blk_queue_bounce(q, &bio);
1104
1105 barrier = bio_barrier(bio);
1106 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1107 err = -EOPNOTSUPP;
1108 goto end_io;
1109 }
1110
1111 spin_lock_irq(q->queue_lock);
1112
1113 if (unlikely(barrier) || elv_queue_empty(q))
1114 goto get_rq;
1115
1116 el_ret = elv_merge(q, &req, bio);
1117 switch (el_ret) {
1118 case ELEVATOR_BACK_MERGE:
1119 BUG_ON(!rq_mergeable(req));
1120
1121 if (!ll_back_merge_fn(q, req, bio))
1122 break;
1123
1124 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1125
1126 req->biotail->bi_next = bio;
1127 req->biotail = bio;
1128 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1129 req->ioprio = ioprio_best(req->ioprio, prio);
1130 drive_stat_acct(req, 0);
1131 if (!attempt_back_merge(q, req))
1132 elv_merged_request(q, req, el_ret);
1133 goto out;
1134
1135 case ELEVATOR_FRONT_MERGE:
1136 BUG_ON(!rq_mergeable(req));
1137
1138 if (!ll_front_merge_fn(q, req, bio))
1139 break;
1140
1141 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1142
1143 bio->bi_next = req->bio;
1144 req->bio = bio;
1145
1146 /*
1147 * may not be valid. if the low level driver said
1148 * it didn't need a bounce buffer then it better
1149 * not touch req->buffer either...
1150 */
1151 req->buffer = bio_data(bio);
1152 req->current_nr_sectors = bio_cur_sectors(bio);
1153 req->hard_cur_sectors = req->current_nr_sectors;
1154 req->sector = req->hard_sector = bio->bi_sector;
1155 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1156 req->ioprio = ioprio_best(req->ioprio, prio);
1157 drive_stat_acct(req, 0);
1158 if (!attempt_front_merge(q, req))
1159 elv_merged_request(q, req, el_ret);
1160 goto out;
1161
1162 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1163 default:
1164 ;
1165 }
1166
1167 get_rq:
1168 /*
1169 * This sync check and mask will be re-done in init_request_from_bio(),
1170 * but we need to set it earlier to expose the sync flag to the
1171 * rq allocator and io schedulers.
1172 */
1173 rw_flags = bio_data_dir(bio);
1174 if (sync)
1175 rw_flags |= REQ_RW_SYNC;
1176
1177 /*
1178 * Grab a free request. This is might sleep but can not fail.
1179 * Returns with the queue unlocked.
1180 */
1181 req = get_request_wait(q, rw_flags, bio);
1182
1183 /*
1184 * After dropping the lock and possibly sleeping here, our request
1185 * may now be mergeable after it had proven unmergeable (above).
1186 * We don't worry about that case for efficiency. It won't happen
1187 * often, and the elevators are able to handle it.
1188 */
1189 init_request_from_bio(req, bio);
1190
1191 spin_lock_irq(q->queue_lock);
1192 if (elv_queue_empty(q))
1193 blk_plug_device(q);
1194 add_request(q, req);
1195 out:
1196 if (sync)
1197 __generic_unplug_device(q);
1198
1199 spin_unlock_irq(q->queue_lock);
1200 return 0;
1201
1202 end_io:
1203 bio_endio(bio, err);
1204 return 0;
1205 }
1206
1207 /*
1208 * If bio->bi_dev is a partition, remap the location
1209 */
1210 static inline void blk_partition_remap(struct bio *bio)
1211 {
1212 struct block_device *bdev = bio->bi_bdev;
1213
1214 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1215 struct hd_struct *p = bdev->bd_part;
1216
1217 bio->bi_sector += p->start_sect;
1218 bio->bi_bdev = bdev->bd_contains;
1219
1220 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1221 bdev->bd_dev, bio->bi_sector,
1222 bio->bi_sector - p->start_sect);
1223 }
1224 }
1225
1226 static void handle_bad_sector(struct bio *bio)
1227 {
1228 char b[BDEVNAME_SIZE];
1229
1230 printk(KERN_INFO "attempt to access beyond end of device\n");
1231 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1232 bdevname(bio->bi_bdev, b),
1233 bio->bi_rw,
1234 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1235 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1236
1237 set_bit(BIO_EOF, &bio->bi_flags);
1238 }
1239
1240 #ifdef CONFIG_FAIL_MAKE_REQUEST
1241
1242 static DECLARE_FAULT_ATTR(fail_make_request);
1243
1244 static int __init setup_fail_make_request(char *str)
1245 {
1246 return setup_fault_attr(&fail_make_request, str);
1247 }
1248 __setup("fail_make_request=", setup_fail_make_request);
1249
1250 static int should_fail_request(struct bio *bio)
1251 {
1252 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1253 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1254 return should_fail(&fail_make_request, bio->bi_size);
1255
1256 return 0;
1257 }
1258
1259 static int __init fail_make_request_debugfs(void)
1260 {
1261 return init_fault_attr_dentries(&fail_make_request,
1262 "fail_make_request");
1263 }
1264
1265 late_initcall(fail_make_request_debugfs);
1266
1267 #else /* CONFIG_FAIL_MAKE_REQUEST */
1268
1269 static inline int should_fail_request(struct bio *bio)
1270 {
1271 return 0;
1272 }
1273
1274 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1275
1276 /*
1277 * Check whether this bio extends beyond the end of the device.
1278 */
1279 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1280 {
1281 sector_t maxsector;
1282
1283 if (!nr_sectors)
1284 return 0;
1285
1286 /* Test device or partition size, when known. */
1287 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1288 if (maxsector) {
1289 sector_t sector = bio->bi_sector;
1290
1291 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1292 /*
1293 * This may well happen - the kernel calls bread()
1294 * without checking the size of the device, e.g., when
1295 * mounting a device.
1296 */
1297 handle_bad_sector(bio);
1298 return 1;
1299 }
1300 }
1301
1302 return 0;
1303 }
1304
1305 /**
1306 * generic_make_request: hand a buffer to its device driver for I/O
1307 * @bio: The bio describing the location in memory and on the device.
1308 *
1309 * generic_make_request() is used to make I/O requests of block
1310 * devices. It is passed a &struct bio, which describes the I/O that needs
1311 * to be done.
1312 *
1313 * generic_make_request() does not return any status. The
1314 * success/failure status of the request, along with notification of
1315 * completion, is delivered asynchronously through the bio->bi_end_io
1316 * function described (one day) else where.
1317 *
1318 * The caller of generic_make_request must make sure that bi_io_vec
1319 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1320 * set to describe the device address, and the
1321 * bi_end_io and optionally bi_private are set to describe how
1322 * completion notification should be signaled.
1323 *
1324 * generic_make_request and the drivers it calls may use bi_next if this
1325 * bio happens to be merged with someone else, and may change bi_dev and
1326 * bi_sector for remaps as it sees fit. So the values of these fields
1327 * should NOT be depended on after the call to generic_make_request.
1328 */
1329 static inline void __generic_make_request(struct bio *bio)
1330 {
1331 struct request_queue *q;
1332 sector_t old_sector;
1333 int ret, nr_sectors = bio_sectors(bio);
1334 dev_t old_dev;
1335 int err = -EIO;
1336
1337 might_sleep();
1338
1339 if (bio_check_eod(bio, nr_sectors))
1340 goto end_io;
1341
1342 /*
1343 * Resolve the mapping until finished. (drivers are
1344 * still free to implement/resolve their own stacking
1345 * by explicitly returning 0)
1346 *
1347 * NOTE: we don't repeat the blk_size check for each new device.
1348 * Stacking drivers are expected to know what they are doing.
1349 */
1350 old_sector = -1;
1351 old_dev = 0;
1352 do {
1353 char b[BDEVNAME_SIZE];
1354
1355 q = bdev_get_queue(bio->bi_bdev);
1356 if (!q) {
1357 printk(KERN_ERR
1358 "generic_make_request: Trying to access "
1359 "nonexistent block-device %s (%Lu)\n",
1360 bdevname(bio->bi_bdev, b),
1361 (long long) bio->bi_sector);
1362 end_io:
1363 bio_endio(bio, err);
1364 break;
1365 }
1366
1367 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1368 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1369 bdevname(bio->bi_bdev, b),
1370 bio_sectors(bio),
1371 q->max_hw_sectors);
1372 goto end_io;
1373 }
1374
1375 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1376 goto end_io;
1377
1378 if (should_fail_request(bio))
1379 goto end_io;
1380
1381 /*
1382 * If this device has partitions, remap block n
1383 * of partition p to block n+start(p) of the disk.
1384 */
1385 blk_partition_remap(bio);
1386
1387 if (old_sector != -1)
1388 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1389 old_sector);
1390
1391 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1392
1393 old_sector = bio->bi_sector;
1394 old_dev = bio->bi_bdev->bd_dev;
1395
1396 if (bio_check_eod(bio, nr_sectors))
1397 goto end_io;
1398 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1399 err = -EOPNOTSUPP;
1400 goto end_io;
1401 }
1402
1403 ret = q->make_request_fn(q, bio);
1404 } while (ret);
1405 }
1406
1407 /*
1408 * We only want one ->make_request_fn to be active at a time,
1409 * else stack usage with stacked devices could be a problem.
1410 * So use current->bio_{list,tail} to keep a list of requests
1411 * submited by a make_request_fn function.
1412 * current->bio_tail is also used as a flag to say if
1413 * generic_make_request is currently active in this task or not.
1414 * If it is NULL, then no make_request is active. If it is non-NULL,
1415 * then a make_request is active, and new requests should be added
1416 * at the tail
1417 */
1418 void generic_make_request(struct bio *bio)
1419 {
1420 if (current->bio_tail) {
1421 /* make_request is active */
1422 *(current->bio_tail) = bio;
1423 bio->bi_next = NULL;
1424 current->bio_tail = &bio->bi_next;
1425 return;
1426 }
1427 /* following loop may be a bit non-obvious, and so deserves some
1428 * explanation.
1429 * Before entering the loop, bio->bi_next is NULL (as all callers
1430 * ensure that) so we have a list with a single bio.
1431 * We pretend that we have just taken it off a longer list, so
1432 * we assign bio_list to the next (which is NULL) and bio_tail
1433 * to &bio_list, thus initialising the bio_list of new bios to be
1434 * added. __generic_make_request may indeed add some more bios
1435 * through a recursive call to generic_make_request. If it
1436 * did, we find a non-NULL value in bio_list and re-enter the loop
1437 * from the top. In this case we really did just take the bio
1438 * of the top of the list (no pretending) and so fixup bio_list and
1439 * bio_tail or bi_next, and call into __generic_make_request again.
1440 *
1441 * The loop was structured like this to make only one call to
1442 * __generic_make_request (which is important as it is large and
1443 * inlined) and to keep the structure simple.
1444 */
1445 BUG_ON(bio->bi_next);
1446 do {
1447 current->bio_list = bio->bi_next;
1448 if (bio->bi_next == NULL)
1449 current->bio_tail = &current->bio_list;
1450 else
1451 bio->bi_next = NULL;
1452 __generic_make_request(bio);
1453 bio = current->bio_list;
1454 } while (bio);
1455 current->bio_tail = NULL; /* deactivate */
1456 }
1457 EXPORT_SYMBOL(generic_make_request);
1458
1459 /**
1460 * submit_bio: submit a bio to the block device layer for I/O
1461 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1462 * @bio: The &struct bio which describes the I/O
1463 *
1464 * submit_bio() is very similar in purpose to generic_make_request(), and
1465 * uses that function to do most of the work. Both are fairly rough
1466 * interfaces, @bio must be presetup and ready for I/O.
1467 *
1468 */
1469 void submit_bio(int rw, struct bio *bio)
1470 {
1471 int count = bio_sectors(bio);
1472
1473 bio->bi_rw |= rw;
1474
1475 /*
1476 * If it's a regular read/write or a barrier with data attached,
1477 * go through the normal accounting stuff before submission.
1478 */
1479 if (!bio_empty_barrier(bio)) {
1480
1481 BIO_BUG_ON(!bio->bi_size);
1482 BIO_BUG_ON(!bio->bi_io_vec);
1483
1484 if (rw & WRITE) {
1485 count_vm_events(PGPGOUT, count);
1486 } else {
1487 task_io_account_read(bio->bi_size);
1488 count_vm_events(PGPGIN, count);
1489 }
1490
1491 if (unlikely(block_dump)) {
1492 char b[BDEVNAME_SIZE];
1493 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1494 current->comm, task_pid_nr(current),
1495 (rw & WRITE) ? "WRITE" : "READ",
1496 (unsigned long long)bio->bi_sector,
1497 bdevname(bio->bi_bdev, b));
1498 }
1499 }
1500
1501 generic_make_request(bio);
1502 }
1503 EXPORT_SYMBOL(submit_bio);
1504
1505 /**
1506 * __end_that_request_first - end I/O on a request
1507 * @req: the request being processed
1508 * @error: 0 for success, < 0 for error
1509 * @nr_bytes: number of bytes to complete
1510 *
1511 * Description:
1512 * Ends I/O on a number of bytes attached to @req, and sets it up
1513 * for the next range of segments (if any) in the cluster.
1514 *
1515 * Return:
1516 * 0 - we are done with this request, call end_that_request_last()
1517 * 1 - still buffers pending for this request
1518 **/
1519 static int __end_that_request_first(struct request *req, int error,
1520 int nr_bytes)
1521 {
1522 int total_bytes, bio_nbytes, next_idx = 0;
1523 struct bio *bio;
1524
1525 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1526
1527 /*
1528 * for a REQ_BLOCK_PC request, we want to carry any eventual
1529 * sense key with us all the way through
1530 */
1531 if (!blk_pc_request(req))
1532 req->errors = 0;
1533
1534 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1535 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1536 req->rq_disk ? req->rq_disk->disk_name : "?",
1537 (unsigned long long)req->sector);
1538 }
1539
1540 if (blk_fs_request(req) && req->rq_disk) {
1541 const int rw = rq_data_dir(req);
1542
1543 all_stat_add(req->rq_disk, sectors[rw],
1544 nr_bytes >> 9, req->sector);
1545 }
1546
1547 total_bytes = bio_nbytes = 0;
1548 while ((bio = req->bio) != NULL) {
1549 int nbytes;
1550
1551 /*
1552 * For an empty barrier request, the low level driver must
1553 * store a potential error location in ->sector. We pass
1554 * that back up in ->bi_sector.
1555 */
1556 if (blk_empty_barrier(req))
1557 bio->bi_sector = req->sector;
1558
1559 if (nr_bytes >= bio->bi_size) {
1560 req->bio = bio->bi_next;
1561 nbytes = bio->bi_size;
1562 req_bio_endio(req, bio, nbytes, error);
1563 next_idx = 0;
1564 bio_nbytes = 0;
1565 } else {
1566 int idx = bio->bi_idx + next_idx;
1567
1568 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1569 blk_dump_rq_flags(req, "__end_that");
1570 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1571 __func__, bio->bi_idx, bio->bi_vcnt);
1572 break;
1573 }
1574
1575 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1576 BIO_BUG_ON(nbytes > bio->bi_size);
1577
1578 /*
1579 * not a complete bvec done
1580 */
1581 if (unlikely(nbytes > nr_bytes)) {
1582 bio_nbytes += nr_bytes;
1583 total_bytes += nr_bytes;
1584 break;
1585 }
1586
1587 /*
1588 * advance to the next vector
1589 */
1590 next_idx++;
1591 bio_nbytes += nbytes;
1592 }
1593
1594 total_bytes += nbytes;
1595 nr_bytes -= nbytes;
1596
1597 bio = req->bio;
1598 if (bio) {
1599 /*
1600 * end more in this run, or just return 'not-done'
1601 */
1602 if (unlikely(nr_bytes <= 0))
1603 break;
1604 }
1605 }
1606
1607 /*
1608 * completely done
1609 */
1610 if (!req->bio)
1611 return 0;
1612
1613 /*
1614 * if the request wasn't completed, update state
1615 */
1616 if (bio_nbytes) {
1617 req_bio_endio(req, bio, bio_nbytes, error);
1618 bio->bi_idx += next_idx;
1619 bio_iovec(bio)->bv_offset += nr_bytes;
1620 bio_iovec(bio)->bv_len -= nr_bytes;
1621 }
1622
1623 blk_recalc_rq_sectors(req, total_bytes >> 9);
1624 blk_recalc_rq_segments(req);
1625 return 1;
1626 }
1627
1628 /*
1629 * splice the completion data to a local structure and hand off to
1630 * process_completion_queue() to complete the requests
1631 */
1632 static void blk_done_softirq(struct softirq_action *h)
1633 {
1634 struct list_head *cpu_list, local_list;
1635
1636 local_irq_disable();
1637 cpu_list = &__get_cpu_var(blk_cpu_done);
1638 list_replace_init(cpu_list, &local_list);
1639 local_irq_enable();
1640
1641 while (!list_empty(&local_list)) {
1642 struct request *rq;
1643
1644 rq = list_entry(local_list.next, struct request, donelist);
1645 list_del_init(&rq->donelist);
1646 rq->q->softirq_done_fn(rq);
1647 }
1648 }
1649
1650 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1651 unsigned long action, void *hcpu)
1652 {
1653 /*
1654 * If a CPU goes away, splice its entries to the current CPU
1655 * and trigger a run of the softirq
1656 */
1657 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1658 int cpu = (unsigned long) hcpu;
1659
1660 local_irq_disable();
1661 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1662 &__get_cpu_var(blk_cpu_done));
1663 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1664 local_irq_enable();
1665 }
1666
1667 return NOTIFY_OK;
1668 }
1669
1670
1671 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1672 .notifier_call = blk_cpu_notify,
1673 };
1674
1675 /**
1676 * blk_complete_request - end I/O on a request
1677 * @req: the request being processed
1678 *
1679 * Description:
1680 * Ends all I/O on a request. It does not handle partial completions,
1681 * unless the driver actually implements this in its completion callback
1682 * through requeueing. The actual completion happens out-of-order,
1683 * through a softirq handler. The user must have registered a completion
1684 * callback through blk_queue_softirq_done().
1685 **/
1686
1687 void blk_complete_request(struct request *req)
1688 {
1689 struct list_head *cpu_list;
1690 unsigned long flags;
1691
1692 BUG_ON(!req->q->softirq_done_fn);
1693
1694 local_irq_save(flags);
1695
1696 cpu_list = &__get_cpu_var(blk_cpu_done);
1697 list_add_tail(&req->donelist, cpu_list);
1698 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1699
1700 local_irq_restore(flags);
1701 }
1702 EXPORT_SYMBOL(blk_complete_request);
1703
1704 /*
1705 * queue lock must be held
1706 */
1707 static void end_that_request_last(struct request *req, int error)
1708 {
1709 struct gendisk *disk = req->rq_disk;
1710
1711 if (blk_rq_tagged(req))
1712 blk_queue_end_tag(req->q, req);
1713
1714 if (blk_queued_rq(req))
1715 blkdev_dequeue_request(req);
1716
1717 if (unlikely(laptop_mode) && blk_fs_request(req))
1718 laptop_io_completion();
1719
1720 /*
1721 * Account IO completion. bar_rq isn't accounted as a normal
1722 * IO on queueing nor completion. Accounting the containing
1723 * request is enough.
1724 */
1725 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1726 unsigned long duration = jiffies - req->start_time;
1727 const int rw = rq_data_dir(req);
1728 struct hd_struct *part = get_part(disk, req->sector);
1729
1730 __all_stat_inc(disk, ios[rw], req->sector);
1731 __all_stat_add(disk, ticks[rw], duration, req->sector);
1732 disk_round_stats(disk);
1733 disk->in_flight--;
1734 if (part) {
1735 part_round_stats(part);
1736 part->in_flight--;
1737 }
1738 }
1739
1740 if (req->end_io)
1741 req->end_io(req, error);
1742 else {
1743 if (blk_bidi_rq(req))
1744 __blk_put_request(req->next_rq->q, req->next_rq);
1745
1746 __blk_put_request(req->q, req);
1747 }
1748 }
1749
1750 static inline void __end_request(struct request *rq, int uptodate,
1751 unsigned int nr_bytes)
1752 {
1753 int error = 0;
1754
1755 if (uptodate <= 0)
1756 error = uptodate ? uptodate : -EIO;
1757
1758 __blk_end_request(rq, error, nr_bytes);
1759 }
1760
1761 /**
1762 * blk_rq_bytes - Returns bytes left to complete in the entire request
1763 * @rq: the request being processed
1764 **/
1765 unsigned int blk_rq_bytes(struct request *rq)
1766 {
1767 if (blk_fs_request(rq))
1768 return rq->hard_nr_sectors << 9;
1769
1770 return rq->data_len;
1771 }
1772 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1773
1774 /**
1775 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1776 * @rq: the request being processed
1777 **/
1778 unsigned int blk_rq_cur_bytes(struct request *rq)
1779 {
1780 if (blk_fs_request(rq))
1781 return rq->current_nr_sectors << 9;
1782
1783 if (rq->bio)
1784 return rq->bio->bi_size;
1785
1786 return rq->data_len;
1787 }
1788 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1789
1790 /**
1791 * end_queued_request - end all I/O on a queued request
1792 * @rq: the request being processed
1793 * @uptodate: error value or 0/1 uptodate flag
1794 *
1795 * Description:
1796 * Ends all I/O on a request, and removes it from the block layer queues.
1797 * Not suitable for normal IO completion, unless the driver still has
1798 * the request attached to the block layer.
1799 *
1800 **/
1801 void end_queued_request(struct request *rq, int uptodate)
1802 {
1803 __end_request(rq, uptodate, blk_rq_bytes(rq));
1804 }
1805 EXPORT_SYMBOL(end_queued_request);
1806
1807 /**
1808 * end_dequeued_request - end all I/O on a dequeued request
1809 * @rq: the request being processed
1810 * @uptodate: error value or 0/1 uptodate flag
1811 *
1812 * Description:
1813 * Ends all I/O on a request. The request must already have been
1814 * dequeued using blkdev_dequeue_request(), as is normally the case
1815 * for most drivers.
1816 *
1817 **/
1818 void end_dequeued_request(struct request *rq, int uptodate)
1819 {
1820 __end_request(rq, uptodate, blk_rq_bytes(rq));
1821 }
1822 EXPORT_SYMBOL(end_dequeued_request);
1823
1824
1825 /**
1826 * end_request - end I/O on the current segment of the request
1827 * @req: the request being processed
1828 * @uptodate: error value or 0/1 uptodate flag
1829 *
1830 * Description:
1831 * Ends I/O on the current segment of a request. If that is the only
1832 * remaining segment, the request is also completed and freed.
1833 *
1834 * This is a remnant of how older block drivers handled IO completions.
1835 * Modern drivers typically end IO on the full request in one go, unless
1836 * they have a residual value to account for. For that case this function
1837 * isn't really useful, unless the residual just happens to be the
1838 * full current segment. In other words, don't use this function in new
1839 * code. Either use end_request_completely(), or the
1840 * end_that_request_chunk() (along with end_that_request_last()) for
1841 * partial completions.
1842 *
1843 **/
1844 void end_request(struct request *req, int uptodate)
1845 {
1846 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1847 }
1848 EXPORT_SYMBOL(end_request);
1849
1850 /**
1851 * blk_end_io - Generic end_io function to complete a request.
1852 * @rq: the request being processed
1853 * @error: 0 for success, < 0 for error
1854 * @nr_bytes: number of bytes to complete @rq
1855 * @bidi_bytes: number of bytes to complete @rq->next_rq
1856 * @drv_callback: function called between completion of bios in the request
1857 * and completion of the request.
1858 * If the callback returns non 0, this helper returns without
1859 * completion of the request.
1860 *
1861 * Description:
1862 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1863 * If @rq has leftover, sets it up for the next range of segments.
1864 *
1865 * Return:
1866 * 0 - we are done with this request
1867 * 1 - this request is not freed yet, it still has pending buffers.
1868 **/
1869 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1870 unsigned int bidi_bytes,
1871 int (drv_callback)(struct request *))
1872 {
1873 struct request_queue *q = rq->q;
1874 unsigned long flags = 0UL;
1875
1876 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1877 if (__end_that_request_first(rq, error, nr_bytes))
1878 return 1;
1879
1880 /* Bidi request must be completed as a whole */
1881 if (blk_bidi_rq(rq) &&
1882 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1883 return 1;
1884 }
1885
1886 /* Special feature for tricky drivers */
1887 if (drv_callback && drv_callback(rq))
1888 return 1;
1889
1890 add_disk_randomness(rq->rq_disk);
1891
1892 spin_lock_irqsave(q->queue_lock, flags);
1893 end_that_request_last(rq, error);
1894 spin_unlock_irqrestore(q->queue_lock, flags);
1895
1896 return 0;
1897 }
1898
1899 /**
1900 * blk_end_request - Helper function for drivers to complete the request.
1901 * @rq: the request being processed
1902 * @error: 0 for success, < 0 for error
1903 * @nr_bytes: number of bytes to complete
1904 *
1905 * Description:
1906 * Ends I/O on a number of bytes attached to @rq.
1907 * If @rq has leftover, sets it up for the next range of segments.
1908 *
1909 * Return:
1910 * 0 - we are done with this request
1911 * 1 - still buffers pending for this request
1912 **/
1913 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1914 {
1915 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1916 }
1917 EXPORT_SYMBOL_GPL(blk_end_request);
1918
1919 /**
1920 * __blk_end_request - Helper function for drivers to complete the request.
1921 * @rq: the request being processed
1922 * @error: 0 for success, < 0 for error
1923 * @nr_bytes: number of bytes to complete
1924 *
1925 * Description:
1926 * Must be called with queue lock held unlike blk_end_request().
1927 *
1928 * Return:
1929 * 0 - we are done with this request
1930 * 1 - still buffers pending for this request
1931 **/
1932 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1933 {
1934 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1935 if (__end_that_request_first(rq, error, nr_bytes))
1936 return 1;
1937 }
1938
1939 add_disk_randomness(rq->rq_disk);
1940
1941 end_that_request_last(rq, error);
1942
1943 return 0;
1944 }
1945 EXPORT_SYMBOL_GPL(__blk_end_request);
1946
1947 /**
1948 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1949 * @rq: the bidi request being processed
1950 * @error: 0 for success, < 0 for error
1951 * @nr_bytes: number of bytes to complete @rq
1952 * @bidi_bytes: number of bytes to complete @rq->next_rq
1953 *
1954 * Description:
1955 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1956 *
1957 * Return:
1958 * 0 - we are done with this request
1959 * 1 - still buffers pending for this request
1960 **/
1961 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1962 unsigned int bidi_bytes)
1963 {
1964 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1965 }
1966 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1967
1968 /**
1969 * blk_end_request_callback - Special helper function for tricky drivers
1970 * @rq: the request being processed
1971 * @error: 0 for success, < 0 for error
1972 * @nr_bytes: number of bytes to complete
1973 * @drv_callback: function called between completion of bios in the request
1974 * and completion of the request.
1975 * If the callback returns non 0, this helper returns without
1976 * completion of the request.
1977 *
1978 * Description:
1979 * Ends I/O on a number of bytes attached to @rq.
1980 * If @rq has leftover, sets it up for the next range of segments.
1981 *
1982 * This special helper function is used only for existing tricky drivers.
1983 * (e.g. cdrom_newpc_intr() of ide-cd)
1984 * This interface will be removed when such drivers are rewritten.
1985 * Don't use this interface in other places anymore.
1986 *
1987 * Return:
1988 * 0 - we are done with this request
1989 * 1 - this request is not freed yet.
1990 * this request still has pending buffers or
1991 * the driver doesn't want to finish this request yet.
1992 **/
1993 int blk_end_request_callback(struct request *rq, int error,
1994 unsigned int nr_bytes,
1995 int (drv_callback)(struct request *))
1996 {
1997 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
1998 }
1999 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2000
2001 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2002 struct bio *bio)
2003 {
2004 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2005 rq->cmd_flags |= (bio->bi_rw & 3);
2006
2007 rq->nr_phys_segments = bio_phys_segments(q, bio);
2008 rq->nr_hw_segments = bio_hw_segments(q, bio);
2009 rq->current_nr_sectors = bio_cur_sectors(bio);
2010 rq->hard_cur_sectors = rq->current_nr_sectors;
2011 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2012 rq->buffer = bio_data(bio);
2013 rq->data_len = bio->bi_size;
2014
2015 rq->bio = rq->biotail = bio;
2016
2017 if (bio->bi_bdev)
2018 rq->rq_disk = bio->bi_bdev->bd_disk;
2019 }
2020
2021 int kblockd_schedule_work(struct work_struct *work)
2022 {
2023 return queue_work(kblockd_workqueue, work);
2024 }
2025 EXPORT_SYMBOL(kblockd_schedule_work);
2026
2027 void kblockd_flush_work(struct work_struct *work)
2028 {
2029 cancel_work_sync(work);
2030 }
2031 EXPORT_SYMBOL(kblockd_flush_work);
2032
2033 int __init blk_dev_init(void)
2034 {
2035 int i;
2036
2037 kblockd_workqueue = create_workqueue("kblockd");
2038 if (!kblockd_workqueue)
2039 panic("Failed to create kblockd\n");
2040
2041 request_cachep = kmem_cache_create("blkdev_requests",
2042 sizeof(struct request), 0, SLAB_PANIC, NULL);
2043
2044 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2045 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2046
2047 for_each_possible_cpu(i)
2048 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2049
2050 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
2051 register_hotcpu_notifier(&blk_cpu_notifier);
2052
2053 return 0;
2054 }
2055