block: misc updates to blk_get_queue()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35
36 #include "blk.h"
37
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41
42 DEFINE_IDA(blk_queue_ida);
43
44 /*
45 * For the allocated request tables
46 */
47 static struct kmem_cache *request_cachep;
48
49 /*
50 * For queue allocation
51 */
52 struct kmem_cache *blk_requestq_cachep;
53
54 /*
55 * Controlling structure to kblockd
56 */
57 static struct workqueue_struct *kblockd_workqueue;
58
59 static void drive_stat_acct(struct request *rq, int new_io)
60 {
61 struct hd_struct *part;
62 int rw = rq_data_dir(rq);
63 int cpu;
64
65 if (!blk_do_io_stat(rq))
66 return;
67
68 cpu = part_stat_lock();
69
70 if (!new_io) {
71 part = rq->part;
72 part_stat_inc(cpu, part, merges[rw]);
73 } else {
74 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
75 if (!hd_struct_try_get(part)) {
76 /*
77 * The partition is already being removed,
78 * the request will be accounted on the disk only
79 *
80 * We take a reference on disk->part0 although that
81 * partition will never be deleted, so we can treat
82 * it as any other partition.
83 */
84 part = &rq->rq_disk->part0;
85 hd_struct_get(part);
86 }
87 part_round_stats(cpu, part);
88 part_inc_in_flight(part, rw);
89 rq->part = part;
90 }
91
92 part_stat_unlock();
93 }
94
95 void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108 }
109
110 /**
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112 * @bdev: device
113 *
114 * Locates the passed device's request queue and returns the address of its
115 * backing_dev_info
116 *
117 * Will return NULL if the request queue cannot be located.
118 */
119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 struct backing_dev_info *ret = NULL;
122 struct request_queue *q = bdev_get_queue(bdev);
123
124 if (q)
125 ret = &q->backing_dev_info;
126 return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129
130 void blk_rq_init(struct request_queue *q, struct request *rq)
131 {
132 memset(rq, 0, sizeof(*rq));
133
134 INIT_LIST_HEAD(&rq->queuelist);
135 INIT_LIST_HEAD(&rq->timeout_list);
136 rq->cpu = -1;
137 rq->q = q;
138 rq->__sector = (sector_t) -1;
139 INIT_HLIST_NODE(&rq->hash);
140 RB_CLEAR_NODE(&rq->rb_node);
141 rq->cmd = rq->__cmd;
142 rq->cmd_len = BLK_MAX_CDB;
143 rq->tag = -1;
144 rq->ref_count = 1;
145 rq->start_time = jiffies;
146 set_start_time_ns(rq);
147 rq->part = NULL;
148 }
149 EXPORT_SYMBOL(blk_rq_init);
150
151 static void req_bio_endio(struct request *rq, struct bio *bio,
152 unsigned int nbytes, int error)
153 {
154 if (error)
155 clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 error = -EIO;
158
159 if (unlikely(nbytes > bio->bi_size)) {
160 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 __func__, nbytes, bio->bi_size);
162 nbytes = bio->bi_size;
163 }
164
165 if (unlikely(rq->cmd_flags & REQ_QUIET))
166 set_bit(BIO_QUIET, &bio->bi_flags);
167
168 bio->bi_size -= nbytes;
169 bio->bi_sector += (nbytes >> 9);
170
171 if (bio_integrity(bio))
172 bio_integrity_advance(bio, nbytes);
173
174 /* don't actually finish bio if it's part of flush sequence */
175 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 bio_endio(bio, error);
177 }
178
179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 int bit;
182
183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 rq->cmd_flags);
186
187 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
188 (unsigned long long)blk_rq_pos(rq),
189 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
191 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192
193 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
194 printk(KERN_INFO " cdb: ");
195 for (bit = 0; bit < BLK_MAX_CDB; bit++)
196 printk("%02x ", rq->cmd[bit]);
197 printk("\n");
198 }
199 }
200 EXPORT_SYMBOL(blk_dump_rq_flags);
201
202 static void blk_delay_work(struct work_struct *work)
203 {
204 struct request_queue *q;
205
206 q = container_of(work, struct request_queue, delay_work.work);
207 spin_lock_irq(q->queue_lock);
208 __blk_run_queue(q);
209 spin_unlock_irq(q->queue_lock);
210 }
211
212 /**
213 * blk_delay_queue - restart queueing after defined interval
214 * @q: The &struct request_queue in question
215 * @msecs: Delay in msecs
216 *
217 * Description:
218 * Sometimes queueing needs to be postponed for a little while, to allow
219 * resources to come back. This function will make sure that queueing is
220 * restarted around the specified time.
221 */
222 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 {
224 queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 msecs_to_jiffies(msecs));
226 }
227 EXPORT_SYMBOL(blk_delay_queue);
228
229 /**
230 * blk_start_queue - restart a previously stopped queue
231 * @q: The &struct request_queue in question
232 *
233 * Description:
234 * blk_start_queue() will clear the stop flag on the queue, and call
235 * the request_fn for the queue if it was in a stopped state when
236 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 **/
238 void blk_start_queue(struct request_queue *q)
239 {
240 WARN_ON(!irqs_disabled());
241
242 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
243 __blk_run_queue(q);
244 }
245 EXPORT_SYMBOL(blk_start_queue);
246
247 /**
248 * blk_stop_queue - stop a queue
249 * @q: The &struct request_queue in question
250 *
251 * Description:
252 * The Linux block layer assumes that a block driver will consume all
253 * entries on the request queue when the request_fn strategy is called.
254 * Often this will not happen, because of hardware limitations (queue
255 * depth settings). If a device driver gets a 'queue full' response,
256 * or if it simply chooses not to queue more I/O at one point, it can
257 * call this function to prevent the request_fn from being called until
258 * the driver has signalled it's ready to go again. This happens by calling
259 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 **/
261 void blk_stop_queue(struct request_queue *q)
262 {
263 __cancel_delayed_work(&q->delay_work);
264 queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 }
266 EXPORT_SYMBOL(blk_stop_queue);
267
268 /**
269 * blk_sync_queue - cancel any pending callbacks on a queue
270 * @q: the queue
271 *
272 * Description:
273 * The block layer may perform asynchronous callback activity
274 * on a queue, such as calling the unplug function after a timeout.
275 * A block device may call blk_sync_queue to ensure that any
276 * such activity is cancelled, thus allowing it to release resources
277 * that the callbacks might use. The caller must already have made sure
278 * that its ->make_request_fn will not re-add plugging prior to calling
279 * this function.
280 *
281 * This function does not cancel any asynchronous activity arising
282 * out of elevator or throttling code. That would require elevaotor_exit()
283 * and blk_throtl_exit() to be called with queue lock initialized.
284 *
285 */
286 void blk_sync_queue(struct request_queue *q)
287 {
288 del_timer_sync(&q->timeout);
289 cancel_delayed_work_sync(&q->delay_work);
290 }
291 EXPORT_SYMBOL(blk_sync_queue);
292
293 /**
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
300 */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
306 q->request_fn(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309
310 /**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us.
317 */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 if (likely(!blk_queue_stopped(q))) {
321 __cancel_delayed_work(&q->delay_work);
322 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 }
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326
327 /**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
334 */
335 void blk_run_queue(struct request_queue *q)
336 {
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
340 __blk_run_queue(q);
341 spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344
345 void blk_put_queue(struct request_queue *q)
346 {
347 kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350
351 /**
352 * blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355 *
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
359 */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 while (true) {
363 bool drain = false;
364 int i;
365
366 spin_lock_irq(q->queue_lock);
367
368 elv_drain_elevator(q);
369 if (drain_all)
370 blk_throtl_drain(q);
371
372 __blk_run_queue(q);
373
374 drain |= q->rq.elvpriv;
375
376 /*
377 * Unfortunately, requests are queued at and tracked from
378 * multiple places and there's no single counter which can
379 * be drained. Check all the queues and counters.
380 */
381 if (drain_all) {
382 drain |= !list_empty(&q->queue_head);
383 for (i = 0; i < 2; i++) {
384 drain |= q->rq.count[i];
385 drain |= q->in_flight[i];
386 drain |= !list_empty(&q->flush_queue[i]);
387 }
388 }
389
390 spin_unlock_irq(q->queue_lock);
391
392 if (!drain)
393 break;
394 msleep(10);
395 }
396 }
397
398 /**
399 * blk_cleanup_queue - shutdown a request queue
400 * @q: request queue to shutdown
401 *
402 * Mark @q DEAD, drain all pending requests, destroy and put it. All
403 * future requests will be failed immediately with -ENODEV.
404 */
405 void blk_cleanup_queue(struct request_queue *q)
406 {
407 spinlock_t *lock = q->queue_lock;
408
409 /* mark @q DEAD, no new request or merges will be allowed afterwards */
410 mutex_lock(&q->sysfs_lock);
411 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
412
413 spin_lock_irq(lock);
414 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
415 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
416 queue_flag_set(QUEUE_FLAG_DEAD, q);
417
418 if (q->queue_lock != &q->__queue_lock)
419 q->queue_lock = &q->__queue_lock;
420
421 spin_unlock_irq(lock);
422 mutex_unlock(&q->sysfs_lock);
423
424 /*
425 * Drain all requests queued before DEAD marking. The caller might
426 * be trying to tear down @q before its elevator is initialized, in
427 * which case we don't want to call into draining.
428 */
429 if (q->elevator)
430 blk_drain_queue(q, true);
431
432 /* @q won't process any more request, flush async actions */
433 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
434 blk_sync_queue(q);
435
436 /* @q is and will stay empty, shutdown and put */
437 blk_put_queue(q);
438 }
439 EXPORT_SYMBOL(blk_cleanup_queue);
440
441 static int blk_init_free_list(struct request_queue *q)
442 {
443 struct request_list *rl = &q->rq;
444
445 if (unlikely(rl->rq_pool))
446 return 0;
447
448 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
449 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
450 rl->elvpriv = 0;
451 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
452 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
453
454 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
455 mempool_free_slab, request_cachep, q->node);
456
457 if (!rl->rq_pool)
458 return -ENOMEM;
459
460 return 0;
461 }
462
463 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
464 {
465 return blk_alloc_queue_node(gfp_mask, -1);
466 }
467 EXPORT_SYMBOL(blk_alloc_queue);
468
469 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
470 {
471 struct request_queue *q;
472 int err;
473
474 q = kmem_cache_alloc_node(blk_requestq_cachep,
475 gfp_mask | __GFP_ZERO, node_id);
476 if (!q)
477 return NULL;
478
479 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
480 if (q->id < 0)
481 goto fail_q;
482
483 q->backing_dev_info.ra_pages =
484 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
485 q->backing_dev_info.state = 0;
486 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
487 q->backing_dev_info.name = "block";
488
489 err = bdi_init(&q->backing_dev_info);
490 if (err)
491 goto fail_id;
492
493 if (blk_throtl_init(q))
494 goto fail_id;
495
496 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
497 laptop_mode_timer_fn, (unsigned long) q);
498 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
499 INIT_LIST_HEAD(&q->timeout_list);
500 INIT_LIST_HEAD(&q->flush_queue[0]);
501 INIT_LIST_HEAD(&q->flush_queue[1]);
502 INIT_LIST_HEAD(&q->flush_data_in_flight);
503 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
504
505 kobject_init(&q->kobj, &blk_queue_ktype);
506
507 mutex_init(&q->sysfs_lock);
508 spin_lock_init(&q->__queue_lock);
509
510 /*
511 * By default initialize queue_lock to internal lock and driver can
512 * override it later if need be.
513 */
514 q->queue_lock = &q->__queue_lock;
515
516 return q;
517
518 fail_id:
519 ida_simple_remove(&blk_queue_ida, q->id);
520 fail_q:
521 kmem_cache_free(blk_requestq_cachep, q);
522 return NULL;
523 }
524 EXPORT_SYMBOL(blk_alloc_queue_node);
525
526 /**
527 * blk_init_queue - prepare a request queue for use with a block device
528 * @rfn: The function to be called to process requests that have been
529 * placed on the queue.
530 * @lock: Request queue spin lock
531 *
532 * Description:
533 * If a block device wishes to use the standard request handling procedures,
534 * which sorts requests and coalesces adjacent requests, then it must
535 * call blk_init_queue(). The function @rfn will be called when there
536 * are requests on the queue that need to be processed. If the device
537 * supports plugging, then @rfn may not be called immediately when requests
538 * are available on the queue, but may be called at some time later instead.
539 * Plugged queues are generally unplugged when a buffer belonging to one
540 * of the requests on the queue is needed, or due to memory pressure.
541 *
542 * @rfn is not required, or even expected, to remove all requests off the
543 * queue, but only as many as it can handle at a time. If it does leave
544 * requests on the queue, it is responsible for arranging that the requests
545 * get dealt with eventually.
546 *
547 * The queue spin lock must be held while manipulating the requests on the
548 * request queue; this lock will be taken also from interrupt context, so irq
549 * disabling is needed for it.
550 *
551 * Function returns a pointer to the initialized request queue, or %NULL if
552 * it didn't succeed.
553 *
554 * Note:
555 * blk_init_queue() must be paired with a blk_cleanup_queue() call
556 * when the block device is deactivated (such as at module unload).
557 **/
558
559 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
560 {
561 return blk_init_queue_node(rfn, lock, -1);
562 }
563 EXPORT_SYMBOL(blk_init_queue);
564
565 struct request_queue *
566 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
567 {
568 struct request_queue *uninit_q, *q;
569
570 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
571 if (!uninit_q)
572 return NULL;
573
574 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
575 if (!q)
576 blk_cleanup_queue(uninit_q);
577
578 return q;
579 }
580 EXPORT_SYMBOL(blk_init_queue_node);
581
582 struct request_queue *
583 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
584 spinlock_t *lock)
585 {
586 return blk_init_allocated_queue_node(q, rfn, lock, -1);
587 }
588 EXPORT_SYMBOL(blk_init_allocated_queue);
589
590 struct request_queue *
591 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock, int node_id)
593 {
594 if (!q)
595 return NULL;
596
597 q->node = node_id;
598 if (blk_init_free_list(q))
599 return NULL;
600
601 q->request_fn = rfn;
602 q->prep_rq_fn = NULL;
603 q->unprep_rq_fn = NULL;
604 q->queue_flags = QUEUE_FLAG_DEFAULT;
605
606 /* Override internal queue lock with supplied lock pointer */
607 if (lock)
608 q->queue_lock = lock;
609
610 /*
611 * This also sets hw/phys segments, boundary and size
612 */
613 blk_queue_make_request(q, blk_queue_bio);
614
615 q->sg_reserved_size = INT_MAX;
616
617 /*
618 * all done
619 */
620 if (!elevator_init(q, NULL)) {
621 blk_queue_congestion_threshold(q);
622 return q;
623 }
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(blk_init_allocated_queue_node);
628
629 bool blk_get_queue(struct request_queue *q)
630 {
631 if (likely(!blk_queue_dead(q))) {
632 __blk_get_queue(q);
633 return true;
634 }
635
636 return false;
637 }
638 EXPORT_SYMBOL(blk_get_queue);
639
640 static inline void blk_free_request(struct request_queue *q, struct request *rq)
641 {
642 if (rq->cmd_flags & REQ_ELVPRIV)
643 elv_put_request(q, rq);
644 mempool_free(rq, q->rq.rq_pool);
645 }
646
647 static struct request *
648 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
649 {
650 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
651
652 if (!rq)
653 return NULL;
654
655 blk_rq_init(q, rq);
656
657 rq->cmd_flags = flags | REQ_ALLOCED;
658
659 if ((flags & REQ_ELVPRIV) &&
660 unlikely(elv_set_request(q, rq, gfp_mask))) {
661 mempool_free(rq, q->rq.rq_pool);
662 return NULL;
663 }
664
665 return rq;
666 }
667
668 /*
669 * ioc_batching returns true if the ioc is a valid batching request and
670 * should be given priority access to a request.
671 */
672 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
673 {
674 if (!ioc)
675 return 0;
676
677 /*
678 * Make sure the process is able to allocate at least 1 request
679 * even if the batch times out, otherwise we could theoretically
680 * lose wakeups.
681 */
682 return ioc->nr_batch_requests == q->nr_batching ||
683 (ioc->nr_batch_requests > 0
684 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
685 }
686
687 /*
688 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
689 * will cause the process to be a "batcher" on all queues in the system. This
690 * is the behaviour we want though - once it gets a wakeup it should be given
691 * a nice run.
692 */
693 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
694 {
695 if (!ioc || ioc_batching(q, ioc))
696 return;
697
698 ioc->nr_batch_requests = q->nr_batching;
699 ioc->last_waited = jiffies;
700 }
701
702 static void __freed_request(struct request_queue *q, int sync)
703 {
704 struct request_list *rl = &q->rq;
705
706 if (rl->count[sync] < queue_congestion_off_threshold(q))
707 blk_clear_queue_congested(q, sync);
708
709 if (rl->count[sync] + 1 <= q->nr_requests) {
710 if (waitqueue_active(&rl->wait[sync]))
711 wake_up(&rl->wait[sync]);
712
713 blk_clear_queue_full(q, sync);
714 }
715 }
716
717 /*
718 * A request has just been released. Account for it, update the full and
719 * congestion status, wake up any waiters. Called under q->queue_lock.
720 */
721 static void freed_request(struct request_queue *q, unsigned int flags)
722 {
723 struct request_list *rl = &q->rq;
724 int sync = rw_is_sync(flags);
725
726 rl->count[sync]--;
727 if (flags & REQ_ELVPRIV)
728 rl->elvpriv--;
729
730 __freed_request(q, sync);
731
732 if (unlikely(rl->starved[sync ^ 1]))
733 __freed_request(q, sync ^ 1);
734 }
735
736 /*
737 * Determine if elevator data should be initialized when allocating the
738 * request associated with @bio.
739 */
740 static bool blk_rq_should_init_elevator(struct bio *bio)
741 {
742 if (!bio)
743 return true;
744
745 /*
746 * Flush requests do not use the elevator so skip initialization.
747 * This allows a request to share the flush and elevator data.
748 */
749 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
750 return false;
751
752 return true;
753 }
754
755 /**
756 * get_request - get a free request
757 * @q: request_queue to allocate request from
758 * @rw_flags: RW and SYNC flags
759 * @bio: bio to allocate request for (can be %NULL)
760 * @gfp_mask: allocation mask
761 *
762 * Get a free request from @q. This function may fail under memory
763 * pressure or if @q is dead.
764 *
765 * Must be callled with @q->queue_lock held and,
766 * Returns %NULL on failure, with @q->queue_lock held.
767 * Returns !%NULL on success, with @q->queue_lock *not held*.
768 */
769 static struct request *get_request(struct request_queue *q, int rw_flags,
770 struct bio *bio, gfp_t gfp_mask)
771 {
772 struct request *rq = NULL;
773 struct request_list *rl = &q->rq;
774 struct io_context *ioc = NULL;
775 const bool is_sync = rw_is_sync(rw_flags) != 0;
776 int may_queue;
777
778 if (unlikely(blk_queue_dead(q)))
779 return NULL;
780
781 may_queue = elv_may_queue(q, rw_flags);
782 if (may_queue == ELV_MQUEUE_NO)
783 goto rq_starved;
784
785 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
786 if (rl->count[is_sync]+1 >= q->nr_requests) {
787 ioc = current_io_context(GFP_ATOMIC, q->node);
788 /*
789 * The queue will fill after this allocation, so set
790 * it as full, and mark this process as "batching".
791 * This process will be allowed to complete a batch of
792 * requests, others will be blocked.
793 */
794 if (!blk_queue_full(q, is_sync)) {
795 ioc_set_batching(q, ioc);
796 blk_set_queue_full(q, is_sync);
797 } else {
798 if (may_queue != ELV_MQUEUE_MUST
799 && !ioc_batching(q, ioc)) {
800 /*
801 * The queue is full and the allocating
802 * process is not a "batcher", and not
803 * exempted by the IO scheduler
804 */
805 goto out;
806 }
807 }
808 }
809 blk_set_queue_congested(q, is_sync);
810 }
811
812 /*
813 * Only allow batching queuers to allocate up to 50% over the defined
814 * limit of requests, otherwise we could have thousands of requests
815 * allocated with any setting of ->nr_requests
816 */
817 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
818 goto out;
819
820 rl->count[is_sync]++;
821 rl->starved[is_sync] = 0;
822
823 if (blk_rq_should_init_elevator(bio) &&
824 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
825 rw_flags |= REQ_ELVPRIV;
826 rl->elvpriv++;
827 }
828
829 if (blk_queue_io_stat(q))
830 rw_flags |= REQ_IO_STAT;
831 spin_unlock_irq(q->queue_lock);
832
833 rq = blk_alloc_request(q, rw_flags, gfp_mask);
834 if (unlikely(!rq)) {
835 /*
836 * Allocation failed presumably due to memory. Undo anything
837 * we might have messed up.
838 *
839 * Allocating task should really be put onto the front of the
840 * wait queue, but this is pretty rare.
841 */
842 spin_lock_irq(q->queue_lock);
843 freed_request(q, rw_flags);
844
845 /*
846 * in the very unlikely event that allocation failed and no
847 * requests for this direction was pending, mark us starved
848 * so that freeing of a request in the other direction will
849 * notice us. another possible fix would be to split the
850 * rq mempool into READ and WRITE
851 */
852 rq_starved:
853 if (unlikely(rl->count[is_sync] == 0))
854 rl->starved[is_sync] = 1;
855
856 goto out;
857 }
858
859 /*
860 * ioc may be NULL here, and ioc_batching will be false. That's
861 * OK, if the queue is under the request limit then requests need
862 * not count toward the nr_batch_requests limit. There will always
863 * be some limit enforced by BLK_BATCH_TIME.
864 */
865 if (ioc_batching(q, ioc))
866 ioc->nr_batch_requests--;
867
868 trace_block_getrq(q, bio, rw_flags & 1);
869 out:
870 return rq;
871 }
872
873 /**
874 * get_request_wait - get a free request with retry
875 * @q: request_queue to allocate request from
876 * @rw_flags: RW and SYNC flags
877 * @bio: bio to allocate request for (can be %NULL)
878 *
879 * Get a free request from @q. This function keeps retrying under memory
880 * pressure and fails iff @q is dead.
881 *
882 * Must be callled with @q->queue_lock held and,
883 * Returns %NULL on failure, with @q->queue_lock held.
884 * Returns !%NULL on success, with @q->queue_lock *not held*.
885 */
886 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
887 struct bio *bio)
888 {
889 const bool is_sync = rw_is_sync(rw_flags) != 0;
890 struct request *rq;
891
892 rq = get_request(q, rw_flags, bio, GFP_NOIO);
893 while (!rq) {
894 DEFINE_WAIT(wait);
895 struct io_context *ioc;
896 struct request_list *rl = &q->rq;
897
898 if (unlikely(blk_queue_dead(q)))
899 return NULL;
900
901 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
902 TASK_UNINTERRUPTIBLE);
903
904 trace_block_sleeprq(q, bio, rw_flags & 1);
905
906 spin_unlock_irq(q->queue_lock);
907 io_schedule();
908
909 /*
910 * After sleeping, we become a "batching" process and
911 * will be able to allocate at least one request, and
912 * up to a big batch of them for a small period time.
913 * See ioc_batching, ioc_set_batching
914 */
915 ioc = current_io_context(GFP_NOIO, q->node);
916 ioc_set_batching(q, ioc);
917
918 spin_lock_irq(q->queue_lock);
919 finish_wait(&rl->wait[is_sync], &wait);
920
921 rq = get_request(q, rw_flags, bio, GFP_NOIO);
922 };
923
924 return rq;
925 }
926
927 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
928 {
929 struct request *rq;
930
931 BUG_ON(rw != READ && rw != WRITE);
932
933 spin_lock_irq(q->queue_lock);
934 if (gfp_mask & __GFP_WAIT)
935 rq = get_request_wait(q, rw, NULL);
936 else
937 rq = get_request(q, rw, NULL, gfp_mask);
938 if (!rq)
939 spin_unlock_irq(q->queue_lock);
940 /* q->queue_lock is unlocked at this point */
941
942 return rq;
943 }
944 EXPORT_SYMBOL(blk_get_request);
945
946 /**
947 * blk_make_request - given a bio, allocate a corresponding struct request.
948 * @q: target request queue
949 * @bio: The bio describing the memory mappings that will be submitted for IO.
950 * It may be a chained-bio properly constructed by block/bio layer.
951 * @gfp_mask: gfp flags to be used for memory allocation
952 *
953 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
954 * type commands. Where the struct request needs to be farther initialized by
955 * the caller. It is passed a &struct bio, which describes the memory info of
956 * the I/O transfer.
957 *
958 * The caller of blk_make_request must make sure that bi_io_vec
959 * are set to describe the memory buffers. That bio_data_dir() will return
960 * the needed direction of the request. (And all bio's in the passed bio-chain
961 * are properly set accordingly)
962 *
963 * If called under none-sleepable conditions, mapped bio buffers must not
964 * need bouncing, by calling the appropriate masked or flagged allocator,
965 * suitable for the target device. Otherwise the call to blk_queue_bounce will
966 * BUG.
967 *
968 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
969 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
970 * anything but the first bio in the chain. Otherwise you risk waiting for IO
971 * completion of a bio that hasn't been submitted yet, thus resulting in a
972 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
973 * of bio_alloc(), as that avoids the mempool deadlock.
974 * If possible a big IO should be split into smaller parts when allocation
975 * fails. Partial allocation should not be an error, or you risk a live-lock.
976 */
977 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
978 gfp_t gfp_mask)
979 {
980 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
981
982 if (unlikely(!rq))
983 return ERR_PTR(-ENOMEM);
984
985 for_each_bio(bio) {
986 struct bio *bounce_bio = bio;
987 int ret;
988
989 blk_queue_bounce(q, &bounce_bio);
990 ret = blk_rq_append_bio(q, rq, bounce_bio);
991 if (unlikely(ret)) {
992 blk_put_request(rq);
993 return ERR_PTR(ret);
994 }
995 }
996
997 return rq;
998 }
999 EXPORT_SYMBOL(blk_make_request);
1000
1001 /**
1002 * blk_requeue_request - put a request back on queue
1003 * @q: request queue where request should be inserted
1004 * @rq: request to be inserted
1005 *
1006 * Description:
1007 * Drivers often keep queueing requests until the hardware cannot accept
1008 * more, when that condition happens we need to put the request back
1009 * on the queue. Must be called with queue lock held.
1010 */
1011 void blk_requeue_request(struct request_queue *q, struct request *rq)
1012 {
1013 blk_delete_timer(rq);
1014 blk_clear_rq_complete(rq);
1015 trace_block_rq_requeue(q, rq);
1016
1017 if (blk_rq_tagged(rq))
1018 blk_queue_end_tag(q, rq);
1019
1020 BUG_ON(blk_queued_rq(rq));
1021
1022 elv_requeue_request(q, rq);
1023 }
1024 EXPORT_SYMBOL(blk_requeue_request);
1025
1026 static void add_acct_request(struct request_queue *q, struct request *rq,
1027 int where)
1028 {
1029 drive_stat_acct(rq, 1);
1030 __elv_add_request(q, rq, where);
1031 }
1032
1033 static void part_round_stats_single(int cpu, struct hd_struct *part,
1034 unsigned long now)
1035 {
1036 if (now == part->stamp)
1037 return;
1038
1039 if (part_in_flight(part)) {
1040 __part_stat_add(cpu, part, time_in_queue,
1041 part_in_flight(part) * (now - part->stamp));
1042 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1043 }
1044 part->stamp = now;
1045 }
1046
1047 /**
1048 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1049 * @cpu: cpu number for stats access
1050 * @part: target partition
1051 *
1052 * The average IO queue length and utilisation statistics are maintained
1053 * by observing the current state of the queue length and the amount of
1054 * time it has been in this state for.
1055 *
1056 * Normally, that accounting is done on IO completion, but that can result
1057 * in more than a second's worth of IO being accounted for within any one
1058 * second, leading to >100% utilisation. To deal with that, we call this
1059 * function to do a round-off before returning the results when reading
1060 * /proc/diskstats. This accounts immediately for all queue usage up to
1061 * the current jiffies and restarts the counters again.
1062 */
1063 void part_round_stats(int cpu, struct hd_struct *part)
1064 {
1065 unsigned long now = jiffies;
1066
1067 if (part->partno)
1068 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1069 part_round_stats_single(cpu, part, now);
1070 }
1071 EXPORT_SYMBOL_GPL(part_round_stats);
1072
1073 /*
1074 * queue lock must be held
1075 */
1076 void __blk_put_request(struct request_queue *q, struct request *req)
1077 {
1078 if (unlikely(!q))
1079 return;
1080 if (unlikely(--req->ref_count))
1081 return;
1082
1083 elv_completed_request(q, req);
1084
1085 /* this is a bio leak */
1086 WARN_ON(req->bio != NULL);
1087
1088 /*
1089 * Request may not have originated from ll_rw_blk. if not,
1090 * it didn't come out of our reserved rq pools
1091 */
1092 if (req->cmd_flags & REQ_ALLOCED) {
1093 unsigned int flags = req->cmd_flags;
1094
1095 BUG_ON(!list_empty(&req->queuelist));
1096 BUG_ON(!hlist_unhashed(&req->hash));
1097
1098 blk_free_request(q, req);
1099 freed_request(q, flags);
1100 }
1101 }
1102 EXPORT_SYMBOL_GPL(__blk_put_request);
1103
1104 void blk_put_request(struct request *req)
1105 {
1106 unsigned long flags;
1107 struct request_queue *q = req->q;
1108
1109 spin_lock_irqsave(q->queue_lock, flags);
1110 __blk_put_request(q, req);
1111 spin_unlock_irqrestore(q->queue_lock, flags);
1112 }
1113 EXPORT_SYMBOL(blk_put_request);
1114
1115 /**
1116 * blk_add_request_payload - add a payload to a request
1117 * @rq: request to update
1118 * @page: page backing the payload
1119 * @len: length of the payload.
1120 *
1121 * This allows to later add a payload to an already submitted request by
1122 * a block driver. The driver needs to take care of freeing the payload
1123 * itself.
1124 *
1125 * Note that this is a quite horrible hack and nothing but handling of
1126 * discard requests should ever use it.
1127 */
1128 void blk_add_request_payload(struct request *rq, struct page *page,
1129 unsigned int len)
1130 {
1131 struct bio *bio = rq->bio;
1132
1133 bio->bi_io_vec->bv_page = page;
1134 bio->bi_io_vec->bv_offset = 0;
1135 bio->bi_io_vec->bv_len = len;
1136
1137 bio->bi_size = len;
1138 bio->bi_vcnt = 1;
1139 bio->bi_phys_segments = 1;
1140
1141 rq->__data_len = rq->resid_len = len;
1142 rq->nr_phys_segments = 1;
1143 rq->buffer = bio_data(bio);
1144 }
1145 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1146
1147 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1148 struct bio *bio)
1149 {
1150 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1151
1152 if (!ll_back_merge_fn(q, req, bio))
1153 return false;
1154
1155 trace_block_bio_backmerge(q, bio);
1156
1157 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1158 blk_rq_set_mixed_merge(req);
1159
1160 req->biotail->bi_next = bio;
1161 req->biotail = bio;
1162 req->__data_len += bio->bi_size;
1163 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1164
1165 drive_stat_acct(req, 0);
1166 elv_bio_merged(q, req, bio);
1167 return true;
1168 }
1169
1170 static bool bio_attempt_front_merge(struct request_queue *q,
1171 struct request *req, struct bio *bio)
1172 {
1173 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1174
1175 if (!ll_front_merge_fn(q, req, bio))
1176 return false;
1177
1178 trace_block_bio_frontmerge(q, bio);
1179
1180 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1181 blk_rq_set_mixed_merge(req);
1182
1183 bio->bi_next = req->bio;
1184 req->bio = bio;
1185
1186 /*
1187 * may not be valid. if the low level driver said
1188 * it didn't need a bounce buffer then it better
1189 * not touch req->buffer either...
1190 */
1191 req->buffer = bio_data(bio);
1192 req->__sector = bio->bi_sector;
1193 req->__data_len += bio->bi_size;
1194 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1195
1196 drive_stat_acct(req, 0);
1197 elv_bio_merged(q, req, bio);
1198 return true;
1199 }
1200
1201 /**
1202 * attempt_plug_merge - try to merge with %current's plugged list
1203 * @q: request_queue new bio is being queued at
1204 * @bio: new bio being queued
1205 * @request_count: out parameter for number of traversed plugged requests
1206 *
1207 * Determine whether @bio being queued on @q can be merged with a request
1208 * on %current's plugged list. Returns %true if merge was successful,
1209 * otherwise %false.
1210 *
1211 * This function is called without @q->queue_lock; however, elevator is
1212 * accessed iff there already are requests on the plugged list which in
1213 * turn guarantees validity of the elevator.
1214 *
1215 * Note that, on successful merge, elevator operation
1216 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1217 * must be ready for this.
1218 */
1219 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1220 unsigned int *request_count)
1221 {
1222 struct blk_plug *plug;
1223 struct request *rq;
1224 bool ret = false;
1225
1226 plug = current->plug;
1227 if (!plug)
1228 goto out;
1229 *request_count = 0;
1230
1231 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1232 int el_ret;
1233
1234 (*request_count)++;
1235
1236 if (rq->q != q)
1237 continue;
1238
1239 el_ret = elv_try_merge(rq, bio);
1240 if (el_ret == ELEVATOR_BACK_MERGE) {
1241 ret = bio_attempt_back_merge(q, rq, bio);
1242 if (ret)
1243 break;
1244 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1245 ret = bio_attempt_front_merge(q, rq, bio);
1246 if (ret)
1247 break;
1248 }
1249 }
1250 out:
1251 return ret;
1252 }
1253
1254 void init_request_from_bio(struct request *req, struct bio *bio)
1255 {
1256 req->cmd_type = REQ_TYPE_FS;
1257
1258 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1259 if (bio->bi_rw & REQ_RAHEAD)
1260 req->cmd_flags |= REQ_FAILFAST_MASK;
1261
1262 req->errors = 0;
1263 req->__sector = bio->bi_sector;
1264 req->ioprio = bio_prio(bio);
1265 blk_rq_bio_prep(req->q, req, bio);
1266 }
1267
1268 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1269 {
1270 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1271 struct blk_plug *plug;
1272 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1273 struct request *req;
1274 unsigned int request_count = 0;
1275
1276 /*
1277 * low level driver can indicate that it wants pages above a
1278 * certain limit bounced to low memory (ie for highmem, or even
1279 * ISA dma in theory)
1280 */
1281 blk_queue_bounce(q, &bio);
1282
1283 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1284 spin_lock_irq(q->queue_lock);
1285 where = ELEVATOR_INSERT_FLUSH;
1286 goto get_rq;
1287 }
1288
1289 /*
1290 * Check if we can merge with the plugged list before grabbing
1291 * any locks.
1292 */
1293 if (attempt_plug_merge(q, bio, &request_count))
1294 return;
1295
1296 spin_lock_irq(q->queue_lock);
1297
1298 el_ret = elv_merge(q, &req, bio);
1299 if (el_ret == ELEVATOR_BACK_MERGE) {
1300 if (bio_attempt_back_merge(q, req, bio)) {
1301 if (!attempt_back_merge(q, req))
1302 elv_merged_request(q, req, el_ret);
1303 goto out_unlock;
1304 }
1305 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1306 if (bio_attempt_front_merge(q, req, bio)) {
1307 if (!attempt_front_merge(q, req))
1308 elv_merged_request(q, req, el_ret);
1309 goto out_unlock;
1310 }
1311 }
1312
1313 get_rq:
1314 /*
1315 * This sync check and mask will be re-done in init_request_from_bio(),
1316 * but we need to set it earlier to expose the sync flag to the
1317 * rq allocator and io schedulers.
1318 */
1319 rw_flags = bio_data_dir(bio);
1320 if (sync)
1321 rw_flags |= REQ_SYNC;
1322
1323 /*
1324 * Grab a free request. This is might sleep but can not fail.
1325 * Returns with the queue unlocked.
1326 */
1327 req = get_request_wait(q, rw_flags, bio);
1328 if (unlikely(!req)) {
1329 bio_endio(bio, -ENODEV); /* @q is dead */
1330 goto out_unlock;
1331 }
1332
1333 /*
1334 * After dropping the lock and possibly sleeping here, our request
1335 * may now be mergeable after it had proven unmergeable (above).
1336 * We don't worry about that case for efficiency. It won't happen
1337 * often, and the elevators are able to handle it.
1338 */
1339 init_request_from_bio(req, bio);
1340
1341 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1342 req->cpu = raw_smp_processor_id();
1343
1344 plug = current->plug;
1345 if (plug) {
1346 /*
1347 * If this is the first request added after a plug, fire
1348 * of a plug trace. If others have been added before, check
1349 * if we have multiple devices in this plug. If so, make a
1350 * note to sort the list before dispatch.
1351 */
1352 if (list_empty(&plug->list))
1353 trace_block_plug(q);
1354 else {
1355 if (!plug->should_sort) {
1356 struct request *__rq;
1357
1358 __rq = list_entry_rq(plug->list.prev);
1359 if (__rq->q != q)
1360 plug->should_sort = 1;
1361 }
1362 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1363 blk_flush_plug_list(plug, false);
1364 trace_block_plug(q);
1365 }
1366 }
1367 list_add_tail(&req->queuelist, &plug->list);
1368 drive_stat_acct(req, 1);
1369 } else {
1370 spin_lock_irq(q->queue_lock);
1371 add_acct_request(q, req, where);
1372 __blk_run_queue(q);
1373 out_unlock:
1374 spin_unlock_irq(q->queue_lock);
1375 }
1376 }
1377 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1378
1379 /*
1380 * If bio->bi_dev is a partition, remap the location
1381 */
1382 static inline void blk_partition_remap(struct bio *bio)
1383 {
1384 struct block_device *bdev = bio->bi_bdev;
1385
1386 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1387 struct hd_struct *p = bdev->bd_part;
1388
1389 bio->bi_sector += p->start_sect;
1390 bio->bi_bdev = bdev->bd_contains;
1391
1392 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1393 bdev->bd_dev,
1394 bio->bi_sector - p->start_sect);
1395 }
1396 }
1397
1398 static void handle_bad_sector(struct bio *bio)
1399 {
1400 char b[BDEVNAME_SIZE];
1401
1402 printk(KERN_INFO "attempt to access beyond end of device\n");
1403 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1404 bdevname(bio->bi_bdev, b),
1405 bio->bi_rw,
1406 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1407 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1408
1409 set_bit(BIO_EOF, &bio->bi_flags);
1410 }
1411
1412 #ifdef CONFIG_FAIL_MAKE_REQUEST
1413
1414 static DECLARE_FAULT_ATTR(fail_make_request);
1415
1416 static int __init setup_fail_make_request(char *str)
1417 {
1418 return setup_fault_attr(&fail_make_request, str);
1419 }
1420 __setup("fail_make_request=", setup_fail_make_request);
1421
1422 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1423 {
1424 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1425 }
1426
1427 static int __init fail_make_request_debugfs(void)
1428 {
1429 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1430 NULL, &fail_make_request);
1431
1432 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1433 }
1434
1435 late_initcall(fail_make_request_debugfs);
1436
1437 #else /* CONFIG_FAIL_MAKE_REQUEST */
1438
1439 static inline bool should_fail_request(struct hd_struct *part,
1440 unsigned int bytes)
1441 {
1442 return false;
1443 }
1444
1445 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1446
1447 /*
1448 * Check whether this bio extends beyond the end of the device.
1449 */
1450 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1451 {
1452 sector_t maxsector;
1453
1454 if (!nr_sectors)
1455 return 0;
1456
1457 /* Test device or partition size, when known. */
1458 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1459 if (maxsector) {
1460 sector_t sector = bio->bi_sector;
1461
1462 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1463 /*
1464 * This may well happen - the kernel calls bread()
1465 * without checking the size of the device, e.g., when
1466 * mounting a device.
1467 */
1468 handle_bad_sector(bio);
1469 return 1;
1470 }
1471 }
1472
1473 return 0;
1474 }
1475
1476 static noinline_for_stack bool
1477 generic_make_request_checks(struct bio *bio)
1478 {
1479 struct request_queue *q;
1480 int nr_sectors = bio_sectors(bio);
1481 int err = -EIO;
1482 char b[BDEVNAME_SIZE];
1483 struct hd_struct *part;
1484
1485 might_sleep();
1486
1487 if (bio_check_eod(bio, nr_sectors))
1488 goto end_io;
1489
1490 q = bdev_get_queue(bio->bi_bdev);
1491 if (unlikely(!q)) {
1492 printk(KERN_ERR
1493 "generic_make_request: Trying to access "
1494 "nonexistent block-device %s (%Lu)\n",
1495 bdevname(bio->bi_bdev, b),
1496 (long long) bio->bi_sector);
1497 goto end_io;
1498 }
1499
1500 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1501 nr_sectors > queue_max_hw_sectors(q))) {
1502 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1503 bdevname(bio->bi_bdev, b),
1504 bio_sectors(bio),
1505 queue_max_hw_sectors(q));
1506 goto end_io;
1507 }
1508
1509 part = bio->bi_bdev->bd_part;
1510 if (should_fail_request(part, bio->bi_size) ||
1511 should_fail_request(&part_to_disk(part)->part0,
1512 bio->bi_size))
1513 goto end_io;
1514
1515 /*
1516 * If this device has partitions, remap block n
1517 * of partition p to block n+start(p) of the disk.
1518 */
1519 blk_partition_remap(bio);
1520
1521 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1522 goto end_io;
1523
1524 if (bio_check_eod(bio, nr_sectors))
1525 goto end_io;
1526
1527 /*
1528 * Filter flush bio's early so that make_request based
1529 * drivers without flush support don't have to worry
1530 * about them.
1531 */
1532 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1533 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1534 if (!nr_sectors) {
1535 err = 0;
1536 goto end_io;
1537 }
1538 }
1539
1540 if ((bio->bi_rw & REQ_DISCARD) &&
1541 (!blk_queue_discard(q) ||
1542 ((bio->bi_rw & REQ_SECURE) &&
1543 !blk_queue_secdiscard(q)))) {
1544 err = -EOPNOTSUPP;
1545 goto end_io;
1546 }
1547
1548 if (blk_throtl_bio(q, bio))
1549 return false; /* throttled, will be resubmitted later */
1550
1551 trace_block_bio_queue(q, bio);
1552 return true;
1553
1554 end_io:
1555 bio_endio(bio, err);
1556 return false;
1557 }
1558
1559 /**
1560 * generic_make_request - hand a buffer to its device driver for I/O
1561 * @bio: The bio describing the location in memory and on the device.
1562 *
1563 * generic_make_request() is used to make I/O requests of block
1564 * devices. It is passed a &struct bio, which describes the I/O that needs
1565 * to be done.
1566 *
1567 * generic_make_request() does not return any status. The
1568 * success/failure status of the request, along with notification of
1569 * completion, is delivered asynchronously through the bio->bi_end_io
1570 * function described (one day) else where.
1571 *
1572 * The caller of generic_make_request must make sure that bi_io_vec
1573 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1574 * set to describe the device address, and the
1575 * bi_end_io and optionally bi_private are set to describe how
1576 * completion notification should be signaled.
1577 *
1578 * generic_make_request and the drivers it calls may use bi_next if this
1579 * bio happens to be merged with someone else, and may resubmit the bio to
1580 * a lower device by calling into generic_make_request recursively, which
1581 * means the bio should NOT be touched after the call to ->make_request_fn.
1582 */
1583 void generic_make_request(struct bio *bio)
1584 {
1585 struct bio_list bio_list_on_stack;
1586
1587 if (!generic_make_request_checks(bio))
1588 return;
1589
1590 /*
1591 * We only want one ->make_request_fn to be active at a time, else
1592 * stack usage with stacked devices could be a problem. So use
1593 * current->bio_list to keep a list of requests submited by a
1594 * make_request_fn function. current->bio_list is also used as a
1595 * flag to say if generic_make_request is currently active in this
1596 * task or not. If it is NULL, then no make_request is active. If
1597 * it is non-NULL, then a make_request is active, and new requests
1598 * should be added at the tail
1599 */
1600 if (current->bio_list) {
1601 bio_list_add(current->bio_list, bio);
1602 return;
1603 }
1604
1605 /* following loop may be a bit non-obvious, and so deserves some
1606 * explanation.
1607 * Before entering the loop, bio->bi_next is NULL (as all callers
1608 * ensure that) so we have a list with a single bio.
1609 * We pretend that we have just taken it off a longer list, so
1610 * we assign bio_list to a pointer to the bio_list_on_stack,
1611 * thus initialising the bio_list of new bios to be
1612 * added. ->make_request() may indeed add some more bios
1613 * through a recursive call to generic_make_request. If it
1614 * did, we find a non-NULL value in bio_list and re-enter the loop
1615 * from the top. In this case we really did just take the bio
1616 * of the top of the list (no pretending) and so remove it from
1617 * bio_list, and call into ->make_request() again.
1618 */
1619 BUG_ON(bio->bi_next);
1620 bio_list_init(&bio_list_on_stack);
1621 current->bio_list = &bio_list_on_stack;
1622 do {
1623 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1624
1625 q->make_request_fn(q, bio);
1626
1627 bio = bio_list_pop(current->bio_list);
1628 } while (bio);
1629 current->bio_list = NULL; /* deactivate */
1630 }
1631 EXPORT_SYMBOL(generic_make_request);
1632
1633 /**
1634 * submit_bio - submit a bio to the block device layer for I/O
1635 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1636 * @bio: The &struct bio which describes the I/O
1637 *
1638 * submit_bio() is very similar in purpose to generic_make_request(), and
1639 * uses that function to do most of the work. Both are fairly rough
1640 * interfaces; @bio must be presetup and ready for I/O.
1641 *
1642 */
1643 void submit_bio(int rw, struct bio *bio)
1644 {
1645 int count = bio_sectors(bio);
1646
1647 bio->bi_rw |= rw;
1648
1649 /*
1650 * If it's a regular read/write or a barrier with data attached,
1651 * go through the normal accounting stuff before submission.
1652 */
1653 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1654 if (rw & WRITE) {
1655 count_vm_events(PGPGOUT, count);
1656 } else {
1657 task_io_account_read(bio->bi_size);
1658 count_vm_events(PGPGIN, count);
1659 }
1660
1661 if (unlikely(block_dump)) {
1662 char b[BDEVNAME_SIZE];
1663 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1664 current->comm, task_pid_nr(current),
1665 (rw & WRITE) ? "WRITE" : "READ",
1666 (unsigned long long)bio->bi_sector,
1667 bdevname(bio->bi_bdev, b),
1668 count);
1669 }
1670 }
1671
1672 generic_make_request(bio);
1673 }
1674 EXPORT_SYMBOL(submit_bio);
1675
1676 /**
1677 * blk_rq_check_limits - Helper function to check a request for the queue limit
1678 * @q: the queue
1679 * @rq: the request being checked
1680 *
1681 * Description:
1682 * @rq may have been made based on weaker limitations of upper-level queues
1683 * in request stacking drivers, and it may violate the limitation of @q.
1684 * Since the block layer and the underlying device driver trust @rq
1685 * after it is inserted to @q, it should be checked against @q before
1686 * the insertion using this generic function.
1687 *
1688 * This function should also be useful for request stacking drivers
1689 * in some cases below, so export this function.
1690 * Request stacking drivers like request-based dm may change the queue
1691 * limits while requests are in the queue (e.g. dm's table swapping).
1692 * Such request stacking drivers should check those requests agaist
1693 * the new queue limits again when they dispatch those requests,
1694 * although such checkings are also done against the old queue limits
1695 * when submitting requests.
1696 */
1697 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1698 {
1699 if (rq->cmd_flags & REQ_DISCARD)
1700 return 0;
1701
1702 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1703 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1704 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1705 return -EIO;
1706 }
1707
1708 /*
1709 * queue's settings related to segment counting like q->bounce_pfn
1710 * may differ from that of other stacking queues.
1711 * Recalculate it to check the request correctly on this queue's
1712 * limitation.
1713 */
1714 blk_recalc_rq_segments(rq);
1715 if (rq->nr_phys_segments > queue_max_segments(q)) {
1716 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1717 return -EIO;
1718 }
1719
1720 return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1723
1724 /**
1725 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1726 * @q: the queue to submit the request
1727 * @rq: the request being queued
1728 */
1729 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1730 {
1731 unsigned long flags;
1732 int where = ELEVATOR_INSERT_BACK;
1733
1734 if (blk_rq_check_limits(q, rq))
1735 return -EIO;
1736
1737 if (rq->rq_disk &&
1738 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1739 return -EIO;
1740
1741 spin_lock_irqsave(q->queue_lock, flags);
1742 if (unlikely(blk_queue_dead(q))) {
1743 spin_unlock_irqrestore(q->queue_lock, flags);
1744 return -ENODEV;
1745 }
1746
1747 /*
1748 * Submitting request must be dequeued before calling this function
1749 * because it will be linked to another request_queue
1750 */
1751 BUG_ON(blk_queued_rq(rq));
1752
1753 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1754 where = ELEVATOR_INSERT_FLUSH;
1755
1756 add_acct_request(q, rq, where);
1757 if (where == ELEVATOR_INSERT_FLUSH)
1758 __blk_run_queue(q);
1759 spin_unlock_irqrestore(q->queue_lock, flags);
1760
1761 return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1764
1765 /**
1766 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1767 * @rq: request to examine
1768 *
1769 * Description:
1770 * A request could be merge of IOs which require different failure
1771 * handling. This function determines the number of bytes which
1772 * can be failed from the beginning of the request without
1773 * crossing into area which need to be retried further.
1774 *
1775 * Return:
1776 * The number of bytes to fail.
1777 *
1778 * Context:
1779 * queue_lock must be held.
1780 */
1781 unsigned int blk_rq_err_bytes(const struct request *rq)
1782 {
1783 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1784 unsigned int bytes = 0;
1785 struct bio *bio;
1786
1787 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1788 return blk_rq_bytes(rq);
1789
1790 /*
1791 * Currently the only 'mixing' which can happen is between
1792 * different fastfail types. We can safely fail portions
1793 * which have all the failfast bits that the first one has -
1794 * the ones which are at least as eager to fail as the first
1795 * one.
1796 */
1797 for (bio = rq->bio; bio; bio = bio->bi_next) {
1798 if ((bio->bi_rw & ff) != ff)
1799 break;
1800 bytes += bio->bi_size;
1801 }
1802
1803 /* this could lead to infinite loop */
1804 BUG_ON(blk_rq_bytes(rq) && !bytes);
1805 return bytes;
1806 }
1807 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1808
1809 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1810 {
1811 if (blk_do_io_stat(req)) {
1812 const int rw = rq_data_dir(req);
1813 struct hd_struct *part;
1814 int cpu;
1815
1816 cpu = part_stat_lock();
1817 part = req->part;
1818 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1819 part_stat_unlock();
1820 }
1821 }
1822
1823 static void blk_account_io_done(struct request *req)
1824 {
1825 /*
1826 * Account IO completion. flush_rq isn't accounted as a
1827 * normal IO on queueing nor completion. Accounting the
1828 * containing request is enough.
1829 */
1830 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1831 unsigned long duration = jiffies - req->start_time;
1832 const int rw = rq_data_dir(req);
1833 struct hd_struct *part;
1834 int cpu;
1835
1836 cpu = part_stat_lock();
1837 part = req->part;
1838
1839 part_stat_inc(cpu, part, ios[rw]);
1840 part_stat_add(cpu, part, ticks[rw], duration);
1841 part_round_stats(cpu, part);
1842 part_dec_in_flight(part, rw);
1843
1844 hd_struct_put(part);
1845 part_stat_unlock();
1846 }
1847 }
1848
1849 /**
1850 * blk_peek_request - peek at the top of a request queue
1851 * @q: request queue to peek at
1852 *
1853 * Description:
1854 * Return the request at the top of @q. The returned request
1855 * should be started using blk_start_request() before LLD starts
1856 * processing it.
1857 *
1858 * Return:
1859 * Pointer to the request at the top of @q if available. Null
1860 * otherwise.
1861 *
1862 * Context:
1863 * queue_lock must be held.
1864 */
1865 struct request *blk_peek_request(struct request_queue *q)
1866 {
1867 struct request *rq;
1868 int ret;
1869
1870 while ((rq = __elv_next_request(q)) != NULL) {
1871 if (!(rq->cmd_flags & REQ_STARTED)) {
1872 /*
1873 * This is the first time the device driver
1874 * sees this request (possibly after
1875 * requeueing). Notify IO scheduler.
1876 */
1877 if (rq->cmd_flags & REQ_SORTED)
1878 elv_activate_rq(q, rq);
1879
1880 /*
1881 * just mark as started even if we don't start
1882 * it, a request that has been delayed should
1883 * not be passed by new incoming requests
1884 */
1885 rq->cmd_flags |= REQ_STARTED;
1886 trace_block_rq_issue(q, rq);
1887 }
1888
1889 if (!q->boundary_rq || q->boundary_rq == rq) {
1890 q->end_sector = rq_end_sector(rq);
1891 q->boundary_rq = NULL;
1892 }
1893
1894 if (rq->cmd_flags & REQ_DONTPREP)
1895 break;
1896
1897 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1898 /*
1899 * make sure space for the drain appears we
1900 * know we can do this because max_hw_segments
1901 * has been adjusted to be one fewer than the
1902 * device can handle
1903 */
1904 rq->nr_phys_segments++;
1905 }
1906
1907 if (!q->prep_rq_fn)
1908 break;
1909
1910 ret = q->prep_rq_fn(q, rq);
1911 if (ret == BLKPREP_OK) {
1912 break;
1913 } else if (ret == BLKPREP_DEFER) {
1914 /*
1915 * the request may have been (partially) prepped.
1916 * we need to keep this request in the front to
1917 * avoid resource deadlock. REQ_STARTED will
1918 * prevent other fs requests from passing this one.
1919 */
1920 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1921 !(rq->cmd_flags & REQ_DONTPREP)) {
1922 /*
1923 * remove the space for the drain we added
1924 * so that we don't add it again
1925 */
1926 --rq->nr_phys_segments;
1927 }
1928
1929 rq = NULL;
1930 break;
1931 } else if (ret == BLKPREP_KILL) {
1932 rq->cmd_flags |= REQ_QUIET;
1933 /*
1934 * Mark this request as started so we don't trigger
1935 * any debug logic in the end I/O path.
1936 */
1937 blk_start_request(rq);
1938 __blk_end_request_all(rq, -EIO);
1939 } else {
1940 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1941 break;
1942 }
1943 }
1944
1945 return rq;
1946 }
1947 EXPORT_SYMBOL(blk_peek_request);
1948
1949 void blk_dequeue_request(struct request *rq)
1950 {
1951 struct request_queue *q = rq->q;
1952
1953 BUG_ON(list_empty(&rq->queuelist));
1954 BUG_ON(ELV_ON_HASH(rq));
1955
1956 list_del_init(&rq->queuelist);
1957
1958 /*
1959 * the time frame between a request being removed from the lists
1960 * and to it is freed is accounted as io that is in progress at
1961 * the driver side.
1962 */
1963 if (blk_account_rq(rq)) {
1964 q->in_flight[rq_is_sync(rq)]++;
1965 set_io_start_time_ns(rq);
1966 }
1967 }
1968
1969 /**
1970 * blk_start_request - start request processing on the driver
1971 * @req: request to dequeue
1972 *
1973 * Description:
1974 * Dequeue @req and start timeout timer on it. This hands off the
1975 * request to the driver.
1976 *
1977 * Block internal functions which don't want to start timer should
1978 * call blk_dequeue_request().
1979 *
1980 * Context:
1981 * queue_lock must be held.
1982 */
1983 void blk_start_request(struct request *req)
1984 {
1985 blk_dequeue_request(req);
1986
1987 /*
1988 * We are now handing the request to the hardware, initialize
1989 * resid_len to full count and add the timeout handler.
1990 */
1991 req->resid_len = blk_rq_bytes(req);
1992 if (unlikely(blk_bidi_rq(req)))
1993 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1994
1995 blk_add_timer(req);
1996 }
1997 EXPORT_SYMBOL(blk_start_request);
1998
1999 /**
2000 * blk_fetch_request - fetch a request from a request queue
2001 * @q: request queue to fetch a request from
2002 *
2003 * Description:
2004 * Return the request at the top of @q. The request is started on
2005 * return and LLD can start processing it immediately.
2006 *
2007 * Return:
2008 * Pointer to the request at the top of @q if available. Null
2009 * otherwise.
2010 *
2011 * Context:
2012 * queue_lock must be held.
2013 */
2014 struct request *blk_fetch_request(struct request_queue *q)
2015 {
2016 struct request *rq;
2017
2018 rq = blk_peek_request(q);
2019 if (rq)
2020 blk_start_request(rq);
2021 return rq;
2022 }
2023 EXPORT_SYMBOL(blk_fetch_request);
2024
2025 /**
2026 * blk_update_request - Special helper function for request stacking drivers
2027 * @req: the request being processed
2028 * @error: %0 for success, < %0 for error
2029 * @nr_bytes: number of bytes to complete @req
2030 *
2031 * Description:
2032 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2033 * the request structure even if @req doesn't have leftover.
2034 * If @req has leftover, sets it up for the next range of segments.
2035 *
2036 * This special helper function is only for request stacking drivers
2037 * (e.g. request-based dm) so that they can handle partial completion.
2038 * Actual device drivers should use blk_end_request instead.
2039 *
2040 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2041 * %false return from this function.
2042 *
2043 * Return:
2044 * %false - this request doesn't have any more data
2045 * %true - this request has more data
2046 **/
2047 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2048 {
2049 int total_bytes, bio_nbytes, next_idx = 0;
2050 struct bio *bio;
2051
2052 if (!req->bio)
2053 return false;
2054
2055 trace_block_rq_complete(req->q, req);
2056
2057 /*
2058 * For fs requests, rq is just carrier of independent bio's
2059 * and each partial completion should be handled separately.
2060 * Reset per-request error on each partial completion.
2061 *
2062 * TODO: tj: This is too subtle. It would be better to let
2063 * low level drivers do what they see fit.
2064 */
2065 if (req->cmd_type == REQ_TYPE_FS)
2066 req->errors = 0;
2067
2068 if (error && req->cmd_type == REQ_TYPE_FS &&
2069 !(req->cmd_flags & REQ_QUIET)) {
2070 char *error_type;
2071
2072 switch (error) {
2073 case -ENOLINK:
2074 error_type = "recoverable transport";
2075 break;
2076 case -EREMOTEIO:
2077 error_type = "critical target";
2078 break;
2079 case -EBADE:
2080 error_type = "critical nexus";
2081 break;
2082 case -EIO:
2083 default:
2084 error_type = "I/O";
2085 break;
2086 }
2087 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2088 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2089 (unsigned long long)blk_rq_pos(req));
2090 }
2091
2092 blk_account_io_completion(req, nr_bytes);
2093
2094 total_bytes = bio_nbytes = 0;
2095 while ((bio = req->bio) != NULL) {
2096 int nbytes;
2097
2098 if (nr_bytes >= bio->bi_size) {
2099 req->bio = bio->bi_next;
2100 nbytes = bio->bi_size;
2101 req_bio_endio(req, bio, nbytes, error);
2102 next_idx = 0;
2103 bio_nbytes = 0;
2104 } else {
2105 int idx = bio->bi_idx + next_idx;
2106
2107 if (unlikely(idx >= bio->bi_vcnt)) {
2108 blk_dump_rq_flags(req, "__end_that");
2109 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2110 __func__, idx, bio->bi_vcnt);
2111 break;
2112 }
2113
2114 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2115 BIO_BUG_ON(nbytes > bio->bi_size);
2116
2117 /*
2118 * not a complete bvec done
2119 */
2120 if (unlikely(nbytes > nr_bytes)) {
2121 bio_nbytes += nr_bytes;
2122 total_bytes += nr_bytes;
2123 break;
2124 }
2125
2126 /*
2127 * advance to the next vector
2128 */
2129 next_idx++;
2130 bio_nbytes += nbytes;
2131 }
2132
2133 total_bytes += nbytes;
2134 nr_bytes -= nbytes;
2135
2136 bio = req->bio;
2137 if (bio) {
2138 /*
2139 * end more in this run, or just return 'not-done'
2140 */
2141 if (unlikely(nr_bytes <= 0))
2142 break;
2143 }
2144 }
2145
2146 /*
2147 * completely done
2148 */
2149 if (!req->bio) {
2150 /*
2151 * Reset counters so that the request stacking driver
2152 * can find how many bytes remain in the request
2153 * later.
2154 */
2155 req->__data_len = 0;
2156 return false;
2157 }
2158
2159 /*
2160 * if the request wasn't completed, update state
2161 */
2162 if (bio_nbytes) {
2163 req_bio_endio(req, bio, bio_nbytes, error);
2164 bio->bi_idx += next_idx;
2165 bio_iovec(bio)->bv_offset += nr_bytes;
2166 bio_iovec(bio)->bv_len -= nr_bytes;
2167 }
2168
2169 req->__data_len -= total_bytes;
2170 req->buffer = bio_data(req->bio);
2171
2172 /* update sector only for requests with clear definition of sector */
2173 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2174 req->__sector += total_bytes >> 9;
2175
2176 /* mixed attributes always follow the first bio */
2177 if (req->cmd_flags & REQ_MIXED_MERGE) {
2178 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2179 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2180 }
2181
2182 /*
2183 * If total number of sectors is less than the first segment
2184 * size, something has gone terribly wrong.
2185 */
2186 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2187 blk_dump_rq_flags(req, "request botched");
2188 req->__data_len = blk_rq_cur_bytes(req);
2189 }
2190
2191 /* recalculate the number of segments */
2192 blk_recalc_rq_segments(req);
2193
2194 return true;
2195 }
2196 EXPORT_SYMBOL_GPL(blk_update_request);
2197
2198 static bool blk_update_bidi_request(struct request *rq, int error,
2199 unsigned int nr_bytes,
2200 unsigned int bidi_bytes)
2201 {
2202 if (blk_update_request(rq, error, nr_bytes))
2203 return true;
2204
2205 /* Bidi request must be completed as a whole */
2206 if (unlikely(blk_bidi_rq(rq)) &&
2207 blk_update_request(rq->next_rq, error, bidi_bytes))
2208 return true;
2209
2210 if (blk_queue_add_random(rq->q))
2211 add_disk_randomness(rq->rq_disk);
2212
2213 return false;
2214 }
2215
2216 /**
2217 * blk_unprep_request - unprepare a request
2218 * @req: the request
2219 *
2220 * This function makes a request ready for complete resubmission (or
2221 * completion). It happens only after all error handling is complete,
2222 * so represents the appropriate moment to deallocate any resources
2223 * that were allocated to the request in the prep_rq_fn. The queue
2224 * lock is held when calling this.
2225 */
2226 void blk_unprep_request(struct request *req)
2227 {
2228 struct request_queue *q = req->q;
2229
2230 req->cmd_flags &= ~REQ_DONTPREP;
2231 if (q->unprep_rq_fn)
2232 q->unprep_rq_fn(q, req);
2233 }
2234 EXPORT_SYMBOL_GPL(blk_unprep_request);
2235
2236 /*
2237 * queue lock must be held
2238 */
2239 static void blk_finish_request(struct request *req, int error)
2240 {
2241 if (blk_rq_tagged(req))
2242 blk_queue_end_tag(req->q, req);
2243
2244 BUG_ON(blk_queued_rq(req));
2245
2246 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2247 laptop_io_completion(&req->q->backing_dev_info);
2248
2249 blk_delete_timer(req);
2250
2251 if (req->cmd_flags & REQ_DONTPREP)
2252 blk_unprep_request(req);
2253
2254
2255 blk_account_io_done(req);
2256
2257 if (req->end_io)
2258 req->end_io(req, error);
2259 else {
2260 if (blk_bidi_rq(req))
2261 __blk_put_request(req->next_rq->q, req->next_rq);
2262
2263 __blk_put_request(req->q, req);
2264 }
2265 }
2266
2267 /**
2268 * blk_end_bidi_request - Complete a bidi request
2269 * @rq: the request to complete
2270 * @error: %0 for success, < %0 for error
2271 * @nr_bytes: number of bytes to complete @rq
2272 * @bidi_bytes: number of bytes to complete @rq->next_rq
2273 *
2274 * Description:
2275 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2276 * Drivers that supports bidi can safely call this member for any
2277 * type of request, bidi or uni. In the later case @bidi_bytes is
2278 * just ignored.
2279 *
2280 * Return:
2281 * %false - we are done with this request
2282 * %true - still buffers pending for this request
2283 **/
2284 static bool blk_end_bidi_request(struct request *rq, int error,
2285 unsigned int nr_bytes, unsigned int bidi_bytes)
2286 {
2287 struct request_queue *q = rq->q;
2288 unsigned long flags;
2289
2290 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2291 return true;
2292
2293 spin_lock_irqsave(q->queue_lock, flags);
2294 blk_finish_request(rq, error);
2295 spin_unlock_irqrestore(q->queue_lock, flags);
2296
2297 return false;
2298 }
2299
2300 /**
2301 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2302 * @rq: the request to complete
2303 * @error: %0 for success, < %0 for error
2304 * @nr_bytes: number of bytes to complete @rq
2305 * @bidi_bytes: number of bytes to complete @rq->next_rq
2306 *
2307 * Description:
2308 * Identical to blk_end_bidi_request() except that queue lock is
2309 * assumed to be locked on entry and remains so on return.
2310 *
2311 * Return:
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
2314 **/
2315 bool __blk_end_bidi_request(struct request *rq, int error,
2316 unsigned int nr_bytes, unsigned int bidi_bytes)
2317 {
2318 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2319 return true;
2320
2321 blk_finish_request(rq, error);
2322
2323 return false;
2324 }
2325
2326 /**
2327 * blk_end_request - Helper function for drivers to complete the request.
2328 * @rq: the request being processed
2329 * @error: %0 for success, < %0 for error
2330 * @nr_bytes: number of bytes to complete
2331 *
2332 * Description:
2333 * Ends I/O on a number of bytes attached to @rq.
2334 * If @rq has leftover, sets it up for the next range of segments.
2335 *
2336 * Return:
2337 * %false - we are done with this request
2338 * %true - still buffers pending for this request
2339 **/
2340 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2341 {
2342 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2343 }
2344 EXPORT_SYMBOL(blk_end_request);
2345
2346 /**
2347 * blk_end_request_all - Helper function for drives to finish the request.
2348 * @rq: the request to finish
2349 * @error: %0 for success, < %0 for error
2350 *
2351 * Description:
2352 * Completely finish @rq.
2353 */
2354 void blk_end_request_all(struct request *rq, int error)
2355 {
2356 bool pending;
2357 unsigned int bidi_bytes = 0;
2358
2359 if (unlikely(blk_bidi_rq(rq)))
2360 bidi_bytes = blk_rq_bytes(rq->next_rq);
2361
2362 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2363 BUG_ON(pending);
2364 }
2365 EXPORT_SYMBOL(blk_end_request_all);
2366
2367 /**
2368 * blk_end_request_cur - Helper function to finish the current request chunk.
2369 * @rq: the request to finish the current chunk for
2370 * @error: %0 for success, < %0 for error
2371 *
2372 * Description:
2373 * Complete the current consecutively mapped chunk from @rq.
2374 *
2375 * Return:
2376 * %false - we are done with this request
2377 * %true - still buffers pending for this request
2378 */
2379 bool blk_end_request_cur(struct request *rq, int error)
2380 {
2381 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2382 }
2383 EXPORT_SYMBOL(blk_end_request_cur);
2384
2385 /**
2386 * blk_end_request_err - Finish a request till the next failure boundary.
2387 * @rq: the request to finish till the next failure boundary for
2388 * @error: must be negative errno
2389 *
2390 * Description:
2391 * Complete @rq till the next failure boundary.
2392 *
2393 * Return:
2394 * %false - we are done with this request
2395 * %true - still buffers pending for this request
2396 */
2397 bool blk_end_request_err(struct request *rq, int error)
2398 {
2399 WARN_ON(error >= 0);
2400 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2401 }
2402 EXPORT_SYMBOL_GPL(blk_end_request_err);
2403
2404 /**
2405 * __blk_end_request - Helper function for drivers to complete the request.
2406 * @rq: the request being processed
2407 * @error: %0 for success, < %0 for error
2408 * @nr_bytes: number of bytes to complete
2409 *
2410 * Description:
2411 * Must be called with queue lock held unlike blk_end_request().
2412 *
2413 * Return:
2414 * %false - we are done with this request
2415 * %true - still buffers pending for this request
2416 **/
2417 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2418 {
2419 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2420 }
2421 EXPORT_SYMBOL(__blk_end_request);
2422
2423 /**
2424 * __blk_end_request_all - Helper function for drives to finish the request.
2425 * @rq: the request to finish
2426 * @error: %0 for success, < %0 for error
2427 *
2428 * Description:
2429 * Completely finish @rq. Must be called with queue lock held.
2430 */
2431 void __blk_end_request_all(struct request *rq, int error)
2432 {
2433 bool pending;
2434 unsigned int bidi_bytes = 0;
2435
2436 if (unlikely(blk_bidi_rq(rq)))
2437 bidi_bytes = blk_rq_bytes(rq->next_rq);
2438
2439 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2440 BUG_ON(pending);
2441 }
2442 EXPORT_SYMBOL(__blk_end_request_all);
2443
2444 /**
2445 * __blk_end_request_cur - Helper function to finish the current request chunk.
2446 * @rq: the request to finish the current chunk for
2447 * @error: %0 for success, < %0 for error
2448 *
2449 * Description:
2450 * Complete the current consecutively mapped chunk from @rq. Must
2451 * be called with queue lock held.
2452 *
2453 * Return:
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
2456 */
2457 bool __blk_end_request_cur(struct request *rq, int error)
2458 {
2459 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2460 }
2461 EXPORT_SYMBOL(__blk_end_request_cur);
2462
2463 /**
2464 * __blk_end_request_err - Finish a request till the next failure boundary.
2465 * @rq: the request to finish till the next failure boundary for
2466 * @error: must be negative errno
2467 *
2468 * Description:
2469 * Complete @rq till the next failure boundary. Must be called
2470 * with queue lock held.
2471 *
2472 * Return:
2473 * %false - we are done with this request
2474 * %true - still buffers pending for this request
2475 */
2476 bool __blk_end_request_err(struct request *rq, int error)
2477 {
2478 WARN_ON(error >= 0);
2479 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2480 }
2481 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2482
2483 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2484 struct bio *bio)
2485 {
2486 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2487 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2488
2489 if (bio_has_data(bio)) {
2490 rq->nr_phys_segments = bio_phys_segments(q, bio);
2491 rq->buffer = bio_data(bio);
2492 }
2493 rq->__data_len = bio->bi_size;
2494 rq->bio = rq->biotail = bio;
2495
2496 if (bio->bi_bdev)
2497 rq->rq_disk = bio->bi_bdev->bd_disk;
2498 }
2499
2500 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2501 /**
2502 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2503 * @rq: the request to be flushed
2504 *
2505 * Description:
2506 * Flush all pages in @rq.
2507 */
2508 void rq_flush_dcache_pages(struct request *rq)
2509 {
2510 struct req_iterator iter;
2511 struct bio_vec *bvec;
2512
2513 rq_for_each_segment(bvec, rq, iter)
2514 flush_dcache_page(bvec->bv_page);
2515 }
2516 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2517 #endif
2518
2519 /**
2520 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2521 * @q : the queue of the device being checked
2522 *
2523 * Description:
2524 * Check if underlying low-level drivers of a device are busy.
2525 * If the drivers want to export their busy state, they must set own
2526 * exporting function using blk_queue_lld_busy() first.
2527 *
2528 * Basically, this function is used only by request stacking drivers
2529 * to stop dispatching requests to underlying devices when underlying
2530 * devices are busy. This behavior helps more I/O merging on the queue
2531 * of the request stacking driver and prevents I/O throughput regression
2532 * on burst I/O load.
2533 *
2534 * Return:
2535 * 0 - Not busy (The request stacking driver should dispatch request)
2536 * 1 - Busy (The request stacking driver should stop dispatching request)
2537 */
2538 int blk_lld_busy(struct request_queue *q)
2539 {
2540 if (q->lld_busy_fn)
2541 return q->lld_busy_fn(q);
2542
2543 return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(blk_lld_busy);
2546
2547 /**
2548 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2549 * @rq: the clone request to be cleaned up
2550 *
2551 * Description:
2552 * Free all bios in @rq for a cloned request.
2553 */
2554 void blk_rq_unprep_clone(struct request *rq)
2555 {
2556 struct bio *bio;
2557
2558 while ((bio = rq->bio) != NULL) {
2559 rq->bio = bio->bi_next;
2560
2561 bio_put(bio);
2562 }
2563 }
2564 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2565
2566 /*
2567 * Copy attributes of the original request to the clone request.
2568 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2569 */
2570 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2571 {
2572 dst->cpu = src->cpu;
2573 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2574 dst->cmd_type = src->cmd_type;
2575 dst->__sector = blk_rq_pos(src);
2576 dst->__data_len = blk_rq_bytes(src);
2577 dst->nr_phys_segments = src->nr_phys_segments;
2578 dst->ioprio = src->ioprio;
2579 dst->extra_len = src->extra_len;
2580 }
2581
2582 /**
2583 * blk_rq_prep_clone - Helper function to setup clone request
2584 * @rq: the request to be setup
2585 * @rq_src: original request to be cloned
2586 * @bs: bio_set that bios for clone are allocated from
2587 * @gfp_mask: memory allocation mask for bio
2588 * @bio_ctr: setup function to be called for each clone bio.
2589 * Returns %0 for success, non %0 for failure.
2590 * @data: private data to be passed to @bio_ctr
2591 *
2592 * Description:
2593 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2594 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2595 * are not copied, and copying such parts is the caller's responsibility.
2596 * Also, pages which the original bios are pointing to are not copied
2597 * and the cloned bios just point same pages.
2598 * So cloned bios must be completed before original bios, which means
2599 * the caller must complete @rq before @rq_src.
2600 */
2601 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2602 struct bio_set *bs, gfp_t gfp_mask,
2603 int (*bio_ctr)(struct bio *, struct bio *, void *),
2604 void *data)
2605 {
2606 struct bio *bio, *bio_src;
2607
2608 if (!bs)
2609 bs = fs_bio_set;
2610
2611 blk_rq_init(NULL, rq);
2612
2613 __rq_for_each_bio(bio_src, rq_src) {
2614 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2615 if (!bio)
2616 goto free_and_out;
2617
2618 __bio_clone(bio, bio_src);
2619
2620 if (bio_integrity(bio_src) &&
2621 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2622 goto free_and_out;
2623
2624 if (bio_ctr && bio_ctr(bio, bio_src, data))
2625 goto free_and_out;
2626
2627 if (rq->bio) {
2628 rq->biotail->bi_next = bio;
2629 rq->biotail = bio;
2630 } else
2631 rq->bio = rq->biotail = bio;
2632 }
2633
2634 __blk_rq_prep_clone(rq, rq_src);
2635
2636 return 0;
2637
2638 free_and_out:
2639 if (bio)
2640 bio_free(bio, bs);
2641 blk_rq_unprep_clone(rq);
2642
2643 return -ENOMEM;
2644 }
2645 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2646
2647 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2648 {
2649 return queue_work(kblockd_workqueue, work);
2650 }
2651 EXPORT_SYMBOL(kblockd_schedule_work);
2652
2653 int kblockd_schedule_delayed_work(struct request_queue *q,
2654 struct delayed_work *dwork, unsigned long delay)
2655 {
2656 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2657 }
2658 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2659
2660 #define PLUG_MAGIC 0x91827364
2661
2662 /**
2663 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2664 * @plug: The &struct blk_plug that needs to be initialized
2665 *
2666 * Description:
2667 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2668 * pending I/O should the task end up blocking between blk_start_plug() and
2669 * blk_finish_plug(). This is important from a performance perspective, but
2670 * also ensures that we don't deadlock. For instance, if the task is blocking
2671 * for a memory allocation, memory reclaim could end up wanting to free a
2672 * page belonging to that request that is currently residing in our private
2673 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2674 * this kind of deadlock.
2675 */
2676 void blk_start_plug(struct blk_plug *plug)
2677 {
2678 struct task_struct *tsk = current;
2679
2680 plug->magic = PLUG_MAGIC;
2681 INIT_LIST_HEAD(&plug->list);
2682 INIT_LIST_HEAD(&plug->cb_list);
2683 plug->should_sort = 0;
2684
2685 /*
2686 * If this is a nested plug, don't actually assign it. It will be
2687 * flushed on its own.
2688 */
2689 if (!tsk->plug) {
2690 /*
2691 * Store ordering should not be needed here, since a potential
2692 * preempt will imply a full memory barrier
2693 */
2694 tsk->plug = plug;
2695 }
2696 }
2697 EXPORT_SYMBOL(blk_start_plug);
2698
2699 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2700 {
2701 struct request *rqa = container_of(a, struct request, queuelist);
2702 struct request *rqb = container_of(b, struct request, queuelist);
2703
2704 return !(rqa->q <= rqb->q);
2705 }
2706
2707 /*
2708 * If 'from_schedule' is true, then postpone the dispatch of requests
2709 * until a safe kblockd context. We due this to avoid accidental big
2710 * additional stack usage in driver dispatch, in places where the originally
2711 * plugger did not intend it.
2712 */
2713 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2714 bool from_schedule)
2715 __releases(q->queue_lock)
2716 {
2717 trace_block_unplug(q, depth, !from_schedule);
2718
2719 /*
2720 * Don't mess with dead queue.
2721 */
2722 if (unlikely(blk_queue_dead(q))) {
2723 spin_unlock(q->queue_lock);
2724 return;
2725 }
2726
2727 /*
2728 * If we are punting this to kblockd, then we can safely drop
2729 * the queue_lock before waking kblockd (which needs to take
2730 * this lock).
2731 */
2732 if (from_schedule) {
2733 spin_unlock(q->queue_lock);
2734 blk_run_queue_async(q);
2735 } else {
2736 __blk_run_queue(q);
2737 spin_unlock(q->queue_lock);
2738 }
2739
2740 }
2741
2742 static void flush_plug_callbacks(struct blk_plug *plug)
2743 {
2744 LIST_HEAD(callbacks);
2745
2746 if (list_empty(&plug->cb_list))
2747 return;
2748
2749 list_splice_init(&plug->cb_list, &callbacks);
2750
2751 while (!list_empty(&callbacks)) {
2752 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2753 struct blk_plug_cb,
2754 list);
2755 list_del(&cb->list);
2756 cb->callback(cb);
2757 }
2758 }
2759
2760 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2761 {
2762 struct request_queue *q;
2763 unsigned long flags;
2764 struct request *rq;
2765 LIST_HEAD(list);
2766 unsigned int depth;
2767
2768 BUG_ON(plug->magic != PLUG_MAGIC);
2769
2770 flush_plug_callbacks(plug);
2771 if (list_empty(&plug->list))
2772 return;
2773
2774 list_splice_init(&plug->list, &list);
2775
2776 if (plug->should_sort) {
2777 list_sort(NULL, &list, plug_rq_cmp);
2778 plug->should_sort = 0;
2779 }
2780
2781 q = NULL;
2782 depth = 0;
2783
2784 /*
2785 * Save and disable interrupts here, to avoid doing it for every
2786 * queue lock we have to take.
2787 */
2788 local_irq_save(flags);
2789 while (!list_empty(&list)) {
2790 rq = list_entry_rq(list.next);
2791 list_del_init(&rq->queuelist);
2792 BUG_ON(!rq->q);
2793 if (rq->q != q) {
2794 /*
2795 * This drops the queue lock
2796 */
2797 if (q)
2798 queue_unplugged(q, depth, from_schedule);
2799 q = rq->q;
2800 depth = 0;
2801 spin_lock(q->queue_lock);
2802 }
2803
2804 /*
2805 * Short-circuit if @q is dead
2806 */
2807 if (unlikely(blk_queue_dead(q))) {
2808 __blk_end_request_all(rq, -ENODEV);
2809 continue;
2810 }
2811
2812 /*
2813 * rq is already accounted, so use raw insert
2814 */
2815 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2816 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2817 else
2818 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2819
2820 depth++;
2821 }
2822
2823 /*
2824 * This drops the queue lock
2825 */
2826 if (q)
2827 queue_unplugged(q, depth, from_schedule);
2828
2829 local_irq_restore(flags);
2830 }
2831
2832 void blk_finish_plug(struct blk_plug *plug)
2833 {
2834 blk_flush_plug_list(plug, false);
2835
2836 if (plug == current->plug)
2837 current->plug = NULL;
2838 }
2839 EXPORT_SYMBOL(blk_finish_plug);
2840
2841 int __init blk_dev_init(void)
2842 {
2843 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2844 sizeof(((struct request *)0)->cmd_flags));
2845
2846 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2847 kblockd_workqueue = alloc_workqueue("kblockd",
2848 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2849 if (!kblockd_workqueue)
2850 panic("Failed to create kblockd\n");
2851
2852 request_cachep = kmem_cache_create("blkdev_requests",
2853 sizeof(struct request), 0, SLAB_PANIC, NULL);
2854
2855 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2856 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2857
2858 return 0;
2859 }