Merge branch 'for-4.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336
337 if (q->mq_ops) {
338 struct blk_mq_hw_ctx *hctx;
339 int i;
340
341 queue_for_each_hw_ctx(q, hctx, i)
342 cancel_delayed_work_sync(&hctx->run_work);
343 } else {
344 cancel_delayed_work_sync(&q->delay_work);
345 }
346 }
347 EXPORT_SYMBOL(blk_sync_queue);
348
349 /**
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
352 *
353 * Description:
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
359 */
360 inline void __blk_run_queue_uncond(struct request_queue *q)
361 {
362 lockdep_assert_held(q->queue_lock);
363 WARN_ON_ONCE(q->mq_ops);
364
365 if (unlikely(blk_queue_dead(q)))
366 return;
367
368 /*
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
374 */
375 q->request_fn_active++;
376 q->request_fn(q);
377 q->request_fn_active--;
378 }
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
380
381 /**
382 * __blk_run_queue - run a single device queue
383 * @q: The queue to run
384 *
385 * Description:
386 * See @blk_run_queue.
387 */
388 void __blk_run_queue(struct request_queue *q)
389 {
390 lockdep_assert_held(q->queue_lock);
391 WARN_ON_ONCE(q->mq_ops);
392
393 if (unlikely(blk_queue_stopped(q)))
394 return;
395
396 __blk_run_queue_uncond(q);
397 }
398 EXPORT_SYMBOL(__blk_run_queue);
399
400 /**
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
403 *
404 * Description:
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
406 * of us.
407 *
408 * Note:
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
412 */
413 void blk_run_queue_async(struct request_queue *q)
414 {
415 lockdep_assert_held(q->queue_lock);
416 WARN_ON_ONCE(q->mq_ops);
417
418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
420 }
421 EXPORT_SYMBOL(blk_run_queue_async);
422
423 /**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 *
427 * Description:
428 * Invoke request handling on this queue, if it has pending work to do.
429 * May be used to restart queueing when a request has completed.
430 */
431 void blk_run_queue(struct request_queue *q)
432 {
433 unsigned long flags;
434
435 WARN_ON_ONCE(q->mq_ops);
436
437 spin_lock_irqsave(q->queue_lock, flags);
438 __blk_run_queue(q);
439 spin_unlock_irqrestore(q->queue_lock, flags);
440 }
441 EXPORT_SYMBOL(blk_run_queue);
442
443 void blk_put_queue(struct request_queue *q)
444 {
445 kobject_put(&q->kobj);
446 }
447 EXPORT_SYMBOL(blk_put_queue);
448
449 /**
450 * __blk_drain_queue - drain requests from request_queue
451 * @q: queue to drain
452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
453 *
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
457 */
458 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
461 {
462 int i;
463
464 lockdep_assert_held(q->queue_lock);
465 WARN_ON_ONCE(q->mq_ops);
466
467 while (true) {
468 bool drain = false;
469
470 /*
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
473 */
474 if (q->elevator)
475 elv_drain_elevator(q);
476
477 blkcg_drain_queue(q);
478
479 /*
480 * This function might be called on a queue which failed
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
485 */
486 if (!list_empty(&q->queue_head) && q->request_fn)
487 __blk_run_queue(q);
488
489 drain |= q->nr_rqs_elvpriv;
490 drain |= q->request_fn_active;
491
492 /*
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
496 */
497 if (drain_all) {
498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
501 drain |= q->nr_rqs[i];
502 drain |= q->in_flight[i];
503 if (fq)
504 drain |= !list_empty(&fq->flush_queue[i]);
505 }
506 }
507
508 if (!drain)
509 break;
510
511 spin_unlock_irq(q->queue_lock);
512
513 msleep(10);
514
515 spin_lock_irq(q->queue_lock);
516 }
517
518 /*
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
522 */
523 if (q->request_fn) {
524 struct request_list *rl;
525
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
529 }
530 }
531
532 /**
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
535 *
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
538 * throttled or issued before. On return, it's guaranteed that no request
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
541 */
542 void blk_queue_bypass_start(struct request_queue *q)
543 {
544 WARN_ON_ONCE(q->mq_ops);
545
546 spin_lock_irq(q->queue_lock);
547 q->bypass_depth++;
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
550
551 /*
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
555 */
556 if (blk_queue_init_done(q)) {
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
560
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
562 synchronize_rcu();
563 }
564 }
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566
567 /**
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
570 *
571 * Leave bypass mode and restore the normal queueing behavior.
572 *
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
575 */
576 void blk_queue_bypass_end(struct request_queue *q)
577 {
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
583 }
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585
586 void blk_set_queue_dying(struct request_queue *q)
587 {
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
591
592 /*
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
596 */
597 blk_freeze_queue_start(q);
598
599 if (q->mq_ops)
600 blk_mq_wake_waiters(q);
601 else {
602 struct request_list *rl;
603
604 spin_lock_irq(q->queue_lock);
605 blk_queue_for_each_rl(rl, q) {
606 if (rl->rq_pool) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
609 }
610 }
611 spin_unlock_irq(q->queue_lock);
612 }
613 }
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615
616 /**
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
619 *
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
622 */
623 void blk_cleanup_queue(struct request_queue *q)
624 {
625 spinlock_t *lock = q->queue_lock;
626
627 /* mark @q DYING, no new request or merges will be allowed afterwards */
628 mutex_lock(&q->sysfs_lock);
629 blk_set_queue_dying(q);
630 spin_lock_irq(lock);
631
632 /*
633 * A dying queue is permanently in bypass mode till released. Note
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
640 */
641 q->bypass_depth++;
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
643
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
646 queue_flag_set(QUEUE_FLAG_DYING, q);
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
649
650 /*
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
653 */
654 blk_freeze_queue(q);
655 spin_lock_irq(lock);
656 if (!q->mq_ops)
657 __blk_drain_queue(q, true);
658 queue_flag_set(QUEUE_FLAG_DEAD, q);
659 spin_unlock_irq(lock);
660
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
663
664 /* @q won't process any more request, flush async actions */
665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
666 blk_sync_queue(q);
667
668 if (q->mq_ops)
669 blk_mq_free_queue(q);
670 percpu_ref_exit(&q->q_usage_counter);
671
672 spin_lock_irq(lock);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
676
677 /* @q is and will stay empty, shutdown and put */
678 blk_put_queue(q);
679 }
680 EXPORT_SYMBOL(blk_cleanup_queue);
681
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
684 {
685 struct request_queue *q = data;
686
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
688 }
689
690 static void free_request_simple(void *element, void *data)
691 {
692 kmem_cache_free(request_cachep, element);
693 }
694
695 static void *alloc_request_size(gfp_t gfp_mask, void *data)
696 {
697 struct request_queue *q = data;
698 struct request *rq;
699
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 q->node);
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 kfree(rq);
704 rq = NULL;
705 }
706 return rq;
707 }
708
709 static void free_request_size(void *element, void *data)
710 {
711 struct request_queue *q = data;
712
713 if (q->exit_rq_fn)
714 q->exit_rq_fn(q, element);
715 kfree(element);
716 }
717
718 int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 gfp_t gfp_mask)
720 {
721 if (unlikely(rl->rq_pool))
722 return 0;
723
724 rl->q = q;
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
729
730 if (q->cmd_size) {
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
734 } else {
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
738 }
739 if (!rl->rq_pool)
740 return -ENOMEM;
741
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
744
745 return 0;
746 }
747
748 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
749 {
750 if (rl->rq_pool) {
751 mempool_destroy(rl->rq_pool);
752 if (rl != &q->root_rl)
753 blk_put_queue(q);
754 }
755 }
756
757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
758 {
759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
760 }
761 EXPORT_SYMBOL(blk_alloc_queue);
762
763 int blk_queue_enter(struct request_queue *q, bool nowait)
764 {
765 while (true) {
766 int ret;
767
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
769 return 0;
770
771 if (nowait)
772 return -EBUSY;
773
774 /*
775 * read pair of barrier in blk_freeze_queue_start(),
776 * we need to order reading __PERCPU_REF_DEAD flag of
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
780 */
781 smp_rmb();
782
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
785 blk_queue_dying(q));
786 if (blk_queue_dying(q))
787 return -ENODEV;
788 if (ret)
789 return ret;
790 }
791 }
792
793 void blk_queue_exit(struct request_queue *q)
794 {
795 percpu_ref_put(&q->q_usage_counter);
796 }
797
798 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799 {
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
802
803 wake_up_all(&q->mq_freeze_wq);
804 }
805
806 static void blk_rq_timed_out_timer(unsigned long data)
807 {
808 struct request_queue *q = (struct request_queue *)data;
809
810 kblockd_schedule_work(&q->timeout_work);
811 }
812
813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
814 {
815 struct request_queue *q;
816
817 q = kmem_cache_alloc_node(blk_requestq_cachep,
818 gfp_mask | __GFP_ZERO, node_id);
819 if (!q)
820 return NULL;
821
822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
823 if (q->id < 0)
824 goto fail_q;
825
826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
827 if (!q->bio_split)
828 goto fail_id;
829
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
832 goto fail_split;
833
834 q->stats = blk_alloc_queue_stats();
835 if (!q->stats)
836 goto fail_stats;
837
838 q->backing_dev_info->ra_pages =
839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
842 q->node = node_id;
843
844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
845 laptop_mode_timer_fn, (unsigned long) q);
846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
847 INIT_LIST_HEAD(&q->queue_head);
848 INIT_LIST_HEAD(&q->timeout_list);
849 INIT_LIST_HEAD(&q->icq_list);
850 #ifdef CONFIG_BLK_CGROUP
851 INIT_LIST_HEAD(&q->blkg_list);
852 #endif
853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
854
855 kobject_init(&q->kobj, &blk_queue_ktype);
856
857 #ifdef CONFIG_BLK_DEV_IO_TRACE
858 mutex_init(&q->blk_trace_mutex);
859 #endif
860 mutex_init(&q->sysfs_lock);
861 spin_lock_init(&q->__queue_lock);
862
863 /*
864 * By default initialize queue_lock to internal lock and driver can
865 * override it later if need be.
866 */
867 q->queue_lock = &q->__queue_lock;
868
869 /*
870 * A queue starts its life with bypass turned on to avoid
871 * unnecessary bypass on/off overhead and nasty surprises during
872 * init. The initial bypass will be finished when the queue is
873 * registered by blk_register_queue().
874 */
875 q->bypass_depth = 1;
876 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
877
878 init_waitqueue_head(&q->mq_freeze_wq);
879
880 /*
881 * Init percpu_ref in atomic mode so that it's faster to shutdown.
882 * See blk_register_queue() for details.
883 */
884 if (percpu_ref_init(&q->q_usage_counter,
885 blk_queue_usage_counter_release,
886 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
887 goto fail_bdi;
888
889 if (blkcg_init_queue(q))
890 goto fail_ref;
891
892 return q;
893
894 fail_ref:
895 percpu_ref_exit(&q->q_usage_counter);
896 fail_bdi:
897 blk_free_queue_stats(q->stats);
898 fail_stats:
899 bdi_put(q->backing_dev_info);
900 fail_split:
901 bioset_free(q->bio_split);
902 fail_id:
903 ida_simple_remove(&blk_queue_ida, q->id);
904 fail_q:
905 kmem_cache_free(blk_requestq_cachep, q);
906 return NULL;
907 }
908 EXPORT_SYMBOL(blk_alloc_queue_node);
909
910 /**
911 * blk_init_queue - prepare a request queue for use with a block device
912 * @rfn: The function to be called to process requests that have been
913 * placed on the queue.
914 * @lock: Request queue spin lock
915 *
916 * Description:
917 * If a block device wishes to use the standard request handling procedures,
918 * which sorts requests and coalesces adjacent requests, then it must
919 * call blk_init_queue(). The function @rfn will be called when there
920 * are requests on the queue that need to be processed. If the device
921 * supports plugging, then @rfn may not be called immediately when requests
922 * are available on the queue, but may be called at some time later instead.
923 * Plugged queues are generally unplugged when a buffer belonging to one
924 * of the requests on the queue is needed, or due to memory pressure.
925 *
926 * @rfn is not required, or even expected, to remove all requests off the
927 * queue, but only as many as it can handle at a time. If it does leave
928 * requests on the queue, it is responsible for arranging that the requests
929 * get dealt with eventually.
930 *
931 * The queue spin lock must be held while manipulating the requests on the
932 * request queue; this lock will be taken also from interrupt context, so irq
933 * disabling is needed for it.
934 *
935 * Function returns a pointer to the initialized request queue, or %NULL if
936 * it didn't succeed.
937 *
938 * Note:
939 * blk_init_queue() must be paired with a blk_cleanup_queue() call
940 * when the block device is deactivated (such as at module unload).
941 **/
942
943 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
944 {
945 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
946 }
947 EXPORT_SYMBOL(blk_init_queue);
948
949 struct request_queue *
950 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
951 {
952 struct request_queue *q;
953
954 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
955 if (!q)
956 return NULL;
957
958 q->request_fn = rfn;
959 if (lock)
960 q->queue_lock = lock;
961 if (blk_init_allocated_queue(q) < 0) {
962 blk_cleanup_queue(q);
963 return NULL;
964 }
965
966 return q;
967 }
968 EXPORT_SYMBOL(blk_init_queue_node);
969
970 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
971
972
973 int blk_init_allocated_queue(struct request_queue *q)
974 {
975 WARN_ON_ONCE(q->mq_ops);
976
977 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
978 if (!q->fq)
979 return -ENOMEM;
980
981 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
982 goto out_free_flush_queue;
983
984 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
985 goto out_exit_flush_rq;
986
987 INIT_WORK(&q->timeout_work, blk_timeout_work);
988 q->queue_flags |= QUEUE_FLAG_DEFAULT;
989
990 /*
991 * This also sets hw/phys segments, boundary and size
992 */
993 blk_queue_make_request(q, blk_queue_bio);
994
995 q->sg_reserved_size = INT_MAX;
996
997 /* Protect q->elevator from elevator_change */
998 mutex_lock(&q->sysfs_lock);
999
1000 /* init elevator */
1001 if (elevator_init(q, NULL)) {
1002 mutex_unlock(&q->sysfs_lock);
1003 goto out_exit_flush_rq;
1004 }
1005
1006 mutex_unlock(&q->sysfs_lock);
1007 return 0;
1008
1009 out_exit_flush_rq:
1010 if (q->exit_rq_fn)
1011 q->exit_rq_fn(q, q->fq->flush_rq);
1012 out_free_flush_queue:
1013 blk_free_flush_queue(q->fq);
1014 return -ENOMEM;
1015 }
1016 EXPORT_SYMBOL(blk_init_allocated_queue);
1017
1018 bool blk_get_queue(struct request_queue *q)
1019 {
1020 if (likely(!blk_queue_dying(q))) {
1021 __blk_get_queue(q);
1022 return true;
1023 }
1024
1025 return false;
1026 }
1027 EXPORT_SYMBOL(blk_get_queue);
1028
1029 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1030 {
1031 if (rq->rq_flags & RQF_ELVPRIV) {
1032 elv_put_request(rl->q, rq);
1033 if (rq->elv.icq)
1034 put_io_context(rq->elv.icq->ioc);
1035 }
1036
1037 mempool_free(rq, rl->rq_pool);
1038 }
1039
1040 /*
1041 * ioc_batching returns true if the ioc is a valid batching request and
1042 * should be given priority access to a request.
1043 */
1044 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1045 {
1046 if (!ioc)
1047 return 0;
1048
1049 /*
1050 * Make sure the process is able to allocate at least 1 request
1051 * even if the batch times out, otherwise we could theoretically
1052 * lose wakeups.
1053 */
1054 return ioc->nr_batch_requests == q->nr_batching ||
1055 (ioc->nr_batch_requests > 0
1056 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1057 }
1058
1059 /*
1060 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1061 * will cause the process to be a "batcher" on all queues in the system. This
1062 * is the behaviour we want though - once it gets a wakeup it should be given
1063 * a nice run.
1064 */
1065 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1066 {
1067 if (!ioc || ioc_batching(q, ioc))
1068 return;
1069
1070 ioc->nr_batch_requests = q->nr_batching;
1071 ioc->last_waited = jiffies;
1072 }
1073
1074 static void __freed_request(struct request_list *rl, int sync)
1075 {
1076 struct request_queue *q = rl->q;
1077
1078 if (rl->count[sync] < queue_congestion_off_threshold(q))
1079 blk_clear_congested(rl, sync);
1080
1081 if (rl->count[sync] + 1 <= q->nr_requests) {
1082 if (waitqueue_active(&rl->wait[sync]))
1083 wake_up(&rl->wait[sync]);
1084
1085 blk_clear_rl_full(rl, sync);
1086 }
1087 }
1088
1089 /*
1090 * A request has just been released. Account for it, update the full and
1091 * congestion status, wake up any waiters. Called under q->queue_lock.
1092 */
1093 static void freed_request(struct request_list *rl, bool sync,
1094 req_flags_t rq_flags)
1095 {
1096 struct request_queue *q = rl->q;
1097
1098 q->nr_rqs[sync]--;
1099 rl->count[sync]--;
1100 if (rq_flags & RQF_ELVPRIV)
1101 q->nr_rqs_elvpriv--;
1102
1103 __freed_request(rl, sync);
1104
1105 if (unlikely(rl->starved[sync ^ 1]))
1106 __freed_request(rl, sync ^ 1);
1107 }
1108
1109 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1110 {
1111 struct request_list *rl;
1112 int on_thresh, off_thresh;
1113
1114 WARN_ON_ONCE(q->mq_ops);
1115
1116 spin_lock_irq(q->queue_lock);
1117 q->nr_requests = nr;
1118 blk_queue_congestion_threshold(q);
1119 on_thresh = queue_congestion_on_threshold(q);
1120 off_thresh = queue_congestion_off_threshold(q);
1121
1122 blk_queue_for_each_rl(rl, q) {
1123 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1124 blk_set_congested(rl, BLK_RW_SYNC);
1125 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1126 blk_clear_congested(rl, BLK_RW_SYNC);
1127
1128 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1129 blk_set_congested(rl, BLK_RW_ASYNC);
1130 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1131 blk_clear_congested(rl, BLK_RW_ASYNC);
1132
1133 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1134 blk_set_rl_full(rl, BLK_RW_SYNC);
1135 } else {
1136 blk_clear_rl_full(rl, BLK_RW_SYNC);
1137 wake_up(&rl->wait[BLK_RW_SYNC]);
1138 }
1139
1140 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1141 blk_set_rl_full(rl, BLK_RW_ASYNC);
1142 } else {
1143 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1144 wake_up(&rl->wait[BLK_RW_ASYNC]);
1145 }
1146 }
1147
1148 spin_unlock_irq(q->queue_lock);
1149 return 0;
1150 }
1151
1152 /**
1153 * __get_request - get a free request
1154 * @rl: request list to allocate from
1155 * @op: operation and flags
1156 * @bio: bio to allocate request for (can be %NULL)
1157 * @gfp_mask: allocation mask
1158 *
1159 * Get a free request from @q. This function may fail under memory
1160 * pressure or if @q is dead.
1161 *
1162 * Must be called with @q->queue_lock held and,
1163 * Returns ERR_PTR on failure, with @q->queue_lock held.
1164 * Returns request pointer on success, with @q->queue_lock *not held*.
1165 */
1166 static struct request *__get_request(struct request_list *rl, unsigned int op,
1167 struct bio *bio, gfp_t gfp_mask)
1168 {
1169 struct request_queue *q = rl->q;
1170 struct request *rq;
1171 struct elevator_type *et = q->elevator->type;
1172 struct io_context *ioc = rq_ioc(bio);
1173 struct io_cq *icq = NULL;
1174 const bool is_sync = op_is_sync(op);
1175 int may_queue;
1176 req_flags_t rq_flags = RQF_ALLOCED;
1177
1178 lockdep_assert_held(q->queue_lock);
1179
1180 if (unlikely(blk_queue_dying(q)))
1181 return ERR_PTR(-ENODEV);
1182
1183 may_queue = elv_may_queue(q, op);
1184 if (may_queue == ELV_MQUEUE_NO)
1185 goto rq_starved;
1186
1187 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1188 if (rl->count[is_sync]+1 >= q->nr_requests) {
1189 /*
1190 * The queue will fill after this allocation, so set
1191 * it as full, and mark this process as "batching".
1192 * This process will be allowed to complete a batch of
1193 * requests, others will be blocked.
1194 */
1195 if (!blk_rl_full(rl, is_sync)) {
1196 ioc_set_batching(q, ioc);
1197 blk_set_rl_full(rl, is_sync);
1198 } else {
1199 if (may_queue != ELV_MQUEUE_MUST
1200 && !ioc_batching(q, ioc)) {
1201 /*
1202 * The queue is full and the allocating
1203 * process is not a "batcher", and not
1204 * exempted by the IO scheduler
1205 */
1206 return ERR_PTR(-ENOMEM);
1207 }
1208 }
1209 }
1210 blk_set_congested(rl, is_sync);
1211 }
1212
1213 /*
1214 * Only allow batching queuers to allocate up to 50% over the defined
1215 * limit of requests, otherwise we could have thousands of requests
1216 * allocated with any setting of ->nr_requests
1217 */
1218 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1219 return ERR_PTR(-ENOMEM);
1220
1221 q->nr_rqs[is_sync]++;
1222 rl->count[is_sync]++;
1223 rl->starved[is_sync] = 0;
1224
1225 /*
1226 * Decide whether the new request will be managed by elevator. If
1227 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1228 * prevent the current elevator from being destroyed until the new
1229 * request is freed. This guarantees icq's won't be destroyed and
1230 * makes creating new ones safe.
1231 *
1232 * Flush requests do not use the elevator so skip initialization.
1233 * This allows a request to share the flush and elevator data.
1234 *
1235 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1236 * it will be created after releasing queue_lock.
1237 */
1238 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1239 rq_flags |= RQF_ELVPRIV;
1240 q->nr_rqs_elvpriv++;
1241 if (et->icq_cache && ioc)
1242 icq = ioc_lookup_icq(ioc, q);
1243 }
1244
1245 if (blk_queue_io_stat(q))
1246 rq_flags |= RQF_IO_STAT;
1247 spin_unlock_irq(q->queue_lock);
1248
1249 /* allocate and init request */
1250 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1251 if (!rq)
1252 goto fail_alloc;
1253
1254 blk_rq_init(q, rq);
1255 blk_rq_set_rl(rq, rl);
1256 rq->cmd_flags = op;
1257 rq->rq_flags = rq_flags;
1258
1259 /* init elvpriv */
1260 if (rq_flags & RQF_ELVPRIV) {
1261 if (unlikely(et->icq_cache && !icq)) {
1262 if (ioc)
1263 icq = ioc_create_icq(ioc, q, gfp_mask);
1264 if (!icq)
1265 goto fail_elvpriv;
1266 }
1267
1268 rq->elv.icq = icq;
1269 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1270 goto fail_elvpriv;
1271
1272 /* @rq->elv.icq holds io_context until @rq is freed */
1273 if (icq)
1274 get_io_context(icq->ioc);
1275 }
1276 out:
1277 /*
1278 * ioc may be NULL here, and ioc_batching will be false. That's
1279 * OK, if the queue is under the request limit then requests need
1280 * not count toward the nr_batch_requests limit. There will always
1281 * be some limit enforced by BLK_BATCH_TIME.
1282 */
1283 if (ioc_batching(q, ioc))
1284 ioc->nr_batch_requests--;
1285
1286 trace_block_getrq(q, bio, op);
1287 return rq;
1288
1289 fail_elvpriv:
1290 /*
1291 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1292 * and may fail indefinitely under memory pressure and thus
1293 * shouldn't stall IO. Treat this request as !elvpriv. This will
1294 * disturb iosched and blkcg but weird is bettern than dead.
1295 */
1296 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1297 __func__, dev_name(q->backing_dev_info->dev));
1298
1299 rq->rq_flags &= ~RQF_ELVPRIV;
1300 rq->elv.icq = NULL;
1301
1302 spin_lock_irq(q->queue_lock);
1303 q->nr_rqs_elvpriv--;
1304 spin_unlock_irq(q->queue_lock);
1305 goto out;
1306
1307 fail_alloc:
1308 /*
1309 * Allocation failed presumably due to memory. Undo anything we
1310 * might have messed up.
1311 *
1312 * Allocating task should really be put onto the front of the wait
1313 * queue, but this is pretty rare.
1314 */
1315 spin_lock_irq(q->queue_lock);
1316 freed_request(rl, is_sync, rq_flags);
1317
1318 /*
1319 * in the very unlikely event that allocation failed and no
1320 * requests for this direction was pending, mark us starved so that
1321 * freeing of a request in the other direction will notice
1322 * us. another possible fix would be to split the rq mempool into
1323 * READ and WRITE
1324 */
1325 rq_starved:
1326 if (unlikely(rl->count[is_sync] == 0))
1327 rl->starved[is_sync] = 1;
1328 return ERR_PTR(-ENOMEM);
1329 }
1330
1331 /**
1332 * get_request - get a free request
1333 * @q: request_queue to allocate request from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @gfp_mask: allocation mask
1337 *
1338 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1339 * this function keeps retrying under memory pressure and fails iff @q is dead.
1340 *
1341 * Must be called with @q->queue_lock held and,
1342 * Returns ERR_PTR on failure, with @q->queue_lock held.
1343 * Returns request pointer on success, with @q->queue_lock *not held*.
1344 */
1345 static struct request *get_request(struct request_queue *q, unsigned int op,
1346 struct bio *bio, gfp_t gfp_mask)
1347 {
1348 const bool is_sync = op_is_sync(op);
1349 DEFINE_WAIT(wait);
1350 struct request_list *rl;
1351 struct request *rq;
1352
1353 lockdep_assert_held(q->queue_lock);
1354 WARN_ON_ONCE(q->mq_ops);
1355
1356 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1357 retry:
1358 rq = __get_request(rl, op, bio, gfp_mask);
1359 if (!IS_ERR(rq))
1360 return rq;
1361
1362 if (op & REQ_NOWAIT) {
1363 blk_put_rl(rl);
1364 return ERR_PTR(-EAGAIN);
1365 }
1366
1367 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1368 blk_put_rl(rl);
1369 return rq;
1370 }
1371
1372 /* wait on @rl and retry */
1373 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1374 TASK_UNINTERRUPTIBLE);
1375
1376 trace_block_sleeprq(q, bio, op);
1377
1378 spin_unlock_irq(q->queue_lock);
1379 io_schedule();
1380
1381 /*
1382 * After sleeping, we become a "batching" process and will be able
1383 * to allocate at least one request, and up to a big batch of them
1384 * for a small period time. See ioc_batching, ioc_set_batching
1385 */
1386 ioc_set_batching(q, current->io_context);
1387
1388 spin_lock_irq(q->queue_lock);
1389 finish_wait(&rl->wait[is_sync], &wait);
1390
1391 goto retry;
1392 }
1393
1394 static struct request *blk_old_get_request(struct request_queue *q,
1395 unsigned int op, gfp_t gfp_mask)
1396 {
1397 struct request *rq;
1398
1399 WARN_ON_ONCE(q->mq_ops);
1400
1401 /* create ioc upfront */
1402 create_io_context(gfp_mask, q->node);
1403
1404 spin_lock_irq(q->queue_lock);
1405 rq = get_request(q, op, NULL, gfp_mask);
1406 if (IS_ERR(rq)) {
1407 spin_unlock_irq(q->queue_lock);
1408 return rq;
1409 }
1410
1411 /* q->queue_lock is unlocked at this point */
1412 rq->__data_len = 0;
1413 rq->__sector = (sector_t) -1;
1414 rq->bio = rq->biotail = NULL;
1415 return rq;
1416 }
1417
1418 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1419 gfp_t gfp_mask)
1420 {
1421 struct request *req;
1422
1423 if (q->mq_ops) {
1424 req = blk_mq_alloc_request(q, op,
1425 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1426 0 : BLK_MQ_REQ_NOWAIT);
1427 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1428 q->mq_ops->initialize_rq_fn(req);
1429 } else {
1430 req = blk_old_get_request(q, op, gfp_mask);
1431 if (!IS_ERR(req) && q->initialize_rq_fn)
1432 q->initialize_rq_fn(req);
1433 }
1434
1435 return req;
1436 }
1437 EXPORT_SYMBOL(blk_get_request);
1438
1439 /**
1440 * blk_requeue_request - put a request back on queue
1441 * @q: request queue where request should be inserted
1442 * @rq: request to be inserted
1443 *
1444 * Description:
1445 * Drivers often keep queueing requests until the hardware cannot accept
1446 * more, when that condition happens we need to put the request back
1447 * on the queue. Must be called with queue lock held.
1448 */
1449 void blk_requeue_request(struct request_queue *q, struct request *rq)
1450 {
1451 lockdep_assert_held(q->queue_lock);
1452 WARN_ON_ONCE(q->mq_ops);
1453
1454 blk_delete_timer(rq);
1455 blk_clear_rq_complete(rq);
1456 trace_block_rq_requeue(q, rq);
1457 wbt_requeue(q->rq_wb, &rq->issue_stat);
1458
1459 if (rq->rq_flags & RQF_QUEUED)
1460 blk_queue_end_tag(q, rq);
1461
1462 BUG_ON(blk_queued_rq(rq));
1463
1464 elv_requeue_request(q, rq);
1465 }
1466 EXPORT_SYMBOL(blk_requeue_request);
1467
1468 static void add_acct_request(struct request_queue *q, struct request *rq,
1469 int where)
1470 {
1471 blk_account_io_start(rq, true);
1472 __elv_add_request(q, rq, where);
1473 }
1474
1475 static void part_round_stats_single(struct request_queue *q, int cpu,
1476 struct hd_struct *part, unsigned long now,
1477 unsigned int inflight)
1478 {
1479 if (inflight) {
1480 __part_stat_add(cpu, part, time_in_queue,
1481 inflight * (now - part->stamp));
1482 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1483 }
1484 part->stamp = now;
1485 }
1486
1487 /**
1488 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1489 * @q: target block queue
1490 * @cpu: cpu number for stats access
1491 * @part: target partition
1492 *
1493 * The average IO queue length and utilisation statistics are maintained
1494 * by observing the current state of the queue length and the amount of
1495 * time it has been in this state for.
1496 *
1497 * Normally, that accounting is done on IO completion, but that can result
1498 * in more than a second's worth of IO being accounted for within any one
1499 * second, leading to >100% utilisation. To deal with that, we call this
1500 * function to do a round-off before returning the results when reading
1501 * /proc/diskstats. This accounts immediately for all queue usage up to
1502 * the current jiffies and restarts the counters again.
1503 */
1504 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1505 {
1506 struct hd_struct *part2 = NULL;
1507 unsigned long now = jiffies;
1508 unsigned int inflight[2];
1509 int stats = 0;
1510
1511 if (part->stamp != now)
1512 stats |= 1;
1513
1514 if (part->partno) {
1515 part2 = &part_to_disk(part)->part0;
1516 if (part2->stamp != now)
1517 stats |= 2;
1518 }
1519
1520 if (!stats)
1521 return;
1522
1523 part_in_flight(q, part, inflight);
1524
1525 if (stats & 2)
1526 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1527 if (stats & 1)
1528 part_round_stats_single(q, cpu, part, now, inflight[0]);
1529 }
1530 EXPORT_SYMBOL_GPL(part_round_stats);
1531
1532 #ifdef CONFIG_PM
1533 static void blk_pm_put_request(struct request *rq)
1534 {
1535 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1536 pm_runtime_mark_last_busy(rq->q->dev);
1537 }
1538 #else
1539 static inline void blk_pm_put_request(struct request *rq) {}
1540 #endif
1541
1542 void __blk_put_request(struct request_queue *q, struct request *req)
1543 {
1544 req_flags_t rq_flags = req->rq_flags;
1545
1546 if (unlikely(!q))
1547 return;
1548
1549 if (q->mq_ops) {
1550 blk_mq_free_request(req);
1551 return;
1552 }
1553
1554 lockdep_assert_held(q->queue_lock);
1555
1556 blk_pm_put_request(req);
1557
1558 elv_completed_request(q, req);
1559
1560 /* this is a bio leak */
1561 WARN_ON(req->bio != NULL);
1562
1563 wbt_done(q->rq_wb, &req->issue_stat);
1564
1565 /*
1566 * Request may not have originated from ll_rw_blk. if not,
1567 * it didn't come out of our reserved rq pools
1568 */
1569 if (rq_flags & RQF_ALLOCED) {
1570 struct request_list *rl = blk_rq_rl(req);
1571 bool sync = op_is_sync(req->cmd_flags);
1572
1573 BUG_ON(!list_empty(&req->queuelist));
1574 BUG_ON(ELV_ON_HASH(req));
1575
1576 blk_free_request(rl, req);
1577 freed_request(rl, sync, rq_flags);
1578 blk_put_rl(rl);
1579 }
1580 }
1581 EXPORT_SYMBOL_GPL(__blk_put_request);
1582
1583 void blk_put_request(struct request *req)
1584 {
1585 struct request_queue *q = req->q;
1586
1587 if (q->mq_ops)
1588 blk_mq_free_request(req);
1589 else {
1590 unsigned long flags;
1591
1592 spin_lock_irqsave(q->queue_lock, flags);
1593 __blk_put_request(q, req);
1594 spin_unlock_irqrestore(q->queue_lock, flags);
1595 }
1596 }
1597 EXPORT_SYMBOL(blk_put_request);
1598
1599 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1600 struct bio *bio)
1601 {
1602 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1603
1604 if (!ll_back_merge_fn(q, req, bio))
1605 return false;
1606
1607 trace_block_bio_backmerge(q, req, bio);
1608
1609 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1610 blk_rq_set_mixed_merge(req);
1611
1612 req->biotail->bi_next = bio;
1613 req->biotail = bio;
1614 req->__data_len += bio->bi_iter.bi_size;
1615 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1616
1617 blk_account_io_start(req, false);
1618 return true;
1619 }
1620
1621 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1622 struct bio *bio)
1623 {
1624 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1625
1626 if (!ll_front_merge_fn(q, req, bio))
1627 return false;
1628
1629 trace_block_bio_frontmerge(q, req, bio);
1630
1631 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1632 blk_rq_set_mixed_merge(req);
1633
1634 bio->bi_next = req->bio;
1635 req->bio = bio;
1636
1637 req->__sector = bio->bi_iter.bi_sector;
1638 req->__data_len += bio->bi_iter.bi_size;
1639 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1640
1641 blk_account_io_start(req, false);
1642 return true;
1643 }
1644
1645 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1646 struct bio *bio)
1647 {
1648 unsigned short segments = blk_rq_nr_discard_segments(req);
1649
1650 if (segments >= queue_max_discard_segments(q))
1651 goto no_merge;
1652 if (blk_rq_sectors(req) + bio_sectors(bio) >
1653 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1654 goto no_merge;
1655
1656 req->biotail->bi_next = bio;
1657 req->biotail = bio;
1658 req->__data_len += bio->bi_iter.bi_size;
1659 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1660 req->nr_phys_segments = segments + 1;
1661
1662 blk_account_io_start(req, false);
1663 return true;
1664 no_merge:
1665 req_set_nomerge(q, req);
1666 return false;
1667 }
1668
1669 /**
1670 * blk_attempt_plug_merge - try to merge with %current's plugged list
1671 * @q: request_queue new bio is being queued at
1672 * @bio: new bio being queued
1673 * @request_count: out parameter for number of traversed plugged requests
1674 * @same_queue_rq: pointer to &struct request that gets filled in when
1675 * another request associated with @q is found on the plug list
1676 * (optional, may be %NULL)
1677 *
1678 * Determine whether @bio being queued on @q can be merged with a request
1679 * on %current's plugged list. Returns %true if merge was successful,
1680 * otherwise %false.
1681 *
1682 * Plugging coalesces IOs from the same issuer for the same purpose without
1683 * going through @q->queue_lock. As such it's more of an issuing mechanism
1684 * than scheduling, and the request, while may have elvpriv data, is not
1685 * added on the elevator at this point. In addition, we don't have
1686 * reliable access to the elevator outside queue lock. Only check basic
1687 * merging parameters without querying the elevator.
1688 *
1689 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1690 */
1691 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1692 unsigned int *request_count,
1693 struct request **same_queue_rq)
1694 {
1695 struct blk_plug *plug;
1696 struct request *rq;
1697 struct list_head *plug_list;
1698
1699 plug = current->plug;
1700 if (!plug)
1701 return false;
1702 *request_count = 0;
1703
1704 if (q->mq_ops)
1705 plug_list = &plug->mq_list;
1706 else
1707 plug_list = &plug->list;
1708
1709 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1710 bool merged = false;
1711
1712 if (rq->q == q) {
1713 (*request_count)++;
1714 /*
1715 * Only blk-mq multiple hardware queues case checks the
1716 * rq in the same queue, there should be only one such
1717 * rq in a queue
1718 **/
1719 if (same_queue_rq)
1720 *same_queue_rq = rq;
1721 }
1722
1723 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1724 continue;
1725
1726 switch (blk_try_merge(rq, bio)) {
1727 case ELEVATOR_BACK_MERGE:
1728 merged = bio_attempt_back_merge(q, rq, bio);
1729 break;
1730 case ELEVATOR_FRONT_MERGE:
1731 merged = bio_attempt_front_merge(q, rq, bio);
1732 break;
1733 case ELEVATOR_DISCARD_MERGE:
1734 merged = bio_attempt_discard_merge(q, rq, bio);
1735 break;
1736 default:
1737 break;
1738 }
1739
1740 if (merged)
1741 return true;
1742 }
1743
1744 return false;
1745 }
1746
1747 unsigned int blk_plug_queued_count(struct request_queue *q)
1748 {
1749 struct blk_plug *plug;
1750 struct request *rq;
1751 struct list_head *plug_list;
1752 unsigned int ret = 0;
1753
1754 plug = current->plug;
1755 if (!plug)
1756 goto out;
1757
1758 if (q->mq_ops)
1759 plug_list = &plug->mq_list;
1760 else
1761 plug_list = &plug->list;
1762
1763 list_for_each_entry(rq, plug_list, queuelist) {
1764 if (rq->q == q)
1765 ret++;
1766 }
1767 out:
1768 return ret;
1769 }
1770
1771 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1772 {
1773 struct io_context *ioc = rq_ioc(bio);
1774
1775 if (bio->bi_opf & REQ_RAHEAD)
1776 req->cmd_flags |= REQ_FAILFAST_MASK;
1777
1778 req->__sector = bio->bi_iter.bi_sector;
1779 if (ioprio_valid(bio_prio(bio)))
1780 req->ioprio = bio_prio(bio);
1781 else if (ioc)
1782 req->ioprio = ioc->ioprio;
1783 else
1784 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1785 req->write_hint = bio->bi_write_hint;
1786 blk_rq_bio_prep(req->q, req, bio);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1789
1790 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1791 {
1792 struct blk_plug *plug;
1793 int where = ELEVATOR_INSERT_SORT;
1794 struct request *req, *free;
1795 unsigned int request_count = 0;
1796 unsigned int wb_acct;
1797
1798 /*
1799 * low level driver can indicate that it wants pages above a
1800 * certain limit bounced to low memory (ie for highmem, or even
1801 * ISA dma in theory)
1802 */
1803 blk_queue_bounce(q, &bio);
1804
1805 blk_queue_split(q, &bio);
1806
1807 if (!bio_integrity_prep(bio))
1808 return BLK_QC_T_NONE;
1809
1810 if (op_is_flush(bio->bi_opf)) {
1811 spin_lock_irq(q->queue_lock);
1812 where = ELEVATOR_INSERT_FLUSH;
1813 goto get_rq;
1814 }
1815
1816 /*
1817 * Check if we can merge with the plugged list before grabbing
1818 * any locks.
1819 */
1820 if (!blk_queue_nomerges(q)) {
1821 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1822 return BLK_QC_T_NONE;
1823 } else
1824 request_count = blk_plug_queued_count(q);
1825
1826 spin_lock_irq(q->queue_lock);
1827
1828 switch (elv_merge(q, &req, bio)) {
1829 case ELEVATOR_BACK_MERGE:
1830 if (!bio_attempt_back_merge(q, req, bio))
1831 break;
1832 elv_bio_merged(q, req, bio);
1833 free = attempt_back_merge(q, req);
1834 if (free)
1835 __blk_put_request(q, free);
1836 else
1837 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1838 goto out_unlock;
1839 case ELEVATOR_FRONT_MERGE:
1840 if (!bio_attempt_front_merge(q, req, bio))
1841 break;
1842 elv_bio_merged(q, req, bio);
1843 free = attempt_front_merge(q, req);
1844 if (free)
1845 __blk_put_request(q, free);
1846 else
1847 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1848 goto out_unlock;
1849 default:
1850 break;
1851 }
1852
1853 get_rq:
1854 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1855
1856 /*
1857 * Grab a free request. This is might sleep but can not fail.
1858 * Returns with the queue unlocked.
1859 */
1860 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1861 if (IS_ERR(req)) {
1862 __wbt_done(q->rq_wb, wb_acct);
1863 if (PTR_ERR(req) == -ENOMEM)
1864 bio->bi_status = BLK_STS_RESOURCE;
1865 else
1866 bio->bi_status = BLK_STS_IOERR;
1867 bio_endio(bio);
1868 goto out_unlock;
1869 }
1870
1871 wbt_track(&req->issue_stat, wb_acct);
1872
1873 /*
1874 * After dropping the lock and possibly sleeping here, our request
1875 * may now be mergeable after it had proven unmergeable (above).
1876 * We don't worry about that case for efficiency. It won't happen
1877 * often, and the elevators are able to handle it.
1878 */
1879 blk_init_request_from_bio(req, bio);
1880
1881 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1882 req->cpu = raw_smp_processor_id();
1883
1884 plug = current->plug;
1885 if (plug) {
1886 /*
1887 * If this is the first request added after a plug, fire
1888 * of a plug trace.
1889 *
1890 * @request_count may become stale because of schedule
1891 * out, so check plug list again.
1892 */
1893 if (!request_count || list_empty(&plug->list))
1894 trace_block_plug(q);
1895 else {
1896 struct request *last = list_entry_rq(plug->list.prev);
1897 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1898 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1899 blk_flush_plug_list(plug, false);
1900 trace_block_plug(q);
1901 }
1902 }
1903 list_add_tail(&req->queuelist, &plug->list);
1904 blk_account_io_start(req, true);
1905 } else {
1906 spin_lock_irq(q->queue_lock);
1907 add_acct_request(q, req, where);
1908 __blk_run_queue(q);
1909 out_unlock:
1910 spin_unlock_irq(q->queue_lock);
1911 }
1912
1913 return BLK_QC_T_NONE;
1914 }
1915
1916 static void handle_bad_sector(struct bio *bio)
1917 {
1918 char b[BDEVNAME_SIZE];
1919
1920 printk(KERN_INFO "attempt to access beyond end of device\n");
1921 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1922 bio_devname(bio, b), bio->bi_opf,
1923 (unsigned long long)bio_end_sector(bio),
1924 (long long)get_capacity(bio->bi_disk));
1925 }
1926
1927 #ifdef CONFIG_FAIL_MAKE_REQUEST
1928
1929 static DECLARE_FAULT_ATTR(fail_make_request);
1930
1931 static int __init setup_fail_make_request(char *str)
1932 {
1933 return setup_fault_attr(&fail_make_request, str);
1934 }
1935 __setup("fail_make_request=", setup_fail_make_request);
1936
1937 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1938 {
1939 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1940 }
1941
1942 static int __init fail_make_request_debugfs(void)
1943 {
1944 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1945 NULL, &fail_make_request);
1946
1947 return PTR_ERR_OR_ZERO(dir);
1948 }
1949
1950 late_initcall(fail_make_request_debugfs);
1951
1952 #else /* CONFIG_FAIL_MAKE_REQUEST */
1953
1954 static inline bool should_fail_request(struct hd_struct *part,
1955 unsigned int bytes)
1956 {
1957 return false;
1958 }
1959
1960 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1961
1962 /*
1963 * Remap block n of partition p to block n+start(p) of the disk.
1964 */
1965 static inline int blk_partition_remap(struct bio *bio)
1966 {
1967 struct hd_struct *p;
1968 int ret = 0;
1969
1970 /*
1971 * Zone reset does not include bi_size so bio_sectors() is always 0.
1972 * Include a test for the reset op code and perform the remap if needed.
1973 */
1974 if (!bio->bi_partno ||
1975 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1976 return 0;
1977
1978 rcu_read_lock();
1979 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1980 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1981 bio->bi_iter.bi_sector += p->start_sect;
1982 bio->bi_partno = 0;
1983 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1984 bio->bi_iter.bi_sector - p->start_sect);
1985 } else {
1986 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1987 ret = -EIO;
1988 }
1989 rcu_read_unlock();
1990
1991 return ret;
1992 }
1993
1994 /*
1995 * Check whether this bio extends beyond the end of the device.
1996 */
1997 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1998 {
1999 sector_t maxsector;
2000
2001 if (!nr_sectors)
2002 return 0;
2003
2004 /* Test device or partition size, when known. */
2005 maxsector = get_capacity(bio->bi_disk);
2006 if (maxsector) {
2007 sector_t sector = bio->bi_iter.bi_sector;
2008
2009 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2010 /*
2011 * This may well happen - the kernel calls bread()
2012 * without checking the size of the device, e.g., when
2013 * mounting a device.
2014 */
2015 handle_bad_sector(bio);
2016 return 1;
2017 }
2018 }
2019
2020 return 0;
2021 }
2022
2023 static noinline_for_stack bool
2024 generic_make_request_checks(struct bio *bio)
2025 {
2026 struct request_queue *q;
2027 int nr_sectors = bio_sectors(bio);
2028 blk_status_t status = BLK_STS_IOERR;
2029 char b[BDEVNAME_SIZE];
2030
2031 might_sleep();
2032
2033 if (bio_check_eod(bio, nr_sectors))
2034 goto end_io;
2035
2036 q = bio->bi_disk->queue;
2037 if (unlikely(!q)) {
2038 printk(KERN_ERR
2039 "generic_make_request: Trying to access "
2040 "nonexistent block-device %s (%Lu)\n",
2041 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2042 goto end_io;
2043 }
2044
2045 /*
2046 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2047 * if queue is not a request based queue.
2048 */
2049
2050 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2051 goto not_supported;
2052
2053 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2054 goto end_io;
2055
2056 if (blk_partition_remap(bio))
2057 goto end_io;
2058
2059 if (bio_check_eod(bio, nr_sectors))
2060 goto end_io;
2061
2062 /*
2063 * Filter flush bio's early so that make_request based
2064 * drivers without flush support don't have to worry
2065 * about them.
2066 */
2067 if (op_is_flush(bio->bi_opf) &&
2068 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2069 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2070 if (!nr_sectors) {
2071 status = BLK_STS_OK;
2072 goto end_io;
2073 }
2074 }
2075
2076 switch (bio_op(bio)) {
2077 case REQ_OP_DISCARD:
2078 if (!blk_queue_discard(q))
2079 goto not_supported;
2080 break;
2081 case REQ_OP_SECURE_ERASE:
2082 if (!blk_queue_secure_erase(q))
2083 goto not_supported;
2084 break;
2085 case REQ_OP_WRITE_SAME:
2086 if (!q->limits.max_write_same_sectors)
2087 goto not_supported;
2088 break;
2089 case REQ_OP_ZONE_REPORT:
2090 case REQ_OP_ZONE_RESET:
2091 if (!blk_queue_is_zoned(q))
2092 goto not_supported;
2093 break;
2094 case REQ_OP_WRITE_ZEROES:
2095 if (!q->limits.max_write_zeroes_sectors)
2096 goto not_supported;
2097 break;
2098 default:
2099 break;
2100 }
2101
2102 /*
2103 * Various block parts want %current->io_context and lazy ioc
2104 * allocation ends up trading a lot of pain for a small amount of
2105 * memory. Just allocate it upfront. This may fail and block
2106 * layer knows how to live with it.
2107 */
2108 create_io_context(GFP_ATOMIC, q->node);
2109
2110 if (!blkcg_bio_issue_check(q, bio))
2111 return false;
2112
2113 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2114 trace_block_bio_queue(q, bio);
2115 /* Now that enqueuing has been traced, we need to trace
2116 * completion as well.
2117 */
2118 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2119 }
2120 return true;
2121
2122 not_supported:
2123 status = BLK_STS_NOTSUPP;
2124 end_io:
2125 bio->bi_status = status;
2126 bio_endio(bio);
2127 return false;
2128 }
2129
2130 /**
2131 * generic_make_request - hand a buffer to its device driver for I/O
2132 * @bio: The bio describing the location in memory and on the device.
2133 *
2134 * generic_make_request() is used to make I/O requests of block
2135 * devices. It is passed a &struct bio, which describes the I/O that needs
2136 * to be done.
2137 *
2138 * generic_make_request() does not return any status. The
2139 * success/failure status of the request, along with notification of
2140 * completion, is delivered asynchronously through the bio->bi_end_io
2141 * function described (one day) else where.
2142 *
2143 * The caller of generic_make_request must make sure that bi_io_vec
2144 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2145 * set to describe the device address, and the
2146 * bi_end_io and optionally bi_private are set to describe how
2147 * completion notification should be signaled.
2148 *
2149 * generic_make_request and the drivers it calls may use bi_next if this
2150 * bio happens to be merged with someone else, and may resubmit the bio to
2151 * a lower device by calling into generic_make_request recursively, which
2152 * means the bio should NOT be touched after the call to ->make_request_fn.
2153 */
2154 blk_qc_t generic_make_request(struct bio *bio)
2155 {
2156 /*
2157 * bio_list_on_stack[0] contains bios submitted by the current
2158 * make_request_fn.
2159 * bio_list_on_stack[1] contains bios that were submitted before
2160 * the current make_request_fn, but that haven't been processed
2161 * yet.
2162 */
2163 struct bio_list bio_list_on_stack[2];
2164 blk_qc_t ret = BLK_QC_T_NONE;
2165
2166 if (!generic_make_request_checks(bio))
2167 goto out;
2168
2169 /*
2170 * We only want one ->make_request_fn to be active at a time, else
2171 * stack usage with stacked devices could be a problem. So use
2172 * current->bio_list to keep a list of requests submited by a
2173 * make_request_fn function. current->bio_list is also used as a
2174 * flag to say if generic_make_request is currently active in this
2175 * task or not. If it is NULL, then no make_request is active. If
2176 * it is non-NULL, then a make_request is active, and new requests
2177 * should be added at the tail
2178 */
2179 if (current->bio_list) {
2180 bio_list_add(&current->bio_list[0], bio);
2181 goto out;
2182 }
2183
2184 /* following loop may be a bit non-obvious, and so deserves some
2185 * explanation.
2186 * Before entering the loop, bio->bi_next is NULL (as all callers
2187 * ensure that) so we have a list with a single bio.
2188 * We pretend that we have just taken it off a longer list, so
2189 * we assign bio_list to a pointer to the bio_list_on_stack,
2190 * thus initialising the bio_list of new bios to be
2191 * added. ->make_request() may indeed add some more bios
2192 * through a recursive call to generic_make_request. If it
2193 * did, we find a non-NULL value in bio_list and re-enter the loop
2194 * from the top. In this case we really did just take the bio
2195 * of the top of the list (no pretending) and so remove it from
2196 * bio_list, and call into ->make_request() again.
2197 */
2198 BUG_ON(bio->bi_next);
2199 bio_list_init(&bio_list_on_stack[0]);
2200 current->bio_list = bio_list_on_stack;
2201 do {
2202 struct request_queue *q = bio->bi_disk->queue;
2203
2204 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2205 struct bio_list lower, same;
2206
2207 /* Create a fresh bio_list for all subordinate requests */
2208 bio_list_on_stack[1] = bio_list_on_stack[0];
2209 bio_list_init(&bio_list_on_stack[0]);
2210 ret = q->make_request_fn(q, bio);
2211
2212 blk_queue_exit(q);
2213
2214 /* sort new bios into those for a lower level
2215 * and those for the same level
2216 */
2217 bio_list_init(&lower);
2218 bio_list_init(&same);
2219 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2220 if (q == bio->bi_disk->queue)
2221 bio_list_add(&same, bio);
2222 else
2223 bio_list_add(&lower, bio);
2224 /* now assemble so we handle the lowest level first */
2225 bio_list_merge(&bio_list_on_stack[0], &lower);
2226 bio_list_merge(&bio_list_on_stack[0], &same);
2227 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2228 } else {
2229 if (unlikely(!blk_queue_dying(q) &&
2230 (bio->bi_opf & REQ_NOWAIT)))
2231 bio_wouldblock_error(bio);
2232 else
2233 bio_io_error(bio);
2234 }
2235 bio = bio_list_pop(&bio_list_on_stack[0]);
2236 } while (bio);
2237 current->bio_list = NULL; /* deactivate */
2238
2239 out:
2240 return ret;
2241 }
2242 EXPORT_SYMBOL(generic_make_request);
2243
2244 /**
2245 * submit_bio - submit a bio to the block device layer for I/O
2246 * @bio: The &struct bio which describes the I/O
2247 *
2248 * submit_bio() is very similar in purpose to generic_make_request(), and
2249 * uses that function to do most of the work. Both are fairly rough
2250 * interfaces; @bio must be presetup and ready for I/O.
2251 *
2252 */
2253 blk_qc_t submit_bio(struct bio *bio)
2254 {
2255 /*
2256 * If it's a regular read/write or a barrier with data attached,
2257 * go through the normal accounting stuff before submission.
2258 */
2259 if (bio_has_data(bio)) {
2260 unsigned int count;
2261
2262 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2263 count = queue_logical_block_size(bio->bi_disk->queue);
2264 else
2265 count = bio_sectors(bio);
2266
2267 if (op_is_write(bio_op(bio))) {
2268 count_vm_events(PGPGOUT, count);
2269 } else {
2270 task_io_account_read(bio->bi_iter.bi_size);
2271 count_vm_events(PGPGIN, count);
2272 }
2273
2274 if (unlikely(block_dump)) {
2275 char b[BDEVNAME_SIZE];
2276 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2277 current->comm, task_pid_nr(current),
2278 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2279 (unsigned long long)bio->bi_iter.bi_sector,
2280 bio_devname(bio, b), count);
2281 }
2282 }
2283
2284 return generic_make_request(bio);
2285 }
2286 EXPORT_SYMBOL(submit_bio);
2287
2288 /**
2289 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2290 * for new the queue limits
2291 * @q: the queue
2292 * @rq: the request being checked
2293 *
2294 * Description:
2295 * @rq may have been made based on weaker limitations of upper-level queues
2296 * in request stacking drivers, and it may violate the limitation of @q.
2297 * Since the block layer and the underlying device driver trust @rq
2298 * after it is inserted to @q, it should be checked against @q before
2299 * the insertion using this generic function.
2300 *
2301 * Request stacking drivers like request-based dm may change the queue
2302 * limits when retrying requests on other queues. Those requests need
2303 * to be checked against the new queue limits again during dispatch.
2304 */
2305 static int blk_cloned_rq_check_limits(struct request_queue *q,
2306 struct request *rq)
2307 {
2308 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2309 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2310 return -EIO;
2311 }
2312
2313 /*
2314 * queue's settings related to segment counting like q->bounce_pfn
2315 * may differ from that of other stacking queues.
2316 * Recalculate it to check the request correctly on this queue's
2317 * limitation.
2318 */
2319 blk_recalc_rq_segments(rq);
2320 if (rq->nr_phys_segments > queue_max_segments(q)) {
2321 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2322 return -EIO;
2323 }
2324
2325 return 0;
2326 }
2327
2328 /**
2329 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2330 * @q: the queue to submit the request
2331 * @rq: the request being queued
2332 */
2333 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2334 {
2335 unsigned long flags;
2336 int where = ELEVATOR_INSERT_BACK;
2337
2338 if (blk_cloned_rq_check_limits(q, rq))
2339 return BLK_STS_IOERR;
2340
2341 if (rq->rq_disk &&
2342 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2343 return BLK_STS_IOERR;
2344
2345 if (q->mq_ops) {
2346 if (blk_queue_io_stat(q))
2347 blk_account_io_start(rq, true);
2348 /*
2349 * Since we have a scheduler attached on the top device,
2350 * bypass a potential scheduler on the bottom device for
2351 * insert.
2352 */
2353 blk_mq_request_bypass_insert(rq);
2354 return BLK_STS_OK;
2355 }
2356
2357 spin_lock_irqsave(q->queue_lock, flags);
2358 if (unlikely(blk_queue_dying(q))) {
2359 spin_unlock_irqrestore(q->queue_lock, flags);
2360 return BLK_STS_IOERR;
2361 }
2362
2363 /*
2364 * Submitting request must be dequeued before calling this function
2365 * because it will be linked to another request_queue
2366 */
2367 BUG_ON(blk_queued_rq(rq));
2368
2369 if (op_is_flush(rq->cmd_flags))
2370 where = ELEVATOR_INSERT_FLUSH;
2371
2372 add_acct_request(q, rq, where);
2373 if (where == ELEVATOR_INSERT_FLUSH)
2374 __blk_run_queue(q);
2375 spin_unlock_irqrestore(q->queue_lock, flags);
2376
2377 return BLK_STS_OK;
2378 }
2379 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2380
2381 /**
2382 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2383 * @rq: request to examine
2384 *
2385 * Description:
2386 * A request could be merge of IOs which require different failure
2387 * handling. This function determines the number of bytes which
2388 * can be failed from the beginning of the request without
2389 * crossing into area which need to be retried further.
2390 *
2391 * Return:
2392 * The number of bytes to fail.
2393 */
2394 unsigned int blk_rq_err_bytes(const struct request *rq)
2395 {
2396 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2397 unsigned int bytes = 0;
2398 struct bio *bio;
2399
2400 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2401 return blk_rq_bytes(rq);
2402
2403 /*
2404 * Currently the only 'mixing' which can happen is between
2405 * different fastfail types. We can safely fail portions
2406 * which have all the failfast bits that the first one has -
2407 * the ones which are at least as eager to fail as the first
2408 * one.
2409 */
2410 for (bio = rq->bio; bio; bio = bio->bi_next) {
2411 if ((bio->bi_opf & ff) != ff)
2412 break;
2413 bytes += bio->bi_iter.bi_size;
2414 }
2415
2416 /* this could lead to infinite loop */
2417 BUG_ON(blk_rq_bytes(rq) && !bytes);
2418 return bytes;
2419 }
2420 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2421
2422 void blk_account_io_completion(struct request *req, unsigned int bytes)
2423 {
2424 if (blk_do_io_stat(req)) {
2425 const int rw = rq_data_dir(req);
2426 struct hd_struct *part;
2427 int cpu;
2428
2429 cpu = part_stat_lock();
2430 part = req->part;
2431 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2432 part_stat_unlock();
2433 }
2434 }
2435
2436 void blk_account_io_done(struct request *req)
2437 {
2438 /*
2439 * Account IO completion. flush_rq isn't accounted as a
2440 * normal IO on queueing nor completion. Accounting the
2441 * containing request is enough.
2442 */
2443 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2444 unsigned long duration = jiffies - req->start_time;
2445 const int rw = rq_data_dir(req);
2446 struct hd_struct *part;
2447 int cpu;
2448
2449 cpu = part_stat_lock();
2450 part = req->part;
2451
2452 part_stat_inc(cpu, part, ios[rw]);
2453 part_stat_add(cpu, part, ticks[rw], duration);
2454 part_round_stats(req->q, cpu, part);
2455 part_dec_in_flight(req->q, part, rw);
2456
2457 hd_struct_put(part);
2458 part_stat_unlock();
2459 }
2460 }
2461
2462 #ifdef CONFIG_PM
2463 /*
2464 * Don't process normal requests when queue is suspended
2465 * or in the process of suspending/resuming
2466 */
2467 static struct request *blk_pm_peek_request(struct request_queue *q,
2468 struct request *rq)
2469 {
2470 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2471 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2472 return NULL;
2473 else
2474 return rq;
2475 }
2476 #else
2477 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2478 struct request *rq)
2479 {
2480 return rq;
2481 }
2482 #endif
2483
2484 void blk_account_io_start(struct request *rq, bool new_io)
2485 {
2486 struct hd_struct *part;
2487 int rw = rq_data_dir(rq);
2488 int cpu;
2489
2490 if (!blk_do_io_stat(rq))
2491 return;
2492
2493 cpu = part_stat_lock();
2494
2495 if (!new_io) {
2496 part = rq->part;
2497 part_stat_inc(cpu, part, merges[rw]);
2498 } else {
2499 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2500 if (!hd_struct_try_get(part)) {
2501 /*
2502 * The partition is already being removed,
2503 * the request will be accounted on the disk only
2504 *
2505 * We take a reference on disk->part0 although that
2506 * partition will never be deleted, so we can treat
2507 * it as any other partition.
2508 */
2509 part = &rq->rq_disk->part0;
2510 hd_struct_get(part);
2511 }
2512 part_round_stats(rq->q, cpu, part);
2513 part_inc_in_flight(rq->q, part, rw);
2514 rq->part = part;
2515 }
2516
2517 part_stat_unlock();
2518 }
2519
2520 /**
2521 * blk_peek_request - peek at the top of a request queue
2522 * @q: request queue to peek at
2523 *
2524 * Description:
2525 * Return the request at the top of @q. The returned request
2526 * should be started using blk_start_request() before LLD starts
2527 * processing it.
2528 *
2529 * Return:
2530 * Pointer to the request at the top of @q if available. Null
2531 * otherwise.
2532 */
2533 struct request *blk_peek_request(struct request_queue *q)
2534 {
2535 struct request *rq;
2536 int ret;
2537
2538 lockdep_assert_held(q->queue_lock);
2539 WARN_ON_ONCE(q->mq_ops);
2540
2541 while ((rq = __elv_next_request(q)) != NULL) {
2542
2543 rq = blk_pm_peek_request(q, rq);
2544 if (!rq)
2545 break;
2546
2547 if (!(rq->rq_flags & RQF_STARTED)) {
2548 /*
2549 * This is the first time the device driver
2550 * sees this request (possibly after
2551 * requeueing). Notify IO scheduler.
2552 */
2553 if (rq->rq_flags & RQF_SORTED)
2554 elv_activate_rq(q, rq);
2555
2556 /*
2557 * just mark as started even if we don't start
2558 * it, a request that has been delayed should
2559 * not be passed by new incoming requests
2560 */
2561 rq->rq_flags |= RQF_STARTED;
2562 trace_block_rq_issue(q, rq);
2563 }
2564
2565 if (!q->boundary_rq || q->boundary_rq == rq) {
2566 q->end_sector = rq_end_sector(rq);
2567 q->boundary_rq = NULL;
2568 }
2569
2570 if (rq->rq_flags & RQF_DONTPREP)
2571 break;
2572
2573 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2574 /*
2575 * make sure space for the drain appears we
2576 * know we can do this because max_hw_segments
2577 * has been adjusted to be one fewer than the
2578 * device can handle
2579 */
2580 rq->nr_phys_segments++;
2581 }
2582
2583 if (!q->prep_rq_fn)
2584 break;
2585
2586 ret = q->prep_rq_fn(q, rq);
2587 if (ret == BLKPREP_OK) {
2588 break;
2589 } else if (ret == BLKPREP_DEFER) {
2590 /*
2591 * the request may have been (partially) prepped.
2592 * we need to keep this request in the front to
2593 * avoid resource deadlock. RQF_STARTED will
2594 * prevent other fs requests from passing this one.
2595 */
2596 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2597 !(rq->rq_flags & RQF_DONTPREP)) {
2598 /*
2599 * remove the space for the drain we added
2600 * so that we don't add it again
2601 */
2602 --rq->nr_phys_segments;
2603 }
2604
2605 rq = NULL;
2606 break;
2607 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2608 rq->rq_flags |= RQF_QUIET;
2609 /*
2610 * Mark this request as started so we don't trigger
2611 * any debug logic in the end I/O path.
2612 */
2613 blk_start_request(rq);
2614 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2615 BLK_STS_TARGET : BLK_STS_IOERR);
2616 } else {
2617 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2618 break;
2619 }
2620 }
2621
2622 return rq;
2623 }
2624 EXPORT_SYMBOL(blk_peek_request);
2625
2626 static void blk_dequeue_request(struct request *rq)
2627 {
2628 struct request_queue *q = rq->q;
2629
2630 BUG_ON(list_empty(&rq->queuelist));
2631 BUG_ON(ELV_ON_HASH(rq));
2632
2633 list_del_init(&rq->queuelist);
2634
2635 /*
2636 * the time frame between a request being removed from the lists
2637 * and to it is freed is accounted as io that is in progress at
2638 * the driver side.
2639 */
2640 if (blk_account_rq(rq)) {
2641 q->in_flight[rq_is_sync(rq)]++;
2642 set_io_start_time_ns(rq);
2643 }
2644 }
2645
2646 /**
2647 * blk_start_request - start request processing on the driver
2648 * @req: request to dequeue
2649 *
2650 * Description:
2651 * Dequeue @req and start timeout timer on it. This hands off the
2652 * request to the driver.
2653 */
2654 void blk_start_request(struct request *req)
2655 {
2656 lockdep_assert_held(req->q->queue_lock);
2657 WARN_ON_ONCE(req->q->mq_ops);
2658
2659 blk_dequeue_request(req);
2660
2661 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2662 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2663 req->rq_flags |= RQF_STATS;
2664 wbt_issue(req->q->rq_wb, &req->issue_stat);
2665 }
2666
2667 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2668 blk_add_timer(req);
2669 }
2670 EXPORT_SYMBOL(blk_start_request);
2671
2672 /**
2673 * blk_fetch_request - fetch a request from a request queue
2674 * @q: request queue to fetch a request from
2675 *
2676 * Description:
2677 * Return the request at the top of @q. The request is started on
2678 * return and LLD can start processing it immediately.
2679 *
2680 * Return:
2681 * Pointer to the request at the top of @q if available. Null
2682 * otherwise.
2683 */
2684 struct request *blk_fetch_request(struct request_queue *q)
2685 {
2686 struct request *rq;
2687
2688 lockdep_assert_held(q->queue_lock);
2689 WARN_ON_ONCE(q->mq_ops);
2690
2691 rq = blk_peek_request(q);
2692 if (rq)
2693 blk_start_request(rq);
2694 return rq;
2695 }
2696 EXPORT_SYMBOL(blk_fetch_request);
2697
2698 /**
2699 * blk_update_request - Special helper function for request stacking drivers
2700 * @req: the request being processed
2701 * @error: block status code
2702 * @nr_bytes: number of bytes to complete @req
2703 *
2704 * Description:
2705 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2706 * the request structure even if @req doesn't have leftover.
2707 * If @req has leftover, sets it up for the next range of segments.
2708 *
2709 * This special helper function is only for request stacking drivers
2710 * (e.g. request-based dm) so that they can handle partial completion.
2711 * Actual device drivers should use blk_end_request instead.
2712 *
2713 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2714 * %false return from this function.
2715 *
2716 * Return:
2717 * %false - this request doesn't have any more data
2718 * %true - this request has more data
2719 **/
2720 bool blk_update_request(struct request *req, blk_status_t error,
2721 unsigned int nr_bytes)
2722 {
2723 int total_bytes;
2724
2725 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2726
2727 if (!req->bio)
2728 return false;
2729
2730 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2731 !(req->rq_flags & RQF_QUIET)))
2732 print_req_error(req, error);
2733
2734 blk_account_io_completion(req, nr_bytes);
2735
2736 total_bytes = 0;
2737 while (req->bio) {
2738 struct bio *bio = req->bio;
2739 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2740
2741 if (bio_bytes == bio->bi_iter.bi_size)
2742 req->bio = bio->bi_next;
2743
2744 /* Completion has already been traced */
2745 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2746 req_bio_endio(req, bio, bio_bytes, error);
2747
2748 total_bytes += bio_bytes;
2749 nr_bytes -= bio_bytes;
2750
2751 if (!nr_bytes)
2752 break;
2753 }
2754
2755 /*
2756 * completely done
2757 */
2758 if (!req->bio) {
2759 /*
2760 * Reset counters so that the request stacking driver
2761 * can find how many bytes remain in the request
2762 * later.
2763 */
2764 req->__data_len = 0;
2765 return false;
2766 }
2767
2768 req->__data_len -= total_bytes;
2769
2770 /* update sector only for requests with clear definition of sector */
2771 if (!blk_rq_is_passthrough(req))
2772 req->__sector += total_bytes >> 9;
2773
2774 /* mixed attributes always follow the first bio */
2775 if (req->rq_flags & RQF_MIXED_MERGE) {
2776 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2777 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2778 }
2779
2780 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2781 /*
2782 * If total number of sectors is less than the first segment
2783 * size, something has gone terribly wrong.
2784 */
2785 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2786 blk_dump_rq_flags(req, "request botched");
2787 req->__data_len = blk_rq_cur_bytes(req);
2788 }
2789
2790 /* recalculate the number of segments */
2791 blk_recalc_rq_segments(req);
2792 }
2793
2794 return true;
2795 }
2796 EXPORT_SYMBOL_GPL(blk_update_request);
2797
2798 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2799 unsigned int nr_bytes,
2800 unsigned int bidi_bytes)
2801 {
2802 if (blk_update_request(rq, error, nr_bytes))
2803 return true;
2804
2805 /* Bidi request must be completed as a whole */
2806 if (unlikely(blk_bidi_rq(rq)) &&
2807 blk_update_request(rq->next_rq, error, bidi_bytes))
2808 return true;
2809
2810 if (blk_queue_add_random(rq->q))
2811 add_disk_randomness(rq->rq_disk);
2812
2813 return false;
2814 }
2815
2816 /**
2817 * blk_unprep_request - unprepare a request
2818 * @req: the request
2819 *
2820 * This function makes a request ready for complete resubmission (or
2821 * completion). It happens only after all error handling is complete,
2822 * so represents the appropriate moment to deallocate any resources
2823 * that were allocated to the request in the prep_rq_fn. The queue
2824 * lock is held when calling this.
2825 */
2826 void blk_unprep_request(struct request *req)
2827 {
2828 struct request_queue *q = req->q;
2829
2830 req->rq_flags &= ~RQF_DONTPREP;
2831 if (q->unprep_rq_fn)
2832 q->unprep_rq_fn(q, req);
2833 }
2834 EXPORT_SYMBOL_GPL(blk_unprep_request);
2835
2836 void blk_finish_request(struct request *req, blk_status_t error)
2837 {
2838 struct request_queue *q = req->q;
2839
2840 lockdep_assert_held(req->q->queue_lock);
2841 WARN_ON_ONCE(q->mq_ops);
2842
2843 if (req->rq_flags & RQF_STATS)
2844 blk_stat_add(req);
2845
2846 if (req->rq_flags & RQF_QUEUED)
2847 blk_queue_end_tag(q, req);
2848
2849 BUG_ON(blk_queued_rq(req));
2850
2851 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2852 laptop_io_completion(req->q->backing_dev_info);
2853
2854 blk_delete_timer(req);
2855
2856 if (req->rq_flags & RQF_DONTPREP)
2857 blk_unprep_request(req);
2858
2859 blk_account_io_done(req);
2860
2861 if (req->end_io) {
2862 wbt_done(req->q->rq_wb, &req->issue_stat);
2863 req->end_io(req, error);
2864 } else {
2865 if (blk_bidi_rq(req))
2866 __blk_put_request(req->next_rq->q, req->next_rq);
2867
2868 __blk_put_request(q, req);
2869 }
2870 }
2871 EXPORT_SYMBOL(blk_finish_request);
2872
2873 /**
2874 * blk_end_bidi_request - Complete a bidi request
2875 * @rq: the request to complete
2876 * @error: block status code
2877 * @nr_bytes: number of bytes to complete @rq
2878 * @bidi_bytes: number of bytes to complete @rq->next_rq
2879 *
2880 * Description:
2881 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2882 * Drivers that supports bidi can safely call this member for any
2883 * type of request, bidi or uni. In the later case @bidi_bytes is
2884 * just ignored.
2885 *
2886 * Return:
2887 * %false - we are done with this request
2888 * %true - still buffers pending for this request
2889 **/
2890 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2891 unsigned int nr_bytes, unsigned int bidi_bytes)
2892 {
2893 struct request_queue *q = rq->q;
2894 unsigned long flags;
2895
2896 WARN_ON_ONCE(q->mq_ops);
2897
2898 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2899 return true;
2900
2901 spin_lock_irqsave(q->queue_lock, flags);
2902 blk_finish_request(rq, error);
2903 spin_unlock_irqrestore(q->queue_lock, flags);
2904
2905 return false;
2906 }
2907
2908 /**
2909 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2910 * @rq: the request to complete
2911 * @error: block status code
2912 * @nr_bytes: number of bytes to complete @rq
2913 * @bidi_bytes: number of bytes to complete @rq->next_rq
2914 *
2915 * Description:
2916 * Identical to blk_end_bidi_request() except that queue lock is
2917 * assumed to be locked on entry and remains so on return.
2918 *
2919 * Return:
2920 * %false - we are done with this request
2921 * %true - still buffers pending for this request
2922 **/
2923 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2924 unsigned int nr_bytes, unsigned int bidi_bytes)
2925 {
2926 lockdep_assert_held(rq->q->queue_lock);
2927 WARN_ON_ONCE(rq->q->mq_ops);
2928
2929 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2930 return true;
2931
2932 blk_finish_request(rq, error);
2933
2934 return false;
2935 }
2936
2937 /**
2938 * blk_end_request - Helper function for drivers to complete the request.
2939 * @rq: the request being processed
2940 * @error: block status code
2941 * @nr_bytes: number of bytes to complete
2942 *
2943 * Description:
2944 * Ends I/O on a number of bytes attached to @rq.
2945 * If @rq has leftover, sets it up for the next range of segments.
2946 *
2947 * Return:
2948 * %false - we are done with this request
2949 * %true - still buffers pending for this request
2950 **/
2951 bool blk_end_request(struct request *rq, blk_status_t error,
2952 unsigned int nr_bytes)
2953 {
2954 WARN_ON_ONCE(rq->q->mq_ops);
2955 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2956 }
2957 EXPORT_SYMBOL(blk_end_request);
2958
2959 /**
2960 * blk_end_request_all - Helper function for drives to finish the request.
2961 * @rq: the request to finish
2962 * @error: block status code
2963 *
2964 * Description:
2965 * Completely finish @rq.
2966 */
2967 void blk_end_request_all(struct request *rq, blk_status_t error)
2968 {
2969 bool pending;
2970 unsigned int bidi_bytes = 0;
2971
2972 if (unlikely(blk_bidi_rq(rq)))
2973 bidi_bytes = blk_rq_bytes(rq->next_rq);
2974
2975 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2976 BUG_ON(pending);
2977 }
2978 EXPORT_SYMBOL(blk_end_request_all);
2979
2980 /**
2981 * __blk_end_request - Helper function for drivers to complete the request.
2982 * @rq: the request being processed
2983 * @error: block status code
2984 * @nr_bytes: number of bytes to complete
2985 *
2986 * Description:
2987 * Must be called with queue lock held unlike blk_end_request().
2988 *
2989 * Return:
2990 * %false - we are done with this request
2991 * %true - still buffers pending for this request
2992 **/
2993 bool __blk_end_request(struct request *rq, blk_status_t error,
2994 unsigned int nr_bytes)
2995 {
2996 lockdep_assert_held(rq->q->queue_lock);
2997 WARN_ON_ONCE(rq->q->mq_ops);
2998
2999 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3000 }
3001 EXPORT_SYMBOL(__blk_end_request);
3002
3003 /**
3004 * __blk_end_request_all - Helper function for drives to finish the request.
3005 * @rq: the request to finish
3006 * @error: block status code
3007 *
3008 * Description:
3009 * Completely finish @rq. Must be called with queue lock held.
3010 */
3011 void __blk_end_request_all(struct request *rq, blk_status_t error)
3012 {
3013 bool pending;
3014 unsigned int bidi_bytes = 0;
3015
3016 lockdep_assert_held(rq->q->queue_lock);
3017 WARN_ON_ONCE(rq->q->mq_ops);
3018
3019 if (unlikely(blk_bidi_rq(rq)))
3020 bidi_bytes = blk_rq_bytes(rq->next_rq);
3021
3022 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3023 BUG_ON(pending);
3024 }
3025 EXPORT_SYMBOL(__blk_end_request_all);
3026
3027 /**
3028 * __blk_end_request_cur - Helper function to finish the current request chunk.
3029 * @rq: the request to finish the current chunk for
3030 * @error: block status code
3031 *
3032 * Description:
3033 * Complete the current consecutively mapped chunk from @rq. Must
3034 * be called with queue lock held.
3035 *
3036 * Return:
3037 * %false - we are done with this request
3038 * %true - still buffers pending for this request
3039 */
3040 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3041 {
3042 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3043 }
3044 EXPORT_SYMBOL(__blk_end_request_cur);
3045
3046 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3047 struct bio *bio)
3048 {
3049 if (bio_has_data(bio))
3050 rq->nr_phys_segments = bio_phys_segments(q, bio);
3051
3052 rq->__data_len = bio->bi_iter.bi_size;
3053 rq->bio = rq->biotail = bio;
3054
3055 if (bio->bi_disk)
3056 rq->rq_disk = bio->bi_disk;
3057 }
3058
3059 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3060 /**
3061 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3062 * @rq: the request to be flushed
3063 *
3064 * Description:
3065 * Flush all pages in @rq.
3066 */
3067 void rq_flush_dcache_pages(struct request *rq)
3068 {
3069 struct req_iterator iter;
3070 struct bio_vec bvec;
3071
3072 rq_for_each_segment(bvec, rq, iter)
3073 flush_dcache_page(bvec.bv_page);
3074 }
3075 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3076 #endif
3077
3078 /**
3079 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3080 * @q : the queue of the device being checked
3081 *
3082 * Description:
3083 * Check if underlying low-level drivers of a device are busy.
3084 * If the drivers want to export their busy state, they must set own
3085 * exporting function using blk_queue_lld_busy() first.
3086 *
3087 * Basically, this function is used only by request stacking drivers
3088 * to stop dispatching requests to underlying devices when underlying
3089 * devices are busy. This behavior helps more I/O merging on the queue
3090 * of the request stacking driver and prevents I/O throughput regression
3091 * on burst I/O load.
3092 *
3093 * Return:
3094 * 0 - Not busy (The request stacking driver should dispatch request)
3095 * 1 - Busy (The request stacking driver should stop dispatching request)
3096 */
3097 int blk_lld_busy(struct request_queue *q)
3098 {
3099 if (q->lld_busy_fn)
3100 return q->lld_busy_fn(q);
3101
3102 return 0;
3103 }
3104 EXPORT_SYMBOL_GPL(blk_lld_busy);
3105
3106 /**
3107 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3108 * @rq: the clone request to be cleaned up
3109 *
3110 * Description:
3111 * Free all bios in @rq for a cloned request.
3112 */
3113 void blk_rq_unprep_clone(struct request *rq)
3114 {
3115 struct bio *bio;
3116
3117 while ((bio = rq->bio) != NULL) {
3118 rq->bio = bio->bi_next;
3119
3120 bio_put(bio);
3121 }
3122 }
3123 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3124
3125 /*
3126 * Copy attributes of the original request to the clone request.
3127 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3128 */
3129 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3130 {
3131 dst->cpu = src->cpu;
3132 dst->__sector = blk_rq_pos(src);
3133 dst->__data_len = blk_rq_bytes(src);
3134 dst->nr_phys_segments = src->nr_phys_segments;
3135 dst->ioprio = src->ioprio;
3136 dst->extra_len = src->extra_len;
3137 }
3138
3139 /**
3140 * blk_rq_prep_clone - Helper function to setup clone request
3141 * @rq: the request to be setup
3142 * @rq_src: original request to be cloned
3143 * @bs: bio_set that bios for clone are allocated from
3144 * @gfp_mask: memory allocation mask for bio
3145 * @bio_ctr: setup function to be called for each clone bio.
3146 * Returns %0 for success, non %0 for failure.
3147 * @data: private data to be passed to @bio_ctr
3148 *
3149 * Description:
3150 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3151 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3152 * are not copied, and copying such parts is the caller's responsibility.
3153 * Also, pages which the original bios are pointing to are not copied
3154 * and the cloned bios just point same pages.
3155 * So cloned bios must be completed before original bios, which means
3156 * the caller must complete @rq before @rq_src.
3157 */
3158 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3159 struct bio_set *bs, gfp_t gfp_mask,
3160 int (*bio_ctr)(struct bio *, struct bio *, void *),
3161 void *data)
3162 {
3163 struct bio *bio, *bio_src;
3164
3165 if (!bs)
3166 bs = fs_bio_set;
3167
3168 __rq_for_each_bio(bio_src, rq_src) {
3169 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3170 if (!bio)
3171 goto free_and_out;
3172
3173 if (bio_ctr && bio_ctr(bio, bio_src, data))
3174 goto free_and_out;
3175
3176 if (rq->bio) {
3177 rq->biotail->bi_next = bio;
3178 rq->biotail = bio;
3179 } else
3180 rq->bio = rq->biotail = bio;
3181 }
3182
3183 __blk_rq_prep_clone(rq, rq_src);
3184
3185 return 0;
3186
3187 free_and_out:
3188 if (bio)
3189 bio_put(bio);
3190 blk_rq_unprep_clone(rq);
3191
3192 return -ENOMEM;
3193 }
3194 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3195
3196 int kblockd_schedule_work(struct work_struct *work)
3197 {
3198 return queue_work(kblockd_workqueue, work);
3199 }
3200 EXPORT_SYMBOL(kblockd_schedule_work);
3201
3202 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3203 {
3204 return queue_work_on(cpu, kblockd_workqueue, work);
3205 }
3206 EXPORT_SYMBOL(kblockd_schedule_work_on);
3207
3208 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3209 unsigned long delay)
3210 {
3211 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3212 }
3213 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3214
3215 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3216 unsigned long delay)
3217 {
3218 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3219 }
3220 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3221
3222 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3223 unsigned long delay)
3224 {
3225 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3226 }
3227 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3228
3229 /**
3230 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3231 * @plug: The &struct blk_plug that needs to be initialized
3232 *
3233 * Description:
3234 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3235 * pending I/O should the task end up blocking between blk_start_plug() and
3236 * blk_finish_plug(). This is important from a performance perspective, but
3237 * also ensures that we don't deadlock. For instance, if the task is blocking
3238 * for a memory allocation, memory reclaim could end up wanting to free a
3239 * page belonging to that request that is currently residing in our private
3240 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3241 * this kind of deadlock.
3242 */
3243 void blk_start_plug(struct blk_plug *plug)
3244 {
3245 struct task_struct *tsk = current;
3246
3247 /*
3248 * If this is a nested plug, don't actually assign it.
3249 */
3250 if (tsk->plug)
3251 return;
3252
3253 INIT_LIST_HEAD(&plug->list);
3254 INIT_LIST_HEAD(&plug->mq_list);
3255 INIT_LIST_HEAD(&plug->cb_list);
3256 /*
3257 * Store ordering should not be needed here, since a potential
3258 * preempt will imply a full memory barrier
3259 */
3260 tsk->plug = plug;
3261 }
3262 EXPORT_SYMBOL(blk_start_plug);
3263
3264 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3265 {
3266 struct request *rqa = container_of(a, struct request, queuelist);
3267 struct request *rqb = container_of(b, struct request, queuelist);
3268
3269 return !(rqa->q < rqb->q ||
3270 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3271 }
3272
3273 /*
3274 * If 'from_schedule' is true, then postpone the dispatch of requests
3275 * until a safe kblockd context. We due this to avoid accidental big
3276 * additional stack usage in driver dispatch, in places where the originally
3277 * plugger did not intend it.
3278 */
3279 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3280 bool from_schedule)
3281 __releases(q->queue_lock)
3282 {
3283 lockdep_assert_held(q->queue_lock);
3284
3285 trace_block_unplug(q, depth, !from_schedule);
3286
3287 if (from_schedule)
3288 blk_run_queue_async(q);
3289 else
3290 __blk_run_queue(q);
3291 spin_unlock(q->queue_lock);
3292 }
3293
3294 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3295 {
3296 LIST_HEAD(callbacks);
3297
3298 while (!list_empty(&plug->cb_list)) {
3299 list_splice_init(&plug->cb_list, &callbacks);
3300
3301 while (!list_empty(&callbacks)) {
3302 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3303 struct blk_plug_cb,
3304 list);
3305 list_del(&cb->list);
3306 cb->callback(cb, from_schedule);
3307 }
3308 }
3309 }
3310
3311 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3312 int size)
3313 {
3314 struct blk_plug *plug = current->plug;
3315 struct blk_plug_cb *cb;
3316
3317 if (!plug)
3318 return NULL;
3319
3320 list_for_each_entry(cb, &plug->cb_list, list)
3321 if (cb->callback == unplug && cb->data == data)
3322 return cb;
3323
3324 /* Not currently on the callback list */
3325 BUG_ON(size < sizeof(*cb));
3326 cb = kzalloc(size, GFP_ATOMIC);
3327 if (cb) {
3328 cb->data = data;
3329 cb->callback = unplug;
3330 list_add(&cb->list, &plug->cb_list);
3331 }
3332 return cb;
3333 }
3334 EXPORT_SYMBOL(blk_check_plugged);
3335
3336 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3337 {
3338 struct request_queue *q;
3339 unsigned long flags;
3340 struct request *rq;
3341 LIST_HEAD(list);
3342 unsigned int depth;
3343
3344 flush_plug_callbacks(plug, from_schedule);
3345
3346 if (!list_empty(&plug->mq_list))
3347 blk_mq_flush_plug_list(plug, from_schedule);
3348
3349 if (list_empty(&plug->list))
3350 return;
3351
3352 list_splice_init(&plug->list, &list);
3353
3354 list_sort(NULL, &list, plug_rq_cmp);
3355
3356 q = NULL;
3357 depth = 0;
3358
3359 /*
3360 * Save and disable interrupts here, to avoid doing it for every
3361 * queue lock we have to take.
3362 */
3363 local_irq_save(flags);
3364 while (!list_empty(&list)) {
3365 rq = list_entry_rq(list.next);
3366 list_del_init(&rq->queuelist);
3367 BUG_ON(!rq->q);
3368 if (rq->q != q) {
3369 /*
3370 * This drops the queue lock
3371 */
3372 if (q)
3373 queue_unplugged(q, depth, from_schedule);
3374 q = rq->q;
3375 depth = 0;
3376 spin_lock(q->queue_lock);
3377 }
3378
3379 /*
3380 * Short-circuit if @q is dead
3381 */
3382 if (unlikely(blk_queue_dying(q))) {
3383 __blk_end_request_all(rq, BLK_STS_IOERR);
3384 continue;
3385 }
3386
3387 /*
3388 * rq is already accounted, so use raw insert
3389 */
3390 if (op_is_flush(rq->cmd_flags))
3391 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3392 else
3393 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3394
3395 depth++;
3396 }
3397
3398 /*
3399 * This drops the queue lock
3400 */
3401 if (q)
3402 queue_unplugged(q, depth, from_schedule);
3403
3404 local_irq_restore(flags);
3405 }
3406
3407 void blk_finish_plug(struct blk_plug *plug)
3408 {
3409 if (plug != current->plug)
3410 return;
3411 blk_flush_plug_list(plug, false);
3412
3413 current->plug = NULL;
3414 }
3415 EXPORT_SYMBOL(blk_finish_plug);
3416
3417 #ifdef CONFIG_PM
3418 /**
3419 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3420 * @q: the queue of the device
3421 * @dev: the device the queue belongs to
3422 *
3423 * Description:
3424 * Initialize runtime-PM-related fields for @q and start auto suspend for
3425 * @dev. Drivers that want to take advantage of request-based runtime PM
3426 * should call this function after @dev has been initialized, and its
3427 * request queue @q has been allocated, and runtime PM for it can not happen
3428 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3429 * cases, driver should call this function before any I/O has taken place.
3430 *
3431 * This function takes care of setting up using auto suspend for the device,
3432 * the autosuspend delay is set to -1 to make runtime suspend impossible
3433 * until an updated value is either set by user or by driver. Drivers do
3434 * not need to touch other autosuspend settings.
3435 *
3436 * The block layer runtime PM is request based, so only works for drivers
3437 * that use request as their IO unit instead of those directly use bio's.
3438 */
3439 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3440 {
3441 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3442 if (q->mq_ops)
3443 return;
3444
3445 q->dev = dev;
3446 q->rpm_status = RPM_ACTIVE;
3447 pm_runtime_set_autosuspend_delay(q->dev, -1);
3448 pm_runtime_use_autosuspend(q->dev);
3449 }
3450 EXPORT_SYMBOL(blk_pm_runtime_init);
3451
3452 /**
3453 * blk_pre_runtime_suspend - Pre runtime suspend check
3454 * @q: the queue of the device
3455 *
3456 * Description:
3457 * This function will check if runtime suspend is allowed for the device
3458 * by examining if there are any requests pending in the queue. If there
3459 * are requests pending, the device can not be runtime suspended; otherwise,
3460 * the queue's status will be updated to SUSPENDING and the driver can
3461 * proceed to suspend the device.
3462 *
3463 * For the not allowed case, we mark last busy for the device so that
3464 * runtime PM core will try to autosuspend it some time later.
3465 *
3466 * This function should be called near the start of the device's
3467 * runtime_suspend callback.
3468 *
3469 * Return:
3470 * 0 - OK to runtime suspend the device
3471 * -EBUSY - Device should not be runtime suspended
3472 */
3473 int blk_pre_runtime_suspend(struct request_queue *q)
3474 {
3475 int ret = 0;
3476
3477 if (!q->dev)
3478 return ret;
3479
3480 spin_lock_irq(q->queue_lock);
3481 if (q->nr_pending) {
3482 ret = -EBUSY;
3483 pm_runtime_mark_last_busy(q->dev);
3484 } else {
3485 q->rpm_status = RPM_SUSPENDING;
3486 }
3487 spin_unlock_irq(q->queue_lock);
3488 return ret;
3489 }
3490 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3491
3492 /**
3493 * blk_post_runtime_suspend - Post runtime suspend processing
3494 * @q: the queue of the device
3495 * @err: return value of the device's runtime_suspend function
3496 *
3497 * Description:
3498 * Update the queue's runtime status according to the return value of the
3499 * device's runtime suspend function and mark last busy for the device so
3500 * that PM core will try to auto suspend the device at a later time.
3501 *
3502 * This function should be called near the end of the device's
3503 * runtime_suspend callback.
3504 */
3505 void blk_post_runtime_suspend(struct request_queue *q, int err)
3506 {
3507 if (!q->dev)
3508 return;
3509
3510 spin_lock_irq(q->queue_lock);
3511 if (!err) {
3512 q->rpm_status = RPM_SUSPENDED;
3513 } else {
3514 q->rpm_status = RPM_ACTIVE;
3515 pm_runtime_mark_last_busy(q->dev);
3516 }
3517 spin_unlock_irq(q->queue_lock);
3518 }
3519 EXPORT_SYMBOL(blk_post_runtime_suspend);
3520
3521 /**
3522 * blk_pre_runtime_resume - Pre runtime resume processing
3523 * @q: the queue of the device
3524 *
3525 * Description:
3526 * Update the queue's runtime status to RESUMING in preparation for the
3527 * runtime resume of the device.
3528 *
3529 * This function should be called near the start of the device's
3530 * runtime_resume callback.
3531 */
3532 void blk_pre_runtime_resume(struct request_queue *q)
3533 {
3534 if (!q->dev)
3535 return;
3536
3537 spin_lock_irq(q->queue_lock);
3538 q->rpm_status = RPM_RESUMING;
3539 spin_unlock_irq(q->queue_lock);
3540 }
3541 EXPORT_SYMBOL(blk_pre_runtime_resume);
3542
3543 /**
3544 * blk_post_runtime_resume - Post runtime resume processing
3545 * @q: the queue of the device
3546 * @err: return value of the device's runtime_resume function
3547 *
3548 * Description:
3549 * Update the queue's runtime status according to the return value of the
3550 * device's runtime_resume function. If it is successfully resumed, process
3551 * the requests that are queued into the device's queue when it is resuming
3552 * and then mark last busy and initiate autosuspend for it.
3553 *
3554 * This function should be called near the end of the device's
3555 * runtime_resume callback.
3556 */
3557 void blk_post_runtime_resume(struct request_queue *q, int err)
3558 {
3559 if (!q->dev)
3560 return;
3561
3562 spin_lock_irq(q->queue_lock);
3563 if (!err) {
3564 q->rpm_status = RPM_ACTIVE;
3565 __blk_run_queue(q);
3566 pm_runtime_mark_last_busy(q->dev);
3567 pm_request_autosuspend(q->dev);
3568 } else {
3569 q->rpm_status = RPM_SUSPENDED;
3570 }
3571 spin_unlock_irq(q->queue_lock);
3572 }
3573 EXPORT_SYMBOL(blk_post_runtime_resume);
3574
3575 /**
3576 * blk_set_runtime_active - Force runtime status of the queue to be active
3577 * @q: the queue of the device
3578 *
3579 * If the device is left runtime suspended during system suspend the resume
3580 * hook typically resumes the device and corrects runtime status
3581 * accordingly. However, that does not affect the queue runtime PM status
3582 * which is still "suspended". This prevents processing requests from the
3583 * queue.
3584 *
3585 * This function can be used in driver's resume hook to correct queue
3586 * runtime PM status and re-enable peeking requests from the queue. It
3587 * should be called before first request is added to the queue.
3588 */
3589 void blk_set_runtime_active(struct request_queue *q)
3590 {
3591 spin_lock_irq(q->queue_lock);
3592 q->rpm_status = RPM_ACTIVE;
3593 pm_runtime_mark_last_busy(q->dev);
3594 pm_request_autosuspend(q->dev);
3595 spin_unlock_irq(q->queue_lock);
3596 }
3597 EXPORT_SYMBOL(blk_set_runtime_active);
3598 #endif
3599
3600 int __init blk_dev_init(void)
3601 {
3602 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3603 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3604 FIELD_SIZEOF(struct request, cmd_flags));
3605 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3606 FIELD_SIZEOF(struct bio, bi_opf));
3607
3608 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3609 kblockd_workqueue = alloc_workqueue("kblockd",
3610 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3611 if (!kblockd_workqueue)
3612 panic("Failed to create kblockd\n");
3613
3614 request_cachep = kmem_cache_create("blkdev_requests",
3615 sizeof(struct request), 0, SLAB_PANIC, NULL);
3616
3617 blk_requestq_cachep = kmem_cache_create("request_queue",
3618 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3619
3620 #ifdef CONFIG_DEBUG_FS
3621 blk_debugfs_root = debugfs_create_dir("block", NULL);
3622 #endif
3623
3624 return 0;
3625 }