Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34
35 #include "blk.h"
36
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39
40 static int __make_request(struct request_queue *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_fs_request(rq) || !blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
68
69 if (!new_io)
70 part_stat_inc(cpu, part, merges[rw]);
71 else {
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part);
74 }
75
76 part_stat_unlock();
77 }
78
79 void blk_queue_congestion_threshold(struct request_queue *q)
80 {
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92 }
93
94 /**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 {
105 struct backing_dev_info *ret = NULL;
106 struct request_queue *q = bdev_get_queue(bdev);
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111 }
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
113
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 memset(rq, 0, sizeof(*rq));
117
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->sector = rq->hard_sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->cmd = rq->__cmd;
126 rq->cmd_len = BLK_MAX_CDB;
127 rq->tag = -1;
128 rq->ref_count = 1;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 struct request_queue *q = rq->q;
136
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
142
143 if (unlikely(nbytes > bio->bi_size)) {
144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 __func__, nbytes, bio->bi_size);
146 nbytes = bio->bi_size;
147 }
148
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
151
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
154
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
157
158 if (bio->bi_size == 0)
159 bio_endio(bio, error);
160 } else {
161
162 /*
163 * Okay, this is the barrier request in progress, just
164 * record the error;
165 */
166 if (error && !q->orderr)
167 q->orderr = error;
168 }
169 }
170
171 void blk_dump_rq_flags(struct request *rq, char *msg)
172 {
173 int bit;
174
175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
178
179 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
180 (unsigned long long)rq->sector,
181 rq->nr_sectors,
182 rq->current_nr_sectors);
183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
184 rq->bio, rq->biotail,
185 rq->buffer, rq->data,
186 rq->data_len);
187
188 if (blk_pc_request(rq)) {
189 printk(KERN_INFO " cdb: ");
190 for (bit = 0; bit < BLK_MAX_CDB; bit++)
191 printk("%02x ", rq->cmd[bit]);
192 printk("\n");
193 }
194 }
195 EXPORT_SYMBOL(blk_dump_rq_flags);
196
197 /*
198 * "plug" the device if there are no outstanding requests: this will
199 * force the transfer to start only after we have put all the requests
200 * on the list.
201 *
202 * This is called with interrupts off and no requests on the queue and
203 * with the queue lock held.
204 */
205 void blk_plug_device(struct request_queue *q)
206 {
207 WARN_ON(!irqs_disabled());
208
209 /*
210 * don't plug a stopped queue, it must be paired with blk_start_queue()
211 * which will restart the queueing
212 */
213 if (blk_queue_stopped(q))
214 return;
215
216 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
217 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
218 trace_block_plug(q);
219 }
220 }
221 EXPORT_SYMBOL(blk_plug_device);
222
223 /**
224 * blk_plug_device_unlocked - plug a device without queue lock held
225 * @q: The &struct request_queue to plug
226 *
227 * Description:
228 * Like @blk_plug_device(), but grabs the queue lock and disables
229 * interrupts.
230 **/
231 void blk_plug_device_unlocked(struct request_queue *q)
232 {
233 unsigned long flags;
234
235 spin_lock_irqsave(q->queue_lock, flags);
236 blk_plug_device(q);
237 spin_unlock_irqrestore(q->queue_lock, flags);
238 }
239 EXPORT_SYMBOL(blk_plug_device_unlocked);
240
241 /*
242 * remove the queue from the plugged list, if present. called with
243 * queue lock held and interrupts disabled.
244 */
245 int blk_remove_plug(struct request_queue *q)
246 {
247 WARN_ON(!irqs_disabled());
248
249 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
250 return 0;
251
252 del_timer(&q->unplug_timer);
253 return 1;
254 }
255 EXPORT_SYMBOL(blk_remove_plug);
256
257 /*
258 * remove the plug and let it rip..
259 */
260 void __generic_unplug_device(struct request_queue *q)
261 {
262 if (unlikely(blk_queue_stopped(q)))
263 return;
264 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
265 return;
266
267 q->request_fn(q);
268 }
269
270 /**
271 * generic_unplug_device - fire a request queue
272 * @q: The &struct request_queue in question
273 *
274 * Description:
275 * Linux uses plugging to build bigger requests queues before letting
276 * the device have at them. If a queue is plugged, the I/O scheduler
277 * is still adding and merging requests on the queue. Once the queue
278 * gets unplugged, the request_fn defined for the queue is invoked and
279 * transfers started.
280 **/
281 void generic_unplug_device(struct request_queue *q)
282 {
283 if (blk_queue_plugged(q)) {
284 spin_lock_irq(q->queue_lock);
285 __generic_unplug_device(q);
286 spin_unlock_irq(q->queue_lock);
287 }
288 }
289 EXPORT_SYMBOL(generic_unplug_device);
290
291 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
292 struct page *page)
293 {
294 struct request_queue *q = bdi->unplug_io_data;
295
296 blk_unplug(q);
297 }
298
299 void blk_unplug_work(struct work_struct *work)
300 {
301 struct request_queue *q =
302 container_of(work, struct request_queue, unplug_work);
303
304 trace_block_unplug_io(q);
305 q->unplug_fn(q);
306 }
307
308 void blk_unplug_timeout(unsigned long data)
309 {
310 struct request_queue *q = (struct request_queue *)data;
311
312 trace_block_unplug_timer(q);
313 kblockd_schedule_work(q, &q->unplug_work);
314 }
315
316 void blk_unplug(struct request_queue *q)
317 {
318 /*
319 * devices don't necessarily have an ->unplug_fn defined
320 */
321 if (q->unplug_fn) {
322 trace_block_unplug_io(q);
323 q->unplug_fn(q);
324 }
325 }
326 EXPORT_SYMBOL(blk_unplug);
327
328 static void blk_invoke_request_fn(struct request_queue *q)
329 {
330 if (unlikely(blk_queue_stopped(q)))
331 return;
332
333 /*
334 * one level of recursion is ok and is much faster than kicking
335 * the unplug handling
336 */
337 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
338 q->request_fn(q);
339 queue_flag_clear(QUEUE_FLAG_REENTER, q);
340 } else {
341 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
342 kblockd_schedule_work(q, &q->unplug_work);
343 }
344 }
345
346 /**
347 * blk_start_queue - restart a previously stopped queue
348 * @q: The &struct request_queue in question
349 *
350 * Description:
351 * blk_start_queue() will clear the stop flag on the queue, and call
352 * the request_fn for the queue if it was in a stopped state when
353 * entered. Also see blk_stop_queue(). Queue lock must be held.
354 **/
355 void blk_start_queue(struct request_queue *q)
356 {
357 WARN_ON(!irqs_disabled());
358
359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 blk_invoke_request_fn(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363
364 /**
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations. Queue lock must be held.
377 **/
378 void blk_stop_queue(struct request_queue *q)
379 {
380 blk_remove_plug(q);
381 queue_flag_set(QUEUE_FLAG_STOPPED, q);
382 }
383 EXPORT_SYMBOL(blk_stop_queue);
384
385 /**
386 * blk_sync_queue - cancel any pending callbacks on a queue
387 * @q: the queue
388 *
389 * Description:
390 * The block layer may perform asynchronous callback activity
391 * on a queue, such as calling the unplug function after a timeout.
392 * A block device may call blk_sync_queue to ensure that any
393 * such activity is cancelled, thus allowing it to release resources
394 * that the callbacks might use. The caller must already have made sure
395 * that its ->make_request_fn will not re-add plugging prior to calling
396 * this function.
397 *
398 */
399 void blk_sync_queue(struct request_queue *q)
400 {
401 del_timer_sync(&q->unplug_timer);
402 del_timer_sync(&q->timeout);
403 cancel_work_sync(&q->unplug_work);
404 }
405 EXPORT_SYMBOL(blk_sync_queue);
406
407 /**
408 * __blk_run_queue - run a single device queue
409 * @q: The queue to run
410 *
411 * Description:
412 * See @blk_run_queue. This variant must be called with the queue lock
413 * held and interrupts disabled.
414 *
415 */
416 void __blk_run_queue(struct request_queue *q)
417 {
418 blk_remove_plug(q);
419
420 /*
421 * Only recurse once to avoid overrunning the stack, let the unplug
422 * handling reinvoke the handler shortly if we already got there.
423 */
424 if (!elv_queue_empty(q))
425 blk_invoke_request_fn(q);
426 }
427 EXPORT_SYMBOL(__blk_run_queue);
428
429 /**
430 * blk_run_queue - run a single device queue
431 * @q: The queue to run
432 *
433 * Description:
434 * Invoke request handling on this queue, if it has pending work to do.
435 * May be used to restart queueing when a request has completed. Also
436 * See @blk_start_queueing.
437 *
438 */
439 void blk_run_queue(struct request_queue *q)
440 {
441 unsigned long flags;
442
443 spin_lock_irqsave(q->queue_lock, flags);
444 __blk_run_queue(q);
445 spin_unlock_irqrestore(q->queue_lock, flags);
446 }
447 EXPORT_SYMBOL(blk_run_queue);
448
449 void blk_put_queue(struct request_queue *q)
450 {
451 kobject_put(&q->kobj);
452 }
453
454 void blk_cleanup_queue(struct request_queue *q)
455 {
456 /*
457 * We know we have process context here, so we can be a little
458 * cautious and ensure that pending block actions on this device
459 * are done before moving on. Going into this function, we should
460 * not have processes doing IO to this device.
461 */
462 blk_sync_queue(q);
463
464 mutex_lock(&q->sysfs_lock);
465 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
466 mutex_unlock(&q->sysfs_lock);
467
468 if (q->elevator)
469 elevator_exit(q->elevator);
470
471 blk_put_queue(q);
472 }
473 EXPORT_SYMBOL(blk_cleanup_queue);
474
475 static int blk_init_free_list(struct request_queue *q)
476 {
477 struct request_list *rl = &q->rq;
478
479 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
480 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
481 rl->elvpriv = 0;
482 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
483 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
484
485 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
486 mempool_free_slab, request_cachep, q->node);
487
488 if (!rl->rq_pool)
489 return -ENOMEM;
490
491 return 0;
492 }
493
494 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
495 {
496 return blk_alloc_queue_node(gfp_mask, -1);
497 }
498 EXPORT_SYMBOL(blk_alloc_queue);
499
500 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
501 {
502 struct request_queue *q;
503 int err;
504
505 q = kmem_cache_alloc_node(blk_requestq_cachep,
506 gfp_mask | __GFP_ZERO, node_id);
507 if (!q)
508 return NULL;
509
510 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
511 q->backing_dev_info.unplug_io_data = q;
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
514 kmem_cache_free(blk_requestq_cachep, q);
515 return NULL;
516 }
517
518 init_timer(&q->unplug_timer);
519 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
520 INIT_LIST_HEAD(&q->timeout_list);
521 INIT_WORK(&q->unplug_work, blk_unplug_work);
522
523 kobject_init(&q->kobj, &blk_queue_ktype);
524
525 mutex_init(&q->sysfs_lock);
526 spin_lock_init(&q->__queue_lock);
527
528 return q;
529 }
530 EXPORT_SYMBOL(blk_alloc_queue_node);
531
532 /**
533 * blk_init_queue - prepare a request queue for use with a block device
534 * @rfn: The function to be called to process requests that have been
535 * placed on the queue.
536 * @lock: Request queue spin lock
537 *
538 * Description:
539 * If a block device wishes to use the standard request handling procedures,
540 * which sorts requests and coalesces adjacent requests, then it must
541 * call blk_init_queue(). The function @rfn will be called when there
542 * are requests on the queue that need to be processed. If the device
543 * supports plugging, then @rfn may not be called immediately when requests
544 * are available on the queue, but may be called at some time later instead.
545 * Plugged queues are generally unplugged when a buffer belonging to one
546 * of the requests on the queue is needed, or due to memory pressure.
547 *
548 * @rfn is not required, or even expected, to remove all requests off the
549 * queue, but only as many as it can handle at a time. If it does leave
550 * requests on the queue, it is responsible for arranging that the requests
551 * get dealt with eventually.
552 *
553 * The queue spin lock must be held while manipulating the requests on the
554 * request queue; this lock will be taken also from interrupt context, so irq
555 * disabling is needed for it.
556 *
557 * Function returns a pointer to the initialized request queue, or %NULL if
558 * it didn't succeed.
559 *
560 * Note:
561 * blk_init_queue() must be paired with a blk_cleanup_queue() call
562 * when the block device is deactivated (such as at module unload).
563 **/
564
565 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
566 {
567 return blk_init_queue_node(rfn, lock, -1);
568 }
569 EXPORT_SYMBOL(blk_init_queue);
570
571 struct request_queue *
572 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
573 {
574 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
575
576 if (!q)
577 return NULL;
578
579 q->node = node_id;
580 if (blk_init_free_list(q)) {
581 kmem_cache_free(blk_requestq_cachep, q);
582 return NULL;
583 }
584
585 /*
586 * if caller didn't supply a lock, they get per-queue locking with
587 * our embedded lock
588 */
589 if (!lock)
590 lock = &q->__queue_lock;
591
592 q->request_fn = rfn;
593 q->prep_rq_fn = NULL;
594 q->unplug_fn = generic_unplug_device;
595 q->queue_flags = QUEUE_FLAG_DEFAULT;
596 q->queue_lock = lock;
597
598 /*
599 * This also sets hw/phys segments, boundary and size
600 */
601 blk_queue_make_request(q, __make_request);
602
603 q->sg_reserved_size = INT_MAX;
604
605 blk_set_cmd_filter_defaults(&q->cmd_filter);
606
607 /*
608 * all done
609 */
610 if (!elevator_init(q, NULL)) {
611 blk_queue_congestion_threshold(q);
612 return q;
613 }
614
615 blk_put_queue(q);
616 return NULL;
617 }
618 EXPORT_SYMBOL(blk_init_queue_node);
619
620 int blk_get_queue(struct request_queue *q)
621 {
622 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
623 kobject_get(&q->kobj);
624 return 0;
625 }
626
627 return 1;
628 }
629
630 static inline void blk_free_request(struct request_queue *q, struct request *rq)
631 {
632 if (rq->cmd_flags & REQ_ELVPRIV)
633 elv_put_request(q, rq);
634 mempool_free(rq, q->rq.rq_pool);
635 }
636
637 static struct request *
638 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
639 {
640 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
641
642 if (!rq)
643 return NULL;
644
645 blk_rq_init(q, rq);
646
647 rq->cmd_flags = flags | REQ_ALLOCED;
648
649 if (priv) {
650 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
651 mempool_free(rq, q->rq.rq_pool);
652 return NULL;
653 }
654 rq->cmd_flags |= REQ_ELVPRIV;
655 }
656
657 return rq;
658 }
659
660 /*
661 * ioc_batching returns true if the ioc is a valid batching request and
662 * should be given priority access to a request.
663 */
664 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
665 {
666 if (!ioc)
667 return 0;
668
669 /*
670 * Make sure the process is able to allocate at least 1 request
671 * even if the batch times out, otherwise we could theoretically
672 * lose wakeups.
673 */
674 return ioc->nr_batch_requests == q->nr_batching ||
675 (ioc->nr_batch_requests > 0
676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
677 }
678
679 /*
680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681 * will cause the process to be a "batcher" on all queues in the system. This
682 * is the behaviour we want though - once it gets a wakeup it should be given
683 * a nice run.
684 */
685 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
686 {
687 if (!ioc || ioc_batching(q, ioc))
688 return;
689
690 ioc->nr_batch_requests = q->nr_batching;
691 ioc->last_waited = jiffies;
692 }
693
694 static void __freed_request(struct request_queue *q, int sync)
695 {
696 struct request_list *rl = &q->rq;
697
698 if (rl->count[sync] < queue_congestion_off_threshold(q))
699 blk_clear_queue_congested(q, sync);
700
701 if (rl->count[sync] + 1 <= q->nr_requests) {
702 if (waitqueue_active(&rl->wait[sync]))
703 wake_up(&rl->wait[sync]);
704
705 blk_clear_queue_full(q, sync);
706 }
707 }
708
709 /*
710 * A request has just been released. Account for it, update the full and
711 * congestion status, wake up any waiters. Called under q->queue_lock.
712 */
713 static void freed_request(struct request_queue *q, int sync, int priv)
714 {
715 struct request_list *rl = &q->rq;
716
717 rl->count[sync]--;
718 if (priv)
719 rl->elvpriv--;
720
721 __freed_request(q, sync);
722
723 if (unlikely(rl->starved[sync ^ 1]))
724 __freed_request(q, sync ^ 1);
725 }
726
727 /*
728 * Get a free request, queue_lock must be held.
729 * Returns NULL on failure, with queue_lock held.
730 * Returns !NULL on success, with queue_lock *not held*.
731 */
732 static struct request *get_request(struct request_queue *q, int rw_flags,
733 struct bio *bio, gfp_t gfp_mask)
734 {
735 struct request *rq = NULL;
736 struct request_list *rl = &q->rq;
737 struct io_context *ioc = NULL;
738 const bool is_sync = rw_is_sync(rw_flags) != 0;
739 int may_queue, priv;
740
741 may_queue = elv_may_queue(q, rw_flags);
742 if (may_queue == ELV_MQUEUE_NO)
743 goto rq_starved;
744
745 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
746 if (rl->count[is_sync]+1 >= q->nr_requests) {
747 ioc = current_io_context(GFP_ATOMIC, q->node);
748 /*
749 * The queue will fill after this allocation, so set
750 * it as full, and mark this process as "batching".
751 * This process will be allowed to complete a batch of
752 * requests, others will be blocked.
753 */
754 if (!blk_queue_full(q, is_sync)) {
755 ioc_set_batching(q, ioc);
756 blk_set_queue_full(q, is_sync);
757 } else {
758 if (may_queue != ELV_MQUEUE_MUST
759 && !ioc_batching(q, ioc)) {
760 /*
761 * The queue is full and the allocating
762 * process is not a "batcher", and not
763 * exempted by the IO scheduler
764 */
765 goto out;
766 }
767 }
768 }
769 blk_set_queue_congested(q, is_sync);
770 }
771
772 /*
773 * Only allow batching queuers to allocate up to 50% over the defined
774 * limit of requests, otherwise we could have thousands of requests
775 * allocated with any setting of ->nr_requests
776 */
777 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
778 goto out;
779
780 rl->count[is_sync]++;
781 rl->starved[is_sync] = 0;
782
783 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
784 if (priv)
785 rl->elvpriv++;
786
787 if (blk_queue_io_stat(q))
788 rw_flags |= REQ_IO_STAT;
789 spin_unlock_irq(q->queue_lock);
790
791 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
792 if (unlikely(!rq)) {
793 /*
794 * Allocation failed presumably due to memory. Undo anything
795 * we might have messed up.
796 *
797 * Allocating task should really be put onto the front of the
798 * wait queue, but this is pretty rare.
799 */
800 spin_lock_irq(q->queue_lock);
801 freed_request(q, is_sync, priv);
802
803 /*
804 * in the very unlikely event that allocation failed and no
805 * requests for this direction was pending, mark us starved
806 * so that freeing of a request in the other direction will
807 * notice us. another possible fix would be to split the
808 * rq mempool into READ and WRITE
809 */
810 rq_starved:
811 if (unlikely(rl->count[is_sync] == 0))
812 rl->starved[is_sync] = 1;
813
814 goto out;
815 }
816
817 /*
818 * ioc may be NULL here, and ioc_batching will be false. That's
819 * OK, if the queue is under the request limit then requests need
820 * not count toward the nr_batch_requests limit. There will always
821 * be some limit enforced by BLK_BATCH_TIME.
822 */
823 if (ioc_batching(q, ioc))
824 ioc->nr_batch_requests--;
825
826 trace_block_getrq(q, bio, rw_flags & 1);
827 out:
828 return rq;
829 }
830
831 /*
832 * No available requests for this queue, unplug the device and wait for some
833 * requests to become available.
834 *
835 * Called with q->queue_lock held, and returns with it unlocked.
836 */
837 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
838 struct bio *bio)
839 {
840 const bool is_sync = rw_is_sync(rw_flags) != 0;
841 struct request *rq;
842
843 rq = get_request(q, rw_flags, bio, GFP_NOIO);
844 while (!rq) {
845 DEFINE_WAIT(wait);
846 struct io_context *ioc;
847 struct request_list *rl = &q->rq;
848
849 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
850 TASK_UNINTERRUPTIBLE);
851
852 trace_block_sleeprq(q, bio, rw_flags & 1);
853
854 __generic_unplug_device(q);
855 spin_unlock_irq(q->queue_lock);
856 io_schedule();
857
858 /*
859 * After sleeping, we become a "batching" process and
860 * will be able to allocate at least one request, and
861 * up to a big batch of them for a small period time.
862 * See ioc_batching, ioc_set_batching
863 */
864 ioc = current_io_context(GFP_NOIO, q->node);
865 ioc_set_batching(q, ioc);
866
867 spin_lock_irq(q->queue_lock);
868 finish_wait(&rl->wait[is_sync], &wait);
869
870 rq = get_request(q, rw_flags, bio, GFP_NOIO);
871 };
872
873 return rq;
874 }
875
876 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
877 {
878 struct request *rq;
879
880 BUG_ON(rw != READ && rw != WRITE);
881
882 spin_lock_irq(q->queue_lock);
883 if (gfp_mask & __GFP_WAIT) {
884 rq = get_request_wait(q, rw, NULL);
885 } else {
886 rq = get_request(q, rw, NULL, gfp_mask);
887 if (!rq)
888 spin_unlock_irq(q->queue_lock);
889 }
890 /* q->queue_lock is unlocked at this point */
891
892 return rq;
893 }
894 EXPORT_SYMBOL(blk_get_request);
895
896 /**
897 * blk_start_queueing - initiate dispatch of requests to device
898 * @q: request queue to kick into gear
899 *
900 * This is basically a helper to remove the need to know whether a queue
901 * is plugged or not if someone just wants to initiate dispatch of requests
902 * for this queue. Should be used to start queueing on a device outside
903 * of ->request_fn() context. Also see @blk_run_queue.
904 *
905 * The queue lock must be held with interrupts disabled.
906 */
907 void blk_start_queueing(struct request_queue *q)
908 {
909 if (!blk_queue_plugged(q)) {
910 if (unlikely(blk_queue_stopped(q)))
911 return;
912 q->request_fn(q);
913 } else
914 __generic_unplug_device(q);
915 }
916 EXPORT_SYMBOL(blk_start_queueing);
917
918 /**
919 * blk_requeue_request - put a request back on queue
920 * @q: request queue where request should be inserted
921 * @rq: request to be inserted
922 *
923 * Description:
924 * Drivers often keep queueing requests until the hardware cannot accept
925 * more, when that condition happens we need to put the request back
926 * on the queue. Must be called with queue lock held.
927 */
928 void blk_requeue_request(struct request_queue *q, struct request *rq)
929 {
930 blk_delete_timer(rq);
931 blk_clear_rq_complete(rq);
932 trace_block_rq_requeue(q, rq);
933
934 if (blk_rq_tagged(rq))
935 blk_queue_end_tag(q, rq);
936
937 elv_requeue_request(q, rq);
938 }
939 EXPORT_SYMBOL(blk_requeue_request);
940
941 /**
942 * blk_insert_request - insert a special request into a request queue
943 * @q: request queue where request should be inserted
944 * @rq: request to be inserted
945 * @at_head: insert request at head or tail of queue
946 * @data: private data
947 *
948 * Description:
949 * Many block devices need to execute commands asynchronously, so they don't
950 * block the whole kernel from preemption during request execution. This is
951 * accomplished normally by inserting aritficial requests tagged as
952 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
953 * be scheduled for actual execution by the request queue.
954 *
955 * We have the option of inserting the head or the tail of the queue.
956 * Typically we use the tail for new ioctls and so forth. We use the head
957 * of the queue for things like a QUEUE_FULL message from a device, or a
958 * host that is unable to accept a particular command.
959 */
960 void blk_insert_request(struct request_queue *q, struct request *rq,
961 int at_head, void *data)
962 {
963 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
964 unsigned long flags;
965
966 /*
967 * tell I/O scheduler that this isn't a regular read/write (ie it
968 * must not attempt merges on this) and that it acts as a soft
969 * barrier
970 */
971 rq->cmd_type = REQ_TYPE_SPECIAL;
972 rq->cmd_flags |= REQ_SOFTBARRIER;
973
974 rq->special = data;
975
976 spin_lock_irqsave(q->queue_lock, flags);
977
978 /*
979 * If command is tagged, release the tag
980 */
981 if (blk_rq_tagged(rq))
982 blk_queue_end_tag(q, rq);
983
984 drive_stat_acct(rq, 1);
985 __elv_add_request(q, rq, where, 0);
986 blk_start_queueing(q);
987 spin_unlock_irqrestore(q->queue_lock, flags);
988 }
989 EXPORT_SYMBOL(blk_insert_request);
990
991 /*
992 * add-request adds a request to the linked list.
993 * queue lock is held and interrupts disabled, as we muck with the
994 * request queue list.
995 */
996 static inline void add_request(struct request_queue *q, struct request *req)
997 {
998 drive_stat_acct(req, 1);
999
1000 /*
1001 * elevator indicated where it wants this request to be
1002 * inserted at elevator_merge time
1003 */
1004 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1005 }
1006
1007 static void part_round_stats_single(int cpu, struct hd_struct *part,
1008 unsigned long now)
1009 {
1010 if (now == part->stamp)
1011 return;
1012
1013 if (part->in_flight) {
1014 __part_stat_add(cpu, part, time_in_queue,
1015 part->in_flight * (now - part->stamp));
1016 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1017 }
1018 part->stamp = now;
1019 }
1020
1021 /**
1022 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1023 * @cpu: cpu number for stats access
1024 * @part: target partition
1025 *
1026 * The average IO queue length and utilisation statistics are maintained
1027 * by observing the current state of the queue length and the amount of
1028 * time it has been in this state for.
1029 *
1030 * Normally, that accounting is done on IO completion, but that can result
1031 * in more than a second's worth of IO being accounted for within any one
1032 * second, leading to >100% utilisation. To deal with that, we call this
1033 * function to do a round-off before returning the results when reading
1034 * /proc/diskstats. This accounts immediately for all queue usage up to
1035 * the current jiffies and restarts the counters again.
1036 */
1037 void part_round_stats(int cpu, struct hd_struct *part)
1038 {
1039 unsigned long now = jiffies;
1040
1041 if (part->partno)
1042 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1043 part_round_stats_single(cpu, part, now);
1044 }
1045 EXPORT_SYMBOL_GPL(part_round_stats);
1046
1047 /*
1048 * queue lock must be held
1049 */
1050 void __blk_put_request(struct request_queue *q, struct request *req)
1051 {
1052 if (unlikely(!q))
1053 return;
1054 if (unlikely(--req->ref_count))
1055 return;
1056
1057 elv_completed_request(q, req);
1058
1059 /* this is a bio leak */
1060 WARN_ON(req->bio != NULL);
1061
1062 /*
1063 * Request may not have originated from ll_rw_blk. if not,
1064 * it didn't come out of our reserved rq pools
1065 */
1066 if (req->cmd_flags & REQ_ALLOCED) {
1067 int is_sync = rq_is_sync(req) != 0;
1068 int priv = req->cmd_flags & REQ_ELVPRIV;
1069
1070 BUG_ON(!list_empty(&req->queuelist));
1071 BUG_ON(!hlist_unhashed(&req->hash));
1072
1073 blk_free_request(q, req);
1074 freed_request(q, is_sync, priv);
1075 }
1076 }
1077 EXPORT_SYMBOL_GPL(__blk_put_request);
1078
1079 void blk_put_request(struct request *req)
1080 {
1081 unsigned long flags;
1082 struct request_queue *q = req->q;
1083
1084 spin_lock_irqsave(q->queue_lock, flags);
1085 __blk_put_request(q, req);
1086 spin_unlock_irqrestore(q->queue_lock, flags);
1087 }
1088 EXPORT_SYMBOL(blk_put_request);
1089
1090 void init_request_from_bio(struct request *req, struct bio *bio)
1091 {
1092 req->cpu = bio->bi_comp_cpu;
1093 req->cmd_type = REQ_TYPE_FS;
1094
1095 /*
1096 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1097 */
1098 if (bio_rw_ahead(bio))
1099 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1100 REQ_FAILFAST_DRIVER);
1101 if (bio_failfast_dev(bio))
1102 req->cmd_flags |= REQ_FAILFAST_DEV;
1103 if (bio_failfast_transport(bio))
1104 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1105 if (bio_failfast_driver(bio))
1106 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1107
1108 /*
1109 * REQ_BARRIER implies no merging, but lets make it explicit
1110 */
1111 if (unlikely(bio_discard(bio))) {
1112 req->cmd_flags |= REQ_DISCARD;
1113 if (bio_barrier(bio))
1114 req->cmd_flags |= REQ_SOFTBARRIER;
1115 req->q->prepare_discard_fn(req->q, req);
1116 } else if (unlikely(bio_barrier(bio)))
1117 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1118
1119 if (bio_sync(bio))
1120 req->cmd_flags |= REQ_RW_SYNC;
1121 if (bio_rw_meta(bio))
1122 req->cmd_flags |= REQ_RW_META;
1123 if (bio_noidle(bio))
1124 req->cmd_flags |= REQ_NOIDLE;
1125
1126 req->errors = 0;
1127 req->hard_sector = req->sector = bio->bi_sector;
1128 req->ioprio = bio_prio(bio);
1129 req->start_time = jiffies;
1130 blk_rq_bio_prep(req->q, req, bio);
1131 }
1132
1133 /*
1134 * Only disabling plugging for non-rotational devices if it does tagging
1135 * as well, otherwise we do need the proper merging
1136 */
1137 static inline bool queue_should_plug(struct request_queue *q)
1138 {
1139 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1140 }
1141
1142 static int __make_request(struct request_queue *q, struct bio *bio)
1143 {
1144 struct request *req;
1145 int el_ret, nr_sectors;
1146 const unsigned short prio = bio_prio(bio);
1147 const int sync = bio_sync(bio);
1148 const int unplug = bio_unplug(bio);
1149 int rw_flags;
1150
1151 nr_sectors = bio_sectors(bio);
1152
1153 /*
1154 * low level driver can indicate that it wants pages above a
1155 * certain limit bounced to low memory (ie for highmem, or even
1156 * ISA dma in theory)
1157 */
1158 blk_queue_bounce(q, &bio);
1159
1160 spin_lock_irq(q->queue_lock);
1161
1162 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1163 goto get_rq;
1164
1165 el_ret = elv_merge(q, &req, bio);
1166 switch (el_ret) {
1167 case ELEVATOR_BACK_MERGE:
1168 BUG_ON(!rq_mergeable(req));
1169
1170 if (!ll_back_merge_fn(q, req, bio))
1171 break;
1172
1173 trace_block_bio_backmerge(q, bio);
1174
1175 req->biotail->bi_next = bio;
1176 req->biotail = bio;
1177 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1178 req->ioprio = ioprio_best(req->ioprio, prio);
1179 if (!blk_rq_cpu_valid(req))
1180 req->cpu = bio->bi_comp_cpu;
1181 drive_stat_acct(req, 0);
1182 if (!attempt_back_merge(q, req))
1183 elv_merged_request(q, req, el_ret);
1184 goto out;
1185
1186 case ELEVATOR_FRONT_MERGE:
1187 BUG_ON(!rq_mergeable(req));
1188
1189 if (!ll_front_merge_fn(q, req, bio))
1190 break;
1191
1192 trace_block_bio_frontmerge(q, bio);
1193
1194 bio->bi_next = req->bio;
1195 req->bio = bio;
1196
1197 /*
1198 * may not be valid. if the low level driver said
1199 * it didn't need a bounce buffer then it better
1200 * not touch req->buffer either...
1201 */
1202 req->buffer = bio_data(bio);
1203 req->current_nr_sectors = bio_cur_sectors(bio);
1204 req->hard_cur_sectors = req->current_nr_sectors;
1205 req->sector = req->hard_sector = bio->bi_sector;
1206 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1207 req->ioprio = ioprio_best(req->ioprio, prio);
1208 if (!blk_rq_cpu_valid(req))
1209 req->cpu = bio->bi_comp_cpu;
1210 drive_stat_acct(req, 0);
1211 if (!attempt_front_merge(q, req))
1212 elv_merged_request(q, req, el_ret);
1213 goto out;
1214
1215 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1216 default:
1217 ;
1218 }
1219
1220 get_rq:
1221 /*
1222 * This sync check and mask will be re-done in init_request_from_bio(),
1223 * but we need to set it earlier to expose the sync flag to the
1224 * rq allocator and io schedulers.
1225 */
1226 rw_flags = bio_data_dir(bio);
1227 if (sync)
1228 rw_flags |= REQ_RW_SYNC;
1229
1230 /*
1231 * Grab a free request. This is might sleep but can not fail.
1232 * Returns with the queue unlocked.
1233 */
1234 req = get_request_wait(q, rw_flags, bio);
1235
1236 /*
1237 * After dropping the lock and possibly sleeping here, our request
1238 * may now be mergeable after it had proven unmergeable (above).
1239 * We don't worry about that case for efficiency. It won't happen
1240 * often, and the elevators are able to handle it.
1241 */
1242 init_request_from_bio(req, bio);
1243
1244 spin_lock_irq(q->queue_lock);
1245 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1246 bio_flagged(bio, BIO_CPU_AFFINE))
1247 req->cpu = blk_cpu_to_group(smp_processor_id());
1248 if (queue_should_plug(q) && elv_queue_empty(q))
1249 blk_plug_device(q);
1250 add_request(q, req);
1251 out:
1252 if (unplug || !queue_should_plug(q))
1253 __generic_unplug_device(q);
1254 spin_unlock_irq(q->queue_lock);
1255 return 0;
1256 }
1257
1258 /*
1259 * If bio->bi_dev is a partition, remap the location
1260 */
1261 static inline void blk_partition_remap(struct bio *bio)
1262 {
1263 struct block_device *bdev = bio->bi_bdev;
1264
1265 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1266 struct hd_struct *p = bdev->bd_part;
1267
1268 bio->bi_sector += p->start_sect;
1269 bio->bi_bdev = bdev->bd_contains;
1270
1271 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1272 bdev->bd_dev,
1273 bio->bi_sector - p->start_sect);
1274 }
1275 }
1276
1277 static void handle_bad_sector(struct bio *bio)
1278 {
1279 char b[BDEVNAME_SIZE];
1280
1281 printk(KERN_INFO "attempt to access beyond end of device\n");
1282 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1283 bdevname(bio->bi_bdev, b),
1284 bio->bi_rw,
1285 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1286 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1287
1288 set_bit(BIO_EOF, &bio->bi_flags);
1289 }
1290
1291 #ifdef CONFIG_FAIL_MAKE_REQUEST
1292
1293 static DECLARE_FAULT_ATTR(fail_make_request);
1294
1295 static int __init setup_fail_make_request(char *str)
1296 {
1297 return setup_fault_attr(&fail_make_request, str);
1298 }
1299 __setup("fail_make_request=", setup_fail_make_request);
1300
1301 static int should_fail_request(struct bio *bio)
1302 {
1303 struct hd_struct *part = bio->bi_bdev->bd_part;
1304
1305 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1306 return should_fail(&fail_make_request, bio->bi_size);
1307
1308 return 0;
1309 }
1310
1311 static int __init fail_make_request_debugfs(void)
1312 {
1313 return init_fault_attr_dentries(&fail_make_request,
1314 "fail_make_request");
1315 }
1316
1317 late_initcall(fail_make_request_debugfs);
1318
1319 #else /* CONFIG_FAIL_MAKE_REQUEST */
1320
1321 static inline int should_fail_request(struct bio *bio)
1322 {
1323 return 0;
1324 }
1325
1326 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1327
1328 /*
1329 * Check whether this bio extends beyond the end of the device.
1330 */
1331 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1332 {
1333 sector_t maxsector;
1334
1335 if (!nr_sectors)
1336 return 0;
1337
1338 /* Test device or partition size, when known. */
1339 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1340 if (maxsector) {
1341 sector_t sector = bio->bi_sector;
1342
1343 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1344 /*
1345 * This may well happen - the kernel calls bread()
1346 * without checking the size of the device, e.g., when
1347 * mounting a device.
1348 */
1349 handle_bad_sector(bio);
1350 return 1;
1351 }
1352 }
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * generic_make_request - hand a buffer to its device driver for I/O
1359 * @bio: The bio describing the location in memory and on the device.
1360 *
1361 * generic_make_request() is used to make I/O requests of block
1362 * devices. It is passed a &struct bio, which describes the I/O that needs
1363 * to be done.
1364 *
1365 * generic_make_request() does not return any status. The
1366 * success/failure status of the request, along with notification of
1367 * completion, is delivered asynchronously through the bio->bi_end_io
1368 * function described (one day) else where.
1369 *
1370 * The caller of generic_make_request must make sure that bi_io_vec
1371 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1372 * set to describe the device address, and the
1373 * bi_end_io and optionally bi_private are set to describe how
1374 * completion notification should be signaled.
1375 *
1376 * generic_make_request and the drivers it calls may use bi_next if this
1377 * bio happens to be merged with someone else, and may change bi_dev and
1378 * bi_sector for remaps as it sees fit. So the values of these fields
1379 * should NOT be depended on after the call to generic_make_request.
1380 */
1381 static inline void __generic_make_request(struct bio *bio)
1382 {
1383 struct request_queue *q;
1384 sector_t old_sector;
1385 int ret, nr_sectors = bio_sectors(bio);
1386 dev_t old_dev;
1387 int err = -EIO;
1388
1389 might_sleep();
1390
1391 if (bio_check_eod(bio, nr_sectors))
1392 goto end_io;
1393
1394 /*
1395 * Resolve the mapping until finished. (drivers are
1396 * still free to implement/resolve their own stacking
1397 * by explicitly returning 0)
1398 *
1399 * NOTE: we don't repeat the blk_size check for each new device.
1400 * Stacking drivers are expected to know what they are doing.
1401 */
1402 old_sector = -1;
1403 old_dev = 0;
1404 do {
1405 char b[BDEVNAME_SIZE];
1406
1407 q = bdev_get_queue(bio->bi_bdev);
1408 if (unlikely(!q)) {
1409 printk(KERN_ERR
1410 "generic_make_request: Trying to access "
1411 "nonexistent block-device %s (%Lu)\n",
1412 bdevname(bio->bi_bdev, b),
1413 (long long) bio->bi_sector);
1414 goto end_io;
1415 }
1416
1417 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1418 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1419 bdevname(bio->bi_bdev, b),
1420 bio_sectors(bio),
1421 q->max_hw_sectors);
1422 goto end_io;
1423 }
1424
1425 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1426 goto end_io;
1427
1428 if (should_fail_request(bio))
1429 goto end_io;
1430
1431 /*
1432 * If this device has partitions, remap block n
1433 * of partition p to block n+start(p) of the disk.
1434 */
1435 blk_partition_remap(bio);
1436
1437 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1438 goto end_io;
1439
1440 if (old_sector != -1)
1441 trace_block_remap(q, bio, old_dev, old_sector);
1442
1443 trace_block_bio_queue(q, bio);
1444
1445 old_sector = bio->bi_sector;
1446 old_dev = bio->bi_bdev->bd_dev;
1447
1448 if (bio_check_eod(bio, nr_sectors))
1449 goto end_io;
1450
1451 if (bio_discard(bio) && !q->prepare_discard_fn) {
1452 err = -EOPNOTSUPP;
1453 goto end_io;
1454 }
1455 if (bio_barrier(bio) && bio_has_data(bio) &&
1456 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1457 err = -EOPNOTSUPP;
1458 goto end_io;
1459 }
1460
1461 ret = q->make_request_fn(q, bio);
1462 } while (ret);
1463
1464 return;
1465
1466 end_io:
1467 bio_endio(bio, err);
1468 }
1469
1470 /*
1471 * We only want one ->make_request_fn to be active at a time,
1472 * else stack usage with stacked devices could be a problem.
1473 * So use current->bio_{list,tail} to keep a list of requests
1474 * submited by a make_request_fn function.
1475 * current->bio_tail is also used as a flag to say if
1476 * generic_make_request is currently active in this task or not.
1477 * If it is NULL, then no make_request is active. If it is non-NULL,
1478 * then a make_request is active, and new requests should be added
1479 * at the tail
1480 */
1481 void generic_make_request(struct bio *bio)
1482 {
1483 if (current->bio_tail) {
1484 /* make_request is active */
1485 *(current->bio_tail) = bio;
1486 bio->bi_next = NULL;
1487 current->bio_tail = &bio->bi_next;
1488 return;
1489 }
1490 /* following loop may be a bit non-obvious, and so deserves some
1491 * explanation.
1492 * Before entering the loop, bio->bi_next is NULL (as all callers
1493 * ensure that) so we have a list with a single bio.
1494 * We pretend that we have just taken it off a longer list, so
1495 * we assign bio_list to the next (which is NULL) and bio_tail
1496 * to &bio_list, thus initialising the bio_list of new bios to be
1497 * added. __generic_make_request may indeed add some more bios
1498 * through a recursive call to generic_make_request. If it
1499 * did, we find a non-NULL value in bio_list and re-enter the loop
1500 * from the top. In this case we really did just take the bio
1501 * of the top of the list (no pretending) and so fixup bio_list and
1502 * bio_tail or bi_next, and call into __generic_make_request again.
1503 *
1504 * The loop was structured like this to make only one call to
1505 * __generic_make_request (which is important as it is large and
1506 * inlined) and to keep the structure simple.
1507 */
1508 BUG_ON(bio->bi_next);
1509 do {
1510 current->bio_list = bio->bi_next;
1511 if (bio->bi_next == NULL)
1512 current->bio_tail = &current->bio_list;
1513 else
1514 bio->bi_next = NULL;
1515 __generic_make_request(bio);
1516 bio = current->bio_list;
1517 } while (bio);
1518 current->bio_tail = NULL; /* deactivate */
1519 }
1520 EXPORT_SYMBOL(generic_make_request);
1521
1522 /**
1523 * submit_bio - submit a bio to the block device layer for I/O
1524 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1525 * @bio: The &struct bio which describes the I/O
1526 *
1527 * submit_bio() is very similar in purpose to generic_make_request(), and
1528 * uses that function to do most of the work. Both are fairly rough
1529 * interfaces; @bio must be presetup and ready for I/O.
1530 *
1531 */
1532 void submit_bio(int rw, struct bio *bio)
1533 {
1534 int count = bio_sectors(bio);
1535
1536 bio->bi_rw |= rw;
1537
1538 /*
1539 * If it's a regular read/write or a barrier with data attached,
1540 * go through the normal accounting stuff before submission.
1541 */
1542 if (bio_has_data(bio)) {
1543 if (rw & WRITE) {
1544 count_vm_events(PGPGOUT, count);
1545 } else {
1546 task_io_account_read(bio->bi_size);
1547 count_vm_events(PGPGIN, count);
1548 }
1549
1550 if (unlikely(block_dump)) {
1551 char b[BDEVNAME_SIZE];
1552 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1553 current->comm, task_pid_nr(current),
1554 (rw & WRITE) ? "WRITE" : "READ",
1555 (unsigned long long)bio->bi_sector,
1556 bdevname(bio->bi_bdev, b));
1557 }
1558 }
1559
1560 generic_make_request(bio);
1561 }
1562 EXPORT_SYMBOL(submit_bio);
1563
1564 /**
1565 * blk_rq_check_limits - Helper function to check a request for the queue limit
1566 * @q: the queue
1567 * @rq: the request being checked
1568 *
1569 * Description:
1570 * @rq may have been made based on weaker limitations of upper-level queues
1571 * in request stacking drivers, and it may violate the limitation of @q.
1572 * Since the block layer and the underlying device driver trust @rq
1573 * after it is inserted to @q, it should be checked against @q before
1574 * the insertion using this generic function.
1575 *
1576 * This function should also be useful for request stacking drivers
1577 * in some cases below, so export this fuction.
1578 * Request stacking drivers like request-based dm may change the queue
1579 * limits while requests are in the queue (e.g. dm's table swapping).
1580 * Such request stacking drivers should check those requests agaist
1581 * the new queue limits again when they dispatch those requests,
1582 * although such checkings are also done against the old queue limits
1583 * when submitting requests.
1584 */
1585 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1586 {
1587 if (rq->nr_sectors > q->max_sectors ||
1588 rq->data_len > q->max_hw_sectors << 9) {
1589 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1590 return -EIO;
1591 }
1592
1593 /*
1594 * queue's settings related to segment counting like q->bounce_pfn
1595 * may differ from that of other stacking queues.
1596 * Recalculate it to check the request correctly on this queue's
1597 * limitation.
1598 */
1599 blk_recalc_rq_segments(rq);
1600 if (rq->nr_phys_segments > q->max_phys_segments ||
1601 rq->nr_phys_segments > q->max_hw_segments) {
1602 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1603 return -EIO;
1604 }
1605
1606 return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1609
1610 /**
1611 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1612 * @q: the queue to submit the request
1613 * @rq: the request being queued
1614 */
1615 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1616 {
1617 unsigned long flags;
1618
1619 if (blk_rq_check_limits(q, rq))
1620 return -EIO;
1621
1622 #ifdef CONFIG_FAIL_MAKE_REQUEST
1623 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1624 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1625 return -EIO;
1626 #endif
1627
1628 spin_lock_irqsave(q->queue_lock, flags);
1629
1630 /*
1631 * Submitting request must be dequeued before calling this function
1632 * because it will be linked to another request_queue
1633 */
1634 BUG_ON(blk_queued_rq(rq));
1635
1636 drive_stat_acct(rq, 1);
1637 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1638
1639 spin_unlock_irqrestore(q->queue_lock, flags);
1640
1641 return 0;
1642 }
1643 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1644
1645 /**
1646 * blkdev_dequeue_request - dequeue request and start timeout timer
1647 * @req: request to dequeue
1648 *
1649 * Dequeue @req and start timeout timer on it. This hands off the
1650 * request to the driver.
1651 *
1652 * Block internal functions which don't want to start timer should
1653 * call elv_dequeue_request().
1654 */
1655 void blkdev_dequeue_request(struct request *req)
1656 {
1657 elv_dequeue_request(req->q, req);
1658
1659 /*
1660 * We are now handing the request to the hardware, add the
1661 * timeout handler.
1662 */
1663 blk_add_timer(req);
1664 }
1665 EXPORT_SYMBOL(blkdev_dequeue_request);
1666
1667 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1668 {
1669 if (!blk_do_io_stat(req))
1670 return;
1671
1672 if (blk_fs_request(req)) {
1673 const int rw = rq_data_dir(req);
1674 struct hd_struct *part;
1675 int cpu;
1676
1677 cpu = part_stat_lock();
1678 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1679 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1680 part_stat_unlock();
1681 }
1682 }
1683
1684 static void blk_account_io_done(struct request *req)
1685 {
1686 if (!blk_do_io_stat(req))
1687 return;
1688
1689 /*
1690 * Account IO completion. bar_rq isn't accounted as a normal
1691 * IO on queueing nor completion. Accounting the containing
1692 * request is enough.
1693 */
1694 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1695 unsigned long duration = jiffies - req->start_time;
1696 const int rw = rq_data_dir(req);
1697 struct hd_struct *part;
1698 int cpu;
1699
1700 cpu = part_stat_lock();
1701 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1702
1703 part_stat_inc(cpu, part, ios[rw]);
1704 part_stat_add(cpu, part, ticks[rw], duration);
1705 part_round_stats(cpu, part);
1706 part_dec_in_flight(part);
1707
1708 part_stat_unlock();
1709 }
1710 }
1711
1712 /**
1713 * __end_that_request_first - end I/O on a request
1714 * @req: the request being processed
1715 * @error: %0 for success, < %0 for error
1716 * @nr_bytes: number of bytes to complete
1717 *
1718 * Description:
1719 * Ends I/O on a number of bytes attached to @req, and sets it up
1720 * for the next range of segments (if any) in the cluster.
1721 *
1722 * Return:
1723 * %0 - we are done with this request, call end_that_request_last()
1724 * %1 - still buffers pending for this request
1725 **/
1726 static int __end_that_request_first(struct request *req, int error,
1727 int nr_bytes)
1728 {
1729 int total_bytes, bio_nbytes, next_idx = 0;
1730 struct bio *bio;
1731
1732 trace_block_rq_complete(req->q, req);
1733
1734 /*
1735 * For fs requests, rq is just carrier of independent bio's
1736 * and each partial completion should be handled separately.
1737 * Reset per-request error on each partial completion.
1738 *
1739 * TODO: tj: This is too subtle. It would be better to let
1740 * low level drivers do what they see fit.
1741 */
1742 if (blk_fs_request(req))
1743 req->errors = 0;
1744
1745 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1746 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1747 req->rq_disk ? req->rq_disk->disk_name : "?",
1748 (unsigned long long)req->sector);
1749 }
1750
1751 blk_account_io_completion(req, nr_bytes);
1752
1753 total_bytes = bio_nbytes = 0;
1754 while ((bio = req->bio) != NULL) {
1755 int nbytes;
1756
1757 if (nr_bytes >= bio->bi_size) {
1758 req->bio = bio->bi_next;
1759 nbytes = bio->bi_size;
1760 req_bio_endio(req, bio, nbytes, error);
1761 next_idx = 0;
1762 bio_nbytes = 0;
1763 } else {
1764 int idx = bio->bi_idx + next_idx;
1765
1766 if (unlikely(idx >= bio->bi_vcnt)) {
1767 blk_dump_rq_flags(req, "__end_that");
1768 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1769 __func__, idx, bio->bi_vcnt);
1770 break;
1771 }
1772
1773 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1774 BIO_BUG_ON(nbytes > bio->bi_size);
1775
1776 /*
1777 * not a complete bvec done
1778 */
1779 if (unlikely(nbytes > nr_bytes)) {
1780 bio_nbytes += nr_bytes;
1781 total_bytes += nr_bytes;
1782 break;
1783 }
1784
1785 /*
1786 * advance to the next vector
1787 */
1788 next_idx++;
1789 bio_nbytes += nbytes;
1790 }
1791
1792 total_bytes += nbytes;
1793 nr_bytes -= nbytes;
1794
1795 bio = req->bio;
1796 if (bio) {
1797 /*
1798 * end more in this run, or just return 'not-done'
1799 */
1800 if (unlikely(nr_bytes <= 0))
1801 break;
1802 }
1803 }
1804
1805 /*
1806 * completely done
1807 */
1808 if (!req->bio)
1809 return 0;
1810
1811 /*
1812 * if the request wasn't completed, update state
1813 */
1814 if (bio_nbytes) {
1815 req_bio_endio(req, bio, bio_nbytes, error);
1816 bio->bi_idx += next_idx;
1817 bio_iovec(bio)->bv_offset += nr_bytes;
1818 bio_iovec(bio)->bv_len -= nr_bytes;
1819 }
1820
1821 blk_recalc_rq_sectors(req, total_bytes >> 9);
1822 blk_recalc_rq_segments(req);
1823 return 1;
1824 }
1825
1826 /*
1827 * queue lock must be held
1828 */
1829 static void end_that_request_last(struct request *req, int error)
1830 {
1831 if (blk_rq_tagged(req))
1832 blk_queue_end_tag(req->q, req);
1833
1834 if (blk_queued_rq(req))
1835 elv_dequeue_request(req->q, req);
1836
1837 if (unlikely(laptop_mode) && blk_fs_request(req))
1838 laptop_io_completion();
1839
1840 blk_delete_timer(req);
1841
1842 blk_account_io_done(req);
1843
1844 if (req->end_io)
1845 req->end_io(req, error);
1846 else {
1847 if (blk_bidi_rq(req))
1848 __blk_put_request(req->next_rq->q, req->next_rq);
1849
1850 __blk_put_request(req->q, req);
1851 }
1852 }
1853
1854 /**
1855 * blk_rq_bytes - Returns bytes left to complete in the entire request
1856 * @rq: the request being processed
1857 **/
1858 unsigned int blk_rq_bytes(struct request *rq)
1859 {
1860 if (blk_fs_request(rq))
1861 return rq->hard_nr_sectors << 9;
1862
1863 return rq->data_len;
1864 }
1865 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1866
1867 /**
1868 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1869 * @rq: the request being processed
1870 **/
1871 unsigned int blk_rq_cur_bytes(struct request *rq)
1872 {
1873 if (blk_fs_request(rq))
1874 return rq->current_nr_sectors << 9;
1875
1876 if (rq->bio)
1877 return rq->bio->bi_size;
1878
1879 return rq->data_len;
1880 }
1881 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1882
1883 /**
1884 * end_request - end I/O on the current segment of the request
1885 * @req: the request being processed
1886 * @uptodate: error value or %0/%1 uptodate flag
1887 *
1888 * Description:
1889 * Ends I/O on the current segment of a request. If that is the only
1890 * remaining segment, the request is also completed and freed.
1891 *
1892 * This is a remnant of how older block drivers handled I/O completions.
1893 * Modern drivers typically end I/O on the full request in one go, unless
1894 * they have a residual value to account for. For that case this function
1895 * isn't really useful, unless the residual just happens to be the
1896 * full current segment. In other words, don't use this function in new
1897 * code. Use blk_end_request() or __blk_end_request() to end a request.
1898 **/
1899 void end_request(struct request *req, int uptodate)
1900 {
1901 int error = 0;
1902
1903 if (uptodate <= 0)
1904 error = uptodate ? uptodate : -EIO;
1905
1906 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1907 }
1908 EXPORT_SYMBOL(end_request);
1909
1910 static int end_that_request_data(struct request *rq, int error,
1911 unsigned int nr_bytes, unsigned int bidi_bytes)
1912 {
1913 if (rq->bio) {
1914 if (__end_that_request_first(rq, error, nr_bytes))
1915 return 1;
1916
1917 /* Bidi request must be completed as a whole */
1918 if (blk_bidi_rq(rq) &&
1919 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1920 return 1;
1921 }
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * blk_end_io - Generic end_io function to complete a request.
1928 * @rq: the request being processed
1929 * @error: %0 for success, < %0 for error
1930 * @nr_bytes: number of bytes to complete @rq
1931 * @bidi_bytes: number of bytes to complete @rq->next_rq
1932 * @drv_callback: function called between completion of bios in the request
1933 * and completion of the request.
1934 * If the callback returns non %0, this helper returns without
1935 * completion of the request.
1936 *
1937 * Description:
1938 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1939 * If @rq has leftover, sets it up for the next range of segments.
1940 *
1941 * Return:
1942 * %0 - we are done with this request
1943 * %1 - this request is not freed yet, it still has pending buffers.
1944 **/
1945 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1946 unsigned int bidi_bytes,
1947 int (drv_callback)(struct request *))
1948 {
1949 struct request_queue *q = rq->q;
1950 unsigned long flags = 0UL;
1951
1952 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1953 return 1;
1954
1955 /* Special feature for tricky drivers */
1956 if (drv_callback && drv_callback(rq))
1957 return 1;
1958
1959 add_disk_randomness(rq->rq_disk);
1960
1961 spin_lock_irqsave(q->queue_lock, flags);
1962 end_that_request_last(rq, error);
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1964
1965 return 0;
1966 }
1967
1968 /**
1969 * blk_end_request - Helper function for drivers to complete the request.
1970 * @rq: the request being processed
1971 * @error: %0 for success, < %0 for error
1972 * @nr_bytes: number of bytes to complete
1973 *
1974 * Description:
1975 * Ends I/O on a number of bytes attached to @rq.
1976 * If @rq has leftover, sets it up for the next range of segments.
1977 *
1978 * Return:
1979 * %0 - we are done with this request
1980 * %1 - still buffers pending for this request
1981 **/
1982 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1983 {
1984 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1985 }
1986 EXPORT_SYMBOL_GPL(blk_end_request);
1987
1988 /**
1989 * __blk_end_request - Helper function for drivers to complete the request.
1990 * @rq: the request being processed
1991 * @error: %0 for success, < %0 for error
1992 * @nr_bytes: number of bytes to complete
1993 *
1994 * Description:
1995 * Must be called with queue lock held unlike blk_end_request().
1996 *
1997 * Return:
1998 * %0 - we are done with this request
1999 * %1 - still buffers pending for this request
2000 **/
2001 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2002 {
2003 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
2004 return 1;
2005
2006 add_disk_randomness(rq->rq_disk);
2007
2008 end_that_request_last(rq, error);
2009
2010 return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(__blk_end_request);
2013
2014 /**
2015 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2016 * @rq: the bidi request being processed
2017 * @error: %0 for success, < %0 for error
2018 * @nr_bytes: number of bytes to complete @rq
2019 * @bidi_bytes: number of bytes to complete @rq->next_rq
2020 *
2021 * Description:
2022 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2023 *
2024 * Return:
2025 * %0 - we are done with this request
2026 * %1 - still buffers pending for this request
2027 **/
2028 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2029 unsigned int bidi_bytes)
2030 {
2031 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2032 }
2033 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2034
2035 /**
2036 * blk_update_request - Special helper function for request stacking drivers
2037 * @rq: the request being processed
2038 * @error: %0 for success, < %0 for error
2039 * @nr_bytes: number of bytes to complete @rq
2040 *
2041 * Description:
2042 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2043 * the request structure even if @rq doesn't have leftover.
2044 * If @rq has leftover, sets it up for the next range of segments.
2045 *
2046 * This special helper function is only for request stacking drivers
2047 * (e.g. request-based dm) so that they can handle partial completion.
2048 * Actual device drivers should use blk_end_request instead.
2049 */
2050 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2051 {
2052 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2053 /*
2054 * These members are not updated in end_that_request_data()
2055 * when all bios are completed.
2056 * Update them so that the request stacking driver can find
2057 * how many bytes remain in the request later.
2058 */
2059 rq->nr_sectors = rq->hard_nr_sectors = 0;
2060 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2061 }
2062 }
2063 EXPORT_SYMBOL_GPL(blk_update_request);
2064
2065 /**
2066 * blk_end_request_callback - Special helper function for tricky drivers
2067 * @rq: the request being processed
2068 * @error: %0 for success, < %0 for error
2069 * @nr_bytes: number of bytes to complete
2070 * @drv_callback: function called between completion of bios in the request
2071 * and completion of the request.
2072 * If the callback returns non %0, this helper returns without
2073 * completion of the request.
2074 *
2075 * Description:
2076 * Ends I/O on a number of bytes attached to @rq.
2077 * If @rq has leftover, sets it up for the next range of segments.
2078 *
2079 * This special helper function is used only for existing tricky drivers.
2080 * (e.g. cdrom_newpc_intr() of ide-cd)
2081 * This interface will be removed when such drivers are rewritten.
2082 * Don't use this interface in other places anymore.
2083 *
2084 * Return:
2085 * %0 - we are done with this request
2086 * %1 - this request is not freed yet.
2087 * this request still has pending buffers or
2088 * the driver doesn't want to finish this request yet.
2089 **/
2090 int blk_end_request_callback(struct request *rq, int error,
2091 unsigned int nr_bytes,
2092 int (drv_callback)(struct request *))
2093 {
2094 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2095 }
2096 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2097
2098 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2099 struct bio *bio)
2100 {
2101 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2102 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2103 rq->cmd_flags |= (bio->bi_rw & 3);
2104
2105 if (bio_has_data(bio)) {
2106 rq->nr_phys_segments = bio_phys_segments(q, bio);
2107 rq->buffer = bio_data(bio);
2108 }
2109 rq->current_nr_sectors = bio_cur_sectors(bio);
2110 rq->hard_cur_sectors = rq->current_nr_sectors;
2111 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2112 rq->data_len = bio->bi_size;
2113
2114 rq->bio = rq->biotail = bio;
2115
2116 if (bio->bi_bdev)
2117 rq->rq_disk = bio->bi_bdev->bd_disk;
2118 }
2119
2120 /**
2121 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2122 * @q : the queue of the device being checked
2123 *
2124 * Description:
2125 * Check if underlying low-level drivers of a device are busy.
2126 * If the drivers want to export their busy state, they must set own
2127 * exporting function using blk_queue_lld_busy() first.
2128 *
2129 * Basically, this function is used only by request stacking drivers
2130 * to stop dispatching requests to underlying devices when underlying
2131 * devices are busy. This behavior helps more I/O merging on the queue
2132 * of the request stacking driver and prevents I/O throughput regression
2133 * on burst I/O load.
2134 *
2135 * Return:
2136 * 0 - Not busy (The request stacking driver should dispatch request)
2137 * 1 - Busy (The request stacking driver should stop dispatching request)
2138 */
2139 int blk_lld_busy(struct request_queue *q)
2140 {
2141 if (q->lld_busy_fn)
2142 return q->lld_busy_fn(q);
2143
2144 return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(blk_lld_busy);
2147
2148 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2149 {
2150 return queue_work(kblockd_workqueue, work);
2151 }
2152 EXPORT_SYMBOL(kblockd_schedule_work);
2153
2154 int __init blk_dev_init(void)
2155 {
2156 kblockd_workqueue = create_workqueue("kblockd");
2157 if (!kblockd_workqueue)
2158 panic("Failed to create kblockd\n");
2159
2160 request_cachep = kmem_cache_create("blkdev_requests",
2161 sizeof(struct request), 0, SLAB_PANIC, NULL);
2162
2163 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2164 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2165
2166 return 0;
2167 }
2168